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Legislators will never be economists, and they
will always work on economic theory of one
kind or another. They will quote and apply
such principles as seem to serve their turn ….
Let us suppose there were a recognised body
of economic doctrine the truth and relevancy
of which perpetually revealed itself to all.
Economics might even then be no more than
a feeble barrier against passion, and might
afford but a feeble light to guide honest enthu-
siasm … and the roughly understood dicta
bandied about in the name of Political Econ-
omy would at any rate stand in some relation
to truth and to experience, … instead of being
… a mere armoury of consecrated paradoxes
that cannot be understood because they are
not true. Excerpt from P.H. Wicksteed, Pres-
idential Address to Section F of the Royal
Economic Society, Birmingham Economic
Journal (1914).

Agriculture is one of the most protected
and regulated industries in the modern global
economy. In most cases, at least in devel-
oped economies, protection largely serves to
transfer economic welfare from taxpayers
to producers, and to a certain extent, to
consumers. The agricultural economics pro-
fession has a very long history of undertaking
empirical analysis of these policies. Such
analysis, on rare occasions, may even guide
or modify the form, direction, and scope
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of the policy. It would be naive to suggest
that policymakers are uninformed about the
impacts and beneficiaries of agricultural poli-
cies in the absence of such analysis. Likewise,
casual observation certainly suggests that
the leverage exerted by empirical research
in the policy formation process is minimal
in most cases. However, this is not always
true and applied economists have an ethical
obligation to provide our own insights about
the effects of policies, even if we ourselves
are the primary consumers of such research.

In this address, I want to focus on cer-
tain aspects of policy analysis that I believe
merit contemplation by applied economists
working within the empirical realm. My cov-
erage of topics is neither comprehensive nor
representative of the most important pol-
icy issues, since importance is determined
to a large degree by opinion. The opinions
presented here are my own and have been
garnered over several years of consuming
the outstanding work of my professional
colleagues, teachers, collaborators, and stu-
dents. They also reflect my own particular
interests. I have chosen to characterize this
body of work in terms of “The good, the bad,
and the ugly.” The title of that iconic movie
(one of the best ever made in my opinion)
has become a modern colloquialism defined
by Wikepedia as “An idiomatic expression
… used when describing upsides, downsides
and the parts that could, or should have been
done better, but were not.” Though perhaps
overused, the expression seems particularly
well-suited for describing the current state
of empirical policy analysis. A wealth of
such analysis exists and more is produced
every day. However, among the good is also
bad and, in some cases, an ugly side to our
research often lurks beneath the surface.

There are three fundamental points that I
hope to address in this brief essay. First, an
essential role exists for applied policy analysis
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in agricultural economics. The earliest empir-
ical analyses largely addressed agricultural
economics topics. Our research is often con-
tradictory and is always wrong in some sense.
That is, our empirical depictions of the natu-
ral world are always abstract representations
of reality that are based upon a number of
stated or unstated assumptions and main-
tained hypotheses. Our research may have
little traction with most policymakers, though
as I point out, there are certainly important
examples where empirical research plays a
very important role in shaping and directing
policy (and, in the process, in the allocation
of billions of dollars in taxpayer outlays).
Second, I believe that we often stop short of
providing important empirical estimates that
play a critical role in the interpretation of our
research. Policy positions are often expressed
with the utmost degree of confidence, even
when such positions are based upon empir-
ical estimates that may be predicated upon
faulty or incomplete inference or, in some
cases, on no inference at all.

Finally, I have become increasingly con-
cerned with the roles that dogma, narrow
ideology, and an arrogance toward opposing
views have assumed in our discipline. The
famous statistician George E.P. Box is often
quoted for having stated that “All models
are wrong, but some are useful.” He also
stated that: “Since all models are wrong the
scientist cannot obtain a ‘correct’ one by
excessive elaboration. On the contrary fol-
lowing William of Occam he should seek an
economical description of natural phenom-
ena. Just as the ability to devise simple but
evocative models is the signature of the great
scientist so overelaboration and overpara-
meterization is often the mark of mediocrity,”
(Box 1976).

I hope to make this address forward-
looking rather than retrospective in nature.
To this end, I combine topics that many may
see as only loosely connected. This may
indeed reflect my own apophenic tendencies,
though the connections are apparent to me
and indicate great potential for policy analy-
sis and improvement through the application
of newly-developed econometric techniques.

I attempt to illustrate these points with
examples from contemporary agricultural
policy analysis. In particular, I draw upon
the federal crop insurance program, which
has become the primary mechanism of sup-
port to agricultural producers in the United
States and is increasing in prominence as

a policy instrument throughout the world.
The federal crop insurance program is an
example of a situation where data and proper
empirical analysis can actually be used to
shape and direct policy. This is largely due
to a progressively-minded agency (the Risk
Management Agency) and a reliance on
empirical analysis (warts and all) in setting
policy parameters. I also hope to make the
point that we often stop short of recognizing
the fragility of our empirical estimates and in
communicating their potential shortcomings.
This includes reporting and discussing such
basic things as confidence intervals, pre-test
estimation, and a clear accounting of implicit
assumptions.

Finally, I have chosen the ongoing debate
over identification and “quasi-natural exper-
iments” as a case where narrow thinking
and a dismissive attitude toward alternative
approaches has, in my opinion, damaged the
progress of research. The points often made
in this debate are fundamentally sound and
largely unassailable. However, the absolute
confidence with which they are sometimes
expressed is not. My basic conclusion is that
there is ample room for divergent approaches
toward empirical research. No single method
is absolutely preferred to any other since all
have strengths and shortcomings. Progress in
our profession is largely based upon criticism
from our peers and colleagues. However, the
absolute opinions that sometimes underlie
such criticisms can impede the progress of
knowledge by dismissing large bodies of
research based upon alternative approaches.

The Good

Like so many other things, the simple fact is
that our policy analysis toolkit is growing at
an exponential rate. So much of this is driven
by the astounding increases in computational
power, techniques, and data availability and
storage. “Big data” continues to grow in
prominence and the sources and use of huge
data sets will undoubtedly have important
applications to policy analysis. Rapid tech-
nological developments in remote sensing,
precision agriculture, and passive data collec-
tion methods are occurring at a rapid pace
and we are on the cusp of having a whole
new realm of information for evaluating
policy issues. Policymakers are also certainly
doing their part in providing a never-ending
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and constantly changing set of policy ques-
tions that merit analysis. Leontief (1971)
noted that “The spectacular advances in com-
puter technology increased the economists’
potential ability to make effective analytical
use of large sets of detailed data.” One can
only wonder what he would think of today’s
computational resources, which are many
orders of magnitude greater than what was
available in 1971.

George Stigler (1976) wrote that “Eco-
nomists exert a minor and scarcely detectable
influence on the societies in which they live.”
Blinder (2006) noted that “The market for
economic advice is one in which supply
most emphatically does not create its own
demand,” and that “Politics regularly makes
a hash out of economic policy.” Thus, one
must often conclude that empirical policy
analysis largely serves our own, narrow inter-
ests within the profession. We produce for
each other and our discoveries rarely result
in actual changes to policy. I would argue,
however, that this is not always true in agri-
cultural policy analysis. I have always been
puzzled by the fact that, as government sub-
sidy programs go, the farm bill represents
one of the biggest and most interesting public
policies and yet seems of limited interest out-
side of our own narrow professional sphere
of influence. A glance at any citation index
shows many empirical papers evaluating pro-
grams that are minor when compared to the
trillion dollar omnibus farm legislation.

