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ABSTRACT OF THESIS 

 

A DATA DRIVEN APPROACH TO QUANTIFY THE IMPACT OF 

CRASHES 

 

The growth of data has begun to transform the transportation research and policy, and 

open a new window for analyzing the impact of crashes. Currently for the crash 

impact analysis, researchers tend to rely on reported incident duration, which may not 

always be accurate. Further, impact of the crashes could linger a much longer time at 

upstream, even if the records are correct for the crash spot and it is a challenge to 

quantify the impact of a crash from the complex dynamics of the recurrent and non-

recurrent congested condition. Therefore, a difference-in-speed approach is developed 

in this research to estimate the true crash impact duration using stationary sensor data 

and incident logs. The proposed method used the Kalman filter algorithm to establish 

traveler’s anticipated travel speed under incident-free condition and then employ the 

difference-in-speed approach to quantify the temporal and spatial extent of the crash. 

Moreover, potential applications such as statistical models for predicting the impact 

duration and total delay were developed in this research. Later, an analysis on 

distribution of travel rate was performed to describe and numerically show to what 

extent crashes influenced travel rates compared with the normal conditions at 

different periods of the day and by the crash types. This study can help to shape 

incident management policies for different types of crashes at different periods and 

illustrates the usages of data to improve the understanding of crashes, their impact, 

and their distribution in a spatial-temporal domain. 

KEYWORDS: Heat map, crash analysis, spatial and temporal impact, reliability, Big 

Data. 
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Chapter 1 Introduction 

1.1 Background 

The growth of data has begun to transform research and policy and transportation is 

no exception. As detection and communications technologies grow more 

sophisticated, transportation sensors continue to generate more data. Abundant data is 

available on infrastructure condition, operating characteristics, and traveler behavior 

across temporal and spatial domains. This data presents an opportunity to better 

understand the interactions between travelers and the traveling environment. Also, 

this data opens a new window for comprehensive analysis of traffic incidents and its 

spatiotemporal impact as congestion on normal traffic flow.  

A traffic incident, such as a crash, is one of the major causes of congestion and 

unreliable travel time on roadways, which seriously affects travel experience and 

causes significant economic and environmental losses. Congestion on roadways is one 

of the major problems in the USA from both travelers and an operational point of 

view. This is due to the growth of population and increasing traffic demand. This 

congestion affects the nation’s economy by causing thousands of unproductive hours, 

drastically alters the transportation schedule, causes distress to drivers and passengers, 

and increases atmospheric pollution. 

Traffic congestion is the result of many different factors and mainly occurs when 

traffic demand exceeds the physical capacity of the roadway and traffic influencing 

events, such as an incident or bad weather, took place. That’s why congestion could 

be divided into two major groups: recurrent and non-recurrent congestion. Recurrent 

congestion occurs almost every day at specific times of the day (peak period) when 

traffic flow exceeds capacity. On the other hand, non-recurrent congestion occurs due 

to unpredictable changes from time to time or day to day. Examples of non-recurrent 

congestion include unexpected events such as incidents, work zones, special events 

and weather, where peak demands are higher than normal [1]. 

1.2 Motivation 

The strategies to address the congestion problem can be categorized as follows: 

 Expanding the capacity of the existing transportation system 

 Increasing operational efficiency of the existing infrastructure capacity  

The experience over the years in the transportation world has shown the most 

efficient, intelligent and economical solution to minimize the congestion problem is to 

increase the operational efficiency of the existing transportation infrastructure. The 

strategies falling under this category are called Intelligent Transportation System 

(ITS). ITS can be defined as those techniques which ensure safe, fast, smooth and 

economical transportation of people and goods using the help of modern technology. 
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One of the important strategies of ITS is “Traffic Incident Management (TIM),” 

which is defined as the planned, systematic and coordinated use of human, 

institutional and technical resources to reduce the duration and impact of incidents, 

and improve the safety of motorists and crash victims [2]. 

The main purpose of traffic incident management is to reduce the influence of traffic 

incidents, which requires a timely and precise estimation of traffic incident duration. 

By performing a reliable prediction of incident duration, traffic management could 

deploy appropriate measures around the traffic incidents and provide travelers with 

real-time traffic information to reduce incident related traffic congestion. 

Several state’s Department of Transportation (DOTs) have adopted traffic incident 

management programs to reduce the incident duration and incident induced traffic 

congestion. These efforts have proven beneficial in terms of the return on capital 

investment. According to the 2012 Urban Mobility Report, incident management 

treatments have saved about 337 million hours of delay, which is equivalent to 7.2 

billion dollars saved on congestion costs. 

To help transportation agencies in developing a more efficient TIM programs, the 

need to examine traffic incident’s impact on traffic flow drew more attention of 

researchers. Currently for the crash impact analysis, agency tends to rely on incident 

log. But, there are some problems in the reported time frame; first of all it is not 

always accurate, most of the cases reported end time is not reflective of the true end 

of the crash impact. Sometimes the end time was missing in the indent log. Because in 

the event of a crash, responding officers fill out a crash report along with other duties 

such as making arrangements for emergency service vehicles to arrive at the scene of 

the crash, clearing and securing the roadway, and collecting information surrounding 

the crash. Generally, all of this is done under time pressure and understandably, filling 

out a crash report cannot always be the officer’s first priority. Sometimes, reports are 

completed once the officer is back at the station several hours or days after the crash 

occurred which leads to an unreliable data entry in the crash report. Even if the 

reported end time is accurate for the crash location, crash impact may linger for a 

much longer time at upstream of the roadway. Thus, there is a need to identify the true 

end-time/impact of the crash. 

Therefore, the chief motivation of this study is to capture the “true” impact of the 

crash by analyzing the stationary sensor data and develop a framework to 

automatically identify the spatiotemporal extent of congestion due to the crash. 

1.3 Research Objectives 

Within the context of the events and needs presented earlier, the objectives of the 

research are- 

 Developing a method that can capture the spatiotemporal extent of congestion 

due to a crash by combining incident data with stationary sensor data-set. The 

step by step process provides a practical approach to develop a crash-related 

congestion quantification method.  
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 Exploring the possible applications of the methodology which includes: 

o Developing a statistical model to predict the duration of crash impact. 

The model takes into consideration the factors affecting the duration of 

impact and uses regression technique to develop a framework for 

predicting the duration 

o Developing a statistical model to predict total delay of the crash. The 

model identifies the factors that affect the total delay due to the crash 

and uses regression technique to develop a framework for predicting 

the delay. 

o Analyzing the impact of crash on reliability 

Effective management of congestion induced by the crashes largely depends on 

timely response with appropriate measures such as deployment of tow trucks, inform 

travelers in advance, route diversion etc. An accurate forecast of the potential extent 

of the impact of crashes in terms of duration and delay would help to determine 

appropriate management strategies. 

1.4 Organization of the Research 

The research consists of six chapters. Chapter 1 shows the background, motivation 

and objectives of the research. Chapter 2 presents a brief discussion of the previous 

literature and critical analysis of previous research works. Chapter 3 provides the 

detailed description of the study area and data-sets used in the research. Chapter 4 

presents the methodology to quantify the impact of crash and discussion of the case 

study. Chapter 5 reveals the detailed description of the possible applications of the 

proposed methodology. Finally, Chapter 6 summarizes the findings of this research 

and discusses its limitations and the scope for the future work. 

This chapter provides a general outline of the full research. Objectives and 

background of the research are described here, which will help to understand the total 

framework of the research. The next chapter will show a critical review of previous 

research. 
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Chapter 2 Literature Review 

2.1 Overview 

Traffic congestion is a global problem. Traffic congestion related studies conducted in 

US reveals that building more and more highways is not a sustainable solution to 

minimize congestion problem. Increasing roadway capacity as a measure to reduce 

traffic congestion is not a sustainable measure, because it requires an enormous 

quantity of resources such as land, money, fuel and labor. On the other hand, 

alternative approaches such as land use change, improvement of roadway operations, 

travel demand management, incident management and work zone management have 

been suggested as effective and sustainable measures to minimize the congestion. 

Among these alternative options, incident management is the most promising short 

term action to alleviate congestion problems on freeways and urban arterials. That’s 

why traffic incident management measures have received considerable attention from 

the traffic management agencies and plenty of research has been conducted to find out 

the most effective and optimum way to manage incident. The widespread success of 

such program inspired more cities to adopt incident management as a viable step 

forward in improving the city’s transportation reliability and safety. 

Lots of research has been conducted to better understand the incident and its different 

characteristics. A brief review of such study is presented in the following: 

2.2 Incident Duration Studies 

A large number of studies focused on examining incident duration. Incident duration 

is defined as the elapsed time from the moment an incident is detected until the cause 

is removed from the scene [3]. Over the last few years, various methodologies and 

techniques have been used to model and analyze the incident duration. These models 

mainly establish relationship between incident duration and different influencing 

factors. A set of variables significantly affecting incident duration have been 

identified. They are named as incident characteristics and listed as follows: 

 incident type and severity,  

 the number and type of vehicles involved, 

 geometric characteristics, 

 temporal characteristics, 

 environmental effects, and  

 operational factors. 

The most representative approaches for incident duration models are described in the 

following: 

Linear regression analyses: Garib et al. developed linear regression models to 

estimate magnitude and duration of freeway incident delays [3]. The author developed 

a multiple linear regression model based on 205 incidents over a two-month period 

from Oakland, California, to predict incident duration as a function of six significant 
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variables: number of lanes affected (X1), number of vehicles involved (X2), truck 

involvement as binary variable (X3), natural logarithm of the police response time 

(X4), time of day as binary variable (X5) and weather conditions as binary variable 

(X6). Then the final log-based regression model is given by: 

Log (Duration) = 0.87 + 0.027 X1 X2 + 0.2 X3 + 0.68 X4 – 0.17 X5 – 0.24 X6 

Non-parametric regression methods: The basis of nonparametric regression is to 

make current decisions based on past, similar experience. Smith and Smith used non-

parametric regression model to predict incident duration; however the performance of 

the model was unsatisfactory, with an average error more than 20 min [4]. 

Time sequential methods: Khattak et al. developed time sequential model by 

identifying ten distinct stages of incident duration based on the availability of 

information [5]. Each stage has a separate truncated regression model and the model 

progressively add more variables. The purpose of the study is to demonstrate the 

methodology rather than show its performance. 

Conditional probability analyses: Developing conditional probability is another 

use of probability in incident duration. Traffic Management agencies might be 

interested to know the probability of an incident lasting 30 minutes given that it has 

been already been active for 15 minutes, or similar case. To give answer for such 

situation, Nam and Mannering, used hazard based models (using conditional 

probabilities to find the likelihood that an incident will end next short time period 

given its continuing duration) to develop incident duration model [6]. 

  Moreover, incident duration models based on probabilistic distribution 

analyses ([7], [8]), support vector regression [9], discrete choice models [10], Fuzzy 

logic models [11], Bayesian classifier [12], artificial neural networks[13] are also 

frequently explored by the researchers. It should be noted that all of the developed 

models are often site/facility specific and calibration is required for their use at other 

location/facilities. 

2.3 Incident Delay Studies 

Set of research has primarily focused on examining incident induced delay. An 

incident induced delay can be defined as additional delay produced by the incident. 

