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 Systems and synthetic biology is an investigative and constructive means of 
understanding the complexities of biology. Discovery of restriction nucleases 
by Werner Arber, Hamilton Smith, and Daniel Nathans in 1978 revolution-
ized the way DNA recombinant constructs were made and how individual 
genes were analyzed for its function and vitality. It also opened the doors to a 
new era of “synthetic biology” where apart from analysis and description of 
existing gene, new gene arrangements can be constructed and evaluated. 
Since then, synthetic biology has emerged from biology as a distinct disci-
pline that quantifi es the dynamic physiological processes in the cell in 
response to a stimulus. Switches, oscillators, digital logic gates, fi lters, modu-
lar – interoperable memory devices, counters, sensors, and protein scaffolds 
are some of the classic design principles based on which many more novel 
synthetic gene circuits can be created with possible application in biosensors, 
biofuels, disease diagnostics, and therapies. Most of these gene networks 
combine one or more classes of controller components, such as conditional 
DNA-binding proteins, induced-protein dimerization, RNA controllers, and 
rewired cell-surface receptors, to modulate transcription and translation that 
alters protein function and stability. 

 An iterative design cycle involving molecular and computational biology 
tools can be capitalized to assemble designer devices from standardized bio-
logical components with predictable functions. Research efforts are priming 
a variety of synthetic biology inspired biomedical applications that have the 
potential to revolutionize drug discovery and delivery technologies as well as 
treatment strategies for infectious diseases and metabolic disorders. The 
building of complex systems from the interconnection of parts or devices can 
be signifi cantly facilitated by using a forward-engineering where various 
designs are fi rst optimized, tested  in silico  and their properties are assessed 
using mathematical analysis and model-based computer simulations. 
Mathematical models using Ordinary Differential Equations (ODEs), Partial 
Differential Equations (PDEs), Stochastic Differential Equations (SDEs), or 
Markov Jump Processes (MJPs) are typically used to model simple synthetic 
biology circuits. Thus use of computation in synthetic biology can lead us to 
ways that help integrate systems models to support experimental design and 
engineering. Synthetic biology has signifi cantly advanced our understanding 
of complex control dynamics that program living systems. The fi eld is now 
starting to tackle relevant therapeutic challenges and provide novel  diagnostic 
tools as well as unmatched therapeutic strategies for treating signifi cant 
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human pathologies. Although synthetic biology-inspired treatment concepts 
are still far from being applied to any licensed drug or therapy, they are rap-
idly developing toward clinical trials. Nevertheless, it has provided insights 
into disorders that are related to defi ciencies of the immune system known for 
its complex control circuits and interaction networks. 

 Novel-biological mechanism may also be coupled with image-modeling 
approach to be verifi ed in  in vitro  conditions .  Computational techniques can 
be used in tandem with image analysis to optimally characterize mammalian 
cells, leading to results that may allow scientists to uncover mechanisms on a 
wide range of spatio-temporal scales. These elucidated methods and princi-
ples used in  in silico  hypotheses generation and testing have the potential to 
catalyze discovery at the bench. Despite considerable progress in computa-
tional cell phenotyping, signifi cant obstacles remain with the magnitude of 
complexity with experimental validation at the bench. The true power of 
computational cell phenotyping lies in their strengths to generate insights 
toward  in vivo  constructs, which is a prerequisite for continued advance-
ments. None of the obstacles is insurmountable. However, advances in imag-
ing and image processing may transcend current limitations which may 
unlock a wellspring of biological understanding, paving the way to novel 
hypotheses, targeted therapies, and new drugs. Additionally, phenotyping 
permits the effects of compounds on cells to be visualized immediately with-
out prior knowledge of target specifi city. By harnessing the wealth of quanti-
tative information embedded in images of  in vitro  cellular assays, HCA/HCS 
provides an automated and unbiased method for high-throughput investiga-
tion of physiologically relevant cellular responses that is clearly an improve-
ment over HTS methods, allowing signifi cant time and cost savings for 
biopharmaceutical companies. The emergence of non-reductionist systems 
biology aids in drug discovery program with an aim to restore the pathologi-
cal networks. Unbalance reductionism of the analytical approaches and drug 
resistance are some of the core conceptual fl aws hampering drug discovery. 
Another area developing and envisaged in this book is system toxicology, 
which involves the input of data into computer modeling techniques and use 
differential equations, network models, or cellular automata theory. The input 
data may be biological information from organisms exposed to pollutants. 
These inputs are data mostly from the “omics,” or traditional biochemical or 
physiological effects data. The input data must also include environmental 
chemistry data sets and quantitative information on ecosystems so that geo-
chemistry, toxicology, and ecology are modeled together. The outputs could 
include complex descriptions of how organisms and ecosystems respond to 
chemicals or other pollutants and their inter-relationships with the many 
other environmental variables involved. 

 The model outputs could be at the cellular, organ, organism, or ecosystem 
level. Systems toxicology is potentially a very powerful tool, but a number of 
practical issues remain to be resolved such as the creation and quality assur-
ance of databases for environmental pollutants and their effects, as well as 
user-friendly software that uses ecological or ecotoxicological parameters 
and terminology. Cheminformatics and computational tools are discussed in 
lengths which help identify potential risks including approaches for building 
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quantitative structure activity relationships using information about molecu-
lar descriptors. The assimilation of chapter from various disciplines includes 
the trade-offs and considerations involved in selecting and using plant and 
other genetically engineered crops. Systems biology also aid in understand-
ing of plant metabolism, expression, and regulatory networks. Synthetic biol-
ogy approaches could benefi t utilizing plant and bacterial “omics” as a source 
for the design and development of biological modules for the improvement of 
plant stress tolerance and crop production. Key engineering principles, 
genetic parts, and computational tools that can be utilized in plant synthetic 
biology are emphasized. 

 The collection of chapters represents the fi rst systematic efforts to demon-
strate all the different facets of systems biology application in synthetic biol-
ogy fi eld. 

 I would like to thank Mamta Kapila, Raman Shukla, Magesh Karthick 
Sundaramoorthy, and Springer Publishing group for their assistance and 
commitment in getting this book ready for publication. I would also like to 
thank my wonderful graduate students Vineetha, Milsee, Pruthvi, Ritika, 
Bhavnita, and Dipali for being a rigorous support in the entire endeavor. 
Finally, I would especially like to thank my family, Isha and Akshaya, my 
parents for being patient with me during the process. Without their love and 
support, this book would not have been possible.  

  Pune, India     Shailza     Singh     
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      Microbial Chassis Assisting 
Retrosynthesis                     

     Milsee     Mol    ,     Vineetha     Mandlik    , and     Shailza     Singh    

1.1          Introduction 

 It’s a well-known and a documented fact that life 
has arisen from simple molecules. Therefore the 
main stay of research in biology is to strip down 
the inherent complexity associated due to the 
interaction between these simple molecular 
assemblies. During the course of evolution, there 
has been a reduction in the complexity that con-
stitutes the essential features of a living cell. The 
comprehension (if it is possible to comprehend 
fully) of the underlying complexities will not 
only allow us to understand the key regulatory 
mechanism in numerous diseases, production of 
important metabolites, etc. but also help us to build 
a reliable mathematical model for formulating 
future scientifi c enquiry. A better understanding 
of cellular systems can be done via two compet-
ing routes the “bottom up” as well as “top-down” 
synthetic biology approach. Synthetic biology 
has two goals: to re-engineer existing systems for 
better quantitative understanding; and, based on 
this understanding engineer new systems that do 

not exist in nature [ 1 ]. The fundamental principle 
of synthetic biology is similar to constructing 
non-biological system e.g. a computer, by putting 
together composite, well- characterized modular 
parts. It is an interdisciplinary science drawing 
expertise from biology, chemistry, physics, com-
puter science, mathematics and engineering [ 2 ]. 

 Synthetic biology has re-revolutionized the 
way biology is done today in laboratories across 
the globe, also mainly because of the way DNA 
the blue print of a cells functionality is being syn-
thetized by simply providing the desired sequence 
to the automated synthesizer. Synthetic biologists 
are now on the verge of developing ‘artifi cial life’ 
that has enormous applications in biotechnology 
apart from the fact that it is being used to now 
understand the origin of life. The ‘top-down’ 
approaches in synthetic biology are being used to 
synthesize the minimal cells by systematically 
reducing the genome of a cell such that it shows 
a desired function under environmentally favour-
able conditions [ 3 ,  4 ]. Successful chemical syn-
thesis of genome and its transfer to the bacterial 
cytoplasm [ 5 ] reveals the power of synthetic biol-
ogy framework to create a minimal cell for 
greater application in biotechnology [ 2 ]. Such a 
minimal cell having the minimum required 
genome could serve as a “chassis” that can be 
further expanded with the addition of genes for 
specifi c functions desired from a tailor-made 
organism. Further a streamlined chassis based on 
a minimal genome can simplify the interaction 
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between the host and the system that may 
have relevance in minimizing the effect of the 
metabolic burden of the exogenous pathway 
placed in the cell [ 6 ]. Such extensively streamlin-
ing is possible for many of the medically and 
industrially important microorganism as their 
genomes have been already sequenced and 
assembled. 

 Comparative genomics is a useful methodol-
ogy that delineates genes based on the conserved-
ness of the genes to distant related species. It is 
based on the hypothesis that the conserved genes 
are certainly essential for cellular function and 
may be well approximated to the required mini-
mal gene set [ 7 ]. But as more and more genomes 
are being sequenced there is divergence in the 
evolutionary tree showing that some of the 
essential functions can be performed by non- 
orthologous genes [ 8 ]. Therefore, gene 
persistence rather than gene essentiality should 
be taken into consideration for constructive way 
to identify the minimal universal functions sup-
porting robust cellular life [ 9 ]. 

 Another approach that of experimental gene 
inactivation identifi es genes, those are important 
for the viability of the cell. Genome-scale identi-
fi cations of such genes have been done using the 
prokaryotic as well as eukaryotic systems using 
strategies of massive transposon mutagenesis [ 10 , 
 11 ], the use of antisense RNA [ 12 ] to inhibit gene 
expression and the systematic inactivation of each 
individual gene present in a genome [ 13 ,  14 ]. 
These genome scale identifi cations have been 
done under predefi ned experimental growth con-
ditions. This kind of experimental identifi cation 
helps us get a complete understanding of the rela-
tionship between genotype and phenotype which 
would facilitate the design of minimal cell [ 8 ]. 

 The data generated in such genome scale 
experimental models is large which needs 
computer- assisted mathematical treatment to get 
some meaningful statistically valid approxima-
tions. Therefore mathematical models that relate 
the gene content (genotype) of a cell to its physi-
ological state (phenotype) enables the simulation 
of minimal gene sets under various environmen-

tal growth conditions (constraint-based approach) 
[ 15 – 18 ]. Thus,  in silico , with in the complex gene 
network reaction(s), each gene can be individu-
ally “deleted” (fl ux ‘zero’) and relate it to the bio-
mass as the fi tness function for the system [ 19 ]. 
This fl ux-based models yield key evolutionary 
insights on the minimal genome [ 20 ]. 

 Integrating all the information from compara-
tive genomics, experimentation and  in silico  pre-
dictions, a new approach of retrosynthesis is rising 
for building  de novo  pathways in host chassis 
[ 21 – 23 ]. Retrosynthesis is a technique routinely 
used in synthetic organic chemistry [ 24 ,  25 ], 
where it starts by conceptually defi ning the struc-
ture and properties of the desired molecule to be 
produced and working backward through known 
chemical transformations to identify a suitable 
precursor or sets of precursors. This approach 
when applied to biological metabolic transforma-
tion can identify the reactions involved and their 
corresponding enzymes. Thus, by enumerating the 
biochemical pathways, it can be linked to the fi nal 
product in the host’s metabolism [ 23 ]. 

 With the available tool kits for designing bio-
logical systems, the future predictability is rela-
tively diffi cult and may lead to bottleneck 
situation in the production pipeline. Metabolic 
pathway models are being made more predict-
able by incorporating the freedom to tweak the 
gene expression to achieve a particular fl ux of 
each metabolite in the reaction or pathway [ 26 ]. 
Tools that help in debugging bottleneck in the 
metabolic pathway would reduce development 
times for optimizing engineered cells. Functional 
genomic tools can serve this purpose [ 27 ], which 
helps in chalking out the over or under produc-
tion of a protein/enzyme in the pathway that can 
lead to a stress response [ 28 ,  29 ]. The informa-
tion from these tools can be rendered to diagnose 
the problem and modify expression of genes in 
the metabolic pathway to improve productivity. 
Taking advantage of the cell’s native stress 
response pathways, too many desirable chemi-
cals particularly at the high titres needed for 
industrial-scale production can be an effective 
way to overcome product toxicity [ 30 ].  

M. Mol et al.
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1.2     Tools for Designing 
and Optimizing Synthetic 
Pathway 

 It is an uphill task to fi nd an optimal solution for 
a selected pathway, enzymes or chassis organism 
from an abundance of possibilities. Engineering a 
synthetic pathway and uploading it into the chas-
sis organism followed by optimizing the produc-
tion of the desired product involves lot of 
experimental work which is accompanied by lots 
of permutation and combinations of conditions. 
To make life easy for a synthetic biologist power-
ful computational tools are a necessity. There are 
many computational tools that can lead for a bet-
ter informed, rapid design and implementation of 
novel pathways in a selected host organism with 
the desired parts and fl ux of the desired product is 
listed in Table  1.1 . These tools are based on crite-
ria like pathway selection and thereafter ranking 
them. These prediction help to explore the path-
ways that are chemically versatile and also help 
compare their effi ciencies as compared to the 
natural pathways. Organism selection for upload-
ing the novel pathway depends on two approaches: 
First, choose an organism that already has most 
of the reactions involved in the pathway, thereby 
reducing the stochasticity that can be introduced 
due to the new enzymes in the metabolic network 
[ 23 ]. The second approach is to build genome 
scale models using constraint-based fl ux balance 
analysis. In this approach, steady-state fl ux distri-
bution of the metabolic network is predicted 
based on the stoichiometry of each reaction, 
mass–balance constraints and an objective func-
tion specifying the fl uxes of components that are 
to be optimized [ 31 ]. Once the prioritized path-
way and optimum host is selected, the next step is 
to construct the pathway by using parts such as 
the RBS, promoters, terminators, etc. with the 
regulatory elements incorporated. A range of 
standardized and characterized parts are available 
at the parts registry [ 32 ]. Efforts are underway to 
increase the catalogue available at the registry, as 
they are suitable for fi nding regulatory elements 
rather than the coding sequences. Since the cod-
ing sequences for the enzymes are part of a spe-
cifi c synthetic pathway, they are not catalogued 

and for this purpose genome-mining is a crucial 
step. The last part of the process design is to syn-
thesize the DNA parts that are codon optimized 
for the host chassis. Many variants of the basic 
DNA sequence can also be synthesized from 
which an effi cient sequence can be picked up. 
After all the above steps are succesfully com-
pleted a functional design can be arrived to, 
which can then be inserted into the chromosome 
of the host genome [ 33 ] or as a multigene expres-
sion plasmid [ 34 ]. The workfl ow designing a syn-
thetic pathway into a microbial chassis system 
can be depicted pictorial in Fig.  1.1 .

1.3         Choosing a Host and Vector 
for Synthetic Pathway 
Construction 

 Choosing a correct heterologous host for the pro-
duction of a desired product is an important and 
uphill task in metabolic engineering of microbes. 
A host must be chosen based on the fact whether 
the desired metabolic pathway already exists or 
can it be reconstituted in that host. If so, then the 
host can survive under the desired process condi-
tions of pH, temperature, ionic strength, etc. for 
the optimum titre of the desired product. The host 
should be genetically robust and should not be 
susceptible to phage attacks and at the same time 
should be amenable to available genetic tools. 
Although  E. coli  can be treated with different 
genetic tools available, it has disadvantage of 
being susceptible to phage attack. The host 
should be able to grow on simple, inexpensive 
carbon sources without or with minimal addi-
tions to the process media, thereby reducing the 
production cost of the product [ 63 ,  64 ]. Another 
aspect that should be considered is the level of 
expression of the heterologous enzymes in the 
host strain. The enzymes should be expressed in 
amounts that are catalytically important for the 
conversion of the starting material to the desired 
product. Toxicity of the intermediate metabolites 
for the hosts should also be dealt with, because 
any intermediate that is toxic will have a pro-
found effect on the fi nal titres of the desired 
product. 

1 Microbial Chassis Assisting Retrosynthesis



   Table 1.1    Computational tools currently being employed for synthetic pathway construction   

 Tool  Description 

 Pathway prediction  BNICE (Biochemical Network 
Integrated Computational Explorer) 
[ 35 ] 

 Identifi cation of possible pathways for the 
degradation or production of a desired compound 
within a thermodynamic purview 

 DESHARKY [ 36 ]  Best match pathway identifi cation specifi c to a host; 
provides phylogenetically related enzymes 

 RetroPath [ 37 ]  Retrosynthetic pathway design, pathway 
prioritization, host compatibility prediction, toxicity 
prediction and metabolic modelling 

 FMM (From Metabolite to 
Metabolite) [ 38 ] 

 Finds an alternate biosynthetic routes between two 
metabolites within the KEGG database 

 OptStrain [ 39 ]  Optimization of the host’s metabolic network by 
suggesting addition or deletion of a reaction 

 Parts identifi cation  Standard Biological Parts 
knowledgebase [ 40 ] 

 Knowledgebase with parts for easy computation; 
includes all the parts from Registry 
of Standard Biological Parts 

 IMG (Integrated Microbial 
Genomes) [ 41 ] 

 Comparative and evolutionary analysis of microbial 
genomes, gene neighbourhood 
orthology searches 

 antiSMASH [ 42 ]  Identifi cation, annotation and comparative analysis 
of secondary metabolite 
biosynthesis gene clusters 

 KEGG [ 43 ]  Database of organism specifi c collection of 
metabolite and metabolic pathway 

 Parts optimization 
and synthesis 

 RBS Calculator [ 44 ]  Automated design of RBSs based on a 
thermodynamic model of transcription initiation 

 RBSDesigner [ 45 ]  Algorithm for prediction of mRNA translation 
effi ciencies 

 Gene Designer 2.0 [ 46 ], Optimizer 
[ 47 ], 

 Gene, operon and vector design, codon 
optimization and primer design 

 DNAWorks [ 48 ], TmPrime [ 49 ]  Oligonucleotide design for PCR-based gene 
synthesis, with integrated codon optimization 

 CloneQC [ 50 ]  Quality of sequenced clones by detecting errors in 
DNA synthesis 

 Pathway and circuit 
design 

 Biojade [ 51 ]  Software tool for design and simulation of genetic 
circuits 

 Clotho [ 52 ]  Flexible interface for synthetic biological systems 
design; within the interface, a range 
of apps/plugins can be utilized to import, view, edit 
and share DNA parts and system designs 

 GenoCAD [ 53 ]  CAD software that allows drag-and- drop drawing 
and simulation of biological systems 

 Asmparts [ 54 ]  Computational tool that generates models of 
biological systems by assembling models of parts 

 SynBioSS [ 55 ]  Designing, modelling and simulating synthetic 
genetic constructs 

 CellDesigner [ 56 ]  Graphical drawing of regulatory and biochemical 
networks that can be stored in Systems 
Biology Markup Language (SBML) 

 Metabolic modelling  COBRA Toolbox [ 57 ]  Metabolic modelling and FBA 

 SurreyFBA [ 58 ]  Constraint-based modelling of genome-scale 
networks 

 CycSim [ 59 ], BioMet Toolbox [ 60 ]  Analysing genome-scale metabolic models; 
includes enzyme knockout simulations 

 iPATH2 [ 61 ], GLAMM (genome- 
linked application for metabolic 
maps) [ 62 ] 

 Interactive visualization of data on metabolic 
pathways 
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 All the genetic manipulations involve the 
construction of a vector that contains all the 
enzymes required to reconstitute the novel meta-
bolic pathway in the heterologous host. Therefore 
the cloning vector should be stable, have a con-
sistent copy number, should replicate and express 
large sequences of DNA. The enzyme production 
rate from these vectors can be tuned to the desired 
levels by varying the promoter [ 65 ], ribosome 
binding strength [ 66 ] and stabilizing the half-life 
of the mRNA [ 67 ]. Of these, promoters are essen-
tial in controlling biosynthetic pathways that 
respond to a change in growth condition or to an 
important intermediary metabolite [ 68 ,  69 ]. 
These kinds of promoters allow inexpensive and 
inducer-free gene expression. Once a vector with 
all the desired properties is constructed the 
expression of the genes should be well coordi-
nated, which can be done using a non-native 
RNA polymerase or transcription factor that can 

induce multiple promoters [ 70 ]; group related 
genes into operons; vary ribosome binding 
strength for the enzymes encoded in the operon 
[ 71 ]; or controlling mRNA stability of each 
coding region [ 72 ].  

1.4     Important Breakthrough 
in Metabolic Engineering 
Using Synthetic Biology 
Approach 

 Though synthetic biology and construction of 
unnatural pathways is in its infancy, several 
pioneering experimental efforts in this direction 
have highlighted the immense potential of the 
fi eld. In parallel, DNA sequencing has revealed a 
huge amount of information within the cellular level 
in terms of isozymes catalysing the same reaction 
in different organism. Alongside  development of 

  Fig. 1.1    Synthetic pathway design workfl ow       
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curated databases for the reaction catalysed by 
these enzymes are aiding the discovery of novel 
routes for pathway reconstruction in heterolo-
gous host chassis organisms such as  E. coli , 
 Saccharomyces cerevisiae ,  Bacillus subtilis  and 
 Streptomyces coelicolor . These organisms are 
amenable to the new genetic tools that enable 
more precise control of the reconstructed 
metabolic pathways. Newer analytical tools that 
enable track RNA, protein and metabolic inter-
mediates can help identify rate limiting kinetic 
reactions in the pathway that helps design novel 
recombinant enzymes [ 68 ]. 

 Many natural pathways can be transferred to 
the microbial chassis for the production of natu-
ral chemicals originally synthesised by plants 
and whose chemical synthesis is complex or 
expensive. These pathways are important as they 
are source to important natural molecules like 
alkaloids, polyketides, nonribosomal peptides 
(NRPs) and isoprenoids that fi nd their applica-
tion in pharmaceuticals. Similarly, fi ne chemicals 
such as amino acids, organic acids, vitamins and 
fl avours have been produced economically from 
engineered microorganisms [ 68 ]. 

 One of the most notable examples is that of 
artemisinin, a potent antimalaria drug produced 
naturally in plant  Artemisia annua . Large-scale 
production of this compound is costly and varies 
seasonally. To overcome these practical chal-
lenges, synthetic biologists have engineered its 
yeast-derived biosynthetic pathway (isoprenoid 
precursor) in the bacterium  Escherichia coli  [ 73 ]. 
Later, a synthetic pathway consisting dual 
enzyme origin (plant- and microorganism) capa-
ble of producing artemisinic acid that can be con-
verted into artemisinin in just two chemical steps 
was installed in  E. coli  and  Saccharomyces cere-
visiae  [ 74 – 76 ]. The titre of artemisinic acid was 
high compared to the titres achieved from its 
natural plant source. Another plant-derived path-
way to produce taxadine, which is the fi rst 
 committed intermediate for the anticancer drug 
taxol, was successfully introduced in  E. coli . 
After careful balancing of the expression of the 
heterologous pathway and the native pathway 
producing the necessary isoprenoid precursors, 
more than 10,000-fold production level was 
achieved [ 77 ]. An important building block 

d-hydroxyphenylglycine for the side chain of 
semi- synthetic penicillins and cephalosporins 
was also synthesized using the workfl ow of syn-
thetic pathway design. It was done by combining 
enzymes hydroxymandelate synthase from 
 Streptomyces coelicolor , hydroxymandelate 
oxidase from  Amycolatopsis orientalis  and 
hydroxyphenylglycine aminotransferase from 
 Pseudomonas putida  [ 78 ]. Synthetic circuits are 
also designed in integration with the host meta-
bolic pathway for the controlled release of thera-
peutic  in situ.  Devices that sense pathogenic 
conditions such as cancer cells, pathogenic 
microorganisms and metabolic states are 
designed to fi ne-tune transgene expression in 
response to these conditions [ 79 – 81 ]. These sen-
sors could be small molecules as autoinducers to 
light sensitive devices [ 82 ] and miRNA detection 
systems [ 83 ]. A refi ned circuit was developed 
for that could sense hyperuricemic condition 
associated with the tumour lysis syndrome and 
gout [ 84 ]. 

 Biofuel namely isopropanol and higher alco-
hols was re-routed in the native metabolism in 
 E. coli , by combining enzymes from various 
biological sources [ 81 ,  82 ] Elaborate synthetic 
approaches have redesigned specifi c transcrip-
tional regulatory circuits with combination of 
enzymes from other microorganisms that led to 
the production of biodiesels and waxes from 
simple sugars in  E. coli  [ 83 ]. In the synthesis of 
methyl halides from 89 putative homologues of 
the enzyme methyl halide transferase from bacte-
ria, plants, fungi and archaea were identifi ed by a 
BLAST search. All the retrieved homologues 
were codon-optimized to be expressed in  E. coli . 
The codon-optimization led to build a synthetic 
gene library, which was tested for optimum 
desired function in the host strain, resulting in 
high production titres of methyl halide [ 84 ]. 
Similarly microbial biofuel export and tolerance 
was enhanced by creating a synthetic library of 
hydrophobe/amphiphile effl ux transporters [ 85 ]. 

 As the engineering aims become more 
ambitious, a trend towards more prominent appli-
cation of synthetic pathway design and imple-
mentation will lead to increased effi ciency and 
may also incorporate more complex metabolic 
pathways.  

M. Mol et al.
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1.5     Future Applications 

 Bulk chemicals such as solvents and polymer 
precursors are all produced through chemical 
catalysis from petroleum. The dwindling reserves 
and trade imbalances in the petroleum market 
and low-cost production of these bulk chemicals 
can be an avenue for the application of microbial 
engineering from starting material like starch, 
sucrose or cellulosic biomass [ 68 ]. The process 
pipeline for production of petroleum based trans-
portation fuel is expensive but at the same time it 
is the most valued product in the world. 
Engineered biological systems can be designed 
for the production of transportation fuels using 
inexpensive renewable sources of carbon. Ethanol 
and butanol are the chief alcohols in the transpor-
tation fuel which can be produced by the selected 
and optimized microbial consortia. Engineering 
fuel-producing microorganisms that secrete 
enzymes like cellulases and hemicellulases to break 
complex sugars before uptake and conversion 
into fuels may substantially reduce the produc-
tion cost of fuel [ 65 ]. Similarly, robust-adaptive 
controlled devices can be designed and optimized 
for  in situ  delivery of therapeutics.  

1.6     Challenges 
and Opportunities 

 Though engineered microorganisms have myriad 
ways that they can be applied for the synthesis of 
important molecules, there are many trade-offs 
that needs to be weighed, like:

   Availability and cost starting materials  
  Selection of the optimum metabolic route and the 

corresponding genes encoding the enzymes 
for the production of the desired product  

  Selection of the appropriate microbial host  
  Stable and responsive genetic control elements 

that works in the selected host  
  Procedures to maximize yields, titres and produc-

tivity of the desired product  
  Quick fi xtures or troubleshooting failed product 

formation at any step of development or pro-
duction pipeline.    

 All the above design considerations are depen-
dent on each other in the sense if the genes are 
not expressed at the set optimum, the enzyme 
coded by the gene will not function. Sophistication 
of the genetic tools available varies from host to 
host also processing conditions of growth; prod-
uct separation and purifi cation are not compatible 
with all hosts. These challenges may provide the 
opportunity for further developing robust and 
sensitive methods for the successful applications 
of metabolic engineering in a wide range of host 
for the production of economically important 
products. More so for the production of chemi-
cals whose chemical synthesis is too complicated 
and can be achieved in higher living systems such 
as plants [ 69 ]. 

 Future holds great promises for synthesizing 
tailor-made microorganism producing specifi c 
products from cheap starting materials. Such cell 
factories may be designed with pumps embedded 
in their membrane to pump out the fi nal product 
out from the cells that reduces the purifi cation 
costs of the desired product from the other thou-
sand intermediate metabolites. Parts registry with 
all the updated and well-characterized parts 
should become one of the main sources for all the 
parts required to build the novel metabolic path-
way. Software like RETROPATH [ 69 ] should be 
upgraded such that maximum yield can be pre-
dicted for a desired product from the chosen het-
erologous host. Computer-aided design of an 
enzyme that does not exist for a particular reac-
tion would be an added advantage to design and 
create novel metabolic pathways [ 86 ]. Continued 
development of existing computer-aided tools 
alongside newer experimental methodologies can 
help garner the full potential of engineered 
microbes for the production of cost effi cient nat-
ural and unnatural products.     
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      Computational Proteomics                     

     Debasree     Sarkar     and     Sudipto     Saha    

2.1          Introduction 

 Proteomics is the large-scale study of proteins, 
particularly their structures and functions, and it 
is the leading area of research in biological sci-
ence in the twenty-fi rst century. Proteomics rep-
resents the effort to establish the identities, 
quantities, structures, and biochemical and cellu-
lar functions of all proteins in an organism, organ, 
or organelle. In addition, proteomics also 
describes how these properties vary in space, 
time, or physiological state. The term  proteomics  
was fi rst coined in 1997 to make an analogy with 
genomics, the study of the genome. The pro-
teome denotes the total complement of proteins 
found in a complete genome or a specifi c tissue 
[ 1 ]. The traditional approach of studying the 
functions of proteins is to consider one or two 
proteins at a time using biochemical character-
ization and genetic methods. Due the advent of 
high-throughput approaches including 2D gel 
electrophoresis and mass spectrometry (MS)-
based proteomics, we can study thousands of 
proteins in a single experiment [ 2 ]. Since high- 
throughput proteomics generates huge amount 
of data, these may be prone to false positive 

identifi cations. Hence, it is essential to be cautious 
while interpreting such results/data. To overcome 
it, statistical and computational tools are used to 
gain confi dence in interpreting the result. The 
workfl ow of proteomics includes protein frac-
tionation using 1D/2D electrophoresis followed 
by protein identifi cation by MS. 2D separation is 
based on size and charge, where the fi rst step is to 
separate the complex mixture of proteins based 
on charge or isoelectric point, called isoelectric 
focusing and then separate based on size (SDS- 
PAGE). After gel separation, proteins are excised 
and digested by enzyme trypsin/chymotrypsin 
into many peptides, which have specifi c cutting 
sites in the primary amino acid sequences. These 
peptides are subjected to mass spectrometry for 
identifi cation based on mass by charge (m/z) 
ratio. MS can be grouped into two classes based 
on ionization process, matrix-assisted laser 
desorption ionization (MALDI) and electro- 
spray ionization (ESI). The Nobel Prize in 
Chemistry 2002 was awarded to Koichi Tanaka 
for the development of soft desorption ionization 
methods for mass spectrometric analyses of bio-
logical macromolecules. MS-based proteomics 
can be implemented using top-down approach 
involving MS of whole protein ions and bottom-
 up approach, where peptides are subjected to MS 
and eventually proteins are predicted/inferred 
based on peptide identifi cation as shown in Fig. 
 2.1 . Due to instrument constraint, bottom-up 
approach is more popular in biomedical research.
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   For complex mixtures like plasma proteins 
from blood, the peptide mixtures are separated by 
liquid chromatography and then subjected to 
mass spectrometry. Each peptide precursor is fur-
ther fragmented to y and b ions for sequence 
order, which is termed as tandem MS or MS/
MS. Finally the peptides are identifi ed and pro-
teins are predicted by sequence database match-
ing. However, in the absence of genomic DNA, 
cDNAs, ESTs, or protein sequences for a specifi c 
organism, the identifi cation of peptides from 
MS/MS spectra can be done by a database- 
independent approach which is termed as de 
novo sequencing. 

