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Abstract
The DebtRank algorithm has been increasingly investigated as a method to estimate the

impact of shocks in financial networks, as it overcomes the limitations of the traditional

default-cascade approaches. Here we formulate a dynamical “microscopic” theory of insta-

bility for financial networks by iterating balance sheet identities of individual banks and by

assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we

generalise the DebtRank formulation, both providing an interpretation of the effective

dynamics in terms of basic accounting principles and preventing the underestimation of

losses on certain network topologies. Depending on the structure of the interbank leverage

matrix the dynamics is either stable, in which case the asymptotic state can be computed

analytically, or unstable, meaning that at least one bank will default. We apply this frame-

work to a dataset of the top listed European banks in the period 2008–2013. We find that

network effects can generate an amplification of exogenous shocks of a factor ranging

between three (in normal periods) and six (during the crisis) when we stress the system with

a 0.5% shock on external (i.e. non-interbank) assets for all banks.

Introduction
The recent economic downturn has made clear that some substantial features of the present
financial markets have not been properly considered. Regulators [1–3] and academics [4]
pointed out the role played by complexity [5–7] in the little understanding of the crisis, and in
particular the lack of a quantitative assessment for the level of interconnectedness. It has been
increasingly recognised that the main and simplest way to quantitatively account for the degree
of interconnectedness and complexity of financial markets is given by the theoretical frame-
work of complex networks [8–11]. By representing financial institutions as vertices of a graph
we can identify the systemically important ones with the most central vertices [12–14]. Fur-
thermore, the evolution of systemic risk can also be modelled by means of dynamical processes
on networks [15–20].
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On the one hand, the use of networks makes the quantification and visualisation of inter-
connectedness possible; on the other hand, and perhaps even more importantly, network
effects are also responsible for a more subtle, typically unnoticed but crucial effect: the amplifi-
cation of distress. Indeed, while diversification archived through a higher level of interconnec-
tedness reduces the individual risk (in the case of independent shocks), it can however increase
systemic risk [21–25]. Nevertheless, there is no single topological structure that is the most
robust in all situations because market liquidity also matters [26]. All these issues are presently
considered by regulators [27] and the notion of interconnectedness has already entered the
debate on “Global Systemically Important Banks” (G-SIBs) [28].

When the banking system is represented as a network, usually propagation of shocks takes
place only with removal of vertices in the system, i.e. only after default events. This is an impor-
tant mechanism for contagion between counterparties [14, 29–31], although in practice this
channel becomes active only if balance sheets are already quite deteriorated [16] or in combina-
tion with other contagion channels, such as those due to fire sales and overlapping portfolios
[21, 22, 32, 33]. The DebtRank algorithm [19] was introduced precisely to overcome this limi-
tation, and to account for the incremental build-up of distress in the system, even before the
occurrence of defaults.

At the “microsocopic” level, every financial institution satisfies a balance sheet identity that
links the values of its assets and liabilities to a capital buffer, which is meant to absorb losses.
Balance sheets of different banks are interconnected and therefore the mutual interaction
between them is expected to play a major role in the emergence of collective properties, as it is
usually the case for many diverse complex systems. For example, our result for the stability of
the system, i.e. that it depends only on structural properties and not on the initial state, is a
clear example of a general property that finds applications in different domains.

The original DebtRank [34] helped to shift the attention towards interconnectedness as a
crucial driver of systemic risk [35]. In this paper we show that a similar dynamics can be
derived from basic accounting principles and from a simple mechanism for the propagation of
shocks from borrower banks to lender banks. A limitation of the original DebtRank is that
banks pass on distress to their creditors only once, leading in some cases to a significant under-
estimation of the level of distress in the system. The dynamics proposed here overcomes this
limitation by allowing further propagations of shocks. Perhaps the most important point is
that we are able to characterise the qualitative behaviour of the system by establishing a crucial
link between the stability of our dynamics and the largest eigenvalue of the interbank leverage
matrix. One of the hallmarks of DebtRank is that it allowed regulators to monitor at the same
time impact and vulnerability of financial institutions by quantifying in terms of monetary
value the impact of the received shocks. Hence, we test our algorithm on a dataset of 183 Euro-
pean banks listed on the stock market. Our analysis shows that systemic risk has consistently
decreased between 2008 and 2013, and that banks having the largest impact on the system are
also the most vulnerable ones.

Results

Model description
We represent the interbank system as a directed network whose nodes are banks. A link of
weight Aij from node i to node j corresponds to an interbank loan from the lender bank i to the
borrower bank j of amount Aij USD. As such, every node is characterised by an internal struc-
ture given by its balance sheet (see Methods). On the asset (liability) side we distinguish
between interbank and external assets (liabilities). The interbank assets of bank i correspond to
the total amount of outstanding loans to other banks within the system, i.e. ∑j Aij, while non-
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interbank assets are called external assets and denoted by AE
i . For every interbank asset Aij in

the balance sheet of bank i there is a corresponding interbank liability Lij = Aij in the balance
sheet of bank j. As a consequence, links can be interpreted as connections between specific ele-
ments of balance sheets, i.e. of nodes internal structure. Each bank i also has external liabilities
LE
i , which correspond to obligations to entities outside the system. The equity Ei of bank i is

defined through the balance sheet identity as the difference between its total assets and liabili-
ties. We say that bank i has defaulted if Ei� 0, i.e. if its total liabilities exceeds its total assets.
This is in fact only a proxy for a real default event, which is however a common assumption in
the literature on financial contagion (see for instance [14, 29–31]).