Garib et al. developed linear regression models to estimate cumulative incident delay 

as a function of incident duration, traffic demand, and capacity reduction represented 

by number of lanes affected and number of vehicles involved [3]. Again to evaluate 

the effectiveness and performance of the freeway, Skabardonis et al. developed a 

methodology to estimate the incident induced delay by comparing the travel 

time(calculated from loop detector’s speed)  under incident and incident free 

condition [14]. The methodology was developed based on the assumption that 

incident will affect the transportation system by increasing the travel time of the road 

users. Additionally, a large number of studies focused on examining delay based on 

queuing theory and shock wave analysis[15]. However, there are some limitations of 

such queuing and shockwave based studies such as queuing models require 
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identification of capacity reduction, demand change to calculate the extent of delay 

which is difficult to measure due to stochastic nature of the incidents [14]. Again 

shockwave models estimate delay based on wave speed, but inaccuracy in estimating 

wave speed might cause serious misinterpretation of the incident induced delay [16]. 

2.4 Incident and Simulation 

There are few studies which conduct extensive examination to determine the potential 

of using traffic simulation model for the analysis of the effects of traffic incident and 

corresponding incident management strategies. Cragg and Demestsky developed a 

CORSIM simulation model to assess incident impact and traffic diversion strategies 

on freeway [17]. Zhang et al. used TSIS simulation to predict delays due to incident 

on freeway [18]. Recently a legislation has been passed in South Carolina regarding 

quick clearance criteria in an incident site. Fries et al. assessed the impact of quick 

clearance criteria deployed in South Carolina using Paramics based simulation [19]. 

Kabit et al. developed a VISSIM simulation model to quantify the impacts of major 

traffic incidents and estimate their associated cost [20]. These simulation based 

studies demonstrate promising results of using simulation based approaches to 

determine the impact of incident. But the needs for detailed traffic and incident data, 

calibration of simulation model limited their uses for large scale analysis. 

2.5 Incident and Reliability 

Transportation researchers have recently turned their attention toward travel time 

reliability. Using traffic crash and empirical traffic flow data collected from the 

Netherlands, Tu et al. presented an empirical travel time reliability analysis [21]. One 

limitation in their research was that the duration and severity of each accident were 

unknown, so they assumed each accident had a duration of three hours. Yu et al. used 

reliability analysis to assess freeway crash risks and to evaluate hazardous freeway 

segments [22]. Reliability analysis accomplishes this by integrating traffic flow 

parameters and real-time crash occurrence risk at the disaggregate level with weather 

parameters. Yu et al. found this method provided more accurate crash predictions than 

logistic regression [22]. Zhong et al. used data on rural roads in Wyoming to model 

and predict crashes [23]. The data they used included accident records, traffic volume, 

speed, and other factors, from 36 roads over a 10-year period. Negative binomial 

regression and Poisson regression were used to examine the causes of rural crashes. 

Multiple regression approaches have attempted to analyze the relationship between 

crash rates and geometric roadway features. However, multiple studies have found 

linear regressions are unsuitable ([24], [25]), [23]) demonstrated that roads with 

higher speeds and traffic volumes elevated crash rates at certain higher risk locations. 

Wright et al. showed that incidents produce higher values in all reliability measures 

[26]. They also examined how incidents affect the probability of traffic congestion on 

freeway segments. Compared to the normal condition, they found that shoulder 

incidents significantly increased the probability of freeway segment traffic 

breakdown, while incidents spread across multiple lanes resulted in the most 

significant increases in travel time variability and in the buffer index.  
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2.6 Incident Impact Studies 

With the advancement of technology, the traffic monitoring system is also equipped 

with modern sensory devices which generate and archive large amount of data each 

day. This data is continuous and capture the dynamics of traffic at monitored 

segments of the highway network. Now-a-days many studies have begun to 

investigate those archived traffic sensor data sets and incident logs to quantify the 

impact of incident. Chung and Recker utilized the loop detector data to identify 

incident induced congestion [27]. They applied the integer programming technique to 

identify temporal and spatial extent of the region of congestion caused by accident 

and estimates associated delay. Pan et al. also investigated archived traffic sensor data 

and incident log to estimate the impact of incidents [28]. With the availability of 

massive sensor data sets and incident logs, more data driven and location specific 

approaches should be developed to identify the spatiotemporal extent of traffic 

incident and incident characteristics, which significantly influence the incident 

induced congestion. 

2.7 Other Studies 

Few studies have looked at the interactive effects of traffic and weather factors and 

roadway geometry on different crash types. Among them, Yu et al. attempted to 

explore the use of microscopic traffic and weather indicators to differentiate between 

crash types and to analyze the crash type propensity at the micro-level for three major 

crash types — rear-end, sideswipe, and single-vehicle crashes [29]. Ahmed et al. 

investigated the effect of the interaction between roadway geometric features and 

real-time weather and traffic data on the occurrence of crashes on a mountainous 

freeway [30]. They found that geometric factors were significant in all seasons. Crash 

likelihood could double during the snowy season due to slick pavement conditions 

and steep grades, and when combined, produced a hazardous road surface. On the 

other hand, Hojati et al. presented a framework to exhaustively mine traffic-incident 

data and directed subsequent analysis toward an incident delay and travel-time 

reliability model [31]. 

Though there are several proposed models that are highly efficient, they cannot be 

applied to other cases because different studies call for the use of different variables. 

As such, results may not be transferable across different locations. Data collection and 

reporting process have also been incommensurate. While the findings of previous 

studies will not reduce the number of crashes/incidents, they will reduce their effects 

and guide the traffic management center to take adequate measure to minimize the 

congestion. 

In this study we developed a data driven approach to quantify the impact of crash, not 

only relying on the historical trends of the traffic, rather considering both pre-crash 

on-going traffic condition and historical trends. For this purpose, we introduced the 

Kalman filter algorithm to combine current traffic and historical trends to formulate 

crash free normal traffic pattern which will open a new window to capture the 

dynamics of the impact of the crash during both recurrent and non-recurrent 
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congested condition. Furthermore, this method captures the actual impact of crash and 

real end time of the crash impact, which is more accurate than the end time reported 

in the incident log. 

In this chapter, various past studies have been discussed briefly. Also, the limitations 

of many existing studies are presented. In the next chapter, a detailed description of 

the study area and data sets used in our research will be provided. 
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Chapter 3 Data Collection 

 

Stationary sensor data is used to develop the methodology to capture the crash impact. 

This chapter provides a brief description of the study area and different data sets. 

3.1 Study Area 

This study examines the impacts of the crashes along northbound and southbound I-

65 in the Louisville metropolitan area. The study segment is 5.6 miles long in the 

northbound direction which starts from MP-131 and ends at MP-136.6. Again, the 

segment is 5 miles long in the southbound direction which starts from MP-136 and 

ends at MP-131. The speed limit along both segments is 55 mph. There are a total of 

26 stationary sensors located in the study area which continuously collect the speed, 

volume and occupancy information at each sensor location. Figure 1 shows the spatial 

extent of the study corridor. 

 

  Figure 1: Study Corridor of I-65 

3.2 Stationary Sensor Data 

Stationary sensor data is provided by TRIMARC. TRIMARC is a regional traffic 

management center designed to improve the performance of the freeway system in 
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metropolitan Louisville, which extends into Southern Indiana. The TRIMARC data 

environment contains time, speed, volume, and lane occupancy data for each day. 

This information was recorded at 15-minute intervals along each detector section. The 

sensor data was originally recorded in 30-second slots. The TRIMARC server 

aggregated them every 15 minutes. There are 15 TRIMARC sensors located on I-65 N 

and 11 sensors on I-65 S. The average spacing between two sensors is approximately 

0.4 mile. Figure 2  maps the sensor locations on I-65 N. In this study, the data is 

collected from January 2011 to December 2013. 

 

Figure 2: Location of Stationary Sensors on I-65N 

3.3 Incident Data 

The TRIMARC data environment also contains incident logs. An incident log is 

comprised of the incident description, spatial, temporal and environmental 

characteristics, and a short descriptive information about the incident. A detailed 

description of all records in the incident data is provided in the Appendix A. In this 

study, the incident data is collected from January 2011 to December 2013. A generic 

description of the incident records considered in this study is given in the following: 
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 Incident Description: This section contains general characteristic features of 

an incident like the type of incident, the numbers of vehicle involved, injury or 

not, number of lane blocked etc. 

 Spatial Characteristics: This section consists of approximate location of the 

incident, which is documented by recording the name of the route, direction 

and the nearest mile-marker. 

 Temporal Characteristics: This section contains the time at which the incident 

was notified to the TMC, the time at which the incident site was cleared and 

brought back to normal condition and total duration of the incident 

 Environmental Characteristics: This section contains weather conditions (such 

as rainy or sunny, snowy or not etc) at the time of the incident. 

3.4 Weather Data 

Historical weather records are downloaded from https://www.wunderground.com/, 

which collects the data from weather sensors at Louisville International Airport, 

which is about 2 miles away from the study corridor. The data includes weather 

information such as temperature, wind speed, direction, visibility, weather condition, 

precipitation etc. In our study we have collected and processed the rain information 

that occurred in 2011, 2012 and 2013 in the study area. Later, this rain information is 

matched with the incident data to get the complete picture of the incident. 

This chapter provides a brief overview about the study area and a brief description of 

the data sets that have been used in the research. In the next chapter, research 

methodology will be discussed elaborately. 
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Chapter 4 Research Method 

4.1 Overview 

Traffic incident is one of the major causes of non-recurrent congestion on roadways 

which seriously affects travel experience and causes economic and environmental 

losses. If a crash occurs during peak period, it exacerbates the congestion by lowering 

the traffic speed. The need to examine the crash impact on traffic flow is very 

important to develop an efficient crash management program; also, the end time 

reported in the incident log is not always reflective to the true end of the crash impact. 

Sometimes impact of the crash on traffic flow continued beyond the reported end 

time. Thus, there is a need to identify the actual end time and real impact of the crash 

on traffic. In order to identify the impact of the crash, a data driven approach is 

proposed in this research by analyzing the stationary sensor data under both crash-free 

and crash conditions. This methodology can capture crash impact on traffic flow for 

both recurring and non-recurring congested conditions and identify both crash 

scenario and spatiotemporal impacts of the crash. 

4.2 Identification of Crash Impact Zone 

In order to automatically identify the impact of the crash on the traffic flow, this study 

proposes a data-driven approach to analyze the stationary sensor data along with the 

incident log under the crash condition. The proposed methodology to identify the 

crash impact zone contains five major steps: 

1. Obtaining the current speed profile under crash condition 

2. Identifying the crash scenario 

3. Determining the background speed profile 

4. Identifying the crash impact from the difference-in-speed profile 

5. Determining the impacted region 

4.2.1 Obtaining the Current Speed Profile 

When a crash occurred during the uncongested condition, it is very easy and 

straightforward to isolate the crash impact from normal traffic conditions. However, 

when a crash occurred during congested condition, it is very difficult to separate the 

crash impact from the congested traffic condition. In order to know if there is any 

impact of crash, first a current speed profile is obtained for the day when crash 

occurred. A current speed profile provides the ground truth measure of real time 

traffic conditions under the impact of both crash-induced and recurrent congested 

condition. To represent the current speed profile visually, using all stationary sensors 

data, a current speed contour map has been developed, which is described as follows: 

At first, we assume each sensor measurement represents the segment traffic condition 

from that sensor to the adjacent upstream stationary sensor. And the current traffic 

speed V of the j
th 

segment at i
th 

time slice could be denoted as V(i,j), where i= 

1,2,3….96 (as ninety six 15 minute time slice is equal to 1 day) and j= 1,2,3…….s (s 



13 

 

is the total number of sensor). Later the current traffic speed measurements are coded 

as a continuous color (red to green represents low speed to high speed) to build a 

contour map. This contour map can also be called space time velocity map or heat 

map. The heat map (Figure 3) increases the visual understanding of the 

spatiotemporal change of speed and also highlights the congested area. 

