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A LOWER MULTINOMIAL BOUND FOR THE
TOTAL OVERSTATEMENT ERROR IN
ACCOUNTING POPULATIONS*

ROBERT PLANTE,} JOHN NETER} anp ROBERT A. LEITCH}

A lower bound on the total error in an accounting population is required, in conjunction
with the point estimate of the total error amount and the upper bound, when adjusting an
account to determine the amount of the adjustment. This paper extends the multinomial
methodology for obtaining an upper bound on the total over (or under 1)
error in an accounting population to the d:termination of a lower bound on the totaf
overstatement (or understatement) error. The methodology for obtaining a lower multinomial
bound differs in several important respects from that for obtaining an upper bound. The
proposed lower bound may be computed for up to 25 errors in the sample and provides tighter
limits than the widely used Stringer bound.
(ACCOUNTING/ADJUSTMENTS—MODELING; NONLINEAR OPTIMIZATION—
ALGORITHM DEVELOPMENT)

Introduction

In many accounting situations, managers, auditors, and third parties need to adjust
account balances to more accurately reflect the true state of the account. The account
of interest may comprise an entire file for inventory or accounts receivable, or an
individual record for a single customer. Audits leading to adjustments are conducted
by independent accountants involving the financial statements of a firm, by govern-
mental accountants involving federal grants and contracts with university researchers,
private or corporate income tax returns, Medicare and Medicaid programs, and
defense contracts, and by internal auditors involving the firm’s accounting process.

Various methods of variables sampling procedures have been proposed for sampling
the line items in an account to ascertain information about the total error amount in
the account. Estimators such as the mean per unit or ratio and difference estimators
lead to a dollar amount point estimate of the total error amount as well as to one or
two-sided confidence intervals. If the manager, auditor, or third party finds that the
upper limit of the confidence interval for the total error amount exceeds a predeter-
mined level of materiality, he or she can conclude that material errors in the account
may be present. When this is the case, an adjustment is often made.' The basic issue
then is how much should be the amount of the adjustment. One approach is to utilize
the point estimate of the total error amount as the amount of the adjustment. This
approach uses the “best™ estimate of the total error amount, but does not provide
recognition that a range of uncertainty exists about the total error amount. Another
approach is to make the adjustment equal to the difference between the upper
confidence limit for the total error amount and the materiality level. With this
approach, the upper confidence limit for the total error amount equals materiality after
the adjustment. This approach ignores information from the lower bound of the
confidence interval which provides a minimum value for the total error amount. A
third approach calls for making an adjustment which is at least as large as the lower
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evidence before an adjustment is made.

0025- 1909/84/3001 /0037501 25
Copyright © 1984, The 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



confidence interval bound for the total error amount. With this approach, however, the
upper limit of the confidence interval for the total error amount after adjustment may
still exceed materiality. Clearly, some combination of these approaches is desirable so
that the confidence limits after adjustment do not reflect a possible material error and
at the same time recognize the minimum total error in the account. Often the
adjustment amount is determined by negotiation. In any case, however, determination
of an appropriate adjustment amount requires a lower confidence interval bound for
the total error amount, as well as the point estimate and upper confidence interval
bound.

Unfortunately, the problem of determining the adjustment amount is compounded
as a result of repeated findings by Kaplan (1973), Neter and Loebbecke (1975), and
others that large-sample confidence bounds based on ratio and difference estimators,
which are widely used in practice, are frequently not appropriate for sample sizes
commonly used in auditing when~the error rate in the population is small. This is
frequently the situation in practice. One alternative approach to the use of large-
sample confidence bounds developed by Stringer (1963), Anderson and Teitlebaum
(1973), and Leslie, Teitlebaum, and Anderson (1979) is to employ dollar unit sampling
and upper and lower bounds which are based on: (1) increments in the upper or lower
bound for a binomial parameter p for increasing numbers of errors in the sample, and
(2) the amounts of the taintings (i.e., prorated dollar errors) found in the sample. The
Stringer upper and lower bounds were proposed to avoid reliance on large-sample
theory procedures. The Stringer bounds are widely used by most of the large account-
ing firms but have been shown to be highly conservative.