Agricultural policy developments are occ-
urring in areas that are particularly amenable
to and dependent on empirical analysis. Crop
insurance, which depends upon empirical
analysis for determining such important pol-
icy parameters as premium rates, expected
yields, levels of coverage, and so forth, was
further expanded by the 2014 Farm Bill
and now is the primary farm safety net and
subsidy program. This included the authoriza-
tion of “shallow loss” programs that further
reduce insurance deductibles by raising
coverage levels. The leadership of the Risk
Management Agency that administers this
program has actively reached out to empir-
ical analysts in academia, industry, and in
other agencies to assist in developing new
techniques that can improve the accuracy of
insurance programs while reducing taxpayer
costs. As I discuss in greater detail below, the
extent to which most agricultural policy is
actually guided or dependent upon the out-
put of empirical research is an open question.

However, there is little doubt that the federal
crop insurance program has certainly been
shaped by our profession.

Between 2009 and 2013, federal costs asso-
ciated with the program averaged $8.4 billion
each year, and the Congressional Budget
Office estimates the ten year cost of crop
insurance in the 2014 Farm Bill to exceed $84
billion. With such a significant allocation of
taxpayer resources, I am reminded of Ronald
Coase’s observation that “… if an economist
can delay by a week the adoption of a pol-
icy that will decrease national income by a
present value of $100 million—and that is
such a small policy!—he will have saved soci-
ety twice his lifetime salary, and his teaching
services will have been thrown in for free,”
Stigler (1976). This is a self-serving view, but
such huge budgetary allocations on programs
that demand empirical analysis certainly pro-
vides ample scope and opportunity for our
own empirical analysis to generate significant
societal welfare gains.

This does, however, raise a related point
of controversy and dilemma. Most agricul-
tural economists are quick to acknowledge
the inefficiencies, distortions, and welfare
losses associated with farm programs. Stigler
(1976) noted, with a trace of sarcasm, that
“Evidence of professional integrity of the
economist is the fact that it is not possible to
enlist good economists to defend protection-
ist programs.” The same can be said of “good
agricultural economists” and farm policy.
Yet, many of us (this author included) under-
take empirical policy analysis that serves
to improve, extend, or perpetuate certain
aspects of farm programs. This is sometimes
done for purely venal purposes and in other
times it may be a response to the particular
politics of a given situation. I would argue
that this does not necessarily represent a
betrayal of our core beliefs, but rather reflects
realistic self-interest, as well as the fact that
there is ample room for welfare-improving
analysis that accepts the fact that these pro-
grams exist and likely will continue to exist in
spite of any strident protests to the contrary
that may emanate from the academic com-
munity. I believe that farm subsidies usually
generate deadweight losses. At the same time,
I am fully aware that this belief is largely
irrelevant to the future course of policy, and
that there remains an important role for
analysis to improve and inform policy.

Policymakers do not need the empirical
insights of agricultural economists to be
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made aware of who gains and loses as a result
of specific agricultural programs. On the con-
trary, legislators are keenly aware of the costs
and benefits of their own policy actions and,
congressional rhetoric notwithstanding, most
certainly undertake those policy actions that
best serve their own political self-interests.
Recognition of these facts does not diminish
the importance of our empirical policy anal-
yses and our obligation to evaluate, critique,
and potentially modify the direction of farm
policy remains essential.

The History of Agricultural Policy Analysis

In his 1971 Presidential Address to the Amer-
ican Economic Association, Wassily Leontief
(1971) described agricultural economics in
glowing terms: “An exceptional example of
a healthy balance between theoretical and
empirical analysis and of the readiness of
professional economists to cooperate with
experts in the neighboring disciplines is
offered by Agricultural Economics as it dev-
eloped in this country over the last fifty years
… agricultural economists demonstrated the
effectiveness of a systematic combination
of theoretical approach with detailed fac-
tual analysis. They also were the first among
economists to make use of the advanced
methods of mathematical statistics. However,
in their hands, statistical inference became a
complement to, not a substitute for, empirical
research.”

From the very beginning, statistical and
econometric analysis was directed toward
solving agricultural policy problems.1 Most
observers trace the roots of econometric
policy analysis to the political arithmeticians.
William Petty (1691) empirically studied a
range of macroeconomic issues, including
measurement of income, population, labor,
and capital. Graunt (1662) worked with Petty
to establish the foundations of demographics.
Stigler (1954) attributes one of the first sta-
tistical evaluations of a demand schedule to
the work of Davenant, who in 1698 published
corn prices and corresponding consumption
quantities. Geweke, Horowitz, and Pesaran
(2006) note that this early work strived to
develop a unification of theory and empirical
measurement much in the spirit of Newton’s
laws of physics.

1 My brief summary of empirical policy analysis depends heavily
on the review papers of Pesaran (1990), Geweke, Horowitz, and
Pesaran (2006), Maddison (2007), Stigler (2002), and Louçã (2007).

Agriculture and policy together have
played a central role in the development of
empirical economics. Stigler (1954) notes that
much of the early empirical work involved
household budget analysis. Engel (1857)
used his analysis of household budgets to
make a social policy recommendation—“The
optimum social structure requires that the
distribution of laborers among industries be
proportional to the distribution of expendi-
tures,” (Stigler 1954). The empirical science
was further advanced by the development
of modern statistics. In the late 19th cen-
tury, Galton, Edgeworth, Pearson, Jevons,
and Yule developed methods for correla-
tion analysis, curve-fitting, and statistical
inference.

Pesaran (1990) notes that Henry Moore
(1914, 1917) was a pioneer in the establish-
ment of statistical estimation of economic
relationships. Moore’s followers included
many of the founders of modern econo-
metrics—Paul Douglas, Henry Schultz,
Holbrook Working, Mordecai Ezekiel, and
Fred Waugh—all names familiar to those
working in applied agricultural economics.
Louçã (2007) notes that the U.S. Bureau
of Agricultural Economics—the precursor
to today’s Economic Research Service—
was the reference institution for statistical
research. The 1915 founding of the National
Agricultural Economics Association and
subsequent 1919 founding of the American
Farm Economics Association, with Henry C.
Taylor as its first president, also enhanced
the development of agricultural policy
analysis.

The modern era of econometric policy
analysis has its foundations in the pre- and
post-war activities of the Cowles Commis-
sion. Pesaran (1990) also notes that the
founding of the Econometric Society and
the Department of Applied Economics at
Cambridge also played an important role in
establishing the combination of economic
theory, data, statistics, and computing tech-
niques to form the discipline of econometrics.
As I discuss in much greater detail below,
work by Haavelmo (1944) and Koopmans,
Rubin, and Leipnik (1950) undertaken with
the Cowles Commission addressed many
aspects of the problem of identification that
has served as a pivot point for contemporary
criticisms of structural models. Current crit-
icisms offer few original insights beyond the
foundational work undertaken by the Cowles
Commission.
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Dependence Modeling and the Federal Crop
Insurance Program

As I have noted above, policymakers are
certainly doing their part to keep government
and academic researchers engaged in the
empirical evaluation of agricultural policies.
The most obvious example is perhaps the
federal crop insurance program. U.S. poli-
cymakers have committed over $84 billion
to this program over the next ten years. The
program was first established in 1938 as a
yield protection form of subsidized insurance,
and it played a minor policy role until pas-
sage of the Federal Crop Insurance Act of
1980 (PL 96-365), which greatly expanded
the scope and spread of crop insurance cov-
erage. The program has been modified and
expanded several times since the 1980 Act,
and now provides yield and revenue risk cov-
erage that exceeds $120 billion in most years.
The program continues to expand and to take
on new forms of coverage. These changes
have raised a number of new empirical
challenges to policy modeling.