 In proteomics, many computational tools and 
software are required for which a pipeline is nec-
essary for quality control. These include the pre-
processing of MS spectra, protein identifi cation 
using search engines, quantitation of protein, and 
fi nally storage of the MS data. For preprocessing 
step, deconvolution, intensity normalization, and 
fi ltration of low-quality spectra are required. 
Deconvolution is an application of a mathematical 
algorithm to transform raw data into a meaningful 

format for further analysis, involving background 
subtraction, noise removal, charge state deconvo-
lution, and deisotoping. Normalization techniques 
commonly used include normalization to base 
peak, rank-based normalization, and local nor-
malization to highest intensity in a user-defi ned 
m/z bin size. The protein identifi cation and char-
acterization is done by database searching of MS/
MS data [ 3 ]. The search engines commonly used 
are Mascot [ 4 ], Sequest [ 5 ], and X!Tandem [ 6 ]. 
All the search engines require additional infor-
mation in the form of search parameters includ-
ing name of the sequence database, taxonomy, 
mass tolerance, enzyme (trypsin most commonly 
used), and posttranslational modifi cations. There 
is a challenge in protein inference from peptide 
sequences in shotgun proteomics, where proteins 
from a cell lysate are digested to peptides. In 
addition, there is a bigger challenge in protein 
quantifi cation from complex peptide mixture 
including plasma samples. The popular software 
tools for measuring protein abundance are 
Scaffold [ 7 ] and Rosetta Elucidator [ 8 ], which use 
spectral count and peptide intensity, respectively. 

  Fig. 2.1    Workfl ow for mass spectrometry-based proteomics employed in biomedical research       
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There are MS data repositories allowing data 
submission and retrieval for collaborative and 
public users. The commonly useful programs for 
MS-based data analyses are listed in Table  2.1 .

2.2        Protein Identifi cation 

 Protein identifi cation relies on peptide MS/MS 
spectra matching to the protein sequence data-
base. The selection of search engine and right 
database is an important step for identifi cation of 
proteins. Many a times the same peptide sequence 
can be present in multiple different proteins or 
protein isoforms; thus in such cases it is diffi cult 
to assign a peptide to a protein [ 9 ]. In shotgun 
proteomics, the standard criterion for inferring 
protein is to identify at least two unique peptides 
and with reasonable amino acid sequence cover-
age. The selection of identifi ed peptides from 
spectra is based on scores above a threshold 
value. Different scoring schemes have been 
developed for peptide matching. For example, 
Mascot [ 4 ] and OMSSA [ 10 ] use probability- 
based scoring, while Sequest [ 5 ] uses descriptive 
approach. For large-scale studies of complex 
mixture of proteins, the False Discovery Rate 
(FDR) is used for peptide selection. All the search 
engines require additional information in the 
form of search parameters. The critical parame-
ters are discussed below. 

2.2.1     Sequence Database 

 In shotgun proteomics approach, the connectivity 
between peptides and proteins is lost in the enzy-
matic digestion stage. The task of assembling the 

protein sequences from identifi ed peptides is 
done by searching in sequence database using 
computational tools, which requires selection of 
a reference protein sequence database. The most 
commonly used databases are UniProt/Swiss- 
Prot and RefSeq from NCBI. Both of these data-
bases are non-redundant and well curated and 
thus help in biological data interpretation. In case 
an organism is not well represented in protein 
databases, EST databases are used.  

2.2.2     Taxonomy 

 The protein sequence databases contain taxon-
omy information, and most search engines allow 
users to restrict the search to entries for a particu-
lar organism or taxonomic rank. Limiting the tax-
onomy makes the database smaller and removes 
the homologous proteins from other species. This 
eventually speeds up the search process and 
avoids misleading matches. However, when 
searching proteins for poorly represented species 
in the databases, it is better to specify higher- 
order taxonomy. The size of the database in terms 
of the number of proteins has an effect in the 
search result and protein scores.  

2.2.3     Enzyme 

 The cleavage method needs to be selected in the 
search form. The most widely used enzyme is 
trypsin, which cleaves after arginine and lysine if 
they are not followed by proline. In practice, the 
cleavage methods are not 100 % specifi c and thus 
the search form allows users to specify the missed 
cleavages of one or maybe two.  

   Table 2.1    Useful programs for data analysis of MS-based proteomics   

 Preprocessing of MS spectra  Search engines  Quantifi cation  Repository 

 Mass-Up  Mascot  Scaffold  PRIDE 

 mMass  Sequest  Elucidator  Tranche 

 AMDIS  X!Tandem  Census  GPMDB 

 Ms-Deconv  OMSSA  MaxQuant  PeptideAtlas 

 Abacus  MassMatrix  XPRESS  CPAS 
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2.2.4     Modifi cations 

 There are two types of modifi cations that need to 
be specifi ed in the database searching. First, fi xed 
modifi cations correspond to mass change of an 
amino acid and do not take a longer search time, 
for example, alkylation of cysteine, where all 
cysteines are modifi ed and there is change in the 
mass of cysteine. Second, variable modifi cations, 
in which, the modifi cations do not apply to all the 
instances of a residue. For example, not all ser-
ines in a peptide are phosphorylated. This type of 
search increases the time taken for a search since 
the software considers all the possible arrange-
ments of modifi ed and unmodifi ed residues that 
fi t to the peptide molecular mass.  

2.2.5     Peak List File Format 

 There are a number of different fi le formats for 
peak lists. Mascot uses MGF (Mascot Generic 
Format), whereas Sequest supports DTA and 
PKA formats. mzML is the standard interchange 
format supported by proteomics standard initia-
tives, which can be used for raw and peak lists.  

2.2.6     Mass Tolerance 

 Most search engines support peptide mass toler-
ance for precursors and fragments. The peptide 
tolerance in narrow windows of 1 and 2 Da is pre-
ferred. Specifying less than 1 mass tolerance may 
lose the sensitivity of the match.  

2.2.7     False Discovery Rate (FDR) 

 Many search engines and scoring systems pro-
vide an option of statistical validation of the 
results and use a decoy database to estimate 
FDR. A decoy database is a database of amino 
acid sequences that is derived from the original 
protein database (called the target database) by 
reversing the target sequences, shuffl ing the target 
sequences, or generating the decoy sequences at 
random. Generally FDR is calculated on peptide 
hits and a threshold cutoff value of 1 % is allowed.   

2.3     Quantitative Proteomics 

 Quantitative proteomics deals in relative protein 
expression levels between two or more different 
pools of proteins. It is used to detect the difference 
in protein expression profi les among tissues, cell 
cultures, or organisms. Most commonly, it is used 
to compare expression profi les between a healthy 
cell and a diseased cell. The data comparison with 
diseased cells/tissues can be used for biomarker 
or drug discovery. 2D gel-based proteomics and 
difference gel electrophoresis (DIGE), which uses 
fl uorescence-based labeling of the proteins prior 
to separation, are current approaches for the 
2-DE-based study of proteomes [ 11 ]. Recently, 
shotgun proteomics approaches are being used for 
protein expression profi ling in two different ways: 
(1) label-free method and (2) stable isotope label-
ing methods. In addition to assembling peptides 
to proteins, quantitative proteomics data deals 
with protein abundance ratios. 

2.3.1     Label-Free Quantifi cation 
Methods 

 In label-free quantifi cation approach, relative 
abundance of peptides in two or more biological 
samples is determined, based either on spectral 
counting or on precursor ion signal intensity. 
Many automated software tools including scaf-
fold use spectral count as a quantitative value for 
protein abundance. Spectral count is the number 
of peptides identifi ed from a protein in each sam-
ple. Peptide fragment ion intensities are used by 
Rosetta Elucidator, which measures and com-
pares the signal intensities of peptide precursor 
ions. Biological samples have a wide range of 
protein abundance values, and mass  spectrometers 
are not well equipped to detect a dynamic range. 
For example, blood samples contain a few 
thousands of proteins including tissue leakage 
proteins and cytokines in low abundance. The 
peptides from highly abundant proteins often 
mask the low-abundant proteins. The spectra or 
the intensity profi ling methods compare the peak 
intensities across different LC-MS runs, and it is 
required to perform replicate measurements to 
estimate the variance. 
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2.3.1.1     Statistical Analysis 
 Quantitative proteomics deals with comparing 
protein abundance values in two different condi-
tions and across replicated experiments. Data 
normalization is essential for the comparison of 
the LC-MS intensity/spectral profi les. 

 Normalized spectral abundance factor (NSAF) 
[ 12 ], Z-score [ 13 ], and a few other scoring sys-
tems are used to perform the normalization step. 
After normalization, fold change and testing of 
signifi cance using  t -test (similar to microarray 
studies) are carried out. A volcano plot helps to 
understand the level of signifi cance and magni-
tude of changes observed in a quantitative pro-
teomics study. The fold change on the log2 scale 
is placed on the horizontal axis and the p-value 
on the -log10 scale is placed on the vertical axis 
[ 14 ] , as shown in Fig.  2.2 .

2.3.1.2        Visualization and Pathway 
Analysis 

 Heat map and clustering analysis allows visual-
ization and interpretation of the expression data. 
For further interpretation, the expression data set 

can be uploaded in pathway analysis software 
tools like Ingenuity Pathway Analysis (IPA) [ 15 ] 
and Pathway Studio [ 16 ] for identifi cation of sig-
nifi cant pathways that have changed in different 
conditions. IPA is a web-based software applica-
tion for the analysis, integration, and interpreta-
tion of proteomics data, in which, the back-end 
data has been manually curated. Pathway Studio 
also enables the analysis and visualization of 
proteomics expression and pathway curation, but 
here the back-end data has been collected by 
text mining.   

2.3.2     Applications of Quantitative 
Proteomics 

 A mapping of human proteome of adult tissues, 
fetal tissues, and hematopoietic stem cells 
(HSCs) was performed using shotgun LC MS/
MS. Developmental stage-specifi c differential 
expression of protein complexes in fetal and adult 
liver tissues was identifi ed. This resulted in large 
human proteome catalog of 17,294 genes [ 17 ]. 

  Fig. 2.2    Volcano plot for graphical representation of quantitative proteomics data       
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The protein composition may be associated with 
disease processes in the organism and thus have 
potential utility as diagnostic markers. Proteins 
are closer to the actual disease process, in most 
cases, than parent genes. Proteins are ultimate 
regulators of cellular function. Most cancer bio-
markers are proteins, e.g., detection of PSA is a 
surrogate for early detection of prostate cancer. 
Large screening trials have shown that PSA 
nearly doubles the rate of detection when com-
bined with other methods. Based on these data, 
PSA testing was approved by the US FDA for the 
screening and early detection of prostate cancer.   

2.4     Interaction Proteomics 

 Proteins interact with each other to form func-
tional units like networks and pathways. 
Individual protein functions can be revealed 
through participation in specifi c interaction net-
works. The two commonly used techniques to 

study protein-protein interactions (PPIs) are 
yeast 2-hybrid (Y2H) and affi nity purifi cation- 
mass spectrometry (AP-MS). Yeast and human 
PPIs have been extensively studied using these 
two methods. The former deals with binary inter-
actions and later identifi es multi-protein com-
plexes. The bait protein is the protein of interest 
while the prey proteins are the proteins associ-
ated with the bait protein. Both the methods are 
incomplete and the network is dependent on the 
technology (Fig.  2.3 ). AP-MS combines the 
specifi city of antibody-based protein purifi cation 
with the sensitivity of mass spectrometry to iden-
tify and quantify putative interacting proteins. 
There are key issues in both the technologies. In 
Y2H, if a protein interacts in the presence of two 
or more proteins, such instances cannot be cap-
tured (Fig.  2.3b ). For example, active PP2A holo-
enzyme requires the catalytic, regulatory, and 
structural units to form a complex. Such studies 
are possible only by AP-MS. However, AP-MS 
has its own limitations. First, there is variability 

  Fig. 2.3    Comparative analysis of selected Y2H and AP-MS yeast networks (Adapted from Saha et al. [ 18 ])       
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in AP-MS replicated experiments in terms of 
prey proteins identifi ed. Second, there may be 
many nonspecifi c binders. Third, not all bait pro-
teins are expressed well in the transfected cells, 
and it is diffi cult to identify them if it is expressed 
in small vesicles like peroxisomes (Fig.  2.3d ). To 
overcome these problems, several statistical tools 
have been developed [ 18 ].

2.4.1       Scoring Systems for PPIs 

 The analysis of protein interaction networks and 
protein complexes are very important for under-
standing the cellular process. Development of 
computational tools for identifying true interac-
tors and modeling bait-prey and prey-prey inter-
actions is a rapidly growing fi eld of research. 
Socio-affi nity score was fi rst used in yeast inter-
actome study using AP-MS [ 19 ]. The major 
drawback of this method was that all the prey 
proteins have to be used as bait again for apply-
ing this score. The other scores used are NSAF 
[ 20 ] and ROCS [ 21 ]. CompPASS (Comparative 
Proteomics Analysis Software Suite) uses 
D-score and is designed to help facilitate the 
identifi cation of high confi dence candidate inter-
acting proteins from IP-MS/MS data [ 22 ]. 
CRAPome [ 23 ] is a repository of AP-MS back-
ground contaminant data for human and yeast 
and includes computational tools like SAINT 
[ 24 ] and SAINTexpress [ 25 ] for AP-MS data 
analysis.  

2.4.2     PPI Databases 

 There are some comprehensive highly curated 
databases for storing information about PPIs 
and protein complexes [ 26 ]. Some of them are 
 organism specifi c, like the Human Protein 
Reference Database (HPRD) [ 27 ] and 
Comprehensive Resource of Mammalian protein 
complexes (CORUM) [ 28 ], while some do not 
restrict to species like IntAct [ 29 ], DIP [ 30 ], and 
BioGRID [ 31 ]. The STRING database [ 32 ] pro-
vides predicted as well as manually curated PPIs 
of a wide range of species.  

2.4.3     Applications of Interaction 
Proteomics 

 Interaction proteomics includes physical PPI 
networks and the protein complexes formed by 
biochemical events to serve a distinct biological 
function as a complex. The protein interactome 
describes the full repertoire of PPIs within a 
biological system. Recently the BioPlex 
( b iophysical  i nteractions of  O RFEOME-derived 
com plex es) network [ 33 ] was generated from 
thousands of human cell lines each expressing a 
tagged version of a protein from the human 
ORFEOME collection [ 34 ]. AP-MS-based 
method was used as the building blocks of this 
network. Other interesting networks developed 
from the same group are the human  a utophagy 
 i nteraction  n etwork (AIN), the human  i nteraction 
 n etwork  f or  ER - a ssociated  d egradation 
(INfERAD), and the mitochondrial networks.   

2.5     Metaproteomics 

 The environmental metaproteomic measure-
ments for many different microbes including 
uncultured organisms in mixed communities can 
be studied by using MS-based proteomics and 
computational tools for characterization of com-
plete proteins expressed by microbial community 
in an environmental sample [ 35 ,  36 ]. A variety of 
research areas including bioremediation, bioen-
ergy, and human health can be addressed using 
metaproteomics. The characterization of micro-
bial species and their impact on the human gut in 
healthy and disease patients can have profound 
implications on human health. Some useful com-
putational tools used in metaproteomics analyses 
are Unipept [ 37 ], MetaProteomeAnalyzer (MPA) 
[ 38 ], and Pipasic [ 39 ].  

2.6     Proteomics Standard 
Initiative 

 The Proteomics Standards Initiative (PSI) aims to 
defi ne community standards for data representation 
in proteomics and to facilitate data comparison, 
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exchange, and verifi cation. The PSI from the 
Human Proteome Organization (HUPO-PSI) has 
defi ned standards for proteomics data representa-
tion as well as guidelines that state the minimum 
information that should be included when report-
ing a proteomics experiment (MIAPE) [ 40 ]. Such 
minimum information must describe the com-
plete experiment, including both experimental 
protocols and data processing methods, allowing 
a critical evaluation of the whole process and the 
potential recreation of the work. For interaction 
proteomics, the PSI-MI interchange format [ 41 ] 
was developed which contains controlled vocab-
ularies designed by a consortium of molecular 
interaction database providers including 
BioGRID, DIP, IntAct, and HPRD. PSI-MI inte-
grates with Biological Pathway Exchange 
(BioPAX), which is the standard language to rep-
resent biological pathways [ 42 ]. BioPAX and 
PSI-MI are designed for data exchange from 
databases as well as pathway and network data 
integration. Tools are available for converting 
PSI-MI format to BioPAX.  

2.7     Data Repositories 

 Proteomics studies generate large volumes of raw 
experimental data. Hence, to facilitate the dis-
semination of these data, centralized data reposi-
tories were developed that make the data and 
results accessible to proteomics researchers and 
biologists [ 43 ]. PRIDE, the “Proteomics 
Identifi cations database,” is a public repository of 
protein and peptide identifi cations for the pro-
teomics community [ 44 ]. It focuses mainly on 
shotgun mass spectrometry proteomics data, and 
proteomics researchers can deposit their MS/MS 
proteomics data sets according to the guidelines 
of the ProteomeXchange (PX) consortium. Since 
PRIDE is a web application, submission, search-
ing, and data retrieval can all be performed using 
an Internet browser. PRIDE allows users to 
search by experiment accession number, protein 
accession number, literature reference, and sample 
parameters including species, tissue, subcellular 

location, and disease state. Data can be 
retrieved either as machine-readable PRIDE/
mzData XML fi les (the latter for mass spectra 
without identifi cations), or as human-readable 
HTML fi les. Tranche [ 45 ] is another distributed 
data repository designed to redundantly store and 
disseminate data sets for the proteomics commu-
nity. Other repositories such as PRIDE, 
PeptideAtlas, and Human Proteinpedia interact 
with Tranche as the preferred mechanism for 
storing and disseminating large MS data fi les.     
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3.1           Introduction 

 Life at the level of a unit seems so simple and 
concrete. But, going deeper into the modular 
level of its formation, looks more complex and 
abstract than the painting of an abstractionist. 
Man, from the early days of the evolution of his 
consciousness, is constantly working by con-
structing all possible ways to observe and unfold 
the complexity of life, in terms of biology. The 
differentiation of all life forms is achievable in 
terms of Systems Theory [ 37 ]. By considering 
distinct modules of life as system, we can go fur-
ther into the systems bringing forward a better 
understanding of its organisation. In terms of 
biology, a community of living organisms, a pop-
ulation, an individual organism and going more 
further down to the cellular level a single cell can 
be characterized as a system [ 37 ]. 

 Systems biology facilitates the observation 
of biological systems at the molecular level to 
understand the underlying dynamics [ 19 ]. 

Foundations of Systems Biology as most of the 
Systems biologists agree with date back to the 
year 1948 in the works of Cybernetics carried 
out by Norbert Weiner [ 39 ]. However the word 
“systems biology” came into use during 1960s 
[ 33 ]. Though, various approaches have been 
assigned to understand the interior mechanism 
of the biological systems in the past, most of the 
studies were based on obtaining the physiologi-
cal level of understanding rather than that of the 
molecular level. The factors behind this limita-
tion in approach are the inability to make micro-
scopic observations during that time. Though 
countless attempts have been made to explore 
biological systems to understand their working 
mechanisms, these approaches were limited due 
to lack of information about these systems at the 
molecular level. With the advancement in 
molecular biology after the Watson and Crick’s 
discovery of the structure of DNA [ 38 ], the fi eld 
of systems biology has been growing [ 19 ,  40 ]. 
Currently, while exploring the mechanism of 
complex biological systems, focus is laid on 
the molecular framework of the systems with 
respect to its underlying biological components 
such as genes, proteins and other macromolecu-
lar species. In this chapter, we will try to discuss 
established facts about biological networks, the 
inbuilt design principles embedded in these 
networks and some analysis strategies applied 
to these systems for dynamical observation of 
biological systems.  
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3.2     Biological Networks – 
Architecture and Design 
Principle 

 Biological networks can be defi ned in terms of 
the Graph Theory [ 4 ]. Graphs are mathematical 
structures that are used to model pairwise rela-
tionships between the objects. Biological net-
works similarly are a collection of molecular 
species (nodes) which have interconnections 
(edges). The hierarchy of biological networks 
therefore depends on its components. Networks 
can be either simple or complex in nature. The 
present chapter address the architecture of such 
networks and their design principles to under-
stand the working mechanisms of various bio-
logical networks. For the brevity of the subject 
and taking the importance of the subject into con-
sideration, we have confi ned the description of 
biological networks at the molecular level only. 
Cell, being a subtle example of biological sys-
tems, encapsulates most intricate forms of bio-
logical networks inside its boundaries. 
Considering the complexity of biological sys-
tems, it would be an abstract idea to consider bio-
logical networks as distinct units. Each of the 
network inside the cell is associated with several 
other networks that function parallelly and mod-
ulate the cellular activity. Biological activities 
therefore are a consequence of the orchestra of 
functioning of the many biological networks that 
operate inside a cell. However to simple the 
understanding of biological networks and to 
identify the architecture of the network, networks 
have been classifi ed based on their molecular 
components. Design principles associated with 
each of the networks has also been highlighted to 
obtain an elaborate understanding on how net-
works function and can be analysed. 

3.2.1     Metabolic Networks 

 Metabolic reactions are the major source of 
energy production inside the cell. An enormous 
amount of products are generated that take part in 
diverse cellular mechanisms [ 15 ]. Metabolic 
networks therefore comprise of a rich number of 

enzymes, enzyme-substrate complexes, regula-
tory proteins and small molecules and their inter-
actions [ 18 ]. Metabolic networks therefore defi ne 
the interactions between the metabolites and the 
end products. Reactions can be reversible or irre-
versible, unidirectional or bidirectional, might 
involve single or multiple species. Based on the 
kind of reactions, networks can be linear, nonlin-
ear, scalar and scale free networks. Such multi-
faceted networks contain a variety of graph 
properties that are comparatively diffi cult to 
observe considering the dynamic nature associ-
ated with each of the components in the system. 
Though topology analysis in the steady state 
gives meaningful insights into the graph proper-
ties, however at times the stochasticity of the 
components needs to be accounted for and hence 
a probabilistic approach becomes essential. 
Understanding of such metabolic networks is 
strongly recommended to understand the energy 
production in living cells. Several software’s are 
available to visualize metabolic networks such as 
JDesigner [ 32 ], Cell Designer [ 12 ], Omix [ 8 ], 
etc. and several software are also available to 
carry out simulation like COPASI [ 17 ]. To under-
stand the dynamics of metabolic pathways and to 
construct synthetic systems, real time observa-
tion is very essential and should be performed 
with high precision. So far, a number of studies 
focussing dynamic behaviour of metabolic net-
works for a variety of organisms have been con-
ducted. Data produced by these studies have 
paved the way for systems biologists to ascertain 
underlying design principles moulding the frame-
work of such metabolic pathways. For example, 
tuberculosis has been a matter of interest for 
medical science to produce effective drugs 
against its pathogen (i.e.,  Mycobacterium tuber-
culosis ) and the resistance of disease in humans. 
Complete genome sequencing of  M. tuberculosis  
to understand its biology and detailed mechanism 
of pathogenesis has provided subsequent clues 
about the regulatory mechanisms working behind 
cellular processes such as metabolism, regulation 
and signal transduction [ 7 ].  M. tuberculosis  con-
tains one of the most enriched metabolic systems 
in comparison the other pathogens. It can metab-
olize a number of molecules [ 13 ] like lipids and 
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polyketides. It contains an array of enzymes usu-
ally found in mammals and other pathogens [ 7 ]. 
Lipid metabolic network found in the tubercle 
bacillus (Fig.  3.1 ) is an example of scale-free 
metabolic network. Metabolic system of  M. 
tuberculosis  exhibits a range of proteins that 
work in lipid degradation processes making it 
capable of intruding mammalian cells. The thor-
ough understanding of the metabolic network 
and extraction of design principle applied to the 
network may pave the way for systems biologist 
in the development of effective drugs for drug 
resistance tuberculosis.

3.2.2        Transcription Networks or 
Gene Regulatory Networks 

 Francis Cricks’ saying “DNA makes RNA, RNA 
makes protein and protein makes us” seems quite 
understandable in a layman’s view. However, 
when we go into the actual detail of the phenom-
ena of central dogma, we actually come across 
highly intricate web of non-linear molecular pro-
cesses and it takes an observational approach to 
understand the spatiotemporal behaviour of each 
of the molecules involved. 

 Transcription is the main course of this 
abstract orchestra that leads to the formation of 
most variant and essential machinery of regula-
tory system of the living cells i.e., proteins. 
Protein synthesis is regulated at the transcription 
level by gene regulatory mechanisms. The tran-
scription is controlled by the transcriptional fac-
tors (TF’s). Transcription factors play an essential 
role in moderating the production of the proteins 
that maintain the proper functioning of the cell. 
Genes and TF’s interact with each other to 
enhance the production of a desired gene prod-
uct. It is these interactions that are represented in 
the transcription network [ 1 ]. Depending on the 
requirements, TFs affect the transcription rate of 
genes per unit time. They thereby act as both 
repressors and activators of transcription. 
Bacteria like  E. coli  have highly complex tran-
scription factor networks which are composed of 
a variety of network motifs and interactions (Fig. 
 3.2 ) making it a thousand time diffi cult to observe 
the dynamic behaviour of the network [ 14 ,  31 ].

   Gene regulatory networks are similar to the 
transcription networks but they are made of just 
genes [ 41 ]. A gene regulatory network comprises 
interaction of a gene with other gene leading to the 
activation or suppression of the activity. Gene regu-
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  Fig. 3.1    Metabolic pathway of lipid metabolism in  Mycobacterium tuberculosis  showing features of scale free network 
[ 7 ]       
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lation is also carried out due to extracellular stimuli 
that the cell receives in its environment in the form 
of any stimulating factor. Such networks depict the 
expression level of a gene. Several software are 
available to visualize gene regulatory networks 
such as Cytoscape [ 30 ], Biotapestry [ 22 ], etc.  

3.2.3     Signal Transduction Networks 
(STNs) 

 Signalling networks depict the underlying struc-
ture of cell signalling and how perturbations 
affect the signal transduction pathways. 
Understanding the network architecture and 
dynamic behaviour of the STNs is highly recom-
mended in order to understand cellular systems. 
To develop more effi cient and effective synthetic 
networks, in depth understanding of signalling 
networks is a must. Signalling transduction pro-

cesses are important in the context of cellular 
sustainability and their response to environmen-
tal changes. 

 STN comprise of a set of specifi c proteins that 
work as messengers of external stimuli received 
by the cell from the environment. Information 
received by the signalling proteins is then pro-
cessed and transferred to the internal machinery 
of the cell. STNs also interact with other net-
works such as the transcription network, gene 
regulatory networks, etc. to form even more com-
plex intracellular networks. Several examples of 
signal transduction networks that are an elaborate 
depiction of the typical mechanism of signal 
transduction exist (Fig.  3.3 ). Several signalling 
pathways can be modelled into STN for e.g. TNF 
associated pathway [ 26 ], NF-kB pathway [ 16 ]. 
To model STN, several databases are available 
such as BioCarta [ 25 ], NCI database, 
TRANSPATH [ 21 ], etc.

  Fig. 3.2    Representation of transcription regulatory network of  E. coli  [ 13 ]       
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3.2.4        Protein-Protein Interaction 
Networks 

 Proteins are the most essential part of cellular 
machinery, which takes part in almost every 
molecular process  inside the cell. Proteins inter-
act with a wide variety of molecular species such 
as DNA, RNA and other proteins. From our 
understanding and with the development of 
molecular biology, it has been relatively easy to 
derive insights into various protein-protein inter-
actions giving an idea about functioning of vari-
ous proteins. Proteins also affect the activity 
of several proteins thereby modulating their 

functioning. There are several databases that pro-
vide information regarding the protein-protein 
interactions such as DIP [ 44 ], BIND [ 3 ] and 
STRING [ 11 ]. Computational biologists have 
developed working strategies to predict functions 
of uncharacterized proteins using these databases 
[ 20 ,  23 ,  24 ,  29 ]. A protein-protein interaction 
network is a multi-dimensional graph extending 
into the direction of interaction of proteins with 
other proteins. For example, the protein-protein 
interaction network of all the proteins from 
 Treponema pallidum  (Fig.  3.4 ) gives an idea of 
the complexity of the network that arises from 
the multi-way interaction of proteins with other 

  Fig. 3.3    Model showing the activation of two distinct TNFR1 signal transduction pathways by tumor necrosis factor 
(TNF) [ 31 ]       
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relative proteins. Titz et al. [ 35 ] during the study 
of  T. Pallidum  (Nichols strain) interactome iden-
tifi ed 3649 interactions between 726 proteins 
from the proteome of 1039 proteins. Organism-
based network mapping of protein-protein inter-
action networks may unfold the basic design 
principles that regulate the phenomena of inter-
actions and their possible effects on other pro-
teins resulting in increase or decrease in the 
activity.

3.2.5        Protein Domain Networks 

 Proteins domain networks are defi ned as the 
interaction between protein domains arranged in 
a specifi c topology to give rise to a certain func-
tion [ 2 ,  43 ]. The specifi c arrangement of protein 

domains defi nes their functional specifi city. 
Interconnected domains lose their specifi c func-
tion when their specifi city of interaction is lost. 
There are two kinds of domain-domain interac-
tions i.e. intra-chain domain interactions (interac-
tion between the domain of the same protein) and 
inter-chain domain interactions (interaction 
between domains of different proteins). Advances 
in experimental data depicting clues for such 
interactions have added a substantial amount in 
the understanding of the topology and dynamic 
of such networks. There are established data-
bases which are a repository of such interactions 
such as DOMINE [ 45 ]. Protein domain networks 
like other complex biological networks show 
scale-free behaviour such as the domain network 
of  Saccharomyces cerevisiae  (Fig.  3.5 ) [ 42 ].

  Fig. 3.4     Representation of scale free protein-protein interaction network of the proteins from  Treponema pallidum  
(Nichols strain) [ 35 ]       
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3.2.6        Phylogenetic Trees 

 Phylogenetic trees qualify for various reasons as 
biological networks. Phylogenetic trees provide a 
way to represent biological entities and their 
interaction in graphical form. From organism 
level to the molecular level, phylogenetic trees 
depict an organization of species as hierarchical 
networks. Hierarchical organization of orthologs 
and paralogous genes is an explicit example of 
phylogenetic network. Phylogenetic networks 
are essential to understand the evolutionary relat-
edness of organisms and their molecular species. 
In recent years, genome-based phylogenetic 
analysis has been in trend to construct phyloge-
netic observations. These genome-based analysis 
can be utilized to understand how evolutionary 
interaction can affect the activity of the molecu-
lar species [ 28 ]. Phylogenetic networks thereby 
relate evolutionary pressure that molecular spe-

cies are subjected to with their functional 
interactions.   

3.3     Analysis Strategies Applied 
to Biological Systems 

 In the previous section of the chapter, we have 
learned about different biological networks, their 
architecture and underlying design principles 
behind these networks. In this section, we will try 
to discuss some analysis strategies developed so 
far by the system biologists to analyse networks. 
System, in context of cell as we discussed earlier, 
is a collection of components (i.e., genes, proteins, 
transcription factors, etc.) and their relative inter-
actions. By default, every biological system in 
order to survive against the ongoing perturbations 
in the environment contains a series of self- 
regulatory set right systems that help the system to 

  Fig. 3.5     Representation of a major component of the domain network of  Saccharomyces cerevisiae  including 204 
vertices and 347 edges [ 42 ]       
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attain robustness. Achieving robustness is the prin-
ciple objective of any biological system [ 19 ]. To 
understand how at all systems are fabricated, how 
dynamic a system is and how a system controls 
itself in order to maintain biological  stability are 
the kind of questions systems biologists have been 
trying to understanding by analysing biological 
networks. Following are the widely used analysis 
strategies to fulfi l aforementioned purposes: 

3.3.1     Constraint Based Analysis 

 It is a mathematical approach to study biochemi-
cal networks that is capable of dealing with com-
plex networks such as genome-scale metabolic 
network reconstructions. Flux balance analysis 
(FBA) analyses the fl uxes that operate in the sys-
tem such that a desired objective is attained for 
e.g. achieving maximum biomass production. 
Analysis is based on the stoichiometry of the 
metabolic reactions wherein the fl ow of the 
metabolites of each reaction is represented in the 
form of mathematical equations [ 36 ]. For e.g. 
Edwards et al. [ 9 ] in their study utilized FBA to 
predict the metabolic capabilities of  E. coli . 

