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When a control chart is applied to monitor a production
process, three test parameters should be determined: the sam-
ple size, the sampling interval between successive samples, and
the control limits or critical region of the chart. In this paper,
we develop the procedure to carry out the economic-statistical
design of multivariate control charts by using a quality loss
function for monitoring the process mean vector and covariance
matrix simultaneously; i.e., to determine economically the opti-
mum values of the three test parameters so that the statistical
constraints (including the requirements of type I error prob-
ability and power) of the control chart can be satisfied. The
test statistic �2�nL is used to develop this procedure and the
cost model is established based on the cost function developed
by Montgomery and Klatt and the multivariate quality loss
function presented by Kapur and Cho. A numerical example
is provided to illustrate the solution procedure of the design
and then the effects of cost parameters on the optimal design
are studied.

Keywords: Control chart; Economic–statistical design; Multi-
variate quality loss function; Statistical process control

1. Introduction

Statistical process control is an effective approach for improv-
ing product quality and saving production costs for a process.
Since 1924 when Dr Shewhart presented the first control
chart, various control-chart techniques have been developed
and widely applied as a primary tool in statistical process
control. The major function of control-charting is to detect the
occurrence of assignable causes, so that the necessary corrective
action can be taken before a large quantity of nonconforming
product is manufactured. The control-charting technique may
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be considered as the graphical expression and operation of
statistical hypothesis testing. When a control chart is used to
monitor a process, three test parameters should be determined:
the sample size, the sampling interval between successive
samples, and the control limits or critical region of the chart.

Duncan [1] proposed the first economic model for determin-
ing the three test parameters for the X-bar control chart that
minimises the average cost when a single out-of-control state
(assignable cause) exists. Duncan’s cost model includes the
cost of sampling and inspection, the cost of defective products,
the cost of a false alarm, the cost of searching for an assignable
cause, and the cost of process correction. Since then, consider-
able attention has been devoted to the optimal economic deter-
mination of the three parameters of X-bar charts [2–5].
Montgomery [6] gave a thorough review of the literature of
the economic designs of various control charts. A bibliography
of related papers is also available from Vance [7] and Ho and
Case [8]. Alexander et al. [9] combined Duncan’s cost model
with the Taguchi loss function to develop a loss model for
determining the three test parameters. This loss model explicitly
considers the quality loss due to process variability, which is
not accounted for in Duncan’s cost model. Since the solution
from an economic design of control charts may have poor
statistical properties, Saniga [10] presented the economic–stat-
istical design for control charts in which the cost function is
minimised subject to the constrained minimum value of power
and maximum value of the type I error probability.

Although much work has been done on the economic designs
of control charts that measure a single characteristic, some
industrial products and processes are characterised by two or
more measurable characteristics, and their joint effect describes
product quality. For example, in the production of synthetic
fibre, the tensile strength and diameter may be equally
important quality characteristics. These characteristics are
jointly distributed random variables and cannot appropriately
be controlled by independently applying a control chart to each
variable. Some authors [11–13] have developed quality control
procedures for several related random variables. Among these
procedures, the Hotelling T2 control chart is probably the most
widely known. Montgomery and Klatt [14] presented a cost
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model to economically design the T2 control charts. Chen [15]
conducted the economic–statistical design of the T2 control
charts by adding statistical constraints to the design procedure.

Since the T2 control charts monitor the process mean vector
only, and the process covariance matrix may also have an
impact on product quality, in this paper we apply the test
statistic �2�nL (which will be reviewed in Section 3) to
develop the economic–statistical design of multivariate control
charts for monitoring the process mean vector and covariance
matrix simultaneously. The cost function given in Montgomery
and Klatt [14] will be combined with the multivariate loss
function presented in Kapur and Cho [16] to develop a cost
model that is used as the objective function of the design
which is to be minimised. An example is provided to illustrate
the solution procedure of the design and then some sensitivity
analyses are conducted to investigate the effects of cost para-
meters on the solution of the design.

2. Model Assumptions

To simplify the mathematical manipulation and analysis of the
control chart, the following assumptions are made.

1. The quality of the process can be described by the mean
vector and covariance matrix of p characteristics, and is
monitored by a multivariate control chart using the test
statistic �2�nL.

2. The p quality characteristics monitored by the multivariate
control chart are all nominal-the-best (i.e., a target vector
exists) and follow a multivariate normal distribution with
a mean vector � and a covariance matrix �.

