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Abstract

The application of Preventive Maintenance (PM) and Statistical Process Control (SPC) are important practices to achieve high
product quality, small frequency of failures, and cost reduction in a production process. However there are some points that
have not been explored in depth about its joint application. First, most SPC is performed with the X-bar control chart which
does not fully consider the variability of the production process. Second, many studies of design of control charts consider
just the economic aspect while statistical restrictions must be considered to achieve charts with low probabilities of false
detection of failures. Third, the effect of PM on processes with different failure probability distributions has not been
studied. Hence, this paper covers these points, presenting the Economic Statistical Design (ESD) of joint X-bar-S control
charts with a cost model that integrates PM with general failure distribution. Experiments showed statistically significant
reductions in costs when PM is performed on processes with high failure rates and reductions in the sampling frequency of
units for testing under SPC.
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Introduction

Control charts are tools of Statistical Process Control (SPC) that

monitor the state of a production process, identifying when the

quality attributes of a product change. The concept of ‘‘control’’ is

related to the quality attribute that is within specified limits

(control limits) to ensure production stability and quality of

products. If the attribute (i.e., weight, length, dimensions, etc.) is

not within these limits, then the process is in an ‘‘out-of-control’’

state. In such case, is necessary to find and correct the assignable

cause that originated this state (failure).

A control chart is defined by three main parameters: the size of

the sample (n), the sampling interval between samples (h), and the

coefficient of the control limits (k). These parameters are selected

based on economic and statistical restrictions because there are

costs and times associated with sampling and searching of

assignable causes: high sampling frequency would take more time

from the process cycle time, and depending on the nature of the

item, product loss. Also, close control limits would increase the

frequency of failure alarms and rejection of products which not

necessarily would be of low quality. The chart parameters must be

selected following a methodology in order to minimize the ‘‘cost of

quality’’ [1].

The Economic Design (ED) of control charts (the estimation of

the parameters) considers the costs (in time and money) associated

with sampling and searching/repairing of assignable causes. On

the other hand, the Economic Statistical Design (ESD) additionally

considers the statistical requirements, such as the probabilities of

error Type I (detecting an out-of-control state when the process is

fine) and II (not detecting an out-of-control state when the process

is not fine) in the estimation of the parameters.

The ED of control charts was introduced in 1956 by Duncan

[2] for X-bar ( �XX ) charts that monitor the mean of the quality

characteristic of produced items. It had the following assumptions:

the failure mechanism of the process had an Exponential

probability distribution, there was only one assignable cause,

and the sampling interval was constant. Other works extended the

ED to ESD and covered other control charts: R, S, and EWMA
control charts were proposed to monitor variability [3–7]; p and

np control charts were proposed to monitor proportion or number

of nonconforming units within samples [8].

Variability is an important factor to control in a process because

raw material, operators skills, machine calibration, etc., increase

variability without affecting the process mean [9]. To keep control

in both the mean and variability of a process the �XX{R control

chart has been used, although the R chart loses reliability when

nw10 [10]. In this case the �XX{S or �XX{S2 control charts are

more suitable. Collani, Sheil [9], and Yang [7] proposed the ESD

of S charts, considering the importance of the error Type I and II

for minimization of costs. The ED and ESD of �XX{R and �XX{S
control charts was proposed by Davis and Saniga [6,11,12],

pointing out the importance of controlling the mean and variance

of the process. However in these cases, it was assumed that the

sampling intervals were constant and that the process failed with

an Exponential distribution.

An extension of these works was presented by Chiu [13] who

considered the importance of Preventive Maintenance (PM) in the

ED of �XX{S2 control charts to reduce long-term variability and
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failures that are only evident when the process reaches an out-of-

control state. In [14] the ED of an �XX control chart combined with

an age-replacement PM policy was presented. It was observed that

reduction in operating costs was superior to the reduction achieved

by using only the control chart or the PM policy. The relationship

between SPC and PM has been recognized in other studies as in

[15–20] identifying a link between equipment maintenance and

product quality: ‘‘Equipment maintenance, either corrective or preventive in

nature, has a direct impact on the reliability of the equipment, and thus the

performance of the equipment. Under the assumption that the equipment is used

to manufacture some type of product, with improved performance of the

equipment comes increased product quality’’ [1].

This paper extends on the application of SPC with PM as some

points were not completely covered by previous studies. First, most

SPC is performed with the �XX control chart which does not

consider the variability of the production process [1,14,15,20–23].

Second, many studies of design of control charts consider just the

economic aspect while statistical restrictions must be considered to

achieve charts with low probabilities of false detection of failures

[14–16,19,20]. Third, the effect of PM on processes with different

failure probability distributions has not been explored as most of

the studies consider one distribution (i.e., Exponential [18,19,23]

or Weibull [20,24]).

Hence, this paper presents the Economic Statistical Design

(ESD) of joint �XX{S control charts to monitor mean and

variability in a production process. In addition, the cost model

integrates PM with general failure distribution (cases with

Exponential, Gamma, and Weibull distributions are presented)

and constant and variable sampling intervals. Experiments showed

that PM decreases costs for processes with high failure rates and

reduces the sampling frequency of units for testing under SPC.

Background
Reliability Function. Consider that a cumulative distribu-

tion function F (t) represents the probability that a unit, randomly

taken from a population, will fail at most in time t [25]. Now

consider that, instead of taking one unit, n units are taken at the

end of a time interval h. If it is of particular interest to get the

distribution of the survival of the process, then the cumulative

distribution function F(h) can be defined as the probability of the

process failing (changing to an out-of-control state) at the end of

the sampling interval h.

Because the reliability (or survival) function of the process,

R(t)~1{F (t), represents the probability that a unit will be

working beyond time t [25], the probability that a process will be

working properly (in-control state) after the sampling interval h

can be expressed as R(h)~1{F (h).

Hence, the following probabilities are associated with the

control states of a process:

1{F (h) in{control state beyond h: ð1Þ

F (h) out� of � control state at most in h: ð2Þ

Detection of States: Significance Level and Power. The

Significance Level a is the probability of the error Type I (false

positive), which is the detection of an out-of-control state when the

true state is in-control. Thus, if the null hypothesis H0 = process is

in-control state:

a~Pr(Reject H0jH0 is true)~ false positive alarm : ð3Þ

1{a~Pr(Do not Reject H0jH0 is true): ð4Þ

The probability of the error Type II (false negative), represented

as b, consists in the null detection of the out-of-control state when

the process is truly in out-of-control state. Using Eq. 3 and 4 as

reference:

b~Pr(Do not Reject H0jH0 is false)~false negative alarm : ð5Þ

1{b~Pr(Reject H0jH0 is false): ð6Þ

1-b is also known as the Statistical Power of the control chart, which

represents the ability of the chart to detect the out-of-control state

when the process is indeed in such state. Thus, the levels of a and b
must be low and controlled when designing the control chart.

Significance Level and Power for �XX{S Control
Charts. Although the cost model of a process may be used

with different control charts, the definitions of a and b are

dependent of the control chart. For the �XX control chart, b in terms

of the control limits (Upper Control Limit UCL, Lower Control

Limit LCL), is expressed as:

b �XX ~Pr( �XXvUCLjm1){Pr( �XXƒLCLjm1): ð7Þ

where the random variable of interest is �XX with N(m, s2=n)

distribution. If m and s2 are known, the control limits are

expressed as:

UCL �XX ,LCL �XX ~m+k
sffiffiffi
n
p
� �

: ð8Þ

and, if m and s2 are unknown, these can be estimated from the m

samples of size n as:

m̂m~�xx~

Pm
i~1 �xxi

m
,ŝs~

�SS

C4
: ð9Þ

giving the following control limits:

UCL �XX ,LCL �XX ~�xx+k
�SS

C4

ffiffiffi
n
p

� �
: ð10Þ

In Eq. 9 and 10, �SS is the mean standard deviation of the m

samples, and C4 is a constant that depends on the size of the

sample (n). Note that m1 in Eq. 7 is the value that represents the

change in the mean of the process, which is equal to mzds, where

d is the magnitude of that change. Hence, the error Type II

probability of Eq. 7 can be expressed as:

b �XX ~Pr Zv

(UCL{(mzds))
ffiffiffi
n
p

s

� �

{Pr Zƒ

(LCL{(mzds))
ffiffiffi
n
p

s

� �
:

ð11Þ
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b �XX ~w(k{d
ffiffiffi
n
p

){w({k{d
ffiffiffi
n
p

): ð12Þ

The error Type I for the �XX chart, a �XX can be expressed as:

a �XX ~2 1{w(k)ð Þ: ð13Þ

For the S control chart, the Power in terms of the control limits

can be expressed as:

1{bS~1{ Pr(SvUCLjs1){Pr(SƒLCLjs1)½ �: ð14Þ

where the random variable is S with x2 distribution with n{1
degrees of freedom, and s1 is the change in the standard deviation

of the process (s1ws0, where s0 is the initial value). The control

limits can be expressed in terms of the known standard deviation

(s), or an estimation of the same (�SS), as follows:

s known : UCLS ,LCLS~C4s+ks
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{C4

p
: ð15Þ

s unknown : UCLS,LCLS~�SS+k
�SS

C4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{C4

p
: ð16Þ

Commonly, k in Eq. 8, 10, 15, and 16 is restricted to 3 [26].