 Understanding metabolic networks may lead 
to an estimate about the capability of metabolite 
production of a particular organism. While ana-
lysing the network, there is no need of any kinetic 
parameters and models analysed using FBA can 
give insight into the growth rate of an organism 
and the rate of production of a specifi c metabolite 
that plays a key role in the regulatory mechanism 
of the organism [ 27 ]. In future, more effective 
models based on FBA may be constructed to 
acquire control over the metabolic pathways 
for more complex systems such as humans and 
other mammals. Another method used for analys-
ing metabolic networks is Metabolic Control 
Analysis which provides mathematical approach 
for the understanding of dynamical behaviour of 
metabolic system [ 10 ]. It is useful for under-
standing the relationship between the steady state 
properties of biological network and of each of 
its components. It is kind of sensitivity analysis 
of a dynamical system. The stoichiometric struc-
ture of the network gives an idea of its nature and 

the control and regulatory mechanisms existing 
within the network. With the development of 
even recent techniques such as elementary mode 
analysis and MOMA, it is expected that future 
development would relate to the integration of 
various mathematical analysis methods which 
would facilitate the generation of more effective 
and fl exible models that can then be used for 
understanding of several intricate systems.  

3.3.2     Bifurcation Analysis 

 Biological systems can be complex in nature 
wherein the behaviour of the system can be based 
on a few of the components or parameters. 
Bifurcation analysis is a mathematical study of 
changes in the structure of a particular network 
with time. System is defi ned in the form of dif-
ferential equations wherein it is assumed that 
bifurcation occurs when a small change is made 
in some of parameters (also called as the bifurca-
tion parameters). Bifurcations in continuous sys-
tems are described in the form of ODE’s or PDE’s 
while those in discrete systems are described in 
the form of maps. Bifurcations can be local or 
global. In past, several attempts have been made 
to apply bifurcation analysis for complex biolog-
ical systems. Borisuk and Tyson [ 5 ] applied 
bifurcation analysis for modelling the mitotic 
control by M-phase promoting factor (MPF). 
They introduced several parametric changes to 
check the feasibility of the model. Bifurcation 
analysis has remained the primary choice of 
 system biologist while addressing the dynamical 
behaviour of complex nonlinear systems. Several 
attempts have been made so far to exploit this 
strategy effectively. In future, there is scope for 
successful application of bifurcation analysis to 
more complex systems.  

3.3.3     System Control Analysis 

 Apart from the extrinsic mathematical analysis 
strategies applied to biological systems, we fi nd 
that there exists an array of analysis and control 
mechanisms such as regulatory mechanism, 
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repair proteins, immune response proteins, and 
heat shock proteins, etc., in biological systems 
which work all along to provide stability to the 
system. In context of system control, two types of 
control mechanisms ubiquitously found in bio-
logical systems are feed forward and feedback 
control systems. There are several examples of 
both types of control mechanism distributed in a 
wide range of biological systems such as feed-
back control in bacterial chemotaxis and heat 
shock response which contains both feed forward 
and feedback control loops. There are a few dis-
tinctive examples where both these controls 
methods are found mutually for example, heat 
shock response regulation in  E. coli  [ 6 ]. The reg-
ulation is carried out because of the formation of 
σ 32  in response to feedback and feed-forward 
control mechanism [ 34 ]. The understanding of 
control mechanisms found in other organisms 
may pave the way for the development of effec-
tive control machinery for synthetic biological 
systems.   

3.4     Conclusion 

 So far, in this chapter we have given a brief over-
view of historical perspective and systems biol-
ogy, its approach towards developing system 
level understanding of biological systems. We 
have also discussed specifi cally about how sys-
tems are organized into different biological net-
works such as metabolic networks, transcription 
networks or gene regulatory networks, signal 
transduction networks, protein-protein interac-
tion networks, protein domain networksand phy-
logenetic networks. We have also discussed 
underlying design principles with the help of 
elaborative illustrations adapted from various 
established studies carried out in recent years. 
This brings us to a conclusion that most of the 
inbuilt characteristic features of biological net-
works are governed by simple laws of physics. In 
the last section of the chapter, we have given an 
overview of various analytical strategies applied 
to these biological systems that are both intrinsic 
as well as extrinsic in nature. Nature has provided 
biological systems with inbuilt regulatory and 

repair mechanism meant to control the perturba-
tions in ongoing processes in response to external 
stimuli such as changes in environmental factors 
(i.e., temperature, pressure, changes in pH, etc.) 
or to internal disturbances such as DNA damage, 
protein misfolding, etc. We have described some 
other analysis strategies that are applied exter-
nally in the form of mathematical models to 
understand the dynamic behaviour of biological 
systems. 

 The principal objective of systems biology i.e. 
developing an understanding of dynamic behav-
iour of biological systems is being realized with 
the help of different fi elds of science such as elec-
trical engineering, computer science, genetic 
engineering, genomics, proteomics and tran-
scriptomics. Recent advances in systems biology 
research have unfolded complex mysteries of 
dynamics of biological systems with the integra-
tion of effective computational methods, simula-
tion techniques and other analysis methods. Data 
provided by these observations will be helpful for 
future developments in analysing more complex 
systems and extraction of design principles to 
develop effi cient systems which will help the 
process of drug discovery.     
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     Abbreviations 

   SBDD    Structure-based drug designing   
  ADME     Absorption distribution, metabolism, 

and excretion   
  SEM    Scanning electron microscopy   
  TEM    Transmission electron microscopy   
  XRD    X-ray diffractometer   
  PSI    Protein structure initiative   
  SGC    Structural Genomics Consortium   

4.1          Introduction 

 Structure biology deals with the study of three 
dimensional structures of macromolecules like 
proteins, DNA, and RNA. The target molecule 
for structural study is protein, a string of amino 
acids which fold into loops, secondary, tertiary, 
and quaternary structures. Structural studies of 
these molecules reveal the 3D atomic level 
details, effect of mutations on protein folding and 
function. Furthermore, the use of  in silico  

bioinformatics- based approach has helped to 
determine the 3D structure of proteins from pri-
mary sequence [ 1 ]. High-resolution structure of 
protein helps in understanding the protein dynam-
ics, protein folding, and structure-guided func-
tions of proteins. The experimentally determined 
structures of protein molecule are useful in 
molecular modelling and computational biology 
studies. Structure of different molecules like 
DNA, RNA, proteins, and their complexes with 
ligand are also reported from different organism 
[ 2 ]. These structures had till date played a very 
important role in structure-based- drug 
designing. 

 Biology, which includes the study of living 
organisms, has become abundantly rich with data 
obtained from number of biological studies, 
experiments, and also due to recent advance-
ments in technology. This outburst of informa-
tion led to an emergence of a new fi eld called 
“OMICS”. Omics is the study of biological mol-
ecules of an organism that perform different 
functions. Omics aims at comprehensive charac-
terization and quantifi cation of biological mole-
cules that are present in the organism/organisms. 
Omics is attached to different prefi x which 
describes the fi eld of studies, for example, the 
study of genome is known as genomics, study of 
proteome is known as proteomics, and so on. 
Different fi eld of omics study include lipidomics, 
transcriptomics, metabolomics, interactomics, 
stem cell genomics, and structural proteomics. 
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Study of omics is useful to identify different mol-
ecules present in the organisms, evolution of 
organism, orthologous and paralogous genes 
present in the organism, and novel regulatory 
processes present in the organism at transcription 
and translational levels. Study of metabolomics 
and structureomics will play a signifi cant role in 
the process of drug discovery. 

 Metabolomics can be an invaluable tool for 
clinical studies like drug toxicity, early diagnosis 
of preclinical conditions, and identifi cation of 
biomarkers. Structural proteomics is the study of 
structural aspects of whole cellular components 
which aims at (1) determining the 3D structures 
of diverse subset of proteins which can be used to 
model other structures using computational tech-
niques and (2) mapping the structures of proteins 
and protein-protein interactions from a large 
number of model organisms. 

 Eventually, the goal lies in strengthening the 
computational methods so that reasonable struc-
tures for every sequence can be determined at 
high resolution. Structural proteomics will help 
to computationally generate or experimentally 
determine and view the 3D structure that corre-
lates with protein function. The 3D structure of 
proteins obtained can provide molecular insights 
of the proteins that can be used as druggable tar-
gets for designing the small molecule inhibitors 
against various diseases and interfere with resis-
tance development in organisms.  

4.2     Drug Discovery 

 Drug discovery is a process of identifying small 
molecules which can bind and modulate the func-
tion of a target molecule. Proteins are involved in 
myriad of cellular processes making them effec-
tive drug targets. Drug discovery and design 
requires the identifi cation of potential drug 
 candidates, novel target and characterization 
followed by biochemical assays to test their 
therapeutic effi cacy. The drug discovery process 
is often lengthy, diffi cult, and expensive. The dis-
covery of drug involves a multidisciplinary effort 
of scientists and clinicians to explore the new 

approaches for therapeutics. The major steps in 
the process of drug discovery include: (1) 
Identifi cation of a disease associated specifi c 
molecular target; (2) Identifi cation of hits and 
leads (small molecule inhibitors, monoclonal 
antibodies) to intervene with the molecular target 
for reversal or inhibition of the disease; (3) 
Understanding the detailed 3D structure of the 
target with lead compounds that affect the func-
tion; (4) Optimization of the lead compounds to 
increase the effi cacy and potency that is further 
examined in preclinical studies. The different 
steps in drug discovery can be broadly divided 
into different subheadings as follows. 

4.2.1     Investigation of Drug Target 
and Lead Molecules 

 Understanding the biology of a disease gives new 
insights about the molecules that can be targeted 
for drug development or diseases. The aim for 
drug design is to identify a biological target and 
ligand molecules that can act as a promising 
inhibitor/promoter, etc. The identifi ed targets and 
drug leads are further validated, and the lead is 
optimized to enhance its potential benefi ts and 
mechanisms of action. 

4.2.1.1     Target Identifi cation 
and Validation 

 A target is a biological entity which elicits a bio-
logical response that can be measured experi-
mentally on binding to a drug molecule. A few 
basic criteria are to be considered before select-
ing the molecule for drug discovery: (1) The tar-
get molecule should be indispensable for the 
survival of the cell; (2) The drug molecule should 
specifi cally target to the protein or protein path-
ways; (3) The protein should have a small- 
molecule binding site for which a compound can 
be designed; (4) The target molecule 3D struc-
tures should be determined and its best to have 
co-crystallized structure with inhibitors. 
G-protein-coupled receptors (GPCRs) are known 
to be more responsive to small molecule drug 
whereas antibodies are good at interfering with 
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protein-protein interactions [ 3 ]. Target can be 
identifi ed through examining the correlation of 
protein levels with disease progression, genetic 
polymorphism and the risk of disease, and isola-
tion of monoclonal antibodies that bind tumor 
cells [ 4 ]. The identifi ed target is then validated 
using  in vitro tools , animal models, and study of 
desired target in patients. Recently, the fi eld of 
chemical genomics has emerged that studies the 
genomic response in individuals when chal-
lenged with chemical compound. The aim is to 
provide a chemical tool against every protein 
transcribed and translated [ 5 ].  

4.2.1.2     Hit to Lead Identifi cation 
 In general, the molecule which is to be consid-
ered as a drug molecule should obey the Lipinski’s 
rule of 5 [ 6 ]. Lipinski’s rule of fi ve considers 
orally active compounds that have achieved 
phase II clinical status and defi nes four simple 
physicochemical parameter ranges (MWT ≤ 500, 
log P ≤ 5, H-bond donors ≤ 5, H-bond accep-
tors ≤ 10) associated with a drug. Previously, 
in vitro screening was performed to identify lead 
compounds and focus was to fi nd drug-like com-
pounds more than lead-like compounds [ 7 ]. The 
optimization of leads within the Lipinski’s rule 
may be diffi cult [ 8 ]. This led to a pioneering 
work called as “SAR by NMR” (Structure 
Activity Relationship by Nuclear Magnetic 
Resonance) method that screens smaller and sim-
pler molecules for the discovery of lead. The pro-
cess of generating lead compounds is through a 
fragment-based screening and diversity oriented 
screening [ 9 ,  10 ]. Once the hit molecule is identi-
fi ed and optimized for the strong affi nity interac-
tion, its co crystal structure with the ligand can be 
obtained. The information from these co-crystals 
will help in mapping the binding site of the target 
and also help in further optimization of the com-
pounds identifi ed. A variety of ways exist to iden-
tify hit molecules for further lead development 
and optimization. 

   Structure-Guided Drug Discovery 
 Structure-guided drug design method utilizes the 
information from the 3D structures of the target 
molecules, the ligand, or the target-ligand com-

plex for drug discovery. The ligand target inter-
face provides in depth information about 
molecular orientation between the interacting 
groups, the number and strength of hydrogen 
bonds, hydrophobic interactions, the presence of 
water molecules, or any ionic atom at the active 
site. The defi nition of topographies at the interac-
tion surface of the ligand and target helps to opti-
mize the potency and selectivity [ 11 ]. 3D 
structural information till date has played a major 
role in drug discovery for several classes of drug 
targets. As membrane proteins are diffi cult to 
crystallize, novel approaches for the 3D structure 
determination of integral membrane proteins by 
solution NMR are in progress [ 12 ]. Lopinavir, a 
potent second-generation HIV-1 protease inhibi-
tor, was synthesized using structure-based design 
of HIV-1 protease. Lopinavir is effective against 
mutants resistant to Ritonavir. The success of 
Lopinavir is based on the crystal structure of 
complex HIV-1 protease and Lopinavir [ 13 ]. 

 Looking at the importance of structure-guided 
drug design, it is important to keep in mind the 
limitations of this method. Artifacts introduced 
during crystallization, structure refi nement, and 
structure solution can have substantial infl uence 
when such structures are used for drug design, 
docking, and virtual screening [ 14 ,  15 ]. 
Crystallization conditions of the protein, change 
in conformation of protein in different buffer 
conditions, distortion in crystals due to soaking 
in ligand, interference of ligand binding due to 
crystal packing, and crystal packing that drives 
the ligand binding are all the problems associated 
with the SBDD method. 

 Alteration made in the protein to increase the 
probability of crystallization and low resolution 
structures can also affect the SBDD [ 32 ,  33 ]. 
Low resolution structures incorporate uncer-
tainty in the atomic position (for 3 Å structure 
an error of 0.5 Å in the position of individual 
atoms) [ 14 ,  34 ]. This uncertainty is critical in an 
inhibitor design program, since both hydrogen 
bonding and hydrophobic interactions are very 
sensitive to distance and direction and also 
important for drug designing [ 35 ,  36 ]. Table  4.1  
shows a few examples of the drugs designed 
using SBDD.
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      Computer-Aided Drug Design 
 Computer-aided drug design methods screen vir-
tual compound libraries against protein target 
with a known 3D structure. The structural details 
at protein ligand interface enables to engineer the 
physico-chemical characteristics of the ligands. 
This helps in designing focused compound librar-
ies. The energy of interaction between the ligand 
and target interface helps in sorting of identifi ed 
hit based on their binding affi nity. Modifi cations 
on the structure of hits obtained may improve the 
binding affi nity and other properties of lead com-
pounds. This process of hit expansion, lead gen-
eration, and optimization may result in a potent 
lead molecule. The advantage of  in silico  screen-
ing method makes it possible to screen large 
number of compounds in less time and cost. In 
the computer-guided method of drug discovery, 
certain issues like structural water interactions, 
protein fl exibility, small-molecule initial geome-
try, and the scoring and ranking of docked mole-
cules need to be addressed to increase the 
reliability of the output. MASC (multiple active 
site correction), a novel scoring method, 
addresses some of the limitations with current 
methods [ 37 ]. Molecules identifi ed by  in silico  
methods are further evaluated and validated for 
the binding of the lead molecule using biophysi-

cal screening methods, like thermal-shift assay, 
nuclear magnetic resonance (NMR), and X-ray 
crystallography.  

   Fragment-Based Drug Design/Discovery 
 Fragment-based drug discovery involves screen-
ing of low molecular weight fragment libraries 
(<250 Da) directed against a target of interest. 
The fragments selected for screening are fi ltered 
for characteristics that include lipophilicity indi-
ces, higher ligand effi ciency, and exploration of 
chemical diversity in space, exclusion of reactive 
or metabolically active groups. This screen there-
fore offers a greater likelihood of fi nding hits use-
ful for lead discovery [ 38 ]. The strategy used in 
fragment-based drug discovery to modify the 
fragment molecules are privileged for fragment- 
based reconstruction approach [ 39 – 41 ], fragment 
hybridization based on crystallographic overlays 
to create a new hybrid compounds with enhanced 
affi nity and effi cacy [ 42 ,  43 ], fragment growth 
exploiting dynamic combinatorial chemistry [ 44 , 
 45 ], and high-speed fragment assembly via 
diversity- oriented synthesis followed by  in situ  
screening bids a way for more effi cient and rapid 
discovery of novel drugs [ 46 ,  47 ]. Biophysical 
methods and  in silico  techniques have proved use-
ful in fragment-based drug discovery to  identify 

   Table 4.1    Drugs discovered by structure guided drug design. List of few examples of drugs discovered from SBDD, 
their molecular targets, and the disease for which it is used   

 Drug  Protein target  Disease 

 Zelboraf  Serine threonine protein kinase 
BRAF 

 Melanoma [ 16 ] 

 Gefi tinib  EGFR inhibitor  Non-small cell lung cancer [ 17 ] 

 Agenerase/Viracept  HIV protease  AIDS [ 18 ,  19 ] 

 Gleevec  BCR-ABL  Chronic myelogenous leukemia 
[ 20 ] 

 Tarceva  ATP-binding site of EGFR  Non-small cell lung cancer [ 21 ] 

 4MCHA and AdoDATO  Spermidine synthase  Malaria [ 22 ] 

 Relenza  Neuraminidase  Infl uenza [ 23 ] 

 Canertinib  Epidermal growth factor receptor 
kinase 

 Cancer [ 24 ] 

 Methotrexate  Dihydrofolate reductase  Megaloblastic Anemia [ 25 – 27 ] 

 AG-7088  Rhinovirus 3C protease  Common cold [ 28 ] 

   Zonisamide      Human carbonic anhydrase II  Seizures [ 29 ] 

 Prinomastat  Matrix metalloproteinase  Non- small cell lung cancer [ 30 ] 

 Lidorestat  Aldose reductase  Chronic diabetic complications 
[ 31 ] 
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molecules that bind with high affi nity to target 
and add only a small entropic penalty. The sensi-
tive biophysical methods used to screen and vali-
date fragment binding include nuclear magnetic 
resonance, isothermal titration calorimetry, sur-
face plasmon resonance, and differential scanning 
fl uorimetry. The experiences of last few decades 
of hit to lead development and further study of 
drug candidate in clinical trials indicated that the 
combination of fragment-based drug discovery 
and structure-based drug design is more superior 
to “traditional” methods of drug discovery [ 48 ].  

   Scaffold-Based Drug Discovery 
 Scaffold-based drug discovery methods screen 
libraries of around 20,000 compounds with molec-
ular weight in the range 125–350 Daltons. 
Biochemical methods and co-crystallography are 
used as the primary screening approach. It involves 
three steps – scaffold identifi cation, scaffold vali-
dation, and chemical optimization. In this method, 
bioactive compounds co- crystallized with the tar-
get are used for further optimization of the lead 
molecule to increase the bioactivity and affi nity.  

    De novo  Structure Determination of Ligand 
 In this method, structure of ligand is built on the 
basis of binding affi nity by introducing small func-
tional groups. These structures are then docked into 
the binding site of target, followed by energy mini-
mization and then manually modifi ed by linking 
the chemical fragments to make the lead com-
pounds [ 49 – 51 ]. Alternatively, core structures can 
also be derivatized with different functional groups 
considering the physicochemical characteristics of 
the binding site [ 52 ].  De novo  ligand synthesis also 
utilizes “scaffold hopping” approach and informa-
tion from known ligands through hybridization 
and/or linking of the input structures [ 53 ].    

4.2.2     Preclinical Research 

 Preclinical development generally involves 
understanding the effect of drug distribution, 
metabolism, and toxicity. The lead molecules are 
tested for their pharmacokinetic, pharmacody-
namics, ADME (absorption, distribution, metab-

olism, and excretion), and toxicity. Typically, 
both  in vitro  and  in vivo  tests are performed. The 
lead molecule that shows promise as a therapeu-
tic agent is further characterized for its size, 
shape, toxicity, and bioactivity. Drug formula-
tion, delivery, and packaging are refi ned continu-
ously to determine the drug’s stability for all the 
parameters involved with storage and shipment, 
such as heat, light, and time.  

4.2.3     Clinical Research 

 A clinical trial is a research study carried out to 
understand the effi cacy, safety, and effectivity 
during the treatment of medical technology. 
These interventions may be from new available 
medicine/drug, medical device, new therapies, 
vaccines, or even new ways of using already 
established treatments. In clinical trials, the 
effects of drugs under investigations are studied 
and also are compared with patients treated with 
already existing drugs in the market. There are 
different kinds of clinical trial that exists depend-
ing on the overall aim of the researchers and cli-
nicians (Table  4.2 ). Clinical trials are of different 

   Table 4.2    Types of clinical trials   

 Sr. 
No  Types of trials  Goals 

 1  Interventional 
trials 

 Participants take an 
experimental new drug or 
undergo surgery 

 2  Prevention trials  Explore better ways to 
prevent disease include 
lifestyle changes or use 
medicines, vaccines, 
vitamins, and minerals 
defi ciency of which could 
predispose the individual 

 3  Observational 
trials 

 Epidemiological survey. 
Family histories or biological 
fl uids are tested for the survey 

 4  Screening trials  To determine the best way to 
detect certain diseases or 
health conditions 

 5  Quality of life 
trials (or 
supportive care 
trials) 

 To search for ways to 
improve the quality of life for 
individuals with a chronic 
illness 
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kinds and are assigned four main clinical devel-
opment phases   http://www.fda.gov/Drugs/
ResourcesForYou/Consumers/    

4.2.3.1       Phase I Trials 
 Phase I trials determines the safety and tolerabil-
ity of drugs in healthy volunteers. Volunteers of 
about 20–50 are examined for duration of few 
minutes up to 2 weeks. Various pharmacokinetic 
parameters like absorption, distribution, meta-
bolic breakdown, and excretion at different dos-
ages are monitored. The interactions of drug with 
the food and other medicines taken simultane-
ously are monitored.  

4.2.3.2     Phase II Trials 
 Patients with the specifi c illnesses are investi-
gated with the drug under study. Clinical effect 
and doses are optimized on few hundred patients 
and treatment is normally monitored for not more 
than 3 months.  

4.2.3.3     Phase III Trials 
 Phase III trials monitor the safety and effi cacy of 
drugs on large number of patient populations 
over an extended period of time. This phase 
includes several thousand patients and the treat-
ment duration and monitoring can be up to a year 
or longer. The data obtained from these trials are 
provided to the regulatory authorities of pharma-
ceuticals to determine whether the drug can be 
marketed as medicine.  

4.2.3.4     Phase IV Trials 
 The effect of drug is investigated for further vali-
dation. In this phase, the focus is to compare or 
use in combination with other established drugs 
to generate more data on safety under broader 
use. It is important step to strengthen the under-
standing of the drug and to give guidance for the 
safe and appropriate use under various clinical 
conditions. Phase IV trials are by defi nition 
always performed on the approved drugs, the 
number of patients can be both small and also 
extremely large (10–30,000 patients) [ 54 – 56 ]. 
Figure  4.1  shows overview of steps involved in 
the process of drug discovery.

4.3          Structureomics 

 The determination of 3D structure of a protein, at 
atomic level on a genome-wide scale, to under-
stand the association of sequence with structure 
and function is known as structural proteomics. 
Although in literature, the terms “structure pro-
teomics” and “structural genomics” is used inter-
changeably, “structural proteomics” may be more 
accurate [ 57 ]. Here “Structureomics” refers to 
the word ‘structural proteomics’. Comprehensive 
survey of the US FDA’s  Orange Book  and Centre 
for Biologics Evaluation and Research (CBER) 
website, which report for small molecular and 
biological drugs, have shown that only 1357 
unique drugs were present. Of these, 166 were 
biological drugs and 1204 were small-molecule 
drugs. All these drugs are known to act through 
324 distinct molecular targets, out of these 266 
are human genome derived protein. The current 
available drugs targets approximately 130 drug-
gable domains most of which belong to four key 
gene families: class I GPCRs, nuclear receptors, 
ligand-gated ion channels, and voltage-gated ion 
channels [ 58 ]. Recent advancements like high- 
throughput crystallization methods, multiple- 
wavelength anomalous dispersion (MAD), 
synchrotron beam lines and robotics, and auto-
mated crystallization methods have provided 
remarkable breakthrough in high-throughput 
structural biology [ 59 – 62 ]. 

4.3.1     Proteins: The Basic Executor 
of the Cell 

 Proteins are the highly complex molecules 
that drive essential bioprocesses in the cell. The 
diversity of the protein at the amino acid sequence 
level and certain post-translational modifi cations 
add to the diffi culty in understanding the protein 
functions. Proteins change their conformation by 
interacting with their binding partners and per-
form different function. The post-translational 
modifi cations like phosphorylation, glycosyl-
ation, carbonylation, methylation, and ubiquitina-
tion play crucial roles in regulating complex 
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processes in the cell [ 63 ]. They also form simple 
to large complexes to monitor and accomplish the 
different task in the cell. Purifi cation and crystal-
lization of membrane protein also poses major 
challenges. Structure determination of the puri-
fi ed membrane protein will be a feasible goal with 
the advancement in cryo-electron microscopy. 

 Proteomics and structureomics study are 
important to unravel the complexities that we 
encounter in understanding the functions of bio-
molecules. Recent studies have revealed the mul-
tiple roles for the RNA that has in the various 
regulatory process of cell.  

4.3.2     Methods in Structural 
Proteomics 

 The genome of around 100 different organisms 
including archaea and bacterial species, nema-
tode, fruit fl y, rice, and humans have been 
sequenced, and the growth of sequenced genome 
in the databases is rising exponentially [ 64 ]. 
However, a large set of proteins translated from 

the sequences of these genes are not annotated. 
Researchers have always strived to get maximum 
information of proteins with regard to their 
 structure and functions using computational 
approaches. This has been popularized greatly 
due the availability of sequences and protein 
structures in the public domain. The information 
about the sequences from these databases can be 
used to predict the function and structure of an 
unreported protein having similar sequence to 
reported proteins. 

4.3.2.1     Function Basis From Primary 
Sequence of a Protein 

  Sequence Comparison or Homology-Based 
methods : Sequence homology is similarity 
between sequences or degree of similarity 
between sequences. This similarity in sequences 
of polypeptide of a protein is indicative of the 
fact that they may have structural, functional, or 
evolutionary relationships, and such similar 
sequences are called homologous sequence. The 
comparison is done by aligning the unknown 
sequence with a reference database or known 

  Fig. 4.1    Classical drug 
discovery pathway from target 
selection, through lead 
discovery to lead optimization 
and fi nally as a drug candidate. 
An average drug discovery 
process requires at least 10 
years with billions of rupees 
invested in the entire process       
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sequence. This alignment is done using different 
programs like Clustal W [ 65 ], LALIGN, and 
BLAST [ 66 ]. However, rearrangements are done 
in order to span the entire length of the query 
sequence by giving penalties to each gap inserted. 
These programs use algorithms that assign a 
score depending on the sequence similarity or 
similar physicochemical properties and gap pen-
alties. The confi dence with which these align-
ments are done is very critical for other algorithm 
or software used for predicting the functions 
from the sequences. This process is error prone 
and also amplifi es the error since a wrongly 
annotated protein will lead to misguided func-
tions.[ 67 ]  Sequence Motif-Based Method : Protein 
motifs are stretch of amino acids sequences that 
may have functional or biological signifi cance. 
For example, GGXGXD (where X stands for any 
amino acid) is a motif present in some metallo- 
proteases that binds to calcium ions and stabi-
lizes the protein [ 68 ]. The protein molecules can 
perform their functions through few of ~ 10 
amino acid residues that are present in the bind-
ing and catalytic sites [ 69 ]. This stretch of amino 
acids in the active sites has a signature pattern 
which is nothing but the motif that is associated 
with a particular function. Protein Families 
Databases (Pfam) [ 70 ] PROSITE [ 71 ], BLOCKS 
[ 72 ] and PRINTS [ 73 ] are the few examples of 
motif searching database. Apart from the bioin-
formatics approaches, microarray analysis, yeast 
two hybrid system, enzyme activity assays, 
knock down- knock out studies in animal models, 
and RNA interference are also useful to establish 
the function of proteins.  

4.3.2.2     Structure Prediction 
From Sequence 

 A protein attains its native form by a series of 
conformational changes, where the primary 
sequence folds to form the secondary structure, 
which on further folding forms the tertiary and 
quaternary structure. Protein sequences, as a tem-
plate, are not only used for predicting the func-
tion but are also used for structure prediction. 
The strategies for structure prediction from 
sequence include comparative modelling, fold 
recognition, and  ab initio  modelling methods 

[ 74 ]. Comparative modelling is also known as 
homology modelling and as the name suggests it 
compares the query sequences and aligns it with 
the known structure. Alignment can be local or 
global, where a short stretch of the sequence or 
the entire sequence, is aligned and compared. 
SWISS-MODEL is one such server which uses 
comparative modelling method to predict the 
structure [ 75 ]. Fold recognition method uses pro-
teins with known folding pattern as a template. 
 Ab initio  modelling is a tedious and crude method. 
An ab initio modelling attempts to build the 
structure from scratch (using only the sequence 
information) and conducts a conformational 
search. This method usually generates a number 
of all possible conformations that could be 
attained by the protein. Then it assigns energy 
function to get minimum potential energy struc-
ture that is more thermodynamically stable. 
These stable structures are closest to the native 
structure of the protein. It is used when compara-
tive and fold recognition methods fail to identify 
similar protein with known fold. This is because 
 ab initio  modelling method only relies on the 
 primary sequence of the protein [ 76 ]. There 
are various other software tools that can be 
used to predict the structure from the sequence 
(Table  4.3 ).

4.3.2.3        Structure Information 
for Functional Annotation 

 Determining the structure of the protein is just a 
part of techniques. The next challenge is func-
tional annotation of the protein. There are many 
proteins which have similar structures but dis-
tinct functions and vice versa, which makes it 
necessary to correctly annotate the function of a 
protein. Several methods for predicting the func-
tion of a protein have been classifi ed on the basis 
of their spatial structure which imparts specifi c-
ity. These spatial regions in the proteins are ana-
lyzed by overall folding of proteins critical for 
the function [ 77 ]. The fi rst step in functional 
annotation of a protein on the basis of structure 
involves fi nding a fold match which can be per-
formed by different software like DALI (uses 
algorithm for pair-wise alignment of protein 
structures) [ 78 ], SSM (uses graph theory) [ 79 ], 
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and VAST (uses vector alignment of secondary 
structures) [ 80 ]. Lower level of folds (which can 
be surface clefts or pocket binding regions) also 
holds important information about the function 
of the protein. Structural clefts or pocket regions 
can be compared in databases like pvSOAR 
(detect similarities in surface clefts and compares 
pocket across different proteins) [ 81 ] and 
SURFACE (annotates surface patches based on 
the structure and sequence information derived 
from interaction studies) [ 82 ]. PreDS (uses elec-
trostatic potential information of the surface to 
detect DNA binding sites) [ 83 ] and NPDock 
(uses docking and refi nement steps to obtain best 
promising solutions) [ 84 ] servers are used for 
predicting the docking sites of proteins.  

