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Abstract In this article we present QoSPlan—a measurement based framework

for preparing information relevant to Quality of Service (QoS)-aware IP network

planning, which aims at reducing a core operational expenditure for the network

operator. QoSPlan is designed to reduce the cost of deployment and maintenance of

network monitoring systems. The process involves analysis of pre-existing

accounting data to estimate a network-wide traffic matrix. Part of this estimation

process relates to the generalization of QoS-related effective bandwidth coefficients

taken from traffic analyzed on the network. We offer recommendations on how to

appropriately realize QoSPlan to maximize its accuracy and effectiveness when

applied to different network traffic scenarios. This is achieved through a thorough

sensitivity analysis of the methods proposed using real traffic scenarios and indic-

ative network topologies. We also provide an economic analysis of the deployment

and maintenance costs associated with QoSPlan in comparison to a direct mea-

surement approach, demonstrating cost savings of up to 60 % given different

topology sizes.
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1 Introduction

Currently, establishing input for the network planning process relies on the use of

dedicated hardware devices collecting large volumes of network traffic data that is

then analyzed to identify a network configuration design reflecting estimated

demand and specified Quality-of-Service (QoS) requirements. The use of dedicated

measurement hardware means the approach is expensive, incurring costs in

hardware procurement and maintenance, in addition to significant training and

operational costs. We argue that the network planning process can be made more

cost-effective, whilst maintaining a sufficiently high degree of accuracy, by reusing

alternative sources of information residing within the network accounting system.

In this article we present a QoS-aware network planning framework based on

network accounting data as an alternative source of estimating network traffic

demands, initially presented in [1, 2]. We also propose a method of capturing a

relationship between estimated network demands and required effective bandwidth

[3] levels specific to outlined QoS targets through packet trace analysis. We term

this relationship as the ‘‘effective bandwidth coefficient’’. This approach has been

proven robust and is agnostic of traffic types, thus requiring no a priori knowledge

of traffic model characteristics. Based on an economic analysis comparing

deployment and operational costs of our proposed system to a traditional network

planning system based on dedicated monitoring equipment, we have shown that

relative costs savings can be as high as 60 %. We also present a generalized process

network operators can follow to prepare input for QoS-aware IP network planning,

as outlined previously in [4].

This paper is organized as follows: Sect. 2 discusses related work in the areas of

measurement based QoS-aware network planning and effective bandwidth estima-

tion techniques. Section 3 outlines our measurement based Quality of Service aware

network planning framework—QoSPlan and provides an in-depth performance

analysis of the QoSPlan framework. Section 5 provides a use case deployment

scenario of QoSPlan to evaluate its use on the GÉANT network. Section 6 provides

an economic analysis of QoSPlan in comparison to a direct measurement based

approach. Section 7 summarizes the paper and outlines areas for future work.

2 Related Work

The network planning process generally requires three sources of input [5]: (1)

attributes associated with the current traffic demands on the network which

collectively specify their behavioral characteristics; (2) attributes associated with

resource constraints on the network topology; and (3) a constraint based routing

definition framework which plans routing of traffic subject to (1) and (2). Here we

focus on how to estimate, within an acceptable degree of accuracy, attributes

relating to the the current traffic demands on the network (which relates to input

(1)). We also need to take into consideration the related QoS targets imposed on

various services operating over the network, which has a direct impact on the

resources required. This section provides an analysis of literature regarding those
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aspects of QoS aware network planning within a communications network deemed

relevant to QoSPlan. Section 2.1 offers a review of approaches proposed to estimate

the effective bandwidth of traffic flows. Section 2.2 discusses a number of

approaches for estimating the traffic matrix of a network.

2.1 Effective Bandwidth Estimation

The term effective bandwidth refers to the minimum amount of bandwidth required

by a traffic flow to maintain a specified QoS target. Of particular interest to QoSPlan

is the relationship between the effective bandwidth of a traffic flow and the mean

throughput of that traffic flow. We term this relationship as the effective bandwidth

coefficient. The measurement of effective bandwidth has been a focus of research

for some time [3]. A particular issue within a communications network is the effect

statistical multiplexing of traffic at the point of aggregation has on the effective

bandwidth of aggregated traffic flows. As traffic flows are aggregated, the effective

bandwidth requirements of each traffic flow reduces as the level of aggregation

increases. This has been observed by Botvich and Duffield [6] and Simonian and

Guibert [7]. Effective bandwidth estimation algorithms must be able to capture this

effect if traffic performance optimization strategies employing these algorithms are

to effectively control QoS of traffic whilst minimizing bandwidth utilization.

In [3] Kelly proposed a theoretical framework for the prediction of effective

bandwidth of a defined traffic source. Kelly notes that the theoretical approach he

proposes cannot be deployed on an operational network without a complete

description of all traffic sources. As this has been shown to be quite a challenging

task [8–10], alternative approaches have been developed to use static traffic model

assumptions estimated from various traffic metrics as input to the effective

bandwidth estimation algorithm. These algorithms include the direct estimator [11]

and the block estimator [12]. These approaches are only appropriate for short range

dependent traffic and as it has been shown that Internet traffic tends to demonstrate

long-range dependence [10], these approaches will not be appropriate in an

operational context.

An approach proposed by Guérin [13] recognizes the issue of effective

bandwidth for aggregated traffic. To address this issue, Guérin proposes two

approaches of estimating effective bandwidth; one is specifically designed to

measure effective bandwidth requirements of a single traffic flow, while the other

addresses estimation of effective bandwidth for aggregated traffic. The latter

approach is based on the premise that as traffic is aggregated at a point, the

distribution of the traffic arrival bit rate can be accurately modeled using a Gaussian

distribution. Based on this assumption the author proposes to use standard

approximations to estimate the tail of the bit rate distribution. It has been shown by

Guérin [13] that as traffic flows are aggregated, the arrival bit rate does approach a

Gaussian distribution, however this approach does not account for variation in

traffic aggregation, impacting on the effective bandwidth estimation at various

aggregation levels.

Empirical estimation of effective bandwidth attempts to overcome the limitations

of traffic model based effective bandwidth estimation algorithms. The approach is
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based on the analysis of traffic being replayed through a simulated queue. The

approach observes the behavior of the modeled queue buffer as the traffic is

processed to measure an effective bandwidth value.

A method proposed by Liu and Baras [14] and Davy et al.[15] involves collecting

a packet trace from the network at a point where the effective bandwidth estimation

is required. The approach simulates a FIFO queue with an adjustable queue service

rate. The packet trace is processed through the FIFO queue at specified service rates,

to measure the associated proportion of QoS target violations. The algorithm is

based on the observation that as the service rate of the queue increases, the

proportion of violating traffic decreases. The FIFO queue service rate for successive

iterations is controlled by a search algorithm that decide when an appropriate queue

service rate is found; this rate produces an appropriate level of QoS violations from

the queue for the processed packet trace. This service rate is then taken as the

effective bandwidth.

2.2 Estimating the Traffic Matrix

The traffic matrix is a pair wise, edge-to-edge, matrix of traffic volumes that have

traversed the network over a period of time [16]. The network traffic matrix is

considered a core element of the network planning process. Traditionally, the traffic

matrix is established by analyzing traffic within the network directly, through the

use of dedicated network monitoring devices. Such approaches can establish a

highly accurate traffic demand estimation across the network. However, as

additional hardware for these devices require installation, operation and mainte-

nance, this approach tends to incur high costs to the network operator, increasing

both operational and capital expenditure. Core to the ethos of network planning is

ensuring cost efficient and timely planning decisions are made in line with network

operator objectives.