3. In the start of the process, the process is assumed to be
in-control; that is, � = �0 and � = �0, where �0 is a
given vector and �0 is a given positive definite matrix.

4. It is further assumed that the target vector is the same
as �0.

5. There are two out-of-control states caused by two assign-
able causes respectively. After the first assignable cause
occurs, the process mean vector shifts to �1 = �0 + ��

and the process covariance matrix remains unchanged,
where the p � 1 vector �� is known. After the second
assignable cause occurs, the process covariance matrix
shifts to �1 = �0 + �� and the process mean vector
remains unchanged, where the p � p matrix �� is known.

6. The time the process remains in the in-control state before
going out of control is assumed to follow an exponential
distribution with a mean of ��1 hours.

7. When the process goes out of control, it stays out of
control until detected and corrected.

8. During each sampling interval, there exists at most one
assignable cause which makes the process out of control.
The assignable cause will not occur at the sampling time.

9. When the multivariate control chart indicates the process
is out of control, the process is stopped for investigating
the assignable cause.

10. The cost for investigating real and false alarms is the same.

11. Considering the statistical properties of the multivariate
control chart, the upper bound of the type I error prob-
ability is set to be 0.1 and the lower bounds of the powers
for the two out-of-control states are all set to be 0.9.

3. The Test Statistic

Suppose that the output of a process can be described by p
quality characteristics, and Y is a p � 1 random vector whose
jth element (denoted by yj) is the jth quality characteristic and
is multivariate normally distributed. Let E(Y) = � be the p
� 1 mean vector of the characteristics and Cov(Y) = � be
the p � p covariance matrix of Y. Generally, � and � are
unknown. For a random sample of size n from Y, say Y1, Y2,
…, Yn, the sample mean vector and sample covariance matrix
may be computed by

Y =
1
n �

n

i=1

Yi (1)

S =
1

n � 1 �
n

i=1

(Yi � Y)(Yi � Y)T (2)

where superscript T denotes the transpose operation. The likeli-
hood ratio criterion of testing the hypothesis H0: � = �0 and
� = �0 against alternatives H1: � � �0 or � � �0 may be
expressed as [17]

L = �e
n�

np
2

|(n � 1)S��1

0 |
n
2

exp ��
1
2

Tr ��1

0

[(n � 1)S + n (Y � �0)(Y � �0)T]� (3)

where Tr denotes the trace operation of a matrix. The value
of L is between zero and one. If L � c�, the null hypothesis
H0 is rejected, where c� is the lower 100�th percentile of the
distribution of L. However, under the null hypothesis, the exact
distribution of L is unknown. Therefore, some statisticians [18–
20] transform L to the statistic �2�nL, which may be expressed
as a chi-square series, as a test criterion by obtaining its
asymptotic distribution. Thus, the null hypothesis H0 should
be rejected when �2�nL 	 �2�nc� = UCL, where UCL is
the upper 100�th percentile of the distribution of �2�nL and
is the upper control limit of the multivariate control chart in
this paper, which indicates that an assignable cause may exist
in the process. To consider the statistical constraints (i.e., the
type I error probability and the power) of the chart, the
distribution functions of �2�nL, under the null and alternative
hypotheses, should be evaluated.

3.1 The Distribution Function of �2�nL Under H0

According to Sugiura [20], the distribution function of �2�nL
under the null hypothesis, which is related to the type I error
probability of the multivariate control chart, may be obtained
through the following five steps:
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Step 1. The characteristic function of �2�nL under the null
hypothesis is


(t) = E{eit(�2�nL)]

=

(2e/n)npit�p

g=1���n(1 � 2it) � g)
2 ��

(1 � 2it)np(1�2it)/2�p

g=1���(n � g)
2 ��

(4)

Step 2. The approximation formula for the gamma function in
Eq. (4) is

�n�(x + h) = �n�2� + (x + h � 1/2) �nx � x

� �w
r=1

(�1)rBr+1(h)
r(r + 1)xr + O(x�w�1) (5)

where Br(h) is the Bernoulli polynomial of degree r. Taking
the logarithmic operation on Eq. (4) and substituting Eq. (5)
into Eq. (4) result in

�n
(t) = ��
p(p + 1) + 2p

4 ��n(1 � 2it)

��w
r=1

(�2)rBr+1

r(r + 1)nr [(1 � 2it)�r� 1] + O(n�w�1) (6)

where

Br+1 = �p

g=1

Br+1(�g/2).