4.3.2.4     Protein Production 
 Protein production and purifi cation is an essential 
prerequisite to study the structureomics. The 
large amount of protein can be further used in the 
commercial production of enzymes, nutritionally 
valuable proteins, and biopharmaceuticals and 
most importantly for drug design. After selecting 
the protein to be purifi ed, its cDNA is cloned into 
an appropriate expression vector, which is then 

transformed into suitable host cell. The protein 
thus over-expressed is called a recombinant pro-
tein. The most popular system for protein pro-
duction is the prokaryotic system  Escherichia 
coli , which has been genetically engineered to 
produce different strains which help to overcome 
the initial problems faced  during protein produc-
tion, like degradation of recombinant proteins by 
proteolytic enzymes, leaky transcription, and 
codon bias. Some of the widely used protein 
expression strains include BL21 (DE3), Rosetta 2 
(DE3), and BL21 Star (DE3) pLysS E. Eukaryotic 
expression systems like insect cell lines and 
yeasts are also used which are comparatively 
costly, time consuming, low yielding, and 
tedious. Mammalian cell lines used for protein 
production include HeLa, HEK293T, U2OS, 
A549, NIH 3 T3, L929, HEK 293, MCF-7, and 
Hep G2 [ 85 ]. Recently cell free protein expres-
sion systems have been developed which con-
tains transcriptional, translational, and 
posttranslational modifi cation machinery needed 
for  in vitro  protein production. Although these 
cell-free systems are simpler, they cannot be used 
for large-scale protein production. 

 Once the recombinant protein is expressed, 
purifi cation can be achieved by  several tech-
niques, depending on the physical and chemical 
properties of the protein. The solubility of the 
protein is an important aspect to be considered 
during different stages of purifi cation. Insoluble 
proteins sometimes form inclusion bodies which 
are diffi cult to purify. Soluble proteins, on the 
other hand, can be harvested from the cell lysate 
by centrifugation. The protein of interest is then 
separated on the basis of their solubility, size, 
charge, binding affi nity, etc. For the ease of 
purifi cation, these recombinant proteins are 
tagged with affi nity tags (GST, 6xHis, and 
MBP). Choice of the affi nity column depends 
on the type of tag present in the vector. Highly 
purifi ed proteins are obtained by additional 
steps, which generally include gel permeation 
or ion exchange chromatography. The purifi ed 
protein thus obtained can then be confi rmed for 
its identity by peptide mass fi ngerprinting or 
western blotting.   

   Table 4.3    Software used to predict structure from pro-
tein sequence. Most of them use either, the  ab initio  or the 
comparative modelling approach to predict structures   

 Sr. 
No  Software  Method used  Description 

 1  Raptor X  Comparative 
modelling 

 Carries out 3D 
structure and 
binding site 
prediction 

 2  I-TASSER   ab initio  
modelling and 
fold recognition 

 Predicts both 
function and 
structure 

 3  Robetta  Comparative 
and  ab initio  
modelling 

 Predicts tertiary 
structure 

 4  Modeller  Comparative 
modelling 

 Predicts 
structure by 
minimizing the 
spatial restraints 

 5  Phyre & 
Phyre 2 

  ab initio  
modelling 

 Uses 
multitemplate 
alignment 
protocol 
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4.3.3     Techniques for Structure 
Determination 

 The different structure determination techniques 
include X-ray crystallography, nuclear magnetic 
resonance spectroscopy, and cryo-electron 
microscopy [ 86 ]. Recent developments of new 
structure determination techniques include neu-
tron diffraction, fi ber diffraction cryo-EM tomog-
raphy, correlative microscopy, X-ray imaging, 
single molecule techniques and in-cell 
NMR. Other approach that is used to determine 
the structure is through understanding of bioin-
formatics that look for patterns among the diverse 
sequences that give rise to a particular shape. The 
detailed high resolution structure of a protein 
molecule is useful in designing small molecule 
inhibitor that has the potential as a pharmaceuti-
cal compound. The atomic level details of a mol-
ecule is also useful to modify drugs with  specifi c 
changes to increase the drug effi cacy. Out of all 
the structures submitted in the Protein Data Bank 
(PDB), over 80 % have been solved using X-ray 
crystallography, 16 % are solution NMR struc-
ture, and 2 % by using theoretical modelling [ 87 ]. 
Different techniques with brief information are 
tabulated (Table  4.4 ).

4.3.3.1       X-ray Diffraction 
 X-ray crystallography is a tool used to determine 
the 3D position of each atom present in the crys-

tal lattice of the protein crystal. It is the only tech-
nique that is being used to solve the structure of 
the molecule at a resolution of better than 1 Å. 
The major bottleneck in structure determination 
using X-ray is obtaining an optimum sized pro-
tein crystal. The buffer used for protein crystalli-
zation  mainly consist of a buffering agent, 
precipitant, and salt. The most widely used pre-
cipitants include PEG (of varying molecular 
weight), ammonium sulfate, and some alcohols 
which when combined with other additives give 
various permutations and combination of buffers. 
For high-throughput crystallization, screening 
different robotic facilities are also available. The 
protein molecules in the crystals act as a signal 
amplifi er as they are aligned in a crystal lattice 
and diffract the X-ray. The diffraction pattern 
obtained is analyzed for structure factor which is 
used to build the electron density of atom. The 
details thus obtained are based on all the complex 
calculations, probabilities, and assumption, and it 
needs to be established as the accurate or the 
closest to the accurate structure by refi ning the 
model at several steps. The accuracy of the model 
obtained after rigorous refi nement is measured 
with regard to the R-value [ 88 ].  

4.3.3.2     Nuclear Magnetic Resonance 
Spectroscopy (NMR) 

 Nuclear magnetic resonance spectroscopy is 
another technique to elucidate the solution struc-

   Table 4.4    Table shows different experimental approaches to elucidate the structure of the protein with varying resolu-
tion. X-ray crystallography has contributed 80 % of all the solved structures in Protein Data Bank (PDB)   

 Sr.No  Techniques  Principle  Sample 

 1  Macromolecular 
crystallography 

 Diffraction of X ray beam  Crystals 

 2  Nuclear magnetic resonance 
spectroscopy of proteins 
(NMR) 

 Interaction between an applied 
magnetic fi eld and the nuclei of 
certain atom inside proteins 

 Protein solution 

 3  Cryo-electron microscopy 
(cryo-EM) 

 A beam of electrons in an electron 
microscope, creating a 2D projection 
of the sample on a digital detector 

 Protein sample suspended 
in amorphous ice 

 4  In-cell NMR  Same as NMR but used to study 
proteins inside living cells 

 Labelled proteins samples 

 5  Cryo-EM tomography  3D reconstruction using tomography  Protein sample suspended 
in amorphous ice 
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ture of proteins. When a solution of labelled pro-
tein is placed in a magnetic fi eld and subjected to 
different radio frequencies, then there is a change 
in the resonance of different atoms in the pro-
teins. In an externally applied magnetic fi eld, 
such atoms can fl ip between two states, viz. 
against or aligned with the magnetic fi eld. So 
when the atoms are aligned against the external 
magnetic fi eld the energy state of the atom is 
higher and this energy is a function of the rate at 
which the atoms resonate. This resonation is used 
to interpret and deduce the structure of the pro-
tein. On the basis of atoms selected for labelling, 
NMR spectroscopy is commonly of two types: 
(1) 1H NMR (to determine the type and number 
of H atoms in molecule) and (2) 13C NMR 
(determine the type of carbon atom in the mole-
cule). NMR spectroscopy is better to determine 
the structure of proteins in the size ranging from 
5 to 25 kDa by identifying carbon-hydrogen 
frameworks within molecules.  

4.3.3.3     Cryo-Electron Microscopy 
 Electrons when accelerated in vacuum are 
100,000 times shorter in wavelength than visible 
range, which makes it possible to resolve the 
points of few hundred nanometers apart. 
TEM technique uses this principle and has 
become a versatile tool in studying the protein 
structure at cryogenic temperature. Cryo-electron 
microscopy allows the observation of specimens 
in their native environment unlike X-ray crystal-
lography. A thin fi lm of a sample, aqueous solu-
tion, is rapidly frozen on a support grid and then 
placed in the high vacuum, where it is cooled 
with liquid nitrogen. Projection images of multi-
ple copies of the molecule in random orientations 
are recorded, and 3D reconstructions of these 
images are performed using cryo-electron tomog-
raphy. Transmission electron cryo microscopy 
was successful in determining the macromolecu-
lar structure considered too complex or large to 
be resolved by NMR or XRD [ 89 ]. The fi rst pro-
tein structure to be solved using electron micros-
copy was bacteriorhodopsin [ 90 – 92 ]. Structures 
at near atomic resolution of viruses, ribosomes, 

mitochondria, and enzyme complexes had been 
determined using cryo-electron microscopy [ 93 ]. 
A recent report on complex structure between  E. 
coli  β-galactosidase and inhibitor phenylethyl 
b-D-thiogalactopyranoside (PETG) is deter-
mined at ~2.2 angstroms (Å) [ 94 ].   

4.3.4     Structural Proteomics Study 
and Pathway 

 The vast amount of data generated from human 
genome project has provided vast opportunity to 
work on BIG data and omics. The translation of 
sequence information at protein level and further 
understanding of the molecular and functional 
aspects of protein has paved a way to understand 
the concept of “structural proteomics” or “struc-
tural genomics”, the determination of 3D struc-
ture of protein on a genome-wide scale. 

 There is a rise in the use of high-throughput 
methods for protein production, structure determi-
nation, and functional analysis in order to scruti-
nize the growing protein universe and use it for 
translational research. The model organisms used 
for study of whole proteome till date are 
 Thermotogo maritima ,  Mycobacterium tuberculo-
sis ,  Methanobacterium thermoautotrophicum , and 
other  Archaebacteria . Figure  4.2  gives a brief 
overview of pathways followed for structure 
determination using  in silico  and  in vitro  
approaches. A structural proteomics study of the 
archaeon  Methanobacterium  thermoautotro-
phicum  on a set of 424 non-membrane proteins 
was performed. These proteins were cloned, 
expressed, and structurally characterized. Out of 
24 crystallized proteins, only 11 were diffracted 
for appropriate resolution. Furthermore, in NMR 
spectra, out of 100 soluble proteins tested, only 33 
gave excellent spectra that could be used for struc-
tural determination. Similar work on 
 Methanobacterium thermoautotrophicum  was 
also performed by Yee et al. [ 95 ,  96 ]. Structural 
genomics study on thermophilic bacterium 
 Thermotoga maritime  was also attempted. 1376 of 
1877 genes were cloned and attempted for expres-
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sion and purifi cation. Crystallization condition for 
432 proteins (23 %) of the  T. maritime proteome  
was determined [ 97 ]. Structural proteomics study 
on uncharacterized proteins expressed in mouse 
macrophage cells to identify new drug targets for 
chronic obstructive pulmonary disease and arthri-
tis was performed. Of the 318 macrophage gene 
processed, 220 of these were successfully cloned 
in bacterial expression system. 52 of these were 
soluble mouse macrophage proteins, however, 
structure of six carboxypeptidase inhibitor and 
acyl-CoA thioesterase were determined [ 98 ].

4.3.5        Structural Genomics Centre 
and Overview 

 Omics is helping to understand the holistic view 
to address the issues responsible for disease and 
understand the complex biological system. 

Structureomics study channelizes its efforts in 
determination of the 3D structure of protein and 
method development in making the entire pro-
cess rapid and cost effective. Various consor-
tium and structural genomics projects have been 
initiated by the Protein Structure Initiative in 
2000 [ 99 ]. A brief overview of the different 
Structural Genomics Center and their roles in 
structural genomics project is highlighted (Table 
 4.5 ). Structural Genomics Centers could solve 
the structures of ~ 2800 proteins [ 100 ]. The 
information available from these consortia has 
allowed for accurate prediction of overall folds, 
to nearly 50 % of all known proteins, which is a 
signifi cant increase from the past decade [ 101 ]. 
Amongst the many consortia formed, a few spe-
cifi cally targeted proteins related to infectious 
diseases. One of these is the TB consortium 
which focuses on structurally characterizing  M. 
tuberculosis  proteins. 250 novel proteins struc-

  Fig. 4.2    Structural proteomics. Flow sheet represents method used for structure prediction       
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tures were solved by the consortia unlike previ-
ously reported eight structures from traditional 
method. These structures were useful in gaining 
functional insights about the protein and the 
mode of drug resistance [ 102 ]. The PSI program 
reported ~ 4000 unique structures into the 
Protein Data Bank (  http://www.pdb.org/    ). The 
different PSI centers have contributed to 8 % of 
novel and 20 % of uncharacterized protein fam-
ily structures [ 103 ]. The SGC project is respon-
sible for one quarter of the total structural 
coverage of the human proteome available in the 
PDB [ 104 ].

   Analysis of Protein Data Bank revealed 
expression organisms from prokaryotes to 
eukaryotes and acellular system are used for 
overproduction of proteins. The organism mostly 
preferred for protein expression are  Escherichia 
coli  and its different strains,  Spodoptera fru-
giperda ,  Tricho plusiani ,  Pichia pastoris , 
 Saccharomyces cerevisiae ,  Cricetulus griseus , 
 Drosophila melanogaster , and cell-free synthe-
sis.  Escherichia coli  is the most preferred of all 
for overexpression and this is probably because 
 E. coli  has high growth rate and low cost media 
and is non-pathogenic. Although reports do 

   Table 4.5    The table lists various consortia present that perform different role in optimising different aspects of high 
through put methods in drug discovery   

 Structural genomics centre  # Structures reported  Expertise 

 RIKENStructural Genomics/Proteomics 
initiative 

 2743  Elucidation of protein functional networks via 
protein structural analysis 

 Joint Centre for Structural Genomics  1602  Focuses on the human microbiome 

 Structural Genomics Consortium  1386  Improve crystal formation by reductive 
methylation and limited proteolysis 

 New York Structural Genomics Research 
Consortium 

 1041  Focuses on industrialised protein production 
and structure determination followed by 
functional annotation and dissemination 

 Centre for Structural Genomics of Infectious 
Diseases 

 795  Determining structures of proteins/molecules 
that are involved in pathogenesis and infection 
in humans 

 TB Structural Genomics Consortium  285  Determination and analysis of structures of 
proteins from  Mycobacterium tuberculosis  

 Centre for Eukaryotic Structural Genomics  218  Use cell free eukaryotic wheat germ extract for 
protein expression 

 Southeast Collaboratory for Structural 
Genomics 

 121  Focuses on development of high throughput 
structure determination methods 

 Structural Proteomics in Europe  119  Structure determination of biomedically 
relevant targets 

 Berkeley Structural Genomics Centre  101  Focuses on determining protein structures of 
two organisms- Mycoplasma genitalium and 
Mycoplasma pneumoniae. 

 Structural Genomics of Pathogenic Protozoa 
Consortium 

 71  Structure determination of proteins from 
trypanosomatid and malarial parasites using 
co-crystallisation and fragment cocktail 
crystallography 

 Enzyme Discovery for Natural Product 
Biosynthesis 

 63  Focuses on identifi cation of new natural 
product pathways 

 New York Consortium on Membrane Protein 
Structure 

 57  Uses ultraviolet absorbance and light scattering 
to identify the best detergents for solubilisation 
of membrane proteins 

 Ontario Centre for Structural Proteomics  33  Use X-ray crystallography and NMR for 
structure determination 

   # number   
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suggest that protein with posttranslational modi-
fi cation, large-sized proteins, and proteins that 
fold in the presence of folding machinery in the 
cell are not soluble in  E. coli  [ 105 ] are purifi ed 
using eukaryotic system that includes yeast and 
mammalian cells. 

 The model organisms on which major work 
on structural genomics is focused on  Thermus 
thermophiles ,  Escherichia coli ,  Saccharomyces 
cerevisiae ,  Homo sapiens ,  Bos Taurus , 
 Deinococcus radiodurans ,  Plasmodium falci-
parum 3D7 ,  Drosophila melanogaster , etc. The 
candidate organisms like  Thermus thermophiles  
and  Escherichia coli  were initially studied in 
structural proteomics, because handling the 
organism with small size genome with less 
advanced technology was probably a feasible 
task [ 106 ]. These organisms are also known to 
share similarity with sequence and function of 
eukaryotic proteins, but are often smaller and 
more robust [ 95 ].  

4.3.6     Advantages of Structural 
Proteomics 

 The era of structural genomics will make an 
immense impact on protein fold prediction, pro-
tein engineering, drug discovery, and basic and 
translational research. Structureomics will lead 
to revolutionary developments and automation in 
cloning, protein expression and purifi cation, 
characterization, structure solution with NMR 
and crystallography, etc. Although omics study is 
not a “hypothesis-driven” research, it has the 
potential to answer certain key questions about 
biological function. The work on structureomics 
and extraction of information of sequence, struc-
ture, and function for application is based on cer-
tain assumptions like (1) proteins that have 
similar structures will mostly have similar func-
tions; (2) structures of a protein can help in defi n-
ing function of the molecule; and (3) functionally 
related proteins have conserved structures com-
pared to sequences. Proteins with less than 10 % 
sequence similarity can still fold into similar 
structures, and in the absence of functional data, 

the fold of a protein can provide important clues 
about the function it may perform. 

 The development of high-throughput proce-
dures will help determine several structures of 
proteins, protein-protein complexes, and protein- 
drug complexes that provide a knowledge base 
and different unknown aspects of structural biol-
ogy. With the increase in simple protein structure, 
it is possible to identify novel folds, and with 
expanding databases, it will lead to accuracy in 
protein structure prediction. The atomic level 
detailed structure of protein does not have the 
ability to predict the conformational change in 
protein. Hence, there is a need to enhance our 
computational biophysics understanding to make 
accurate predictions about changes in macro- 
molecular structures. 

 Structural genomics and association with 
functional genomics can help us to understand 
the structure and function of the proteins encoded 
by the novel genes. Knowledge of the structural 
details of proteins gives a clearer perspective of a 
protein to be an effective drug target. It allows for 
selection of molecules with minimum side effects 
and helps in optimization of the lead molecule. 
This makes them better candidates for entering a 
clinical trial, which can lead to discovery of a 
new drug [ 107 ]. 

 Structureomics study will also generate 
prospects for method-oriented structural biolo-
gists as ample amount of “diffi cult” X-ray data 
sets and NMR spectra is produced. Thousands 
of clones and expression systems prepared dur-
ing structural studies can be a wealth for spe-
cifi c in-depth biochemical studies. Structural 
genomics study on enzymes will provide 
detailed mechanism of catalysis of enzymes 
[ 108 ]. The presence of large number of struc-
tures of thermostable proteins will aid in engi-
neering of industrial enzymes. Structureomics 
information of pathogenic organism will pro-
vide prospects for structure-based drug design, 
high-throughput screening, and combinatorial 
chemistry approaches. Accumulation of large 
amount of data in coming years may provide a 
system for structure-based computational toxi-
cology study. 
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 The information about structural details of the 
proteome will have an immediate boost on 
medicinal chemistry and molecular pharmacology. 
It also has an increasing impact on disciplines 
such as neurobiology, developmental biology, 
immunology, and molecular medicine.  

4.3.7     Shortcomings 
of Structureomics 

 Enormous amount of fund and efforts have been 
applied in understanding the omics. Various con-
sortiums are being developed to deal with differ-
ent bottleneck existing in the pathway of 
high-throughput screening. The high-throughput 
approach may not reveal the complexity in struc-
tural biology as the (1) expression and purifi ca-
tion of large complicated proteins is not possible 
and is challenging in the present scenario; (2) 
various others problems of yield, solubility, pseu-
dosymmetry, and crystal twinning that exist will 
also appear in high-throughput approach. The 
conformational changes in the protein, different 
modes of aggregation, and precipitation will also 
infl uence the high-throughput approach [ 108 ]. 
Intrinsically disordered proteins break the para-
digm of structure function correlation. Study on 
intrinsically disordered protein has revealed the 
fact that such proteins acquire ordered structure 
only when bound to it interacting partner. Such 
intrinsically disordered proteins are hurdles to 
structure-based drug discovery.   

4.4     Summary 

 Understanding the shape that a protein molecule 
adopts to perform various functions in the cell is 
necessary to regulate these molecules. SBDD 
exploits this structure information for designing 
small molecule inhibitor to alter the activity of 
the target molecule. It also facilitates targeting a 
molecule that is important to design an inhibitor 
that is highly specifi c in nature which is a funda-
mental prerequisite for successful treatment. The 
information available from traditional structural 
biology methods has a lacuna that needs to be 

addressed. However, recent advancement in the 
fi eld of structureomics has paved a way to suc-
cessful determination of multiple structures and 
also in widening the bottlenecks to have a clear 
picture of protein at structure level. Thousands of 
different structures are deposited by various 
structure biology consortia which will not only 
enhance the knowledge of structural biology but 
also be useful in drug discovery and translational 
research.     
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Abbreviations

2-PS		  2-Pyrone synthase
acetyl-CoA	 Acetyl coenzyme A
ATF		  Artificial transcription factor
BLA		  β-Lactamase
bPBP		  Bacterial periplasmic binding protein
CIDs		  Chemical inducers of dimerization
DBDs		  DNA-binding domains
ER		  Estrogen receptor
eyfp		  Enhanced yellow fluorescence protein
FACS		  Fluorescence-activated cell sorting
FAEE		  Fatty acid ethyl ester
GC		  Gas chromatography
GFP		  Green fluorescent protein
HHRs		  Hammerhead ribozymes
HMG-CoA	 Hydroxymethylglutaryl-CoA

HPLC	� High-performance liquid 
chromatography

IPP	 Isopentenyl pyrophosphate
IPTG	 β-D-1-Thiogalactopyranoside
LBD	 Ligand-binding domain
MAGE	 Multiplex automated genome engineering
MBP	 Maltose-binding protein
MRTF	 Metabolite-responsive transcription factor
RBS	 Ribosome binding site
RD	 Regulatory domain
RFP	 Red fluorescent protein
SDS	 Sodium dodecyl sulfate
TAL	 Triacetic acid lactone
TATB	 1,3,5-Triamino-2,4,6-trinitrobenzene
TPP	 Thiamine pyrophosphate

5.1	 �Introduction

Metabolic engineering broadly encompasses the 
engineering of biological systems to enable pro-
duction of a wide variety of valuable compounds 
for chemicals including biofuels, pharmaceuti-
cals, nutraceuticals, bulk chemicals, and materi-
als [30, 76, 78]. To produce these value-added 
compounds, efficient biosynthesis pathways 
must be constructed in appropriate host. This 
often requires extensive optimization to reach 
economically viable titers, yields, and productiv-
ity. However, current approaches require a sig-
nificant investment of time and resources for 
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each individual pathway, limiting the number of 
compounds to which these strategies can be 
applied and thus the scalability of biosynthetic 
approaches [30]. Synthetic biology is a fast-
growing field that develops new tools for biologi-
cal engineering and can be applied as a means of 
interrogating pathway optimization in a rigorous, 
detailed manner. Synthetic biology has proven 
effective in the development of new tools and 
technologies that support the design, construc-
tion, and optimization of complex biological 
systems. As engineered microbial biosynthesis 
platforms have the most immediate practical 
applications in terms of development of indus-
trial products, it is not surprising that many of the 
advances in tool development have been directed 
to metabolic pathway engineering [27, 28, 58]. 
Among these new tools, biosensors represent a 
significant contribution from synthetic biology 
and have been increasingly used in metabolic 
engineering. Here, we provide information and 
recent work on the development of metabolite 
biosensors and their applications for metabolic 
engineering.

One early definition of biosensors termed 
them as a device incorporating a biological sens-
ing element either intimately connected to or 
integrated within a transducer [66]. The common 
aim is to produce a digital electronic signal which 
is proportional to the concentration of a specific 
chemical or set of chemicals [66]. It was pro-
posed that enzymes could be immobilized in con-
junction with electrochemical detectors to form 
“enzyme electrodes” which would expand the 
analytical range of the base sensor. After the first 
wave of initial biosensor design, more and more 
knowledge has been gained from natural biologi-
cal systems (e.g., tissue, microorganism, organ-
elles, enzymes, antibodies, nucleic acid, etc.) 
enabling improvements in biosensors. Biosensors 
have been widely used in various fields such as 
clinical applications, environment diagnostics, or 
food analysis. One common example of a com-
mercial biosensor is the blood glucose biosensor, 
which uses the enzyme glucose oxidase to break 
blood glucose by oxidizing glucose to produce 
two electrons to reduce FAD (a component of the 

enzyme) to FADH2. FADH2 is then oxidized by 
an electrode as a method of measuring the glu-
cose concentration [68].

For metabolic engineering applications, 
metabolite biosensors have been developed as 
genetically encoded proteins or RNA-based bio-
sensors that interact with a metabolite to generate 
an actuator output [30, 35]. The output part of a 
metabolite biosensor generates detectable pheno-
types through modulating transcription rates, 
translation rates, or protein activity to control 
protein expression or function. Over the past few 
decades, metabolite biosensors have been widely 
used to select high-producing strains in high-
throughput screens, sensing of a desirable prod-
uct in selective conditions, and dynamic control 
of metabolic flux.

Biosensors can be coupled to readable outputs 
such as fluorescence to semiquantitatively report 
the concentration of a target compound. This 
approach is frequently used for high-throughput 
screening of high-producing strains and features 
distinct advantages over conventional methods 
such as gas chromatography (GC) and high-
performance liquid chromatography (HPLC) 
since (1) biosensor-mediated quantification 
avoids time-consuming sample preparation and 
has much higher throughput than conventional 
chromatographic techniques; (2) metabolite bio-
sensors are more suitable for detecting labile and 
low abundant metabolites such as acyl-phosphate, 
acyl-diphosphate, aldehyde, and acyl-CoAs, 
which are difficult to measure accurately by con-
ventional methods; and (3) metabolite biosensors 
allow real-time monitoring of metabolite dynam-
ics in living cells, which is impossible to study 
using chromatographic methods. These reporter 
outputs may also help coordinate complementary 
perturbation of the culture environment itself 
(mixing, nutrient addition, time of harvest) to fur-
ther improve production [43].

Second, biosensors can be engineered to cou-
ple the sensing of a desirable product or interme-
diate metabolite with a fitness advantage for the 
cell by expressing a gene necessary for survival 
under selective conditions [13, 45]. The difference 
in cell growth allows direct enrichment of fast-
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growing cells from mutant libraries, which allows 
an easy selection for desirable production 
characteristics.

Third, metabolite biosensors can also be used 
to control metabolic flux dynamically [12, 31, 77, 
79]. The actuator can be designed to tune path-
way enzyme expression or posttranslational 
parameters in response to the level of the relevant 
metabolite, allowing for dynamic control of a 
metabolic pathway, which not only reduces toxic 
intermediate accumulation but also saves carbon 
and energy that are otherwise diverted to synthe-
size unnecessary proteins or intermediates [30]. 
Overall, the emerging tools to engineer biosen-
sors and their applications toward metabolic 
engineering have greatly advanced microbial 
production of a variety of chemicals.

This chapter will first discuss and classify 
metabolite biosensors into four categories based 
on their diverse mechanisms of sensing and func-
tional output, including (1) transcription factor-
based biosensor, (2) RNA-based sensors, (3) 
protein activity-based sensors, and (4) whole cell 
sensors. Next, we will present specific targets of 
biosensor applications in metabolic engineering. 
Then, we discuss tools for developing and design-
ing metabolite biosensors. Finally, we discuss 
future directions of metabolite biosensors in the 
field of metabolic engineering and synthetic 
biology.

5.2	 �Types of Metabolite 
Biosensors

5.2.1	 �Transcription Factor-Based 
Biosensors

In nature, transcription factors are proteins 
involved in regulating gene expression by spe-
cific binding to chromosomal DNA, blocking or 
initiating transcription. For example, among 230 
transcription factors in Escherichia coli, two of 
the well-studied examples are LacI and 
AraC. LacI is a transcription factor protein that 
control lac operon gene expression by lactose or 
its analogue, isopropyl β-D-1-thiogalactopy-
ranoside (IPTG) [7, 21, 52]. In the absence of 

lactose, LacI binds specifically to the major 
groove of the operator region of the lac operon, 
resulting in the halt of RNA polymerase “read 
through.” In the presence of lactose or IPTG, the 
small molecule binds to LacI, resulting in an allo-
steric change of its shape, subsequently causing 
an inability to bind to its target. Another example 
of a transcription factor was found in L-arabinose 
operon, the AraC, which regulates gene expres-
sion of araA, araB, and araD with or without 
arabinose. When arabinose is absent, the dimer 
AraC represses the expression of araABD by 
binding to araI1 and araO2 to form a loop. The 
loop prevents RNA polymerase from binding to 
the promoter of the ara operon, thereby blocking 
transcription. When arabinose is present, arabi-
nose binds AraC and prevents AraC from form-
ing of the DNA loop, thereby allowing 
transcription to proceed.

By using the ability of binding to small mole-
cules such as sugars, sugar phosphates, amino 
acids, and lipids, natural metabolite-responsive 
transcription factors (MRTF) could be engi-
neered as biosensors for metabolic engineering 
applications [13, 30, 35]. Typically, metabolite-
responsive promoters with tunable output 
dynamic ranges can be engineered by inserting 
the cognate operator of a MRTF into a synthetic 
promoter to regulate gene expression (Fig. 5.1). 
Depending on the type of metabolite, two strate-
gies can be implemented. One strategy is to inte-
grate the cognate operator of a MRTF into a 
natural or synthetic promoter to regulate genes of 
interests. This type of strategy is suitable for 
intermediate/precursor metabolites such as acyl-
CoA, malonyl-CoA [31, 74], and acetyl-CoA 
[77]. Since the intermediates are essential for 
both growth and chemical production, they are 
typically hard to monitor, and intracellular con-
centrations are expected to be moderate. 
Overexpression of downstream pathway genes 
usually results in unnecessary production of pro-
teins and resources, which could adversely affect 
cell growth, while low expression of downstream 
genes usually is not able to obtain desired yields. 
According to this strategy, a variety of metabolite-
actuated biosensors have been developed, such as 
FadR response to acyl-CoA for fatty acid ethyl 

5  Biosensors for Metabolic Engineering



56

ester (FAEE) production and FapR response to 
malonyl-CoA for fatty acid biosynthesis [30, 73].

The second strategy is to screen for high-
producing strains from a library of natural or engi-
neered strains by using MRTF.  This approach 
becomes particularly powerful when coupled with 
fluorescence-activated cell sorting (FACS). First of 
all, a natural MRTF-based biosensor is selected as 
a target, which usually shares similar structure to 
the desired metabolites. Then, various protein engi-
neering methodologies (rational design or directed 
evolution, see discussion below) are utilized to 
alter the specificity of the MRTF to detect the target 
metabolite for which no natural sensor exists. By 
coupling a fluorescence protein under the control 
of recognized and regulated promoters, active vari-
ants could be rapidly selected. For example, AraC 
has been developed to sense arabinose structural 
analogues, such as D-arabinose [61], fructose, 
ribose [33, 54], and mevalonate [11].

5.2.2	 �RNA-Based Sensors

5.2.2.1	 �Transcription-Based RNA 
Sensors

Transcription-based RNA sensors are usually 
built upon aptamer domains to either facilitate or 

disrupt the formation of a terminator, which pre-
vents the synthesis of long mRNAs, creating 
transcriptional repression or activation (Fig. 
5.2a). Such engineered RNA sensors are usually 
only specific to limited metabolites, such as 
folinic acid and theophylline due to limited types 
of available aptamers [65, 70]. The screening out-
put accuracy could be improved by increasing the 
copy numbers of the same riboswitch to a single 
transcription unit [70].