In [17], Feldmann proposes an approach to estimating a network wide traffic

matrix from IP Flow records collected at ingress points in the network. The general

approach is as follows. For each flow collected at an ingress point, its destination

address is mapped to an egress node at the edge of the network. The approach

assumes that no traffic is consumed within the core of the network. Therefore all

traffic entering an ingress point has a corresponding egress exit point. The approach

also makes the assumption that the volume of traffic within the flow is uniformly

distributed from start to finish. Based on this assumption the volume of the flow is

divided into equal bins of set durations. The volume within each bin is added into

the traffic matrix specifying the volume of traffic between the ingress and egress

node for that bin period. Once all flows are processed, the traffic matrix will contain

total traffic demand between ingress, egress pairs over each bin period. The authors

also state that additional information such as protocol and type of service

information held within the flow record can be used to enhance the traffic matrix

information.

In [18], Papagiannaki proposes an enhancement to this approach. The work

presents a method of distributing the operation of traffic matrix estimation among

the ingress router nodes. The approach focuses on distributing two essential
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functions core to the estimation of the traffic matrix from flow records and makes

the following recommendations: (1) Implement a function to map destination

network prefixes to egress links or routers within the domain; (2) Modify the

definition of the flow record in order to include the result of this mapping. Based on

the analysis performed within the paper, the authors found that up to 99 %

communications overhead can be reduced if the proposed approach was deployed

over a traditional direct measurement approach.

The authors of [19] discuss a stream database for network applications including

traffic analysis. The objective of the tool was to develop a network data analysis tool

which has the speed and flexibility that network applications require, but which

provides a structured querying environment to make complex analysis tractable.

The tool may envisage usage for the compilation of a traffic matrix on the fly as the

network stream is processed. In [20], the authors focus on the issue of incomplete

data in the generation of the network traffic matrix. They introduce a spatio-

temporal compressive sensing technique to improve the accuracy in estimating the

traffic matrix in the presence of missing values.

3 QoSPlan: Measurement Based Provisioning of QoS

QoSPlan delivers an network traffic matrix of a given network which takes into

consideration the QoS requirements of the various classes of traffic being

transported. This is essentially achieved by two fundamental processes. Firstly a

per traffic class traffic matrix is estimated for traffic traversing the network. This

process utilizes pre-existing accounting data within the network management

system in for form of IP Flow records. The second element is the estimation of

effective bandwidth coefficients of traffic carried over the network, which, when

used in conjunction with per traffic class traffic matrices facilitate QoS-aware

network planning. These steps will be further discussed in the following sections.

The QoSPlan process is outlined in Fig. 1.

3.1 The QoSPlan Process

QoSPlan is broken into three phases: (1) acquisition, (2) analysis and mediation and

(3) proposition. We now discuss configuration options at each phase and discuss

how important these configurations are in relation to supplying accurate input for

network planning.

3.1.1 Phase 1: Acquisition

QoSPlan depends on the acquisition of two forms of data, namely accounting data in

the form of flow records, and short packet traces. In the collection of flow records,

packet sampling plays a major role in the accuracy of demand estimation form

accounting data. As discussed in the IETF IPFIX architecture [21], PSAMP is

employed for packet sampling by IPFIX in the creation of flow records. We analyze
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the effect different sample settings have on the estimation of network demand from

accounting records in Sect. 4.3.1.

Packet traces are also acquired for input to the QoSPlan process. They are

analyzed to establish a relationship between network traffic behavior and specified

QoS targets through the calculation of effective bandwidth coefficients as discussed

in Sect. 3.3.3. A relatively large number of packet traces must be collected per

traffic class from various edge node locations around the network. It is vital that

collection points be distributed evenly around the ingress points of the network if

accurate effective bandwidth analysis is it to be carried out. If the distribution of

collection points is uneven, effective bandwidth coefficient estimations per traffic

class may be biased to particular ingress points. Packet trace collection points

should be positioned at the ingress edge of the network, as we require this traffic to

be unshaped by the network itself. Packet traces also need to be collected over an

appropriate duration. If packet trace durations are too small or large, analysis of the

traffic may result in misleading effective bandwidth estimations as demonstrated in

Sect. 4.3.1.

3.1.2 Phase 2: Mediation and Analysis

The analysis and mediation phase manages collation of relevant metering data into

usable information for QoSPlan. There are two internal steps within this phase,

namely the estimation of network demand from mediated accounting data, and the

calculation of effective bandwidth coefficients from collected packet traces. Both

are considered independent processes, but are required to deliver a QoS enhanced

traffic matrix to a network planning process.

The mediation of accounting data into the traffic matrix depends on planning

mediation rules, much like accounting record mediation depends on accounting

Phase 3. 
Proposition

Phase 2.
Analysis 
and Mediation

Phase 1. 
Acquisition

1b. Collect 
Accounting Data

2b. Mediate 
Data into 

Demand Matrix

1a. Collect 
packet Traces

2a. Estimate 
Effective 

Bandwidth 
Coefficients

Metering RecordsPacket Traces

QoS Targets
Planning 

Mediation Rules

3. Estimation of Effective 
Bandwidth Levels

QoS aware IP Network 
Planning Process

Fig. 1 QoSPlan process
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business logic. The planning mediation rules outline how to map accounting record

flows to ingress and egress edge nodes on the network. It is important to recognize

factors that can affect this mapping such as moving or mobile nodes, or multiple

entry points for a particular node. If mappings are not updated appropriately, the

traffic matrix may contain incorrect measurements. For preparing input to the

network planning process, we assume that the network will remain static for

the long term. An additional consideration here is the measurement interval over

which network demand is being estimated from accounting data.

In the analysis of collected packet traces, the effective bandwidth algorithm

processes each collected packet trace. Effective bandwidth of a packet trace is

controlled by a number of factors such as the traffic itself, degree of aggregation of

traffic and most importantly the QoS target. The QoS targets are targets set out in

Service Level Agreements between the network operator and customers of the

network.

3.1.3 Phase 3: Proposition

The final phase prepares a matrix of estimated effective bandwidths per traffic class

for input to the network planning process. This is achieved by multiplying the

appropriate effective bandwidth coefficient by the estimated network demand

between edge node pairs for the particular traffic class. A critical decision here is the

choice of an appropriate representative effective bandwidth coefficient from the set

of collected coefficients per traffic class. As network planning is predominantly

based on provisioning for near peak traffic, we recommend choosing the 95th

percentile value of this range to ensure a conservative estimate.

3.2 QoSPlan Framework Algorithms

The QoSPlan framework relies on a number of core algorithms to carry out the

above states phases. These algorithms are the estimation of effective bandwidth of

an aggregated traffic flow and the follow on calculation of the ‘‘effective bandwidth

coefficient’’, and the estimation of a network wide traffic matrix from accounting

flow records. We will now discuss the details of each of these algorithms in the

following sections.

3.3 Empirical Estimation of Effective Bandwidth

This section specifies and evaluates a purely empirical approach for estimating the

effective bandwidth of aggregated traffic flows. We believe such an approach is

suitable for use within a communications network as it can operate independently of

traffic model assumptions.

A typical example of a QoS delay target is (0.04 s, 0.001), which means that only

0.1 % of traffic is allowed to be delayed more than 40 ms. As the effective

bandwidth depends on the QoS target, for different QoS targets, effective bandwidth

estimations could be different. Suppose the QoS delay target is fixed and includes

delaymax the maximum delay and pdelay the proportion of traffic which can exhibit
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delay more than delaymax. We define effective bandwidth Reff of a traffic flow for the

QoS delay target (delaymax, pdelay) as a minimal link rate such that if we simulate a

FIFO queue (with an unlimited buffer and assumed initially empty) the proportion

of traffic which will exhibit delay more than delaymax will be less than pdelay.

To estimate the effective bandwidth of a particular traffic flow, we take a

recorded packet trace of that flow from the network. We observe that if we simulate

a FIFO queue with the same inputted packet trace {TM} for different queue service

rates R1 \ R2 and estimate the proportions p1 and p2 of traffic delayed more than

delaymax for different rates respectively, then p1 [ p2. This means that the

proportion of traffic, p, delayed more than delaymax is a monotonically decreasing

function of service rate R. Using this observation we define, a simple binary search

algorithm for a recorded packet trace to find the minimal value of a queue rate such

that the proportion of traffic delayed more than delaymax is less than pdelay.

