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Abstract  
The assumption that equity returns follow the normal distribution, most commonly made in financial 
economics theory and applications, is strongly rejected by empirical evidence presented in this paper. As it was 

found in many other studies, we confirm that stock returns follow a leptokurtic distribution and skewness, 

which in most of the Southeast European (SEE) markets is negative. This paper investigates further whether 
there is any distribution that may be considered an optimal fit for stock returns in the SEE region. Using daily, 

weekly and monthly data samples for a period of five years from ten Southeast European emerging countries, 

we applied the Anderson-Darling test of Goodness-of-fit. We strongly rejected the aforementioned assumption 
of normality for all considered data samples and found that the daily stock returns are best fitted by the Johnson 

SU distribution whereas for the weekly and monthly stock returns there was not one predominant, but many 

distributions that can be considered a best fit. 
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INTRODUCTION 

 

The type of distribution that is implicitly or explicitly incorporated in the models in the 

theory and application in the financial economics is crucial. The most famous models 

which are now used as are the portfolio theory of Markowitz, CAPM, Black-Sholes etc., 

are based on the assumption for normal distribution. But empirical evidence has long 

shown that the assumption of the normal distribution is not a consistent explanation for 

the stock returns. The normal distribution implies that the preferences of investors are 

                                                 
1 Aleksandar Naumoski, PhD, Assistant Professor, Ss. Cyril and Methodius University in Skopje, Faculty of 

Economics – Skopje; Stevan Gaber, PhD, Assistant Professor, Goce Delcev University of Stip, Faculty of 
Economics; Vasilka Gaber-Naumoska, PhD, Public Revenue Office of the Republic of Macedonia, Macedonia. 

Preliminary communication 
(accepted May 4, 2017) 



Aleksandar Naumoski, Stevan Gaber, and Vasilka Gaber-Naumoska. 2017. Empirical Distribution of Stock 
Returns of Southeast European Emerging Markets. UTMS Journal of Economics 8 (2): 67–77. 

 

 

 

 

68 

modelled in a simple way by assuming mean-variance behavior, together with the 

implausibility of quadratic utility functions. This means that the flow of information on 

the stock markets is linear and that the reactions of investors to such information is also 

linear. Peters (1991) demonstrates that the information on the stock markets come with 

infrequent clumps instead of in a linear fashion, and investors at least infrequently 

respond to them, but they can also not react. Therefore, if the flow of information is 

leptokurtic, then stock returns will have leptokurtic distribution. 

Another requirement to fulfill the assumption of the normal distribution is that equity 

markets are rational and efficient. According to that logic, if return expectations implicit 

in asset prices are rational, actual rates of return should be normally distributed around 

these expectations (Bodie et al. 2014, 135). But empirical evidence strongly rejects 

normal distribution and shows that stock returns have leptokurtic distribution and 

skewness (somewhere on the left, somewhere on the right). 

In this paper we want to determine the best fitted distribution of the daily, weekly and 

monthly stock returns for 10 emerging markets of Southeast Europe. Most of the studies 

of this type are based on research on the case of developed markets like those of Western 

Europe and the USA. Research of the emerging markets, especially in the case of SEE 

markets, are very rare. The time series used in our analysis starts from July 1, 2011 to June 

30, 2016, and we intentionally skip the period of the great financial crisis of 2007/08 and 

the European debt crisis of 2009/10. Actually, in our first analysis we included that period 

as well, but no distribution can be fitted in all cases. That is because the fluctuations in 

those periods was extremely huge, and afterwards a pretty calm period followed. 

We have no ex-ante underlying financial theory to justify the use of all the 

specifications. Moreover, our purpose is to fit distributions that allow for the characteristics 

of the stock market sample data to determine which one of those distributions best fits each 

market. Most of the authors that have done similar research, firstly choose one or a couple 

of distributions, but in our observation we have used 56 distributions. We employed the 

Anderson-Darling criterion and accordingly we made a ranking of all the distributions, thus 

choosing the one that was a best fit according to this criterion.   

This paper is organized as follows. Section 1 provides a review of the literature. In 

Section 2 we explain the data sample used in the analysis, and in Section 3 we present 

the method used in the analysis. Section 4 shows our empirical results. Finally, we 

provide a conclusion. 