5.2.2.2	 �Translation-Based RNA Sensors
Riboswitches can be engineered to sense metabo-
lites and regulate the secondary structure of 
mRNAs to either promote or inhibit the ribosome 
binding site (RBS) sequence from interacting 
with the ribosome, a strategy predominantly used 
by prokaryotes to modulate translation initiation 
(Fig. 5.2b). Synthetic riboswitches were engi-
neered to sense various metabolites, such as the-
ophylline [64], ammeline [14], and thiamine 
pyrophosphate [37]. For example, the Escherichia 
coli thiamine pyrophosphate (TPP) riboswitch 
was synthesized and cloned in front of a reporter 
gfp gene (encoding the green fluorescent protein, 
GFP) under the control of the plastid ribosomal 
operon promoter Prrn. A Shine-Dalgarno struc-
ture was designed in the riboswitch to confer 

Fig. 5.1  Transcription 
factor-based metabolite 
biosensors
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translational regulation in response to exoge-
nously applied ligand theophylline [69].

5.2.2.3	 �Stability-Based RNA Sensors
Regulation of RNA stability provides another 
mechanism through which gene expression can 
be controlled by introducing either ribozyme 
self-cleavage or programmed enzymatic process-
ing by RNases (Fig. 5.2c). For example, the 
theophylline-responsive aptazymes were con-
structed in Saccharomyces cerevisiae by cloning 
this aptazyme to the 3′ untranslated region of a 
fluorescent reporter gene of the aptazyme, lead-
ing to decreased mRNA self-cleavage activity 
and enhanced GFP expression [34]. Another 
strategy is to integrate RNA aptamers with RNase 
to tune gene expression through directed cleav-
age of transcripts by an RNase III enzyme. For 
instance, a class of RNA sensing-actuating 
devices based on direct integration of an RNA 

aptamer into a region of the Rnt1p hairpin was 
constructed to modulate Rnt1p cleavage rates. 
When theophylline was present, the aptamer 
bond with theophylline resulted in structural 
change that inhibits Rnt1p cleavage activity, thus 
increasing the stability of the transcript [3].

5.2.2.4	 �Splicing Riboswitch-Based RNA 
Sensors

In eukaryotic cells, “self-splicing” is typically 
required to cut out the noncoding introns after 
transcription. The programmed removals of 
introns coupled with aptamers within key intronic 
locations that regulate splicing in response to 
small molecule provide a critical regulatory 
approach in the expression of many genes (Fig. 
5.2d) [10, 30, 35]. For example, a tetracycline 
sensor was created by incorporating a tetracy-
cline aptamer in the 5′ splice site in such a way 
that adding tetracycline facilitates the formation 

Fig. 5.2  RNA-based metabolite biosensors: (a) RNA-
based metabolite biosensors control transcription. When 
metabolite is present, terminator structure is disrupted, 
resulting in gene activation. (b) RNA-based metabolite bio-
sensors regulate translation. The presence of metabolite 

activates RBS, leading to gene expression. (c) A ribozyme-
based metabolite biosensor regulates RNA stability by 
modulating mRNA cleavage, (d) a metabolite biosensor 
based on RNA splicing. Binding of the metabolite inhibits 
the splicing, leading to increased gene expression
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of an aptamer-tetracycline complex structure that 
inhibits splicing [72].

5.2.3	 �Protein Activity-Based 
Sensors

Protein activity-based sensors act independently 
of translational regulation by directly linking the 
activity of a screenable or selectable reporter to 
the binding of a small molecule. Nature contains 
many examples of sensing by allosteric regula-
tion of protein activity. To be useful for metabolic 
engineering applications, sensors must bind a 
ligand relevant to the engineered pathway and 
transmit this event to a change in the activity of a 
protein useful for reporting, screening, or regu-
lating other pathway components [35].

5.2.3.1	 �Combined Domain Sensors
Sensors with desired input and output functions 
can be generated by combining two independent 
proteins or protein domains, in such a way that 
binding of the small molecule ligand to the input 
component induces a conformational change that 
alters the enzymatic activity of the output compo-
nent (Fig. 5.3a). For example, maltose sensors 
have been reported for increasing of β-lactamase 
(BLA) activity [22–24]. The maltose-binding 
domain is selected from a maltose-binding pro-
tein (MBP), one of many bacterial periplasmic 
binding proteins (bPBPs) that bind nutrients, 
including sugars, ions, and peptides. bPBPs have 
two domains in a hinge region, where ligand 
binding to the surface between these domains 
directs a hinge twist conformational change in 
the protein. The ligand-binding activity of MBP 
and selectable activity of BLA were combined 
into chimeric MBP-BLA proteins by randomly 
or specifically inserting BLA into MBP. In these 
sensors, maltose binding to MBP induced a con-
formational change in the active sensors that allo-
sterically regulated β-lactamase activity and led 
to increasing cell survival on β-cyclodextrin, thus 
reporting on the level of maltose in E. coli. This 
sensing system was then further explored to 
allow detection of new molecules, such as sucrose 
by mutating the ligand-binding pocket [16, 22].

5.2.3.2	 �Intein-Based Protein Sensors
A second type of protein activity-based sensor 
uses inteins, which are segments of proteins that 
are able to excise themselves and splice the 
remains. By inserting a ligand-binding domain 
within the N- and C- termini regions of an intein, 
small molecule-dependent intein splicing sys-
tems could be developed. Then, the sequence is 
inserted in front of a reporter protein. Binding of 
the small molecule can either promote or inhibit 
splicing by influencing the ability of the two 
intein domains to come together in a conforma-
tion that stimulates splicing (Fig. 5.3b). As such, 
the level of active spliced protein can be used as 
a readout of small molecule ligand concentration 
[35].

In one example, by inserting a human estrogen 
receptor binding domain (ER) between the N- 
and C- termini, hormone analogue-dependent 
splicing was engineered into the RecA intein 
from Mycobacterium tuberculosis [9, 55]. In 
another example, an intein-based biosensor has 
been constructed based on rational design whose 
splicing activity is triggered in vivo in response 
to thyroid hormone or synthetic analogues [56]. 
Although the only examples of engineered 
ligand-responsive inteins developed thus far are 
hormone-responsive and incorporate receptor 
binding domains, it is plausible that this same 
design principle could be used to incorporate 
binding domains for metabolites. Furthermore, 
once a metabolite-binding intein is developed, it 
could potentially be inserted into any polypeptide 
to control processing to an active protein in 
response to the small molecule ligand. Thus, 
inteins can be used as small molecule sensors that 
act post-translationally to control the expression 
of pathway enzymes within a host cell.

5.2.3.3	 �Yeast Three-Hybrid Sensors
The yeast three-hybrid system can also be 
employed as sensing strategy. The traditional 
yeast three-hybrid system is an extension of the 
two-hybrid assay to include small molecule-
dependent protein-protein interactions. In the 
yeast three-hybrid system, the two domains of 
the Gal4 transcription factor, DNA-binding 
domain and an activating domain, are fused to a 
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bait protein and a library of prey proteins, respec-
tively, such that in the presence of a given small 
molecule, the protein-protein interaction between 
bait and prey reconstitutes the transcriptional 
activator and drives expression of a reporter gene 
(Fig. 5.3c). This system is readily extended to 
measure levels of a metabolite by replacing the 
bait and prey with two known proteins whose 
binding depends on the target small molecules 
[35].

One of the three-hybrid sensor designs was 
tested using retinoid X receptor (RXR) for detec-
tion of retinoic acid and its synthetic analogues. 
To create a new ligand for the receptors, a 
structure-based approach was used to generate a 
library of ~380,000 mutant RXR genes. Positive 
variants were transcriptionally active with 
improved 25-fold sensitivity comparing to one 
that was engineered through site-directed muta-
genesis [53]. However, the major limitation of 
the yeast three-hybrid sensor design is that it can 

only be applied to the detection of a small mole-
cule for which bait-prey protein partners are 
available, primarily hormone receptors and other 
cell signaling components. Therefore, despite its 
sensing capabilities, this class of sensors will 
have limited utility in metabolically engineered 
systems except in rare instances [35].

5.2.4	 �Whole Cell Sensors

In addition to protein- and RNA-based sensors, 
whole cell sensors based on microbial auxotro-
phy have been used to report the concentration of 
growth-limiting small molecules. For example, 
an engineered E. coli mevalonate auxotroph was 
generated by reporting on the mevalonate con-
centration in the growth medium through a 
change in growth rate [35, 42]. By knocking out 
the native mevalonate pathway and introducing a 
heterologous operon for the utilization of meval-

Fig. 5.3  Protein activity-based metabolite biosensors. (a) 
A combined domain-based biosensor regulates protein 
activity by conformational change of ligand binding (LB) 
at the presence of metabolite. (b) A intein protein-based 

biosensor uses ligand-dependent intein splicing to link 
metabolite to regulate protein activity. (c) A yeast three-
hybrid biosensor regulates gene expression by modulating 
interactions among prey, bait, and metabolite
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onate together with an independent GFP reporter 
gene, the growth rate dependence on mevalonate 
concentration has been modeled based on the 
fluorescent readout. Furthermore, a recently 
reported computational design strategy for gener-
ating auxotrophic E. coli mutants may expand the 
number of available cell sensors to as many as 53 
small molecules [63]. In general, this method 
should be applicable to the quantification of other 
metabolites for which viable auxotrophs can be 
developed. As one of the goals of metabolic engi-
neering is to produce new molecules from sub-
strates supplied directly by the host cell 
metabolism, whole cell sensors will be valuable 
tools for optimizing this concentration between 
the native primary metabolism of the host cell 
and the introduced heterologous pathways [35].

5.3	 �Applications in Metabolic 
Engineering

5.3.1	 �Acyl-CoA Precursor to Fatty 
Acid Ethyl Ester (FAEE) 
Production

Acyl-CoA is a key intermediate involved in the 
fatty acid ethyl ester (FAEE) biosynthetic path-
way, which is a temporary compound formed by 
attaching coenzyme A to the end of a long-chain 
fatty acid inside living cells which then reacts 
with ethanol to form a FAEE. Since acyl-CoA is 
a low abundance metabolite, it is difficult to mea-
sure accurately by conventional methods. In 
order to direct more flux to FAEE, building an 
acyl-CoA-targeted biosensor is necessary. For 
example, the naturally occurring fatty acid-
sensing protein FadR was engineered to upregu-
late acyl-CoA biosynthesis, ethanol production, 
and the expression of a wax ester synthase, which 
direct more flux to form FAEE (Fig. 5.4). As a 
result, it allows the downstream pathway to be 
activated only when there is sufficient acyl-CoA 
and avoids the production of unnecessary pro-
teins and ethanol at the early stage of fermenta-
tion. The final FAEE titer was increased to 1.5 
g/L and the yield increased threefold to 28 % of 
the theoretical maximum [77].

5.3.2	 �Malonyl-CoA Precursor 
to Fatty Acid Production

Similar to acyl-CoA, malonyl-CoA is a key inter-
mediate in fatty acid biosynthesis and polyketide 
biosynthesis. It is synthesized from acetyl-CoA 
by acetyl-CoA carboxylase (encoded by acc). 
Overexpression of acc not only improves fatty 
acid production, but it also inhibits cell growth. 
To alleviate the inhibitory effect of acc overex-
pression while maintaining high malonyl-CoA 
concentrations, malonyl-CoA sensors were stud-
ied to dynamically downregulate acc expression 
when cells accumulate high malonyl-CoA levels. 
For example, the malonyl-CoA sensor-actuator 
has been constructed based on a naturally occur-
ring malonyl-CoA transcription factor, FapR, 
from the Gram-positive bacteria Bacillus subtilis. 
FapR specifically binds to a 17-bp DNA sequence 
and negatively regulates fatty acid and phospho-
lipid metabolism in B. subtilis. The binding of 
malonyl-CoA to FapR triggers a conformation 
change to the FapR, causing FapR-DNA complex 
to dissociate [31]. Malonyl-CoA source pathway 
was under the control of malonyl-CoA-
downregulated pGAP promoter and malonyl-
CoA sink pathway was under the control of 
malonyl-CoA-upregulated T7 promoter (Fig. 
5.5) [73].

5.3.3	 �Mevalonate Precursor 
to Terpene and Steroid 
Production

The mevalonate-dependent isoprenoid pathway 
converts acetyl coenzyme A (acetyl-CoA) into 
the five-carbon-atom isoprenoid building block, 
isopentenyl pyrophosphate (IPP). The reduction 
of hydroxymethylglutaryl-CoA (HMG-CoA) to 
mevalonate by HMG-CoA reductase is a key step 
in this pathway. The MEV pathway is native to 
eukaryotes and prokaryotes, but not native to E. 
coli. The heterologous MEV operon is composed 
of atoB encoding E. coli acetoacetyl-CoA thio-
lase, ERG13 encoding Saccharomyces cerevisiae 
3-hydrroxy-3-methylglutaryl-CoA synthase, and 
a truncated HMG1 gene from Saccharomyces 
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cerevisiae encoding a soluble version of HMG-
CoA reductase. The production of isoprenoids in 
E. coli through the heterologous MEV pathway is 
limited by mevalonate supply. A mevalonate-
responsive AraC variant was isolated and then 
used to high-throughput screen for improved 
mevalonate production as a result of MevT-
operon mutations [60]. When mevalonate accu-
mulated at 30 mM or higher, mevalonate-AraC 
complex activated the PBAD promoter and GFP 
was detected as reporter.

5.3.4	 �Amino Acid Production

Amino acids are major industrial products 
derived from fermentation of microorganisms, 
comprising a world market of more than 3 
million tons per year [5]. The Gram-positive 
bacterium Corynebacterium glutamicum alone 
is used for the industrial production of L-lysine 
on a scale of 1.3 × 106 tons/year [67]. For exam-
ple, a FACS high-throughput method has been 
built to clone eyfp (enhanced yellow fluorescent 

Fig. 5.4  Acyl-CoA biosensors were used for FAEE production by dynamically regulating its downstream enzyme 
expression

Fig. 5.5  Metabolite biosensor 
to regulate metabolic pathway 
for fatty acid production
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protein) at 3′ of a Corynebacterium glutamicum 
promoter that is regulated by an endogenous 
transcription factor Lrp, which can detect 
L-methionine and several branched-chain 
amino acids, including L-valine, L-leucine, and 
L-isoleucine [7]. Using chemical mutagens, 
random mutations were introduced to the C. 
glutamicum strains, which carry the sensor 
plasmid. Cells cultivated and screened by FACS 
and the ones with enhanced fluorescence were 
isolated and recultivated to enrich the high-pro-
ducing strains. Mutants that produce up to a 
total of 11 mM branched-chain amino acids 
were identified using this method.

5.3.5	 �Triacetic Acid Lactone 
Production

Triacetic acid lactone (TAL), also referred to as 
4-hydroxy-6-methyl-2-pyrone, is a natural com-
pound of polyketide origin, commonly identified 
as a triketide derailment product during 
polyketide biosynthesis (e.g., lovastatin and 
6-methylsalicylic acid) [32, 48]. TAL is also a 
precursor in the chemical synthesis of phloroglu-
cinol, used in the synthesis of the thermostable 
energetic material 1,3,5-triamino-2,4,6-
trinitrobenzene (TATB), and resorcinol, used in 
resin and adhesive formulations [1, 25]. Microbial 
synthesis of TAL starts from glucose as substrate 
and 2-pyrone synthase (2-PS), encoded by the 
g2ps1 gene isolated from native TAL producer, 
Gerbera hybrid [15]. To date, improving TAL 
production has been limited by the lack of sensi-
tive and rapid screening/selection methods for 
identifying desirable candidates from gene librar-
ies [62]. Cirino and coauthors developed a 
mutated “AraC,” which responds to TAL to actu-
ate expression of green fluorescent (gfpuv) from 
promoter PBAD in E. coli. After multiple site satu-
ration mutagenesis of five amino acid located in 
the AraC binding pocket (P8V, T24I, H80G, 
Y82L, and H93R), the AraC mutant responded to 
the presence of exogenous 5 or 2.5 mM TAL, 
which a high-throughput FACS method was con-
structed. After two randomly mutated g2ps1 gene 

using error-prone PCR, a variant showed around 
20-fold increase.

5.3.6	 �Flavonoid Compounds 
Production

Naringenin, a pharmacologically useful plant fla-
vonoid molecule was able to be produced from E. 
coli by heterologous expression of four enzymes: 
tyrosine ammonia lyase, 4-coumaroyl ligase, 
chalcone synthase, and chalcone isomerase [51]. 
In a recent paper, Raman et al. used metabolite-
responsive transcription factor-regulated promot-
ers to control the expression of TolC, a protein 
that allows both positive and negative selections 
when supplemented with sodium dodecyl sulfate 
(SDS) and colicin E1, respectively. While posi-
tive selection was needed to select for high-
producing strains generated by multiplex 
automated genome engineering (MAGE), nega-
tive selection was used to eliminate the false 
positives caused by mutations. This transcription 
factor-based method was successfully imple-
mented to enhance production for naringenin 
[45].

5.3.7	 �Biofuel Production

With depletion of the nonrenewable fossil fuels 
and increase demand for oil use, microbial pro-
duction of biofuels has advantages of low cost, 
high energy, and renewability. However, one 
challenge is that high biofuel production usually 
requires host cells to exhibit high tolerance to 
biofuels [19, 36]. Even though host cells with 
high tolerance ability can be obtained, it does not 
necessarily mean that the strain has native high 
production capability. On the other hand, direct 
high-throughput methods to detect high produc-
tion candidates are uncommon. One way to 
address this problem is to develop biosensors for 
direct detection of small molecules to rapidly and 
specifically screen for the desired phenotype. 
One example has been studied by using a biosen-
sor based on a 1-butanol-responsive transcription 
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factor-promoter pair controlling expression of a 
tetracycline resistance reporter protein. A puta-
tive δ-54-transcriptional activator (BmoR) and a 
δ-54-dependent, alcohol-regulated promoter 
(PBMO) were identified in Pseudomonas butanov-
ora [13].

5.3.8	 �Environmental Toxin 
Detection

Metabolite biosensors can be utilized for envi-
ronmental toxin detection due to the response of 
metabolite to specific transcription factor and 
metabolite-transcription factor complex activate 
certain reporter production at presence of metab-
olite. For example, water-soluble aromatic com-
ponents (e.g., benzene, toluene, ethylbenzene, 
and xylene) of petroleum products can adversely 
impact groundwater, depending on local biogeo-
chemical conditions [47]. But they often persist 
in the environment and are hard to detect. A 
whole cell bacterial biosensor based on E. coli 
BL21DE3(RIL) expressing gfp under the control 
of an alcohol dehydrogenase inducible promoter 
belonging to the archaeon Sulfolobus solfataricus 
(Sso2536adh promoter) was used to measure 
aqueous concentrations of aromatic aldehydes 
[18]. The E. coli BL21DE3(RIL) biosensor strain 
displayed a specific response and high sensitivity 
to the different aromatic aldehydes used, such as 
benzaldehyde, cinnamaldehyde, and salicylalde-
hyde, suggesting its potential low-cost applica-
tion to environmentally relevant samples.

Hydrocarbon pollution represents a wide-
spread problem to native organisms in a wide 
range of environments, and detection may be 
possible using alkane-responsive biosensors. An 
alkane-responsive biosensor with a fluorescence 
output signal in Escherichia coli by using regula-
tory machinery from alkane metabolism in 
Pseudomonas putida has been developed [46]. 
Within that system, the transcriptional regulator, 
AlkSp, is activated by the presence of alkanes 
and binds to the PalkB promoter, stimulating tran-
scription of a GFP reporter. After two rounds of 
directed evolution via error-prone PCR and high-
throughput screening, an alkS mutant enabled up 

to a fivefold increase in fluorescence output sig-
nal in response to short-chain alkanes such as 
hexane and pentane.

5.4	 �Methodologies

5.4.1	 �Design of Transcription Factor

5.4.1.1	 �Modification of Natural 
Transcription Factor

Transcription factors are essential for the regula-
tion of gene expression and are, as a consequence, 
found in almost all living organisms. Some of the 
most commonly used transcription factors from 
nature are AraC, LacI, and FapR, which are regu-
lated by small chemicals such as arabinose, 
IPTG, and malonyl-CoA, respectively. These 
naturally occurring transcription factors can be 
modified or synthetically implemented as regula-
tory elements to implement toggle switches or 
oscillators [8, 57]. Engineering transcription fac-
tor proteins that control transcription in response 
to nonnative small molecule stimuli can be used 
as genetic switches in biosensing and metabolic 
engineering. For example, Schleif and coworkers 
have characterized AraC and the mechanisms of 
the ara operon regulation and proposed the “light 
switch” mechanism [52]. In the absence of 
L-arabinose, the DNA-binding domains (DBDs) 
of an AraC dimer bind the I1 and O2 half-sites 
(separated by 210 bases), repressing transcription 
through the formation of a DNA loop upstream 
transcription through the formation of a DNA 
loop upstream of the PBAD promoter. Upon bind-
ing L-arabinose, the dimer changes conformation 
such that the DBDs bind the adjacent I1 and I2 
half-sites, resulting in transcriptional activation 
via interactions with RNA polymerase at PBAD. 
Induction of the ara operon is specific to 
L-arabinose: structurally and chemically similar 
sugars such as D-xylose, d-arabinose, and 
D-fucose (6-deoxy-D-galactose) fail to act as 
wild-type AraC effectors. Studies found that two 
sites showed critical interactions including 
N-terminal AraC arm and the C-terminal DBD in 
the absence of inducer and the arms and ligand-
binding pocket in the presence of L-arabinose. 
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Mutation of the N-terminal AraC results in con-
stitutive, noninducible expression. Cirino and 
coworkers successfully modified natural AraC 
specificity by subjecting five residues of its 
ligand-binding pocket with saturation mutagene-
sis [60, 61].

5.4.1.2	 �De Novo Artificial Transcription 
Factor (ATF)

Synthetic transcriptional regulators typically bear 
two essential yet separate modules: the DNA-
binding domain (DBD) and the regulatory 
domain (RD). The DBD imparts most of the 
specificity in targeting the RD to a particular site 
in the genome. The RD usually plays a less criti-
cal role in selecting a gene for regulation; on the 
contrary, they mediate their effects directly on the 
gene to which they are delivered. In order to 
achieve activation or active repression, synthetic 
DBD and RD can be linked together to function 
as an artificial transcription function (ATF) [2, 
44]. Two examples of ligand-dependent ATFs 
were provided by the groups of Bujard and 
Schreiber. Bujard and coworkers developed ATFs 
that bind to DNA only in the presence of doxycy-
clin, whereas Schreiber and coworkers used 
chemical inducers of dimerization (CIDs) to 
mediate the interaction of a DBD and a RD in 
eukaryotes [4, 6]. Another example is that 
Cornish and coworkers reported a CID composed 
of methotrexate and a synthetic analogue of the 
natural product FK506 to manipulate the interac-
tion of a DBD with an activating region that func-
tions robustly in bacteria [6].

One ATF application in metabolic engineering 
was developed for isoprenoids production by 
replacing AraC’s ligand-binding domain (LBD) 
with isopentenyl diphosphate isomerase (Idi) that 
naturally binds isoprenoids. The choice of Idi is 
reasonable due to crystallographic data indicat-
ing that dimerization of Idi could create at least 
two different conformational states to activate 
transcription. This approach is useful to develop 
sensors for tyrosine and isoprenoid production 
[11].

5.4.2	 �In Silico Design of Ribozymes

In this section we describe computational meth-
ods for designing allosteric ribozymes, especially 
hammerhead ribozymes (HHRs) that can sense 
small molecules. In nature, HHRs consist of 
ligand(s)-binding allosteric domain and a cata-
lytic center. The allosteric ribozymes can be 
switched on or turned off as a result of binding 
small molecule or oligonucleotides to the ligand-
binding domain. Studies on HHRs have shown 
that there are three types of methods for obtain-
ing the allosteric ribozymes: (1) in vitro selection 
[17, 26], (2) rational design [29, 59], and (3) 
computational selection [40, 41].

The important advantage of using computa-
tional design of small molecule-sensing ribo-
zyme over in vitro selection and rational design 
methods is the possibility to compute all possible 
random sequences that fuse the aptamer domain 
to the ribozyme. It provides the possibility to 
obtain the sequences with the best possible prop-
erties for a given length of the communication 
module. If we are not satisfied with the properties 
of the obtained sequences, we can easily change 
the length of the communication module, which 
is another advantage of using computational 
design methods. Naturally, the main disadvan-
tage is that computational methods need to be 
evaluated and tested using experiments.

5.4.2.1	 �Algorithm-Based Design
There are two approaches for computational 
design of small molecule-sensing ribozymes. 
The first approach is to compute the sequence of 
the communication module between the ribo-
zyme and the aptamer based on the partition 
function for RNA folding by applying a random 
search algorithm [40]. For example, a new ribo-
zyme can be generated using a sequence that con-
tains the extended hammerhead motif from 
Schistosomes and the theophylline aptamer. One 
example of this approach was implemented to 
design a high-speed allosteric ribozyme with 
NOT logic function that senses the presence of 
theophylline, shown in Fig. 5.6 [40].
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5.4.2.2	 �3D Modeling Tertiary Structure-
Based Design

A second approach for computational design of 
small molecule-sensing allosteric ribozymes is 
based on modeling 3D interactions between the 
ligand and its RNA aptamer. To apply this 
approach, tertiary structure of the RNA aptamer 
bound to the ligand and interactions between 
them are required. Available tertiary structures 
can be found in protein structure databases such 
as the protein data bank (pdb, http://www.pdb.
org/). For example, purine-sensing ribozymes 
were designed by inserting guanine and adenine 
aptamers into the minimal version of the HHR 
based on 3D structures of corresponding purine 
riboswitches found in bacteria. Molecular 
dynamic simulations were then carried out by 
using Amber suite (http://amber.script.edu/) to 
calculate interactions between the guanine and 
aptamers that are embedded into the stem II of 
the ribozymes. Opposite logic functions (YES or 
NOT) were constructed at only one base pair dif-
ference, and both were experimentally tested in 
the presence or absence of guanine [39].

5.4.3	 �Design of Protein Sensor

Three branches of protein engineering can be 
identified: rational design that uses site-directed 
mutagenesis to modify existing proteins, de novo 
design that involves the synthesis of new protein 
from first principles by using established knowl-
edge on protein folding and structure prediction, 
and directed evolution that uses random muta-
genesis on known gene sequences to generate 
new proteins or enzymes to achieve a new target 
function in a fortuitous manner identified by 
screening or selection of a wide range of 
sequences [20].

5.4.3.1	 �Rational Design
Rational protein engineering is based on site-
directed mutagenesis and relies on existing infor-
mation of the 3D structure of the target protein 
and the implication of specific residues in its 
function. Protein modeling is a discipline in its 
own right, and it relies on the vast amount of 
structural and functional information stored in 
databases available. Once the 3D X-ray or NMR 

Fig. 5.6  Computational selection hammerhead ribozymes that sense small molecules
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structure for the target protein has been obtained, 
molecular modeling is used to locate the key resi-
dues to be targeted by mutagenesis, as well as to 
perform calculations to interpret or extrapolate 
principles for design of the mutants. Site-directed 
mutagenesis can be used to replace, delete, or 
insert one or more amino acids by introducing 
mutagenic primers to accumulate exponentially 
at each cycle [50].

5.4.3.2	 �De Novo Synthesis of Protein 
Biosensors

Proteins can also be created from first principles 
by solid state synthesis [20, 38]. Based on under-
standing hydrophobic effects driving folding and 
intra-chain hydrogen binding patterns, computa-
tional design of active proteins have been 
achieved for a variety of reactions including the 
Diels-Alder reaction, the Kemp elimination, and 
the retro-aldol reaction. For example, Rosetta de 
novo enzyme design has been used to design 
enzyme catalysts for different chemical reac-
tions. It includes four stages: (1) choice of a cata-
lytic mechanism and corresponding minimal 
model active site, (2) identification of sites in a 
set of scaffold proteins where this minimal active 
site can be realized, (3) optimization of the iden-
tities of the surrounding residues for stabilizing 
interactions with the transition state and primary 
catalytic residues, and (4) evaluation and ranking 
the resulting designed sequences [49].

5.4.3.3	 �Protein Design by Directed 
Evolution

Directed evolution is based on a number of cycles 
of random mutagenesis aiming at achieving new 
functions in existing proteins such as high chemi-
cal and thermal stability, solubility in organic sol-
vents, activity toward new substrates, and 
enantio- or regioselectivity in catalysis. Basically, 
directed in vitro evolution mimics the process of 
natural molecular evolution with four main steps: 
choosing a parent protein, creating a mutant 
library based on the parent protein, identifying 
variants with improved target properties, and 
repeating the entire process until achieving the 
desired function, also referred as SELEX [71, 
75]. Error-prone PCR was introduced to produce 

the mutagenesis libraries by using DNA poly-
merases lacking proofreading activity, such as 
Taq polymerase from Thermus aquaticus, Vent 
polymerase from Thermococcus litoralis, and 
Pfu from Pyrococcus furiosus. The number of 
possible variants (V) of a protein that can be cre-
ated by introducing M substitutions simultane-
ously over N amino acids could be estimated 
using the equation below [20]:

	

V
N

N M M

M

=
-( )
!

! !
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It could be estimated that there are 177,848 pos-
sible variants with only 9 targeted positions over 
4 amino acid changes simultaneously.

Another key component is a fast, sensitive, 
and specific high-throughput screening assay to 
enable the identification of positive variants. The 
development of the screening method is usually 
the critical bottleneck step in the directed evolu-
tion of a particular enzyme. Although X-ray crys-
tallography and NMR spectroscopy offer a 
detailed analysis of the variant based on the 
structure and function, the applications of these 
techniques are not always quick and straightfor-
ward. Alternatively, circular dichroism, fluores-
cence spectroscopy, and calorimetry methods 
provide useful information to quickly detect the 
active site of enzymes [71].

5.5	 �Future Perspectives

Recent research has contributed major innova-
tions in the development of metabolite biosensors 
with increasing numbers of metabolite targets, 
mechanisms of action, and applications in meta-
bolic engineering. However, in order to maximize 
the potential of this emerging technology, many 
challenges must be addressed. One consideration 
involves the chemical nature of the metabolite-
binding domain. For example, the limited diver-
sity of available RNA parts is a major constraint 
in the application of nucleic acid-based sensors, 
although design of ribozyme technologies (intro 
selection, rational design, and computational 
design) may allow rapid exploration of the func-
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tional sequence space. On the other hand, linking 
metabolite binding to novel, desirable changes in 
protein properties is substantially more challeng-
ing. Protein folding, metabolite-binding-induced 
conformational changes, and intra- or intermo-
lecular signal transduction are currently harder to 
predict and engineer than nucleic acid-based 
chemistry. Successful approaches often require 
multiple rounds of complementary computa-
tional, experimental, and directed evolution 
approaches. This may be one reason why metabo-
lite biosensors have not expanded into some 
applications that may be useful for dynamic regu-
lation. Second, introducing synthetic RNAs and 
proteins may potentially cause an increase in cel-
lular “burden” as cellular resources are shared 
between production synthesis and cellular growth. 
From this perspective, RNA-based metabolite 
biosensors tend to be superior to protein activity-
based and transcription factor-based biosensor 
due to a lack of translation and posttranslation 
modification of target protein. A third area of con-
cern is the temporal delay associated with the 
response time from metabolite sensing to actua-
tion, because biosensors inherently have a time 
lag between the true metabolite level changes and 
the downstream effects associated with regulating 
transcription or translation levels . For example, 
protein activity-based sensors respond to metabo-
lite level changes faster than RNA-based sensors 
or transcription-based sensors. Thus, protein 
activity-based biosensors may be a good fit in 
sensing those relatively toxic, high-flux metabolic 
intermediates or selecting high-producing candi-
dates by high-throughput method. However, for 
those relatively stable and slow-changing metabo-
lites, drastic changes in metabolite levels may not 
be desirable.
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      Sustainable Assessment on Using 
Bacterial Platform to Produce 
High-Added-Value Products 
from Berries through Metabolic 
Engineering                     

     Lei     Pei      and     Markus     Schmidt   

6.1          Introduction 

 Berries are rich resources of secondary metabo-
lites, particularly known for diverse phenolic 
compounds. These highly bioactive compounds 
can be developed into novel nutraceutical and 
pharmaceutical products, as well as high-added- 
value natural food additives. Compounds 
extracted from berries have, e.g., been used as 
colorants (e.g., anthocyanins) [ 1 ]. Meanwhile, 
some phenolics present in berries are of high 
added value due to their potential to develop into 
anticancer drugs (e.g., phenolic acids, fl avonols, 
and fl avanols) [ 2 ]. The antioxidation properties 
from berries also make them attractive research 
subject to develop more effi cient nutraceutical 
products than the current crude extraction formu-
las (e.g., NutriPhy ®  Bilberry 100 from Chr. 
Hansen) [ 3 ,  4 ]. To exploit the full potential of the 
phenolic molecules from berries, a number of 
research projects have been conducted ranging 
from identifi cation of bioactive compounds and 
elucidation of metabolic pathways (metabolic 
engineering them into suitable industrial produc-
tion host cells) to eventually commercial produc-
tion [ 3 ,  5 – 12 ]. 