3.3.1 Algorithm for Estimating Proportion of Violating Traffic using the FIFO
Queue

There are two approaches commonly used to model a FIFO queue, the packet model

or the continuous model. The packet level FIFO queue models the processing of

each packet as a whole, where as a continuous FIFO queue models the processing of

packets as a continuous bit stream. The latter approach distinguishes between total

and partially delayed packets, including only the volume of traffic delayed in the

calculation. The former approach will include the volume of a complete packet into

the calculation, even if only partially delayed. With the inclusion of total packet size

for partially delayed packets in the calculation of traffic violations, it is safe to

assume that a packet model would result in a more conservative estimation of

effective bandwidth. For the purpose of this work, we implement a continuous FIFO

queue model for a more fine grained estimation of effective bandwidth to be

guaranteed.

In Algorithm 1 we define our continuous FIFO queue model for use in the

empirical estimation of effective bandwidth. This algorithm is used to calculate the

proportion of violating traffic for a particular queue service rate. Table 1

summarizes the FIFO queue algorithm notation. Each packet in the trace consists

of a pair of attributes that specify the packet size, denoted xi in bits and packet

arrival time denoted ti in seconds. Let dmax denote the maximum allowable volume

of the queue buffer in bits before traffic experiences delay greater than delaymax. Let

dvol denote the current volume of the queue buffer. Let TOTALvol denote the total

volume of traffic that has passed through the queue. Let DELAYvol denote the total

volume of traffic that has exceeded the allowable bound of dmax. Finally, p denotes

the proportion of traffic delayed in respect to total traffic processed.

The algorithm assumes an infinite queue buffer, which is initially empty. The

justification for using an infinite buffer is to ensure no packets are lost during the

processing of the packet trace through the FIFO queue. To consider QoS targets of

packet loss, a limit on the queue buffer would be imposed. The algorithm is passed a

specified service rate R to process the packet trace, a specified maximum delay

target on traffic delaymax, and a packet trace {TM} as input. Once the queue is
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initialized, the algorithm sets a specified target queue volume dmax by multiplying

the specified service rate R and delay target delaymax to calculate the maximum

volume the queue can be before traffic is delayed greater than this specified target. If

the volume of the queue dvol exceeds the maximum queue limit, all traffic beyond

this limit will experience delay greater than the specified target.

The algorithm processes the packet trace as follows: For each packet, the packet

arrival time ti is compared to the time set after the queue has been emptied,

following the previous packet arrival dtime. If the packet arrival time is greater or

equal to dtime, then the queue is empty and the packet is processed. The packet is

processed by updating the queue time by the time it takes the queue to process the

packet at the specified queue service rate. If the packet arrival time is less than

dtime, this means the packet must wait to be processed. To calculate the waiting

time, we must calculate the difference between the packet arrival time and the

current queue time. The queue must process traffic for this duration before

processing the arrived packet. At this point, we store the volume of traffic within the

queue by adding the volume of traffic ahead of the packet plus the packet itself. If at

this stage the queue volume dvol is greater than the maximum allowable queue

Algorithm 1 FIFO queue algorithm for estimation of violating traffic
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volume dmax, the difference is recorded as the volume of traffic in breach of the

delay target.

As the algorithm proceeds, the total volume of traffic delayed greater than the

specified delay target accumulates in DELAYvol. When all packets have been

processed through the queue, the algorithm will return the proportion of delayed

traffic DELAYvol over the total volume of traffic processed, TOTALvol.

3.3.2 Effective Bandwidth Binary Search Algorithm

The effective bandwidth estimation algorithm, as depicted in Algorithm 2, controls

the FIFO queue service rate to find a suitable service rate R where the proportion of

violating traffic p is equal to the specified violation target pdelay. However, as p is a

real number, comparisons of equality are difficult, therefore we implement an error

region, denoted b. This error region enables us to control the accuracy of the

algorithm in estimating the effective bandwidth of a recorded packet trace. We

provisionally set this error region at 0.01.

The algorithm, as outlined in Algorithm 2 takes as parameters, a specified traffic

delay target, denoted delaymax, a specified violation target (denoted pdelay), a packet

trace (denoted {TM}), and an error control variable (denoted b). p denotes the

corresponding proportion of violating traffic for service rate R using the specified

traffic delay target. The objective of the algorithm is to find a service rate R where

Table 1 Notation for the estimation of effective bandwidth

Notation Description

T(xi, ti) A packet within a trace list where packet size xi and corresponding arrival times ti

{TM} The set of all packets contained within trace TM

M The total number of packets in trace TM

delaymax Maximum allowable packet delay target in seconds

pdelay Target proportion of traffic allowed to violate delaymax

R The service rate of the FIFO queue

Rmean, Rpeak Measured mean and peak throughout rates of packet trace TM

p Corresponding proportion of violating traffic for service rate R, packet trace TM and delay

target delaymax

b Identifies a margin of accuracy used to find the effective bandwidth value for a particular

QoS violation target as a proportion of the QoS delay target pdelay

e Identifies the actual margin of accuracy to be used relative to pdelay

Reff FIFO queue service rate that meets QoS requirements on proportion of traffic violating the

specified packet delay target. We use this value as a measure of Effective Bandwidth

dmax Maximum queue volume, before traffic is delayed greater than delaymax

dtime Time to service the queue at service rate R, from the time of packet arrival

dvol Current volume of the FIFO queue buffer

TOTALvol Total volume of traffic that has been processed through the FIFO queue

DELAYvol Volume of traffic delayed greater than the target delaymax
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its corresponding proportion of violating traffic p is equal to pdelay (± the error

region b). The error region is calculated as ± a specified percentage of pdelay

dictated by the b attribute.

3.3.3 Effective Bandwidth Coefficient Calculation

The objective is to collect a number of short packet traces from each traffic class at a

number of ingress points from around the network. The proposed effective

bandwidth estimation algorithm is used to calculate the effective bandwidth of each

packet trace collected. This approach is perfectly suited to this scenario as the

effective bandwidth algorithm is independent of any traffic model, and only requires

packet traces to operate along with supplied QoS targets on packet delay. A method

is devised to relate collected effective bandwidth estimations to the estimated mean

throughputs within the traffic matrix. The approach taken is to establish a generalised

effective bandwidth to mean demand ratio as a method of enhancing the traffic

matrix. This is termed the effective bandwidth coefficient and is established as

follows: the mean throughput, meani, is calculated for each packet trace collected, as

is the associated effective bandwidth for that packet trace Reff, i where i identifies the

packet trace being evaluated from the set of collected traces, i [ {1, …, I}; using

these values we estimate the effective bandwidth coefficient ki as:

ki ¼
Reff ;i

meani
ð1Þ

The effective bandwidth coefficient ki is calculated for all packet traces collected

per traffic class. The set of coefficients calculated, allow us to generalise a

Algorithm 2 Estimation of effective bandwidth using a binary search algorithm
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relationship between estimated network mean demands and effective bandwidth

requirements based on supplied QoS targets per traffic class within the network.

Further considering a set of I coefficients k1, …, kI we first exclude any ki with too

low a mean rate using some appropriate threshold value. The reason for this is that

for low levels of traffic aggregation, the effective bandwidth to mean throughput

ratio would be quite high in comparison to higher levels of aggregation. This is due

to the effect statistical multiplexing has on the effective bandwidth of aggregated

traffic flows [15]. The contribution of the low mean throughput to overall network

demand, is minimal in respect to the effect its associated coefficient may have on

the set of coefficients. We then calculate a suitable representative coefficient of

effective bandwidth K as the 95th or 99th percentile of the remaining set of

coefficients. We believe that K95 (the 95th percentile) is an accurate reflection of the

mean to effective bandwidth ratio per traffic class and can be used as a method of

enhancing the traffic matrix.