We now want to write an equation for the evolution of the equity of all banks which remains
consistent with the balance sheet identity over time. We first define the set of active banks at
time t as the set of banks that have not defaulted up to time t:

AðtÞ ¼ fj : EjðtÞ > 0g : ð1Þ

In the following, we will consider a mark-to-market valuation for interbank assets, while liabili-
ties will keep their face value. The idea behind this assumption is that the effect of a bank j
being under distress is almost immediately incorporated into the value of the interbank assets
Aij held by a creditor bank i, while the obligations of bank j to bank i do not change. When
bank j defaults, it defaults on all its interbank liabilities, meaning that its creditors will not
recover the money that was lent to j and Aij will be zero. As a consequence, the balance sheet
identity for bank i at time t reads:

EiðtÞ ¼ AE
i ðtÞ � LE

i ðtÞ þ
X

j2Aðt�1Þ
AijðtÞ �

XN
j¼1

LijðtÞ : ð2Þ

The reason why the sum involving interbank assets runs over all banks active at time t − 1 is
that the information about the default of other banks is received by bank i with a delay, and
accounted for only at the next time step.

We next assume a simple mechanism for shock propagation from borrowers to lenders. The
idea is that relative changes in the equity of borrowers are reflected in equal relative changes of
interbank assets of lenders at the next time-step:

Aijðt þ 1Þ ¼
AijðtÞ EjðtÞ

Ejðt�1Þ if j 2 Aðt � 1Þ

AijðtÞ ¼ 0 if j =2 Aðt � 1Þ ;
ð3Þ

8<
:

where the case j =2A(t − 1) ensures that, once bank j defaults, the corresponding interbank
assets Aij of its creditors will remain zero for the rest of the evolution. Suppose, for example,
that bank j defaults at time s, i.e. Ej(s − 1)> 0, but Ej(s) = 0; as a consequence, Aij(s + 1) = 0, for
all i. At time s + 2, since j =2A(s), the second case will apply, and Aij(s + 2) = 0. For t> s + 2,
obviously, Aij(t) will remain equal to zero.

By iterating the balance sheet identity Eq (2) and the shock propagation mechanism Eq (3),
the contagion dynamics can be conveniently cast (see Methods for a detailed derivation) in
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terms of the relative cumulative loss of equity for bank i: hi(t) = (Ei(0) − Ei(t))/Ei(0):

hiðt þ 1Þ ¼ min 1; hiðtÞ þ
XN
j¼1

LijðtÞ½hjðtÞ � hjðt � 1Þ�
" #

; ð4aÞ

LijðtÞ ¼
Aijð0Þ
Eið0Þ if j 2 Aðt � 1Þ

0 if j =2 Aðt � 1Þ ;
ð4bÞ

8<
:

where we call Λ the interbank leverage matrix.
The above dynamics resembles the DebtRank algorithm already introduced in the literature

[19]. An important difference is that in the original DebtRank a bank is allowed to propagate
shocks only the first time it receives them. In some cases this might lead to a severe underesti-
mation of the losses. Let us suppose that bank i is hit at time t by a small shock, which will be
propagated resulting in additional small shocks at time t + 1 for its creditors. If the network
does not contain any loop bank i will not be hit again by any other shock. However, if the net-
work does contain loops bank imight be hit at later times by a shock which, depending on how
much leveraged its borrowers are, might be far larger than the first one, but it will be unable to
propagate it. Eq. (1) is more general in the sense that as long as a bank receives shocks it will
keep propagating them. In fact it can be proved that the two algorithm give the same losses on
a certain class of networks (as trees), but, in general, the losses computed via the original Debt-
Rank are a lower bound to those computed with (4). More precisely, if we shock a single node
s, the two algorithms will give the same losses for all nodes r such that a unique path from r to s
exist. If we shock more nodes, the two algorithms will give the same losses for all nodes r such
that unique and non-overlapping paths between r and all the shocked nodes exist. On all the
other cases (4) leads to larger losses (see Methods).

A crucial feature of the dynamics (4) is that its stability is determined by the properties of
the interbank leverage matrix Λ(t). Notably, it is possibile to show (see Methods) that when
jλmaxj, the modulus of the largest eigenvalue of Λ(t), is smaller than one, the dynamics con-
verges to the fixed point Δh(t)� h(t) − h(t − 1) = 0, meaning that the shock is progressively
damped in subsequent rounds. In contrast, when jλmaxj> 1 the initial shock will be amplified
and at least one bank will default. Remarkably, this happens independently on the properties of
the initial shock. After the default, according to Eq (4b), Λ(t) will be modified and the same
argument will apply to the new interbank leverage matrix. The dynamics will eventually con-
verge when the modulus of the largest eigenvalue of Λ(t) becomes smaller than one. This
explains why, even if the system is initially in the unstable phase, the dynamics does not neces-
sarily converge to the state in which all the banks default. When a bank defaults it is effectively
removed from the system when the interbank leverage matrix is updated. The new, reduced
system could now be in stable phase, and thus converge to the stable fixed point. The important
point here is that, although the exact values of final losses will depend on the initial shock, the
ability of the system to amplify distress and lead to defaults is an exclusive property of the lever-
age matrix. This result confirms the importance of the leverage matrix for the amplification of
shocks within the context of systemic stability, as suggested by [17], albeit for a different conta-
gion mechanism (the so-called Furfine algorithm [36]).