The relationship between the probability of the error Type II and

the parameters of the S control chart then is expressed as:

bS~Pr x2
v

(n{1)UCL2
S

s2
1

� �
{Pr x2

ƒ

(n{1)LCL2
S

s2
1

� �
: ð17Þ

Similar formulations for bS have been used by Saniga [6] and

Collani [9]. The error Type I for the S chart, aS , then can be

expressed as:

aS~2 1{x2
n{1(n{1)k2

S

� �
: ð18Þ

Finally, the joint error probabilities for the �XX{S control chart

are defined as:

a~Pr(Reject H0 under the �XX control chart jH0 is true)|

Pr(Reject H0 under the S control chart jH0 is true):
ð19Þ

a~a �XX zaS{a �XX aS: ð20Þ

1{b~

Pr(Reject H0 under the �XX control chart jH0 is false)|
Pr(Reject H0 under the S control chart jH0 is false):

ð21Þ

1{b~(1{b �XX )z(1{bS){(1{b �XX )(1{b�SS)~1{b �XX bS: ð22Þ

b~

Pr(Do not Reject H0 under the �XX control chart jH0 is false)\
Pr(Do not Reject H0 under the S control chart jH0 is false):

ð23Þ

b~b �XX bS: ð24Þ

Note that for the �XX{S control chart two control limits

coefficients are considered: k �XX for the �XX control chart, and kS for

the S control chart. Also, because in the �XX{S control chart two

variables are monitored, two changes are considered: m?m1, and

s?s1. Hence, Eq. 12 is extended for the estimation of b �XX in Eq.

24 as follows:

b �XX ~w(k(s=s1){d(s=s1)
ffiffiffi
n
p

){w({k(s=s1){d(s=s1)
ffiffiffi
n
p

): ð25Þ

By integrating Eq. 1 and 2 with 20 and 24, the probabilities

associated with the possible states of a process are obtained, and

these are presented in Table 1.

Methods

Base Cost Model with Constant Sampling Intervals
A production cycle is defined as the interval from the starting

production time (in-control state) until the time when a change,

caused by an assignable cause, occurs. This cycle includes the time

required to detect and repair the assignable cause. Because a

production cycle can be also defined as the time between

successive in-control periods [27], the process can be considered

as a serial of equally distributed independent cycles, a renewal

process.

Under this assumption, the cost per cycle can be estimated as

the accumulated cost from the beginning until the end of one

cycle, and the average cost per unit of time can be estimated as the

ratio of E(C)=E(T), where E(C) is the Expected Cost per Cycle

and E(T) the Expected Cycle Length. The objective of the ESD is

to minimize the costs per unit of time of a process:

min Z~E(C)=E(T) [21,27,28]. The Renewal Theory Approach

proposed by Rahim and Banerjee [28] was presented as an

alternative to obtain the equations for E(T) and E(C) for

Markovian and non-Markovian stochastic processes considering

these assumptions.

A stochastic process has the Markov property if the conditional

probability distribution of future states of the process depends only

upon the present state, not on the sequence of events that preceded

it. The Renewal Approach [28] studies the state of the system at

the end of the first sampling interval. Depending upon the state of

the system, the expected residual cycle length and cost can be

computed. Then these values, together with the associated

probabilities, define the renewal equations for E(T) and E(C).

The basic model studied by Duncan [2] had the Markov

property and considered that a production cycle was integrated by

the following components: (1) the in-control period; (2) the out-of-

control period; (3) the time required to take a sample and interpret

the results; and (4) the time needed to find the assignable cause. In

[28] these components led to define the following states of the

system at the end of the first sampling interval: (1) in-control state

and no alarm; (2) in-control state and false alarm; (3) out-of-control

and no alarm; and (4) out-of-control and true alarm. Then the

equations for E(T) and E(C) were obtained as the sum of the

ð23Þ
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expected residual cycle length and cost multiplied by the

probability associated with each of these states.

The expressions for E(C) and E(T) obtained with this

approach in [28] were confirmed with those obtained with

traditional approaches as that of Lorenzen and Vance [29] and

Heikes et al. [30] for Markovian and non-Markovian models

respectively. The approach also has been used to derive the

equations of cost models with specific elements as that of Yang

[27] which considered two assignable causes. This made the

Renewal Approach suitable for the development of the cost

models presented in this paper that are adaptations of the model of

Rahim and Banerjee [28] which considered Exponential failure

distribution and constant sampling intervals for the ED of �XX
control charts.

The adapted base cost model under the Renewal Theory

Approach assumes the following issues about the process:

1. The process starts in a stable in-control state with mean m and

variance s2. The event of an assignable cause changes the

variance of the process from s2 to d2
1s2, where s2

1w1 is the

magnitude of the change and is known.

2. When a data point of the control chart is outside the control

limits an alarm is generated, then the process is stopped and the

search and repairing of the assignable cause starts. After the

assignable cause is repaired the process returns to the in-control

state, starting a new production cycle. The process is stopped

also when there is a false alarm.

3. There is only one assignable cause and the process does not

self-repair.

4. The time between failures has a general distribution.

5. The states of the system at the end of the first sampling interval

are identified as: (1) S00 - in-control state and no alarm; (2) S01 -

in-control state and false alarm; (3) S10 - out-of-control and no

alarm; and (4) S11 - out-of-control and true alarm. The

probabilities associated with each state are presented in Table 1

and the details of the expected residual cycle length and cost

associated with each state are presented in the following

sections.

Renewal Equations of the Expected Cycle Length E(T).

N State S00: the state of the process is evaluated at the end of the

first sampling interval h, and depending on this the expected

residual cycle length is estimated. As shown in Figure 1, in this

case the process is in-control state with no alarm. Because

there are no other events associated with this scenario, the

expected residual cycle length is E(T).

N State S01: in this case there is a false out-of-control alarm

which causes the process to be stopped, an action that involves

loss of time and money. This scenario is shown in Figure 2,

where the variable Z0 represents the time used to search the

assignable cause when there is a false alarm. After that time the

process is restarted and the expected residual cycle length is

equal to E(T)zZ0 which considers the delay caused by the

false alarm.

N State S10: in this case the process is in out-of-control state and

there is no alarm (no detection). Here it is important to

consider the necessary time or intervals to detect the failure.

Because each sampling interval is constant with length h, the

necessary time to detect the failure can be expressed in terms

of the number of samples before the alarm is generated. As

show in Figure 3, this number is a geometric random variable

with mean 1=(1{b), which is known as the Average Run Length

(ARL) [3].

N Hence, the necessary time to detect the out-of-control state is

h(ARL), or h=(1{b). Observe that hARL~ATS (Average

Time to Signal), the average time to produce an alarm. When the

out-of-control is detected, the procedure to find the assignable

cause and restore the process to an in-control state is

performed. In Figure 3, Z1 is the time associated with these

tasks. When the process is restored a new cycle begins. Hence,

the expected residual cycle length is equal to h=(1{b)zZ1.

N State S11: as shown in Figure 4, in this case the alarm is

generated at the end of the interval where the process changed

to the out-of-control state, thus there was a correct detection.

In such scenario the only action that has to be performed is to

find the assignable cause and restore the process, which only

requires a time Z1. Hence, the expected residual cycle length is

equal to Z1.