 The cultivation of berries is limited by climate, 
soil type, and geographic conditions. Just as any 

other crop, berry plants cannot be cultivated 
everywhere in the world. Berry production is con-
centrated in certain regions, which, at the same 
time, also limits the applications of berry fruits 
[ 13 ]. Providing health benefi ts of berries to peo-
ple around the world and year round (off- harvest 
season), solutions other than direct consumption 
of berry fruits must be found, such as better dis-
secting the potent compounds from the berries 
that are responsible for the claimed health benefi -
cial effects and producing these compounds in a 
sustainable manner, which fall into the theme of 
the Sustainable Development Strategy (SDS) of 
European Union and its Member States drawn 
upon based on the Agenda 21, a nonbinding, vol-
untarily implemented action plan of the United 
Nations on sustainable development [ 14 ]. 

 Sustainable development aims to meet the 
needs of the current generations without harming 
those of the future generations. It intends to fulfi ll 
both immediate and long-term objectives of 
humanity. The European Union and its Member 
States have developed the SDS with reviews and 
revisions constantly [ 14 ]. Most of the SDSs have 
listed the selected indicators, aiming to provide 
measurements for the degree of sustainability. 
Even though there is no agreed-upon sustainabil-
ity assessment framework for bio-based prod-
ucts, there is a common theme that such 
assessment should be based on assessments on 
environmental, economic, and social sustainabil-
ity [ 15 ]. 
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 Here we will review the current research 
developments in exploiting the berry resource to 
produce high-added-value products for food 
additives, nutraceuticals, and pharmaceuticals. 
The existing datasets, methods, and models will 
be applied to illustrate how to access the sustain-
ability of industrial biocatalytic processes to pro-
duce berry phenolics as food additives, 
nutraceuticals, and pharmaceuticals.  

6.2     Current Development 
on Biocatalytic Processes 
to Produce High-Added- 
Value Products from Berries 

6.2.1     Berry Genome Databases 
Have Been Developed 
to Identify the Novel Berry 
Phenolics 

 Although berries have been known for a long 
time for their applications in food and associated 
health benefi ts, there is still a lack of comprehen-
sive study on the full potentials of berries in food, 
nutraceuticals, and pharmaceuticals. Genetic 
databases on the berries are required to explore 
the known and novel potentials of berries. 

 In the past 20 years, genomics on berry spe-
cies has been developed, focusing on developing 
molecular markers to identify berries, using tech-
niques ranging from isoenzymes and restriction 
fragment length polymorphism (RFLP), arbitrary 
polymerase chain reaction (PCR)-based markers, 
and sequence-characterized PCR-based markers 
to array-based and second-generation sequencing- 
based single-nucleotide polymorphism (SNP) 
marker characterization [ 16 ]. To better explore 
the existing molecular genome databases on ber-
ries, screening techniques also need to develop. 
One of such techniques is the SMART high- 
throughput screening platform. The SMART 
screening platform has been used to carry out  in 
vivo  assays performed in yeast cells harboring a 
specifi c human disease gene, or its yeast homo-
logue has been developed by using green fl uores-
cent protein constructs controlled by 
galactose-inducible promoters coupled to fl uo-

rescence microscopy, and growth assays allowed 
the identifi cation of candidate extracts inhibiting 
pathological processes affecting disease protein 
subcellular dynamics and cellular growth [ 17 ]. 
Potential bioactivities of the berries can be 
screened for their pharmaceutical potentials for 
Parkinson’s disease, Huntington’s disease, 
Alzheimer’s disease, etc. The yeast two-hybrid 
approach has been used to screen for compounds 
interfering with specifi c protein-protein interac-
tions controlling cell proliferation and cancer 
processes [ 18 ]. This technique can be applied to 
screen the potential anti-infl ammatory properties 
of berry extracts. Antimicrobial activity of berry 
extracts have been investigated in common 
pathogens, such as Gram-negative bacteria (e.g., 
 E. coli ,  S. poona , and  P. aeruginosa ) and Gram- 
positive bacteria (e.g.,  S. aureus ,  B. cereus ,  E. 
faecalis , and  L. monocytogenes ) [ 19 ,  20 ]. For the 
antibiotic potentials of berries, the minimal 
inhibitory concentration (MIC) should be deter-
mined on the berry extracts, and the potent com-
pounds responsible for the antibiotic activities 
should be further identifi ed.  

6.2.2     Metabolic Engineering 
on Industrial Host Cell 
to Produce Berry Phenolics 

 Up to date, more than 200 plant genes encoding 
enzymes for the phenolic biosynthetic pathway, its 
regulation, and the decoration of its products have 
been identifi ed [ 12 ,  21 – 23 ]. Yet identifying spe-
cifi c regulators and decorating enzymes of target 
berry species and the bioactive compounds of 
interest remain a challenge. The knowledge on the 
transcriptome profi les of berry would provide use-
ful insight to study the metabolic pathways [ 24 ]. 

 The biosynthesis of resveratrol was engi-
neered and expressed in microbes, such as 
 Lactococcus lactis  [ 25 ]. Resveratrol is one of the 
bioactive compounds from berry that has been 
expensively studied due to its cancer chemopre-
ventive actives [ 26 ]. A lactococcal model strain 
with improved intracellular malonyl-CoA expres-
sion will be used for production of phenolic com-
pounds [ 27 ,  28 ]. Fisetin is a polyphenol 
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compound with the potential to be developed into 
anticancer, antiviral, and antiaging drugs and, 
more recently, known for preventing Alzheimer’s 
disease and type I diabetes. Yet the production of 
fi setin from extraction is costly and dependent on 
the unpredictable berry fruit harvest, while the 
chemical synthesis of fi setin requires the use of 
toxic chemicals. Therefore, biosynthesis of fi se-
tin via heterogeneous expression in microorgan-
isms would be an eco friendly solution. A 
metabolic pathway to produce fi setin from 
L-tyrosine has been expressed in  E. coli  and will 
be further constructed in  L. lactis  [ 29 ]. L-tyrosine 
is used as a precursor to produce para (p)-cou-
maric acid. This compound can subsequently be 
converted into p-coumaroyl-coenzymeA (CoA) 
by tyrosine ammonialyase and 4-coumaroyl-CoA 
ligase. In the presence of chalcone synthase and 
chalcone reductase, one molecule of p- coumaroyl- 
CoA and three molecules of malonyl-CoA can be 
converted into isoliquiritigenin. And through 
three further steps, it can be converted to fi setin. 

 Other than  L. lactis  and  E. coli , a prophage- 
free variant of the wild-type strain  C. glutamicum  
ATCC 13032 can act as a chassis strain for path-
way metabolic engineering as well.  C. glutami-
cum  is known for its ability to harness 
phenylpropanoids [ 30 ]. Two clusters of genes are 
responsible for phenylpropanoid catabolism [ 30 , 
 31 ]. Deletion of these catabolic related genes 
might make the mutant strains unable to degrade 
phenylpropanoids, which would probably 
enhance the accumulation of the polyphenolic 
compounds in the engineered strains.   

6.3     Sustainable Assessment 
Based on Environmental 
Impacts 

 The environmental sustainability is an important 
assessment for a product on its contribution to the 
sustainable development. Quantitative environ-
mental assessments are critical to assess the 
actual environmental benefi ts of the high-added- 
value phenolic products by biocatalytic pro-
cesses. Life Cycle Assessment (LCA) has 
become a more common approach these days, 

while Environmental Impact Assessment (EIA) 
is limited to a few cases due to two important 
drawbacks comparing to LCA: lack of full supply 
chain analysis and single-factor measurement 
[ 32 ]. 

 LCA is a quantitative tool to assess the sus-
tainability of a product throughout cradle to 
grave, starting from raw material acquisition, 
material processing, and product manufacturing, 
distribution, and use to the end of life (Fig.  6.1a ). 
The general indicators to assess the environmen-
tal impacts include resource use, human health, 
and ecological consequences [ 33 ,  34 ]. LCA is to 
assess the environmental aspects and potential 
impacts associated with a product, by compiling 
an inventory of relevant inputs and outputs of a 
product, evaluating the potential environmental 
impacts, and eventually interpreting the results of 
the inventory analysis. To conduct LCA on high- 
added- value phenolic products of berry via bio-
catalytic processes developed by metabolic 
engineering, the analysis should be conducted as 
shown in Fig.  6.1c . It will be compared with the 
conventional approaches (mainly on extraction 
methods) as shown in Fig.  6.1b .

   To provide guidance to conduct LCA on a 
product, the ILCA handbook was developed by 
the Institute for Environment and Sustainability 
in the European Commission Joint Research 
Centre (JRC) [ 35 ]. The Life Cycle Impact 
Assessment (LCIA) was also developed by JRC 
to help interpret emissions and resource con-
sumption data that are associated with a prod-
uct’s life cycle in terms of environmental burdens, 
human health, and resources [ 36 – 38 ] (Fig.  6.2 ).

   The high-added-value compounds of berries 
usually stored in berry fruits are enclosed in com-
plex insoluble tissues such as vacuoles or lipo-
protein bilayers, which can require harsh 
treatment to release them. The fi ve-stage 
Universal Recovery Process (URP) is commonly 
used in the industrial scale of recovery of valu-
able compounds from berries. It is based on stage 
of raw material pretreatment, macro- and micro-
molecule separation, extraction, purifi cation, and 
product formation [ 39 ]. Among these stages, 
conventional extraction technologies applied to 
berries to obtain high-added-value phenolics usu-
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ally involve the use of high temperature and toxic 
solvents. Thus more sustainable alternative 
approaches should be developed to reduce the 
environmental load of the general production. 
The improved technologies for extraction are 
high-voltage electrical discharges, pulsed electric 
fi elds, and ultrasound treatments [ 5 ]. Yet these 
improved extraction technologies still require a 
signifi cant input of energy and relatively high 
equipment cost. 

 The potential improvements that can lower the 
environmental burdens by the BacHBerry 
approach to produce high-added-value phenolics 

based on the proposed LCIA parameters are as 
follows:

•    Less impacts on land-use change, owing to the 
biocatalytic processes which can be imple-
mented all around the world. There is no need 
to build greenhouse in nontraditional berry 
cultivation areas to grow berries to produce 
phenolic compounds for food additives, nutra-
ceuticals, or pharmaceuticals.  

•   Less impacts on resource depletion, implicat-
ing that even new compounds and new appli-
cations of phenolics would be discovered by 

  Fig. 6.1    LCA on product in general ( 1a ), for using con-
ventional approaches to develop useful products from ber-
ries ( 1b ), and for approaches developed by BacHBerry an 

EC-Framework Programme 7 project on “BACterial 
Hosts for production of Bioactive phenolics from bERRY 
fruits” (see project website:  http://www.bachberry.eu    ) ( 1c )       

Inventory results Midpoint Endpoint area of
protection

Climate change

Ozone depletion

Ionizing radiation

Photochemical ozone

Acidification

Eutrophication

EcotoxicityE
le

m
en

ta
ry

 fl
ow

s

N
at

ur
al

 e
nv

iro
nm

en
t

Land use change

Resource depletion

Desiccation, salination

  Fig. 6.2    Life Cycle Impact Assessment (LCIA) with environmental related factors, proposed by the Joint Research 
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the screening platform of the project. The 
exploitation on this knowledge will not lead to 
overconsumption of the existing berry 
resources, due to the feedstock of the biocata-
lytic processes which would be those from 
common and variable biomass.  

•   Overall contribution to other factors listed in 
LCIA is because biocatalytic processes are in 
general regarded as more environmentally 
friendly compared to alternative chemical pro-
cesses (e.g., using toxic chemical solvents to 
extract phenolic compounds from berries, as 
mentioned above).    

 Currently there is no biocatalytic process 
developed for phenolic compound production yet. 
However, the LCA on the productions of other 
bioactive products can provide a template for the 
possible processes developed by BacHBerry. 
LCA on beta-carotene extraction techniques is 
such an example [ 40 ], although the bioactive 
compound is obtained by chemical extraction. 
The LCA has been conducted on the extractions 
of beta-carotene from either carrots or microal-
gae. Life cycle inventory was built from produc-
tion and each principal process for recovery of the 
compounds citing data from Ecoinvent 2.0 data-
base. LCIA was also conducted using software 
Simapro 7.1 on cultivation, harvesting, drying, 
and yielding. The possible biocatalytic produc-
tion of phenolic compounds would be similar to 
the extraction of beta-carotene from microalgae, 
while the conventional phenolic production 
approaches are similar to the one extracted from 
carrot. The case study of LCA on beta-carotene 
can therefore serve as a template to develop phe-
nolic specifi c LCA.  

6.4     Sustainable Assessment 
Based on Economic Impacts 

 Biocatalytic production of high-added-value phe-
nolics holds great potential for sustainable devel-
opment. To move from the laboratory to 
large-scale productions, these processes must 
pass a number of criteria to be implemented suc-
cessfully. Other than safety, environmental, legal, 
and throughput issues, economic impacts are 

highly important [ 41 ]. Evaluating the cost of bio-
catalytic processes is diffi cult due to a lack of 
solid data, relevant case studies, and inventory on 
the factors contributing to the total cost. 
Comparing to the chemical manufacturing that 
has been studied in detail, the biocatalytic pro-
cesses involve more a complex development 
chain than those in chemical manufacturing, mak-
ing the economic assessments more diffi cult. 
Taking example from one extensively studied bio-
catalytic process, converting sugar to 
1,3- propanediol, the biocatalytic process is eco-
nomically competitive to the chemical process 
only at high cost of fossil feedstock plus when the 
sugar feedstock price is low [ 42 ]. Giving the simi-
lar scenery of BacHBerry approach to produce 
phenolic compounds via biocatalytic process, the 
cost of the biomass feedstock, as well as the other 
unforeseeable costs coming along the production 
chain, will have impact on their economic poten-
tial. The other cost includes cost on fermentation 
(scale, equipment, and yield), recovery, and puri-
fi cation. It is believed that more expensive prod-
ucts are worth producing in a higher catalyst cost 
scenario [ 41 ]. Thus the phenolic products for 
pharmaceutical applications may be the fi rst ones 
viable to be produced via biocatalytic process 
based on the economic assessment. 

 The other impact on economy is the market and 
employment. The Centre for Strategy and 
Evaluation Services (CSES) estimated that bio- 
based products in general would contribute to 
increase in volume up to 38,000 million Euro in 
market growth from 2006 to 2020 and to create 
260,000 more jobs [ 43 ]. Phenolic compounds pro-
duced via biocatalytic processes are among such 
bio-based products. Therefore they would also 
contribute in these aspects of the economy as well.  

6.5     Sustainable Assessment 
Based on Social Impacts 

 Assessing social sustainability of biotech prod-
ucts is another critical aspect for the sustainable 
development. While environmental and eco-
nomic indicators have a relatively broad consen-
sus already, the social indicators remain in early 
stages of development. 
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 To assess the social sustainability of biotech 
products, it shall be conducted taking into con-
siderations the following:

•    Make use of the scientifi c know-how for the 
sustainability assessment of biotechnological 
production.  

•   Develop a framework for the assessment of 
the social sustainability of biotech production 
within all stakeholders.  

•   Promote innovation toward sustainable devel-
opment and the public engagement into these 
topics.    

 The BacHBerry project will build a broad- 
spectrum database on berries from around the 

world that provides a valuable scientifi c resource 
for future research. The project is a cooperation 
of research institutes, biotech, and science com-
munication companies, which helps to build a 
platform for dialogue among the stakeholders 
and to engage the public alongside with the prod-
uct development process. 

 The Dutch organization COGEM (Commissie 
Genetische Modifi catie) has proposed how to 
assess the social sustainability of genetically 
modifi ed (GM) crops while comparing to those 
grown by traditional agriculture [ 44 ]. The nine 
criteria brought up for GM crops could be 
applied to assess the benefi t of biotech products 
to the society as well as shown in the table 
below.

 Criteria  GM crops  BacHBerry-derived products 

 Benefi t to society  Increase in yield, contributing to food security  Affordable quality products, similar or 
identical to the natural ones 

 Economics and 
prosperity 

 Effi ciency of production process, productivity, 
and profi t 

 Effi ciency of production process, 
productivity, and profi t 

 Health and welfare  Working environment, in terms of employment  Potential to improve human health and 
create new employment 

 Food supply  Food security, fair trade  Depending on the feedstock and scale 
of production 

 Cultural heritage  Offer room to conserve and continue specifi c 
cultural heritage aspects 

 Harnessing traditional knowledge and 
adding new knowledge associated with 
berries 

 Freedom of choice  Labeling of products, coexistence, research 
freedom 

 Maybe different from GM crops based 
on the fi nal product formats 

 Safety  Food and environmental safety in accordance 
with national legislation and international 
agreements 

 Similar to the existing biotech 
products 

 Biodiversity  No damage or reduction to biodiversity  No damage or reduction to biodiversity 

 Environmental 
quality 

 Quality of soil, surface water and groundwater, 
and air does not deteriorate; greenhouse gas 
emission remains neutral 

 Full impacts will be evaluated based 
on the large-scale productions 

6.6        Conclusion 

 Harnessing microbial production platform to pro-
duce high-added-value phenolic compounds has 
a wide range of applications across several indus-
trial areas such as food (additives), functional 
food (nutraceuticals), and pharma (pharmaceuti-
cals). The current process of the BacHBerry proj-

ect toward developing suitable biocatalytic 
processes to produce phenolic compounds has 
been analyzed. The potential contributions of the 
general biocatalytic processes to sustainability 
have been evaluated in their environmental, eco-
nomic, and social impacts, and they look promis-
ing. Once a biocatalytic process for a phenolic 
compound is fi nalized, a more detail assessment 
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can then be conducted to show that biocatalytic 
processes are promising means to move toward 
sustainable development.     
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      Hindrances to the Effi cient 
and Stable Expression 
of Transgenes in Plant Synthetic 
Biology Approaches                     

     Ana     Pérez-González     and     Elena     Caro    

      Most agronomic traits and all metabolic path-
ways are controlled by multiple genes. Therefore, 
synthetic biology approaches that intend to recre-
ate or modify them in plants require a multigene 
strategy. In complex approaches like these, where 
coordinated expression of multiple genes is 
required for stoichiometric synthesis of proteins 
or assembly of steps in a pathway, gene silencing 
is an especially worrisome problem since the 
instability of transgene expression can not only 
decrease the yield of production, but impair the 
whole functioning of the pathway. Thus, it is of 
vital importance to develop effective strategies 
for the generation of transgenic plants where uni-
form and predictable expression of transgenes 
can be achieved. 

 Since 1990, when Napoli, Lemieux, and 
Jorgensen fi rst reported a silencing phenomenon 
[ 36 ], ample experimental data on loss of trans-
gene expression has accumulated. The goal of 
their studies was to determine whether chalcone 
synthase (CHS), a key enzyme in fl avonoid bio-
synthesis, was the rate-limiting enzyme in antho-
cyanin biosynthesis. The anthocyanin 
biosynthetic pathway is responsible for the violet 

coloration in petunias. In an attempt to generate 
deep violet petunias, Napoli and colleagues [ 36 ] 
overexpressed CHS, which unexpectedly resulted 
in white petunias. The levels of endogenous as 
well as introduced CHS were 50-fold lower than 
in wild-type petunias, which led them to hypoth-
esize that the introduced transgene was “co- 
suppressing” the endogenous CHS gene. 
Twenty-fi ve years later, it is clear that a way of 
tackling low transgene expression is to avoid epi-
genetic gene silencing in the transformed organ-
ism but we are still dealing with the design of 
strategies that successfully do it. 

 The silencing of transgenes results from the 
activation of defense mechanisms of the plant 
against foreign DNA [ 29 ,  30 ], a common occur-
rence in the stable integration of additional DNA 
into chromosomes (transposable elements (TEs)) 
and the replication of a viral genome (virus infec-
tion). Silencing can occur at the transcriptional 
level (transcriptional gene silencing (TGS)) 
either preventing or dampening transcription 
through DNA methylation and/or chromatin 
modifi cations, or at the posttranscriptional level 
(posttranscriptional gene silencing (PTGS)) 
through RNA cleavage or translational repression 
[ 27 ]. 

 TGS is commonly associated with multiple 
and rearranged transgene copies and homology 
in promoter regions. It triggers cell-autonomous 
promoter hypermethylation and/or chromatin 
condensation that is maintained through mitosis 
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and meiosis. PTGS is commonly associated with 
homology in coding regions transcribed from a 
strong promoter. It is believed to involve a thresh-
old level of aberrant transcripts, triggering a 
sequence-specifi c RNA degradation mechanism 
that can spread through a phloem-transmissible 
signal. It can be accompanied by increased meth-
ylation in the corresponding transcribed DNA 
regions, but is typically reset through meiosis 
[ 29 ,  30 ,  44 ]. 

 In any case, for the silencing to occur, small 
RNAs have to be generated from partially or per-
fectly double-stranded RNA (dsRNA) precursors 
by an RNase III-like nuclease called Dicer or 
Dicer-like (DCL). The small RNAs are incorpo-
rated into another nuclease named Argonaute 
(AGO), and they use Watson-Crick base pairing 
to guide the effector AGO complex to target 
nucleic acids [ 27 ] (Fig.  7.1 ).

   The literature points to several factors in the 
generation of a transgenic plant that might be 
behind transgene licensing of silencing, mainly 
related to foreign DNA integration and organiza-
tion within the host genome, the nature of its 
sequence, the regulatory elements controlling its 
expression, and its transcription. These factors, 
together with the most accepted strategies to min-
imize their effect, will be discussed in the follow-
ing sections. 

7.1     Genome Integration 
of Foreign DNA 

 It has been appreciated for many years that the 
structure of a transgenic locus and the state of the 
chromatin in the site of its integration can have a 
major infl uence on the level and stability of 
the transgene expression. 

7.1.1     Structure of Transgenic Loci 

 Most genetic engineering of plants use 
 Agrobacterium -mediated transformation to intro-
duce novel genes. Although  Agrobacterium  
mainly infects dicotyledonous plants in nature, it 
can genetically transform a wide range of higher 

plant species under laboratory conditions and has 
become the transformation vehicle of choice for 
the genetic manipulation of most plants [ 1 ,  9 ]. 

 Monocotyledons were believed to be recal-
citrant to transformation by  Agrobacterium 
tumefaciens , but these initial diffi culties have 
been eventually resolved, and all major cereals 
are now transformed quite effi ciently by this 
method [ 16 ]. 

 Direct insertion of naked DNA into plant 
cells is an alternative transformation strategy 
for all species, but it is especially useful for 
plants that are more diffi cult to transform using 
 Agrobacterium . Among these methods, parti-
cle bombardment has become the most suc-
cessful because it is based on purely mechanical 
principles and is therefore not dependent on 
the biological factors that restrict the 
 Agrobacterium  host range. Particle bombard-
ment has been successfully applied to cereals 
including rice, maize, wheat, barley, and sor-
ghum. Historically, sorghum was considered as 
one of the most recalcitrant major crops; how-
ever, transformation effi ciency by particle 
bombardment has now improved from approxi-
mately 1 % to in excess of 20 % [ 25 ]. Other 
direct DNA transfer methods use chemicals 
(e.g., PEG, calcium phosphate) or physical 
treatments (e.g., electroporation) on plant 
protoplasts. 

 In all the mentioned cases, selection for anti-
biotic or herbicide resistance enables recovery of 
transformed cells that will then be regenerated to 
full transgenic plants. 

 Upon  Agrobacterium -mediated transforma-
tion, usually intact, single or tandem T-DNA cop-
ies in one or two loci are stably integrated into 
AT-rich regions of the plant genome with mini-
mal rearrangements of the target site. At low fre-
quency, T-DNAs are truncated at their left border, 
and vector backbone DNA is integrated [ 1 ]. In 
contrast, direct DNA transfer often generates 
much larger transgenic loci, where high-copy 
numbers and extensive rearrangements of the for-
eign DNA have been frequently reported. The 
structure of such loci is highly variable, compris-
ing single copies, tandem or inverted repeats, 
concatemers, intact transgenes, truncated and 
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rearranged sequences, and interspersed genomic 
DNA [ 1 ,  20 ]. 

 The existence of repeat-sensitive transcrip-
tional repression mechanisms, described long 
ago in plants and animals, establishes that single 
gene copies at a defi ned locus are expressed 
much more effectively than reiterated transgenes 

[ 49 ]. Thus, there seems to be a consensus in the 
fi eld that to avoid silencing, an  Agrobacterium - 
based delivery method should be favored for the 
introduction of foreign genes into plants, together 
with the selection of transgenic lines that show a 
single-site insertion with a single copy of the 
intact transgene or transgenes [ 1 ] (Fig.  7.2 ).

P TG T P TG T

RDRs

P TG T

PTGT

DICER dsRNA

small RNA duplexes

AGO

DNA  methylation
Chromatin modifications

Translational 
inhibition

RNA cleavage

TGS / S-PTGS AS-PTGS IR-PTGS

TGS PTGS

  Fig. 7.1    Schematic representation of a model for RNA- 
based TGS and PTGS. TGS, triggered directly by single- 
copy transgenes through an unknown mechanism resulting 
in the methylation of their promoter region. S-PTGS (sense-
PTGS), initiated by the generation of aberrant mRNAs by 
transgenes that will be the substrate for RDRs. 
AS-PTGS (antisense-PTGS), the consequence of the inte-
gration of a transgene next to an endogenous promoter 
leading to its antisense transcription. IR-PTGS (inverted 

repeat-PTGS), transcription of inverted copies of a trans-
gene generating a hairpin RNA responsible for silencing.  P  
promoter,  TG  transgene,  T  terminator. RDRs: RNA-
dependent RNA polymerases, dsRNA: double-stranded 
RNA, DICER: endoribonucleases of the RNase III family 
that cleave dsRNA, AGO: family of Argonaute proteins that 
bind small RNAs and coordinate downstream gene-silenc-
ing events guided to their targets by sequence 
complementarity       
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7.1.2        Positional Effect 

 An important cause of interindividual variability 
during plant transformation experiments is the 
chromosomal position effect that arises in 
response to the site within the genome into which 
the foreign transgenic DNA has integrated [ 29 ]. 

 Previous work from numerous laboratories 
has suggested that integration of  Agrobacterium 
tumefaciens  T-DNA into the plant genome occurs 
preferentially in promoter or transcriptionally 
active regions. However, under nonselective con-
ditions, a relatively high frequency of T-DNA 
insertions have been found in heterochromatic 
regions, including centromeres, telomeres, and 
rDNA repeats. It is possible that recovery of 
T-DNAs in these regions is disfavored under 
selective conditions because the insertion of the 
selection marker in heterochromatin ends up with 
a loss of expression of the transgene [ 18 ]. 

 Additionally, positional effect affects trans-
genes that are integrated near endogenous regula-
tory elements, such as transcriptional enhancers 
or repressors, which can cause their 
misexpression. 

 Several strategies that can be followed to 
avoid these problems, like targeted integration of 
transgenes and the use of locus control regions, 
which will be presented in detail. 

7.1.2.1     Targeted Integration 
 One possible approach to address positional 
effect is to precisely integrate a single copy of the 
transgene of interest into a predefi ned target 
locus that is characterized by long-term stable 
expression. 

 For a long time, it was not possible to use 
double- strand break (DSB) induction for gene 
targeting due to the lack of means to direct DSBs 
to specifi c sites, but in the last years, there has 

P TG T

Transformation

P TG T

P TG T P TG T

PTGT

  Fig. 7.2    The different methods of integration of trans-
genes in the genome of a plant can lead to very different 
situations. Multiple insertion sites or multiple copies 
inserted at a site often lead to silencing of the transgenes. 

Single insertion of single-copy genes is the preferred situ-
ation in the search for transgenics with effi cient and stable 
expression.  P  promoter,  TG  transgene,  T  terminator       
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been a huge development of genome-editing 
techniques based on the generation of modifi ed 
nucleases and synthetic DNA-targeting strate-
gies. Domains derived from zinc-fi nger transcrip-
tion factors or transcription activator-like 
effectors have been used to design modules that 
recognize a DNA sequence of choice. The fusion 
of these modules to an endonuclease domain can 
now introduce DSBs at the selected specifi c sites 
[ 39 ]. The recently discovered CRISPR/Cas 
 system based on RNA-guided engineered nucle-
ases is yet a new tool to induce multiple DSBs 
that holds great promise due to its simplicity, effi -
ciency, and versatility [ 3 ]. 

 The insertion of the transgenic constructs 
from a donor vector at the selected loci where 
DSBs have been produced would, ideally, allow 
for high-level transcription and isolation from 
endogenous regulatory elements. The use of site- 
specifi c nucleases could, moreover, remove much 
of the regulatory burden associated with trans-
genic plants since one of the main causes of con-
cern to the regulatory authorities is the random 
integration of transgenes and the resulting poten-
tial for unintended effects such as disrupting host 
metabolism and/or producing toxic or allergenic 
compounds [ 3 ]. 

 These strategies for gene targeting have 
already proven successful [ 38 ], although they are 
still at an early stage. Recipient lines with charac-
terized “safe harbor” loci promoting the strong 
expression of transgenes still have to be estab-
lished, and methods for selection need to be opti-
mized until they become routinely used.  

7.1.2.2     Use of Locus Control Regions 
 Random integration of transgenes can interfere 
with resident gene function and the endogenous 
gene expression regulation program and as a 
result have its own expression affected as well. 
Various mechanisms exist within eukaryotic 
genomes to avoid enhancer-mediated activation 
of nearby promoters and chromosomal position 
effects [ 17 ]. Transgenic constructs lack this abil-
ity and thus require supplementary ways to mini-
mize such disturbances. 

 Genetic insulators are sequences that function 
to shield genes from outside signals preventing 

inappropriate activation or repression of expres-
sion by nearby regulatory elements. Possibly one 
of the most well-studied class of genetic insula-
tors is scaffold/matrix attachment regions (S/
MARs), which have been suggested to function 
as boundary elements, anchoring the ends of 
chromosomal domains and preventing the spread-
ing of heterochromatin into transgenes fl anked 
by them [ 2 ] (Fig.  7.3 ). Early experiments in 
 Arabidopsis  did not show a clear effect on trans-
gene expression by the use of S/MARs [ 43 ], 
however, since then many groups have reported 
that their use causes an increase in the level of 
transgene expression and/or a reduction in plant-
to- plant variability in different species, including 
 Arabidopsis  [ 41 ].