Application to the European banking system
We now apply the introduced algorithm to the European banking system. We use data from
the balance sheets of 183 publicly traded European banks between 2008 and 2013. Available
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data only contain information about the total amount of interbank borrowing and lending for
each bank, which are respectively the sum over rows and columns of the matrix of interbank
assets Aij. Therefore, we resort to a two-steps reconstruction technique [37-39] to infer plausi-
ble values for all the entries of the matrix. In the first step we build the topology of the network
using a so-called fitness model, while in the second step we assign weights to links using the
RAS algorithm [40] (see Methods for more details about the reconstruction procedure). Due to
the stochasticity of the first step, we sample 100 different networks, which will be used in the
following experiments.

As a first scenario, we consider a shock affecting all banks simultaneously at time t = 1 cor-
responding to a relative devaluation α of their external assets. Following [37] we measure the
response of each bank to the shock in terms of its contribution Hi(t) to the relative equity loss
of the system:

HiðtÞ �
Eið0Þ � EiðtÞP

i Eið0Þ
¼ hiðtÞ

Eið0ÞP
i Eið0Þ

: ð5Þ

The direct effects of the shock in terms of relative equity loss are Hi(1), while the effects of con-
tagion are computed using the algorithm introduced here, which is run until convergence (see
Methods for more details). In the top panels of Fig 1 we compare the total relative equity loss H
(t) = ∑i Hi(t) directly due to the initial shock (i.e. at time t = 1) with the one that includes losses
generated by the contagion dynamics (i.e. at the convergence of the algorithm), for all the
years, and for α = 0.5% and 1%. The overall behaviour resembles the one reported in [37]
obtained using the original DebtRank. However, as already discussed, the relative equity losses
observed here are larger by a factor ranging from 1.3 in 2008 to 1.7 in 2013.

We further test this scenario in the bottom panels of Fig 1 by focusing on 2008 and 2013
and letting α vary between 0.5% and 5.5%. The relative equity loss experienced by the system
increases as we increase α, until it reaches a saturation point. For large enough values of αmost
of the equity of banks is already wiped out by the initial shock, implying that the amplification
due to the contagion dynamics decreases with α. Interestingly, we observe that in 2008 the
amplification pushes relative losses of equity to saturation levels already for values of α as small
as 0.5%, while in 2013 shock five times larger are needed to reach similar relative losses.

As a second scenario, we consider the case in which a single bank at a time is shocked, a
shock still being a devaluation of its external assets by a relative amount α, and the experiment
is repeated for each bank. The idea is to decompose the systemic importance of a bank into its
impact on the system and into its vulnerability with respect to shocks affecting other banks.
We then proceed to define the impact of bank i as the relative equity loss of the system when
bank i is shocked. Instead we take as a measure of its vulnerability the average of hi(t) over all
the experiments. We then rank banks in descending order both in terms of impact and in
terms of vulnerability and present the results for 2008 and 2013 and for α = 0.5% in form of a
scatter plot in Fig 2. We can see that the most dangerous banks, i.e. the banks having the largest
impact on the system, are also the most vulnerable ones.

Discussion
By iterating the balance sheet identity we derive an equation for the evolution of banks’ equi-
ties. We then consider a general shock propagation mechanism in interbank networks so that
the value of interbank assets of lenders depends on the level of distress of their creditors. The
resulting dynamics is closely connected with the DebtRank algorithm recently introduced in
the literature [19] as an effective shock propagation dynamics and it provides a clear economic
intuition for its dynamical variables, in terms of basic accounting principles. We prove that, in
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Fig 1. Relative equity loss for the system of 183 publicly traded EU banks between 2008 and 2013. All banks are subject to an initial shock consisting in
the devaluation of their external assets by a factor α. The violet curves represent the relative equity loss that is directly due to the initial shock, while the blue
curves include losses due to the contagion dynamics. Every point is the average over 100 reconstructed networks and the semi-transparent region covers
the range between the minimum and maximum across the sample. α is fixed in the top panels and equals to 0.5% (panel a) or 1% (panel b). We see that the
amplification effect is reduced from 2008 to 2013. Bottom panels refer to 2008 (panel c) and 2013 (panel d). We see that the relative equity loss saturates for
large enough shocks. In 2008 the saturation already occurs for shocks as large as 0.5%.

doi:10.1371/journal.pone.0130406.g001
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general, the original DebtRank gives a lower-bound for losses computed with our methodol-
ogy, but, for a certain class of shocks, the two algorithms are equivalent on trees. More impor-
tantly, we show that the capability of the system to amplify an initial shock depends only on
the modulus of largest eigenvalue λmax of the matrix of interbank leverages: When jλmaxj< 1,
additional losses induced by subsequent rounds of the dynamics are attenuated over time. In
contrast, when jλmaxj> 1 a small shock will be amplified and cause at least one bank to default.
This finding can be important from a regulatory perspective, as one could monitor the evolu-
tion of λmax over time to check if the system is entering the unstable regime.