 

 
1. LITERATURE REVIEW 

 

The assumption of normal distribution of the stock returns is incorporated in the most 

popular and most used models in the theory and practice of financial economics. Among 

them we will mention the mean-variance Markowitz Portfolio Theory (Markowitz 1952), 

CAPM (Sharpe 1964), and the Consumption CAPM (Lucas 1978). Additionally, the 

Black-Scholes option pricing model (Black and Scholes 1973; and Merton 1973) is 

derived based on the assumption that equity prices follow a geometric Brownian motion 

process, which has normally distributed increments. The bell-shaped normal distribution 

is completely characterized by two parameters, the mean and SD. The simple logic 

underlying that model is if return expectations implicit in asset prices are rational, then 

actual rates of return should be normally distributed around these expectations. In such 
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a way, investment management is far more tractable when rates of return can be well 

approximated by the normal distribution. 

Contrary to theoretical assumptions prevalent in the theory of financial economics, 

the empirical evidence strictly rejects the normal distribution of the stock returns. Today 

there are many studies that confirm that the long horizon returns are often found to be 

approximately normally distributed, and over short horizons, equity returns are far from 

normal. Most of the studies show that returns on stocks display significant leptokurtosis, 

and in many cases, skewness (negative or positive depending on the period analyzed).  

Among the first studies that found that the empirical distribution of the proceeds of 

the shares were not normal were Mandelbrot (1963, 1967) and Fama (1965). Mandelbrot 

(1963, 1967) presented evidence that distributions of returns can be well approximated 

by the stable Paretian distribution with a characteristic exponent less than 2 (a symmetric 

Levy stable law with tail index b about 1.7), thus exhibiting fat tails and an infinite 

variance. Fama, (1965) in his research on a sample of 30 stocks from DJIA Index, 

confirmed Mandelbrot (1963) that the stable Paretian distribution better characterized 

the stock price changes. Much later, Mittnik et al. (1998) confirmed these estimates of 

the power tail index, as well as Mantegna and Stanley (1995, 2000), who even suggested 

slightly different indices of the stable law (b=1,4).   

Officer (1972) examined the validity of the symmetric stable class of distributions, 

and found that monthly returns follow normality, and the standard deviation appears to 

be a well behaved measure of scale. Clark (1973) found the lognormal distribution as a 

better fit on the sample of the data on cotton futures prices than a stable Paretian 

distribution proposed a couple of years previously by Mandelbrot (1963, 1967) and Fama 

(1965). Praetz (1972), analyzing weekly data samples from the Sydney Stock exchange, 

concluded that the Student-t distribution is a better fit than the stable Paretian because 

the Paretian distribution has an infinite variance property and unknown density function. 

Blattberg and Gonedes (1974) using a daily and weekly data sample of the DJI made a 

comparison of the three distributions – Student-t, normal and Cauchy, and concluded 

that the Student-t is the better fit than the normal on the sample of the daily returns, but 

normal distributions apply to the monthly returns. Akgiray and Booth (1987) also found 

that normal distribution is a good fit for the monthly stock returns. In this line is 

Hagerman (1978), who rejects the normal distribution and proposes that what should be 

used is a mix between the normal and the Student-t distribution as an alternative.  

For describing security returns, Bookstaber and McDonald (1987) introduced the 

generalized distribution GB2, which is an extremely flexible distribution, containing a 

large number of well-known distributions, such as the lognormal, log-t, and log-Cauchy 

distributions, as special or limiting cases and allowing large, even infinitely higher 

moments. The properties of the GB2 make it useful in empirical estimation of security 

returns and in facilitating the development of option pricing models and other models 

that depend on the specification and mathematical manipulation of distributions. 