The total E(T) thus can be expressed as the sum of the expected

residual cycle lengths, multiplied by their associated probabilities,

of all states [27,28]:

E(T)~hzE(T)Pr(S00)z Z0zE(T)½ �Pr(S01)z

h=(1{b)zZ1½ �Pr(S10)zZ1Pr(S11):
ð26Þ

E(T)~h
1

F (h)
z

b

1{b

� �
zaZ0

1{F (h)

F (h)

� �
zZ1: ð27Þ

Renewal Equations of the Expected Cost. E(C). The

process has the following associated costs:

N Sampling: always that a sample of size n is taken, the cost

azbn takes place, where a is the constant cost, and b the

variable cost of the sample.

N Producing in-control and out-of-control states: the cost per

hour for producing in-control state is defined as D0 and the

cost of producing in out-of-control state as D1 (D1wD0).

Table 1. Control state probabilities.

State Description Probability Expression

S00 Process in-control state and no alarm Pr(Process in-control)Pr(Do not Reject H0jH0 is true) = Pr(S00) (1-F(h))(1-a)

S01 Process in-control state and false alarm Pr(Process in-control)Pr(Reject H0jH0 is true) = Pr(S01) (1-F(h))a

S10 Process in out-of-control state and no alarm Pr(Process out-of-control)Pr(Do not Reject H0jH0 is false) = Pr(S10) F(h)b

S11 Process in out-of-control state with alarm Pr(Process out-of-control)Pr(Reject H0jH0 is false) = Pr(S11) F(h)(1-b)

doi:10.1371/journal.pone.0059039.t001
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N Searching and repairing: the cost of a false alarm is defined as

Y , and the cost of searching and repairing an assignable cause

is defined as W .

Considering these costs, the equations for E(C) are derived as

follows:

N State S00: as presented in Figure 5, in this scenario only the

costs associated with sampling and producing in-control state

in the first interval D0h are considered. Thus, the expected cost

is azbnzD0hzE(C), where E(C) is the expected residual

cost for this state.

N State S01: as shown in Figure 6, in this case besides the costs

described above, there is a cost associated with a false alarm

(Y ), which implies losses because the process is stopped

unnecessarily (for a time Z0). Thus, the expected cost for this

state is azbnzD0hzYzE(C), where YzE(C) is the

expected residual cost.

N State S10: observe in Figure 7 that an assignable cause occurs

within the first sampling interval in time t which changes the

process to an out-of-control state. t is a variable that was

introduced by Duncan [2] for the case of the ED of a �XX -

control chart when the failure mechanism had an Exponential

distribution (f (t)~le{lt, where l is the number of failures per

unit of time). For a general f (t), t is defined as:

t~

Ð h

0
tf (t)dtÐ h

0
f (t)dt

: ð28Þ

N In Figure 7 observe that, in the interval from t~0 to t~t the

process is in-control state, and that from t~t until t~h (the

end of the interval h) the process is in out-of-control state.

Because of this, in the first sampling interval h there are the

following costs:

– Sampling cost: azbn;

– Cost for producing in-control state: D0t;

– Cost for producing in out-of-control state: D1(h{t).

N The evaluation of the process is performed at the end of the

interval h (sampling), however in this case the out-of-control

state is not detected (there is no alarm). Hence, in the following

intervals the process will continue producing in out-of-control

state until the detection is successful, which happens after

1=(1{b) samples (ARL). Meanwhile, during these intervals

there are sampling costs (azbn) and losses for producing in

out-of-control state (D1h). Thus, the cost of producing in out-

of-control state until the detection takes place is given by

ARL(azbnzD1h).

N When detection is performed, the process is stopped and searching

and repairing of the assignable cause is done with an associated cost

W . Finally, the expected cost for this state is defined as:

Figure 1. Expected Residual Cycle Length for State S00. The process is in-control state and there is no alarm. Because the process is evaluated
at the end of the first sampling interval h and no other events are associated with this scenario, the expected cycle length is E(T).
doi:10.1371/journal.pone.0059039.g001

Figure 2. Expected Residual Cycle Length for State S01. The process is in-control state but there is a false out-of-control alarm which causes the
process to be stopped. This involves a time Z0 required to search for an assignable cause. After Z0 the process is restarted and the expected residual
cycle length is equal to E(T)zZ0 .
doi:10.1371/journal.pone.0059039.g002
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azbnzD0tzD1(h{t)z (1=(1{b)½ �(azbnzD1h)zW , where

(1=(1{b)½ �(azbnzD1h)zW is the expected residual cost.

N State S11: as presented in Figure 8, in this case the detection of

the out-of-control state is performed successfully at the end of

the first sampling interval h, hence prompt procedures to find

the assignable cause and restore the process are implemented

with a cost W . Thus, the expected cost for this scenario is

azbnzD0tzD1(h{t)zW , where W is the expected

residual cost.

The total E(C) thus can be expressed as the sum of the expected

costs, multiplied by their associated probabilities, of all states

[27,28]:

E(C)~ azbnzD0hzE(C)½ �Pr(S00)z

azbnzD0hzYzE(C)½ �Pr(S01)z

azbnzD0tzD1(h{t)z
azbnzD1h

1{b
zW

� �
Pr(S10)z

azbnzD0tzD1(h{t)zW½ �Pr(S11):

ð29Þ

E(C)~D0h
1{F (h)

F (h)

� �
zD1h 1z

b

1{b

� �
zYa

1{F(h)

F (h)

� �
z

(azbn)
1

F(h)
z

b

1{b

� �
zt(D0{D1)zW :

ð30Þ

Base Cost Model with Variable Sampling Intervals
In the model given by Eq. 27 and Eq. 30 when all sampling

intervals are constant or fixed, hj~h for all j samples. When the

sampling intervals are variable, hj is different for each j sample. In

[21] Rahim et al. proposed to consider a specific number of m

samples (sampling intervals) in the production cycle, j~1,2,:::,m,

so the production cycle could be considered as truncated [31]. A

truncated production cycle starts when a new component is

installed and ends with a repair or after a fixed number of m

sampling intervals (at a given age wm). The cost model derived in

this section is the model of Rahim and Banerjee [21] for general

failure distribution and variable sampling intervals. The deduction

was important to understand the model in order to develop the

integrated cost model with PM.

The model makes the following assumptions:

1. The first interval h1 is randomly chosen.

2. The length of the next sampling intervals are chosen as

hj~rhj{1, where hj is the sampling interval for sample j, and r

is a decrement factor. The sampling intervals hj are computed

by applying the decrement factor to the successor sampling

interval, thus h1wh2wh3w:::whm, because as time continues

Figure 3. Expected Residual Cycle Length for State S10. The process is in out-of-control state and there is no alarm (no detection). The
necessary time to detect the failure can be expressed in terms of the number of samples before the alarm is generated. This number is a geometric
random variable with mean 1=(1{b) which is known as the Average Run Length (ARL). Thus, the necessary time to detect the out-of-control state is
h(ARL) or h=(1{b). When the out-of-control is detected, the procedure to find the assignable cause and restore the process to an in-control state is
performed with a time Z1 . The expected residual cycle length is equal to h=(1{b)zZ1 .
doi:10.1371/journal.pone.0059039.g003

Figure 4. Expected Residual Cycle Length for State S11. The
process is in out-of-control state and detection is performed at the end
of the interval where the process changed to this state. The only action
that has to be performed is to find the assignable cause and restore the
process. This only requires a time Z1 which also represents the
expected residual cycle length.
doi:10.1371/journal.pone.0059039.g004
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the sampling frequency must increase given the natural wear

and tear of the components of the process [21].

3. The number of sampling intervals is fixed and given (m§ 2).

4. The objective is to find n, hj (j~1,2,:::,m), and k that minimize

Z~E(C)=E(T).

5. There is an additional cost S(wm) in E(C) which is associated

with the salvage cost of an equipment of age wm.

6. F (wj) is the cumulative distribution function of failure when

the equipment (process) is of age wj , which is accumulated

accordingly to the sampling over time. Hence, the age of a

process at a given sampling interval j is given by:

wj~
Xj

i~1

hi: ð31Þ

7. The failure probability (out-of-control probability) for a specific

interval j can be estimated as:

+F (wj)~F (wj){F (wj{1): ð32Þ

Renewal Equations of the Expected Cycle Length E(T)

N State S00,S01: when the process is in-control state, the stop

condition is given by (1) an alarm (true or false), or (2) by the

age of the equipment ( = wm). When there is no alarm at all,

the stop condition is given only by wm. When the sampling

intervals are variable, the probability to be in-control state

cannot be generalized as 1{F (h) (Eq. 1), because each

interval has an associated probability which is dependent on

the age of the equipment (Eq. 32).