To showcase our algorithm, we apply it to a system composed of 183 European publicly
traded banks. We characterise the response of the network to different shock scenarios. Our
analysis shows that the amplification of shocks due to interbank contagion consistently
decreases from 2008 to 2013, and that in 2008 small shocks are enough for all banks to be sig-
nificantly distressed. By performing stress tests in which banks are initially shocked one at a
time, we are able to compute both the impact of a single bank on the system and its vulnerabil-
ity to shocks initiated by other banks. From a systemic standpoint, it would be desirable that
systemic impact and vulnerability were anti-correlated, so that the most dangerous bank are
also the most robust, and vice versa. In fact, this does not happen: our analysis shows that the
most dangerous banks are also the most vulnerable, meaning that systemic risk is concentrated
in a few key players, which should therefore be the objective of effective macroprudential regu-
lation policies.

Fig 2. Scatter plot of impact and vulnerability (reverse) rankings in 2008 (panel a) and 2013 (panel b). An initial shock corresponding to a 0.5%
devaluation of its assets is applied to one bank at a time, and the experiment is repeated for each bank. The impact of a bank is measured as the relative
equity loss experienced by the system when that bank is shocked. The vulnerability of a bank is its relative equity loss averaged over all the experiments. In
addition, we average impact and vulnerability across a sample of 100 reconstructed networks. Finally, we build reverse ranking (i.e. in descending order) of
both quantities, so that larger values on both axes correspond to more impactful and more vulnerable banks. Bubble size is proportional to the total assets of
the corresponding bank. The most dangerous banks are also the most vulnerable.

doi:10.1371/journal.pone.0130406.g002
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Methods

Balance sheet basics
A balance sheet summarises the financial position of a bank. It consists of assets, which have a
positive economic value (e.g. stocks, bonds, cash), and liabilities, which are obligations to credi-
tors (e.g. customers’ deposits, other debits). The difference between the value of assets and lia-
bilities is called equity, and the following (balance sheet) identity holds: assets = equity +
liabilities. A bank is said to be solvent as long as its equity is positive. Once a bank is insolvent,
even if it sold the entirety of its assets, it would not be able to repay its debts. As a consequence,
we use insolvency as a proxy for default.

Model dynamics
The equation for the evolution of the cumulative relative loss of equity hi(t) = (Ei(0) − Ei(t))/
Ei(0) can be derived from the balance sheet identity. From Eq (2), supposing that (i) external
assets and liabilities do not change, (ii) interbank liabilities are at face value and also do not
change, and (iii) interbank assets are marked-to-market,

Eiðt þ 1Þ � EiðtÞ ¼
X
j2AðtÞ

Aijðt þ 1Þ �
X

j2Aðt�1Þ
AijðtÞ

¼
X

j2Aðt�1Þ
½Aijðt þ 1Þ � AijðtÞ� �

X
j2Aðt�1ÞnAðtÞ

Aijðt þ 1Þ ;
ð6Þ

where in the second line we have isolated a potential contribution coming from the nodes that
were active at time t − 1, but became inactive at time t. Using Eq (3), we see that the last term in
Eq (6) vanishes, so that we have:

Eiðt þ 1Þ � EiðtÞ ¼
X

j2Aðt�1Þ

AijðtÞ
Ejðt � 1Þ EjðtÞ � Ejðt � 1Þ

h i

¼
X

j2Aðt�1Þ

Aijð0Þ
Ejð0Þ

EjðtÞ � Ejðt � 1Þ
h i

;

ð7Þ

where in the second line we have recursively applied Eq (3) and used Aij(1) = Aij(0) (only equi-

ties change at time t = 1, assets start to change at time t = 2). We can now define the matrix ~L:

~LijðtÞ ¼
Aijð0Þ
Ejð0Þ if j 2 Aðt � 1Þ

0 if j =2 Aðt � 1Þ
ð8Þ

8<
:

and write the equation for the evolution of equity:

Eiðt þ 1Þ ¼ max 0; EiðtÞ þ
XN
j¼1

~L ijðtÞ½EjðtÞ � Ejðt � 1Þ�
" #

; ð9Þ

where the max accounts for the fact that once a bank defaults its equity cannot become nega-
tive. From Eq (9), it easily follows that:

hiðt þ 1Þ ¼ min 1; hiðtÞ þ
XN
j¼1

LijðtÞ½hjðtÞ � hjðt � 1Þ�
" #

; ð10Þ

where LijðtÞ ¼ ~L ijðtÞEjð0Þ=Eið0Þ, so that Λ(t) can be interpreted as a reduced interbank
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leverage matrix, where columns corresponding to banks defaulted up to time t − 1 have been
set equal to zero. As the equity of defaulted banks does not change anymore after reaching
zero, the rows of the leverage matrix corresponding to defaulted banks can be set equal to zero
too.