 

Figure 3: Heat Map 

4.2.2 Identifying the Crash Scenario 

In this step, the methodology will identify the crash scenarios, which can be divided 

into three categories: 

 Type-1: Crash Induced Congestion 

 Type-2: Crash without Congestion 

 Type-3: Congestion Induced Crash 

Crash induced congestion could be defined as the scenario when congestion occurred 

as a result of the crash, which is defined in this study as Type-1 crash. 

Crash without congestion is the scenario when there was no congestion after the 

crash, which is defined in this study as Type-2 crash. 

Finally, congestion induced crash is the scenario when the roadway was congested 

before the crash, which is defined in this study as Type-3 crash. 

A search technique has been developed to identify these three types of crash 

scenarios. The technique searches whether there is an existence of congestion before 

and after the crash occurrence, knowing the start time and location of the crash from 

incident log. The searching process has two windows: 

 Time window 

 Space window 

The time window consists of four time slices (15 min each); if the accident start time 

is T, then the four-time slice will be T-1, T, T+1, T+2. Again, the space window 

consists of two immediate upstream sensors (u1, u2) of the crash location. Each time-

slice & sensor is considered as one cell. Thus, real time speed of the total eight cells 

will be checked to see if there is any congestion or not. The congestion will be 

determined by the following rule. 

      12am                     3am                          6am                         9am                         12  pm                        3pm                           6pm                          9pm             11pm           
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Congested if   
𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 −𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑝𝑒𝑒𝑑

𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡
 >25% 

At first all the time slices at u1 will be analyzed, if there was no congestion, then all 

time slices at u2 will be analyzed 

 If congestion is found at (T-1)
th

 time period, that would be considered a Type-

3 crash 

 If congestion is found at T
th

 or (T+1)
th

 or (T+2)
th

 time period, that would be 

considered a Type-1 crash 

 If congestion is not found at any time-slice at any location, that would be 

considered a Type-2 crash. 

Figure 4 shows the different types of crash scenarios. Star mark represents the crash 

start time and the actual location of the crash. Part (a), (b) & (c) represent the Type-1 

crash, where three different scenarios present three different starting point of the 

impact which are at the crash moment, after small time lag and at the upstream 

segment respectively. Part (d) represents the Type-2 crash, where is no congestion 

after the crash. Part (e) & (f) represent a Type-3 crash, where crash occurred in the 

middle of recurrent congestion. In this way, the step will identify the start time and 

the location of the starting point of the crash impact. 
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(a) Type-1     (b) Type-1  

     

(c) Type-1     (d) Type-2  

     

(e) Type-3     (f) Type-3  

     

Figure 4: Crash Scenarios 

4.2.3 Determining the Background Speed Profile 

A background speed profile is a profile which reflects the expected traffic condition 

throughout the day for a specific location. Before identifying the impact of the crash, 

it is very important to know the normal traffic/speed condition of that location. As we 

know, the recurrent congestion is the traveler’s expected traffic condition as long as it 

occurs periodically. On the other hand, non-recurrent congestion is often caused by 

unexpected incidents or inclement weather condition. 

Therefore, the background speed profile should reflect both recurrent congestion and 

free flow traffic condition as expected by the daily road users. That is why a 
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background speed profile should be constructed based on the traffic data that shares a 

similar traffic pattern (same period of time, weekend vs weekday etc) 

Instead of using the fixed background speed profile, in this research a dynamic profile 

has been introduced because the pre-crash condition of a specific day may be different 

from an “average” day. To capture this variation, the dynamic background profile has 

been created by combining both the ongoing traffic condition and the historical 

trends. Kalman Filter Algorithm is used to predict this dynamic background speed 

profile. A Kalman filter is a powerful mathematical tool that can estimate the future 

states of the variables even without knowing the precise nature of the system modeled 

[32]. It is a recursive procedure that corrects its estimates whenever new observations 

become available, with the objective of minimizing the estimated error covariance. 

Kalman filter has been used widely in various fields of transportation such as 

forecasting traffic parameters, predicting bus arrival time[33]. As our main interest of 

this study is to identify the individual impact of each crash, the filter starts creating a 

background speed profile instantly when the crash occurs. 

The filter procedure developed in this study is designed to predict the crash-free 

normal speed profile based on both historical profile and the pre-crash condition. The 

historical average speed and the variance of each sensor location for every 15 min 

interval are used as the inputs of the state predictor in Kalman filter. The filter 

procedure developed in this study is designed to predict speed of the next time slice 

knowing the speed of the previous time slice. The whole process of generating the 

background speed profile is explained in the following: 

Now assume, k denotes the pre-crash time slice, k+1 denotes the time slice at crash 

moment. The term xk is the historical average speed for the particular sensor, Ak is the 

ratio of historical average speed of k+1
th

 and k
th

 time slice. rk is the real time speed  

State Prediction  : 𝑋̂𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝑤𝑘 

Observed Speed  : 𝑍𝑘 = 𝛽𝑘𝑟𝑘 + 𝑣𝑘 

Where, 

Ak = state transition model which is applied to the previous state 

βk= 1 

wk = white noise associated with the transition process which is assumed to 

have zero mean and variances of Qk 

vk = observation noise which is assumed to have zero mean and variances of 

Rk 

 

The overall filtering process is the recursive prediction process. At the moment crash 

occurs, formulation of background speed profile will be started using the following 

process: 

 Step 1 : Initialize 

Set  k = (T-1); T= Accident start time 

 Step 2 : Initialize Observed Speed, Zk 

 Step 3 : Initialize Covariance Pk 

 Step 4 : Extrapolate state variable. 
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  𝑋̂𝑘+1 = 𝐴𝑘𝑥𝑘 

 Step 5 : Extrapolate Covariance 

 𝑃̂𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑄𝑘 

 Step 6 : Compute Kalman Gain 

𝐾𝑘+1 = 𝑃̂𝑘+1 ∗ 𝛽𝑘(𝛽𝑘𝑃̂𝑘+1𝛽𝑘
𝑇 + 𝑅𝑘)−1 

 Step 7 : Update State variable 

𝑋𝑘+1 = 𝑋̂𝑘+1 + 𝐾𝑘+1(𝑍𝑘 − 𝛽𝑘𝑋̂𝑘+1) 

Stop if k+1=96, otherwise go to step 8 

 Step 8 : Update Covariance 

𝑃𝑘+1 = (1 − 𝛽𝑘𝐾𝑘+1)𝑃̂𝑘+1 

 Step 9 : Update Observed Speed 

𝑍𝑘+1 = 𝛽𝑘+1𝑋𝑘+1  

 Step 10 : Update Time slice 

k=k+1 

go to Step 2. 

 

This Kalman filter algorithm starts with taking the pre-crash speed as an input to 

predict the speed of the next time period and this process will continue for all of the 

upstream sensors and create a background speed profile at each sensor location of the 

whole corridor. We have used predicted speed of one time slice as the pseudo-

observed speed (Step-9) for the prediction of the next time slice. The main motivation 

to propose this strategy is the fact that our key objective is to get the normal traffic 

speed pattern to capture the special events (such as crash) from daily traffic. The 

method captures the normal traffic speed pattern effectively. 

Figure 5 represents how ongoing traffic profile and historical trends are combined in 

generating the background speed profile. The first part shows on a specific day, the 

pre-crash speed was higher than the historical average speed, so background speed 

profile has been started above the historical trend. On the other hand, the second part 

presents that on a particular day the pre-crash speed was lower than the historical 

average speed, so the background speed profile has been initiated from below the 

historical trend. 

During the calculation of the historical average speed at different time slices, we have 

found that weekday and weekend settings show a significantly different traffic/speed 

pattern (Figure 6). So the average speed is calculated separately for weekdays and 

weekend. If the crash occurred on a weekday, the average speed of the weekday at 

that location will be considered as the input of background speed profile. For weekend 

crashes, the average speed of the weekend will be used as the input for the Kalman 

filter based background speed profile. 
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Figure 5: Capturing Dynamics of Traffic by the Background Speed Profile 

 

Figure 6: Average Speed Comparison- Weekday vs Weekend 

4.2.4 Identifying the Crash Impact from the Difference-in-Speed Profile 

By superimposing the current speed profile over the background speed profile, the 

difference in speed profile can be established and used as the basis for estimating the 

crash impact. Figure 7 shows the process of separating the crash impact from the 

background speed profile. The start and end time of the crash impact could be 

identified visually from the difference in speed profile. In order to automate the 

process the following formulations are used. 
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Figure 7: Real Time vs Background Speed Profile 

If BSP<CSP, 

DS= 0 

If BSP>CSP and CSP< (75%*SL) 

DS = BSP-CSP 

If BSP>CSP and (75%*SL) < CSP < SL 

DS = BSP-CSP, when DS ≥5 otherwise DS=0 

If BSP>CSP and SL< CSP 

DS = BSP-CSP, when DS ≥10, otherwise DS=0 

Where,  

BSP = Background Speed Profile (mph) 

 CSP = Current Speed Profile (mph) 

 DS = Difference in Speed (mph) 

 SL = Speed Limit (mph)  

This process will continue from accident start time to the remaining portion of the day 

for all upstream sensors from the location of crash. In this study, all DS value were 

not taken as the crash impact. Instead, a filtering process has been introduced to filter 

the noise. In this way, the process adds an empirical tolerance value that specifies a 

least DS value at different level of current speed which must be achieved by DS to be 

considered as an impact of the crash. 

To visually represent this impact, a contour map has been created, where Y-axis 

represents the location of different sensors and X-axis represents the different time 

period. Now this map will show whether the segment is congested during the crash 
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time. If DS is greater than zero, than it is assumed that the corresponding segment is 

congested. That is why the selection of DS is very important and a filtering process is 

used to control the noise. 

Figure 8 shows an example of the contour map showing the difference in speed 

profile. This map identifies the area where the crash shockwave propagates. It also 

captures other events of congestion which are not caused by the crash. Those external 

events will be excluded in the next step. 

 

Figure 8: Contour Map of Difference in Speed Profile 

4.2.5 Determining the Impacted Region 

The final step is to identify the boundary of the spatiotemporal impact of the crash. 

The following conditions are considered to define the final boundary. 

 After the crash, the spatiotemporal progression of the shockwave must be 

uninterrupted. 

 The spatiotemporal boundary of the crash shockwave progression must be at 

upstream.  

 Entire boundary of the impacted region must be contiguous  

Fulfilling these conditions, the final boundary is determined. Figure 9 shows some 

examples of the impossible shape.  

 Figure 9 (a) represents the irregular progression of the crash shockwave which 

is clear violation of our assumption. According to our consideration the 

spatiotemporal progression of the shockwave must be uninterrupted and it 

should advance at upstream in a cascading format. So the marked irregular 

portions should be ignored in the final region. 

 There should not be any hole [Figure 9 (b)] in the impact region which is the 

violation of uninterrupted progression concept. These holes are created when 

current speed profile crosses the threshold of the background speed profile 

towards no-congested stage for few moments, then again returns to the 

congested condition. This occurs due to the highly stochastic nature of the 

traffic. So when such hole is found which is surrounded by the crash impacted 
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region, then the hole is considered as a part of the final impacted region. This 

inclusion will not affect the calculation of total delay due to crash. 