Beginning in 1996, a new form of crop
insurance that provided coverage against
multiple, dependent sources of risk was intro-
duced. This insurance initially took the form
of “Crop Revenue Coverage” (CRC), which
was followed by “Revenue Assurance” (RA).
It is important to point out that the inno-
vators behind these developments were
agricultural economists—primarily Art Barn-
aby and Bruce Babcock. These economists’
empirical policy efforts laid the founda-
tions for what has become the primary form
of crop insurance coverage in the United
States—revenue insurance. I believe the
introduction and subsequent expansion of
crop revenue coverage is an important mile-
stone in the development of U.S. agricultural
policy. The 2014 Farm Bill is primarily con-
structed around a suite of revenue insurance
types of programs. Figure 1 illustrates the
prominence of revenue insurance in terms of
its liability share of the total insurance port-
folio. Revenue coverage quickly accounted
for the largest share of participation in the
federal program and now represents over
90% of the total liability in the program.
Figure 1 also shows how the 2014 book of
insurance, which accounted for $109 billion
in total liability, was allocated among the dif-
ferent plans. The important fact is that over
88% of the total value insured was under
a single program—“Revenue Protection”
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Figure 1. Increasing prominence of revenue
coverage

(a) Proportion of Total Liability as Revenue Coverage
(b) 2013 Liability by Crop Insurance Plan (YP = Yield Protection,
RP = Revenue Protection, RPHPE = Revenue Protection with Harvest
Price Exclusion, AYP = Area Yield Protection, ARPHP = Area
Revenue Protection with Harvest Price Exclusion, ARP = Area
Revenue Protection).

(RP). Revenue protection is a variant of
revenue insurance where a revenue guar-
antee (established by a proportion of the
product of expected yields and expected
prices) is insured, and decreases in yields
and/or prices can trigger an indemnity. Any
lost yields are indemnified at the higher of
the expected price or the actual price at
harvest.

In its role as the most prominent of U.S.
agricultural policies, revenue insurance places
some rather unique demands on the empir-
ical analysis needed to derive important
program parameters. In particular, revenue
is determined by the product of two depen-
dent random variables—yield and price. As
empirical scientists, we have come to define
this dependence largely in linear terms, typ-
ically represented by correlation or linear
regression parameters. Galton introduced the
notion of linear correlation in 1885, and this
narrow idea of dependence has dominated
our thinking ever since. Dependence is a
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much broader concept than this, however,
and it is key to understanding multivari-
ate ordering and modeling. I want to focus
on empirical models of dependence as an
example of a situation where modern empir-
ical tools can be applied in innovative ways
when modeling agricultural policy issues.
The same discussion could focus on modern
time-series techniques, structural and reduced
form modeling, and many other aspects of
the leading edge in quantitative techniques.
I have chosen dependence modeling in light
of its central role in empirical models of our
primary agricultural policy instrument—crop
revenue insurance. This is an active area of
methodological research that is enjoying
rapid innovations and it also offers important
methodological extensions to a wide range of
other empirical issues of importance to prac-
ticing agricultural economists. A wide range
of empirical issues arise in crop insurance,
including the pricing of coverage, portfolio
design, and reinsurance mechanisms. I chose
this particular emphasis with the full realiza-
tion that the connections to the “good, bad,
and ugly” of policy analysis may only be obvi-
ous to me. However, I hope to convince you
that dependence modeling exemplifies the
rapidly developing opportunities for apply-
ing state-of-the-art analytics to real-world
policy issues of importance to contemporary
agricultural economics.

Mari and Kotz (2001) note that “Depen-
dence permeates our Earth and its inhabi-
tants in a most profound manner … examples
of interdependent meteorological phenom-
ena in nature, interdependence in medical,
social and political aspects of our existence,
not to mention economic structures, are too
numerous to be cited individually.” It remains
common to hear dependence discussed
solely within the context of correlation, even
though we have long realized that the con-
cepts are distinct and confusion of the issues
can lead to huge implications for economic
relationships in the real world.2

Mari and Kotz (2001) also note that
“Casual readers … are often under the
impression that to establish practical inde-
pendence (or, more specifically, an absence
of meaningful relationships among the vari-
ables), it suffices to verify that the correlation

2 As students in any introductory statistics class are taught, a
lack of dependence implies a lack of correlation, but the opposite
is certainly not always true.

coefficients are, effectively zero … there has
been a considerable degree of harm caused
by this attitude.” Bayes (1763) noted that
“Events are independent when the happen-
ing of any one of them does not [n]either
increase [n]or abate the probability of the
rest.” This definition of independence is
one that remains appropriate today. How-
ever, empirical approaches toward modeling
dependence have developed significantly
over the last several decades. The conceptual
ideas are not necessarily new, with many
of the more salient points being traced to
Sklar’s (1959) theorem. However, much as
our regression toolkit expanded to recognize
linear models as a special case of nonlinear
relationships in the 1970s and 1980s, so has
our recognition of linear correlation as a spe-
cial case of dependence. Figure 2 illustrates
a variety of joint distributions, including sev-
eral that have zero correlation but strong
nonlinear dependence.

For multivariate normally-distributed
variables, Pearson’s linear correlation view
of dependence works well. However, many
important aspects of dependence are not
fully captured in our conventional thinking.
Recall that, if the covariance of two non-
degenerate random variables X and Y
(cov(X , Y) = E(XY) − E(X)E(Y)) is zero,
we know that the variables are uncorrelated
and that E(XY) = E(X)E(Y). This concept
is often communicated through the use of
the linear, Pearson correlation coefficient
ρ = cov(X , Y)/

√
var(X)var(Y), or equivalen-

tly through an ordinary least squares esti-
mate of β in Y = α + βX , which is given by
β̂ = ρ̂σ̂Y/σ̂X . However, independence imp-
lies that FX (X)FY (Y) = FX ,Y (X , Y), where
F(·) represents the cumulative distribution
function. It is obvious that independence
implies a lack of correlation but that the
converse is not true since correlation only
considers linear relationships.3 In terms
of joint distribution functions, departures
from multivariate normality may lead to a
divergence in the concepts.

When one recognizes this wider view
of dependence, the conventional use of a
Pearson correlation coefficient as a mea-
sure of dependence is no longer sufficient.

3 Recognition of this fundamental point is not new. In his 1918
text, Introduction to Mathematical Statistics, West (pages 84–85)
noted that “if the regression curve is of a certain shape, the
value of ρ would be very small even though practically perfect
correlation [dependence] exists.”
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Figure 2. Correlation vs. dependence

Source: Generated using R Code authored by Denis Boigelot, available at: http://commons.wikimedia.org/wiki/File:Correlation_examples2.svg.

Joe (1997) discusses a number of alterna-
tive conceptual approaches to representing
dependence. A non-exhaustive list includes
quadrant/orthant dependence, association,
increasing or decreasing dependence, and
monotone dependence. Positive quadrant
dependence exists if Pr(X1 > a, X2 > b) ≥
Pr(X1 > a)Pr(X2 > b). Stochastic increasing
positive dependence, which implies that Y is
likely to take on larger values as X increases,
occurs when Pr(X > x|Y = y) ↑ y ∀x.

At this point, one must wonder how we
went from a discussion of agricultural policy
and crop insurance to a digression on con-
cepts of correlation and dependence. I hope
to convince you that this very distinction
between correlation and dependence has a
critically important role in the current agri-
cultural policy situation. Assumptions made
about the nature of dependencies among
multiple sources of risk, such as yields and
prices, in the empirical modeling of policy
parameters have significant implications for
the resulting values of the parameters and
operation of the program. I believe this issue
merits the attention that I am devoting to
it here because of the increasingly promi-
nent role that subsidized crop insurance
plays in U.S. agricultural policy, as well as in

the policy actions of legislators around the
world.