N In Figure 9, F (w1) represents the probability of being in out-

of-control state at most in time w1, and 1{F (w1) the

probability of being in-control state from time w1. However

this does not represent the probability of being in-control state

in the interval h1. To include this interval, which starts in w0

and ends in w1, the corresponding probability must be

1{F (w0). Hence, for the range of intervals from w0 to wm,

the following probabilities are defined for each sampling interval

hj : h1?1{F (w0); h2?1{F (w1); :::; hm?1{F (wm{1).

N From these probabilities, the expected time when the process is

in-control state and no alarm is generated (State S00) can be

expressed as:

Figure 5. Expected Cost for State S00. The process is in-control state and there is no alarm. Hence, only the costs associated with sampling
(azbn) and producing in-control state in the first interval D0h are considered. Thus, the cost consists of azbn zD0hzE(C), where E(C) is the
expected residual cost for this state.
doi:10.1371/journal.pone.0059039.g005

Figure 6. Expected Cost for State S01. The process is in-control state but there is a false out-of-control alarm which causes the process to be
stopped. Besides the sampling and in-control production costs, there is a cost associated with a false alarm (Y ) which implies losses because the
process is stopped for a time Z0 . Thus, the expected cost for this state is azbnzD0hzYzE(C), where YzE(C) is the expected residual cost for
this state.
doi:10.1371/journal.pone.0059039.g006
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Figure 7. Expected Cost for State S10. The process is in out-of-control state and there is no alarm (no detection). The assignable cause occurs
within the first sampling interval at time t which changes the process to an out-of-control state. Thus, in the interval from t~0 to t~t the process is
in-control state, and from t~t until t~h the process is in out-of-control state. Because of this, in the first sampling interval h there are sampling costs
(azbn), in-control production costs (D0t), and out-of-control production costs (D1(h{t)). Then, sampling and out-of-control production costs take
place while there is no detection (number of intervals estimated by ARL~1=(1{b)). Finally, when detection is performed there is a cost W
associated with interrupting the process, searching the assignable cause and repairing the process. Hence, the expected cost for this state is defined
as azbnzD0tzD1(h{t)z½(1=(1{b)�(azbnzD1h)zW , where ½(1=(1{b)�(azbnzD1h)zW is the expected residual cost.
doi:10.1371/journal.pone.0059039.g007

Figure 8. Expected Cost for State S11. The process is in out-of-control state and detection is performed at the end of the interval where the
process changed to this state. In addition to sampling costs (azbn), in-control production costs (D0t), and out-of-control production costs (D1(h{t))
there is a cost W associated with interrupting the process, searching the assignable cause and repairing the process. Thus, the expected cost for this
state is defined as azbnzD0tzD1(h{t)zW , where W is the expected residual cost.
doi:10.1371/journal.pone.0059039.g008
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(h1)(1{F (w0))z(h2)(1{F (w1))z

(h3)(1{F (w2))z:::z(hm)(1{F (wm{1))~

~
Pm
j~1

hj 1{F (wj{1)
	 


~
Pm
j~1

hj
�FF (wj{1):

ð33Þ

N The probability of a false alarm when the process is in-control

state (State S01) is represented by a (Eq. 3), and is generated at

the end of the first sampling interval. Because of this, it is not

necessary to consider the in-control probability for this

interval, and the in-control probability associated with other

intervals can be expressed as:

(1{F (w1))z(1{F (w2))z(1{F (w3))

z:::z(1{F (wm{1))~
Xm{1

j~1

�FF (wj):
ð34Þ

N Thus, the expected time to find an assignable cause when there

is a false alarm (State S01) is expressed as:

aZ0

Xm{1

j~1

�FF (wj): ð35Þ

N State S10, S11: in State S10 the process is already in out-of-

control state (has failed), but there is no alarm. To derive the

renewal equations some points must be considered:

– the interval where the process changed to the out-of-control

state;

– the interval where the out-of-control state would be

detected.

N Suppose that the process changes to the out-of-control state at

some point within the interval h2 and it is not detected at the

end of the same interval. By considering Eq. 32, the out-of-

control probability in h2 is given by +F(w2)~F(w2){F(w1).
When the out-of-control probability is determined, it is

necessary to consider the next intervals where detection can

be performed (in this case, h3, h4, h5,..., hm). Thus, in general,

if the assignable cause occurs in hj , the detection can be

performed in any interval hi where i~jz1,:::,m. If detection

is performed in h3 (i~3), the no-detection probability can be

expressed as bg~0, because the state was detected in the

immediate following interval after the assignable cause

occurred (thus there were g~0 intervals with no detection).

If however, detection takes place in interval h5 (i~5), this

means that the state was not detected in intervals h3 and h4

(g~2), and thus there were two consecutive intervals where no

detection was performed with probability b2. The index g of

bg follows the sequence g~i{j{1, so in the case that the

detection takes place until the end of the sampling intervals in

hm, the probability of no detection would be bm{2{1. In

general terms, the expected time to detect the out-of-control

state can be expressed as
Pm

i~jz1 hib
i{j{1 for each interval j

where an assignable cause occurs with a probability +F (wj).

N Thus, the expected time to detect the assignable cause when

the process is in out-of-control state is given by:

b
Xm{1

j{1

+F (wj)
Xm

i~jz1

hib
i{j{1

 !
: ð36Þ

N In State S11 detection is successful at the end of the interval

where the assignable cause occurred, thus the expected time

consists of only Z1.

N The total E(T) thus can be expressed as the sum of Eq. 33, 35,

36, and Z1:

E(T)~
Xm

j~1

hj
�FF (wj{1)zaZ0

Xm{1

j~1

�FF (wj)

zb
Xm{1

j{1

+F (wj)
Xm

i~jz1

hib
i{j{1

 !
zZ1:

ð37Þ

Renewal Equations of the Expected Cost E(C).

N Costs of producing in-control states (S00,S01): Eq. 33

provided the time that the process was in-control state with no

false alarm (S00). Because in Eq. 30 D0 is the cost per hour of

producing in-control state, then the expected cost of producing

while the process is in-control state with no false alarm can be

expressed as:

Figure 9. F (w1) and 1{F (w1) when the Sampling Interval is Variable. F (w1) represents the probability of being in out-of-control state at most
in time w1 , and 1{F (w1) the probability of being in-control state from time w1 . However this does not represent the probability of being in-control
state in the interval h1. To include this interval, which starts in w0 and ends in w1 , the corresponding probability must be 1{F (w0). Hence, for the
range of intervals from w0 to wm , the following probabilities are defined for each sampling interval hj : h1?1{F (w0); h2?1{F (w1);...;
hm?1{F (wm{1).
doi:10.1371/journal.pone.0059039.g009
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D0

Xm

j~1

hj
�FF (wj{1): ð38Þ

When there is a false alarm (S01) the process is stopped, and

the expected time to search an assignable cause is given by Eq.

35. Because now it is required to consider the associated cost,

Z0 in Eq. 35 it can be replaced by the cost Y which

corresponds to a false alarm:

aY
Xm{1

j~1

�FF(wj): ð39Þ

N Costs of producing in out-of-control states (S10,S11):
when there is a transition from the in-control to the out-of-

control state, the following events are considered:

– The process is initially in-control state until the assignable

cause occurred at some point within the sampling interval.

As in the case of t in Eq. 30, it is important to know the cost

associated with the period of time in which the process was

still in-control state. Because the process has a failure

distribution given by f (t), the mean expected probability for

the interval of time from 0 to wm is:

E(t)~

ðwm

0

tf (t)dt: ð40Þ

N Thus the cost:

(D0{D1)E(t): ð41Þ

represents the expected cost associated with the fraction of

time within the interval in which the process is in-control.

– The process is in out-of-control state, and in this case, the

costs depend on the age of the equipment wj at the moment

of the failure. As the age increases there will be intervals hj

where the out-of-control probability will be more significant.