Relation to DebtRank
The original DebtRank [19] has the following dynamics:

hiðt þ 1Þ ¼ min 1; hiðtÞ þ
X
A0ðtÞ

WijhjðtÞ
" #

¼ min 1; hiðtÞ þ
X
A0ðtÞ

Wij½hjðtÞ � hjðt � 1Þ�
" #

;

ð11Þ

whereWij = min(1, Λij), andA0(t) = {j : hj(t)> 0 and hj(t − 1) = 0}, and the last term in the sec-

ond line can be added because it is always equal to zero. Let us note that the definition ofA0(t)
implies a different stopping criterion. In fact, in the original DebtRank nodes propagate shocks
only once, immediately after the shock has been received. In our setting, instead, they could
propagate shocks until they default. There are two main differences with respect to Eq (4a): (i)

the summation in Eq (11) involves less terms than the summation in Eq (4a) sinceA0(t)�A
(t)�A(t − 1) (the set of active nodes becomes smaller and smaller as banks default); (ii)Wij <

Λij, for all i and j. As a consequence, Eq (11) provides a lower bound to relative cumulative
losses of equity computed with Eq (4a).

In order to understand the role of the network topology, let us focus our attention on a node
r. From Eq (3) we see that a shock can reach r only through the neighbours r borrows from,
which in turn can be reached by a shock only through the neighbours they borrow from. In
other words, if a single node s is shocked at some time t, the only possible way for r to experi-
ence the effects of such shock (at later times) is that a path from r to s exists. Let us for a
moment suppose that such path r! i1 ! i2 . . .! ip−1 ! s is unique (and of length p); then
there will be also a unique path leading from any node ik to s. The shock will propagate to node
ip−1 at the time t + 1, but, if no additional node is shocked, and since no additional paths exist
between s and ip−1, the status of node ip−1 will not change from time t + 1 to time t + 2. Similarly
the status of node ip − 2 will change only at time t + 2, and so on, until the shock reaches node r
at time t + p. The status of any node ik on the path will change only at one time step. As a con-
sequence, the result will be the same as if each node were active only when reached for the first
time by the shock, as in the original DebtRank. However, this is true only for the nodes r such
that a unique path connecting them to the only shocked node s exists. If there are additional
paths between r and s the shock will propagate also along those paths, resulting in additional
losses at the node r. In particular this is trivially true if the subgraph of nodes reachable (back-
wards) from the shocked node s is a tree. If more than a single node is shocked, and if r is reach-
able (backwards) from more than one of them, then, even if the graph is a tree, the
(cumulative) loss experienced by r at the end could be larger than if a stopping criterion à la
DebtRank were used. In particular the loss will be larger if the paths are overlapping, while it
will be equal if the paths are not overlapping.

Stability properties
Let us assume for simplicity that no banks default during the whole evolution, so that Λ is con-
stant over time (see Eq (8)). Defining Δh(t) = h(t) − h(t − 1), Eq (4a) can be written in matrix
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notation:

Dhðt þ 1Þ ¼ LDhðtÞ
¼ LtDhð1Þ ¼ Lthð1Þ ; ð12Þ

as Δh(1) = h(1) − h(0), and h(0) = 0. By summing over all the time steps up to t + 1 one gets:

hðt þ 1Þ ¼
Xtþ1

s¼0

DhðsÞ ¼
Xtþ1

s¼0

Lshð1Þ : ð13Þ

Δh = 0 is always a fixed point of the map Eq (12), and it is stable as long as the modulus of the
largest eigenvalue λmax of Λ is smaller than one, meaning that the dynamics will damp subse-
quent propagations of an initial shock over time. In this case the sum in Eq (13) will asymptoti-
cally converge to:

h1 ¼ ð1� LÞ�1hð1Þ : ð14Þ

In contrast, if jλmaxj> 1, Δh(t) will become increasingly larger, leading to the default of at least
one bank, independently from the initial shock.

Eq (12) clearly describes the first stages of the dynamics, up to the first default. Nevertheless,
since the reduced leverage matrix does not change between two subsequent defaults, Eq (12)
also holds between one default and the next one, provided that Λ is replaced with the correct
reduced leverage matrix Λ(t). As a consequence, the dynamics will remain explosive as long as
the modulus of λmax(t), the largest eigenvalue of Λ(t) is larger than one. As more and more
banks default jλmax(t)j will eventually become smaller than one, and the dynamics will finally
converge.

It should be noted that modifying the original DebtRank dynamics Eq (11) by allowing
banks to propagate shocks as long as their equity is positive would lead to a double-counting of
losses. Let us suppose again for simplicity that no banks default and thatW = Λ. Iterating
Eq (11) leads to h(t + 1) = (I + Λ)t h(1), and this quantity is always larger than the one obtained

from Eq (13), i.e.
Pt

s¼0 L
shð1Þ.

Data
For our analysis we use the same dataset used in [37]. Information on banks’ balance sheets are
taken from the Bureau Van Dijk Bankscope database for 183 European banks that were pub-
licly traded between 2008 and 2013. From this data source we extract information about:

equity, total assets, total liabilities, total interbank assets ~Ai and total interbank liabilities ~Li. For
details about the handling of missing data, the reader should refer to the aforementioned refer-
ence [37].