3.3.4 Complexity Analysis

We first focus on the time complexity of the proposed algorithm. As the algorithm

relies on the simulation of a FIFO queue model to estimate the proportion of QoS

violations that a packet trace incurs for a particular queue service rate, each packet

within the packet trace must be processed in succession. This operation happens in

time O(N), where N is the number of packets within the packet trace. As the

algorithm uses a binary search algorithm to choose appropriate service rates

dependent on the associated QoS violations experienced, the algorithm must repeat

the previous operation in time O(log2 M), where M is the search space of possible

QoS violations. M is dependent on both the QoS violation target, pdelay and the error

resolution parameter b. This error region, calculated as
pdelay�b

2
; is used by the

algorithm to evaluate whether an appropriate QoS violation target has been found.

The algorithm evaluates ± this value of the calculated p against the target pdelay.

Therefore we can calculate M as 2
pdelay�b : As the algorithm employs a binary search

strategy to locate the QoS violation target and corresponding queue service rate, the

theoretical number of iterations can be found as follows:

log2

2

pdelay � b

� �
ð2Þ

The algorithm therefore runs in O(N log2 M) time. The smaller the QoS violation

target is, and the smaller the error region will be, the larger the search space will be.

The performance of the algorithm can therefore be improved by two means; firstly

by reducing the number of packets within the collected packet trace to reduce

N, and secondly increasing either the QoS violation target or the error resolution

parameter b. The first can be achieved by collecting a shorter packet trace or by

collecting a trace at a lower resolution of time (e.g. bits per millisecond). In the

second case, however, the QoS violation targets tend to be predetermined by the

types of traffic and the higher level SLAs and QoS guarantees offered by

the network operator. Therefore the controlling parameter to be used is b.
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To evaluate the time complexity of the proposed algorithm we perform the

following experiment. We replay a packet trace through the algorithm and vary the

b parameter and with a fixed QoS violation target, pdelay, of 0.001. We measure

the number of iterations of the algorithm for a number of different b values. The

results are then plotted against the theoretical binary search function. The packet

traces for this experiment were taken from the MOME data-set [22]. Two packet

traces of a duration of 6.35 h were processed through the algorithm at 5 min

segments. Each segment is processed through the algorithm and the number of

iterations are recorded. Figure 2 depicts both the experimental results collected from
~150 algorithm iterations using different b values and the theoretical binary search of

an equivalent search space; as can be seen the algorithm performs in line with the

expected theoretical equivalent. Based on the results in Fig. 2, we would

recommend using a b value of 0.01 to achieve an acceptable degree of accuracy

while ensuring a reasonably fast response from the search algorithm.

With regards to the space complexity of the algorithm, a packet trace is loaded

into memory in its entirety once before the algorithm is executed. Therefore the

space complexity of the algorithm is O(N), where N is the number of packets within

the trace. Efficiency can therefore be increased by reducing the size of the packet

trace or by increasing the resolution at which the trace is collected.

3.4 Estimation of the Traffic Matrix from Accounting Data

Based on the type of accounting data records available to the network operator, we

propose the following mediation process to produce a traffic matrix for a network

planning process. The process assumes that accounting data records capture traffic

demands between source and destination nodes across the network in the form of IP

Fig. 2 Affect varying b has on algorithm performance
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flow records as depicted in Table 2; the record in Table 2 has a format similar to

that of the IETF IPFIX [21] and NetFlow 9 [23] accounting records.

The traffic matrix estimation algorithm depends on a number of assumptions on

accounting records and traffic within the network. It assumes that an end node

device1 is attached to a single edge node2 of the network. We assume that all traffic

entering the network through an ingress edge node, will exit the core network

through an egress edge node, therefore no traffic is generated or consumed within

the core network. We assume that accounting flow records are only created for

traffic entering the network through an ingress edge node. With this, we can be

guaranteed that traffic is only recorded once, and that all traffic generated over the

network will be accounted for.

Given the current trends in multi-homing we do recognize the fact that end hosts

can generate traffic that has multiple points of entry and exit through the core

network. Take for example the Locator Identifier Separation Protocol (LISP)

architecture [24]; in this architecture the location (Routing Locator or RLOC) and

the identification (Endpoint Identifier or EID) of the end node are separated. This

allows an ISP to manage which point of connection to a network the node can use

without changing its IP address. As this is a router based approach, the ISP will

control what RLOCs are assigned to EIDs.

We believe that this information can be easily integrated into the QoSPlan

framework in the sense that the ISP explicitly controls the mapping between end

Table 2 Sample accounting data flow record

SrcAddr DestAddr DSCP Size Packets Start End

10.37.2.22 10.34.1.118 EF 332049 1032 12:35.31 12:48.22

Fig. 3 Mapping end node flow records to corresponding edge nodes

1 We consider an end node device to be a source or sink of a traffic flow, i.e. the source or destination

nodes attached to the network.
2 We consider edge nodes to be the point of attachment of an end node device to the core network, i.e. the

ingress or egress nodes of the network
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node and edge node. The traffic sourced from an edge node will therefore be

mapped to its associated Routing Locator (RLOC). Similarly the destination end

node will also have an associated RLOC. Assuming that such a system was in place,

QoSPlan can interact with the LISP architecture to identify the source and

destination RLOCs for associated EIDs of end nodes.

The objective of the traffic matrix estimation algorithm is to map accounting flow

records which only store source and destination edge node information, to their

respective edge nodes over which their traffic flowed Fig. 3. Once this relationship

is identified, the demand of the flow record can be associated with the corresponding

edge node.

In estimating network demand from accounting system records, the algorithm

makes a number of assumptions. It assumes that packet inter-arrival times and

packet sizes within a collected flow record are uniformly distributed. The reason for

this assumption is required is that flow records do not record any information

pertaining to the packet size or inter-arrival times of the packets monitored during

its creation. Unless clear evidence suggests that another assumption would be

appropriate and improve accuracy over the measurement intervals we are interested

in, we believe this simplifying assumption will yield appropriate accuracy.

By taking this assumption the proportion of demand within an interval can be

easily calculated by multiplying the flows mean rate by the duration of time the flow

exists within the current interval. However, this assumption can lead to some

inaccuracy in the final estimation process, as throughout the flows duration, packet

inter-arrival times and sizes are not normally uniform.

Based on the fact that a flow record contains at the least information such as that

in Table 2, each flow record will have a start time (tstart) and an end time (tend). The

flow’s rate r(f) can be calculated from the flow size divided by the flow duration. As

the flow record holds the traffic class the record originated from, each traffic matrix

can be traffic class specific. The figure shows 4 cases the algorithm captures. The

objective of the algorithm is to sum up all demand of all flows that lie within a

particular interval (t, t ? t0).

• Case 1 captures demand of flows that begins before the period and ends during

it;

d ¼ rðf Þðtend � tÞ ð3Þ

• Case 2 captures demand of flows that start within the period and ends after it;

d ¼ rðf Þððt þ t0Þ � tstartÞ ð4Þ

• Case 3 captures demand of flows that start and end within the time period, and

finally;

d ¼ rðf Þðtend � tstartÞ ð5Þ

• Case 4 captures demand of flows that starts before the period and ends after it.

d ¼ rðf Þt0 ð6Þ
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This process is used to estimate demand of a single flow over a particular period.

This process is then repeated for all collected accounting records. The objective is to

calculate the demand generated by the flow records between two edge node pairs for

a particular traffic class. Algorithm 3 has four nested loops, looping through each

ingress router, each metering device, and each end node attached to that metering

device, and each flow record within that current metering device. The algorithm

matches each flow record to a source node, and estimates the flow’s demand within

the current measurement interval. The algorithm then matches the destination

address of the flow record to a particular egress edge node. This mapping allows us

to identify where the traffic is exiting the network.