The conservatism of the Stringer bounds has some potential disadvantages for
auditors in that the upper bound will often exceed the prespecified materiality level
when the total overstatement (or understatement) errors in the population are less than
material, as shown by Duke (1980), leading to costly additional audit work. A tighter
upper bound is less likely to indicate the possible presence of a total material error in
the population when the total error amount is not material, while at the same time it
may still be expected to provide adequate protection in the case when the total error
amount in the population is material.

The upper multinomial bound was developed by Fienberg, Neter, and Leitch (1977)
to avoid the conservatism of the Stringer upper bound, but a lower multinomial bound
has not been available up to this time, even though it is essential for determining an
appropriate adjustment amount. In this paper, we will set forth a procedure for
obtaining a lower multinomial bound on the total overstatement (or understatement)
error in a population.? The procedure parallels the one for the upper multinomial
bound, yet it differs in some important respects. We first review the upper multinomial
bound and then outline the procedure for obtaining a lower multinomial bound. We
then explain various procedures to conduct the required optimization efficiently, and
compare the effectiveness of the lower multinomial bound with the widely used
Stringer bound.? Next we consider a clustering procedure for computing a lower
bound for larger numbers of errors and examine the effectiveness of this procedure by
comparing the results with the Stringer bound for up to 25 errors.

2The multinomial bound model may also be applied to other problems where most of the population
elements have a value of zero, and the remaining elements have positive values, for instance, the
determination of confidence bounds on the level of carcinogens in animals and in air pollutants,

3For accounting populations with small error rates, the DUS-Cell bound proposed by Leslie et al. (1979)
can also be used to obtain a lower bound on total overstatement error when stratified selection of dollar
units is employed. We, however, do not consider the DUS-Cell bound in this paper because of the more
restricted sampling scheme for which it was designed.
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‘The Upper Multinomial Bound

When dollar unit sampling is used, the sampling unit is defined as an individual
dollar in the accounting population sampled. For each dollar randomly selected, the
transaction to which it belongs is audited and the resulting error, if any, is prorated to
the sampled dollar. For instance if a transaction is found to be 50 percent overstated,
then each dollar of the transaction is assigned a 50-cent overstatement error tainting.

When individua! dollar units are sampled in an accounting population and the
maximum possible overstatement error per dollar is M (usually M = 100 cents), there
are M + 1 possible outcomes for the amount of overstatement error in a sample dollar
when the errors are measured to the nearest cent: 0,1,2,..., M. The population
proportions of dollars with such errors are denoted by pg, py, P2, - - ., Pag, Where p; 3 0
(i=0,1,...,M) and 3 p,=1. If Y denotes the number of dollar units in the
population, then the population total overstatement error D (in dollars) is given by:

M
D=(Y/100) 3 ip,. M

i=]

When a random sample of a# dollar units is randomly selected from the population
with replacement, the observed counts wy,w,,w,, ..., w, for the M + 1 different
error amounts follow the multinomial probability distribution, given p = (py, p;»

.» py) and n, as illustrated in Neter, Leitch, and Fienberg (1978) for an accounting
population. Fienberg et al. (1977) proposed a bound for the total overstatement error
D obtained by first developing a 1 — a multidimensional confidence region for the
multinomial parameters p based on the observed counts W = (wg,w,, . .., ), i.e., a
confidence region comprised of the p satisfying:

M
n! 2
St LA e @
where § is the set of those outcomes Z = (2q,2,, . . . , Z,,) which are deemed to be “as

extreme as or less extreme than” the observed result w. The upper multinomial bound
B, is then obtained by maximizing the function (1) over the confidence region
established by (2).

The set S can be defined in different ways. Fienberg et al. (1977) proposed the use
of the “step-down™ S-set for developing the confidence region in (2) because it has
heuristic appeal and facilitates computations. Essentially, the step-down S-set consists
of all outcomes for which the following two criteria are met:

(a) The total number of errors does not exceed the observed number of errors.