 Figure 9 (c) & (d) are the violation of the assumption that the entire boundary 

of the impacted region must be contiguous. Here we observe the presence of 

some external events which are not related to the crash, those events are 

excluded from the final impact region. 

(a)      (b)  

      

(c)      (d)  

     

Figure 9: Impossible Shapes 

Resolving the impossible shape, we have found the final boundary of the crash impact 

zone (Figure 10). From the final boundary, temporal and spatial length of the crash 

impact can be determined knowing the horizontal and vertical length of the boundary 

respectively. Spatial length represents how far a crash shockwave spreads and 

temporal length represents how much time a crash disturbs the normal flow of traffic. 

As each cell represents 15 minutes of time period, the calculated impact duration 

would be multiples of 15 minutes. 

Since spatial aspects of the crash impact are an important issue, that issue has also 

been addressed using the proposed method. Since spatial length shows the number of 

upstream sensors affected by crash impact and we know the distance between two 

sensors is approximately 0.4 miles, the spatial extent of crash can be calculated from 

this information. 

The success in identifying the crash impacts within the dynamic of the traffic 

environment depends on an accurate representation of background (crash-free) traffic 

condition at the time of the crash. The proposed method handles this issue by 

developing the expected normal condition using the Kalman filter algorithm that 

traveler would anticipate. 
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Instead of using fixed background profile, here we have used dynamic background 

profile to capture the dynamic of everyday traffic. That is why filter procedure is 

designed to predict the speed at the moment crash occurs, based on the input of the 

pre-crash speed. Thus, a new approach is introduced in this study for estimating 

background profile by combining both the ongoing traffic condition and the historical 

trends. 

 

Figure 10: Final Impact Zone 

A background profile may not always represent the true crash-free traffic condition at 

the time of crash. But the main goal is to have a reasonable approach to achieve a 

crash free normal speed profile that the traveler would anticipate during the time of 

the crash. As we know, traffic patterns seem to repeat themselves at specific times of 

the day and days of the week. Kalman filter based background profile could capture 

those trends in an effective way. 

The proposed method assumed that crash will induce congestion and congestion will 

be identified from the reduction of speed; based on this assumption impact zone is 

captured. In reality a crash may not immediately induce congestion, so the proposed 

method easily adjusted this time lag problem by expanding the searching window; 

instead of limiting the searching time window at the crash occurrence time (T), the 

method will expand the time window up to the (T+2)
th

 period. In this way, a small 

time-lag scenario will be included and a large time lag scenario will be excluded. 

4.3 Visualizing Impact of the Crash: Case Study 

To test the performance of the methodology and to show it visually, a visualization 

tool was developed in the spreadsheet. The tool creates a space time velocity map 

(also known as a heat map), where the horizontal axis represents the time of the day 

and the vertical axis represents the distance, or the location of the sensors/length of 

the segment. The heat map recorded average speeds on those segments at different 

times of the day (Described at Step-1). 

Using this heat map, the user can input the date and find the traffic speed at different 

time of day. Since our interest is to identify the impact of the crash, a link between the 

incident data and the stationary sensor data has been developed. By inputting an 

incident identifier (Incident ID), incident information and corresponding traffic speed 
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can be generated for that day. A space-time velocity map visualizes traffic data on a 

defined space-time window. 

The visualization tool has three panels: 

 1st panel shows the incident information — when and where the incident 

happened, how long it lasted, the type of incident, condition, lane blocked 

information, and other information. 

 2nd panel shows the space time velocity map or heat map for the entire day.  

 3rd panel shows the heat map of the impacted region of the crash, which is 

identified using the above described methodology. 

A narrative description of Figure 11 would read as follows: On February 20, 2012, at 

1:08 pm, an accident occurred at milepoint 134.8 along I-65N. The crash blocked one 

lane of the freeway, and the accident zone was cleared at 2:19 pm. Traffic was 

interrupted for 71 minutes. (Panel-1) 

The 2
nd

 panel shows the space-time velocity map of that day. We can see the real time 

speed of the traffic and significant speed drop during the crash period 

The 3
rd

 panel quantifies the spatiotemporal impact of the crash using the five steps 

crash impact identification method. It represents how long the crash affects the 

normal traffic flow and how far the impact propagates along the upstream segment. 

From the Figure 11, we can see six horizontal cells (each cell equals 15 minutes) are 

affected by the crash, meaning crash’s impact lasted approximately 90 minutes. It also 

affected six immediate upstream sensors meaning crash affect about (5*0.4) =2 mile 

upstream segment. In this region, a significant decline in vehicle speeds occurred due 

to the crash. Furthermore, this is an example of Type-1 crash; because there was no 

congestion before the crash but the congestion started after the crash occurred.  

Crash-induced congestion is one of the major causes of traffic delays. The proposed 

methodology integrated incident data with the traffic sensor data to provide a data 

driven approach to quantify the crash induced congestion. Quantifying the crash 

induced congestion helps to assess various congestion mitigation measures and to 

monitor road performance. It will provide a greater insight about the crash impacts 

and guide the traffic management agencies toward improvements in the operation of 

the road networks. 

The visualization tool/heat map makes it very easy to visually identify and understand 

the spatial temporal extent of the crash events. The case study demonstrated the 

performance of the methodology by screening all traffic data and identifying the 

impact zone of the crash. 
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Figure 11: Visualization Tool (Heat Map)  
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Chapter 5 Applications 

5.1 Overview 

Identification of the crash impact zone opens a new window for in depth analysis of 

the actual effect of the crash on traffic flow. In this study temporal impact of the crash 

(impact duration) and impact delay are analyzed. Temporal impact is the duration of 

impact which starts since the normal traffic flow has been disrupted after the crash 

and ends when the normal traffic condition has been resumed. Possible applications of 

impact duration that are proposed in this study are enhanced incident duration 

modeling and analysis of the impact of crash on reliability. 

Additionally, this study defines impact delay as the additional delay produced by the 

crash which is calculated by the reduction in segment speed from the background 

speed profile. Regression analysis has been utilized to build the statistical model for 

both impact duration and total delay. 

Most of the available commercial statistical softwares are able to compute the 

regression analysis. All of the statistical computation for this research has been done 

using JMP 10 and R-software package. 

A set of variables have been explored to build the statistical model. They are: 

Information Types Independent Variables State 

Accident 

Characteristics 

Lane Blocking (Single/Multi/Shoulder) 

Injury (Yes/No) 

Vehicle Damage (Yes/No) 

Collision Type 

(Rear-end/Side-

swipe/Crossing) 

Impact Duration (For Delay Model) minute 

Traffic 

Characteristics 

Average 

Speed 

Before (1,2,3 & 4 u/s 

segment) mph 

At (1,2,3 & 4 u/s segment) mph 

After (1,2,3 & 4 u/s 

segment) mph 

Volume 

Before crash Vphpl (vehicle per hour per lane) 

At crash Vphpl (vehicle per hour per lane) 

After crash Vphpl (vehicle per hour per lane) 

Weather Condition Rain (Yes/No) 

Time of Day Time (peak/off-peak) 
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5.2 Impact Duration 

One of the main objectives of the TIM program is to reduce the impact of the 

incident/crash on normal traffic flow. The most effective way to do this is to clear the 

incident scene as quickly as possible. The ability of quickly estimate the impact 

duration can help highway authorities effectively allocate their emergency resources 

to minimize the negative effect of incident. Additionally, documenting the impact end 

time and understanding their properties will allow better crash management strategies 

in the future. That is why in this study an investigation was conducted to understand 

the properties of the impact duration and factors affecting them. 

The impact duration of a crash can be defined as the time elapsed between the 

beginning of disruption of normal traffic condition since crash and when the normal 

traffic condition is resumed. Total impact duration can be divided into following 

subdivision: 

 Detection time (time required to detect the presence of a crash) 

 Response time (time between notification of a crash to the incident 

response team and their arrival to the crash site after being informed) 

 Clearance time (time required to clear the crash site) 

 Traffic recovery time (time required to resume the normal traffic condition 

after being cleared the incident) 

In our study impact duration are only calculated for Type-1 and Type-3 crashes. 

Type-2 crashes are not included in the impact duration model because they have no 

impact on traffic. There is a wide range of methods that could be used to predict the 

impact duration. In this study three methods have been explored to predict the impact 

duration 

o Multiple linear Regression 

o Logistics Regression  

o Quantile Regression 

5.3 Multiple Linear Regression 

Multiple linear regression is a useful method for prediction, variable screening, 

parameter estimation and system explanation. In this section the regression analysis 

procedure is briefly described to predict the impact duration. The typical multiple 

linear regression model can be written as: 

Y = β0 + β1X1 + β2X2 ……+ βnXn 

Where, Y is the dependent variable, X1, X2 …..Xn are the independent variables and 

β0,β1, β2 …… βn are the coefficients.  

The unknown coefficients are determined using the least square method. Stepwise 

selection techniques were used to select the number of independent variables for the 

regression model. Several regression models were developed and investigated to 

identify the contributing factors and its contribution to predict the impact duration. 

JMP statistical software package was used to run the stepwise regression process for 
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the selection of best multiple linear regression models. The criteria used in this study 

required that all variables added to the regression were statistically significant to a 

level of 0.05. 

However, to gain additional insight in what variables are consistently used in the best 

regression model, an alternate approach is investigated. This alternate approach 

selects the best possible subsets of regression model based on the highest r-squared 

value. This approach did not consider the significance of each variable, rather it 

checked if the addition of the new variable increased the r-squared value or not. If the 

r-squared value is increased, then the variable is added, otherwise the variable is 

ignored. Again it should be noted that this procedure does not necessarily select the 

best model, rather provides an additional insight into what variables are consistently 

used in the best models.  

5.3.1 Impact Duration Prediction Model 

A statistical model for predicting the impact duration has been developed using the 

above described multiple linear regression procedure and applied to the same incident 

data-set described previously. The analysis produced the following impact duration 

prediction model: 

ln(𝑌) = 4.928 − 0.029𝑋1 − 0.119𝑋2 

Alternatively, the model can be written as: 

𝑌 = 𝑒(4.928−0.029𝑋1−0.119𝑋2) 

Where, 

Y = Impact duration in minute; 

X1= Post crash space mean speed in mph of 1st four upstream segment; 

X2= Binary variable for weather condition such as rain (Yes =0, No=1). 

The model can predict 32% (R-squared) variation of the impact duration in a natural 

logarithmic format as a function of two independent variables (post-crash speed and 

weather condition). No other variables tested either individually or jointly were found 

to be significant. It is worth mentioning that the p-value for the corresponding F-

statistics of overall model is found to be less than 0.05 (F-statistics = 90.37) and the p-

value for the parameter of each independent variable is less than 0.05. So there is 

enough evidence of linear relationship between natural logarithm of impact duration 

and each independent variable which confirm the model is an adequate predictor for 

impact duration. Detailed results are provided in Appendix-B. 

In the model the dependent variable has been transformed into natural logarithmic 

format because normal probability plot indicated that impact duration does not follow 

a normal distribution. An effort has been made by transforming the duration into 

different functions, but none of them satisfy the normality. However, transformation 

of impact duration into natural log format shows a better result than the non-

transformed format. Since the model will be used as point estimators for the impact 
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duration and not for determining confidence intervals, the normality problem can be 

ignored [34]. 

It can be observed that the coefficients of the independent variables of the model are 

negative. This indicates that shorter impact duration is expected with higher post-

crash speed. The result also indicates that the duration of the impact of the crash is 

expected to be less severe in a no rain condition than in a rainy condition.  