Step 3. Applying the exponential operation on Eq. (6) yields
the characteristic function of �2�nL, i.e., 
(t) = e�n
(t), which
can be expressed as the summation of a chi-square series [6].
Step 4. According to Theorem 2.6.3 in Anderson [21], if Z =
�2�nL, the density function of Z is

f(z) =
1

2� �

�

e�itz
(t)dt (7)

Step 5. The distribution function of �2�nL may be obtained
using its definition, i.e.,

F(z) = P(� 2�nL � z) = �z

0

f(z)dz (8)

As the value of w in Eq. (6) is equal to 3, the distribution
function of �2�nL under null hypothesis may be expressed
as [20]

F(z) = P(�2
f � z) + B2n�1[P(�2

f+2 � z) � P(�2
f � z)]

+
1
6

n�2[(3B2
2 � 4B3)P(�2

f+4 � z) � 6B2
2P(�2

f+2 � z)

+ (3B2
2 + 4B3)P(�2

f � z)] +
1
6

n�3[(4B4 � 4B2B3

+ B3
2)P(�2

f+6 � z) + B2(4B3 � 3B2
2)P(�2

f+4 � z)] (9)

+ B2(4B3 + 3B2
2)P(�2

f+2 � z) � (4B4 + 4B2B3

+ B3
2)P(�2

f � z)] + O(n�4)

where

f = p +
p(p + 1)

2
,

B2 =
p(2p2 + 9p + 11)

24
,

B3 =
� p(p + 1)(p + 2)(p + 3)

32
and

B4 =
p(6p4 + 45p3 + 110p2 + 90p + 3)

480

The distribution function in Eq. (9) is sufficiently accurate
only for a large sample size (say, n � 50). However, in the
practical operation of a control chart, the sample size is usually
small. Therefore, Eq. (9) cannot be used to obtain the type I
error probability for the chart. In this paper, to find the type
I error probability for the multivariate control chart, we apply
the above-mentioned five steps directly by increasing the value
of w in Eq. (6) and run these mathematical operations in the
software MATHEMATICA 4.0 [22]. In most cases, as w �
30, the chi-square series would converge and consequently the
type I error probability for the chart can be numerically
obtained. The values obtained from MATHEMATICA 4.0 are
consistent with those given in Nagarsenker and Pillai [19].

3.2 The Distribution Function of �2�nL Under H1

In order to evaluate the powers of the multivariate control
chart, the distribution function of �2�nL, under alternative
hypotheses, should be studied.

Sugiura [20] developed an asymptotical distribution function
of �2�nL under H1. However, this function is, again, appropri-
ate only for a large sample size. When this function is
expanded, as we do in Section 3.1, it cannot converge to a
certain probability value. Therefore, in this paper, we apply
simulation and regression approaches to evaluate the distri-
bution function of �2�nL under H1.

The simulation and regression procedures for the first out-
of-control state (caused by the shift of mean vector) are
described as follows:

Step 1. Select a value for UCL (called z value) as the critical
value of the chart. The selection of z value must meet the
statistical requirements. For example, in the case of n = 4 and
p = 2, after the five steps in Section 3.1 are run, we can
obtain the upper 10th percentile of the distribution of �2�nL
under H0 is 14.386. Since the upper bound of the type I error
probability of the chart is set 0.1 in this paper, the UCL would
be greater than or equal to 14.386. When we select a z value,
the possible range is z � 14.386 and, say, 14.40 can be a
starting value.
Step 2. Generate n p � 1 random vectors from the multivariate
normal distribution with �1 and covariance matrix �0. This
step may be done using the software MATHEMATICA 4.0.
Step 3. From the output of Step 1, calculate the value of
�2�nL using Eqs (1), (2) and (3).
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Step 4. Let mj = 1 if the calculated value of �2�nL is greater
than the selected z value. Otherwise, let mj = 0. The subscript
j denotes the run of simulation.
Step 5. Repeat Steps 2–4 by 10 000 times.
Step 6. Compute the simulated power for the selected z value
as follows:

Power1 =
�10 000

j=1

mj

10 000
(10)

Step 7. Go back to Step 1, select another z value by increasing
a step of 0.5 from the last selected z value, and obtain its
corresponding simulated power. If the simulated power is
greater than 0.9, which is the lower bound of the power for the
chart, repeat Step 7; otherwise, stop the simulation procedure.
Step 8. For a set of selected z values and their corresponding
simulated powers, treat the z value as an independent variable
and the simulated power as the dependent variable, and obtain
a polynomial regression equation by using forward selection
[23] for a certain combination of n and p. This equation is used
as a function to estimate the power for the corresponding UCL.