Note that the process can change to an out-of-control state

in any hj with a probability of +F (wj). The associated cost of

producing in out-of-control state can be expressed as:

(D1{D0)
Xm

j~1

wj+F (wj): ð42Þ

– As there is no detection of the out-of-control state, it is

important to consider the cost associated with the intervals

where no-detection is performed (the number of intervals

until detection is successful). For this, Eq. 36 gives the time

expected to detect the out-of-control state. Because during

this time the process is in out-of-control state, the associated

cost for this period can be expressed as:

D1b
Xm{1

j{1

+F (wj)
Xm

i~jz1

hib
i{j{1

 !
: ð43Þ

– Detection is successful and the repairing procedure starts. In

this situation, the costs only consist of finding and repairing

the assignable cause (W ).

N Sampling Costs: sampling is performed when the process is

in-control state and while there is no detection (true alarm) of

the out-of-control state. With this in mind, the first cost would

be:

azbn: ð44Þ

which corresponds to the first sampling interval which is

performed independently of the state of the interval. At the

evaluation point of this interval a decision is made about

continuing or not (in the case of a false alarm) with the process.

For these in-control intervals the corresponding sampling costs

are:

(azbn)
Xm{2

j~1

�FF (wj): ð45Þ

N Observe that j~1,:::,m{2, because the first and last intervals

are not considered. The last one is not considered because

there is already a stop condition given by wm.

N Now the associated costs of samples taken when the process is

in out-of-control state and there is no alarm (no detection) are

considered. Rahim et al. [21] defined this cost as Qj , which is

the expected number of samples taken after wj considering that

the process is in out-of-control state from this time and there is

no detection:

Qj~
Xm{1{j

i~1

i(1{b)bi{1z(m{1{j)bm{1{j : ð46Þ

N As in Eq. 45, the first and the last intervals are not considered.

Because there is no detection, it is necessary to consider the

error Type II probability together with the out-of-control

probability in the interval hj given by +F (wj). Hence, for each

interval there is an associated cost Qj , and the sampling cost

when there is no detection is given by:

(azbn)b
Xm{2

i~1

+F (wj)Qj : ð47Þ

N The total sampling cost is then expressed as the sum of Eq. 44,

45, and 47:
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(azbn)z(azbn)
Pm{2

j~1

�FF (wj)z(azbn)b
Pm{2

i~1

+F (wj)Qj~

~(azbn) 1z
Pm{2

j~1

�FF (wj)zb
Pm{2

i~1

+F (wj)Qj

 !
:

ð48Þ

N Salvage value for a machine of age wm: The model of

Rahim et al. [21] considers a salvage value for the equipment

used, allowing the possibility of replacement of the equipment

depending on its age wm before a failure. This is only

significant when the replacement produces an economic

benefit. The salvage value for the equipment S(wm) exists

only when the process is in-control state within wm, and so the

corresponding cost during this period is:

�FF (wm)S(wm): ð49Þ

Observe that this value represents a saving and not a cost.

The total Expected Cycle Cost E(C) is expressed as the sum of

all costs described in this section which are given by Eq. 38, 39, 41,

42, 43, 48, and 49:

E(C)~D0

Pm
j~1

hj
�FF (wj{1)zaY

Pm{1

j~1

�FF (wj)z(D0{D1)
Ð wm

0
tf (t)dt

� �
z

(D1{D0)
Pm
j~1

wj+F (wj)zD1b
Pm{1

j{1

+F (wj)
Pm

i~jz1

hib
i{j{1

 !
zWz

(azbn) 1z
Pm{2

j~1

�FF (wj)zb
Pm{2

i~1

+F (wj)Qj

 !
{�FF (wm)S(wm):

ð50Þ

Eq. 37 and 50 match the model presented by Rahim et al. [21],

which gives confidence about the deduction of the cost equations

and hence, of the understanding of the cost function model to

integrate the preventive maintenance.

Integrated Cost Models with Preventive Maintenance
Preventive Maintenance (PM) has been proposed by diverse

studies to increase the long-term reliability of equipment in a

production process by reducing failure rates and age of the system

[23,32]. Chiu [13] integrated PM in a cost function for the

Economic Design (ED) of �XX{S2 control charts assuming the

following:

1. The process had increasing failure rate.

2. PM is performed at the evaluation point of constant sampling

intervals. If the process is in-control state in time hj , then PM is

performed with an associated cost.

3. M includes costs associated with small adjustments or changes

in machines or in other parts of the process (Mv repairing

cost).

4. PM does not restore the process from an out-of-control state to

an in-control state.

5. The process is stopped when the PM is performed.

These assumptions were similar to those presented by more

recent studies which also had significant additional considerations.

In [15] Ben-Daya and Rahim also considered performing PM at

the evaluation point of constant sampling intervals. However Chen

et al. [23] stated that performing PM at each evaluation point

would increase costs. As an alternative they proposed a

‘‘threshold’’ for the quality characteristic measured during a

sampling interval to decide whether or not to perform PM. Rahim

et al. [32] proposed that PM activities could be performed at L
integer multiples of evaluation points, considering also that

production ceases during PM.

Mehrafrooz and Noorossana [18] proposed different types of

maintenance: Preventive, Corrective, Compensatory, and Planned

maintenance. In their work, ‘‘true’’ out-of-control signals require

Preventive maintenance while ‘‘false’’ alarms require Compensa-

tory maintenance. Corrective maintenance is performed whenever

process stops due to a failure, and Planned maintenance is the one

scheduled to be performed after (mz1)h in-control intervals.

However, a common assumption of some works (i.e., [18,32]) is

that PM is capable of restoring an equipment to a ‘‘good-as-new’’

condition, something that is not a realistic situation as discussed in

[23]. Also, a single failure distribution is considered (i.e.,

Exponential [18,23]) and thus, the effect of PM is not fully studied.

In this paper is assumed the following:

1. PM does not restore the process to a ‘‘good-as-new’’ condition

although it decreases the failure rate after each implementation

[32]. Failure rate was considered to be reduced by extending

the period of time between failures. For this, a constant h was

defined as the possible gain in the life expectancy of the process

and was integrated in the period of time between failures. It

was considered to be at least of 10% of the original time

between failures.

2. In terms of [18], Corrective maintenace is implicit in the

activity of searching/repairing an assignable cause. PM is

performed at each evaluation point while the process is

detected to be in-control state (thus, Preventive ~ Compen-

satory ~ Planned maintenance).

3. The process has general failure distribution and the following

are considered: Exponential, Weibull, and Gamma.

4. Sampling intervals are constant and variable.

5. The process can continue or be stopped while performing PM:

M1 is the cost of PM if the process continues, and M2 the cost

of PM if the process is stopped (M1vM2).

6. Taking as reference the cost of repairing the process from an

out-of-control state, the PM cost was set to 10% and 30% of W
if the process continues while performing PM or if is stopped

respectively.

Thus, the study of Chiu [13] about PM is extended for the ESD

of �XX{S control charts with the more complex cost function

model of Rahim et al. [21] for variable sampling intervals and

general failure distributions. The work of Linderman [33] was also

reviewed to allow, by means of a binary variable (l~0,1), the

modelling of the situation of performing PM without interrupting

the process. Thus, a more comprehensive insight is presented

about the effect of PM on the reliability of a process. In order to

keep consistency with the base models of Rahim et al. [21,28], the

proposed models share the same terminology for E(T) and E(C).
Depending on the kind of process, if it is necessary to stop the

process while performing PM (l~1), then a delay Z2 is added to

each sampling interval if the process is in-control state. This is

common in situations when some machine parts are worn-out and

need to be replaced, or too much waste is accumulated in a

machine. Another scenario that requires attention, independently

if the process is stopped or not, is lubrication of mechanic parts,

which can be performed with the process working without any

delay Z2, although it still implies a cost. Thus, Z2 represents the

ð50Þ
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Figure 10. Effect of PM on the Exponential distribution: h~2:0, Z2~2:5, Initial Unit = 20. l is the main parameter of the distribution and
represents the known number of failures per unit of time. When PM is performed a gain h in the life expectancy can be obtained. This would increase
the Initial Unit of time where failures are likely to take place. In addition, if the process is stopped during the performance of PM (l~1) the associated
delay lZ2 can be considered as another gain in the life expectancy of the process. Thus, the unit of time where failures would occur can be expressed

as Unit of Time = Initial Unit + h + lZ2 . It is observed that for l~ll~1 and l~ll~0 (PM with/without interruption of the process), the failure
probabilities decreased at time t. The lowest failure probability is accomplished when the process is stopped while performing PM, and the highest
when there is no PM.
doi:10.1371/journal.pone.0059039.g010