Gray and French (1990) considered the distribution of log stock index returns of the 

S&P 500 and found that log stock return distributions do not follow the normal law as is 

often assumed, but instead have much longer tails and more peakedness than the normal 

family. Three alternative distributions: the scaled-t, logistic, and exponential power 

distributions, demonstrate a greater ability to model log stock index returns from the S&P 

500 Composite Index. Of the three alternative models considered, the EPD appears to 

provide a superior fit. 
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Aparicio and Estrada (2001), using daily data of 13 European countries, made a 

comparison among four distributions: logistic, scaled-t, exponential power and а mixture 

of two Normal distributions. They found the scaled-t distribution as the most appropriate 

fit for their data sample and give partial support for a mixture of two Normal 

distributions. In addition, they note that normality may be a plausible assumption for 

monthly (but not for daily) stock returns. Normality was also not rejected for the weekly 

and monthly returns by Linden (2001). He used data samples of daily, weekly and 

monthly returns for the 20 most traded shares on the Helsinki Stock market. For the daily 

returns he found that the asymmetric Laplace is a better fit distribution than the Normal 

distribution. 

The Harris and Kucukozmen (2001 and 2001a) model continuously compounded 

daily, weekly and monthly returns for the UK and US and Turkey, using two very flexible 

families of distributions exponential generalized beta (EGB) and generalized-t 

distribution (SGT). They found that both EGB and SGT distributions provide a 

substantial improvement over the normal distribution, while the SGT provides a 

marginally superior fit over the EGB. Their preferred distributions for daily equity 

returns are the skewed-t for the UK and the generalized-t for the US. 

Malevergne et. al (2005) used daily data of DJIA, and very frequent data: 5-min 

returns of the Nasdaq Composite index and 1-min returns of the S&P500. They propose 

a parametric representation of the tail of the distributions of returns encompassing both 

a regularly varying distribution in one limit of the parameters and rapidly varying 

distributions of the class of the stretched-exponential (SE) and the log-Weibull or 

Stretched Log-Exponential (SLE) distributions in other limits. Using the method of 

nested hypothesis testing (Wilks’ theorem), they conclude that both the SE distributions 

and Pareto distributions provide reliable descriptions of the data but are hardly 

distinguishable for sufficiently high thresholds. 

Rachev et al. (2005) used a sample of daily returns for 382 USA stocks, and examined 

in the framework of two probability models - the homoskedastic independent, identical 

distributed model and the conditional heteroskedastic ARMA-GARCH model. They 

strongly reject the Gaussian hypothesis for both models. They also found out that the 

stable Paretian hypothesis better explains the tails and the central part of the return 

distribution.  

Chalabi et al (2012) used the generalized lambda distribution (GLD) family as a 

flexible distribution with which to model financial data sets. Corlu et. al (2016) 

investigates the ability of five alternative distributions to represent the behavior of daily 

equity index returns over the period 1979–2014: the skewed Student-t distribution, the 

generalized lambda distribution, the Johnson system of distributions, the normal inverse 

Gaussian distribution, and the g-and-h distribution. They found that the generalized 

lambda distribution is a prominent alternative for modeling the behavior of daily equity 

index returns. 

 

 
2. DATA 

 

Our research encompasses 10 emerging countries from SEE. The row data samples used 

in this paper are daily, weekly and monthly observations of their blue chip stock market 

indices. The countries and their indices are: Bosnia and Herzegovina (B&H) – SASX10, 
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Bulgaria (BUG) – SOFIX Index, Croatia (CRO) – CROBEX, Greece (GRE) - ATG, 

Macedonia (MAC) – MBI10, Montenegro (MNE) – MONEX20, Romania (ROM) – 

BET Index, Slovenia (SLO) – SBITOP, Serbia (SRB) – BELEX15, Turkey (TUR) – 

BIST30. Data for all 10 series were obtained from TR Datastream for a period of 5 years: 

1 July, 2011 to 30 June, 2016 (except MNE to 31 March, 2015). This yield between 1215 

to 1261 daily observations and the differences among the countries arise because of the 

non-working days in the country; 262 weekly and 60 monthly observations. The data are 

the index prices expressed in local currencies. This is the generally accepted approach in 

order to avoid the currency fluctuation effect. 

We performed our analysis using continuously compounded stock market returns 

defined as Rt = [ln(It) – ln(It – 1) ], where Rt and It are the return and the index price in day 

t, respectively.  

In tables 1, 2 and 3 we present relevant summarized information about the daily, 

weekly and monthly returns under consideration, respectively.  The tables report the first 

four moments of each series, the minimum and maximum, the skewness and kurtosis, 

and also the Jarque-Bera statistic for normality.  