For the second out-of-control state caused by the shift of
covariance matrix, the same eight steps are applied to estimate
and evaluate the power of the chart except that in Step 2, we
generate n p � 1 random vectors from the multivariate normal
distribution with mean �0 and covariance matrix �1. The
simulated power based on the second out-of-control state is
denoted by Power2 in this paper.

4. The Cost Model

In this section, the cost function given in Montgomery and
Klatt [14] and the multivariate loss function developed by
Kapur and Cho [16] will be briefly reviewed and will be
combined to develop a cost model that is used as the objective
function of the design and is intended to be minimised.

According to Montgomery and Klatt [14], the expected total
cost per unit of product associated with the test procedure may
be written as

E(C) = E(C1) + E(C2) + E(C3) (11)

where E(C1) is the expected cost per unit of sampling and
carrying out the test procedure, E(C2) is the expected cost per
unit associated with investigating and correcting the process
when the test procedure indicates the process is out of control,
and E(C3) is the expected cost per unit associated with produc-
ing defective products.

The cost of sampling and testing is assumed to consist of
a fixed cost (denoted by a1) independent of the sample size n
and a cost per unit sampled (denoted by a2). That is,

E(C1) = (a1 + na2)/k (12)

where k is the number of units produced between successive
samples. To simplify the analysis procedure, we assume that
there are only three states for the process, as did Saniga [24].
State 0 denotes the process is in control. State 1 denotes the

process mean vector shifts such that the process is out of
control. State 2 denotes the process covariance matrix shifts
such that the process is out of control. The state in which
process mean vector and covariance matrix shift simul-
taneously, is not considered in this paper. Let a3 be the
average cost of investigating and correcting an out-of-control
process. Then,

E(C2) = �a3�2

i=0

�i�i�/k (13)

where �i is the conditional probability that the test procedure
indicates the process is out of control given that the process
is in State i, for i = 0, 1 and 2, and �i is the probability that
the process is in State i at the time the test is performed. Let
a4 represent the penalty cost of producing a defective unit of
product. Thus,

E(C3) = a4�2

i=0

�i�i (14)

where �i is the conditional probability of producing a defective
unit given that the process is in State i, and �i is the probability
that the process is in State i at any point in time. Therefore,
by substituting Eqs (12), (13) and (14) into Eq. (11), the
expected total cost per unit of product can be expressed as

E(C) = (a1 + na2)/k + �a3�2

i=0

�i�i�/k + a4�2

i=0

�i�i (15)

The ai’s in Eq. (15) are cost coefficients independent of the
test procedure. The probability elements �i, �i, �i and �i in
Eq. (15) will be examined in the following paragraphs. Further
discussion of the general form of the cost function may be
found in Montgomery and Klatt [14] and Knappenberger and
Grandage [5].

The probability element of �i is the conditional probability
that the test procedure indicates the process is out of control
given that the process is in State i, for i = 0, 1 and 2. Note
that �0 is the type I error probability of the chart, �1 is the
power due to the shift of process mean vector, and �2 is the
power due to the shift of process covariance matrix. Therefore,
if UCL = z, then

�0 = 1 � P (�2�nL � z) (16)

where P(�2�nL � z) may be obtained through the five steps
in Section 3.1. Also, �1 and �2 can be estimated by Power1
(in Eq. (10)) and Power2 respectively using the simulation and
regression approaches given in Section 3.2.