Figure 11. Effect of PM on the Weibull distribution: h~5:0, Z2~6:0, m~3, Initial c = 40. c represents the time where the process would fail,
identifying in this way the life expectancy of the process. c is known as the scale parameter and m as the form parameter. When m~1 the Weibull
distribution is approximated to the exponential distribution with l~1=c. When PM is performed a gain h in the life expectancy can be obtained. This
would increase the Initial c, and if the process is stopped during the performance of PM (l~1), the associated delay lZ2 can be considered as another
gain in the life expectancy of the process. Thus, the time at which the system would fail is expressed as: c = Initial c zhzlZ2 . Although all cases
achieve the same probability level by t~100, there is a marked delay when PM is performed. While in the original case with no PM the failure
probability is 50% by t~35, when PM is performed without interruption the probability at t~35 is 40% (50% is reached when t~40). When there is
PM with interruption, in t~35 the failure probability is 27%, reaching 50% in t~45.
doi:10.1371/journal.pone.0059039.g011
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expected time to perform PM. In the following sections the

integration of these concepts is presented.

Constant Sampling Intervals. The modified Eq. 26 for the

Expected Cycle Length E(T) is:

E(T)~hz E(T)zlZ2½ �Pr(S00)z

Z0zlZ2zE(T)½ �Pr(S01)z

h

1{b
z

lZ2

1{b
zZ1

� �
Pr(S10)z

Z1Pr(S11):

ð51Þ

Note that, for state S10, h=(1{b) is the time required to detect

that the process is in out-of-control state. Thus, lZ2=(1{b) is

defined as the time that PM was performed while the process was

in out-of-control state before detection. Eq. 51 for E(T) is reduced

to the following expression:

E(T)~h
1

F (h)
z

b

1{b

� �
zaZ0

1{F (h)

F(h)

� �

zlZ2
1{F (h)

F (h)
z

b

1{b

� �
zZ1:

ð52Þ

In similar way, the expression for the Expected Cost E(C) of

Eq. 29 with PM is derived:

E(C)~ azbnzD0hz(1{l)M1zlM2zE(C)½ �Pr(S00)z

azbnzD0hz(1{l)M1zlM2zYzE(C)½ �Pr(S01)z

azbnzD0tzD1(h{t)z(1{l)M1z½

lM2z
azbnzD1hz(1{l)M1zlM2

1{b
zW

�
Pr(S10)z

azbnzD0tzD1(h{t)zW½ �Pr(S11):

ð53Þ

E(C)~D0h
1{F (h)

F(h)

� �
zD1h 1z

b

1{b

� �
z

Ya
1{F (h)

F(h)

� �
z(azbn)

1

F (h)
z

b

1{b

� �
z

(1{l)M1zlM2½ � 1{F (h)

F (h)
zb 1z

1

1{b

� �� �
zt(D0{D1)zW :

ð54Þ

Variable Sampling Intervals. When the sampling intervals

are constant, PM is performed at the end of the sampling interval

Figure 12. Effect of PM on the Gamma distribution: h~2:0, Z2~2:5, Initial Unit = 20. r is termed as the form parameter, and l the scale
parameter. For convenience in this work r~2 was used. l is related to the life expectancy of the process which is considered to be increased by h
when PM is implemented. If PM is performed with interruption of the production process (l~1) then the associated time to this task Z2 can be
considered as another gain in the life expectancy. Because l = 1/(Unit of Time until Failure), then 1/l = Initial Unit of Time + h + lZ2 . As presented, PM
with interruption presents the lower probability of a failure for t~1,::,100. For example, for t~40, the failure probability is approximately of 48% and
53% for PM with l~1 and l~0 respectively. However if no PM is implemented, the failure probability is near 60%.
doi:10.1371/journal.pone.0059039.g012

Table 2. Costs and Times for the ESD of �XX{S Control Charts
with PM.

m~182 s~
ffiffiffiffiffi
10
p

s1~
ffiffiffiffiffi
18
p

d~0.5

Z0~0.25 Z1~1 D0~50 D1~950

a~20 b~4.22 W~1100 Y~500

Z2~0.75 M1~100 M2~300 Swm
~1100

aƒ0.15 bƒ0.20 Z2~ 0.75 h~0.5c

doi:10.1371/journal.pone.0059039.t002
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h as long as the process is in-control state (or the out-of-control is

not detected). For such case, a new sampling interval is established

that includes the associated PM:

h0~hzlZ2: ð55Þ

If the process is not interrupted (l~0) while performing the PM

then there is no delay, hence h0~h from the original cost model.

Now, for variable sampling intervals, the same principle can be

applied:

h0j~rhj{1zlZ2: ð56Þ

Because it is considered that PM is constant for each sampling

interval, the Eq. 31 for wj is adjusted as follows:

wj~
Xj

i~1

h0i: ð57Þ

Thus, Eq. 37 for E(T) with PM is modified as:

E(T)~
Xm

j~1

h0j
�FF (wj{1)zaZ0

Xm{1

j~1

�FF(wj)

zb
Xm{1

j{1

+F (wj)
Xm

i~jz1

h0ib
i{j{1

 !
zZ1:

ð58Þ

Eq. 50 for E(C) is modified when adding PM given by

P~(1{l)M1zlM2:

E(C)~D0

Pm
j~1

h0j
�FF (wj{1)zaY

Pm{1

j~1

�FF (wj)z

P
Pm{1

j~1

�FF (wj)z(D0{D1)
Ð wm

0
xf (x)dx

� �
z

(D1{D0)
Pm
j~1

wj+F (wj)zD1b
Pm{1

j{1

+F (wj)
Pm

i~jz1

h0ib
i{j{1

 !

zPb
Pm{2

i~1

+F (wj)Qjz

Wz(azbn) 1z
Pm{2

j~1

�FF(wj)zb
Pm{2

i~1

+F (wj)Qj

 !
{�FF (wm)S(wm):

ð59Þ

where:

N P
Pm{1

j~1
�FF (wj) is the cost of performing PM when the process

is in-control state.

N Pb
Pm{2

i~1 +F (wj)Qj is the cost of performing PM when the

process is in out-of-control state and there is no detection.

Hence, this cost depends on the number of samples taken

while there is no true alarm.
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Results and Discussion

Effect of PM on the Failure Distribution
It is expected that, as PM involves continuous adjustments and

replacements of soon-to-be faulty parts, it would increase the

reliability of the process in the long term. This could be reflected as

a decrease in the number of failures in a given time period. Hence,

this can have a direct effect on the life expectancy of the process,

which is associated with the parameters of the failure distribution

modelled by f (t).

In this paper three probability distributions are considered for

the failure mechanism of the process: Exponential, Weibull, and

Gamma, and the effect of PM on these distributions are presented

in the following sections.

Exponential Distribution. For the Exponential distribution:

f (t)~le{lt: ð60Þ

where l is the main parameter of the distribution and represents

the known number of failures per unit of time. When PM is

performed it is assumed that the life expectancy of the process can

be increased, changing the length of the unit of time in which

failures would occur.

It is considered that, by performing PM a gain h in the life

expectancy is obtained. Additionally, if the process is stopped

during the performance of PM (l~1) the associated delay lZ2 can

be considered as another gain in the life expectancy of the process.

Thus, the unit of time where failures would occur can be expressed

as:

Unit of Time~Initial UnitzhzlZ2: ð61Þ

Hence, the adjusted parameter l for the time between failures

can be expressed as:

l~
known number of failures

Initial UnitzhzlZ2

: ð62Þ

Because F (t) represents the probability that a unit selected

randomly from a population will fail at most in time t, for the

Exponential distribution F (t) is expressed as:

F (t)~1{e{lt: ð63Þ

In Figure 10, it is observed that for l~ll~1 and l~ll~0 (PM

with/without interruption of the process), the failure probabilities

decreased at time t. Thus a process with such patterns would be

more reliable. Note that the lowest failure probability is

accomplished when the process is stopped while performing PM,

and the highest when there is no PM.