The deviation from the normality can be gathered immediately considering the 

coefficients of skewness and kurtosis. As it is found in many other studies, it is also 

evident here that the daily stock returns represent leptokurtic distribution, thus exhibiting 

fat tails (and high peaks). This is a reflection of the occurrence of a number of large 

market movements in all markets, and they are not as extreme since in our analysis we 

skip the period of the greatest disturbances from the two crises (the Great financial crisis 

and the European debt crisis). Тhe highest one-day rise on all markets averaged 6%, and 

the highest one-day decline on all markets averaged 7%.That on average represents 4 to 

7 standard deviations above the mean, and 5 to 9 standard deviations below the mean, on 

the different markets. 

The skewness also deviates from the normality. In all markets the coefficient of 

skewness of the daily returns is negative (except B&H and MNE). This negative skew 

indicates that the tail on the left side is longer and fatter than the right side. The longer 

and fatter the tail of a distribution is, the more extreme values it contains. Here we will 

refer to Peiro (1999), who notes that when the data is leptokurtic, then the skewness 

statistic is not valuable, since the coefficient of skewness gives an unrealistic picture. 

That is, by removing just two or three outliers in 1250 observations, it results in very 

large change of the coefficient of skewness.  

We present the Jarque-Bera statistics as a formal testing for normality. This test 

should confirm if the distribution of the return is normal. The null hypothesis of this test 

is that the data follows a normal distribution. In all cases the probability is less than 1%, 

and we can clearly reject the null hypothesis and conclude that the distribution of the 

daily stock market returns is not normal.  

The preliminary statistics of the weekly and monthly stock returns are presented in 

Table 2 and Table 3 respectively. In almost all cases, the distribution of weekly and 

monthly returns is leptokurtic. Five countries have negative and five positive skewness 

of the weekly returns. In the case of the monthly returns only two of the countries have 

positive skew. The Jarque-Bera statistics is significant in all cases for the weekly returns 

(except TUR). But in the case of the monthly returns it is not significant in four markets 

(CRO, GRE, SRB and TUR). 
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Table 1. Preliminary statistics of the distributions of daily stock returns  

 B&H BUG CRO GRE MAC MNE ROM SLO SRB TUR 

 Mean -0.0003 0.0001 -0.0002 -0.0007 -0.0003 0.0000 0.0001 -0.0001 -0.0002 0.0002 
 Median 0.0000 0.0000 -0.0003 -0.0001 -0.0004 0.0002 0.0004 0.0000 -0.0002 0.0006 
 Maximum 0.0472 0.0564 0.0339 0.1343 0.0339 0.0693 0.0614 0.0342 0.0823 0.0691 
 Minimum -0.0380 -0.0474 -0.0468 -0.1771 -0.0448 -0.0658 -0.0876 -0.0606 -0.0741 -0.1090 
 Std. Dev. 0.0076 0.0083 0.0062 0.0251 0.0065 0.0099 0.0100 0.0098 0.0083 0.0159 
 Skewness 0.0613 -0.1036 -0.4446 -0.3825 -0.1743 0.0809 -0.8204 -0.4870 -0.1715 -0.4097 

 Kurtosis 8.8753 7.4228 7.7462 8.1310 6.6125 10.968 12.3624 6.0769 19.3163 6.2705 
 Jarque-Bera 1797.1* 1010.4* 1209.5* 1362.4* 672.2* 2403.1* 4731.9* 540.3* 13993.9* 596.7* 