(b) Any individual error ¢oes not exceed the corresponding observed error.

For this step-down S-set, it was shown that the only parameters entering the
maximization are: (1) those corresponding to the K observed errors e;,e,, ..., e
~—i.€s Peys Peys - + - » Pe—and (2) po and p,,. For convenience, e, shall denote the
smallest error tainting in the sample and e, the largest tainting. Consequently, the less
extreme outcomes as defined for the step-down S-set are those which meet the
condition:

X
Dz <K-j+1, j=1...,K

i=j
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TABLE 1
Step-Down S-Set for Two Errors (Sample Size = n)

Total
Nonzero Total
Step-down S-set Outcomes Error
2 20 2y Criterion (a) Criterion (b)

n—-2 1 1 2 30
n-2 2 0 2 20
n—1 0 1 i 20
n=-1 1 0 1 10
n 0 0 [} 0

As an example, suppose a simple random sample of size n is selected and two errors
are observed, 10 cents and 20 cents. Under criterion (a) no outcome in the step-down
S-set can have more than two errors, and under criterion (b) the sum of the errors for
each outcome in the S-set cannot exceed 30 cents, i.e. an outcome of two 20-cent
errors is not allowed. Further, the cumulative frequency of errors cannot exceed 1 for
the 20-cent outcome and 2 for the 10-cent outcome. As a result, the outcomes in the
step-down S-set for this example can be represented by the first three columns of
Table 1. As indicated by the last two columns of Table 1, the two criteria which
establish the formation of the step-down S-set are both satisfied.

The formulation for By, incorporating the step-down S-set of Fienberg et al. (1977)
is then:

By =Max(Y/100)(e,p,, + -+ * + exp,, + eyPy) 3)
subject to
K
Pot 2| Petpu=1, (3a)
j=
K
2z<K-j+l, j=L... K (3b)
i=j
! o i
%m(“ e Pat) 2 (39
po,p,l,p,.,>0, j=L..., K (3d)

The obtaining of the multinomial bound with the step-down S-set (3b) has turned
out to be computationally feasible whereas some other possible definitions of “as
extreme as or less extreme than™ (e.g., the dollar amount S-set supported by
Teitlebaum, McCray and Leslie 1978) involve very great computational difficulties.
While the step-down S-set does not provide a complete ordering of the sample
outcomes and consequently under some circumstances has a confidence level less than
the nominal level, extensive simulation studies by Leitch et al. (1982) have shown that
the confidence levels with the step-down S-set usually exceed the nominal level or are
very close to it (e.g., 92.4 percent for a nominal 95 percent level; see Leitch et al.
(1982) for details).
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The Lower Multinomial Bound

The formulation for the lower multinomial bound B, on total overstatement errors*
differs in three important respects from that for the upper bound. First, the S-set used
to establish the multidimensional confidence region for p consists of outcomes Z which
are deemed to be “as extreme as or more extreme than” the observed result w. Second,
B, is obtained by minimizing D over the confidence region. Third, and in a manner
similar to that followed by Fienberg et al. (1977), it can be shown that the only
parameters entering the minimization are those corresponding to the K observed errors
in the sample.

One way to define the more extreme outcomes for the lower bound S-set is to take
the complement of the outcomes associated with the upper bound S-set. However,
since the step-down S-set used for obtaining B,, does not provide a complete ordering
of all sample outcomes, use of the complement of the step-down S-set would consider
some outcomes as more extreme that are not.

Consequently, a “step-up” S-set is here proposed for developing the confidence
region to obtain B, . The step-up S-set consists of outcomes for which the following
two criteria hold:

(A) The total number of errors is at least as great as the observed number of errors.

(B) Any individual “more extreme” error cannot be less than the corresponding
observed error.