The findEgressRouter() function in Algorithm 3 is used to return the egress edge

node corresponding to where the flow exits the core network. This function is a

simple static table lookup of mappings between the destination end node address

within an accounting record and its associated egress edge node. Once the egress

edge node is found, the demand estimated for that particular accounting record is

added to the appropriate dimension within the traffic matrix. Once all records have

been processed, the traffic matrix is returned. Table 3 outlines an example static

mapping between edge nodes and end nodes. This can be queried to map an

accounting data record to an appropriate dimension within the traffic matrix. Based

on this table, for example, the record in Table 2 would map to the dimension within

the traffic matrix for ingress edge node A and egress edge node D. This static lookup

table can be created using methods such as interrogation of routing tables within

edge routers [18]. An important point to note is when there are modifications in how

end node devices are attached to the network, i.e the change of point of attachment

Algorithm 3 Traffic matrix estimation from accounting flow records

Table 3 Mapping between

edge nodes and end nodes
Edge node End point mappings

A 10.37.1.*, 10.37.2.*, 10.37.3.*

B 10.36.1.*, 10.36.2.*, 10.36.3.*

C 10.35.1.*, 10.35.2.*, 10.35.3.*

D 10.34.1.*, 10.34.2.*, 10.34.3.*
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will require an update to the lookup table. Therefore the mappings between end

nodes and points of attachment must be maintained up to date.

4 QoSPlan Framework Evaluation

We now describe a deployment scenario to evaluate the effectiveness of QoSPlan in

supplying input to a network planning process. The objective is to demonstrate that

QoSPlan can provide this information with adequate accuracy for long term network

planning. We use the term long term network planning to denote configuring a

network for traffic demand and QoS requirements on time scales of days or weeks.

We note that for long term planning the level of accuracy required is minimal as

planning on this time scale is limited by human usage patterns, which cannot be

accurately predicted.

We evaluate a number of configuration options that can be controlled by

QoSPlan to improve accuracy for various traffic conditions, such as elastic and

streaming traffic, and monitoring conditions, such as packet sampling. As a basis of

comparison, we deploy a direct monitoring system within the network to record

actual network demand and effective bandwidth levels per traffic class. The

following sections discuss the details of our scenario, simulation topology and

traffic settings, and finally a set of experiments to test how configuration settings

affect accuracy.

4.1 Simulation Settings

We propose to evaluate QoSPlan under the following scenario: a single domain

network operator offering DiffServ controlled services to subscribed end users with

guaranteed QoS targets on packet delay. The network operator uses a deployed

IPFIX network monitoring system to supply accounting records to its accounting

system for billing purposes. We have simulated a network topology using the

OPNETTM modeler3[25]; the network topology consists of four core routers, six

edge routers and ten workstations (Fig. 4). The topology is designed in such a

manner as to allow all service traffic to cross the core network through at least one

core router. Five workstations operate as servers, with the other five workstations

operating as consumers. Each workstation is connected to the network by a 10 Mbps

Ethernet link. Customers have access to five services; Web browsing, Email,

Database, Video on Demand (VoD) and Voice over IP (VoIP). We use the standard

OPNETTM application models [25] to model the characteristics of traffic generated

by users accessing these services. These traffic models are parameterised to model

typical user behavior in the work place as outlined in Table 4. The traffic has been

modeled using this approach as we wish to create multiple application interactions

across the network between different source and destination pairs; this will ensure

3 Each OPNET simulation model was build using existing OPNET network models. An IPFIX device

and packet probe device was developed as an add-on to the OPNET router models. The implementations

were validated within a number of test case scenarios, which demonstrated expected results
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an appropriate mix of traffic types and density of flow records collected by the

accounting system.

As different applications require different QoS requirements, two DiffServ traffic

classes are deployed within the network, one each for elastic and streaming traffic.

Services aggregated into Assured Forwarding (AF) generate elastic traffic and

include web and email, and Database. These services specify loose QoS targets on

packet delay of (0.04 s, 0.001). Voice over IP (VoIP) and Video on Demand (VOD)

applications are sources of streaming traffic and are aggregated into Expedited

Forwarding (EF) with a QoS packet delay target of (0.02 s, 0.0001). Traffic is

policed and marked at the ingress routers, where packets are assigned appropriate

DiffServ Code Points (DSCPs). Within the core network, all core routers are

configured with common Per Hop Behavior (PHB) settings to ensure all traffic

within a particular traffic class is treated the same by each router.

For collecting accounting records, IPFIX monitoring devices are positioned at the

ingress interface of all edge routers. The devices deployed are based on the IPFIX

architecture [21]. They can be configured to collect accounting records based on

different packet sampling settings. Within the experiments, we evaluate the effect

various sampling settings have on the estimation of network demand for elastic and

streaming traffic.

For the collection of packet traces, a single monitoring device is modeled as

being attached to an ingress interface of an edge router. The device is used to collect

packet traces for effective bandwidth analysis. The monitoring device can filter

packets from particular DiffServ traffic classes by reading the DSCP within the
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Fig. 4 QoSPlan simulated small network topology
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packet header of each monitored packet. This device can be moved between ingress

points around the network, and is only operational during collection.

For experimental comparison to QoSPlan, a direct monitoring system is also

modeled. This monitoring system will collect every packet that passes an ingress

router interface. These packet traces are used to calculate exact network demand,

and effective bandwidth estimations within the network.

4.2 Effective Bandwidth Coefficient Selection

We now study the decision process used in selecting an appropriate representative

effective bandwidth coefficient. To achieve this we analyze 1000 effective

bandwidth coefficients estimated from collected packet traces for both traffic

classes and plot a distribution for each. Figs. 5 and 6 depict the distribution of

effective bandwidth coefficients collected for AF and EF packet traces respectively.

As can be seen, the coefficients approximate a normal distribution.

From this distribution, we must then choose an appropriate value to represent the

effective bandwidth coefficient of the associated traffic class. This chosen

coefficient will be used to enhance the traffic matrix at the final preparation phase

of QoSPlan. We recommend choosing the 95th percentile of this range as it

represents the relationship between measured mean demand on the network and

Table 4 OPNET traffic model

settings
Traffic class Application Settings

Assured

forwarding

Email Send/Receive: exp(360 s)

Mails sent in groups of: 3

Email size: 2000 bytes

Users per customer group: 75

Web Page inter-arrival: exp(60 s)

Page size: 1,500 3,000 bytes

Pages per server: 10

Users per customer group: 75

Database Ratio of queries to other: 100/1

Transaction inter-arrival:

exp(9 s)

Transaction size: 1,024 bytes

Users per customer group: 125

Expedited

forwarding

VoIP Codec: G.729 (silence

suppression)

Talk length: exp(0.65 s)

Silence length : exp(0.325 s)

Users per customer group: 10

VoD Based on Codec: H.264

24 frames per sec

Packet size: 550–650 bytes

Users par customer group: 10
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near peak required effective bandwidth for that traffic to maintain outlined QoS

targets. Were we to select the mean of the coefficient set, vital mean demand

throughput to effective bandwidth relationships will be neglected, leading to

underestimation of effective bandwidth levels from the traffic matrix. However, in

choosing the 95th percentile, we are ensuring that QoSPlan is supplying a network

planning process with adequate information to ensure resources are provisioned for

the traffic demands on the network. Table 5 depicts the chosen effective bandwidth

coefficients that will be used to enhance the traffic matrix in further experiments.
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4.3 Captured Flow Record Characteristics

We analyze the characteristics of accounting data flow records collected for both AF

and EF traffic classes to demonstrate the difference in characteristics of flow records

generated from elastic and streaming traffic. For this comparison, we analyze the

distribution of flow durations of the collected records. The traffic was generated

between workstations on the network following the traffic model settings in Table 4.

As can be seen in Fig. 7 the AF traffic demonstrates a heavy tailed distribution with

a mean of approximately 0.8 s. On the other hand, the EF traffic has a longer mean

duration of approximately 90 s with a heavy tail (Fig. 8). The heavy tails of these

distributions demonstrate the existence of flow records many times the mean,

collected for both traffic classes. The knowledge of these flow duration distributions

is vital in choosing appropriate traffic estimation intervals per traffic class. We use

these observations in configuring the QoSPlan demand estimation process.