Two independent variables (speed and weather condition) are found to be significant 

in predicting impact duration for the dataset we used. Lane blocking, injury and other 

independent variables were not found significant for this model. One issue with the 

incident log is that it does not always keep consistent record of lane-blocking, injury, 

and other information. An effort has been made to see if this incomplete data set could 

give any additional insight or not, but it has been found that the incomplete data-set is 

insignificant in predicting the impact duration for the crash. 

A more complete data-set might give additional insight for predicting the crash 

impact. However current model can predict the impact duration just knowing the post-

crash speed at the upstream segment and the weather condition (rainy or not), which 

can be determined easily from real-time sensor data and weather information. 

This is a new way to predict impact duration for the crash; instead of relying on the 

given incident duration, we have detected the actual start and end time of the impact 

of the crash and modeled this duration using significant independent variables. This 

model will help the freeway management authority to predict the actual impact 

duration of the crash and provide them an idea for what control strategies should be 

implemented to minimize the traffic congestion and thus improve the freeway 

performance. 

The R-squared value (0.32) for this multiple linear regression model is not very high. 

One possible reason would be that the impact duration is measured as a multiple of 15 

minutes, but predicted duration is in continuous number format which increases the 

difference between predicted and observed values. 

5.4 Logistics Regression 

In our analysis a number of independent variables are categorical in nature. If 

statistical modeling using linear regression would involve a lot of categorical 

independent variables, then the model would become bulky and inconvenient for 

further usage. On the other hand, logistic regression regresses the probability of a 

categorical outcome and is robust with both categorical and continuous independent 

variables. An attempt has been made to estimate the probability of different classes of 

impact duration using ordinal logistics regression. 

In this section logistics regression methodology is introduced to develop an impact 

duration model. The general form of logistic regression model that is used in this 

study is presented in the following section. 
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5.4.1 Introduction 

Logistics regression is a regression model where the dependent variable is categorical 

and independent variables can be categorical, continuous, or both. Depending on the 

nature of the response variable, logistics regression could be divided into following 

subdivision. 

1. Binary Logistics Regression: The binary logistic regression model is used 

where response variable is binary or dichotomous. Here the response variable 

is taking only two values, occurrence or non-occurrence of a specific event, 

and is usually coded as Yes or No; 1 or 0. 

2. Ordinal Logistics Regression: The ordinal logistics regression model is used 

where response variable is polytomous and ordered. Here dependent variable 

is coded as three or more ordered categories, for example low, medium, high. 

3. Nominal Logistics Regression: The nominal logistics regression model is used 

where response variable is polytomous and unordered. Here dependent 

variable is coded as three or more categories, for example sunny, rainy, 

cloudy. 

In this study impact duration is divided into seven categories. It should be noted that, 

impact duration is calculated as multiple of 15 minutes after the five-step process 

because our data comes in 15 minutes interval. Since impact duration is calculated as 

a multiple of 15 minutes, duration is categorized as 15 minutes or as increments of 15-

minutes. The ranges of impact duration are listed in Table 1. 

Table 1: Categories of Impact Duration 

Categories Range (min) 

A 0-15 

B 16-30 

C 31-60 

D 61-90 

E 91-120 

F 121-180 

G >180 

 

The model investigates the effect of various factors influencing the impact duration 

using an ordinal logistics regression approach. Ordinal logistics regression is used 

when the dependent variable is in a categorical form and has three or more levels with 

a natural ordering (such as shortest, short, medium, large and largest). In the case of 

the impact duration model, the response variable also has the category from low to 

high as described in Table 1. 

5.4.2 General Form 

The general form of an ordinal logistics regression with K distinct category could be 

written as: 
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𝑃(𝑦 ≤ 𝑘) =
𝑒𝜃𝑘+𝛽𝑥′

1 + 𝑒𝜃𝑘+𝛽𝑥′
 

Where, 

K = The number of distinct categories  

k = The category number, taking values 1, 2,…., K-1  

P(y ≤ k) = The probability of falling the response into category k or below  

θk = The constant associated with the k
th

 response category  

β = The vector of coefficients associated with the predictor variable 

x’ = The vector of predictor variables 

The regression constants and coefficients are then calculated using a logit link 

function and by linking the probabilities to a linear combination of the predictor 

variables which shown below: 

𝐿𝑂𝐺𝐼𝑇[𝑃(𝑦 ≤ 𝑘)] = 𝑙𝑜𝑔𝑒 (
𝑃(𝑦 ≤ 𝑘)

1 − 𝑃(𝑦 ≤ 𝑘)
) =  𝜃𝑘 + 𝛽𝑥′ 

Using a method equivalent to the maximum likelihood estimation procedure, the 

coefficients are estimated. Once the coefficients are evaluated, the cumulative 

probabilities and individual response probabilities can be calculated as follows: 

Cumulative probability of the first response category : 𝑃(𝑦 ≤ 1) =
𝑒𝜃1+𝛽𝑥′

1+𝑒𝜃1+𝛽𝑥′ 

Cumulative probability of the second response category : 𝑃(𝑦 ≤ 2) =
𝑒𝜃2+𝛽𝑥′

1+𝑒𝜃2+𝛽𝑥′ 

And so on… 

For the last response category, Cumulative probability: P(y ≤ K) = 1.0 

Then individual probability of each response category can be calculated from the 

equation which shown below: 

Probability of the first response category: 𝑃(𝑦 = 1) =
𝑒𝜃1+𝛽𝑥′

1+𝑒𝜃1+𝛽𝑥′
 

Probability of the second response category: 𝑃(𝑦 = 2) =
𝑒𝜃2+𝛽𝑥′

1+𝑒𝜃2+𝛽𝑥′ −
𝑒𝜃1+𝛽𝑥′

1+𝑒𝜃1+𝛽𝑥′ 

The probabilities calculated using above equations depends on the predictor variable 

pattern x’. Therefore, probabilities of the responses could be calculated by changing 

the value of predictor variable x’. This helps to find the individual effect of different 

predictor variables. 
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5.4.3 Results of the Logistics Regression 

At first each independent variable fits with the response variable to check the 

significance of the independent variable. It is found that the post-crash space mean 

speed of the first four upstream segments and the weather condition are significant for 

predicting incident duration, which is concordance with the result of multiple linear 

regression. 

The results of the logistics regression are summarized in the Table 2, which consists 

of the regression constants and the regression coefficients of the predictor variables 

(Post-crash speed, weather condition). The regression constants corresponding to the 

different response categories (θ1, θ2, θ3, θ4, θ5, θ6) are calculated by assuming default 

factor levels for all the predictor variables. JMP also computes the associated p-values 

for the regression constants and coefficients. For ascertaining the significance of the 

predictor variable factors, a 5% significance level is assumed throughout this 

research. Hence a particular predictor variable factor would be considered statistically 

significant, if the corresponding p-value was found less than 0.05. 

Table 2: Logistic Regression Results 

Predictor Variable Factors Regression-Coefficient(β) p-value 

Const(A) --  θ1 

  

-5.084 <0.0001* 

Const(B) --  θ2 -3.814 <0.0001* 

Const(C) --  θ3 -2.26 <0.0001* 

Const(D) --  θ4 -1.21 <0.0001* 

Const(E) --  θ5 -0.484 0.0232* 

Const(F) --  θ6 0.605 0.0129* 

  

Post-crash Speed   0.0749 <0.0001* 

Weather Condition 
Default: No Rain   n/a 

Rain (Y) -0.3363 0.0011* 

 

Based on the regression constants and the coefficients obtained by the regression 

analysis, the probabilities of different responses (impact duration class) can be 

calculated for any predictor variable scenario. For any particular predictor variable 

situation, the response probabilities can be calculated by using the corresponding 

regression constant (θ, depending on the response probability) and appropriate 

regression coefficients (β, depending on the predictor variable). 

The effect of each predictor variable on the responses can be studied by changing the 

regression coefficients of that variable only and holding all the other coefficients 

unchanged. A positive regression coefficient indicates reduction in the impact 

duration time due to the corresponding factor. On the other hand, a negative 

regression coefficient indicates an increment in the impact duration time. 
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5.4.4 Case Study and Discussion 

An example of calculating the probability of each response of the impact duration 

based on logistics regression results is presented in the following section. According 

to logistics regression result, we have found two significant independent variables. 

Between them, one variable is categorical (weather condition) and the other is 

continuous (post-crash speed) in nature. 

Post-crash speed has a positive coefficient which means with the increase of speed, 

impact duration will be decreased. On the other hand, weather condition has negative 

coefficient which indicates impact duration will be increased compare to the default 

weather condition (No rain) 

Since a continuous variable is present in the model, there is no absolute base 

condition for this model. Absolute base condition is achieved when all independent 

variables become categorical. Therefore, the response probabilities are calculated 

assuming a random speed value and weather condition (Rain or No rain). 

Now sample calculation has been shown for Speed = 10 mph and weather = No rain 

condition. Based on the logistics regression result, response probabilities can be 

calculated as follows: 

Probability of impact duration being “A_(0-15 min)”: 

=
𝑒𝜃1+𝛽𝑥′

1 + 𝑒𝜃1+𝛽𝑥′
=

𝑒−5.084+0.0749∗10

1 + 𝑒−5.084+0.0749∗10 
= 0.01 

 

Probability of impact duration being “B_(16-30min)”: 

=
𝑒𝜃2+𝛽𝑥′

1 + 𝑒𝜃2+𝛽𝑥′
−

𝑒𝜃1+𝛽𝑥′

1 + 𝑒𝜃1+𝛽𝑥′ =
𝑒−3.814+0.0749∗10

1 + 𝑒−3.814+0.0749∗10 
−

𝑒−5.084+0.0749∗10

1 + 𝑒−5.084+0.0749∗10 

= 0.03 

Similarly 

Probability of impact duration being “C_(31-60 min)” = 0.14 

Probability of impact duration being “D_(61-90 min)” = 0.21 

Probability of impact duration being “E_(91-120 min)” = 0.18 

Probability of impact duration being “F_(121-180 min)” = 0.23 

Probability of impact duration being “G_(>180 min)” = 0.20 

Again response probabilities for the Speed = 10 mph and Weather = Rainy condition 

can be calculated as follows: 

Probability of impact duration being “A_(0-15 min)”: 

=
𝑒𝜃1+𝛽𝑥′

1 + 𝑒𝜃1+𝛽𝑥′
=

𝑒−5.084+0.0749∗10−0.3363

1 + 𝑒−5.084+0.0749∗10−0.3363 
= 0.009 
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Probability of impact duration being “B_(16-30 min)”: 

=
𝑒𝜃2+𝛽𝑥′

1 + 𝑒𝜃2+𝛽𝑥′
−

𝑒𝜃1+𝛽𝑥′

1 + 𝑒𝜃1+𝛽𝑥′

=
𝑒−3.814+0.0749∗10−0.3363

1 + 𝑒−3.814+0.0749∗10−0.3363 
−

𝑒−5.084+0.0749∗10−0.3363

1 + 𝑒−5.084+0.0749∗10−0.3363 
= 0.02 

Similarly  

Probability of impact duration being “C_(31-60 min)” = 0.10 

Probability of impact duration being “D_(61-90 min)” = 0.17 

Probability of impact duration being “E_(91-120 min)” = 0.17 

Probability of impact duration being “F_(121-180 min)” = 0.25 

Probability of impact duration being “G_(>181 min)” = 0.26 

Examining the above probability values, we can say that at 10 mph post-crash speed 

and with the no rain condition, the impact duration has the highest probability to lie in 

the “F” class which means the crash impact would have lasted 120-180 minutes. On 

the other hand, at the same speed level with the rain condition, the impact duration 

has the highest probability to lie in the “G” class which means the impact would last 

more than 180 minutes. It is observable that during the rain condition, probability of 

higher impact duration increased compared to the no rain condition. 