Weibull Distribution. For the Weibull distribution:

F (t)~1{e{(t=c)m : ð64Þ

Figure 13. Main Effects Plots for E(C)=E(T) and Constant Sampling Intervals - All Failure Distributions. Three main factors were
considered: Failure distributions (three levels: Exponential, Weibull, and Gamma), Failure rate (four levels: 0.0505, 0.1010, 0.2525, and 0.5050), and PM
(three levels: no implementation -, implementation with l~0, and implementation with l~1). The first plot shows that overall costs decrease based
on the failure distribution used to model the failure behavior. The cost model with Exponential distribution has the higher costs (given by the ratio
E(C)=E(T)) while the Gamma has the lowest costs considering all the other factors. The second plot shows that as failure rate increases from 0.0505
to 0.5050 the cost increases considering the other factors. The third plot shows that, considering failure distributions and failure rates, PM is
responsible for decreasing costs from the base model where no PM is performed (-). The maximum reduction is achieved when PM is performed with
interruption of the production process (l = 1).
doi:10.1371/journal.pone.0059039.g013
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where c represents the time when the process is likely to fail,

identifying in this way the life expectancy of the process. c is

known as the scale parameter and m as the form parameter. Note that

when m~1 the Weibull distribution is approximated to the

Exponential distribution with l~1=c.

Similar to Eq. 62 with PM, the time at which the system would

fail is expressed as:

c~Initial czhzlZ2: ð65Þ

As in the Exponential case, in Figure 11 the behavior of the

Weibull failure distribution is shown when PM is performed.

Although all cases achieve the same probability level by t~100,

there is a marked delay when PM is performed. While in the

original case with no PM the failure probability is 50% by t~35,

when PM is performed without interruption the probability at

t~35 is 40% (50% is reached when t~40). When there is PM

with interruption, in t~35 the failure probability is 27%, reaching

50% in t~45.

For real purposes, h depends on the type of process, and it can

be estimated from experiments performed to measure the strength

or resistance of the system before and after the PM. In this work

Z2~0.75 and h~0.5c were used.

Gamma Distribution. For the Gamma distribution:

f (t)~
lrtr{1e{lt

C(r)
: ð66Þ

where r is termed as the form parameter, and l the scale parameter. For

convenience, in this paper r~2 is used, which gives the following

expression for F (t):

F(t)~1{(ltz1)e{lt ð67Þ

l is related to the life expectancy of the process which is

considered to be increased PM by h when PM is implemented. If

PM is performed with interruption of the production process

(l~1) then the associated time to this task Z2 can be considered as

another gain in the life expectancy. If l = 1/(Unit of Time until

Failure) then:

1

l
~Initial Unit of TimezhzlZ2: ð68Þ

As presented in Figure 12, the failure distribution follows the

same pattern as in the Exponential and Weibull cases. PM with

interruption presents the lower probability of a failure for

t~1,::,100. For example, for t~40, the failure probability is

Figure 14. Interaction Plots for E(C)=E(T) and Constant Sampling Intervals - All Failure Distributions. Three main interactions are
considered: (1) Failure Distribution vs. Failure Rate - All costs increase as failure rate increases. Costs are the highest for the Exponential distribution,
and the lowest for the Gamma distribution; (2) Failure Distribution vs. PM - PM decreases costs for the Exponential, Weibull, and Gamma distributions;
(3) Failure Rate vs. PM - In general, if the failure rate is small (0.0505, 0.1010) there are no savings or cost reductions. As the failure rate increases the
savings become more significant when PM is performed.
doi:10.1371/journal.pone.0059039.g014
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approximately of 48% and 53% for PM with l~1 and l~0
respectively. However if no PM is implemented, the failure

probability is near 60%.

Effect of the PM on the ESD of �XX{S Control Charts
Matlab 2008b was used as the programming platform required

to compute the cost models and perform the algorithm to achieve

the ESD of the joint �XX{S control chart. Diverse algorithms have

been used to optimize the chart parameters for a given case.

Among them, Genetic Algorithms (GAs) [8,24,31] and Tabu

Search (TS) [32] have shown success for these tasks.

Previously a TS algorithm was developed to solve cost models

for the ED and ESD of �XX , �XX{S charts. This algorithm improved

the ratio E(C)=E(T) when compared with GAs, Hooke and

Jeeves (HJ) and Combinatorial Methods (CB) as presented in [34].

Because the TS algorithm was validated with different cost models

(Rahim et al. [21,28], Ruvalcaba [31], Saniga et al. [6]), it was used

for the optimization of the �XX{S with PM presented in this work.

In Table 2 the data used for the ESD of the �XX{S control chart

with PM and constant/variable sampling intervals with Exponen-

tial, Weibull, and Gamma failure distributions is presented. The

results, presented in Tables 3 and 4 were obtained with 20

iterations of the solving algorithm, and these are discussed in the

following sections.

Constant Sampling Intervals. The results of the tests with

constant sampling intervals are presented in Table 3, where BASE

represents the solution of the base cost function model (Eq. 27 and

30) applied for the ESD of �XX{S control charts. PM represents the

integrated cost function model (Eq. 52 and 54) with l~0,1.

In Table 3 for the Exponential distribution with l = 0.0505

there are reductions (savings) in the costs (3.73% and 1.12%) when

PM is implemented without interruption (l~0) or with interrup-

tion (l~1) of the process. These reductions are higher when the

failure rates increase: 5.47% and 7.64% for l = 0.1010; 6.79% and

16.08% for l = 0.2525; and 6.74% and 21.93% for l = 0.5050.

For the Weibull distribution, when the failure rate is small

(1=c = 0.0505) and m~2,3,4, small or no reductions are obtained

when PM is performed without interruption of the process: 1.88%,

0.30%, and 20.93% respectively. Reductions are obtained when

the failure rate increases to 1=c = 0.1010: 3.67%, 1.36%, and

0.91% respectively. However, if PM is performed with interrup-

tion of the process for 1=c = 0.0505 and 1=c = 0.1010, the costs are

higher than the baseline (BASE) and negative reductions are

obtained.

On the other hand, when the failure rate increases to

1=c = 0.2525 and 1=c = 0.5050 the reductions are consistently

high and positive for both scenarios (l~0, l~1). For example, for

1=c = 0.5050 and l~1 the reductions are 25.92%, 20.83%, and

15.37% for m = 2,3,4. In just one case, when m~4 and

1=c = 0.2525, a negative reduction was obtained (20.95%).

A similar pattern is observed for the Gamma distribution, where

there are reductions when the failure rate is small and the process

is not interrupted during PM: 2.11% for l = 0.0505 and 4.24% for

l = 0.1010. Negative reductions are obtained when the process is

interrupted with the same failure rates: 27.31% and 2.86%

respectively. Consistent reductions are obtained when l = 0.2525

and l = 0.5050: 7.13% and 9.65% when l~0, and 8.30% and

20.14% when l~1 respectively. Note than in all cases with PM the

length of the sampling interval (h) was increased.

Figure 15. Main Effects Plots for E(C)=E(T) and Constant Sampling Intervals - Weibull Distribution. Three main factors were considered:
Failure rate (four levels: 0.0505, 0.1010, 0.2525, and 0.5050), Form parameter (four levels: 1, 2, 3, 4), and PM (three levels: no implementation -,
implementation with l~0, and implementation with l~1). As presented, the cost ratio E(C)=E(T) increases as the failure rate does. However there
is an inverse relationship between the form parameter and the cost given by E(C)=E(T). Considering the failure rate and the form parameter,
performing PM decreases the ratio E(C)=E(T).
doi:10.1371/journal.pone.0059039.g015
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A paired Student’s t-Test was performed to determine the

statistical significance of the results presented in Table 3. The

overall reduction obtained with l~0 was significant with a p-value

of 0.000035481 v 0.05, 0.01. For l~1 the reduction was

significant with a p-value of 0.003052452 v 0.05, 0.01.

A factorial analysis was performed on the data presented in

Table 3 to assess the effect of PM on the overall cost reductions

when considered with the other factors in the cost models. Minitab

ver.15.1.30.0. was used for this purpose and in Figure 13 the Main

Effects Plots for E(C)=E(T) are presented. Three main factors

were considered:

1. Failure distributions. Three levels: Exponential, Weibull, and

Gamma. For this analysis an m = 2 was used for the Weibull

distribution.