Consequently, the more extreme outcomes as defined for the step-up S-set are those
which meet the condition:

X
Xz K—j+1, j=1...,K )
i=j
Table 2 illustrates the step-up S-set for the case where two errors, 10 and 20 cents, are
observed in a sample of .

TABLE 2
Step-Up S-Set for Two Errors (Sample Size = n)
Total
Nonzero Total
Step-up S-set Outcomes Error
2 Z)0 230 Criterion (A) Criterion (B)
n—2 1 1 2 30
n=2 0 2 2 40
n=3 0 3 3 60
n—3 1 2 3 50
n—-3 2 1 3 40
n—-4 0 4 4 80
0 n=1 i n 10(2 = 1) +20

“The discussion in this paper will focus on overstatement errors. A lower bound on understatement errors
is obtained in corresponding fashion. The multinomial bound approach does not lend itself to net errors,
where overstatement and understatement errors are combined algebraically. See Neter et al. (1978) for
procedures for treating combined overstatement and understatement errors.
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The formulation of B,, incorporating the step-up S-set, is then:

B, =Min(Y/100)(e,p., + - - - + exp.,) )
subject to
X
Pot -21 P=1 (53)
j=
X
2 K—-j+1,  j=1,...,K (5b)
i=j
n! 2q . x
% PAPERTra (péopi .. .pix) > (5¢)
Po-P. >0, j=1,...,K (5d)

Unlike the step-down S-set used to obtain By, the number of terms in the step-up
S-set used to evaluate constraint (5c) is dependent upon the sample size (compare the
S-sets in Tables 1 and 2). For sample sizes of 100 to 500, which are frequently used in
auditing applications, the number of terms required to represent the step-up S-set is
very large. As a result, the costs of computer processing time and storage required to
evaluate the probability sum in (5c) is too great for a direct computation of the lower
multinomial bound for all but very simple cases.

Nesting of Probability Terms

In this section we describe how nesting of probability terms is used to eliminate the
effect of sample size, for a given number of sample errors, on the number of terms in
the step-up S-set. This nesting approach is similar to that discussed in Plante (1980)
and used by Leitch et al. (1982) for the upper bound; the objective there, however, was
to reduce calculations for samples containing relatively high error rates.

The nesting of probability terms simplifies the computation of (5c) by considering
the S-set to be made up of those outcomes that satisfy criterion (A), less the outcomes
within (A) that fail to satisfy criterion (B). The implementation of nesting for the lower
bound involves two steps: (1) relaxing the restrictions imposed by criterion (B), and (2)
subtracting out those terms resulting from this relaxation that violate criterion (B).

Relaxation of Criterion (B)

The relaxation of the S-set restriction (5b) is done in such a way that the left-hand
side of the confidence region inequality in (5¢) becomes:

i?k ( ’: )p&' TP=1- ’,(‘?.‘:'; (?)PS ~'PY,  where ©6)

P = The sum of the multinomiai parameters corresponding to the observed sample
errors.

For the example in Table 2,

K=2,

P =(pyo+ p)

The influence of sample size has been removed in the right-hand side of (6) since
this expression requires only K terms.

Subtraction of Excess Terms

Those terms in (6) that violate criterion (B) must now be subtracted. These terms
may be obtained by considering the expansion of P’ in (6) for each i/ and enumerating
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all the possible violations of criterion (B) that result from this expansion. As an
illustration, consider the expansion of P2 for the example used in Table 2. This
expansion would result in the following terms for (6),

(;)Pé'—zpz = (;)Pé'—z(Plo + po)’

= (;)pé"zpfopgo + 2(’21)1’5'—77101’20 + (g)p&'“??opgo. 0

The first term in (7) violates (B) since it involves an outcome of zero for a 20-cent
erTor.