Though the distinctions between cor-
relation and dependence have long been
recognized, empirical methods that address
the differences are a relatively modern devel-
opment. Sklar (1959) introduced the notion
of copula functions, which join together one-
dimensional distribution functions to form
multivariate distribution functions. Copu-
las represent an integral tool for modeling
dependence relationships that allow us to
distinguish between dependence relation-
ships and models of univariate marginal
distributions. I want to highlight copulas as
one of the many “good” aspects of contem-
porary empirical policy modeling. Much of
the work on copulas has been motivated by
their applicability to issues in risk manage-
ment, insurance, and financial economics (see,
among others, Rodriguez 2003; Cherubini,
Luciano, and Vecchiato 2004; Hu 2006;
Patton 2006; and Jondeau and Rockinger
2006). In the empirical literature, copula
models have been used extensively in the
design and rating of crop revenue insurance
contracts, where the inverse correlation of
prices and yields plays an important role in
pricing revenue risk.

http://commons.wikimedia.org/wiki/File:Correlation_examples2.svg
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A p-dimensional copula, C(u1, u2, . . . , up),
is a multivariate distribution function
in the unit hypercube [0, 1]p with uniform
U(0, 1) marginal distributions. As long as
the marginal distributions are continuous,
a unique copula is associated with the joint
distribution, F , that can be obtained as:

C(u1, u2, . . . up)(1)

= F(F−1
1 (u1), . . . , F−1

p (up)).

In a similar fashion, given a p-dimensional
copula, C(u1, . . . up), and p univariate dis-
tributions, F1(x1), . . . , Fp(xp), equation (1)
is a p-variate distribution function with
marginals F1, . . . Fp whose corresponding
density function can be written as

f (x1, x2, . . . xp) = c(F1(x1), . . . , Fp(xp))(2)

×
p∏

i=1

fi(xi).

Provided that it exists, the density function of
the copula, c, can be derived using equation
(1) and marginal density functions, fi, as
follows:

(3) c(u1, u2, . . . up) = f (F−1
1 (u1), . . . , F−1

p (up))
∏p

i=1 fi(F−1
i (ui))

.

There are several parametric families of cop-
ulas applied in the literature. Two of the most
commonly used copula families are elliptical
copulas and Archimedean copulas. Gaussian
and t-copulas are examples of elliptical copu-
las, while the Clayton and Gumbel are among
Archimedean copulas.

Copula models are especially well-suited
to considering tail behavior in that they allow
for more flexible characterizations of tail
dependence. Tail dependence pertains to the
dependency relationships among variables
taking extreme values. The coefficients of
upper tail dependence, λU , and lower tail
dependence, λL, are defined as follows:

λU = lim
u→1−

P(X2 > F−1
X2

(u)|X1 > F−1
X1

(u))(4)

λL = lim
u→0+

P(X2 ≤ F−1
X2

(u)|X1 ≤ F−1
X1

(u)).(5)

These coefficients of tail dependence, λU
and λL, can be expressed as a function of a

copula as:

(6) λU = lim
u→1−

1 − 2u + C(u, u)

1 − u

and

(7) λL = lim
u→0+

C(u, u)

u
.

Different copulas allow for differing degrees
of tail dependence.

My own thinking on dependence and
eventual introduction to copula models was
stimulated by a simple observation that was
apparent to everyone working in crop insur-
ance. Conventional wisdom recognized that
the spatial correlation of yields tended to
differ in years of extreme weather stress.
Common sense and anecdotal observation
revealed that extreme weather events such
as drought tended to impact wide geographic
areas. This observation was often commu-
nicated in terms of the “systemic” nature of
agricultural risks. The geographic correlation
of yields represents the same basic relation-
ship as the correlation of yields and prices.
Prices are determined in an aggregate, inte-
grated market. The greater is the degree of
spatial correlation among yields at a disag-
gregate level (e.g., the county), the greater
will be the correlation of yields and prices. In
2001, I examined this phenomenon by con-
sidering the relationship between geographic
distance (defined as the great-circle distance
between county centroids) and the linear,
Pearson correlation coefficient (Goodwin
2001). I want to emphasize that this obser-
vation was by no means original to me, but
rather was something that all economists
working in crop insurance were familiar
with, even if many of us did not know the
dependence concepts that underlie the obser-
vations. I have updated the calculations I
made several years ago.

Figure 3 presents linear, Pearson cor-
relation coefficients among detrended,
county-level corn yields taken from Illi-
nois, Iowa, and Indiana over the 1960–2013
period and the distances (in miles) between
the centroids of each county.4 The diagrams
include a quadratic regression of correlation

4 Yields were detrended using a nonparametric, generalized
additive trend model. Deviations from trend were recentered
to 2013–equivalent values by adding the deviations to the 2013
predicted yields for each county.
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(a)

(b)

Figure 3. Corn yield spatial correlation and
distance: IL, IN, and IA detrended yields,
1960–2013

(a) Linear Correlation and Distance: “Normal” Years
(b) Linear Correlation and Distance: “Drought” Years.

on distance. I defined “extreme” stress years
as any year in which the average negative
deviation from trend among all counties
exceeded 5 bushels per acre. The analysis
illustrates the important distinction between
correlation and dependence. In years that
experienced significant growing stress, cor-
relation tended to die out much slower over
distance than was the case during “normal”
(non-stress) years. In normal years, spatial
correlation approached zero when the dis-
tance between counties was about 200 miles.
However, in extreme stress years, the decay
of correlation across space was much slower,
requiring about 400 miles to approach zero.

The suggestion arising from this simple
observation is that correlation tends to be
“state-dependent,” or that dependence is
non-constant across the marginals. These
relationships came to be formalized in terms
of copulas and models of dependence. The

research was, interestingly, given a great
boost as a result of the financial crisis of the
latter part of the 2000s and the concomitant
realization that assumptions of constant,
linear correlation that were made in pricing
derivative assets such as mortgage default
guarantee swaps tended to significantly
understate the “tail-risk” or probabilities of
catastrophic losses. The same implications
apply to crop revenue insurance contracts.

The finding that yields tend to be more
strongly dependent (i.e., more positively
correlated) during periods of yield short-
falls suggests that a copula function that
captures this negative tail dependence may
be suitable. To this end, I chose two rep-
resentative counties (McClean County,
Illinois, and Kossuth County, Iowa) and fit
a Clayton copula to the detrended corn
yield data using standard maximum likeli-
hood estimation techniques. Nonparametric
marginals were used, thereby sidestepping
issues related to fitting marginal parameters.5
The resulting copula parameter estimate was
θ = 0.8032 with an associated standard error
of 0.2583. The copula is illustrated for simu-
lated standard normal marginals in figure 4.
The contour plot represents the joint dis-
tribution of yields and illustrates the lower
tail-dependence predicted by the preceding
evaluation of correlation and distance.

Figure 5 illustrates the different depen-
dency structures that are implied by
alternative copula specifications. As is true
of any other econometric specification, there
is no limit to the types of copula functions
that can be specified, as long as the require-
ments necessary to represent a multivariate
probability distribution function are satisfied.
There are, of course, a limited number of
copula families that have been identified in
the applied literature.6

The distinction between linear Pearson
correlation and dependence has an anal-
ogous interpretation in considerations of
linear and nonlinear regression models. As I

5 A nonparametric marginal cumulative distribution function
(CDF) is representing using the empirical quantile (rank) CDF.
Using the nonparametric, empirical marginals is preferred in
that the asymptotic distributions of the copula estimates are not
affected by the first-stage estimation of the marginals, as has been
shown by Chen and Fan (1996). Further, Charpentier, Fermanian,
and Scaillet (2007) have noted that copula estimates based upon
the empirical CDFs may be preferred because this approach can
lead to smaller estimation variations compared to those based
on the true marginals, even if known.