2. Failure rate. Four levels: 0.0505, 0.1010, 0.2525, and 0.5050.

3. PM. Three levels: no implementation = BASE (-), implemen-

tation with l~0, and implementation with l~1.

The first plot shows that overall costs decrease based on the

failure distribution used to model the failure behavior. The cost

model with Exponential distribution has the higher costs (given by

the ratio E(C)=E(T)) while the Gamma has the lowest costs

considering all the other factors (failure rate and PM). The second

plot shows that as failure rate increases from 0.0505 to 0.5050 the

cost increases considering the other factors (failure distribution and

PM). The third plot shows that, considering failure distributions

and failure rates, PM is responsible for decreasing costs from the

base model where no PM is performed (-). The maximum

reduction is achieved when PM is performed with interruption of

the production process (l = 1).

In Figure 14 the Interaction Plots for E(C)=E(T) are presented

and the following is observed:

N Failure Distribution vs. Failure Rate. All costs increase as

failure rate increases. Costs are the highest for the Exponential

distribution, and the lowest for the Gamma distribution.

N Failure Distribution vs. PM. PM decreases costs for the

Exponential, Weibull, and Gamma distributions.

N Failure Rate vs. PM. In overall, if the failure rate is small

(0.0505, 0.1010) there are no savings or cost reductions. As the

failure rate increases the cost reductions are more evident

when PM is performed.

The same analysis was performed for the results obtained with

the Weibull distribution. This was performed to assess the effect of

PM when considered with the form parameter of the failure

distribution. In Figures 15 and 16 the Main Effects Plots and the

Interaction Plots for E(C)=E(T) are presented. As presented in

Figure 15 the cost increases as the failure rate does. However there

is an inverse relationship between the form parameter and the cost

given by E(C)=E(T). Considering the failure rate and the form

parameter, performing PM decreases the ratio E(C)=E(T).

When analyzing the interaction plots (Figure 16) it is observed

that as m increases the cost decreases for all failure rates.

Performing PM has no significant effect on cost reduction for small

failure rates (1=c = 0.0505, 1=c = 0.1010). Reductions are achieved

for higher failure rates as 1=c = 0.2525 and 1=c = 0.5050. There is

Figure 16. Interaction Plots for E(C)=E(T) and Constant Sampling Intervals - Weibull Distribution. Three main interactions were
considered: (1) Failure Rate vs. Form parameter - As m increases the cost ratio E(C)=E(T) decreases for all failure rates although all costs increase as
failure rate increases; (2) Failure Rate vs. PM - Performing PM has no significant effect on cost reduction for small failure rates (1=c = 0.0505,
1=c = 0.1010). Reductions are achieved for higher failure rates as 1=c = 0.2525 and 1=c = 0.5050; (3) Form vs. PM - There is no significant difference in
cost when m varies from 3 to 4 and thus no relationship between PM and the form parameter is evident. When m~1 the most significant reduction is
achieved, however this is the case where the Weibull distribution is approximated to the Exponential. When m~2 the reduction is less evident.
doi:10.1371/journal.pone.0059039.g016
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no noticeable difference in cost when m varies from 3 to 4 and thus

no relationship between PM and the form parameter of the

Weibull distribution is evident. When m~1 the highest reduction

is achieved, however this is the case where the Weibull distribution

is approximated to the Exponential. When m~2 the reduction is

less evident.

Thus, the m parameter of the Weibull distribution has no

significant effect on the performance of PM. Also, for all

distributions with failure rates over 0.15 the PM generates

reductions in E(C)=E(T).
Variable Sampling Intervals. The results of the tests with

variable sampling intervals are presented in Table 4, where BASE

represents the solution of the base cost function model (Eq. 37 and

50) applied for the ESD of �XX{S control charts. PM represents the

integrated cost function model (Eq. 58 and 59). As presented in

Table 4, Weibull and Gamma distributions with small failure rate

(0.0505) have some instances where the reductions in costs are

very small or even negative when PM is implemented with l~1.

For higher failure rates the reductions increase to approximately

10% of the BASE model when l~0.

In general, the results presented in Table 4 for PM with l~0
were statistically significant with a p-value of 0.0000033257 v

0.05, 0.01. For PM with l~1, the results were significant with a p-

value of 0.0096247835 v 0.05, 0.01.

In the Main Effects Plot of Figure 17 is observed that the cost

model with Gamma distribution has a lower ratio E(C)=E(T)
than the Weibull distribution. Also, in general terms, the ratio

increases as the failure rate does. Note however that, in

comparison with constant sampling intervals, when failure rate is

within 0.1010 and 0.2525 the highest reduction is achieved when

PM is performed without interruption of the production process

(l~0). In addition, the length of the sampling intervals is increased

(in this case, starting from h1).

In Figure 18 the Interaction Plots for E(C)=E(T) are presented

and the following is observed:

N Failure Distribution vs. Failure Rate. All costs increase as

failure rate increases. Costs are higher for the Weibull

distribution.

N Failure Distribution vs. PM. PM decreases costs for the

Weibull and Gamma distributions, being the highest for the

model with Weibull distribution. For the Gamma distribution

there is no observable difference in the performance of PM

with or without interruption in the production process.

N Failure Rate vs. PM. In overall, if the failure rate is small

(0.0505) there are no savings or cost reductions. As the failure

rate increases the savings increase when PM is performed. For

failure rates of 0.1010 and 0.2525 the highest reduction is

obtained when PM is performed without interruption of the

process. However, for the highest failure rate (0.5050) the

maximum reduction is achieved when PM is performed with

interruption as observed in the case of constant sampling

intervals.

The TS algorithm and the estimation of parameters led to lower

levels of a and b than those specified for the restrictions in the ESD

Figure 17. Main Effects Plots for E(C)=E(T) and Variable Sampling Intervals - All Failure Distributions. Two main factors were
considered: Failure distributions (two levels: Weibull and Gamma), Failure rate (four levels: 0.0505, 0.1010, 0.2525, and 0.5050), and PM (three levels:
no implementation -, implementation with l~0, and implementation with l~1). The first plot shows that overall costs decrease based on the failure
distribution used to model the failure behavior. The cost model with Weibull distribution has the highest costs (given by the ratio E(C)=E(T)) while
the Gamma has the lowest costs considering all the other factors. The second plot shows that as failure rate increases from 0.0505 to 0.5050 the cost
increases considering the other factors. The third plot shows that, considering failure distributions and failure rates, PM is responsible for decreasing
costs from the base model where no PM is performed (-). In contrast with constant sampling intervals, when failure rate is within 0.1010 and 0.2525
the most significant reduction is achieved when PM is performed without interruption of the production process (l~0).
doi:10.1371/journal.pone.0059039.g017
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(see Table 2). This is achieved for constant and variable sampling

cost models with all failure distributions.

Conclusions

The deduction of the models of Rahim et al. [21,28] and the

adaptation to incorporate PM in the renewal equations can be

used for future research or adaptation to other control charts. The

ESD of �XX{S considering these cost models is important because

a joint control chart with the same values for n and h can monitor

both, the mean and the variability, of the quality characteristic of

the process, thus keeping a better SPC. By keeping also control on

the probabilities of the errors Type I and II, the presented ESD

can provide parameters that would lead to control charts with low

rates of false alarms (error Type I, unnecessary interruptions), and

low production of faulty products (prompt detection).

From the results presented in Tables 3 and 4 it was observed

that, when the failure rates were small, there was little or no cost

benefit in performing PM with different failure probability

distributions. This can be attributed to the concept that a ‘‘good’’

process does not need much maintenance as a ‘‘bad’’ process (with

higher failure rates) would require. In the case of high failure rates

it is convenient to perform PM with significant cost benefits, either

with or without interruption of the process. A result of the effect of

PM on the reliability of the process would be the increase in the

length of the sampling intervals (constant or variable), which

means a reduction in the sampling frequency. The results

presented in this paper corroborate these findings.

Future work is focused on: (1) modelling techniques or methods

for the gain h obtained by performing PM; (2) incorporate multiple

assignable causes in the integrated cost function model with PM;

(3) consider other probability failure distributions and cost models;

and (4) integrate PM on the ESD of specific control charts as

EWMA and CUSUM for the detection of small shifts (v1:5s).
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