In general, each of the violation terms can be partitioned into two distinct factors
Q™ and V), as follows

n! n—l—-mpm
(-—————n —T— mytmij, Po Q™V,,  where (8)
I = A number which represents the cumulative frequency for parameters in P that
violate (5b). For instance, if for some parameter j, the cumulative frequency of the last
(K = j + 1) parameters violates (5b), then:

X
I=3z, and (8a)
i=j
K
f=T0z (8b)
i=j

m=A number which represents the cumulative frequency of the first (j —1)
parameters in P that do not violate (Sb), such that

j-1
m= >z and K—I<m<n-1
i=1
¥, = A product of the (X —j -+ 1) multinomial parameters whose cumulative fre-
quency of occurrence (sum of exponents) is /; :
Q=A sum of (j—1) multinomial parameters whose cumulative frequency of
occurrence is m.
To illustrate (8) for the violation term in example (7), I =0, f, =0}, ¥, = p}, m =2,
and Q = pjo.
The sum of the violation terms corresponding to a particular ¥, can be expressed as
follows:

n_l n—1
_n—_—'! n—l-mpmy — N\,n~l-mpm
2 V=GV, n 9
me K—1 (n—' I—m)!f,m! Po Q ! ! Img(—l( m )P(] Q ( )

which equals

K=1-1
GV (po+ Q)""'— 2-0 ("'; I)p(','“"'"Q'”] where (9a)
!
C = (—';_"1—),!’ (9b)

The number of terms in (9a) is (K ~ / + 1) and thus the influence of sample size on the
number of terms has been effectively removed. Defining ¥V as the set of all possible
V;’s resulting from the expansion of (6), constraint (5c) can now be written using (6)
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and (9a) as follows,

K~1 K—1-1
-3 (',-')pé'"P'—ZCzV,[(po+ o'~ 3 ("~ ’)pé'"""Q"‘] >a. (10)
i=0 v m=0
Further computational simplifications are possible since many of the C,¥, combina-
tions share a common multiplier of the form

_, Koot ! ,

(ro+ @)= 3 (" Fpi~mem. (i1
It can be shown that the number of distinct multipliers is exactly (K — 1), one less than
the number of nonzero errors.

The number of terms required to repre:ent (10) increases substantially as the
numbers of errors increase. For instance, 6 errors require 29 terms but 14 errors require
290,526 terms. Indeed, for samples containing more than ten errors the number of
terms in (10) becomes too great for a feasible computer implementation.

Requirements of the Optimization Algorithm

Prior to a study of the effectiveness of the lower multinomial bound, we consider
first the requirements of the nonlinear optimization algorithm used to obtain the lower
bound. The reduced gradient algorithm described in Plante (1980) for the upper
multinomial bound is also used to obtain the lower multinomial bound. As is the case
for the upper bound, (5¢) is binding for the lower bound in the optimal solution. This
can be shown in a manner similar to that followed by Leitch et al. (1980) for the upper
bound. Thus, the lower multinomiai bound model can be reformulated to adhere to
the binding constraint requirement of the reduced gradient algorithm without the
addition of slack or artificial variables. .

The reduced gradient approach also requires an initial feasible solution. This is
easily obtained for the upper bound, but an initial feasible solution for the lower
bound model is not immediately obvious. Consequently a phase I-phase II procedure
utilizing artificial variables has been added to the algorithm for the lower bound. An
effective initial starting point for the lower bound utilizes the artificial variable p,,
where

Pa=1-po,
Po=(1—a)'/", (12)
2i=0, i=1..., K

Effectiveness of the Lower Multinomial Bound

Method of Analysis

Similar to the analyses performed for the upper multinomial bound by Fienberg et
al. (1977) and Leitch et al. (1982), the effectiveness of the lower multinomial bound is
assessed with respect to how much larger (less conservative) is the lower multinomial
bound than the Stringer bound. The measure of effectiveness used for this comparison
is the lower multinomial bound expressed as a percentage of the Stringer bound.
Comparisons of the lower multinomial bound and the Stringer bound are made for the
error distributions used in Leitch et al. (1982) for studying the upper multinomial
bound. These distributions are commonly found in accounting populations, as re-
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TABLE 3

Comparison of the Lower Multinomial Bound and the Stringer Bound
(Sample Size = 100, Population Size = 1,000,000, Confidence Level = 95%)