 No of observations 1249 1237 1245 1215 1225 908 1257 1245 1261 1260 

Note: * means significant at 1% level and ** means significant at 5% level  

 
Table 2. Preliminary statistics of the distributions of weekly stock returns 

 B&H BUG CRO GRE MAC MNE ROM SLO SRB TUR 

 Mean -0.0015 0.0004 -0.0011 -0.0032 -0.0015 0.0003 0.0007 -0.0004 -0.0009 0.0009 

 Median -0.0010 0.0000 -0.0013 -0.0003 -0.0020 0.0004 0.0012 0.0001 0.0007 0.0025 
 Maximum 0.0497 0.0801 0.0446 0.1487 0.0656 0.0881 0.0681 0.0925 0.0978 0.0940 
 Minimum -0.0508 -0.0593 -0.0725 -0.2254 -0.0500 -0.0878 -0.0825 -0.0630 -0.0594 -0.1038 
 Std. Dev. 0.0151 0.0189 0.0141 0.0550 0.0168 0.0234 0.0223 0.0220 0.0197 0.0344 
 Skewness -0.3062 0.1700 -0.4250 -0.3768 0.4324 0.0139 -0.5243 0.2234 0.1172 -0.3193 
 Kurtosis 4.3420 4.7827 6.1445 3.7362 4.5682 4.9420 4.5024 4.1096 5.2742 3.2342 
 Jarque-Bera 23.75* 35.95* 115.83* 11.89* 35.01* 30.65* 36.09* 15.62* 57.06* 5.05 

 No of observations 262 262 262 257 262 195 262 262 262 262 

Note: * means significant at 1% level and ** means significant at 5% level 
 
Table 3. Preliminary statistics of the distributions of monthly stock returns 

 BIH BUG CRO GRE MAC MNE ROM SLO SRB TUR 

 Mean -0.0067 0.0016 -0.0048 -0.0143 -0.0070 0.0010 0.0027 -0.0014 -0.0035 0.0034 

 Median -0.0037 0.0008 -0.0043 -0.0041 -0.0103 0.0018 0.0098 -0.0021 -0.0003 -0.0022 
 Maximum 0.0719 0.3567 0.0813 0.1985 0.1239 0.0856 0.1196 0.1571 0.0994 0.1404 
 Minimum -0.1206 -0.4063 -0.0924 -0.2867 -0.0814 -0.2170 -0.1530 -0.1078 -0.1355 -0.1421 
 Std. Dev. 0.0307 0.0838 0.0313 0.1087 0.0410 0.0540 0.0499 0.0454 0.0502 0.0679 
 Skewness -1.0433 -0.6125 -0.2493 -0.3522 1.0917 -1.2356 -0.7648 0.4931 -0.5054 -0.0175 
 Kurtosis 6.0702 15.5587 3.6255 2.6707 4.9806 7.0475 4.0877 4.5384 3.1834 2.3441 

 Jarque-Bera 34.45* 398.05* 1.60 1.51 21.72* 42.17* 8.81** 8.35** 2.64 1.08 

No of observations 60 60 60 60 60 45 60 60 60 60 

Note: * means significant at 1% level and ** means significant at 5% level 
 

 
3. METHOD  

 
3.1. Tests of Goodness-of-fit 

 

A Goodness-of-fit test is a procedure for determining whether a sample of n observations, 

x1,…, xn, can be considered as a sample from a given specified distribution. There are 

many tests developed for determining whether a sample could have arisen from a specific 

distribution, while the most popular are: the Kolmogorov-Smirnov (K-S), Anderson-

Darling (A-D), and Chi-squared (χ2 test). In addition, other well-known tests are: the 

Cramer–von Mises, Shapiro–Wilk (S-W), Hosmer–Lemeshow (H-L), Henze-Zirkler (H-

Z) test.  

Simply, with the Goodness-of-fit tests, we are measuring the "distance" between the 

observed data sample and the distribution we are testing (named test statistic), and then 

we make a comparison of that distance to some threshold value (named critical value). 

The fit can be considered a good fit only if the test statistic is smaller than the critical 

value. The logic of applying the various of the above-mentioned goodness-of-fit tests is 

the same, and they differ in the way of computing the test statistics and critical values. 
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The test statistics are usually defined as some function of sample data and the theoretical 

(fitted) cumulative distribution function. The critical values depend on the sample size 

and the significance level that is chosen. The significance level is the probability of 

rejecting a fitted distribution (as if it was a bad fit) when it is actually a good fit. The 

significance level that we are using here is α=0.05. Since the goodness-of-fit test statistics 

indicate the distance between the data and the fitted distributions, it is obvious that the 

distribution with the lowest statistic value is the best fitting model. Here we take only the 

first ranked distribution according to the goodness-of-fit test.  