The probability element of �i is the conditional probability
of producing a defective unit given that the process is in State
i, for i = 0, 1 and 2, whose values depend on the specification
limits for each quality characteristic. Define l and u as the
lower and upper specification-limit vectors respectively, whose
elements �j and uj (for j = 1, 2, …, p) represent respectively
the lower and upper specification limits of the jth characteristic.
Therefore, according to the definition, �i may be determined by



920 C.-Y. Chou et al.

�0 = 1 � �u1

�1

... �up

�p
	(2�)p/2 |�0|

1/2



�1

exp 	�
1
2

(Y � �0)T��1

0

(Y � �0)
dyp ... dy1 (17)

�1 = 1 � �u1

�1

... �up

�p
	(2�)p/2 |�0|

1/2



�1

exp 	�
1
2
(Y � �1)T��1

0

(Y � �1)
dyp ... dy1 (18)

�2 = 1 � �u1

�1

... �up

�p
	(2�)p/2 |�1|

1/2



�1

exp 	�
1
2
(Y � �0)T��1

1

(Y � �0)
dyp ... dy1 (19)

The probability element of �i is defined as the steady-state
probability that the process is in State i at the time the test is
performed, for i = 0, 1 and 2. To obtain �i, a transition
probability matrix B is required. The elements in B, denoted
by bij, are the probability of the process shifting from State i
to State j during the production of k units, for i, j = 0, 1 and
2. Suppose Q units are produced per hour and fractional units
can be produced. The probability of remaining in State 0 (in-
control state) while k units are produced is P0 = exp(��k/Q).
The probability assigned to States 1 and 2 (out-of-control
states) while k units are produced is P1 + P2 = 1 � P0 = 1
� exp (��k/Q). Knappenberger and Grandage [5] developed
a formula to determine the values of P1 and P2 as follows:

Pi =
2![1 � exp(��k/Q)]�i(1 � �)2�i

i!(2 � i)![1 � (1 � �)2]
for i = 1 and 2

(20)

where 0 � � � 1. Proper selection of the value of � can
precisely describe the distribution of P1 and P2. Particularly,
P1 = P2 as � = 0.667, P1 	 P2 as � � 0.667, and P1 � P2

as � 	 0.667. In practice, the values of P1 and P2 may also
be determined by past experience. The elements of B may
now be defined. The probability of being in control at the mth
sample and still in control at the (m + 1)th sample is the
probability of remaining in control during the production of k
units, i.e., b00 = P0. The probability of the process being in
control at the mth sample and being in the ith out-of control
state at the (m + 1)th sample is the probability of shifting to
the ith out-of control state during the production of k units,
i.e., b0i = Pi, for i = 1 and 2. The probability of the process
being in the ith out-of-control state (for i = 1 and 2) at the
mth sample and still being in the same out-of-control state at
the (m + 1)th sample is the probability of detecting the out-
of-control state at the mth sample times the probability of
going the same out-of-control state again for the production
of k units plus the probability of not detecting this out-of-
control state at the mth sample, i.e., bii = �iPi + (1 � �i), for
i = 1 and 2. The probability that the process is in the ith out-
of-control state (for i = 1 and 2) at the mth sample and is in

control (or in another out-of-control state) at the (m + 1)th
sample is the probability that the ith out-of-control state is
detected at the mth sample times the probability of remaining
in control (or going another out-of-control state) for the pro-
duction of k units, i.e., bij = �iPj for i = 1 and 2, j = 0, 1
and 2, and i � j. Therefore, the transition probability matrix
B may be written as

B = 	 P0 P1 P2

�1P0 �1P1+(1��1) �1P2

�2P0 �2P1 �2P2+(1��2)



It is easily shown that B is the transition matrix of an
irreducible aperiodic positive recurrent Markov chain. There-
fore, there exists a vector � such that

�TB = �T (21)

where �T = [�0, �1, �2], �0 + �1 + �2 = 1, and �i is the
steady-state probability that the process is in State i at the
time the test is performed, for i = 0, 1 and 2. It can be shown
that the solution to Eq (21) is

�0 = �1�2P0/(�1P2+�2P1+�1�2P0) (22)

�1 = �2P1/(�1P2+�2P1+�1�2P0) (23)

�2 = �1P2/(�1P2+�2P1+�1�2P0) (24)

The probability element of �i is defined as the steady-state
probability that the process is in State i at any point in time,
for i = 0, 1 and 2. Duncan [1] has shown that given a shift
between the mth and (m + 1)th samples, the average fraction
of time that elapses before the shift occurs is

� =
1 � (1 + �k/Q)exp(��k/Q)
[1 � exp(��k/Q)](�k/Q)

Note that � is the conditional expectation of the occurrence of
the assignable cause within an interval of sampling. In this
paper we assume that during each sampling interval, there
exists at most one assignable cause that makes the process out
of control. Then, the probability �i (for i = 1 and 2) depends
on the probability that the process is in the ith out-of-control
state when a sample is taken, and the probability that the
process is in control when a sample is taken and shifts to this
out-of-control state during the production of k units. That is,