   A few years ago, Kishimoto and col-
leagues [ 19 ] refl ected on the fact that some trans-
genes undergo TGS while others do not, making 
it conceivable that there are endogenous DNA 
sequences that actively determine the epigenetic 
TGS/non-TGS state of genomic regions. They 
developed a screening strategy to identify such 
elements (which they called anti-silencing 
regions (ASRs)), based on their ability to protect 
a fl anked transgene from TGS. They succeeded 
in identifying three ASRs from  Lotus japonicus  
that included Ty1/copia retrotransposon-like and 
pararetrovirus-like sequences. They could show 
that one retrotransposon-like sequence had inter-
species anti-TGS activity in  Arabidopsis thali-
ana , and it held a lot of promise due to its small 
size (171 bp) that would make it very convenient 
to include in the fl anks of any transgenic 
construct.    

7.2     Transgene Sequence 
Composition 

 In the genome, most genes are present in iso-
chores covering an extremely narrow GC range 
of 1–2 %, suggesting that any exogenous DNA 
with different features might be detected as intru-
sive. In fact, TEs, prokaryotic sequences, GA-rich 
microsatellites, retroelement remnants, and tan-
dem repeat arrays are the primary elements cor-
related with silencing [ 22 ]. The different 
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sensitivities to methylation of a monocotyledon-
ous versus a dicotyledonous transgene in petunia 
[ 11 ,  32 ] suggested long ago that silencing can be 
provoked by particular sequence contexts. 
Prokaryotic DNA might be recognized as foreign 
because of its generally high GC content and/or 
because it cannot be packaged properly with 
eukaryotic proteins [ 29 ]. 

 To avoid alerting plant genome surveillance 
mechanisms as a defense against intrusive  foreign 
DNAs, modifi cation of transgenic construct 
sequences should be made as necessary to make 
sure that all element sequences match isochore 
composition of the host species [ 48 ].  

7.3     Promoter and Terminator 
Usage 

 Throughout plant development, small RNAs tar-
get homologous genomic DNA sequences for 
cytosine methylation in all sequence contexts 
through TGS via the phenomenon termed RNA- 
directed DNA methylation (RdDM) [ 23 ] (Fig. 
 7.1 ). RdDM has been proven responsible for the 
 de novo  initiation, reestablishment, and mainte-
nance of TEs and transgene silencing. In this last 
case, silencing is commonly associated with a 
specifi c increase in DNA methylation within the 
promoter region [ 31 ]. 

RNA SynthesisRNA Synthesis

Spreading

P TG T Ins InsP TG T

Heterochromatin Euchromatin

Spreading

Hetero Eu Hetero Eu

RNA SynthesisRNA Synthesis

TG integration

  Fig. 7.3    Genetic insulators can shield transgenes from 
outside signals preventing positional effects caused by 
heterochromatin spreading from the integration site in the 

genome.  P  promoter,  TG  transgene,  T  terminator,  Ins  
genetic insulator,  Hetero  heterochromatin,  Eu  
euchromatin       

 

A. Pérez-González and E. Caro



85

 Small RNAs direct the molecular machinery 
that catalyzes heterochromatic histone modifi ca-
tions or DNA methylation to loci with sequence 
homology, usually by base pairing with noncoding 
RNAs (ncRNAs) that are associated with the chro-
matin at the locus to be silenced. Thus, a low level 
of transcripts needs to be generated to provide 
positional information for TGS. RNA Polymerase 
IV is believed to produce single- stranded RNAs 
that serve as precursors of small RNAs. RNA 
Polymerases V and II, in contrast, are involved in 
producing the ncRNA scaffolds with which 24 
nucleotide small RNAs form base pairs [ 14 ]. 

 There are some known players involved in the 
recruitment of Pol IV and Pol V to target 
sequences like transposons and repeats that 
already carry epigenetic silenced features. 
However, the pathway leading to the initiation of 
the silencing process in the case of transgene pro-
moters remains elusive [ 14 ,  31 ]. 

 The genome-wide high-resolution mapping 
and functional analysis of DNA methylation in 
 Arabidopsis  revealed that only about 5 % of 
genes contain methylation within promoter 
regions [ 50 ]. Whether this resistance of endoge-
nous promoters to silencing is based on their 
structure, sequence or any other feature is not 
known and remains to be elucidated. 

 Using constitutive viral promoters with very 
different sequence features to those of the host 
genome has repeatedly shown not to be a good 
approach to achieve high and stable transgene 
expression. As an example, the 35S promoter of 
the Caulifl ower mosaic virus has been docu-
mented in many instances and different species to 
end up silenced and methylated (Table  7.1 ). The 
promoters chosen to drive transgene expression 
are essential regulatory elements that often get 
overlooked, and further work on this matter will 
be necessary to fi nd the best-suited candidates for 
each experiment.

7.4        Transgene Transcription 

 Besides the small RNA pathways that regulate 
endogenous genes and transposons, plants have 
developed a small RNA pathway dedicated 
mainly to the control of viruses. It is also often 

activated against transgenes expressed under the 
control of strong promoters (S-PTGS) as a conse-
quence of the saturation of the mRNA processing 
pathways [ 24 ] (Fig.  7.1 ). This saturation trans-
lates in the accumulation of aberrant RNAs that 
are converted into dsRNA by RDRs. A plausible 
scenario is that cap-, poly (A)- and other RNA- 
binding proteins normally prevent RDRs from 
interacting with mRNAs. In misprocessed RNAs 
with aberrant characteristics, these RNA-binding 
proteins would bind ineffi ciently allowing the 
generation of dsRNA by RDRs [ 35 ]. 

 However, highly transcribed endogenes, for 
example, the ribulose-1,5-bisphosphate carbox-
ylase/oxygenase (RuBisCO) gene, are not 
silenced. Transgene RNAs can be expected to be 
particularly prone to aberrancy if they have non- 
plant- derived elements, because they may not 
have the precise structures necessary for effi cient 
interaction with the mRNA-binding proteins 
associated with most cellular mRNAs [ 15 ]. This 
observation suggests that qualitative rather than 
quantitative features of transcripts defi ne whether 
silencing is initiated or not [ 8 ]. 

   Table 7.1    Examples of species of transgenic plants 
where DNA methylation of the 35S Caulifl ower mosaic 
virus promoter was reported   

 Reference 
 Species common 
name 

 Species scientifi c 
name 

 Weber and 
Graessmann 
[ 46 ] 

 Tobacco   Nicotiana tabacum  

 Meyer et al. 
[ 33 ] 

 Petunia   Petunia hybrida  

 Kumar and 
Fladung [ 21 ] 

 Aspen   Populus tremula  

 Chalfun-Junior 
et al. [ 4 ] 

  Arabidopsis    Arabidopsis 
thaliana  

 Mishiba et al. 
[ 34 ] 

 Gentian   Gentiana trifl ora  × 
 G. scabra  

 Gambino et al. 
[ 13 ] 

 Grapevine   Vitis  spp. 

 Sohn et al. [ 42 ]  –   Nicotiana 
benthamiana  

 Fan et al. [ 12 ]  Sweet orange   Citrus sinensis Osb . 

 Weinhold et al. 
[ 47 ] 

 –   Nicotiana attenuata  

 Okumura et al. 
[ 37 ] 

 Lettuce   Lactuca sativa  
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 Given that introns are very common in endog-
enous genes but are often lacking in transgenes 
and transposons, it was hypothesized that introns 
may suppress gene silencing. This idea is sup-
ported by results showing that three different 
introns from  Arabidopsis  genes increase the 
expression of GFP when introduced in its 5′UTR 
[ 6 ]. In fact, an endogene-resembling transgene 
(which was modifi ed to include two introns) 
showed a delay in the onset of silencing com-
pared to its intronless version [ 8 ], and several 
proteins of both the splicing and the polyadenyl-
ation machineries have been identifi ed as regula-
tors of DNA methylation patterns and chromatin 
silencing [ 28 ]. 

 In IR-PTGS (Fig.  7.1 ), dsRNA generated from 
the transcription of inverted repeats effi ciently 
silences the corresponding transgene mRNA. This 
can be the result of a deliberate design of the con-
struct to generate dsRNAs and induce silencing, 
or the consequence of the integration of inverted 
copies on the genome. PTGS can also be initiated 
by antisense transcription of the transgene 
(AS-PTGS; Fig.  7.1 ), deliberately, as a means to 
induce silencing, or as the consequence of the 
integration of the transgene in the genome next to 
an endogenous promoter leading to its antisense 
transcription. Once again, the selection of trans-
genic lines with single-copy insertions and with 
no transgene rearrangements and the use of 
genetic insulators fl anking transgenes are of the 
utmost importance to avoid positional effects. 

 For transient expression approaches, the strat-
egies used to solve PTGS problems consist on the 
co-expression of the gene of interest with a viral 
silencing suppressor. So far, several suppressors 
of RNA silencing have been identifi ed that seem 
to interfere with the PTGS silencing pathway at 
distinct steps, affecting various molecular targets 
in the host. Researchers have used the Artichoke 
mottled crinkle virus suppressor P19 in 
 Agrobacterium  infi ltration transient expression 
assays to produce high yields of biopharmaceuti-
cals, namely, a human antibody against the 
tumor-associated antigen tenascin-C in  N. taba-
cum  [ 45 ] and the HIV-1 Nef protein in  N. ben-
thamiana  [ 7 ]. 

 But the use of viral suppressors is not a good 
solution to the overall problem. On the fi rst hand, 
they have been found to work in a dose- dependent 
manner that can be easily controlled in the lab for 
transient expression assays, but not in stably 
transformed plants, where the high doses have 
been shown to yield plants with deformed pheno-
types, for example, in the case of expression of 
P19 in  A. thaliana  [ 10 ],  N. tabacum  [ 5 ], and  N. 
benthamiana  [ 40 ]. This can be due to the fact that 
the tampering with silencing mechanisms also 
affects the normal expression of endogenous 
genes necessary for a correct development. 
Moreover, many of the most potent suppressors 
are pathogenicity factors that often contribute to 
the onset of symptoms upon infection of plants.  

7.5     Strategies to Avoid 
Transgene Silencing 

 Synthetic biology complex approaches involving 
the transfer of multiple genes into plants abso-
lutely require stable transgene expression to be 
successful. As described in the above sections, 
there are some strategies that should be followed 
to increase the probabilities of achieving it, and 
we will summarize them here. 

 Selecting a method of DNA delivery that min-
imizes the number of copy inserts within the host 
genome and the screening for transgenic lines 
with no transgene rearrangements is important to 
obtain stable lines with consistent expression 
through many generations. 

 In the near future, it will be possible to avoid 
the positional effect derived from the integration 
site by choosing between a handful of euchromatic 
sites within the genome to integrate your transgene 
of interest, but as of now, if random integration 
methods are used, several lines should be followed 
in case some suffer from spreading of heterochro-
matin neighboring the transgene. In any case, it 
will always be advisable to fl ank the transgenic 
cassettes with genetic isolators that can somehow 
shelter the DNA from changes in the surroundings 
and from AS-PTGS that could derive from integra-
tion next to an antisense promoter. 
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 It is advisable for the transgene to match the 
isochore AT/GC composition of the host organ-
ism genome and that plasmid sequences must be 
excluded from the integrated DNA to avoid for-
eign DNA recognition. 

 The choice of promoters and terminators is 
also important in the design of the transgenic 
construct. Until a thorough analysis of regulatory 
sequences’ features that induce silencing is made, 
the use of viral sequences or of artifi cial sequences 
with very different AT/CG contents from the host 
genome average should in general be avoided. It 
might also be interesting to design different alter-
natives with promoters and terminators of vary-
ing strengths in order to not saturate the RNA 
maturation machinery. 

 In the case of multigene approaches, a com-
mon question is whether it is advisable to use 
the same promoter and terminator sequences 
repeatedly to control the expression of multiple 
genes. In theory, the use of diverse elements  to 
build up the transcriptional units should be pre-
ferred in order to avoid repetition and initiation 
of TGS. 

 It must be noted that there are examples in the 
literature of successful experiments in which co- 
expression of multiple genes has been achieved 
with repetitious promoters [ 26 ], especially in the 
fi eld of metabolic engineering [ 51 ]. However, as 
synthetic biology initiatives become more ambi-
tious, the current strategy of selecting for the best 
performing lines and discarding the many others 
in which the expression of transgenes does not 
behave as expected must be improved. We pro-
pose that the design of strategies that take into 
account all the above mentioned issues will 
increase the rate of success of future endeavors. 

 Much work is still needed to elucidate the dif-
ferent signals that lead to the generation of dsR-
NAs from transgenes, to understand the 
stochasticity of the phenomena and the specifi cs 
of how the pathway works in each different spe-
cies, but until then, taking all these precautions to 
avoid gene silencing might make the difference 
between success and failure in a synthetic biol-
ogy approach.     
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8.1          Introduction 

 Genomic medicine is highly dependent on under-
standing the biological processes regulating gene 
expression. In this reference, the discovery of 
phenomena of RNA interference in 1998 served 
as turning point for the fi eld of genomic medi-
cine. It was observed that the double stranded 
RNA (dsRNA) is capable of silencing specifi c 
genes in  Caenorhabditis elegans  [ 12 ]. Later, 
studies on RNA interference have revealed that 
RNA interference operates in many species and 
serves in silencing genes. In  C. elegans , the 
inhibitory potential of RNA was induced by 
introducing endogeneous long dsRNA’s while in 

mammalian cells, the introduction of small 21 nt 
RNA’s could induce RNAi. [ 10 ]. 

 Among the small RNAs, small noncoding 
RNAs (sncRNAs) form the most dominant class 
of RNAs [ 22 ]. Human gene expression is regu-
lated through small noncoding RNAs (sncRNAs) 
in a very precise manner. MicroRNA (miRNA) is 
one such endogenous sncRNA which is involved 
in the negative regulation of gene expression. It 
inhibits the translation or causes the degradation 
of RNA by binding to the 3′ UTR of the target 
RNA [ 40 ]. The effect depends on whether the 
complementation is imperfect (inhibition of 
translation) or perfect (degradation) [ 11 ]. As a 
group, miRNAs regulate more than 50 % of pro-
tein coding genes which accounts for more than 
10,000 genes. 

 miRNAs are involved in cell differentiation, 
proliferation/growth, mobility apoptosis and 
many other cellular functions. These cellular 
effects of miRNAs are seen in multiple tissue 
types [ 4 ,  24 ,  25 ,  32 ]. miRNA’s thus play key 
roles in several physiological and developmental 
processes. Considering the importance of miR-
NAs, it is not unanticipated that miRNA are also 
in turn regulated in a stringent manner. Evidence 
suggests that any alteration of miRNA regulation 
can lead to diseases such as cancer, heart disease, 
hepatic disorder, metabolic and immune 
 dysfunctions. Since miRNA regulate multiple 
proteins and pathways, their importance in next 
generation therapeutics can be envisioned. 
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“microRNomics” therefore has emerged as a 
fi eld of human disease biology and a subdisci-
pline of genomics for studying the expression, 
biogenesis and regulation of expression of sev-
eral target proteins. It is therefore essential to 
understand the biological functions of miRNA’ 
on a genomic scale. 

 Misregulation of miRNAs is associated with 
the development of many diseases [ 39 ]. Therefore 
miRNAs have been receiving special importance 
in the fi eld of drug design [ 37 ,  49 ]. Both miRNA 
replacement therapy and specifi c miRNA inhibi-
tors are being tried on for the restoration of nor-
mal tissue functions [ 17 ,  33 ]. In order to enhance 
the endogenous level of specifi c miRNAs, 
miRNA mimetics can be used. miRNAs can also 
suppress the expression of genes involved in dis-
ease progression [ 27 ]. These mimetic or inhibi-
tory actions on miRNA regulated processes have 
shown promising therapeutic response [ 31 ].  

8.2     miRNA-Based Therapeutic 
Strategies 

 There exist a lot of similarities between the devel-
opment of miRNA-based therapeutics and the 
conventional drug discovery process. However, 
unlike the conventional drug discovery process, 
selection of miRNAs targets is based on 

 preexisting knowledge since miRNA are endog-
enous molecules with well-defi ned regulatory 
functions [ 14 ,  43 ,  48 ]. The primary step would 
therefore be the identifi cation of dysregulated 
miRNAs in a particular disease followed by 
selection of the candidate miRNA. This miRNA 
is then functionally characterized using suitable 
 in vitro  and  in vivo  experiments to quantify the 
gain or loss of function. Based on the gain or loss, 
either replacement or inhibitory strategies are 
developed (Fig.  8.1 ).

8.2.1       miRNA Inhibition 

 Over expressed miRNAs levels are often the 
cause of several diseases. In such cases, the pre-
vention or reversal of miRNA expression has 
been found benefi cial. For example, increased 
level of miR-122 has been implicated in hepatitis 
C where overexpression of miR-122 favors para-
site replication [ 18 ]. This is evident from studies 
which show that upon miR-122 inhibition, the 
viral load is reduced [ 19 ]. Over expression of 
miR-21 [ 36 ] is also a cause of several cancers. 
Over expression of miR-21 causes increased cell 
proliferation through cell cycle alterations. 
Similarly, overexpression of miR-212/132 is 
observed in pathological hypertrophy of heart 
[ 41 ]. Since numerous miRNAs are reported to be 

  Fig. 8.1    miRNA-based 
therapeutic strategies for 
enhancing or repressing 
miRNA functions       
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overexpressed in many different diseases, 
miRNA inhibition has also become a major 
research area of in the fi eld of gene therapy. 

8.2.1.1     Methods for miRNA Inhibition 

   miRNA Sponges 
 The method of using miRNA “sponge” was 
introduced to induce continuous loss of function 
of miRNA in cell lines and transgenic organisms. 
Sponge RNAs are a series of miRNA response 
elements which contain complementary binding 
sites to a miRNA of interest. miRNA sponges 
occur naturally in plants and animals as long non-
coding RNA. Like majority of miRNA target 
genes, sponge also inhibits a whole family of 
miRNA as the sponge’s binding site is situated in 
the seed region of miRNA. As many cells (both 
 in vitro  and  in vivo ) are resistance to the uptake of 
oligonucleotides, the sponge transgene is usually 
delivered by a viral vector. Sponge mRNAs are 
usually designed synthetically and are either viral 
vectors or plasmids having upto 10 arrayed 
miRNA binding sites with small nucleotide spac-
ers [ 8 ,  9 ]. 

 MiRNA sponges have been well studied 
against hepatocellular carcinoma and in other 
cancer types. Recently, a lentivirus mediated 
sponge for microRNA-122 targeting cyclin G1, 
Bcl-w, disintegrin and metalloprotease 10 has 
been developed. microRNA-122 plays an 
 important silencing role in the Huh7 hepatoma 
cell line and the U2OS osteocarcinoma cell line. 
miR- 122- SP can effi ciently restore the expres-
sion of miR-122. Moreover, miR-122 sponge 
was effective in suppression of proliferation 
through cell cycle arrest at G1 phase and activa-
tion of caspase- 3/7 in both hepatoma and osteo-
sarcoma cells [ 26 ]. Circular miRNA sponges 
have also been developed for miR-21 or miR-221 
which showed excellent anticancer effect against 
malignant melanoma cells. These, miRNA, being 
circularized, are less susceptible to enzymatic 
degradation while being immune to miRNA- 
mediated degradation. It also had superior effi -
cacy in depressing microRNA targets vis-a-vis 
linear sponges and other inhibitors [ 23 ]. The 
miR-101 is a negative regulator of amyloid pre-

cursor protein (of amyloid β which is responsible 
for neurodegeneration in Alzheimer’s disease). A 
lentiviral sponge for miR-101 is reported to regu-
late the amyloid precursor protein metabolism in 
hippocampal neurons. This indicated miR-101 
inhibition can control the amyloidogenic pro-
cessing signifying its importance in the 
Alzheimer’s disease [ 1 ].  

   Anti-miRNA Oligonucleotides (AMO) 
 Anti-miRNA Oligonucleotides (AMO) are syn-
thetic oligonucleotides (19–25 nt long) which 
work on the principle of antisense techniques to 
intervene with the target miRNA [ 47 ]. The earli-
est report of miRNA inhibition using AMOs was 
observed in Drosophila embryos [ 2 ]. 

 AMOs are reverse complements of miRNA 
which work by inducing steric blockage with 
their respective miRNA. AMOs either degrade 
the miRNA through their RNase activity or pre-
vent its binding to the target mRNA. The most 
important properties of AMOs are they have high 
binding affi nity and specifi city. It also has scope 
for chemical modifi cations which can help in 
improving its potency as well as performance 
[ 21 ]. First generation AMOs have 2′-O-methyl 
modifi cations which are termed as antagomirs. 
2′-O-methyl modifi cation ensures that AMOs are 
resistant to nucleases also facilitate miRNA bind-
ing. Second generation AMOs were modifi ed at 
the 2′ sugar position to provide better nuclease 
resistance and improved binding affi nity com-
pared to fi rst generation [ 20 ]. Locked nucleic 
acid (LNA) modifi cations are characterized by 
bicyclic nucleic acid having methylene bridge. 
LNAs have shown better binding affi nity; how-
ever, in some cases, this higher affi nity has also 
resulted in off-target binding leading to toxicity 
[ 38 ]. Some AMOs have lot of chemical modifi ca-
tions and are reportedly good at inhibiting non-
coding as well as coding RNAs [ 16 ]. The 
potential of using AMOs for clinical applications 
is increasing. Anti-miR-122 oligonucleotides 
have shown promising therapeutic potential 
against chronic hepatitis C virus in the long-term 
safety and effi cacy trials [ 42 ]. An LNA-modifi ed 
oligonucleotide is reported to potently inhibit 
cardiomyocyte-specifi c miR-208a function 
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 leading to suppression of fi brosis, diminished 
expression of myosin 7 and improved survival of 
Dahl salt-sensitive rats having diastolic dysfunc-
tion when on high salt diet [ 30 ]. 

 Currently, AMOs are most researched area for 
developing miRNA therapeutics. Targeting of 
multiple miRNAs using single fragment, termed 
as multiple-target AMO technology (MT-AMO), 
has also emerged in last 2–3 years. This technol-
ogy allows use of single AMO fragment having 
2′-O-methyl-modifi ed oligoribonucleotides to 
target multiple miRNA;s or miRNA seed families 
[ 46 ]. After the regulatory approval of fi rst gener-
ation oligonucleotide Vitravene for CMV retini-
tis, the potential for modifi ed AMOs is on the 
rise, especially in the area of cancer biology. 
Fully modifi ed oligonucleotides such as 20-mer 
phosphorodiamidate morpholino oligomer tar-
geting c-Myc are currently being investigated in 
human trials [ 7 ]. OMe-oligonucleotides and 
mixed backbone OMe/DNA hybrid antisense oli-
gonucleotides are current being pursued to cor-
rect aberrant splicing events [ 28 ]. The focus is 
therefore on the practical usage of miRNAs to try 
and fi nd out cure for various diseases.  

   Small Molecular Inhibitors of Specifi c 
miRNAs (SMIR) 
 Melo and Calin et al. were fi rst to use the term 
small-molecule drugs targeting specifi c miRNAs 
(SMIR) to identify interaction of small molecules 
and miRNAs. SMIR approach has promising 
potential in modulation of miRNA activity. It can 
overcome the developmental challenges posed 
with nucleotide analogs. The SMIR-approach 
can reduce the duration of drug development, 
making it cost effective. It can help in develop-
ment of more targeted therapies [ 29 ,  50 ]. An azo-
benzene was discovered as the fi rst specifi c SMIR 
against miR-21 precursor [ 15 ]. Current approach 
in SMIR involves identifi cation of compounds 
with potent and specifi c binding affi nity towards 
mature miRNAs or its upstream precursor. In this 
sense, small molecules would be targeting a 
mature miRNA sequence by binding to it, or to 
any of its upstream precursors. Ongoing research 
envisages identifying small molecules with 

 structural complementarities to miRNAs show-
ing structure based interaction. However, the 
major limitation in the development of SMIR is 
that not many crystal structures of miRNAs are 
reported. Also the use of SMIRs is limited due to 
their high EC50 values. However SMIRs are rela-
tively easy to deliver. Despite the limitations, 
bench to bedside delivery of SMIRs is compara-
tively easier. Aryl amides have been recently dis-
covered as a new class of SMIR that serves as an 
inhibitor of miR-21, which is frequently upregu-
lated in cardiac diseases and cancers [ 5 ].    

8.2.2     miRNA Replacement Therapy 

 Till now, the research on therapeutic approaches 
with miRNA has mostly focused on inhibition of 
miRNA. However, miRNA replacement therapy 
has also emerged with a proof of concept. As the 
name suggests, miRNA replacement therapy 
aims to restore the healthy state by increasing 
the amount of miRNAs [ 34 ]. The best examples 
are let-7 [ 3 ] and miR-34 [ 6 ] which are tumor 
suppressors whose reduced levels have been 
characterized in many tumor types. Similarly, 
decrease in miR-107 is characterized in early 
stages of Alzheimer’s disease making it a prom-
ising target for replacement therapy [ 45 ]. 
MiRNA mimics can inhibit the genes targeted by 
suppressor miRNAs and consequently normalize 
cellular processes. It is important that miRNA 
mimics are delivered through targeted approach 
to prevent miRNA over expression beyond basal 
level and to bypass normal tissues. Mimics of 
miRNA also serve as an attractive substrate for 
nucleases mediated degradation. The data on 
miRNA replacement therapy suggests that some 
diseases like cancer manifest impaired miRNA 
processing which leads to global miRNA down-
regulation. Therefore, for such cases an agent 
which can upregulate the expression of a particu-
lar miRNAs is needed [ 35 ]. The area of miRNA 
replacement therapy is growing slowly; how-
ever, a miR-34 mimic currently under clinical 
trial for treatment of solid tumors has shown the 
silver lining.   
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8.3     Future Prospects 

 The reported  in vitro  and  in vivo  studies on 
miRNA inhibitors and inhibition of miRNAs 
support further research on miRNAs as lead com-
pounds. While the cost of drug development is 
increasing day by day with the regulatory require-
ments becoming more stringent, it becomes 
essential that a drug candidate must be identifi ed 
quickly and validated properly. As miRNAs are 
short, the primary screening of an ideal candidate 
against the miRNA must account for an in-depth 
understanding of the specifi city. There are many 
challenges in the fi eld of miRNomics. Reported 
miRNA inhibitions only focus on the target tis-
sues and a little emphasis is laid on the possible 
off-target effects. AntimiR development is based 
on the principle that targeting any particular 
miRNA will regulate all genes under it. It should 
be noted that miRNAs also target other unrelated 
genes which may possibly produce unwanted or 
undesired alterations in gene expression. For 
example, miR208a was studied for its cardiac 
effects but it also showed anti-obesity behavior 
and was active against metabolic syndrome in 
mice [ 13 ,  44 ]. In addition, many times therapeu-
tically non-feasible doses have been reported and 
separate studies to develop dosage regimen will 
be essential. The miRNAs also partly share their 
targets, thus interaction of a particular miRNA 
with a target weakens its potency for interaction 
with other targets. On the other hand, interaction 
of one mRNA with a specifi c miRNA reduces the 
probability of its silencing by other miRNA. Much 
more exploration is yet to be carried out in this 
area of physiological competition. Therefore 
simultaneous targeting of multiple pathways 
using combinatorial approaches of multiple miR-
NAs could be more effective strategy while 
reducing cost of therapy. 

 Despite these challenges, targeting of miRNA 
using mimics or inhibitors is now established as a 
realistic option against many human diseases. 
Many of these synthetically developed miRNAs 
have reached the clinical stage as mentioned 
above and it is expected that even higher number 
will be approved for testing at clinical stage in 
coming years. However, for achieving success, 

continued research and exploration of miRNAs 
as a new class of drug targets is the need of the 
hour.     
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Microscopy-Based High-Throughput 
Analysis of Cells Interacting 
with Nanostructures

Raimo Hartmann and Wolfgang J. Parak

Nowadays, nanotechnology is everywhere. 
Engineered nanomaterials can be found in every-
day products but also in cutting-edge technology. 
Since the mid-1980s, when the term “nanoparti-
cle” (NP) first appeared in the context it is used 
nowadays, a “new” branch of science emerged. 
This direction of research has its roots in classical 
disciplines, in particular colloidal chemistry. The 
new interest originated for several reasons. First, 
new tools were developed which allowed the sys-
tematic organization and manipulation of matter 
on the nanometer length scale. Second, ideas 
were developed on how to apply nanoparticles in 
other disciplines, in particular for biological 
labeling and for photovoltaics. Today, nanomate-
rials are in the focus of research in several disci-
plines, with a much wider focus, including the 
application in molecular biology and medicine, 
but also in catalysis and energy conversion/
storage [1–3].

Being reduced to several nanometers, the 
physicochemical properties of matter change. 
This can be related to the following aspects: (i) 
Surface-dependent properties of the bulk mate-
rial such as chemical reactivity, soil-repellant 
features, or surface conductivity are becoming 

more dominant due to the dramatically increased 
surface-to-volume ratio. (ii) Size-dependent 
effects become visible and detectable, for 
instance, as superparamagnetism. (iii) Quantum 
mechanical properties are altered, which can 
result in new optical characteristics, for example, 
size-dependent changes in the absorption/emission 
spectra [1, 4, 5].

Apart from interesting physicochemical fea-
tures for material sciences, nanomaterials bear 
some interesting properties for biomedical appli-
cations. They are small enough to be internalized 
by eukaryotic cells and can be targeted by surface 
modifications or external stimuli to some degree 
[6–8]. Superparamagnetic nanoparticles (e.g., 
from iron oxide) and plasmonic nanoparticles 
(e.g., from gold) can both be applied for hyperther-
mia, though due to different underlying phenom-
ena [9–12]. With magnetic nanoparticles, energy 
from alternating magnetic fields is converted into 
heat, while plasmonic NPs convert UV/visible 
light into heat. Apart from that, luminescent NPs, 
such as quantum dots (QDs), are suitable for label-
ing or tracking purposes in molecular biology and 
medical diagnosis. This is due to their excellent 
optical characteristics, such as narrow emission/
excitation bands and high photostability [13–15]. 
In addition, nanoparticles are utilized for intracel-
lular sensing and delivery [16–18], and research-
ers are trying to target diseases such as cancer or 
Alzheimer’s disease [19–21].

Although nanoparticles are already applied 
in  vivo since the early 1990s, the interactions 
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with biological systems are so far not entirely 
understood on the single cell level. During the 
last decade, huge efforts were spent to unravel 
the dependency between endocytic uptake and 
several parameters of the nanoparticulate mate-
rial, such as size [22, 23], shape [24], surface 
charge/chemistry [25–28], or stiffness [29–31] 
in vitro. Although this led to an improvement in 
the general understanding, most studies are lack-
ing comparability, as the experimental conditions 
are extremely diverse. This applies to the selec-
tion of cells, the exposure conditions, different 
assay endpoints, or low significance of the stud-
ies carried out. Also, difficulties are the result of 
the almost continuous creation of more and more 
different nanomaterials and the fact that the area 
of bionanotechnology is very interdisciplinary 
[18].

Generally, once suspended in biological flu-
ids, proteins and other biomolecules are adsorbed 
on the nanoparticle surface forming a layer called 
biomolecular (protein) corona. It is assumed that 
the biological identity of the NP and the interac-
tion with cells are largely defined by this corona 
[32–34]. Upon cellular internalization, which 
typically happens through energy-dependent 
endocytic pathways, NPs are mostly transported 
to lysosomes (degradative intercellular organ-
elles), where they are enriched [27, 28, 35, 36]. 
Regarding in vitro experiments, lysosomal accu-
mulation is often accompanied by increasing 
cytotoxicity [28, 37]. In animal models, accumu-
lation of NPs was observed mainly in the liver, 
spleen, and kidneys [38–40].