Specifically, for the identical and independently distributed random sample X of size 

n from an unknown distribution, we use the test statistic S = S(X|m) for testing the null 

hypothesis in the form H0: X follow the specified distribution. In a general sense, the test 

statistic S depends on the parameters θ of the distribution to be tested. Accordingly, S = 

S(X|θ, m) is a function of θ generally.  H0 can be tested for many of the distribution tests, 

but now we use the test statistic in the form S(X|θ0, m), where H0: X follows the specified 

distribution with parameters θ0 fixed. Now, for the fixed θ0, we can determine the exact 

distribution of the test statistic S(X|θ, m). For the test of H0 to be exact we determine if 

the test has a correct type 1 error. Accordingly, we consider the significance level α 

meaning that the test incorrectly rejects the null hypothesis with probability α. This 

condition is equivalent to the p-value having a Uniform distribution under the null 

hypothesis. 

 

 
3.2. Anderson-Darling tests of Goodness-of-fit 

 

Of the many quantitative goodness-of-fit techniques we mostly prefer the Anderson-

Darling test, which will be applied here. Engmann and Cousineau (2011) compare the 

K-S test and the A-D test, presenting conclusive evidence that the A-D test is more 

powerful. A-D test is a modification of the K-S test and it is more sensitive to deviations 

in the tails of the distribution than the older K-S test. Anderson and Darling (1952, 1954) 

proposed a test goodness-of-fit which can be used to determine if a specified sample of 

data came from a population with a specific distribution. They provided a modification 

of the Kolmogorov-Smirnov (K-S) test,  giving more weight to the tails than the K-S 

test. The Anderson–Darling test belongs to the class of quadratic EDF statistics, tests 

based on the empirical distribution function (Stephens, 1986). The procedure of the A-D 

test implies a comparison of the fit of an observed cumulative distribution function to an 

expected cumulative distribution function. Let F be the hypothesized distribution, and 

Fn be the empirical (sample) cumulative distribution function, then the distance between 

F and Fn measured by the quadratic EDF statistics is 
 

n ∫ ( Fn (x) – F(x) )2 w(x) dF(x)
∞

-∞

 
 
(1) 

 
where, the w(x) is a weighting function. The Anderson–Darling (1954) test is based 

on the distance 
 

A = n ∫  
( Fn (x) – F(x) )2 

F(x) (1 - F(x))
 dF(x)

∞

-∞

 
 
(2) 

   

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
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which is obtained when the weight function is w(x) = [F (x) ( 1 – F(x))]-1 , with which 

Anderson–Darling distance places more weight on observations in the tails of the 

distribution.   

The Anderson-Darling test is defined as:  

H0: The data follow a specified distribution  

HA: The data do not follow the specified distribution  

 

With the A-D test we can assess whether the observed data sample x1,…, xn comes 

from some specified probability distribution. It utilized the fact that with a given 

hypothesized underlying distribution and assuming the data does arise from this 

distribution, the frequency of the data can be assumed to follow a Uniform distribution. 

Then, using the distance test (Shapiro, 1980), we can test the data for uniformity. The 

Anderson-Darling statistic (A2) is defined as  

 

A2  = – n – S (3) 

S = 
1

n
 ∑(2i – 1)∙[lnF(Xi) + ln( 1 – F(Xn-i+1

n

i=1

))] 

 
(4) 

 

where {x1 < ... < xn} is the ordered (from smallest to largest element) sample of size 

n, and F(X) is the underlying theoretical cumulative distribution to which the sample is 

compared. The null-hypothesis that {x1 < ... < xn} comes from the underlying distribution 

F(X) is rejected if A2 is greater than the critical value Aα at a given α (for a table of critical 

values for different sample sizes (Stephens 1974, 1976, 1977, 1979), (D'Agostino and 

Stephens 1986). 

 

 
4. EMPIRICAL RESULTS  

 

For the data samples on the stock market returns we are examining which theoretical 

probability distribution fits most. We examine 56 theoretical distributions and implement 

goodness-of-fit tests to select the best fitting distribution for our data. By applying the 

Anderson-Darling test at the significance level of α=0.05, with a critical value of 2.5018, 

we calculated the test statistic for each distribution. Then we ordered the distributions 

according to the A-D test statistic from the lowest to the highest value of the test statistic. 