6 See Nelsen (2006) or Joe (1997) for detailed discussions of
alternative copula specifications.
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Clayton Copula (θ=0.0832) with Standard Normal Marginals

McClean County IL Yields
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Figure 4. Clayton copula fit via maximum
likelihood estimation to corn yields for
McClean County, IL and Kossuth County, IA

have noted above, the ordinary least squares
estimate of the slope parameter in a simple
regression model is equivalent to a scaled
version of the Pearson correlation coeffi-
cient (β̂ = ρ̂σ̂Y/σ̂X ). Thus, copula models of
dependence that allow for departures from
symmetric distributions with constant linear
correlation and zero tail dependence may
also be used to model nonlinear relationships
among variables. Of course, such a specifi-
cation is entirely equivalent to a parametric
specification that incorporates a specific
nonlinear (or linear) relationship among
random variables. That is, the choice of a
specific copula model is just like any other
specification problem in that the particular
model chosen necessarily defines the nature
of the relationship among variables, at least
within the parameter space permitted for
each copula model. For example, the Clayton
copula model illustrated in figure 4 is capable
of representing varying degrees of lower tail
dependence (depending on the parameter
estimate) but necessarily imposes zero upper
tail dependence. Recalling Dick King’s 1979
AAEA Presidential Address (King 1979) on
“Choices and Consequences,” every specifi-
cation choice necessarily imposes restrictions
on the economic relationship being mod-
eled, and one must always be aware of the
consequences of such restrictions.

Such modeling of dependence represents
only one avenue by which newly-developed

methods drawn from econometrics and statis-
tics can be brought to bear on important
policy issues. Though my opinion is cer-
tainly shaped by my own interests, I believe
empirical work that addresses specific pol-
icy problems in the design and operation of
crop insurance contracts is one of the most
important areas at present where applied
and agricultural economists can contribute
to real-world policy issues. This research has
the potential to impact billions of dollars in
U.S. Treasury expenditures. This importance
was reinforced by changes in the 2014 Farm
Bill that further heightened the importance
of subsidized insurance programs. The RMA
has commissioned numerous studies that
address key policy issues in the program,
and these studies have resulted in important
changes in the operation of the program that
reflect the empirical modeling efforts of the
agricultural economics profession.7

A whole range of relevant policy questions
demanding empirical analysis remains. For
example, we suspect that the provision of
subsidized risk management instruments
affects the actions of growers receiving such
support and in turn is likely to provoke dis-
tortions in what is produced and how it is
produced. Yet despite an accumulation of
empirical research results addressing these
issues, little consensus exists about the nature
and magnitude of such distortions. A fun-
damental paradox of subsidized insurance
exists in the fact that participation in such
programs always requires substantial subsi-
dies, in spite of the fact that our conventional
theory suggests that, under symmetric infor-
mation, risk-averse agents will fully insure
at actuarially-fair premium rates. As Hazell,
Pomareda, and Valdès (1986) note: “… the
fact is that, with few exceptions, farmers in
both developed and developing countries
have been unwilling to pay the full cost of all-
risk crop insurance … most all-risk programs
remain public sector schemes … their man-
agement is often subject to political pressure
regarding premiums and coverage and the
programs are often used as a mechanism to
transfer income to farmers.”

The potential for private insurance pro-
grams to successfully exist alongside such
heavily-subsidized public programs remains

7 See, for example, the comprehensive actuarial review of Coble
et al. (2010) and the overview by LaFrance, Pope, and Tack (2012)
of work undertaken by agricultural economists in response to
requests for proposals by the RMA.
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Simulated Frank Copula (5)
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Simulated Clayton Copula (3)
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Simulated Gumbel Copula (5)
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Simulated Joe Copula (5)
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Figure 5. Dependence Structures Implied by Different Copulas

a very important issue. Is the lack of private
insurance contracts a reflection of crowd-
ing out by government subsidies or does it
represent some perceived market failure?

These questions lead to other empirical
puzzles about how subsidies affect behavior.

Do decoupled transfers affect production?
Much has been written on the topic but the
results remain conflicting. How important are
risk preferences, wealth effects, and capital
market imperfections in shaping produc-
ers’ response to risk and subsidies? The
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questions are indeed endless and the policies
are themselves of a nonstationary nature.
Policy changes quickly reduce the relevance
of existing empirical research and this is
perhaps nowhere more apparent than in the
federal crop insurance program, which has
undergone enormous changes over a short
period of time.

The Bad

Along with the enormous potential for empir-
ical analysis to shape policy, there are several
aspects of our work that often fall short of
providing policymakers with all of the rel-
evant information that may be needed to
formulate effective policy. One simple fact
that my own policy work has taught me is
that policy problems often demand answers,
even when the information necessary to
adequately inform the problems is lack-
ing. Applied policy work is one example of
research that lacks the luxury of being able
to back away from messy problems where
data are lacking or the conditions desirable
for appropriate science may be compromised.
There are many research questions that we
simply do not have adequate information or
empirical data to pursue. We sidestep such
problems when the desired end result is a
publication intended to be communicated
to our peers. In contrast, policymakers do
not have this luxury and are often forced to
make compromises in order to obtain results
and implement policy. Such issues present
severe challenges to the empirical purist.
However, there remains much that can be
done to improve our own empirical analysis
in ways that better inform policy. I want to
briefly identify where some of our empir-
ical shortcomings exist and how we might
go about reforming our science to address
them.

Much empirical policy work concludes
with a summary that posits “My results differ
from the existing empirical literature and
therefore my new method or estimator is
superior.” This is common, for example, in
models of yield and price distributions, where
different density estimators are often used to
derive different premium rates. I am guilty of
this in my own work. I believe we often fall
short in terms of communicating all of the
weaknesses and maintained assumptions that
may underlie the analysis. For example, it is
common to provide estimates of premium

rates but much less common to present
confidence bands or standard error estimates
associated with such estimates. Further, many
aspects of the empirical exercise are often
ignored when making inferences. It is very
common to detrend yield data collected
over time and then to treat the detrended
yields as though they were observed without
error. It is common to pool data items that
clearly are not independent of one another.
Pre-test estimation almost always under-
lies reported results and yet the distortions
that result from such practices are rarely
considered. This is perhaps one dark side
to the very positive developments in our
computational resources—cheap computing
power has made it easy to undertake exten-
sive pre-test estimation that is almost never
acknowledged.

The N, P, and i.i.d. Problems

As I have noted, empirical policy analysis
often demands answers even when the data
are severely lacking. In the case of crop insur-
ance, the sample sizes are almost always small
and the data suffer from many shortcomings,
including unobserved dependencies and het-
erogeneity. One is almost always forced to
strike a compromise between pooling data
collected over time, cross-sectional units, or
space in order to obtain a sufficiently large
sample against the fact that such pooled
data almost always suffer from deficien-
cies that complicate inference. For example,
consider the very prominent case of esti-
mating a county-level density for corn yields
in order to derive premium rates for index
insurance plans. A very substantial body of
academic research has addressed this issue.
A shortcoming of yield data is that we only
observe a single observation annually for
each cross-sectional unit. We are forced to
either pool data across counties or to use
data collected over time. In the former case,
we know that strong spatial dependencies
exist among yields observed in the same year,
meaning that N observations provide much
less information than what would be implied
by N independent data points. In the latter
case, we are very much aware that the under-
lying technology and structure, as well as the
nature of the policies being modeled, has
undergone significant change, even across a
relatively short history.