Multinomial
Bound asa
Number Multinomial Stringer Percent of
of Bound Bound Stringer Bound
Distribution Errors (1000's) (1000%s) (%)
J 6 2.5 1.2 208.3
8 4.1 19 2158
10 58 29 200.0
J-100 6 55 22 250.0
8 78 33 236.4
10 9.8 44 222.7
Unimodal 6 9.3 50 ’ 186.0
8 145 82 176.8
10 19.7 114 1729

ported by Johnson, Leitch and Neter (1981):

(1) Reversed J shaped—Most of the errors are concentrated near zero (denoted as J).

(2) Reversed J shaped with 100 cent errors—Most of the errors are concentrated near
zero plus some 100-cent errors (denoted as J ~ 100).

(3) Unimodal shaped—Most of the errors are concentrated away from zero about a
positive mean.

Cases of 6, 8 and 10 sample errors that follow the pattern of each of these
distributions were studied; see Leitch et al. (1982) for actual error patterns and
findings from a simulation study that comparisons between average bounds obtained
with repeated sampling from the same population are very similar to comparisons of
bounds based on a single sample containing errors following the pattern of the
population. Table 3 presents the lower multinomial and Stringer bounds for the
various error patterns, each based on a population book amount of 1 million dollars,
sample size of 100 and confidence level of 95 percent.

Findings

The results in Table 3 indicate that the lower multinomial bound is much less
conservative than the Stringer bound for all cases studied. Indeed the smallest ratio of
the lower multinomial bound to the Stringer bound is 172.9 percent and the largest is
250 percent. The error distributions exhibiting the largest relative gains by the lower
multinomial bound are the J and J — 100 distributions while the smallest relative gains
are achieved for the unimodal error distribution. The results in Table 3 also demon-

strate that, for the cases studied, the relative gain by the lower multinomial bound over
the Stringer bound decreases as the number of sample errors increases.®

Clustering of Sample Errors

Since the lower multinomial bound is much less conservative than the Stringer
bound for the cases studied, it would be desirable to extend the applicability of the
lower multinomial bound to samples containing more than ten errors.® This can be
done by clustering errors, which reduces the number of terms required in (10) for a

$When absolute diff are idered, the gains with the lower multinomial bound are largest for the
unimodal distribution and the absolute differences increase with the number of errors.

SSome simulation results suggest that the large-sample confidence limits for ratio and difference estima-
tors with line-item sampling and for the mean-per-unit estimator with dollar unit sampling may at times not
work well even with 20 or 25 errors in the sample.
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given number of sample errors at the expense of a more conservative lower bound. The
procedure is similar to the clustering procedure used by Leitch et al. (1982) for the
upper multinomial bound.

For the lower bound each error within a cluster assumes the value of the smallest
error in that cluster. For example, if a 10-cent error and a 20-cent error are clustered
into one cluster the resulting cluster would be considered to contain two 10-cent errors.
Assigning the value of the smallest error in a cluster to all errors in the cluster insures
that the resulting lower bound approximation is no larger than that obtained for
unclustered errors. This can be shown in a manner similar to that followed by Leitch et
al. (1980) for the upper bound.

For clustered errors the formation of the step-up S-set is easily defined by expressing
criteria (A) and (B) as

m m
2z>>¢, j=L...,m  where 13)
i=j Q=

m = The number of clusters,

¢; = The number of errors in the ith cluster,

s; = The value assumed by errors in the ith cluster, such thats, > s, _,> - +* >s,.

The clustering of sample errors substantially reduces the number of terms required
by the step-up S-sci. For instance, the grouping of 15 sample errors into six clusters for
the unimodal error distribution results in 1,475 terms in the step-up S-set. In contrast,
the step-up S-set for only 14 unclustered errors requires 290,526 terms.