To further investigate this phenomena, individual probability of responses is 

calculated at different post-crash speed level (10,20,30,40,50,60 mph) for both the 

rain and the no rain condition and presents this result in Figure 12. 

From Figure 12, it is observable that, with the increase of speed, probability of lower 

impact duration increased for both the no rain and the rain condition. There is 

sufficient evidence from the data showing this behavior as indicated by the fact that 

the coefficients are significant at 5% confidence level. 

It should be noted that the proposed model provides a framework to make reasonable 

judgement about the impact duration due to crash. Moreover, the model can predict 

the impact duration by using the post-crash speed at the upstream segment and the 

weather condition (rainy or not) which can be determined easily from real-time sensor 

data and weather information. This information would be very helpful for improving 

freeway incident management and decision making. 
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Figure 12: Response Probabilities for Impact Duration at Different Speed and Weather Condition 

5.5 Quantile Regression 

OLS model only represents the average relationship between the response and the 

explanatory variables. But quantile regression method enables us to explore potential 

effects on the shape of the distribution. In this study, one of our objectives is to 

understand the properties of the impact duration and the factors affecting them. It is 

found that the duration does not follow the normal distribution and the distribution is 

skewed to the right, which represents heterogeneity. Therefore, OLS model for impact 

duration would only convey a partial picture on the whole distribution and also 

violates the basic homoscedasticity assumption. On the other hand, quantile 

regression relaxes such assumptions and can be applied to estimate the relationship 

between any part of the distribution of the response and the explanatory variable. 

That’s why the quantile regression model is tested more suitable to quantify the 

effects of the explanatory variables and how the effects are different across the 

distribution. 

In this section, quantile regression methodology is introduced to develop an impact 

duration model. First, a brief description of quantile regression is presented. 
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5.5.1 General Form of Quantile Function 

Quantile regression is a way of estimating functional relationships between the 

variables for all portions of a probability distribution [35]. It estimates the conditional 

quantiles of a dependent variable distribution in the linear model that provides a more 

complete picture of causal relationships between variables. The advantage of quantile 

regression compared to the ordinary least square (OLS) regression is that quantile 

regression estimates are more robust against the outliers.  

Now suppose for a random variable Y, the cumulative distribution function is F(y), 

where (𝑦) = 𝑃(𝑌 ≤ 𝑦) , then the τ
th

 quantile or percentile function of Y would be, 

𝑄(𝜏) = 𝐹−1(𝜏), where 0 ≤ 𝜏 ≤ 1 

Q(τ) can be mathematically formulated as  

𝑄(𝜏) =  𝛽0(𝜏) + 𝑋1𝛽1(𝜏) + 𝑋2𝛽2(𝜏) … . +𝑋𝑛𝛽𝑛(𝜏)   

where β0(τ) is the intercept and β1(τ), β2(τ)…… βn(τ) represent the coefficients of the 

explanatory variable at the τ
th

 quantile or percentile. 

The above equation can be estimated by solving the following minimization problem 

correspondingly. 

arg 𝑚𝑖𝑛 ∑ 𝜌𝜏
𝑚
𝑖=1 {𝑦𝑖 − (𝛽0(𝜏) + 𝑋1𝛽1(𝜏) + 𝑋2𝛽2(𝜏) … . +𝑋𝑛𝛽𝑛(𝜏))}…………(1) 

Where ρτ  is the loss function and can be defined by 

𝜌𝜏(𝛼) = {
(𝜏 − 1). 𝛼 ;  𝛼 < 0 
𝜏. 𝛼 ;            𝛼 ≥ 0

…………………..(2) 

Where, 𝛼 = 𝑦𝑖 − (𝛽0(𝜏) + 𝑋1𝛽1(𝜏) + 𝑋2𝛽2(𝜏) … . +𝑋𝑛𝛽𝑛(𝜏))  

Equation (1) and (2) can be reformulated into a standard linear programming problem, 

which can be easily solved with the simplex method. 

5.5.2 Quantile Regression Model for Impact Duration 

Using the above described methodology, quantile regression model was developed to 

predict the duration of the impact of  a crash. From the experience of OLS method, it 

has been recognized that the resulting estimates of various effects on the conditional 

mean of impact duration were not indicative of the size and nature of these effects on 

the upper tail of the impact duration distribution. A more complete picture of the 

variable effects can be presented by estimating a family of quantile regression 

functions. 

The impact of different significant independent variables on the whole distribution of 

the duration is shown in Figure 13. The x-axis represents the percentiles of interest, 

ranging from the 5
th

 to the 95
th

 percentile. The y-axis represents the independent 

variable effect in minutes. The solid red line represents the conditional mean 

outputted by the OLS method, while the dashed red lines show the conventional 95 

percent confidence interval of the mean. Meanwhile, the dash dotted black line 



37 

 

represents the percentile values and the shaded gray area shows a 95 percent 

pointwise confidence band for the quantile regression estimates. 

It is found that three independent variables (space mean speed of two upstream station 

at crash moment, injury and weather condition) significantly affect the impact 

duration. Figure 13 shows the summary of the quantile regression results where we 

have three independent variables and an intercept. For each of the four coefficients, 

we plot 19 distinct quartile regression estimates for τ ranging from the 5
th

 to the 95
th

 

percentile. For each variable, these point estimates can be interpreted as the impact of 

one unit change of the variable on duration, when the other variables remain 

unchanged. 

The intercept of the model is the estimated value when all independent variables are 

zero; it may be interpreted as the estimated quantile function for the duration 

distribution of a crash event with no injury, no rain, and zero space mean speed of two 

upstream stations at the crash moment. For example, at the 50
th

 percentile the 

intercept was 104.73 minutes, again at the 75
th

 percentile the intercept became 160.88 

minutes which represents that if a crash occurred with no injury, no rain, and the 

space mean speed of two upstream stations was zero, then the 75
th

 percentile impact 

duration would be 160.88 minutes.  

Now we will discuss the effect of the independent variables on the impact duration 

and tell a story focused on insights, not just the data. At any chosen quantile, we 

might ask how does change in speed affect the duration? The second panel (Figure 

13) answers the question. For example, according to the 50
th

 percentile model, per 

unit (mph) increase of speed will decrease 1.85 minutes duration time which means 

10mph speed gain will more likely reduce the duration by 18.5 minutes; on the other 

hand, 10mph speed reduction will add 18.5 more minutes in the 50
th

 percentile impact 

duration if other variables remain unchanged. Similarly, according to the 75
th

 

percentile model, 10mph speed gain will deduct the 75
th

 percentile duration by about 

28 minutes and vice versa. 

The other two variables are rain and injury, an interesting observation was found 

during quantile analysis with these variables. It is found that, at lower quartile, rain 

and injury are not significant variables to predict duration. Rain became a significant 

independent variable at the 40
th

 percentile and remained significant at the upper tail of 

the duration. But injury was found as a significant variable only at upper quantile (75
th

 

percentile and higher quantile) and positive coefficient reveals that crash with injury 

significantly affects the impact duration and yield higher duration. Similarly, presence 

of rain also increases the crash impact and yields higher duration.  

At the higher quantile both variables (injury and rain) are significant, which reveals 

the insight that crashes with higher duration are more likely to occur with the presence 

of rain and injury. Based on the location of OLS line and quantile regression lines, it 

is observed that OLS overestimates the effect of rain and injury at lower quantile 

(above gray area) while underestimates the effect of those variables at higher quantile 

(Figure 13), because OLS model only addresses the average relationship between the 

variables not the influence of the variables at different percentile. Moreover, OLS 

model can only address the question, “is rain/injury important in predicting impact 
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duration?” But it cannot answer the question “does rain/injury influence the impact 

duration differently for crashes with higher duration than those with average 

duration?” A more comprehensive picture of the effect of the predictors is explained 

by the quantile regression; for example, the 90
th

 percentile duration of crashes with 

rain is 36.37 minutes higher than crashes with no rain. According to OLS model, it is 

17.54 minutes higher, thus OLS model underestimates the effect of rain at longer 

duration. 

 

Figure 13: Quantile Regression Result 

In this way, quantile regression provides a detailed picture of the duration of impact. 

Instead of giving a single output, it provides a range of values for best possible to 

worse possible scenario of a crash in a form of duration. Quantile regression also 

provides insights about the different variable’s effect at the different portions of the 

duration distribution. It identifies the variables which trigger longer impact duration. 

This information will help the agency to determine the work plan to minimize the 

impact of the crash. In our study we have found a crash with injury would have added 

4 minutes (50
th

 per.) to 26 more minutes (95
th

 per.) in total impact duration if other 

variables remain unchanged. 
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In this way, analysis of different variables at different percentile would provide 

additional insights about the crash and a better solution could be made to reduce 

larger impact duration.  

 

Table 3 provides the quantile regression results for predicting the impact duration. It 

shows OLS, 25
th

 percentile, 50
th

 percentile, 75
th

 percentile and 95
th

 percentile 

regression results in a tabular format and for different values of explanatory variables 

it shows resulting impact duration. The table contains four sections; 1
st
 section shows 

the resulting duration for a crash at different quantile when space mean speed of two  

Table 3: Impact Duration Prediction 

Variable X 
OLS(Mean) 25th Median 75th 95th 

β β*X β β*X β β*X β β*X β β*X 

constant   122.58 122.58 65.54 65.54 104.73 104.73 160.88 160.88 290.77 290.77 

At_SMS2 30 -2.04 -61.2 -1.22 -36.6 -1.85 -55.5 -2.81 -84.3 -4.35 -130.5 

Rain 0 17.54 0 3.16 0 12.05 0 16.59 0 40.4 0 

Injury 0 11.95 0 1.46 0 4.39 0 16.06 0 26.41 0 

Total Duration 61.38   28.94   49.23   76.58   160.27 
 

Variable X 
OLS(Mean) 25th Median 75th 95th 

β β*X β β*X β β*X β β*X β β*X 

constant   122.58 122.58 65.54 65.54 104.73 104.73 160.88 160.88 290.77 290.77 

At_SMS2 30 -2.04 -61.2 -1.22 -36.6 -1.85 -55.5 -2.81 -84.3 -4.35 -130.5 

Rain 1 17.54 17.54 3.16 3.16 12.05 12.05 16.59 16.59 40.4 40.4 

Injury 0 11.95 0 1.46 0 4.39 0 16.06 0 26.41 0 

Total Duration 78.92   32.1   61.28   93.17   200.67 
 

Variable X 
OLS(Mean) 25th Median 75th 95th 

β β*X β β*X β β*X β β*X β β*X 

constant   122.58 122.58 65.54 65.54 104.73 104.73 160.88 160.88 290.77 290.77 

At_SMS2 30 -2.04 -61.2 -1.22 -36.6 -1.85 -55.5 -2.81 -84.3 -4.35 -130.5 

Rain 0 17.54 0 3.16 0 12.05 0 16.59 0 40.4 0 

Injury 1 11.95 11.95 1.46 1.46 4.39 4.39 16.06 16.06 26.41 26.41 

Total Duration 73.33   30.4   53.62   92.64   186.68 
 

Variable X 
OLS(Mean) 25th Median 75th 95th 

β β*X β β*X β β*X β β*X β β*X 

constant   122.58 122.58 65.54 65.54 104.73 104.73 160.88 160.88 290.77 290.77 

At_SMS2 30 -2.04 -61.2 -1.22 -36.6 -1.85 -55.5 -2.81 -84.3 -4.35 -130.5 

Rain 1 17.54 17.54 3.16 3.16 12.05 12.05 16.59 16.59 40.4 40.4 

Injury 1 11.95 11.95 1.46 1.46 4.39 4.39 16.06 16.06 26.41 26.41 

Total Duration 90.87   33.56   65.67   109.23   227.08 
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upstream stations at crash moment was 30 mph without injury and rain, 2
nd

 section 

shows the resulting duration for same speed, without injury but rainy condition; 3
rd

 

section shows the result for same speed, without rain but a crash with injury and 4
th

 

section shows resulting duration with same speed with injury and rainy condition. 