To the one with the smallest value of the test statistics we gave the rank of No. 1. Since 

the goodness-of-fit test statistics indicate the distance between the data and the fitted 

distributions, it is obvious that the distribution with the lowest statistic value is the best 

fitting model. Finally, the fit can be considered a good fit only if the test statistic is 

smaller than the critical value. 

In Tables 4, 5 and 6 we present the most suitable probability distribution for each 

data sample. We consider it as the optimal distribution. Also, in each table, in the first 

panel we present the estimated parameters for the specified distribution, and in the 

second we present the estimated moments (mean, standard deviation, skewness, kurtosis, 

minimum and maximum). The general properties of these distributions are presented in 

Appendix A. 
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From Table 1, we can see that the daily stock market returns in almost all of the SEE 

emerging markets have a Johnson SU probability distribution, except for Bosnia and 

Herzegovina that have Laplace, and Slovenia that has a Hypersecant probability 

distribution. From Table 2, it is obvious that for the weekly returns there is a great 

divergence of the probability distributions among the countries. The same conclusion 

regards the monthly returns, see Table 3. 

 

 
Table 4. Anderson-Darling test of Goodness-of-fit of the daily stock market returns 

 B&H BUG CRO GRE MAC MNE ROM SLO SRB TUR 

Distribution Laplace 
Johnson 

SU 
Johnson 

SU 
Johnson 

SU 
Johnson 

SU 
Johnson 

SU 
Johnson 

SU 
Hypersecant 

Johnson 
SU 

Johnson 
SU 

Parameters  

=185.4 =0.04491 =0.19124 =0.15209 =0.08948 =-0.02224 =0.22702 =0.00983 =0.0299 =0.23792

=-0.00032
=1.4505 =1.4477 =1.4128 =1.5327 =1.2672 =1.2573 =-0.000064 =1.1108 =1.6039

=0.00935 =0.00685 =0.02682 =0.00791 =0.00894 =0.00871  =0.00583 =0.02045
 =4.450E-4 =0.000923 =0.00301 =0.00023 =-0.000166 =0.0023  =0.000066 =0.00386

Sample size 1249 1237 1245 1215 1225 908 1257 1245 1261 1260 

          

Mean -0.0003 0.0001 -0.0002 -0.0007 -0.0003 0.0000 0.0001 -0.0001 -0.0002 0.0002 
St. deviation 0.0076 0.0083 0.0062 0.0251 0.0065 0.0099 0.0100 0.0098 0.0083 0.0159 
Skewness 0 -0.0935 -0.4022 -0.3579 -0.1455 0.0889 -0.9464 0 -0.2457 -0.3184 
Kurtosis 3 4.4508 4.7663 5.1552 3.6340 8.0199 9.3982 2 16.3980 3.2883 
Min -INF -INF -INF -INF -INF -INF -INF -INF -INF -INF 
Max +INF +INF +INF +INF +INF +INF +INF +INF +INF +INF 

 

 
Table 5. Anderson-Darling test of Goodness-of-fit of the weekly stock market returns 

  B&H BUG CRO GRE MAC MNE ROM SLO SRB TUR 

Distribution Laplace Error Hypersecant Burr (4P) Hypersecant Error Dagum (4P) Error Dagum (4P) Johnson SU 

Parameters  

=93.471 k=1.1802 =0.01414 k=2.6643 =0.01682 k=1.1438 k=0.67358 k=1.3544 k=0.40191 =4.1025

=-0.00149 =0.01892 =-0.0011 =17.221 =-0.00155 =0.023 =271.49 =0.0219 =14.291 =5.8207
 =4.0305E-4  =0.72387  =2.5E-4 =2.7643 =-3.5E-4 =0.11038 =0.15611
   =-0.6744   =-2.7564  =-0.0997 =0.12205

Sample size 262 262 262 257 262 195 262 262 262 262 

          

Mean -0.0015 0.0004 -0.0011 -0.0032 -0.0016 0.0003 0.0006 -0.0004 -0.0016 0.0009 

St. deviation 0.0151 0.0189 0.0141 0.0550 0.0168 0.0235 0.0219 0.0220 0.0188 0.0344 