�i = �i + �0Pi(1 � �) for i = 1 and 2 (25)

Consequently, we have

�0 = 1 � �1 � �2 = �0P0 + �0P1� + �0P2� (26)

Taguchi and Wu [25] defined product quality as the loss a
product imparts to society from the time the product is shipped
and, consequently, introduced the quality loss function as a
quality performance measure for a product. They indicated that
a quadratic loss function sufficiently represents economic loss
due to the deviation of quality characteristic from its target. The
Taguchi loss function is described mathematically as follows:

L(y) = K (y � t)2 (27)

where L(y) is the loss associated with the value of quality
characteristic y, t is the target of the characteristic, and K is
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a constant depending on the cost at the specification limits
and the width of the specification. This loss function recognises
the customer’s desire to have products that are more consistent,
part to part, and a producer’s desire to make a low-cost
product. Kackar [26] pointed out that the concept of quadratic
loss emphasises the importance of continuously reducing pro-
cess variation. Based on Eq. (27), Kapur and Cho [16]
developed a multivariate loss function for the multivariate
quality characteristics y1, y2, …, yp. The multivariate loss
function may be expressed as

L(y1, y2, …, yp) = �p

i=1

�i

j=1

Kij (yi � ti)(yj � tj) (28)

where tj is the target of the jth characteristic, and Kij is a
constant depending on the cost at the specification limits and
the width of the specification. Chen [27] gave a complete
discussion on determining the values of Kij. Specifically, if yi

and yj are independent, then Kij = 0. By applying the operator
of expectation on both sides of Eq. (28), the expected loss per
unit of product may be obtained as

E[L(y1, …, yp)] = �p

i=1

Kii[�i � ti)2 + �2
i ]

+ �p

i=2

�i=1

j=1

Kij[(�i � ti)(�j � tj)+�ij] (29)

where �j and �2
j are respectively the mean and variance of yj,

and �ij is the covariance of yi and yj.
In establishing the cost model that is used as the objective

function in this paper, we incorporate the multivariate loss
function into the cost function in Eq. (15). That is, combining
Eqs (15) and (29) results in the average total loss (ATL),
including both the cost associated with the test procedure and
the loss due to deviations of the quality characteristics from
their targets, per unit of product as

ATL = (a1 + na2)/k +�a3�2

i=0

�i�i��k

+a4�2

i=0

�i�i + a5�1��2

i=0

�i�i�
= (a1 + na2)/k +�a3�2

i=0

�i�i��k (30)

+(a4 � a5) �2

i=0

�i�i � a5

where a5 is the expected loss per unit of product excluding
the penalty cost of producing a defective unit of product; i.e.,
mathematically, a5 = E[L(y1, …, yp)] � a4. The economic–
statistical design of multivariate control charts by considering
quality loss determines the three test parameters (i.e., n, k and
UCL) such that ATL in Eq. (30) is minimised and the statistical
constraints (i.e., �0 � 0.1, �1 � 0.9 and �2 � 0.9) are satisfied.

5. An Example and Solution Procedure

From examination of Eq. (30) and the probability elements in
the preceding section, it can be seen that determining the
optimal three test parameters is not straightforward. To illus-
trate the nature of the solutions obtained from economic–
statistical design of multivariate control charts, a particular
numerical example is presented. We assume that only two
quality characteristics are of interest (i.e., p = 2), that the in-
control state is

�0 = 	00
 and �
0

= 	10 0
0 15


and that the other necessary parameters are

�1 = 	2�10

2�15
, �
1

= 	90 0
0 135
, l = 	�3�10

�3�15
, u = 	3�10

3�15

� = 0.667, �/Q = 0.001 (i.e., on the average, the process
shifts out of control after every 1000 units are produced), a1

= $20 per sample, a2 = $0.2 per unit sampled, a3 = $10 per
investigation, a4 = $10 per defective unit discovered, and a5

= $5 per non-defective unit.
The solution procedure is in two stages. In the first stage,

the feasible solution area of the upper control limit (UCL) of
the chart for a particular sample size is determined, so that
the search area can be narrowed. In the second stage, a grid
search is applied to find the values of n, k and UCL that
minimise ATL.