The algorithm used to cluster sample errors for the lower multinomial bound is the
same one used for the upper multinomial tound, namely that proposed by Fisher
(1958). It is here used to determine, for a given number of clusters, m, a clustering
which minimizes the criterion,

m K
C=3 2 (x5—5)  where (14)
j=ti=t
5; = The smallest error in the jth cluster,
x; = The ith error in the jth cluster, such that

5 < % <5 (142)

Effectiveness of the Lower Multinomial Bound for Clustered Errors
Method of Analysis

We again compare the lower multinomial bound for clustered errors with the
Stringer bound using as the measure of effectiveness the lower multinomial bound as a
percentage of the Stringer bound. The same error distributions as before are employed
to study the effectiveness of the clustered bound. In addition, the uniform distribution
is also employed since it is an extreme distribution as far as clustering of errors is
concerned.” Up to 25 errors are studied and up to ten clusters are employed.

Tables 4 and 5 present the results of the analysis for 6 and 10 errors, and Table 6
extends the results to 15, 20 and 25 errors. These tables also show the amount of
computer processing time on a CDC-70/74 required to obtain the clustered lower
multinomial bound.

7The uniform distribution is not ty d in ing problems according to the Johnson
et al. (1981) study.
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TABLE 4

Effect of Clustering on the Lower Multinomial Bound for Total Overstatement Error

(Sample Size = 100, Population Size = 1,000,000, Confidence Level = 95%,

Number of Errors = 6)
Uniform Distribution
# of Clusters 1 2 3 4 5 6
Mult. Bound
(1000's) 2.1 8.2 1.7 135 145 159
% Unclustered
Error Bound 132 51.6 73.6 849 93.1 100.0
% Stringer
Bound 214 83.7 1194 137.8 1510 162.2
CPU Time
(Seconds) 0.0 08 11 1.0 15 18
Unimodal Distribution
# of Clusters 1 2 3 4 5 6
Muit. Bound
(1000%s) 14 40 6.1 17 84 9.3
% Unclustered
Error Bound 15.1 430 65.6 82.8 90.3 100.0
% Stringer
Bound 28.0 80.0 1220 1540 168.0 186.0
CPU Time
(Seconds) 0.1 09 2.1 1.7 1.6 1.6
J — 100 Distribution
# of Clusters 1 2 3 4 5 6
Mult. Bound
(1000%s) 0.6 13 3.6 47 55 na
% Unclustered
Error Bound 109 236 65.5 85.5 100.0 na
% Stringer
Bound 273 59.1 163.6 2136 2500 na
CPU Time
(Seconds) 0.1 02 39 52 57 na
J Distribution
# of Clusters 1 2 3 4 5 6
Mult. Bound
(1000’s) 0.6 08 1.8 22 25 na
% Unclustered
Error Bound 240 320 720 88.0 100.0 na
% Stringer
Bound 50.0 66.7 150.0 1833 2083 na
CPU Time
(Seconds) 0.1 02 44 39 35 na
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TABLE S
Effect of Clustering on the Lower Multinomial Bound for Total Overstatement Error
(Sample Size = 100, Population Size = 1,000,000, Confidence Level = 95%,
Number of Errors = 10)