As mentioned in the main text, the procedure to reconstruct a matrix of interbank assets Aij

develops in two steps: in the first we generate a binary adjacency matrix, which encodes the
topology of the network. This is done via a fitness model [41], conveniently modified for

directed networks. A link from bank i to bank j is inserted with probability pij ¼
zxouti xinj

1þzxouti xinj
, where

the fitness values of each banks are computed as xouti ¼ ~Ai=
P

j
~Aj and x

in
i ¼ ~Li=

P
j
~Lj, and the

parameter z is fixed to attain the desired network density (the number of links in the network
divided by the number of possible links). In this paper we have set z so that the density of the
network is 5%. We then draw 100 networks according to the probabilities pij. For each network
thus obtained, we then proceed to assign weights Aij to the links. To this end we use the RAS
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algorithm [40]. This consists in the iteration of a map whose n-th step is:

AðnÞ
ij ¼ Aðn�1Þ

ijP
j A

ðn�1Þ
ij

~Ai

Aðnþ1Þ
ij ¼ AðnÞ

ijP
i A

ðnÞ
ij

~Li:

At convergence, the above iteration ensures that
P

j Aij ¼ ~Ai and
P

i Aij ¼ ~Lj for all banks.

Obviously, one must have that
P

i
~Ai ¼

P
i
~Li. Since this is not the case for our data, we rescale

liabilities ~Li so that the above relation holds.

Acknowledgments
MB, SB, and GC acknowledge support from: FET Project SIMPOL nr. 610704, FET project
DOLFINS nr. 640772, and FET IP Project MULTIPLEX nr. 317532. FC acknowledges support
of the Economic and Social Research Council (ESRC) in funding the Systemic Risk Centre (ES/
K002309/1). SB acknowledges the Swiss National Fund Professorship grant nr. PP00P1-
144689. We thank Stefano Gurciullo and Marco D’Errico for sharing their expertise on the
dataset.

Author Contributions
Conceived and designed the experiments: MB SB FC GC. Analyzed the data: MB SB FC GC.
Wrote the paper: MB SB FC GC. Developed the conceptual framework: MB FC. Wrote the
code and performed the numerics: MB.

References
1. Haldane AG. Why banks failed the stress test; 2009. Speech given at Marcus-Evans Conference on

Stress-Testing, London. Available from: http://www.bankofengland.co.uk/archive/documents/
historicpubs/speeches/2009/speech374.pdf

2. Haldane AG. Rethinking Financial Networks; 2009. Speech given at Financial Student Association,
Amsterdam. Available from: http://www.bankofengland.co.uk/archive/documents/historicpubs/
speeches/2009/speech386.pdf

3. Trichet JC. Reflections on the nature of monetary policy non-standard measures and finance theory;
2010. Opening address at the ECB Central Banking Conference, Frankfurt. Available from: http://www.
ecb.europa.eu/press/key/date/2010/html/sp101118.en.html

4. Cont R, Moussa A, Santos EB. Network Structure and Systemic Risk in Banking Systems. In: Fouque
J, J L, editors. Handbook of Systemic Risk. Cambridge University Press; 2010. p. 327–368.

5. Haldane AG, May RM. Systemic risk in banking ecosystems. Nature. 2011; 469(7330):351–355. doi:
10.1038/nature09659 PMID: 21248842

6. Battiston S, Caldarelli G, Georg CP, May R, Stiglitz J. Complex derivatives. Nature Physics. 2013; 9
(3):123–125. doi: 10.1038/nphys2575

7. Caccioli F, Marsili M, Vivo P. Eroding market stability by proliferation of financial instruments. The Euro-
pean Physical Journal B: Condensed Matter and Complex Systems. 2009; 71(4):467–479. doi: 10.
1140/epjb/e2009-00316-y

8. Caldarelli G. Scale-Free Networks: Complex webs in nature and technology. Oxford University Press;
2007.

9. Boss M, Elsinger H, Summer M, Thurner 4 S. Network topology of the interbank market. Quantitative
Finance. 2004; 4(6):677–684. doi: 10.1080/14697680400020325

10. DeMasi G, Iori G, Caldarelli G, Masi GD. Fitness model for the Italian interbank money market. Physi-
cal Review E. 2006; 74(6):066112. doi: 10.1103/PhysRevE.74.066112

DebtRank: A Microscopic Foundation for Shock Propagation

PLOS ONE | DOI:10.1371/journal.pone.0130406 June 19, 2015 11 / 13

http://www.bankofengland.co.uk/archive/documents/historicpubs/speeches/2009/speech374.pdf
http://www.bankofengland.co.uk/archive/documents/historicpubs/speeches/2009/speech374.pdf
http://www.bankofengland.co.uk/archive/documents/historicpubs/speeches/2009/speech386.pdf
http://www.bankofengland.co.uk/archive/documents/historicpubs/speeches/2009/speech386.pdf
http://www.ecb.europa.eu/press/key/date/2010/html/sp101118.en.html
http://www.ecb.europa.eu/press/key/date/2010/html/sp101118.en.html
http://dx.doi.org/10.1038/nature09659
http://www.ncbi.nlm.nih.gov/pubmed/21248842
http://dx.doi.org/10.1038/nphys2575
http://dx.doi.org/10.1140/epjb/e2009-00316-y
http://dx.doi.org/10.1140/epjb/e2009-00316-y
http://dx.doi.org/10.1080/14697680400020325
http://dx.doi.org/10.1103/PhysRevE.74.066112