This table demonstrates how the resulting duration changes at different quantiles with 

the change of explanatory variables. 

Table 4 provides a chart of prediction error (absolute difference between predicted 

and measured duration) at different quantile. As our measured impact duration is 

calculated at 15 minute increments, a prediction error less than 15 minutes was 

selected to compare the performance of different quantile models. It has been 

observed that, at the 25
th

 percentile, about 55.5% of crashes have been predicted with 

less than 15 minutes prediction error; at the 50
th

 and the 75
th

 percentile about 49% and 

39% of crashes have been predicted with less than 15 minutes prediction error 

respectively. So the 25
th

 percentile model could be used to calculate least projected 

duration and the 75
th

 percentile model could be used to determine maximum projected 

duration. The 95
th

 percentile model might overestimate the actual impact, so the 75
th

 

percentile model is proposed to project the maximum impact duration. 

From the incident management point of view, crashes with longer duration are more 

critical. Quantile regression analysis enables the agency to identify the causes and 

measure the effect of contributing variables for such longer duration. This information 

will help in making plans to reduce the longer duration. Moreover, accurate prediction 

of impact duration of crashes will help traffic management centers to avoid crash 

induced congestion by implementing several strategies such as route diversion, 

informing travelers in advance about crashes and it’s impact duration etc. 

Table 4: Comparison of Percentage of Samples at Different Prediction Tolerances 

Prediction Error (min) OLS 25th 50th 75th 95th 

<=5 13.1 39 29.8 20.4 1.9 

<=10 25.1 49.9 40.1 32 2.9 

<=15 39.8 55.5 49.2 39.2 3.9 

<=30 64.5 66.4 70.4 59.3 11.3 

<=60 85.8 82.9 86.7 80.5 37.4 
 

In this section, three regression methods have been implemented to predict the impact 

duration. Among them quantile regression provides a detailed picture of the crash in 

form of duration, instead of providing a single/mean value. The result from the 

quantile regression shows that effect of rain and injury at higher percentiles are more 

significant and average relationship underestimates such effect. This result can be 

conveyed to the travelers to assist their trip planning during crash situations and 

effective response strategies could be implemented by the transportation agencies 

such as route diversion, quickly clearing the crash site etc. to minimize the impact of 

crashes on the traffic flow. 
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5.6 Impact Delay Model 

In this section, delay due to crash will be investigated. The procedures developed in 

this study will be useful for the performance evaluation of accident management 

systems by quantifying congestion due to crash in terms of the total delay to evaluate 

the benefit of accident management systems. This study defines impact delay as the 

additional delay produced by the crash, which is calculated by the reduction in 

segment speed from background speed profile. The crash impact zone is found by 

completing the five step procedure. Then the delay is calculated for the whole crash 

impact zone which is negatively affected by the crash using the following equation: 

 𝑇𝐷 = ∑ 𝑚𝑎𝑥{𝐿𝑗(
1

𝑆𝑖𝑗
−  

1

𝑆̂𝑖𝑗
∀ 𝑖,𝑗∈ 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑−𝑐𝑒𝑙𝑙𝑠

)𝑉𝑖𝑗 , 0} 

Where  

TD = Total delay due to crash impact (veh-hr) 

Lj  = Length of freeway segment j (in mile); 

Vij = Volume of traffic at j
th

 segment during time slice i. 

Sij  = Speed affected by crash at j
th

 segment during time slice i (in mph). 

𝑆̂𝑖𝑗 = Predicted Speed using Kalman Filter at j
th

 segment during time slice i (in 

mph). 

Then a statistical prediction model for predicting the total impact delay has been 

developed using the previously described multiple linear regression procedure and 

applied to the same incident data-set. The analysis produced the following impact 

delay prediction model: 

ln(𝑌1) = 4.97 − 0.06𝑋1 + 0.013𝑋2 

Alternatively, it can be written as: 

𝑌1 = 𝑒(4.97−0.06𝑋1+0.013𝑋2) 

Where, 

Y1 = Total impact delay (in veh-hr) 

X1= Post-crash space mean speed (in mph) of 1st four upstream segment 

X2= Impact duration in minute 

The model can predict 74% (R-squared) variation of total delay in a natural 

logarithmic format as a function of two independent variables (post-crash speed and 

impact duration). No other variables either tested individually or jointly were found to 

be significant. It is worth mentioning that p-value for the corresponding F-statistics of 

overall model is found to be less than 0.05 (F-statistics = 2.13) and p-value for the 

parameter of each independent variable is less than 0.05. There is enough evidence of 

the linear relationship between natural logarithm of total delay and each independent 

variable which confirm the model is an adequate predictor for total delay due to the 

crash impact. 
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Post-crash speed and impact duration are found significant in predicting impact delay 

for the dataset we used. It can be observed that the coefficient of the post-crash speed 

of the model is negative. This indicates that the total delay will decrease with the 

increase of post-crash speed. On the other hand, coefficient of the impact duration is 

positive which indicates that total delay of the crash will be increased with the 

increase of impact duration. 

In the model, the dependent variable has been transformed into natural logarithmic 

format because the normal probability plot indicated that total delay does not follow a 

normal distribution. Although transformation of dependent variable does not show 

pure normality, but it yields better model than non-transformed form. Since the model 

will be used as point estimators for the total delay, not for determining confidence 

intervals, the normality problem can be ignored. [34] 

The current model can predict the total delay just knowing the post-crash speed at the 

upstream segment and the impact duration. The post-crash speed can be determined 

easily from real-time sensor data and impact duration can be achieved from the 

impact duration prediction model. If impact duration was not available, then we can 

assume a different impact duration value and input it in the model, and we will get an 

idea about the trend of total delay. This model will help the freeway management 

authority to predict total delay of the crash and give them an idea of what control 

strategies should be implemented to minimize traffic congestion and delay which will 

improve freeway performance. 

5.7 Impact on Reliability 

Impact on reliability analysis enables us to understand how different factors affect the 

travel experience of the users. In this study, travel rate (seconds/mile) was treated as a 

measure of effectiveness to understand how crashes affect the travel rate. Travel rate 

can be defined as the time required for traveling per unit distance (ex.-mile). This 

analysis can guide the agencies toward improvements in the operation of road 

networks. For example, when an agency experiences unreliable travel times because 

of incidents (crashes), the agency may increase its spending on incident management 

systems and safety improvements. Conducting the impact on reliability analysis 

required the following steps: 

 Select the region or facilities of interest and study period 

 Compile the travel rate data for each facility 

 Identify what types of nonrecurring events (peak/off-peak crash, different 

types of crash etc.) are present in the data 

 Develop cumulative distribution functions (CDFs) of the travel rate (TR) for 

each combination of nonrecurring events 

In this study, we analyzed the impact of crashes on I-65 NB and SB corridor. First, we 

calculated the daily travel rate (sec/mile) (based on TRIMARC speed data of 15-

minutes intervals) of the study segment for the year 2011 to 2013. Travel rates are 

then separated into two groups: peak period and off-peak period travel rate. The 
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morning and afternoon peak periods occurred between 6 AM and 9 AM and 4 PM and 

7 PM, respectively.  

Our analysis was based on the crashes in the study segment. The impact duration 

which was determined after the five step process has been used to select the time 

slices impacted by crash. Peak travel rates were grouped into two classes: one 

containing the 15- minute travel rates that were influenced by crashes (termed “peak, 

crash”) and the other travel rates during periods that were unaffected by crashes 

(“peak, no crash”). Off-peak travel rates were also separated into two groups: “off-

peak, no crash” and “off-peak, crash”. 

As Figure 14 indicates, during a crash, the travel rate increases significantly over to 

the non-crash condition. Crashes during peak periods increase the travel rate (which 

means a higher delay) for both directions on the interstate.  Figure 15 and Figure 16 

depict a CDF of travel rate, which tell a better story about route performance.  

  
Figure 14: Average Travel Rate (sec/mile) 

To explain those figures, let’s consider a travel rate of 80 sec/mile. According to I-

65N (Figure 15), 96 percent of vehicles could travel at 80 sec/mile or less during an 

off-peak hour in non-crash situations, while 84 percent of vehicles travel at this rate 

during peak hours when there are no crashes. However, if a crash occurred during an 

off-peak period, only 41 percent of vehicles could travel at 80 sec/mile or less. If a 

crash happened during the peak period, the situation worsened. Only 23 percent of 

vehicles could achieve that travel rate. Similar trends were observed for I-65 S (Figure 

16).  
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Figure 15: CDF of Travel Rates for I-65N 

 

Figure 16: CDF of Travel Rates for I-65S 

The benefit of using the actual impact duration over the reported incident duration by 

incident log is that it provides a more accurate estimation of CDF of travel rate and 

shows the true situation of the traveler experience. The same CDF of travel rate 

analysis was also conducted using the reported incident duration to show the 

difference between two estimations and the graphical representations of the CDF of 

travel rate are provided in the appendix-C. Figure 17 demonstrates the comparison 

between reported and measured duration in calculating CDF of travel rate at I-65N. 

From Figure 17 (where R=Reported, M=Measured, P=Peak, Cr=Crash), it is clear that 

CDF of travel rate using reported incident duration underestimates the true effect of 

the crash. For example, considering the measured impact duration along I-65N during 

off-peak crash, only 42% of vehicles could travel at 80 sec/mile or less, but using the 
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reported incident duration, it is found that 65% of vehicles could travel at that rate 

which is very high. Similar trends were observed during peak-crash condition; while 

using the measured duration only 22% of vehicles could travel at 80 sec/mile or less, 

but considering the reported duration, it is found that 41.7%. However, during non-

crash situations, the two estimations are almost same. Our main objective is to 

identify the true impact of the crash on the travel rate, and that is why actual impact 

duration that has been found after the five step crash identification process is 

suggested to use for estimating the CDF of travel rate which provides a more accurate 

estimation of the impact of  the crash on the travel experience.  

  

Figure 17: CDF of TR at I-65N for Reported vs Measured Duration 

Next, we analyzed travel rate information for each route under four scenarios to 

determine the impacts of the crash on route travel time. These four conditions were: 

1. No crashes: normal condition with no crashes 

2. Crash with single lane blocked: crashes with a single lane blocked scenario 

with and without the shoulder blocked 

3. Crash with multiple lanes blocked: crashes with multiple lanes blocked 

scenario with and without the shoulder blocked 

4. Crash with only the shoulder blocked: crashes that block only the shoulder. 

We drew a CDF of travel rate for the four scenarios to analyze the effect of different 

crash types. Taking a travel rate of 90 sec/mile as a baseline, along I-65N (Figure 18), 

about 97% of vehicles could travel at 90 sec/mile or less during when there were no 

crashes. However, when a crash occurred, just 40% of vehicles maintained this travel 

rate when a single lane was blocked. Only 51% of vehicles moved at this rate under 

scenarios when just the shoulder was blocked. When multiple lanes were blocked due 

to a crash, the situation worsened: only 34% of vehicles traveled at 90 sec/mile or less 

travel rate. Similar trends were evident on I-65 S (Figure 19).  
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However, there was an exception on I-65 S (Figure 19). In this data set, all three types 

of the crash had a significant impact on travel rate but all types of the crash show a 

similar pattern. Although the multi-lane block crashes show a worse situation 

compared to the others, the differences are very small for the same travel rate. Again 

single lane and shoulder blocking crash graph almost overlap each other which 

indicates similar pattern between them. 