4.3.1 Aggregation and Sampling

This section analyses the effect that deterministic sampling strategies that may be

employed by the network accounting system during the collection of accounting

data have on the estimation of network demand and estimation of effective

bandwidth with associated coefficients. Packet sampling is assumed to take place on

the IPFIX device where packets are monitored and processed into flow records. For

QoSPlan to use the sampled accounting data to estimate demand comparable to that

Table 5 Effective bandwidth

coefficients used to enhance the

traffic class specific traffic

matrices

Traffic class QoS delay target Coefficient

AF (0.04 s, 0.001) 6.3381

EF (0.02 s, 0.0001) 3.8402
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of direct measurement approaches, the demand estimated is scaled according to the

packet-sampling interval.

In the case of a deterministic packet sampling interval n of 1 in 100 packets being

employed. If an accounting record was calculated to contain a volume v of 1Mbytes

over its duration, as only 1 in 100 packets would get processed into the flow record,

the volume is scaled 100 times to calculate an equivalent scaled volume V of

100Mbytes, as if all packets within the monitored traffic flow were collected.

Scaling of demand in such a manner depends on the assumption of a uniform

distribution of packet rate throughout the recorded traffic flow.

A comparison is performed between directly measured network demand between

edge router pairs, and demand estimated from accounting data, subject to sampling,

collected between the same pair of edge routers over a set interval of 5 min. We

perform this experiment for a range of deterministic sampling values and plot the

relative error between demand estimated through direct measurement and using the

traffic matrix estimation algorithm with appropriate scaling (Eq. 7).

V ¼ n � v ð7Þ
Figure 9 demonstrates the variation in accuracy of demand estimation from

collected accounting data as sampling intervals increase for different application

traffic. This demand was calculated based on accounting flow records created using

a number of different sampling intervals, where N represents the size of the set a

packet is sampled from, i.e. every Nth packet is collected. Each flow level demand

value calculated was compared to a corresponding direct measurement over the

same interval for the same edge node pair. From this a relative error between the

two values was estimated and plotted. In this case, the relative error between

demand directly measured from the network and estimated network demand from

collected flow records increases up to 18 % for the AF traffic when a packet-

sampling interval N = 1000 is used.
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The main reason behind this degradation in accuracy is due to the scaling of

demand from collected accounting data. As elastic traffic tends not to follow a

uniform distribution of packet size or inter-arrival times, scaling can skew the

results of demand estimation. Therefore, for AF traffic, we recommend a reduced

sampling interval of up to N = 100 to maintain an acceptable level of accuracy. For

EF traffic, relative error manages to remain below 8 % even up as far as a packet-

sampling interval of 1000. The main reason for this behavior is down to the fact that

streaming traffic tends to have a more uniform distribution of packet size and inter

arrival times, lending itself well to the scaling process.

The configuration of this attribute can also affect the accuracy with which

QoSPlan estimates effective bandwidth. As the effective bandwidth coefficient

QoSPlan uses captures a general relationship between mean demand and effective

bandwidth requirements, if mean demand is inaccurately estimated the estimated

effective bandwidth will be affected.

We now analyze the relative error between directly measured effective

bandwidth values, estimated using packet traces collected every 5 min from ingress

router interfaces per traffic class, and effective bandwidth estimated with

coefficients (in Table 5) to enhance the traffic matrix prepared using different

sampling intervals. For each 5 min interval, the directly measured effective

bandwidth is compared with the QoSPlan estimated effective bandwidth and a

relative error is estimated.

Figure 10 demonstrates a distribution of global relative error between directly

measured and coefficient estimated effective bandwidth values, measured for 1,000

different 5-min intervals. We can see that, for AF traffic, as the packet sampling

interval increases, the mean global relative error increases from 11 % for

N = 100–37 % for N = 2,000. This result demonstrates the effect sampling can

have on the estimation of effective bandwidth by QoSPlan using the traffic matrix

enhanced by effective bandwidth coefficients.
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Figure 11 demonstrates results for EF traffic following the same procedure as

above. We can see that for the EF traffic, sampling has a smaller effect on mean

global relative error. For a sampling interval of 100, the mean global relative error is

approximately 8 % while for a much higher sampling interval of 2000, global

relative error averages around 11 %.
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The previous experiments have been measuring demand over 5 min intervals.

We now investigate the effect varying this setting has on the demand estimation and

traffic matrix enhancement accuracy of QoSPlan. We firstly evaluate the estimation

of network demand from accounting data versus directly measured demand and

graph relative error between the two for different demand estimation intervals. This

is performed on both AF and EF traffic. The results from this study are depicted in

Fig. 12.

For AF traffic, over very short intervals of below 10 s, we see that relative error

can be as high as 300 % between the average network demand estimated over the

interval from accounting data in comparison to direct demand measurements. This

high degree of error is attributed to a number of factors including, the type of traffic

being monitored, the assumption our demand estimation algorithm makes regarding

the packet distribution within flows being uniform, and the process of flow division

between measurement intervals. As the demand estimation algorithm divides flows

proportionally between neighboring intervals, this can cause a high degree of error

in measuring demand per interval for AF traffic, as packets are generally not

uniformly distributed within elastic traffic flows. For EF traffic, the case is different

as the traffic tends to be more evenly distributed through a flow. This is down to the

fact that applications generating EF traffic maintain a relatively steady stream of

traffic throughout the duration of the session, such as a video stream, or voice call.

Therefore, the division of EF flows into intervals only results in a relative error of

less than 50 % for measurement intervals of under 10 s, with this reducing for larger

measurement intervals.

We also notice that the relative error reduces by a considerable amount (to

below 10 %) for measurement intervals greater than 30 s. As within QoSPlan,

demand from accounting records will be estimated on the scale of minutes, we

maintain that such an assumption of uniform packet distributions within flows is an

acceptable assumption. We therefore do not investigate efforts of reducing this

relative error.
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We also demonstrate the effect this setting has on the prediction of effective

bandwidth levels. We perform a study measuring global relative error between

effective bandwidth calculated from the traffic matrix enhanced with effective

bandwidth coefficients and directly measured effective bandwidth levels. The

analysis involves comparing the relative error between the two approaches over

different measurement intervals. We plot a distribution of relative error for each set

of values recorded. We can use this distribution to estimate a mean relative error

between the two approaches, for a specified measurement interval. In Fig. 13, we

show a mean relative error of around 6 % for AF traffic at a measurement interval of

10 h. The mean remains at just over 6 % for a reduced measurement interval of 2 h.

As the measurement interval is reduced to 5 min the distribution of relative error

increases to a mean of approximately 11 %. We see from Fig. 14 that for streaming

EF traffic there is little variation in relative error over different measurement

intervals ranging from approximately 7 % for 1 and 2 h, reaching close to 9.5 % for

a measurement interval of 10 h. From this we can see that the longer the

measurement interval, the more accurate effective bandwidths can be estimated for

both AF and EF traffic.

4.4 Issues of Scalability

When taking scalability into consideration, there are a number of factors that

come into play. We now offer a discussion on these factors and offer arguments

in favor of using QoSPlan within ISP networks of various sizes and traffic

volumes. These factors include: centralized versus a decentralized deployment;
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when and where measurements are taken from the network to estimate effective

bandwidth coefficients; and available accounting resources for networks of

different sizes.

Based on the algorithm specified in Algorithm 3, a centralized accounting system

is assumed. This means that all flow records that are created from the monitored

traffic are exported to a single collection module4. At this collection module the

algorithm will process all records within a particular time interval and estimate

demand between identified ingress points and their associated egress points. For

small ISPs this assumption is generally valid as multiple collection modules may not

be required (this is dependent of the volumes of traffic, and in turn the volume flow

records collected). However in a large ISP network, there may be multiple

collection modules to which flow records are exported to. In this case the algorithm

can be easily distributed so that only records on each of the collectors are processed.