The technology underlying corn yields
observed in 2013 is very different from that
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Table 1. Alternative Copula Estimates for McClean County, IL Corn

Copula θ1 SE θ2 SE

Gaussian −0.5291 0.0926 – –
t −0.5257 0.1065 7.7692 15.0467
Frank −3.4432 0.9315 – –
R Clayton 90◦ −0.9507 0.2829 – –
R Gumbel 90◦ −1.4754 0.1651 – –
R Joe 90◦ −1.8375 0.2649 – –
R Clayton-Gumbel 90◦ −0.0010 0.0007 −1.5642 0.1762
R Joe-Gumbel 90◦ −1.1775 0.7156 −1.4075 0.5896
R Joe-Clayton 90◦ −1.7432 0.2874 −0.2896 0.3061
R Joe-Frank 90◦ −2.1234 0.6345 −0.9639 0.0872
R Clayton 270◦ −0.9507 0.2644 – –
R Gumbel 270◦ −1.4754 0.1635 – –
R Joe 270◦ −1.8474 0.2675 – –
R Clayton-Gumbel 270◦ −0.7909 0.4524 −1.1063 0.2159
R Joe-Gumbel 270◦ −1.0010 1.9656 −1.4545 1.8660
R Joe-Clayton 270◦ −1.1292 0.3434 −0.9292 0.3360
R Joe-Frank 270◦ −6.0000 5.8025 −0.4499 0.3471

which shaped yields in 2003. Likewise, signif-
icant changes in the federal crop insurance
program have occurred over the last sev-
eral years. These changes include the shift
toward revenue coverage illustrated in
figure 1, the 1994 Crop Insurance Reform
Act, the 2000 Agricultural Risk Protection
Act (ARPA), and the substantial increases
in subsidies that resulted in participation
increasing from 10% to nearly 90% of
insurable acreage. Private insurers deriv-
ing premium rates for standard commercial
property and casualty lines such as automo-
bile insurance balance these factors in their
rating. Loss events among individual insureds
are generally independent while the safety
features on automobiles have changed dra-
matically over time. Thus, automobile poli-
cies are rated using pooled data taken from
the most recent experience.

I have referred to these circumstances
as the “N , P, and i.i.d.” problems. We are
always balancing non-independence against
structural changes. We are almost always
working with small N sample sizes, which
significantly constrains available degrees of
freedom and thereby restricts the structure of
our models (limiting us to a small P number
of parameters to characterize the problem).
Requirements for “independent and identi-
cally distributed” (i.i.d.) samples are almost
always violated. Addressing these shortcom-
ings requires that additional information be
brought to the analysis. This may take the
form of parametric restrictions (reducing P),
the gathering of more data (increasing N),

the addition of other information, such as
credibility weighting factors or institutional
knowledge, or other modifications to the
empirical model such as detrending.

A further complication pertains to the
fact that the probabilities and premium rates
of interest in crop insurance often apply
to certain rare events, which by their very
definition are likely to suffer from thin data
problems. We may want to identify the prob-
ability of a 1-in-100-year loss event. However,
given the sample sizes typically available, we
may never observe the event in our empirical
sample. Alternatively, a short sample may
mean that such an event is given too much
weight in an empirical model. Returning to
the discussion regarding tail dependence
and copulas, it is apparent that such models
are attempting to discern differences that
may only apply to tail behavior, which by
definition applies to rare events.

Consider again the problem of using
a copula model to derive premium rate
and loss-probability estimates for a typical
area-wide revenue contract. Table 1 presents
maximum likelihood estimates for a vari-
ety of copula models that are capable of
capturing the inverse dependency between
prices and yields. This particular example
uses detrended county-average yield data
for McClean County, Illinois, for the period
spanning 1960–2013. Prices are assumed to be
log-normally distributed and the dependency
relationship between yields and prices is
estimated using logarithmic returns between
the February and November quotes for a
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Table 2. Alternative Copula Estimates for McClean County, IL Corn

Copula GoF P-Value GoF Stat LLF AIC BIC

Gaussian 0.71 0.14 7.26 −12.53 −10.56
t 1.00 0.03 7.40 −10.80 −6.86
Frank 0.57 0.33 6.85 −11.70 −9.73
R Clayton 90◦ 0.48 0.50 3.85 −5.70 −3.73
R Gumbel 90◦ 0.82 0.05 8.27 −14.55 −12.57
R Joe 90◦ 0.45 0.57 8.10 −14.20 −12.23
R Clayton-Gumbel 90◦ – – 8.41 −12.81 −8.87
R Joe-Gumbel 90◦ – – 8.44 −12.88 −8.94
R Joe-Clayton 90◦ – – 8.53 −13.05 −9.11
R Joe-Frank 90◦ – – 8.27 −12.54 −8.60
R Clayton 270◦ 0.60 0.28 7.88 −13.77 −11.80
R Gumbel 270◦ 0.37 0.79 5.69 −9.37 −7.40
R Joe 270◦ 0.13 2.32 2.83 −3.66 −1.69
R Clayton-Gumbel 270◦ – – 8.01 −12.03 −8.09
R Joe-Gumbel 270◦ – – 5.69 −7.38 −3.44
R Joe-Clayton 270◦ – – 7.96 −11.91 −7.97
R Joe-Frank 270◦ – – 6.40 −8.81 −4.87

Note: GoF = Goodness of fit, LLF = Log-likelihood function.

December corn futures contract. The esti-
mated parameters are highly statistically
significant and reflect the inverse relationship
between prices and yields.

However, as is true in any empirical spec-
ification, one must have some method of
distinguishing between the alternative esti-
mates in order to determine the optimal
model. Common approaches include compar-
ing heuristic model goodness-of-fit criteria
such as the Akaike Information Criterion
(AIC) or Bayesian Information Criterion
(BIC), log-likelihood function values, and
goodness-of-fit specification tests. Table 2
presents a range of common criteria used
to select from among alternative copula
specifications. This includes test statistics
and associated p-values for a variant of the
Cramér-von Mises specification test.8 A
problem commonly encountered in applied
work is immediately obvious—different cri-
teria suggest different specifications and the
goodness-of-fit tests support each and every
specification. If all specifications are sup-
ported and various criteria suggest different
optimal specifications, one must consider
whether the alternatives result in differences
in the estimated parameters of interest—loss
probabilities and premium rates. Table 3

8 The goodness-of-fit test of Huang and Prokhorov (2014) was
applied. The test statistic requires thrice-continuously differen-
tiable functions, and thus cannot be defined for the mixture copula
models.

presents loss probabilities and associated
premium rates for revenue coverage from
each of the alternative copula specifications.
At high coverage levels, the probabilities and
rates are very similar. However, when one
moves into deeper losses in the tails of the
revenue distribution, significant differences
arise. At a 75% guarantee, the Gaussian rate
(which is actually used in rating revenue cov-
erage in the U.S. program) is almost one-half
of the largest calculated rate. The specifica-
tion preferred by the AIC and BIC criteria
yields premium rates that are almost 40%
higher than that of the Gaussian copula.

In short, new empirical methods for mod-
eling dependence show great promise in
empirical policy analysis. Alternative esti-
mates may have significant implications for
the performance of insurance programs,
especially for deep losses in the tails where
differences in the multivariate distribu-
tions are most acute. However, information
about tail behavior in the samples we com-
monly work with may be very limited,
and distinguishing the “best” model from
infinitely-many alternatives may be very
difficult.

The Ugly

One could point to any number of shortcom-
ings in our empirical practice as embodying
an “ugly” side of policy analysis. I want to
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Table 3. Example: Revenue Insurance for McLean County, IL Corn

95% 85% 75%

Copula P(Loss) Rate P(Loss) Rate P(Loss) Rate

Gaussian 42.76 4.46 18.14 1.47 4.68 0.29
t 40.81 4.21 17.05 1.50 4.49 0.35
Frank 41.84 4.58 17.85 1.65 5.18 0.42
R Clayton 90◦ 43.34 4.67 20.04 1.57 4.47 0.37
R Gumbel 90◦ 40.87 4.45 17.38 1.58 5.18 0.40
R Joe 90◦ 38.55 4.39 17.45 1.65 5.77 0.43
R Clayton-Gumbel 90◦ 40.32 4.22 17.26 1.48 4.37 0.35
R Joe-Gumbel 90◦ 39.78 4.24 17.46 1.48 4.50 0.38
R Joe-Clayton 90◦ 39.43 4.10 16.69 1.51 4.47 0.31
R Joe-Frank 90◦ 39.39 4.32 17.08 1.64 5.14 0.41
R Clayton 270◦ 39.83 4.34 17.54 1.64 5.06 0.40
R Gumbel 270◦ 43.41 4.63 18.38 1.67 4.68 0.38
R Joe 270◦ 44.01 4.70 18.90 1.54 4.81 0.41
R Clayton-Gumbel 270◦ 41.24 4.28 17.27 1.41 4.76 0.35
R Joe-Gumbel 270◦ 43.77 4.77 19.10 1.70 5.28 0.37
R Joe-Clayton 270◦ 40.25 4.21 16.56 1.51 4.82 0.31
R Joe-Frank 270◦ 41.68 4.58 17.31 1.92 5.75 0.52

focus on two specific issues that are only
loosely related and reflect my own set of
concerns regarding the current practice and
future direction of empirical policy analysis.