5.1 The First-Stage Solution Procedure

When the process is in control (i.e., State 0), the quality
characteristics Y follow a multivariate normal distribution with
mean �0 and covariance matrix �0. The type I error probability
�0 can be obtained through Eq. (16). For a particular sample
size (n), to meet the statistical constraint of �0 � 0.1, the
feasible solution area for the UCL of the chart may be found.
Table 1 lists the feasible solution areas of UCL for some
sample sizes under State 0.

When the process mean vector shifts to �1 (i.e., State
1), the quality characteristics Y follow a multivariate normal
distribution with mean �1 and covariance matrix �0. The power
estimation function can be obtained through the simulation and

Table 1. The feasible solution areas of the upper control limit for
some sample sizes (note that “z” indicates a specific value of �2�nL).

Sample Under Under Under Feasible solution area
size (n) State 0 State 1 State 2 (intersection)

4 z � 14.386 z � 24.611 z � 18.634 14.386 � z � 18.634
5 z � 12.754 z � 30.492 z � 24.467 12.754 � z � 24.467
6 z � 11.914 z � 36.682 z � 31.076 11.914 � z � 31.076
7 z � 11.400 z � 42.950 z � 38.268 11.400 � z � 38.268
8 z � 11.053 z � 49.643 z � 46.193 11.053 � z � 46.193
9 z � 10.802 z � 56.367 z � 54.164 10.802 � z � 54.164

10 z � 10.612 z � 63.038 z � 62.041 10.612 � z � 62.041
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regression approaches mentioned in Section 3.2. For a particular
sample size (n), to satisfy the statistical constraint of �1 �
0.9, a power estimation function can be obtained, and then the
feasible solution area for the UCL of the chart may be determ-
ined. For example, as n = 6, the power estimation function is

Power1 = 1.02537 � 0.00435849 z + 0.000221255 z2

� 0.0000014173 z3 (31)

where z is a specific value of �2�nL. Figure 1 shows the
simulated power value and the fitted power estimation function
in Eq. (31). The determination coefficient for this fitted function
is 0.999426. From this function, the feasible solution area for
the UCL of the chart is z � 36.682. Table 1 lists the feasible
solution areas of UCL for some sample sizes under State 1.

When the process covariance matrix shifts to �1 (i.e., State
2), the quality characteristics Y follow a multivariate normal
distribution with mean �0 and covariance matrix �1. The power
estimation function can be obtained through the simulation and
regression approaches mentioned in Section 3.2. For a particular
sample size (n), to meet the statistical constraint of �2 � 0.9,
a power estimation function can be obtained and then the
feasible solution area for the UCL of the chart may be determ-
ined. For example, as n = 6, the power estimation function is

Power2 = 0.98825 + 0.00223931 z
� 0.000163437 z2 (32)

where z is a specific value of �2�nL. Figure 2 shows the
simulated power value and the fitted power estimation function
in Eq. (32). The determination coefficient for this fitted function
is 0.999222. From this function, the feasible solution area for
the UCL of the chart is z � 31.076. Table 1 lists the feasible
solution areas of UCL for some sample sizes under State 2.
In Table 1, the last column summarises the feasible solution
area of UCL of the chart for a particular sample size by simply
examining the intersection of the feasible solution areas under
States 0, 1 and 2.

5.2 The Second-Stage Solution Procedure

The grid-search approach is used to find the values of n, k
and UCL that minimise ATL. A computer program is coded
for this purpose. This program is able to interact with the
software MATHEMATICA 4.0 and computes the probability

Fig. 1. The simulated values of Power1 and its fitted power esti-
mation function.

Fig. 2. The simulated values of Power2 and its fitted power esti-
mation function.

elements in the loss model. The result from the first-stage
solution procedure greatly reduces the range of the search.
From the output of the computer program, the optimum solution
is n = 6, k = 89, UCL = 19.951, �0 = 0.009036, Power1 =
0.998313, Power2 = 0.967871, and ATL = 5.53167. That is,
the optimal control procedure is to take a random sample of
size six every 89 units and conclude that the process is out
of control if �2�nL 	 19.951. The expected cost, including
the test procedure and quality loss, per unit is $5.53167.

The two-stage solution procedure of the above example is
summarised as follows:

1. In the first stage, the feasible solution space of the upper
control limit (UCL) for a particular sample size is identified
based on the statistical constraints. The lower bound of
UCL is determined by the specified type I error probability;
while its upper bound is determined by the specified power
due to either the shift of mean vector or covariance matrix.
Note that the type I error probability for a particular UCL
can be obtained using the numerical method described in
Section 3.1 and the power for a particular UCL may be
estimated using the simulation and regression approach
described in Section 3.2.