Uniform Distribution

# of Clusters 1 2 3 4 5 6 7 8 9 10
Mult. Bound

(1000’s) 28 149 216 253 278 292 302 310 3.7 330
% Unclustered

ErrorBound 84 452 655 767 842 885 915 939 961 1000
% Stringer

Bound 128 683 99.1 1161 127.5 1339 1385 1422 1454 1513
CPU Time

(Seconds) 00 21 24 25 43 58 72 137 288 993

Unimodal Distribution

i of Clusters 1 2 3 4 5 6 7 8 9 10
Muit. Bound

(1000's) 22 718 1L7 140 158 174 181 186 192 197
% Unclustered

ErrorBound 112 396 594 71.1 802 883 919 944 975 1000
% Stringer

Bound 193 684 1026 122.8 1386 1526 1588 1632 168.5 1729
CPU Time

(Seconds) 00 21 29 50 73 107 224 287 822 1074

J = 100 Distribution

# of Clusters 1 2 3 4 5 6 7 8 9 10
Mult. Bound

(1000's) 08 18 51 69 84 92 97 98 na na
% Unclustered

Error Bound 82 184 520 704 857 939 990 1000 na na
% Stringer

Bound 18.1 409 1156 1568 1909 209.1 2205 2227 na na
CPU Time

(Seconds) 00 03 130 127 185 232 413 388 na na

J Distribution

# of Clusters 1 2 3 4 5 6 7 8 9 10
Mult. Bound

(1000's) 08 18 33 4.1 4.9 5.3 56 58 na na
% Unclustered

Error Bound 137 310 58s 707 845 914 966 1000 na na
% Stringer

Bound 276 62.1 1138 1414 169.0 1828 193.1 2000 na na
CPU Time

(Seconds) 00 02 93 99 82 149 109 142 na na
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TABLE 6

Comparison of the Lower Multinomial Bound for Clustered Errors and the Stringer Bound
(Sample Size = 100, Population Size = 1,000,000, Confidence Level = 95%, Number of Clusters = 6)*

Multinomial
Modified Bound asa
Number Multinomial Stringer Percent of CPU
of Bound Bound Stringer Bound Time
Distribution Errors (1000°s) (1000’s) (%) (seconds)
J 15 84 53 158.5 364
20 120 83 1446 1554
25 144 116 124.1 159.8
J-100 15 176 108 163.0 66.0
20 213 142 150.0 134.0
25 28.7 225 1276 229.8
Unimodal 15 279 209 133.5 1225
20 377 309 1220 466.7
25 447 41.6 107.5 1716
Uniform 15 47.1 389 121.1 86.1
20 658 513 1148 1724
25 79.6 76.5 104.1 1299

*Five clusters are used to obtain modified multinomial bounds for the 25 error cases.

Findings

The results presented in Tables 4 and 5 demonstrate the effectiveness of the
clustered lower multinomial bound when there are ten or fewer errors in the sample.
Even when only four clusters are used, the lower multinomial bound is larger (less
conservative) than the Stringer bound in all cases. Use of more clusters improves the
comparative performance of the lower multinomial bound still further. However, for a
given number of clusters, as the number of sample errors increases the relative gain by
the clustered lower multinomial bound over the Stringer bound decreases rapidly. For
instance, the use of five clusters for 6 and 10 errors that are uniformly distributed
yields lower multinomial bounds that are 151% and 127.5% of the Stringer bounds,
respectively.

The results for 15 and 20 errors and six clusters and for 25 errors and five clusters in
Table 6 indicate that the clustered multinomial bound continues to be comparatively
effective for larger numbers of errors. Indeed for the 20-error cases, the lower
multinomial bound is at least 114.8% and as much as 150% of the Stringer bound and
for the 25-error cases the ratio varies from 104.1% to 127.6%.

At the present time, computer processing time is too great for an economical
application of the lower multinomial bound for more than 25 sample errors grouped
into a sufficiently large number of clusters so that substantial gains over the Stringer
bound can be achieved. The CPU time required for the lower multinomial bound in all
cases studied exceeds that for calculating the upper bound, often by a factor of two or
three. One reason is that the number of search iterations required tends to be larger for
obtaining the lower bound than for obtaining the upper bound. Consequently the
implementation of the lower multinomial bound model is not as practical for as large a
number of sample errors as is the implementation of the upper bound model.

Summary

In this paper a methodology has been developed that allows the determination of
lower multinomial bounds for the total zrror amount in an accounting population
when there are up to 25 sample errors. The development of the methodology for the
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lower multinomial bound has been in terms of the determination of a lower confidence
bound on the total overstatement error, but the determination of a lower confidence
bound on the total understatement error is also possible. The information derived from
a lower bound is necessary for determining the amount of adjustment required to be
made in an account, tax return, or contract settlement in many public and private
auditing situations.?

8The authors wish to thank the Departmental Editor and the referees for helpful comments and
suggestions.
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