One criteria for this process to work is that all collectors have access to the same

topological information. This is to ensure all analyzed flow records can be

associated to an ingress point and an egress point. The resultant traffic matrices can

simply be added together to prepare a network wide traffic matrix. Papagiannaki

et al. [18] has already proposed a distributed version of such an algorithm that can

easily be ported to our purposes. This ensures the scalability of estimating the traffic

matrix to large ISP network topologies.
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4 We take the term collection module to mean a centralized location for the storage of accounting records

collected from a set of metering devices
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5 Case Study: GÉANT Network

To investigate the applicability of QoSPLAN to a realistic network setting, we

carried out a case study on the GÉANT network [26]. Our study involved using a

real traffic matrix collected from the GÉANT network and applying an effective

bandwidth coefficient to this matrix. We begin by analyzing collected packet traces

under a range of QoS targets to depict the change in effective bandwidth. We then

go on to apply a range of effective bandwidth coefficients to the collected traffic

matrix. Through knowledge of GÉANT network link capacities, we calculate the

percentage of links that are under-provisioned to ensure specified QoS delay targets

are maintained.

GÉANT is a pan-European network connecting universities and research

institutes, with a Point of Presence (POP) in each european country. The network

topology is composed of 23 routers connected using 38 links as shown in Fig. 15.

We focus on a traffic matrix produced from the TOTEM project of the GÉANT

network [27]. At the time of collecting the traffic matrix, each link supported a

throughout capacity of 155 Mbps.

To build an accurate traffic matrix, Netflow records are collected at a packet

sampling rate of 1/1,000 at each POP. The traffic matrix is generated over intervals

of 15 min and the estimated network throughput is multiplied by 1,000 to scale the

results in line with the sampling rate. The TOTEM toolbox uses this input to

generate both a network topology model and traffic matrix model.

To complement the traffic matrix, QoSPlan advocates the collection and analysis

of packet traces from the network. This is to produce appropriate effective

Fig. 15 GÉANT Topology, as generated from the TOTEM network model tool [27] using LocalLayout
view
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bandwidth coefficients to be used to enhance the traffic matrix. As no packet level

traces were available to the authors, indicative effective bandwidth coefficients were

chosen to reflect the application traffic mix traversing the GÉANT network. To

facilitate estimation of effective bandwidth coefficients of modern day Internet

traffic, we use a packet trace collected from the San Jose monitor A equinix node

available on the CIADA database [28]. An analysis of the packet trace depicts the

protocol breakdown as seen in Table 6. This represents a realistic mix of application

traffic.

The packet traces collected were selected between the dates of January 19 2012

and February 16 2012. A total of 30 packet traces were collected, each with a

duration of approximately 60 s. Each packet trace was analyzed to estimate its

effective bandwidth for a range of QoS targets. Figure 16 depicts a graph of the

collected results. As can be seen as the QoS target of both maximum packet delay

and probability of target violation reduce the associated effective bandwidth

coefficient increases. For example we can see for a QoS target of (0.001 s, 0.001),

stating that no more than 0.001 proportion of traffic can be delayed greater than

0.001 s, the effective bandwidth coefficient is 1.45.

The next step in the QoSPlan process is to apply this coefficient to the collected

traffic matrix through multiplication. Considering we know the capacity of each link

within the network and the traffic demands between each node pair, we can

calculate the proportion of node pairs that are currently under provisioned to ensure

QoS targets are maintained. For example, if we apply the EB coefficient of 1.45 to

the collected traffic matrix, we see that 2.72 % of node pair links are under

provisioned. We carried out a further analysis of the impact a range of EB

coefficients would have on the GÉANT network. Figure 17 depicts that as the EB

coefficient increases, so does the proportion of under-provisioned links. This input is

vital for network planning tools from the point of view of capacity planning and

traffic engineering.

Table 6 Protocol traffic

observed from packet traces

collected at the CAIDA San Jose

passive monitor A from January

19 2012 to February 16 2012

Application Bits % Packets % Tuples %

HTTP 82.14 70.74 43.65

HTTPS 4.34 6.79 8.36

RTMP 4.31 3.83 0.09

UNKNOWN_UDP 3.38 8.65 13.77

UNKNOWN_TCP 3.15 4.30 5.62

SQUID 0.45 0.26 0.09

IPSEC 0.21 0.27 0.00

SSH 0.19 0.16 0.17

QUAKE 0.19 0.50 0.92

SHOUTCAST 0.18 0.11 0.02

ABACAST 0.14 0.35 0.66

SMTP 0.14 0.34 0.39

NOPORTS_UDP 0.05 0.06 0.07

Other 1.14 3.64 26.19
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6 Economic Analysis

One of the central contentions of this chapter is that a deployment of QoSPlan is

significantly more cost effective then a traditional direct monitoring system

deployment for supplying input to the network planning process. The previous

Fig. 16 Effective bandwidth coefficient

Fig. 17 Percentage of under-provisioned paths as a range of effective bandwidth coefficients are applied
to the traffic matrix
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section demonstrated that QoSPlan can supply QoS related input for long term

planning with an acceptable degree of accuracy. We now present the results of a

high level comparative economic analysis of the two approaches for three ISPs.

Specifically, we compare the costs of extending an existing network accounting

system to implement the QoSPlan process with that of a traditional direct

monitoring system operating independently of the network accounting system. We

proceed by stating our baseline cost assumptions for both deployments. We then

state the associated capital and operational costs of both systems, followed by an

economic comparison. For a further analysis of cost breakdown with regards ISP

expenditure on network management, a recent report [29] has been published

discussing the various attributed cost factors. From this report we can see that the

ISP spends on average 18 % of all management software expenditure on systems

supporting network capacity planning activities. The objective of this study is to

demonstrate the possible reductions in cost that can be expected with a deployment

of QoSPlan by the ISP. We also note that our study is based on incumbent network

installations and do not consider the overall costs associated with green field

network deployments.

6.1 Baseline Cost Assumptions

To form the basis of the economic analysis, we first outline common cost

assumptions across the two deployments. For the comparison we assume the

network operator has a deployed network accounting system for usage based

accounting. For the currently deployed network accounting system the network

operator is required to pay a number of fees, most significantly database system

license fees and accounting system software license fees. The network operator also

has to pay for customer support for each of these software systems; in general, these

fees are set in line with the software license fees. It is common for network

operators to incur hardware related costs, for example rental of hardware storage

space, hardware-specific support costs, and costs associated with the network

operator’s replication policy. A replication policy may state that for every one

database live within the network, there must be another two database servers

replicating every transaction, for redundancy. We assume for this economic analysis

that the network operator does not pay rental on hardware space, and does not

employ a replication policy. Of course, license fees are typically kept confidential,

so the values we choose are based on anecdote. We assume that license fees increase

for larger sized network topologies, which we believe is universally true. Note that

our cost model is relatively simplistic; for example we disregard costs such as loss

in revenue based on depreciation, down time, data migration.

Given the above assumptions, Table 7 outlines indicative costs for three ISPs

relating to the costs associated with management of their network accounting

system. We base the network sizes on existing topologies, including that of the Irish

national research and education network HEANET [30] as a small ISP, and the

European wide research and education network GÉANT as a comparatively large

ISP [26].
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Key to our approach is a significant upgrade of the network accounting system to

support a QoSPlan deployment. For any significant system upgrade all software,

hardware and support costs are likely to increase. We assume that these costs

collectively increase by 20 %. In addition to the upgrade, specialised contractors

must be hired for tasks such as installation, staff training, and on-site support. We

assume a contractor charges a flat rate of $1,500 per day, and that he/she can work at

a rate of one unit installation per day. However, as the network size increases, so too

does the complexity of the installation; thus, we assume that for our medium and

large sized networks, contractor fees raise to $1,750 and $2,000 per day,

respectively.

Finally, to support new functionality without degrading system performance,

additional servers will typically be purchased and deployed; we assume that

purchase and deployment of a single server is $5,000. As well as upgrading the

accounting system, a QoSPlan deployment also requires use of a limited number of

network monitoring devices for collection of traffic traces used in the effective

bandwidth estimation process. Based on the geographical size of the network and

the duration of time over which network planning is performed, we also must ensure

that it is feasible to move the monitoring devices from location to location within an

appropriate period of time. For this reason we assume that a maximum of 3 days is

reserved for the movement of a device, and that planning is performed over 30 day

cycles.