2. In the second stage, the grid search method is applied to
find the appropriate sample size, sampling interval and UCL
that minimise the cost.

6. Effect of Cost Parameters

In this section, sensitivity analyses are conducted based on the
preceding illustrative example to study the effect of cost para-
meters on the economic–statistical design of the multivariate
control charts.

The cost parameter a1 is the fixed cost of taking a sample.
Table 2 lists the optimal designs for different values of a1. It
can be seen that sampling interval between samples increases
as a1 increases. This is consistent with our reasoning.

The cost parameter a2 is the inspection cost per unit. Table
3 lists the optimal designs for different values of a2. As a2

increases, the sample size decreases accordingly. This result is
to be expected. In addition, increasing a2 leads to decrease the
upper control limit. This tends to stabilise the power with
the test.
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Table 2. Effect of the fixed cost of taking a sample (a1) on the
optimal design.

a1 n k UCL ATL �0 Power1 Power2

10 5 63 20.182 5.40005 0.013036 0.990311 0.935581
20 6 89 19.951 5.53167 0.009036 0.998313 0.967871

100 7 215 17.409 6.06823 0.015372 0.999948 0.989229

Table 3. Effect of the inspection cost per unit (a2) on the optimal
design.

a2 n k UCL ATL �0 Power1 Power2

0.1 7 88 21.208 5.52477 0.004405 0.999417 0.980753
0.2 6 89 19.951 5.53167 0.009036 0.998313 0.967871
1.0 4 96 17.070 5.57090 0.053790 0.983794 0.915521

Table 4. Effect of the cost of investigating and correcting the process
(a3) on the optimal design.

a3 n k UCL ATL �0 Power1 Power2

5 5 89 17.019 5.52609 0.031650 0.996809 0.956735
10 6 89 19.951 5.53167 0.009036 0.998313 0.967871

100 7 90 26.271 5.62002 0.000796 0.997064 0.964698

Table 5. Effect of the quality loss (including a4 and a5) under the
condition of a4 + a5 = 15 on the optimal design.

(a4, a5) n k UCL ATL �0 Power1 Power2

(8, 7) 6 222 20.018 3.72854 0.008849 0.998272 0.967584
(10, 5) 6 89 19.951 5.53167 0.009036 0.998313 0.967871
(12, 3) 6 65 19.953 7.22567 0.009030 0.998312 0.967863

The cost parameter a3 is the cost of investigating and
correcting the process. Table 4 lists the optimal designs for
different values of a3. As a3 increases, both the sample size
and upper control limit tend to increase. This is probably due
to the expectation that increasing a3 may correspond to a
decrease in type I error probability and an increase in power.

The cost parameter a4 is the penalty cost of producing a
defective unit of product and the cost parameter a5 is the
expected loss per unit of product excluding the penalty cost
of producing a defective unit. Both of them constitute quality
loss. Table 5 lists the optimal designs for some combinations
of a4 and a5 under the condition of a4 + a5 = 15. It is noted
that as a4 increases, the sampling interval decreases and the
expected loss increases, which means that test/sampling should
be conducted more frequently such that a high penalty cost
can be avoided.

7. Conclusions

Although many authors have discussed the economic design
of control charts for the last two decades, the design of
multivariate control charts still receives relatively little attention
in the literature. In this paper, we present the procedure to
carry out a economic–statistical design of multivariate control
charts by considering quality loss for monitoring the process
mean vector and covariance matrix simultaneously. The test
statistic �2�nL is applied to develop this procedure and the
cost model is established based on the cost function given in
Montgomery and Klatt [14] and the multivariate quality loss
function presented by Kapur and Cho [16]. A numerical
example is provided to illustrate the design procedure and the
effects of cost parameters on the design are investigated. From
the results of the study, we have the following observations.

1. As the fixed cost of taking a sample increases, the sampling
interval between samples also increases.

2. As the inspection cost per unit increases, both the sample
size and upper control limit lead to decrease.

3. As the cost of investigating and correcting the process
increases, both the sample size and upper control limit tend
to increase.

4. As the penalty cost of producing a defective unit of product
increases, the sampling interval decreases.
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