11. Soramäki K, Bech ML, Arnold J, Glass RJ, Beyeler WE. The topology of interbank payment flows. Phy-
sica A: Statistical Mechanics and its Applications. 2007; 379(1):317–333. doi: 10.1016/j.physa.2006.
11.093

12. Eisenberg L, Noe TH. Systemic risk in financial systems. Management Science. 2001; 47(2):236–249.
doi: 10.1287/mnsc.47.2.236.9835

13. Elsinger H, Lehar A, Summer M. Risk assessment for banking systems. Management science. 2006;
52(9):1301–1314. doi: 10.1287/mnsc.1060.0531

14. Nier E, Yang J, Yorulmazer T, Alentorn A. Network models and financial stability. Journal of Economic
Dynamics and Control. 2007; 31(6):2033–2060. doi: 10.1016/j.jedc.2007.01.014

15. de Castro Miranda RC, Tabak BM. Contagion Risk within Firm-Bank Bivariate Networks; 2013. Central
Bank of Brazil Working Paper No. 322. Available from: http://www.bcb.gov.br/pec/wps/ingl/wps322.pdf

16. Martinez-Jaramillo S, Alexandrova-Kabadjova B, Bravo-Benitez B, Solorzano-Margain JP. An Empiri-
cal Study of the Mexican Banking System’s Network and its Implications for Systemic Risk. Journal of
Economic Dynamics and Control. 2014;40:242–265. doi: 10.1016/j.jedc.2014.01.009

17. Markose S, Giansante S, Shaghaghi AR. ’Too interconnected to fail’ financial network of US CDSmar-
ket: Topological fragility and systemic risk. Journal of Economic Behavior and Organization. 2012; 83
(3):627–646. doi: 10.1016/j.jebo.2012.05.016

18. Montagna M, Lux T. Contagion Risk in the Interbank Market: A Probabilistic Approach to Cope with
Incomplete Structural Information; 2014. Kiel Working Paper No. 1937. Available from: http://econstor.
eu/bitstream/10419/102271/1/wp-08.pdf

19. Battiston S, Puliga M, Kaushik R, Tasca P, Caldarelli G. DebtRank: Too Central to Fail? Financial Net-
works, the FED and Systemic Risk. Scientific Reports. 2012;2:541. Available from: http://dx.doi.org/10.
1038/srep00541

20. Brummitt CD, Sethi R, Watts DJ. Inside Money, Procyclical Leverage, and Banking Catastrophes.
PLoS ONE. 2014;9(8):e104219. Available from: http://dx.doi.org/10.1371/journal.pone.0104219

21. Caccioli F, Shrestha M, Moore C, Farmer JD. Stability analysis of financial contagion due to overlapping
portfolios. Journal of Banking & Finance. 2014; 46:233–245. doi: 10.1016/j.jbankfin.2014.05.021

22. Caccioli F, Farmer JD, Foti N, Rockmore D. Overlapping portfolios, contagion, and financial stability.
Journal of Economic Dynamics and Control. 2015; 51:50–63. doi: 10.1016/j.jedc.2014.09.041

23. Corsi F, Marmi S, Lillo F. When micro prudence increases macro risk: The destabilizing effects of finan-
cial innovation, leverage, and diversification; 2013. Available from: http://ssrn.com/abstract=2278298

24. Bardoscia M, Livan G, Marsili M. Financial instability from local market measures. Journal of Statistical
Mechanics: Theory and Experiment. 2012; 2012(08):P08017. doi: 10.1088/1742-5468/2012/08/
P08017

25. Battiston S, Caldarelli G. Systemic Risk in Financial Networks. Journal of Financial Management, Mar-
kets and Institutions. 2013; 2:129–154. Available from: http://dx.doi.org/10.12831/75568

26. Roukny T, Bersini H, Pirotte H, Caldarelli G, Battiston S. Default cascades in complex networks: Topol-
ogy and systemic risk. Scientific reports. 2013; 3:2759. doi: 10.1038/srep02759 PMID: 24067913

27. Bank of England. A framework for stress testing the UK banking system; 2013. October. Available from:
http://www.bankofengland.co.uk/financialstability/fsc/documents/discussionpaper1013.pdf

28. Basel Committee on Banking Supervision. Global systemically important banks: assessment methodol-
ogy and the additional loss absorbency requirement; 2011. November. Available from: http://www.bis.
org/publ/bcbs201.pdf

29. Gai P, Kapadia S. Contagion in financial networks. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences. 2010; 466(2120):2401–2423. doi: 10.1098/rspa.2009.0410

30. Upper C. Simulation methods to assess the danger of contagion in interbank markets. Journal of Finan-
cial Stability. 2011; 7(3):111–125. doi: 10.1016/j.jfs.2010.12.001

31. Caccioli F, Catanach T, Farmer JD. Heterogeneity, correlations and financial contagion. Advances in
Complex Systems. 2012; 15(2):1250058. doi: 10.1142/S0219525912500580