Skewness 0 0 0 -0.37428 0 0 -0.43319 0 -0.14656 -0.07065 

Kurtosis 3 1.8375 2 0.69457 2 2.0241 1.6069 1.1543 0.88877 0.26168 

Min -INF -INF -INF -0.67449 -INF -INF -2.7564 -INF -0.0997 -INF 

Max +INF +INF +INF +INF +INF +INF +INF +INF +INF +INF 

 

 
Table 6. Anderson-Darling test of Goodness-of-fit of the monthly stock market returns 

  B&H BUG CRO GRE MAC MNE ROM SLO SRB TUR 

Distribution Dagum (4P) Cauchy Burr (4P) Johnson SB Burr (4P) Log-Logistic (3P) Burr (4P) Error Dagum (4P) Johnson SB 

Parameters  

k=0.53295 =0.02451 k=2.0286 =0.9743 k=0.81162 =5.4631E+8 k=2.4702 k=1.1918 k=0.2594 =-0.03668

=9.0505E+5 =-7.17E-4 =21.53 =1.6923 =10.388 =1.5499E+7 =10567.0 =0.04541 =14.553 =1.3842

=10569.0  =0.46951 =0.44884 =0.19015 =-1.5499E+7 =345.74 =-0.00138 =0.24625 =0.41859

=-10569.0  =-0.45363 =-0.5468 =-0.20742  =-345.74  =-0.20468 =-0.20834

Sample size 60 60 60 60 60 45 60 60 60 60 

          

Mean -0.0068 -0.0007* -0.0047 / -0.0069 0.0029 0.0033 -0.0014 -0.0038 / 
St. deviation 0.0288 / 0.0309 / 0.0400 0.2310 0.0479 0.0454 0.0494 / 
Skewness 216.15 / -0.28634 / 1.3552 -1.01E+08 -0.68849 0 -0.33879 / 
Kurtosis -67740000 / 0.78154 / 6.1008 9.01E+15 -0.0388 1.7819 0.35862 / 
Min -10569 / -0.45363 -0.5468 -0.20742 -1.55E+07 -345.7 -INF -0.20468 -0.20834 
Max +INF / +INF 0.29808 +INF +INF +INF +INF +INF 0.21025 

  *Mode         
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CONCLUSION 

 

The most popular models in the theory and applications of financial economics, as are 

the CAPM, Black-Sholes, Markowitz portfolio theory and others, implicitly or explicitly 

are based on the assumption of the normal distribution. Today there is considerable 

empirical evidence that the normal distribution is not the best fit distribution of the stock 

market returns. This conclusion is especially emphasized in the case of the daily returns, 

where some authors still do not reject it for the weekly and monthly stock returns.  

In this paper we have provided a search of the best fit distribution for the daily, 

weekly and monthly stock market returns in the case of 10 emerging Southeast European 

markets: Bosnia and Herzegovina, Bulgaria, Croatia, Greece, Macedonia, Montenegro, 

Romania, Slovenia, Serbia, and Turkey. After calculation of their basic statistic 

parameters, we provide a formal testing for the normality. We clearly rejected the 

normality, especially for the case of the daily returns. We then attempted to find the 

specification that best fits the data in each market. We didn’t specify in advance any 

distribution to be tested for its validity as many authors do, nor did we use any underlying 

financial theory. We took all distributions and all of them were subject to testing. We 

employed the Anderson-Darling methodology for computing the test statistic of each 

distribution. Then we made a ranking of all those distributions. The best distribution, 

ranked as first, was that with the lowest test statistic. Finally, if its test statistic is smaller 

than the critical value for the level of confidence α=0.05 we choose that distribution as 

the most optimal for the data sample.  

The most optimal distribution for the daily stock return is Johnson SU distribution. It 

is the best fitted distribution in eight SEE markets (except B&H with Laplace and SLO 

with Hypersecant). There is not one predominant distribution for the weekly stock 

returns for all cases, there are even six distributions that have appeared as most optimal 

for the different countries: Burr (4P), Dagum (4P), Error, Hypersecant, Johnson SU and 

Laplace. The same is the situation with the monthly returns, where six distributions also 

appear as best fit: Burr (4P), Cauchy, Dagum (4P), Error, Johnson SB, Log-Logistic (3P). 
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