Based on the specified size of the networks and the assumptions on metering

device movement restrictions, a small network operator requires 1 such device, for a

medium sized network operator we assume 2, and for the large network operators

we assume 4 devices are required. We assume that such devices cost approximately

$3,000 each. We base this on list prices quoted for such probe devices as the

Network Instruments ethernet probe [31]. Obviously these prices may vary due to

volume purchased, however we simplify this calculation by setting a standard rate

for all ISPs. In contrast for the measurement-based network planning approach

network monitoring devices must be deployed permanently at all edge routers in the

network, resulting in a significant cost overhead for larger network operators.

6.2 Comparative Cost Analysis

Based on the cost assumptions outlined above we can now estimate the cost of a

QoSPlan and direct monitoring system deployment. We focus on how these

Table 7 Current operational costs per network

Small Medium Large

Network nodes 5 edge, 3 core 20 edge, 5 core 45 edge , 15 core

Support costs $20,000 $60,000 $200,000

Data base license fee $20,000 $60,000 $200,000

Software license fees $20,000 $60,000 $200,000
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deployments affect cost of customer support fees, software license fees, specialised

contractor fees, and hardware fees.

Firstly, we address the costs incurred in deploying QoSPlan over an existing

accounting system. Additional servers will be required to host the new upgrades to

the accounting system. As accounting system records are already stored within a

deployed database system, there is no need to upgrade the database system. License

fees and support costs will be increased by 20 % as these are upgraded to an existing

system. Depending on network size between 1 and 4 network monitoring devices

must be purchased for packet trace collection, and specialised contractors will be

required to configure and install them. Table 8 shows the cost of an upgrade to

QoSPlan for the three network operator types.

Secondly, we address the costs incurred in implementing a traditional direct

measurement based approach. The network monitoring system will include the

installation of a larger number of network monitoring devices, each monitoring

traffic at a single edge router. The deployment will require an extension to the

existing database server, as a larger amount of new data will be collected and stored

for subsequent analysis; hence database license fees will increase by 20 %.

Additional servers will be required to host the network monitoring services and

applications, which will themselves incur new license and support fees. Finally,

installation of the new system and hardware will require specialised contractors.

Table 9 outlines the cost to the ISP of this approach.

Table 8 Cost of an incremental QoSPlan deployment

Small Medium Large

Support costs $20,000 $60,000 $200,000

Data base license fees $0 $0 $0

Software license fees $4,000 $12,000 $40,000

Server costs 1 9 $5,000 2 9 $5,000 4 9 $5,000

Network monitoring equipment 1 9 $3,000 2 9 $3,000 4 9 $3,000

Contractor fees 2 9 $1,500 4 9 $1,750 8 9 $2,000

Total cost $35,000 $95,000 $288,000

Table 9 Cost of direct network monitoring systems deployment

Small Medium Large

Support costs $20,000 $60,000 $200,000

Data base license fees $4,000 $12,000 $40,000

Software license fees $20,000 $60,000 $200,000

Server costs 1 9 $5,000 2 9 $5,000 4 9 $5,000

Network monitoring equipment 5 9 $3,000 22 9 $3,000 49 9 $3,000

Contractor fees 6 9 $1,500 22 9 $1,750 49 9 $2,000

Total cost $73,000 $246,500 $705,000
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Based on our outlined set of assumptions, Table 10 shows a clear difference in

the cost of deploying both approaches for network of different sizes, with the

QoSPlan deployment incurring significantly less costs, particularly as network size

increases. This is a result of the greater level of reuse of existing systems in the

QoSPlan deployment and the requirement for installation of significantly more

hardware in the direct monitoring system deployment.

7 Conclusions

We have presented QoSPlan; a measurement based framework for preparation of

input for QoS-aware IP network planning based on mediation of pre-existing

accounting data and analysis of a limited number of representative packet traces

collected from the network. QoSPlan will output a matrix of estimated effective

bandwidths per traffic class between node pairs, which can subsequently be used for

network planning, and indeed other purposes. We presented a through experimental

analysis to demonstrate the sensitivity of the framework to various settings such as

packet sampling and time aggregation of traffic flows to estimate network traffic

demands. We found that by carefully choosing the setting over which traffic flow

records are collected and analyzed, the accuracy of QoSPlan can be equivalent to a

direct measurement approach, with the loss of some accuracy.

We contend that adoption of QoSPlan has the potential to greatly reduce the cost

of network planning of up to 60 % depending on the topology in question, as it

allows the service provider replace their costly dedicated device metering

architecture. The QoSPlan process can be easily adapted to real network of large

deployments. To demonstrate this we have carried out a case study of the

application of QoSPlan to the GÉANT network. We demonstrate that given certain

QoS targets, an analysis of whether there is sufficient capacity provisioned within

the network to meet the Effective Bandwidth requirements of traffic demands on the

network. To facilitate a gradual changeover it would be straight-forward to modify

the process to utilize a hybrid architecture incorporating data collected from

dedicated metering devices and data from mediated accounting data.
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18 Months. He now works at the Waterford Institute of Technology, as a member of the BioNETS

research group of the TSSG. His current areas of interest are wireless network management, traffic

measurement and analysis, and bio inspired systems.

Brendan Jennings was awarded BEng in Electronic Engineering and PhD degrees from Dublin City

University, Ireland, in 1993 and 2001 respectively. He is a Senior Research Fellow with the

Telecommunications Software & System Group (TSSG) at Waterford Institute of Technology, Ireland,

currently working in the areas of network and service management. He has published over 90 peer

reviewed papers in international journals and conference proceedings and has participated in the work of

standards bodies ETSI, FIPA, TM Forum, and ACF.

Dmitri Botvich is currently a Chief Scientist at the Telecommunication Software & Systems Group,

Waterford Institute of Technology. He received his Bachelors (Mathematics) degree and PhD

(Mathematics) from Moscow State University, Faculty of Mechanics and Mathematics (Russia), in

1980 and 1984, respectively. His research interests include bio-inspired autonomic network management,

security, trust management, sensor and ad hoc networking, queuing theory, and mathematical physics.

J Netw Syst Manage (2013) 21:474–509 509

123

http://www.ietf.org/internet-drafts/drafts-ietf-ipfix-architecture-12.txt
http://www.ietf.org/internet-drafts/drafts-ietf-ipfix-architecture-12.txt
http://www.ist-mome.org/database
http://www.ist-mome.org/database
http://www.ist-mome.org/database
http://www.ietf.org/rfc/rfc3954.txt
http://www.opnet.com/
http://www.geanet.net/
https://data.caida.org/datasets/passive-2012/
http://www.heanet.ie/
http://www.heanet.ie/
http://www.networkinstruments.com/products/probes/
http://www.networkinstruments.com/products/probes/


Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


	c.10922_2012_Article_9243.pdf
	QoSPlan: A Measurement Based Quality of Service aware Network Planning Framework
	Abstract
	Introduction
	Related Work
	Effective Bandwidth Estimation
	Estimating the Traffic Matrix

	QoSPlan: Measurement Based Provisioning of QoS
	The QoSPlan Process
	Phase 1: Acquisition
	Phase 2: Mediation and Analysis
	Phase 3: Proposition

	QoSPlan Framework Algorithms
	Empirical Estimation of Effective Bandwidth
	Algorithm for Estimating Proportion of Violating Traffic using the FIFO Queue
	Effective Bandwidth Binary Search Algorithm
	Effective Bandwidth Coefficient Calculation
	Complexity Analysis

	Estimation of the Traffic Matrix from Accounting Data

	QoSPlan Framework Evaluation
	Simulation Settings
	Effective Bandwidth Coefficient Selection
	Captured Flow Record Characteristics
	Aggregation and Sampling

	Issues of Scalability

	Economic Analysis
	Baseline Cost Assumptions
	Comparative Cost Analysis

	Conclusions
	Acknowledgments
	References