32. Halaj G, Kok C. Assessing interbank contagion using simulated networks. Computational Management
Science. 2013; 10(2-3):157–186. doi: 10.1007/s10287-013-0168-4

33. Hurd T, Gleeson J. A framework for analyzing contagion in banking networks; 2011. Available from:
http://arxiv.org/abs/1110.4312

34. Battiston S, Delli Gatti D, Gallegati M, Greenwald B, Stiglitz JE. Liaisons dangereuses: Increasing con-
nectivity, risk sharing, and systemic risk. Journal of Economic Dynamics and Control. 2012; 36
(8):1121–1141. doi: 10.1016/j.jedc.2012.04.001

35. Thurner S, Poledna S. DebtRank-transparency: controlling systemic risk in financial networks. Scien-
tific reports. 2013; 3:1888. doi: 10.1038/srep01888 PMID: 23712454

DebtRank: A Microscopic Foundation for Shock Propagation

PLOS ONE | DOI:10.1371/journal.pone.0130406 June 19, 2015 12 / 13

http://dx.doi.org/10.1016/j.physa.2006.11.093
http://dx.doi.org/10.1016/j.physa.2006.11.093
http://dx.doi.org/10.1287/mnsc.47.2.236.9835
http://dx.doi.org/10.1287/mnsc.1060.0531
http://dx.doi.org/10.1016/j.jedc.2007.01.014
http://www.bcb.gov.br/pec/wps/ingl/wps322.pdf
http://dx.doi.org/10.1016/j.jedc.2014.01.009
http://dx.doi.org/10.1016/j.jebo.2012.05.016
http://econstor.eu/bitstream/10419/102271/1/wp-08.pdf
http://econstor.eu/bitstream/10419/102271/1/wp-08.pdf
http://dx.doi.org/10.1038/srep00541
http://dx.doi.org/10.1038/srep00541
http://dx.doi.org/10.1371/journal.pone.0104219
http://dx.doi.org/10.1016/j.jbankfin.2014.05.021
http://dx.doi.org/10.1016/j.jedc.2014.09.041
http://ssrn.com/abstract=2278298
http://dx.doi.org/10.1088/1742-5468/2012/08/P08017
http://dx.doi.org/10.1088/1742-5468/2012/08/P08017
http://dx.doi.org/10.12831/75568
http://dx.doi.org/10.1038/srep02759
http://www.ncbi.nlm.nih.gov/pubmed/24067913
http://www.bankofengland.co.uk/financialstability/fsc/documents/discussionpaper1013.pdf
http://www.bis.org/publ/bcbs201.pdf
http://www.bis.org/publ/bcbs201.pdf
http://dx.doi.org/10.1098/rspa.2009.0410
http://dx.doi.org/10.1016/j.jfs.2010.12.001
http://dx.doi.org/10.1142/S0219525912500580
http://dx.doi.org/10.1007/s10287-013-0168-4
http://arxiv.org/abs/1110.4312
http://dx.doi.org/10.1016/j.jedc.2012.04.001
http://dx.doi.org/10.1038/srep01888
http://www.ncbi.nlm.nih.gov/pubmed/23712454


36. Furfine CH. Interbank exposures: Quantifying the risk of contagion. Journal of Money, Credit and Bank-
ing. 2003; 35:111–128. doi: 10.1353/mcb.2003.0004

37. Battiston S, Caldarelli G, D’Errico M, Gurciullo S. Leveraging the network: a stress-test framework
based on DebtRank; 2015. Available from: http://arxiv.org/abs/1503.00621

38. Cimini G, Squartini T, Garlaschelli D, Gabrielli A. Systemic risk analysis in reconstructed economic and
financial networks; 2014. Available from: http://arxiv.org/abs/1411.7613

39. Cimini G, Squartini T, Gabrielli A, Garlaschelli D. Estimating topological properties of weighted net-
works from limited information; 2014. Available from: http://arxiv.org/abs/1409.6193

40. Upper C, Worms A. Estimating Bilateral Exposures in the German Interbank Market: Is there a Danger of
Contagion? European Economic Review. 2004; 48(4):827–849. doi: 10.1016/j.euroecorev.2003.12.009

41. Musmeci N, Battiston S, Caldarelli G, Puliga M, Gabrielli A. Bootstrapping topological properties and
systemic risk of complex networks using the fitness model. Journal of Statistical Physics. 2013;
151:720–734. doi: 10.1007/s10955-013-0720-1

DebtRank: A Microscopic Foundation for Shock Propagation

PLOS ONE | DOI:10.1371/journal.pone.0130406 June 19, 2015 13 / 13

http://dx.doi.org/10.1353/mcb.2003.0004
http://arxiv.org/abs/1503.00621
http://arxiv.org/abs/1411.7613
http://arxiv.org/abs/1409.6193
http://dx.doi.org/10.1016/j.euroecorev.2003.12.009
http://dx.doi.org/10.1007/s10955-013-0720-1


© 2015 Bardoscia et al. This is an open access article distributed under the
terms of the Creative Commons Attribution License:

http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited Notwithstanding the ProQuest Terms
and Conditions, you may use this content in accordance with the terms of the

License.