 

Figure 18: CDF of Travel Rate for Crash Types at I-65N 

 

Figure 19: CDF of Travel Rate for Crash Types at I-65S 

Using impact on reliability analysis, our main objective was to build a graphical 

framework to show the effect of crashes on travel experience. That objective was 
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fulfilled with satisfaction. CDF of travel rate creates a better understanding about the 

effect of crashes on travel rate and quantify that effect in a graphical format. 

This CDF of travel rate analysis provides additional insight about the effect of the 

crashes at different situations. This provides guidance to the traffic management 

agency about which actions might be taken to mitigate the impact of the crash. 

5.8 Benefits of the Applications 

The main objectives of the traffic management are to  

 reduce the impact of congestion 

 improve the level of service and performance of the freeway 

 quick response to the incidents and clear the incident site as quick as possible 

 dispatch appropriate message in advance to the users about current condition 

of the freeway 

Traffic management could convey the message about the recurrent congestion 

knowing the historical trends of traffic. But in case of non-recurrent events such as 

incidents, inclement weather condition or other special events, the operator might 

panic because they do not have specific guidelines about how to measure the intensity 

of such events.   

Among those non-recurrent events, crashes reduce the traffic flow at a great extent 

creating a temporary bottleneck on the roadway. In this study, we quantify the actual 

impact of crashes by the five step process and later use this impact duration value to 

build regression models. We propose three prediction models for the impact duration 

and one prediction model for the total delay. 

Two impact duration models can predict the duration of crash impact as a function of 

two variables and quantile regression can predict as a function of three variables. 

These variables could be determined immediately after a crash occurred. Total delay 

model also can predict cumulative delay for each crash as a function of two variables. 

Among them, one variable (impact duration) cannot be determined until the normal 

traffic flow is reinstated. To use this model as an online tool for delay prediction, we 

can use the output of the impact duration model as an input of the delay model. Thus, 

together these two models provide an approximate picture of a crash scenario which 

would be very effective for the traffic management center in decision making. 

This decision making includes what control strategy should be included to minimize 

the traffic congestion and improve the freeway performance. One control strategy 

would be to provide up-to-date information on freeway conditions to the users so that 

they can make relevant decisions before using that road which is known as Traveler 

Information System (TIS). The most commonly available traveler information 

systems are variable message signs and roadside or commercial radio broadcast. 

When traffic operators detect an accident, they can use the proposed model to 

approximately calculate the impact duration and total delay for that particular 

accident. As previously discussed, the impact duration model would provide an 
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approximate duration time in minutes and the delay model would provide the users an 

approximate delay caused by a specific accident in terms of vehicle-hour. Then the 

operator could utilize the average traffic flow information to estimate the average 

delay for each vehicle. For example, if the total delay for a specific crash was found to 

be 200 vehicle-hour in a freeway section with a traffic flow of 3000 vehicle per hour, 

then estimated average delay for each vehicle would be 4 minutes (200*60/3000). In 

this case traffic management can transmit two pieces of information (impact duration 

and delay per vehicle) to users via variable message signs or other suitable media. 

Now-a-days almost everyone uses smartphones and different types of apps for 

navigation purposes; Traffic management could transmit this information via 

smartphone/apps to the travelers in advance. This would help travelers to plan their 

trips and avoid the crash segment. A simple framework to convey this information is 

presented in Figure 20. 

Based on the predicted duration of the crash impact and total predicted delay on the 

freeway and current conditions on local arterials streets, the traffic management center 

can implement appropriate diversion strategies in the network. 

Moreover, reliability analysis (CDF of travel rate) provides additional insights about 

the impact of crashes; it showed how crashes affected travel rates during peak and off-

peak periods and how different types of crashes produce significantly different 

outcomes. 

Additionally, the CDF analysis could be used to conduct before and after study. For 

example, after implementing a certain incident management strategy, if the agency 

wants to know how much the new strategy improves the performance of the roadway, 

they can conduct this CDF of travel rate analysis before and after the implementation 

and could identify the change of performance of the roadway. 
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Figure 20: Advance Traveler Information System 

This chapter provides the examples of possible applications. This chapter also 

provides detailed analysis and insights of each application such as impact duration 

model, total delay model and CDF of travel rate analysis. In the next chapter, findings 

of the total study will be discussed along with future works. 
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Chapter 6 Conclusions 

6.1 Overview 

Crash induced congestion is one of the major causes of the traffic delay. This study 

proposed a methodology for identification of spatiotemporal impact of each crash 

based on the stationary sensor data and presented possible applications of this 

methodology. 

Identification of the temporal and spatial extent of the congested region due to the 

crash opens a new window to determine delay and duration of that crash. Quantifying 

crash induced delay helps monitoring performance of the roadways and assessing 

various congestion mitigation measures. 

The methodology defines crash impacts as the reduction of traffic speed experienced 

by the traveler under crash conditions and the speed reduction is determined with 

respect to the expected traffic speed based on traveler’s past experience. The method 

involves the development of background speed profile by using Kalman Filter 

algorithm and then superimposing the current traffic speed under crash conditions 

onto it. The resulting difference between two profiles shows the reduction of speed 

due to the crash and indicates the crash induced congestion. In this way, we can 

capture the dynamics of the impact of the crash during recurrent and non-recurrent 

congested conditions. 

The accuracy of this method depends on the availability and the accuracy of the 

stationary sensor data and the incident log in the database. This in turn depends on the 

accuracy and consistency of the speed and incident logging procedure of the traffic 

management center because the incident start time and current speed data are directly 

used in the proposed methodology to identify the impact of crash. 

6.2 Findings 

In this research, a methodology to identify the impact of crash was proposed and 

examined in depth. Additionally, possible applications were investigated for the 

proposed methodology. Based on the analysis and modeling results, some of the 

important findings and conclusions are given below: 

Integration of the incident data with the stationary sensor data provides the traffic 

management center a data driven approach to measure the crash induced congestion 

and its temporal and spatial extent. The case study demonstrated the performance of 

the methodology to automatically identify the impact of each crash. The use of a 

simple, yet informative heat map enhances our visual understanding to identify the 

spatiotemporal impact of crashes. 

This study presented three models for predicting impact duration of crashes. One 

model can predict 32% variation of impact duration based on two independent 

variables (post-crash speed and weather condition). The second model can predict the 

probability of impact duration for lying at different response categories based on the 
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same two independent variables. Moreover, the quantile regression provides a detailed 

picture of the duration of impact. Instead of giving a single output, it provides a range 

of values for the best possible to the worst possible scenario of a crash in a form of 

duration. It is worth mentioning that these models can predict the impact duration just 

knowing the post-crash speed at the upstream segment and the weather condition 

(rainy or not) which can be determined easily from real-time sensor data and weather 

information. 

Furthermore, the paper presented a regression model for predicting delay for the crash 

impact. The impact delay model showed that 74% variation of the total delay can be 

predicted as a function of two independent variables (post-crash speed and impact 

duration). The proposed statistical models (impact duration and delay) are the possible 

applications of the five-step crash identification process, which can be used for 

informing the road users about freeway conditions so that they can make relevant 

decisions before using that road. Moreover, based on the predicted duration of the 

crash impact, total predicted delay on the freeway and current conditions on local 

arterials streets, the traffic management center can implement appropriate diversion 

strategies in the network to minimize congestion. 

On the other hand, CDF of travel rates tells a better story about the impacts of crashes 

— it shows to what extent crashes influenced the travel rate during peak and off-peak 

periods. CDF of travel rate also showed how different types of crashes produce 

significantly different outcomes. Among the different crash types, crashes that 

blocked multiple lanes induce the most significant negative impacts on travel rate. 

Compared to normal conditions, when 97% to 98% of vehicles could travel at a 

specified travel rate, only 34% to 36% of vehicles could travel at that rate during 

multi-lane crashes. Crashes that blocked an individual lane or just the shoulder 

produced similar impacts on travel rates in both directions. The findings in this study 

can help to shape crash management policies for different types of crashes at different 

periods. 

6.3 Future Research 

The critical philosophy of examining the crash impact within the dynamic nature of 

traffic is to derive an accurate representation of background speed profile at the time 

of crash which reflects the traveler’s expected normal condition. In this study, we 

combine both historical data and on-going traffic conditions before a crash to 

construct background profile, but it may not always be reflective of the normal traffic 

condition of that day. Several factors, such as weather conditions and seasonality, 

may influence the background speed profile. These factors should be further 

investigated for constructing the background speed profile. 

In this study, we focused on developing a practical approach to construct a 

background profile to identify the impact of crash rather than investigating all 

possible factors that might influence background speed profile. In future research, 

ideal approach to construct background speed profile would be some sort of predictive 
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model that will consider all essential factors that might have influence and derive an 

unbiased estimation of the normal traffic condition. 

Besides, we have tested our methodology using stationary sensors data. In the case of 

roadways with few or no sensors, third party data (such as probe data) could be used 

to make this kind of analysis. 

One issue with the incident data was that it did not always keep the consistent record 

of lane-blocking, injury and other information. A more complete data-set might 

provide additional insight for predicting the crash impact and total delay. Future 

research should focus on: (1) developing the regression model (duration/delay) with 

enrich data-set, (2) calibrating the models using the data from other sites, and (3) 

potential variables (lane blocking, injury etc) that are omitted should be examined for 

other locations. 

Operation efficiency and traffic safety are considered as the most important elements 

among highway system performance measurement. Traffic congestion serves as a 

proxy for efficiency, and crash analysis can be used to evaluate highway safety. With 

the advances in big data, improving operations and safety in real-time is now possible. 

However, to fully realize the power of this data, we need to develop more applications 

for this data. This research has illustrated how data sets can be analyzed innovatively 

to improve our understanding of crashes, their impacts, and ultimately their 

distribution in spatial temporal domain. 

In this chapter, findings of the total research is described briefly. It also provides 

recommendations for future research. In the next section appendices and references 

are provided. 
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Appendices 

Appendix A: Incident Log Records 

Field Name Description 

ID Incident Identification Number 

Type Type of Incident 

Start Date Start date of incident 

Start Time Start time of incident 

End Date End date of incident 

End Time End time of incident 

Total Duration of Incident 

State Name of State 

Hwy Name of the route 

Direction Direction of the route 

MP Closest mile marker 

Conditions Pavement Condition 

Est. Clear Estimated clearance time 

Lat Latitude of the location 

Long Longitude of the location 

Lanes Blocked Number of lanes closed 

Notes Descriptive information of the incident 
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Appendix B: Results of the Statistical Model 

Results of the Impact Duration Model 
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Results of the Total Delay Model 
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Appendix C: CDF of Travel Rate 

Cumulative Distribution of Travel Rate at I-65N using reported incident duration 

 

Cumulative Distribution of Travel Rate at I-65S using reported incident duration 
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