Sampling Variability and the Precision of
Estimated Policy Parameters

Models of dependence have become impor-
tant in agricultural policy analysis because
of the significant expansion of subsidized
risk management policy instruments that
address multiple, dependent sources of risk.
Crop revenue insurance must consider the
relationship between price and yield and the
fact that each year of experience generates
only a single observation necessarily means
that actuarial models are often forced to
work with very short samples. Further, risk
management policies are being expanded to
encompass far greater numbers of dependent
sources of risk. For example, the dairy live-
stock gross margin (LGM) insurance plan
is based upon the combination of 24 futures
contracts—12 for milk, 5 for corn, and 7 for
soybean meal. The 2014 Farm Bill mandated
development of new revenue minus cost mar-
gin plans that will address multiple sources
of risk arising from input and output prices
and production. It is not uncommon to see
complex, multivariate insurance instruments
developed using as few as 10 observations.
What is less common, however, is to see some
consideration of how the sampling variability

associated with estimates based on such small
samples may affect the precision of important
policy parameters.

To illustrate these issues, I considered a
synthetic and hypothetical insurance instru-
ment comprised of county-level revenues
and the sum of revenues for four major Illi-
nois counties.9 I considered rating models
based on a t-copula that was estimated for
sample sizes of 20 and 50 observations. I
adopted the standard approach of estimating
a nonparametric trend equation

(8) yt = g(t) + εt

and generated a sample of detrended yields
as

(9) ŷt = ŷ2013 + ε̂t .

Figure 6 illustrates the potential impacts of
small sample sizes on the resulting trend
model estimates. Panel (a) illustrates the
yield trend based on 20 randomly sampled
years, while panel (b) repeats the analysis
for the full sample of 54 observations. Note
the sensitivity of the trend estimates to sam-
ple size, and in particular to the drought
experienced in 2012.

9 These four counties (McClean, Logan, Macon, and Tazewell)
are in a common crop reporting district and thus are in close
proximity to one another. Yield and price data cover the 54-year
period spanning 1960–2013.
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I randomly sampled with replacements
from the available data, and for each repli-
cated sample detrended the yields and
estimated a t-copula. Table 4 contains a
summary of the sampling variability for the

(a)

(b)

Figure 6. Detrending? 20 vs. 54 Observa-
tions

(a) 20 Observations
(b) 54 Observations.

estimates based on sample sizes of 20 and
50 observations. I include 90% coverage
intervals about the mean estimates of the
correlation matrix and degrees of freedom
parameter. The most striking result per-
tains to the very wide confidence bands. For
example, the 90% coverage intervals for
the correlation parameters for prices and
yields—a key parameter in rating revenue
coverage—range from about -0.15 to −0.75.
Revenue coverage rates are very sensitive
to the values of these parameters. Table 5
presents coverage intervals and mean val-
ues for revenue rates and loss probabilities
for each county and for the sum of rev-
enues across all four counties. In the case of
estimates based on a sample size of 20, the
uncertainty associated with the true values
of the parameters is very significant, with
key policy parameters differing by a factor
of three or more. The sampling variabil-
ity of rates and loss probabilities remains
significant, even for a sample size of 50,
which far exceeds what is commonly used in
practice.

So, what is one to do with knowledge
of such sampling variation in critical pol-
icy instruments? There may be little that
can actually be done in a programmatic
sense. Estimates of these parameters must be
derived. However, I would argue that the pol-
icy analyst and researcher has an obligation
and responsibility to clearly communicate
not only estimates of the necessary parame-
ters but also the precision of such estimates.
Policymakers may adjust policies in response
to such information and a wide range of
industry participants should find an under-
standing of the precision of estimates to be
important. In the case of crop insurance, such

Table 4. Sample Size Impacts on Variability of Correlation Estimates

n = 20 n = 50

Parameter 5%-ile Mean 95%-ile 5%-ile Mean 95%-ile

ρ12 0.64 0.86 0.97 0.77 0.88 0.94
ρ13 0.69 0.89 0.99 0.81 0.90 0.96
ρ14 0.72 0.91 0.98 0.87 0.93 0.96
ρ1P −0.72 −0.44 −0.03 −0.70 −0.48 −0.26
ρ23 0.73 0.88 0.98 0.81 0.89 0.95
ρ24 0.79 0.91 0.98 0.87 0.93 0.97
ρ2P −0.77 −0.47 −0.15 −0.71 −0.51 −0.29
ρ34 0.73 0.88 0.98 0.81 0.90 0.95
ρ3P −0.74 −0.46 −0.14 −0.69 −0.51 −0.28
ρ4P −0.74 −0.46 −0.15 −0.71 −0.51 −0.27
df 1.57 15.35 100.00 3.54 17.59 100.00
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Table 5. Sample Size Impacts on Rate and Probability Estimates

n = 20 n = 50

Parameter 5%-ile Mean 95%-ile 5%-ile Mean 95%-ile

Pr(loss1) 3.00% 6.28% 10.06% 5.42% 7.28% 9.43%
Pr(loss2) 3.09% 5.96% 9.23% 5.18% 7.08% 9.17%
Pr(loss3) 3.03% 5.92% 8.92% 5.13% 6.79% 8.35%
Pr(loss4) 2.69% 5.64% 8.60% 4.93% 6.65% 8.56%
Pr(losssum) 2.88% 5.55% 8.27% 4.86% 6.50% 8.27%
Rate1 0.18% 0.51% 1.03% 0.37% 0.63% 0.95%
Rate2 0.18% 0.47% 0.92% 0.36% 0.60% 0.89%
Rate3 0.18% 0.47% 0.86% 0.35% 0.56% 0.78%
Rate4 0.15% 0.42% 0.78% 0.33% 0.53% 0.78%
Ratesum 0.16% 0.41% 0.76% 0.33% 0.52% 0.75%

information may be used to better inform
credibility weighting or reinsurance decisions.

The Identification Conundrum

I want to conclude my discussion of some of
the uglier aspects of empirical policy analysis
by briefly noting the ongoing debate over
structural versus non-structural models and
the role of so-called “quasi-natural” experi-
ments in the identification of policy impacts.
There is probably no more contentious issue
among those working in empirical policy
analysis than the issues surrounding the
proper identification of policy effects. In his
online blog, Frank Diebold (2013) observed
that “The structure police, especially new
recruits, are often fanatical.” Esther Duflo
(2004) argued that “Creating a culture in
which rigorous randomized evaluations are
promoted, encouraged, and financed has the
potential to revolutionize social policy during
the 21st century, just as randomized trials
revolutionized medicine during the 20th.”
The debate, though uncharacteristically nasty,
is very similar to many other methodological
arguments that will be familiar to anyone
who has worked in empirical policy analysis
in recent years. Similar dogmatic approaches
and sweeping dismissive reactions to entire
methodologies have arisen over the years
around such issues as nonstructural time-
series modeling, behavioral and experimental
economics, and models of imperfect com-
petition. In nearly all such debates, I would
argue that both sides of the argument are
correct and, to the extent that their views are
absolute, both are incorrect. The intellectual
gatekeeper, who is empowered to dismiss
entire approaches to scientific inquiry or
empirical analysis (often in the referee role)

may, in fact, inhibit the progress of science
and policy research in the mistaken belief
that there is only one way (their way) to
empirically evaluate a policy problem. As
Box noted in the aforementioned quote, “All
models are wrong.” Leamer (1983) noted
that there seems to be a “… sharp distinc-
tion between economics where randomized
experiments are rare and ‘science’ where
experiments are routinely done. But the fact
of the matter is that no one has ever designed
an experiment that is free of bias and no
one can … economists have inherited from
the physical sciences the myth that scientific
inference is objective and free of personal
prejudice. This is utter nonsense. All knowl-
edge is human belief; more accurately, human
opinion.”

I want to briefly highlight some of the
issues.10 My fundamental belief is that any
research approach that is absolute, narrow,
and dismissive of alternative views is danger-
ous, arrogant, and generally inconsistent with
scientific progress. On a fundamental level,
the issues involve definitions of causality,
correlation, structure, unobservables, coun-
terfactuals, and conditioning factors. In policy
evaluations, a fundamental problem is that
individuals cannot both participate in the pol-
icy and not participate (be both treated and
untreated). If individuals differ in ways that
cannot be observed (unobserved heterogene-
ity), inferential problems may arise. Despite
arguments to the contrary, recognition of
these issues (identification, randomization,
policy evaluation, etc.) is far from new or
original. In fact, these very issues drove much

10 Much of what I have to say is drawn from the work of
Heckman and Pinto (2012) and Deaton (2009).
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of the early work on identification and eval-
uation of policy effects undertaken by the
Cowles Commission and such pioneers as
Frisch (1933), Haavelmo (1944), Klein (1946),
and Koopmans (1947).

I first want to review a few fundamental
econometric points. Consider a standard
structural model:

Y1 = α1 + γ12Y2 + β11X1 + β12X2 + U1(10)

Y2 = α2 + γ21Y1 + β21X1 + β22X2 + U2

where E(Ui|Xi) = 0. This can be solved for a
reduced form of:

Y1 = π1 + π11X1 + π12X2 + ε1(11)

Y2 = π2 + π21X1 + π22X2 + ε2

where πij = βij+γijβji

1−γijγji
, and εi = Ui+γjiUi

1−γijγji
, and so

forth. Obviously, without more information
we cannot identify causal effects (γij, γji)
from the reduced form. If we can assume
exclusion restrictions of the form of βij = 0
and/or βji = 0, we can identify ceteris paribus
causal effects of Yi on Yj. Other restrictions
on parameters or distributions of error terms
can also achieve identification. Diebold
(2013) notes that the structural model is
equivalent to the reduced form with para-
metric restrictions imposed and that it is “…
a delicate and situation-specific matter as
to whether imposing structural restrictions
on reduced forms is necessary or desirable.”
Deaton (2009) noted that we have assumed
that the parameters (and distributions of
εi/Ui) are necessarily invariant to changes in
X and modifications of the distribution of U ,
or equivalently, that the effects of assigning
a treatment to one individual are unaffected
by treatment assignments to others. Frisch
(1933) called this “autonomy” and the work
of the Cowles Commission came to call this
the “stable unit treatment value assumption
(SUTVA).” One possible violation arises in
the familiar “Lucas Critique,” where param-
eters may change with the introduction of
a program or policy, thereby violating the
SUTVA assumption.

If we are interested in only a portion of
the structural model, we may make use of
the reduced form to obtain “instruments.” In
such a case, we are necessarily ignoring part
of the larger structural model. The instru-
mental variable must satisfy two important
conditions: E(Ui, Xi) = 0 and E(Yj, Xi) 
= 0

(external/exogeneous and relevance). Many
argue that exogeneity is usually only possible
in cases of a controlled, randomized exper-
iment and/or a “natural” or “quasi-natural”
experiment that involves random/exogenous
assignments to treatments, allowing identi-
fication of what Angrist and Imbens (1994)
call the “Local Average Treatment Effect”
(LATE). Examples include a controlled exp-
eriment where the researcher assigns tre-
atments, purely external variation (e.g.,
weather, quarter of birth, etc.), or an exoge-
nous policy change.11 A number of other
paths to identification are also possible,
including matching estimators (difference in
difference and propensity score estimators),
restrictions on distributions of errors and/or
treatments (covariance restrictions, quantile
restrictions, intervals, mixing distributions),
stratification (instruments give restrictions
on strata identification), other restrictions on
structure (monotonicity, thresholds, etc.), and
recursive structures.12

These arguments, as stated, are factu-
ally correct and unassailable. In practice,
however, the facts may not conform to the
arguments, especially in our sometimes
contrived efforts to make them fit. A few
examples bear mention. First, an obvious
point is that what appears to be a random-
ized program assignment may not actually
be random due to unobserved heterogene-
ity. Because we only glimpse a small part of
a system, it is often impossible to be confi-
dent about what we do not know. A famous
example of purely exogenous variation was
provided by Angrist (1990), who argued that
the draft lottery number of Vietnam veterans
is a perfect exogenous instrument for iden-
tifying the returns to schooling. However, as
Wooldridge (2002) noted, the instrument may
not be exogenous if how veterans responded
to the draft depended on their returns to
schooling. In terms of agricultural policy
analysis, some have argued that the 1996
Farm Bill represented an external quasi-
natural experiment. However, it is also likely
that favorable market conditions and the
political balance in the U.S. Congress moti-
vated the 1996 Act, thus raising important
questions about the exogeneity of the provi-
sions of the Act. The relevance of instruments

11 Does such an exogenous policy change ever really exist?
12 See Heckman and Pinto (2012) for an extensive discussion

of alternative approaches to structural identification of policy
effects.
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may also be critically important. Bound,
Jaeger, and Baker (1995) found that modest
departures from exogeneity may increase
bias enormously when the instruments are
weak. Purely exogenous weather variation is
often noted as providing exogenous instru-
ments. However, if producers’ reactions to
weather shocks depend on market condi-
tions, the optimality of the instrument may be
questionable.

My basic point is that no methodology is
perfect and a tendency toward dismissing any
approach that does not conform to one’s own
view of perfection results in flawed research.
I would conclude this digression on identifi-
cation with two appropriate quotes. Deaton
(2009) noted that: “… randomized controlled
trials cannot automatically trump other evi-
dence, they do not occupy any special place
in some hierarchy of evidence, nor does it
make sense to refer to them as ‘hard’ while
other methods are ‘soft’. These rhetorical
devices are just that; a metaphor is not an
argument.”

Finally, I asked one of my own economet-
rics professors, whose opinion I hold in the
highest regard, for his views on the debate.
Ron Gallant responded thusly: “What both-
ers me the most about the natural experiment
obsession is the corollary that structural mod-
els are of no value. For myself, I do not see
how a science can advance without serious
use and enhancement of structural models.
True, they will have to get more complex
over time to match observational data, as in
physics and climate science, but we have the
computational equipment and algorithms to
deal with serious models.”13

Concluding Comments

I have attempted to outline a few selected
points of importance to the ongoing quest
to understand the effects and implications
of agricultural policies by way of applying
empirical techniques. My discussion focuses
largely on examples drawn from the fed-
eral crop insurance program. Although
this undoubtedly reflects my own biased
interests, this program continues to grow in
prominence and offers some rather unique

13 Personal communication, September 11, 2012.

opportunities for empirical work that actually
does have real and tangible impacts on policy.
I have made a particular case for a wider
consideration of dependence modeling and
have provided a few cautionary recommen-
dations that we be careful to communicate
our maintained hypotheses, pre-test analysis,
and the precision of our empirical estimates.
Finally, I have pointed to the ongoing debate
over identification and structure as an exam-
ple where I believe absolute opinions may
result in a wholesale rejection of alternative
approaches to analysis. There is ample room
for alternate views and approaches, and abso-
lute opinions, even when they are based upon
unassailable facts, have the potential to stifle
the progress of knowledge. At the minimum,
such dogmatic views likely diminish the value
of our research output for policymakers and
most certainly make our professional lives
and interactions as applied economists less
interesting.
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