Cytometry describes the measurement of cell 
properties. Nanoparticle-cell interactions are 
commonly studied with microscopy-based meth-
ods. The method of determining characteristics 
of cells from microscope images is referred to as 
image cytometry. Many nanomaterials are intrin-
sically fluorescent or are designed to be function-
alized easily with fluorescent dyes. Hence, 
fluorescence microscopy or variants of this 
method are typically used for imaging. Biological 
systems can have complex architecture, but the 
building blocks, i.e., individual cells, appear to be 
rather similar, as the same substructures (i.e., 
nucleus, outer plasma membrane, cytoskeleton, 

mitochondria, certain vesicles, etc.) can be found 
inside most of them. All of these unique substruc-
tures have unique properties (e.g., specific archi-
tecture or certain constituents). Based on these 
properties, they can be recognized within virtu-
ally any cell and thus, if stained and imaged 
appropriately, in any image representing a cell. 
Therefore, a visual model can be created, which 
describes how a cell, which was treated with cer-
tain dyes or exhibits certain fluorescent patterns, 
typically appears on a micrograph. Based on 
this model, a computer is now able to “see” and 
identify any cell being similar to the proposed 
model, including its constituents. As a result, the 
examination process can be automated. The 
computer-aided process of assessing cell proper-
ties is referred to as digital image cytometry in 
the following. This kind of image analysis is not 
reflecting the subjective perception of the experi-
menter any more. Additionally, the analysis pro-
cess is much faster and the number of analyzable 
cells is dramatically increased, together with the 
statistical significance of the obtained results.

This principle of digital image cytometry is 
utilized in high-content analysis (HCA).1 HCA is 
used to describe the screening and examination 
of thousands of cells (“content”) in microscope 
images generated usually by automated micro-
scopes in high throughput. HCA is mostly applied 
in biotechnological research, drug discovery, and 
in the workflow of pharmaceutical industry. It is 
either used to identify substances that trigger 
desired cellular responses or for assessing cyto-
toxicity in vitro [41–43]. Generally, it is regarded 
as a “multiparametric interrogation of cellular 
processes in any format” [41]. Important research 
fields where HCA-based assays were employed 
are, for instance, neurobiology [44, 45], oncol-
ogy [46, 47], cell signaling [48, 49], or target 
identification and validation [50, 51].

In basic research in the field of nanobiotech-
nology, multiparametric response and cytotoxicity 
studies are needed to be able to fully correlate 
cell functions with the parameters of the deployed 
nanomaterial in a systematic manner. Remarkably, 
such questions can often be answered with one 

1 Also referred to as high-content screening (HCS).
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HCA-based approach by multiplexing different 
assays with fluorescent probes spread across the 
visible spectrum [41]. In addition, this knowl-
edge may help to estimate health and environ-
mental hazards upon disposal of and exposure to 
certain potentially toxic nanomaterials.

So far, several published studies can be found 
utilizing HCA in a broader context for assessing 
nanoparticle-cell interactions: An extensive work 
about the cytotoxicity of cationic and anionic 
amine-modified polystyrene NPs (dh ≈ 50 nm)2 
including seven different cell lines3 was per-
formed by Anguissola et al. The analysis of the 
HCA data revealed that for cationic NPs, first (in 
terms of lowest concentration of NPs) lysosomal 
alkalinization occurs, which is followed by the 
loss of mitochondrial membrane potential, 
nuclear condensation, the increase of cytosolic 
calcium levels, and finally the disturbance of the 
integrity of plasma membranes. The effects were 
observed in a certain order but at similar concen-
trations, where viability (in terms of cell count) 
was decreased. For anionic particles, these effects 
could not be observed in the investigated range of 
NP-concentrations [28].

Similarly, but less well-performed, cellular 
responses were assessed upon exposure to 
L-cysteine-stabilized Au NPs4 and 3 nm-sized 
cadmium telluride (CdTe) quantum dots using 
HCA by Jan et al. Interestingly, cellular prolifera-
tion and mitochondrial membrane potential were 
already reduced at concentrations almost two 
orders of magnitude lower (≈1 nM) than those 
where acute cytotoxicity was observed (>50 nM) 
in terms of reduced cell count and loss of plasma 
membrane integrity [52].

The cellular effects of gold nanoparticles were 
also investigated by Soenen et al. They reported that 
exposure to poly(isobutylene-alt-maleic anhydride)-
graft-dodecyl-coated NPs of 4 nm in core diameter 
and concentrations above 50 nM reduced cellular 
viability, cell size, cell proliferation, and differentia-

2 dh = hydrodynamic diameter.
3 1321 N1, SH-SY5Y, Raw267.4, A549, hCMEC, HepG2, 
and HEK293 cells.
4 Jan et al. [52] did not provide any further characteriza-
tion in their work.

tion in endothelial cells. Additionally, neurite out-
growth was impeded in neural progenitor cells. 
Furthermore, deformations in the actin and tubulin 
cytoskeleton were observed [53].

Solmesky et al. utilized HCA for studying the 
toxicity of lipid-based nanoparticles (dh ≈ 100 
nm) in fibroblasts depending on the nanoparticle 
surface charge at physiological pH [54]. Several 
parameters were assessed including viability, 
proliferation, and morphological changes of 
mitochondria. Cationic nanoparticles turned out 
to be the most cytotoxic in terms of cell viability, 
which is also in line with previous findings [25, 
55]. In addition, a decrease in mitochondrial 
elongation was observed [54].

These studies were selected because the ben-
efits of the application of HCA, and thus the ben-
efit of digital image cytometry, are 
comprehensively demonstrated. Especially in the 
first article, the authors could reconstruct the cel-
lular mechanisms, which eventually lead to cell 
death upon exposure to nanoparticles, in a very 
systematic manner [28].

In digital image cytometry, measurements of 
cell properties are derived from microscopic 
images (in 2D or 3D) by applying algorithms. 
This approach is closely linked to computer 
vision, as the automatic recognition (segmenta-
tion) of individual cells is required. All cellular 
features with unique morphometric, densiomet-
ric, or textural properties can be investigated 
provided that their imaging is possible [56, 57]. 
In combination with high-throughput micros-
copy, valuable datasets containing profiles of 
thousands of individual cells can be obtained 
within a short time. Digital image cytometry is 
the basis for high-content analysis, which is used 
in biological research and drug discovery, to 
identify substances altering the cellular pheno-
type in a desired manner [41, 43].

Comparing the results from image cytometry 
with classical flow cytometry/imaging flow 
cytometry [58], discrepancies are present when 
applying the two techniques to similar cell sam-
ples [59, 60]. In the case of flow cytometry, 
fluorescence-labeled cells pass a laser beam one 
by one. From the momentary pulse of emitted 
photons caused by single cell-crossing events, 
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the amount of fluorescence can be used to corre-
late the labeling efficiency with cellular function-
ing. Differences may be caused by the fact that 
the imaging conditions are completely different 
and thus, the results have to be carefully normal-
ized to be comparable in absolute values.

The main advantage of Imaging Cytometry is 
the usage of digital microscopy and therefore the 
capability to “look into the cell” with high spatial 
resolution. Hundreds of parameters can be quan-
tified which are not accessible by classical flow 
cytometry. Finally, the capability to analyze time-
lapse image data lends itself to observations of 
the evolution of certain parameters over time, by 
following individual cells during movement or 
tracking particles during cellular uptake [41, 43].

9.1	 �Requirements

Digital image cytometry is typically performed 
on image sets gathered by fluorescence micros-
copy, as this microscopy technique allows for 
visualizing specific structures exclusively. 
However, for automated computer vision, it is 
mandatory to additionally obtain information of 
features of the cellular framework for cell identi-
fication (Image Segmentation, Sect. 9.4).

In conventional absorption light microscopy, 
image contrast is generated by an inhomoge-
neous absorption or scattering profile of the spec-
imen, which can be altered by introducing dyes. 
Distinct structures are only capable of being dif-
ferentiated in case they bear different optical 
properties. All colors are usually registered in the 
same image. In contrast, in fluorescence micros-
copy, structures of interest are fluorescently 
labeled with dyes emitting at different wave-
lengths upon excitation. The fluorescence, i.e., 
the photon counts originating from specific cel-
lular structures, is registered in different channels 
depending on the wavelength. The absolute fluo-
rescence intensity is ideally proportional5 to the 
amount of introduced dye, which, in turn, scales 

5 Depending on the optical properties of the fluorescent 
complex and the instrumentation.

with the concentration of the labeled structures or 
the internalized fluorescent nanomaterial.

9.1.1	 �Visualizing the Cell

Fluorescent molecules can be specifically intro-
duced into cells by selecting one method out of a 
great number of various established ones. 
Thereby, live-cell imaging requires different 
approaches in contrast to the observation of fixed 
(preserved) cells. For live-cell imaging, cells can 
be transfected (i.e., modifying the genetic infor-
mation) to induce transient or stable expression 
of fluorescent proteins linked to target structures 
[61]. As another approach, several fluorescently 
labeled compounds are commercially available, 
which can penetrate the outer cellular membrane 
and can either bind selectively to cellular 
organelles, or are enriched within intracellular 
environments being characterized by a low pH 
(e.g., lysosomes) or enhanced membrane poten-
tial (e.g., mitochondria). Immunofluorescence 
describes the usage of fluorescently labeled anti-
bodies to identify certain antigens in a very 
specific manner [62]. As antibodies cannot pene-
trate the outer cellular plasma membrane due to 
their large size (around 160 kDa), only antigens 
which are presented on the outer cellular plasma 
membrane are detectable in live-cell imaging. 
Nonetheless, for fixed tissue, immunofluores-
cence is a widely used method, as cellular plasma 
membranes can be permeabilized by detergents, 
which facilitate the use of antibodies [63].

9.1.2	 �Nanomaterials

The interaction of nanomaterials with cells can 
either be measured directly (e.g., by tracing 
materials with fluorescent markers) or indirectly 
by studying cellular responses upon exposure. In 
image cytometry, both approaches can be 
combined. Relative uptake rates can be deter-
mined, nanoparticle transport can be examined 
by correlating their fluorescence patterns spa-
tially with the intracellular distributions of spe-
cific cellular structures (direct approaches), and 

R. Hartmann and W.J. Parak



103

in addition, changes in cellular morphology and 
functioning can be investigated (indirect approach).

9.2	 �Image Acquisition 
and Image Resolution

The value of the data which are obtained by 
image cytometry is strongly dependent on the 
capabilities of the optical system used for imag-
ing. For meaningful interpretations of the results, 
one has to be aware of the capabilities and limits 
of the image acquisition system. Unfortunately, a 
perfect visual copy of the fluorophore distribu-
tion inside a specimen cannot be obtained. Every 
image acquired with an optical system without 
super-resolution capabilities is blurred due to the 
system’s characteristic point spread function 
(PSF). The PSF describes how a single point 
source is seen by the detector in any optical sys-
tem, influenced by the diffraction-limited nature 
of photon propagation.

Due to the relatively large spatial dimension 
of the PSF regarding a widefield fluorescence 
microscope, images acquired from any fluoro-
phore in the specimen are blurred, because 
many undesired photons from unfocussed opti-
cal sections are included. Hence, the detection 
volume in such a system can hardly be 
quantified.

This problem can be circumvented by acquir-
ing several optical slices around the desired axial 
position. Subsequently, the blur is reassessed to 
its origin (location of the fluorophore) to inverse 
the effects of the PSF by means of numerical 
deconvolution of the image stack.

In a confocal laser scanning microscope 
(cLSM), the light not originating from the focus 
is suppressed, in contrast to a conventional wide-
field microscope. Firstly, due to higher detection 
sensitivity (use of photomultipliers instead of 
CCD cameras), fluorophore excitation outside of 
the focus is minimized by decreasing the illumi-
nating light intensity. Secondly, photons which 
do not originate from the axial position defined 
through the focal plane are depleted by a small 
pinhole within the emission light path. Thereby, 
only the central part of every fluorophore’s PSF is 

“cropped” and additional axial resolution is 
gained.

Due to their small size, classical optical imag-
ing of nanomaterials is strongly limited by dif-
fraction. In widefield or confocal laser scanning 
microscopy, the integrated fluorescent intensity 
originating from a certain volume can be used to 
calculate intracellular concentrations, although 
distinct nanostructures might not be resolvable 
when lying adjacent to it. The fluorescence read-
out of nanomaterials equipped with sensing capa-
bilities can often be used to characterize their 
intracellular environment. This often correlates 
with their intercellular location, although imag-
ing is limited by diffraction [64].

9.3	 �Image Processing

For image segmentation (Image Segmentation, 
Sect. 9.4), uniform datasets are required. 
Therefore, appropriate handling of artifacts origi-
nating either from the optical imaging itself or 
from the digitizing of the underlying signals is 
needed to minimize intensity nonuniformities. 
Possible error sources have to be identified and 
considered during image restoration. In case of 
confocal fluorescence laser scanning microscopy, 
images are only slightly blurred by out-of-focus 
information, but suffer from nonuniform illumi-
nation and noise [65]. In the latter case, espe-
cially Poisson-distributed shot noise originating 
from photon detection at low count rates is 
unavoidable. Examples of methods correcting for 
nonuniform illumination are (i) the morphologi-
cal opening of the corresponding image for back-
ground extraction, (ii) the subtraction of a blurred 
version of the image from the original one, or (iii) 
the adaption of a parameterized surface or grid of 
cubic splines6 to the image and normalization of 
the intensity values based on the computed fit 
(Fig. 9.1) [66, 67]. All methods have advantages 
and disadvantages. Especially the first approach 
requires knowledge about the size distribution of 
the structures to be segmented. Image restoration 
regarding shot noise is typically performed by 

6 Splines are piecewise-defined polynomial functions.
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deconvolution or filtering [66, 68]. Noise reduc-
tion by deconvolution typically yields better 
results. While working with large image sets, this 
approach requires excessive computational time, 
and hence, Gaussian smoothing or especially 
median filtering is often favored.

9.4	 �Image Segmentation

By means of image segmentation, a digital image 
is partitioned into its constituent regions to locate 
objects or certain patterns. Starting from early 
age, the visual cortex in our brain is trained to 
identify and allocate objects in the image stream 
generated by our visual system. Although the 
human brain can easily recognize the boundaries 
of an individual cell inside tissue under the 
microscope, segmentation remains the most 
difficult task in computer vision [66]. For each 
segmentation problem, the image constituents 
are modeled (e.g., stained nuclei are bright and 
round). Based on this model, the segmentation 
algorithms are selected. In the following para-
graphs, several segmentation methods most often 
used are briefly introduced. For practical applica-
tion in image cytometry, a combination of several 
segmentation methods is typically used in combi-
nation with morphological image processing 
based on the theory of mathematical morphology. 
The latter case comprises the application of non-
linear operations which alter shape (shrinking/

expanding) or morphology (hole filling, gap clos-
ing, intersectioning) of features in an image [66].

9.4.1	 �Thresholding

In the simplest case, image structures of interest 
(for instance, particles or cell nuclei) are well-
separated and brighter than the background. 
Segmentation is performed by finding all con-
nected components brighter than a suitable 
threshold (Fig. 9.2). Uniform image datasets are 
favored where all images were acquired under 
exactly the same conditions, and one global and 
manually set threshold can be used to segment all 
structures of interest. For more complex prob-
lems, several approaches exist in literature to 
determine appropriate thresholds locally [69]. 
Clumped objects are not separated by 
thresholding.

9.4.2	 �Watershed Segmentation 
and Voronoi-Based 
Approaches

Confluent cells, for instance, are clustered and 
can barely be divided and segmented by thresh-
olding (Thresholding, Sect. 9.4.1). For such com-
plex structures, watershed segmentation [70, 71] 
or Voronoi-based segmentation [72] has been 
proven to be very useful. Depending on the staining, 

Fig. 9.1  Correction of image nonuniformities due to mis-
aligned illumination. (a) Fluorescence microscope image 
showing human cervical cancer cells (HeLa) cells with 
internalized microcapsules (green, red) and nonuniform 

background in the transmission channel. (b) Spline-
surface fit to the background. (c) Corresponding image 
after background subtraction
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cells are typically (i) less intense at the borders in 
comparison to the average intensity at the peri-
nuclear region, or the opposite is true where (ii) 
cell outlines show a strong contrast and bright 
intensity. The first case is obtained when staining 
the cytoplasm, whereas a more inhomogeneous 
pattern is typically achieved after application of 
cytoskeletal stains. In the latter case, especially 
ruffles along the outer membrane are highlighted.

“Watershedding” requires a gradient intensity 
toward the object borders. Thereby, when image 
intensity is interpreted as topographic relief, cells 
can be thought of as mountains separated by val-
leys in such an intensity landscape. Watershed 
segmentation can be imagined as submerging the 
“image landscape” in water, i.e., filling all local 
minima, and creating boundaries along the lines 
where different water sources meet in case the 
water gauge is increased locally and different 
catchment basins are going to be connected [70, 
71]. Direct application of the watershed algo-
rithm, as sketched above, leads to oversegmenta-
tion (i.e., detection of an erroneous high number 
of separated regions) due to noise and local gra-
dient irregularities [66]. In digital image cytom-
etry, this problem is normally solved by providing 
the algorithm with “seeds” based on the coordi-
nates of unique cellular structures from a parallel 
image. In case nuclei are stained, they serve as 
superior markers (“primary objects”), usually 
being well-separated and easily segmentable by 
applying a global threshold (Fig. 9.3d).

Voronoi-based segmentation also requires a 
set of primary objects limiting the number and 
constraining the position of potential “secondary 
objects.” For each seed, a discretized approxima-
tion of its Voronoi region7 (Fig. 9.3e, f) is calcu-
lated on a manifold with a metric controlled by 
local image features [72].

9.4.3	 �Shape-Based Segmentation

For segmentation of objects which are either not 
separated by less intense borders or when no 
markers are provided, the inclusion of additional 
features into the segmentation model is required 
in order to transform the image structures into 
other ones, which can be segmented by simple 
peak-finding algorithms.

The Hough transform is a feature extraction 
technique, which can be used to emphasize struc-
tures of any shape [66, 74]. In the case of analyti-
cally describable shapes, such as lines or circles, 
a weight is assigned to each pixel of an image, 
which can be seen as the “probability” of being 
the origin of an earlier defined parameterized 
pattern.

For the detection of circular structures (Circle 
Hough Transform, CHT), for example, the sum 
of pixel intensities along a circle of radius r 

7 Voronoi diagrams describe a distance-controlled parti-
tioning of a plane into regions based on seeds, cf. Figure 
9.3e [73].

Fig. 9.2  Segmentation by thresholding. (a, b) Different 
thresholds were applied to a fluorescence image showing 
cell nuclei. (c) Histogram in logarithmic scale of the fluo-

rescence image shown in (a) and (b) with the correspond-
ing thresholds
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around each pixel pxi is calculated for each 
pixel, yielding the two-dimensional so-called 
accumulator matrix. In this representation, pix-
els, which are the origins of circular structures 
of radius r in the original image, appear as bright 
spots (Fig. 9.4). By finding the coordinates of 
the local maxima in the accumulator matrix, cir-
cular structures are registered. In most cases the 
last task requires additional post-processing and 
filtering to suppress unwanted side lobs. The 

CHT is extremely helpful to segment spherical 
particles in microscopic images, which neither 
show a peak with Gaussian intensity distribu-
tion nor occur in clusters nor are aggregated 
(Fig. 9.4). By extending the CHT algorithm, the 
identification of circular objects bearing differ-
ent sizes is possible (e.g., fluorescently labeled 
polymer capsules as demonstrated in [29], cf. 
Fig. 9.5).

Fig. 9.3  Segmentation of cells. (a–c) Two channels of a 
fluorescence image of fixed HeLa cells stained with 
Hoechst 33342 (nuclei, blue channel, (a) and with fluores-
cently labeled wheat germ agglutinin (plasma membrane, 
green channel, (b). The overlay of both channels is shown 
in (c). (d) The result of seeded (seeds were obtained from 
the coordinates of the nuclei shown in (a) watershed seg-

mentation on a Sobel-filtered (edge enhanced) version of 
the image shown in (b). (e) Voronoi diagram [73] based on 
the positions of the nuclei. (f) Voronoi-based segmenta-
tion as described by Jones et al. [72]. For comparison, cor-
responding objects in (e) and (f) are shaded and objects 
touching the border are not considered
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Fig. 9.4  Circle Hough Transform. (a) Noisy fluorescence 
image of hollow and aggregated microcapsules. (b, d) 
Accumulator matrix return from a classical Circle Hough 
Transform for circles with d = 4.2 μm. (c, e) Accumulator 

matrix obtained from a modified algorithm (Fig. 9.5) for 
identification of center coordinates for capsules with d <7 
μm. For registration of the different images, one capsule is 
highlighted with an arrow

raw image data 
with capsule

a b cobtained integrated intensities 
of donut r, r+Dr around each pixel

generated ROIs 
for each capsule

highlow

identification of brightest 
donut at I(rC) for pxi

image dilation,
identification of 
local maxima

yielding potential
capsule radius 
rC(x,y)

(x, y, radius)

generated
capsule ROIs

Fig. 9.5  Diameter-detecting, modified Circular Hough 
Transform. (a) In fluorescence micrographs, hollow 
microcapsules appear as circular objects with increased 
intensity along the shell. By determining the integrated 
intensity I along a donut or radius r and thickness Δr for 

each pxi, the function I(r, Δr) is obtained. When “finding” 
a shell with origin at pxi and radius rC, I(rC) is strongly 
increased. (b) I(rC) is assigned to the accumulator matrix 
(Fig. 9.4e). (c) Coordinates and radius rC of the detected 
structure are obtained
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9.5	 �Feature Extraction 
and Measurements

Several descriptive features can be extracted 
from segmented, individual objects in micro-
scopic images. An overview is given by 
Rodenacker et al. [75]. Features are either based 
on the spatial pixel arrangement and describe the 
shape (morphometric features, cf. Table 9.1), 
give information about the distribution of pixel 
intensities (densiometric features, cf. Fig. 9.6), or 
describe the spatial variations of pixel intensities 
(textural or structural features, cf. Table 9.2). If 
the microscope images comprise several spectral 
channels as in the case of fluorescence 
microscopy, segmented cell objects based on 
nuclei and cytoplasm (Watershed Segmentation 
and Voronoi-Based Approaches, Sect. 9.4.2) can 
be used to calculate densiometric or textural 
properties at another spectral region. In other 
words, the identified objects are used to mask the 

information in other image channels. By doing 
so, the spatial intracellular arrangement of ter-
tiary structures can be obtained. Also the level of 
certain dyes can be observed and related to pro-
tein concentrations or expression levels, or the 
uptake rate of nanomaterials can be quantified. 
All properties can be related back to the underly-
ing object (i.e., cell) and tracked over time 
(Object Tracking and Digital Video Analysis, 
Sect. 9.7) in case of live-cell imaging [57, 
76–78].

9.6	 �Feature Correlation

Different approaches exist to investigate the spa-
tial arrangement of intracellular structures from 
fluorescence microscope images. With the mea-
sures introduced below, the degree of colocaliza-
tion of different patterns being captured in two 
different fluorescence channels can be quantified 
(Table 9.3) [81].

9.6.1	 �Intensity-Based Correlation

Pearson’s correlation coefficient Rr can be used 
to determine the similarity of two patterns. In the 
context of digital image cytometry, Rr (Eq. 8.1) 
can be calculated based on the patterns visible in 
two distinct fluorescence channels either per 
image or per underlying cell object (in case state-
ments regarding different cell populations are 
needed). Pearson’s correlation coefficient is 
defined as the covariance of the intensity values 
of the two patterns divided by the product of their 
standard deviations and is widely used in pattern 
recognition [66].

Table 9.1  Examples for morphometric features

Feature

A/μm2 0.78 0.39 0.2 0

P/μm 3.1 2.5 2.2 2

F 1 0.76 0.5 0

Z0 1 0.5 0.25 0

A area, P perimeter, F form factor = 4πA/P2, Z0 Zernike 
moment of 0th order. Zernike moments describe the 
decomposition of an image object onto an orthogonal set 
of polynomials similar to the way that Fourier coefficients 
are used to decompose a time series [60]. Similar to the 
form factor F, the 0th moment Z0 can be used to describe 
whether a shape is similar to a disk (Z0 = 1) or more spin-
dle like (Z0 = 0). d corresponds to the semiminor axis of 
the example shapes, if being represented by an ellipse

Table 9.2  Examples for textural features. Textural features can be used to describe the fine-structure of actin and tubu-
lin staining of cells

Texture

Tcont/a.u. 36 4.2 0.6 0 7.8

Tcorr/a.u. −0.5 −0.6 0.3 0 0.7

Tcont texture contrast, Tcorr texture correlation referring to Haralick et al. [79]
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Fig. 9.6  Example for densiometric features extraction. 
Illustration of the image processing steps to obtain the den-
siometric feature “integrated intensity” of nanoparticles 
associated with cells (objects) imaged in an additional fluores-
cence channel. (a, b) For Voronoi-based cell segmentation, 
images of the nuclei (stained with 4′,6-diamidino-2-phe-
nylindole, DAPI, blue) and of the outer plasma membrane 
(stained with AlexaFluor488-labeled wheat germ aggluti-
nin, WGA-AF488, yellow) were used. (c) Associated red 
fluorescence signal of internalized nanoparticles. (d) Results 
of the segmentation procedure. At the bottom, the line 
intensity profile of the plasma membrane stain along the 
dashed line is shown. (e) Shapes of the obtained cell objects. 
At the bottom the line intensity profile of the cell objects 
along the dashed line is shown, and cell #20 and #29 are 
highlighted. (f) Overlay of cell object outlines and nanopar-

ticle signal. The integrated nanoparticle intensity IInt is cal-
culated per cell (densiometric feature) and assigned to the 
corresponding object. Accordingly, nanoparticles outside 
cell objects are not considered. In general, the integrated 
intensity is proportional to the total amount of a fluorescent 
compound per object. Thus, in this case, the integrated 
nanoparticle intensity IInt can be related to the total uptake 
of nanoparticles. For each cell object, IInt is calculated as 
the mean NP intensity <I> per cell × the area of each 
object. For clarification in 1D, the total uptake IInt along the 
line profile would be determined as the object length d 
times the mean NP intensity <I> within the corresponding 
object (example calculation for cell #20: IInt,C20 = <IC20> · 
dC20 = 47.6 NP intensity units/μm-1) (Reprinted (adapted) 
with permission from Pelaz et  al.[80]. Copyright (2015) 
American Chemical Society)
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Considering two fluorescent channels R and G, 
then Ri or Gi, respectively, is the intensity of the ith 
voxel, while R  and G  are the mean values of all 
voxel intensities in the corresponding channel. A 
positive value for Rr indicates a high degree of colo-
calization or high pattern similarity, while negative 
values indicate exclusion. As the average image 
intensities are included, this coefficient is only 
slightly biased by different background levels of the 
two images [81]. If the correction for the average 
image intensities is not performed (e.g., to compare 
different labeling efficiencies), then Manders’ colo-
calization coefficient M (Eq. 8.2) is obtained [82].
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9.6.2	 �Object-Based Correlation

In object-based correlation, the spatial arrange-
ment of objects in two distinct channels is ana-
lyzed. Therefore, firstly, both images need to be 
binarized by an appropriate segmentation routine 
(e.g., thresholding) before calculation of either Rr 
or M. Still, the underlying intensity values of the 
objects can be used as weightings.

In cases of asymmetrical colocalization (Table 
9.3, Example 4) where Pearson’s or Manders’ 
coefficients are less meaningful, the use of 
Manders’ distinct overlap coefficients M1 and M2 
(Eq. 8.3) might make more sense to quantify the 
spatial overlap of two patterns [82]. Segmentation 
is needed to decide whether a voxel is colocaliz-
ing or not.

Table 9.3  Exemplarily calculated correlation coefficients for representative patterns

Example Type Rr M M1 M2 ĪG(OR) ĪG(OR)

1 Separated −0.34 0 0 0 0 0

2 Partial overlap −0.03 0.2 0.42 0.42 35.5 35.5

3 Overlap 1 1 1 1 85.1 85.1

4 Inclusion 0.46 0.52 0.42 1 31.1 36.7

Rr Pearson’s correlations coefficient [66], M Manders’ colocalization coefficient, [82] M1 and M2 Manders’ distinct 
overlap coefficients [82], and ĪR(OG) and ĪG(OR) for quantification of the average pixel intensity along objects in channel 
R or G, respectively [36]. The bit-depth of the example images was 8 resulting in a maximum intensity value of 255. All 
patterns exhibited a linear gradient from Imax = 255 to Imin = 0. The segmentation method to determine colocalizing pixels 
in case of the determination of M1, M2, and ĪR and ĪG was based on thresholding with a threshold of 1
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Only pixel intensities Ri,coloc of pixels colocal-
izing with an object in the opposite channel are 

considered. Ri or Gi, respectively, is the intensity 
of the ith voxel in the corresponding channel.
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By dividing the sum of intensities from all 
colocalizing voxels (Ri,coloc or Gi,coloc, based on Eq. 
8.3) by the number N of colocalizing voxels 
instead of by the sum of all pixel intensities of the 
corresponding channel, the average fluorescent 
intensity Ī along all objects O in the opposite 
channel (OG or OR) can be calculated (Eq. 8.4).
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In case of quantifying cell uptake rates of 
nanomaterials, the last equations (Eq. 8.4) are 
rather useful to assess the density of fluorescent 
nanomaterials measured, for instance, in channel 
R along the certain objects (e.g., fluorescence- 
labeled lysosomes) imaged in channel G, i.e., 
ĪR(OG), respectively.

9.7	 �Object Tracking and Digital 
Video Analysis

Trajectories of individual objects can be extracted 
from time-lapse fluorescence micrographs by 
digital video analysis [83]. The time evolution of 
the distribution of objects (Eq. 8.5) can be used to 
determine the progression of certain features 
associated with the objects over time on the level 
of individual objects (e.g., cells or particles).
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In Eq. 8.5, r ti

��
( )  represents the location of the 

ith object in a field of N particles at time t. In each 
frame in a sequence of video images, the objects’ 
coordinates and corresponding features (Feature 
Extraction, Sect. 9.5) are identified by segmenta-
tion (Image Segmentation, Sect. 9.4). The trajec-
tories ρ r t,( )  are produced by matching up 
locations in each image with corresponding loca-
tions in latter images. To link objects in two suc-
cessive frames, the most probable set of N 
identifications between N locations in two con-
secutive images is required. Models of the under-
lying dynamics (e.g., Brownian motion for 

particles) are often considered to increase cor-
rected linking of object coordinates. In addition, 
unique object features might be included into the 
probability calculations. Finally, gap closing, 
merging, and splitting steps are needed to cor-
rectly handle objects missing in certain video 
frames (i.e., out of focus) [78, 83, 84].

9.8	 �Conclusion

Digital image cytometry can be a powerful tool 
which simplifies the assessment of processes on 
the cellular and subcellular level based on high-
throughput fluorescence microscopy and image 
processing. It is closely related to flow cytometry, 
but in comparison to these techniques, the list of 
accessible cell features is increased dramatically 
[41, 43]. The cell segmentation in flow cytometry 
is “solved” by subsequent passing of individual 
cells through the exciting laser beam. Accordingly, 
cell recognition in digital image cytometry is 
more challenging and requires specific stainings 
in combination with sophisticated computer 
vision algorithms. Inappropriate segmentation 
parameters may lead to inaccurate results includ-
ing artifacts and/or methodical errors.

In addition the endpoints of the assays have to 
be selected carefully. The classical mistake which 
can be made (also in classical flow cytometry) is 
caused by cytotoxicity-induced cell loss. The 
profile of the remaining cells does not represent 
the original population, as the residual cells 
might behave abnormally in some way making 
them resistant to the toxic impulse.

The major advantage of digital image cytom-
etry in comparison to flow cytometric approaches 
is the ability to “look into the cell” in high spatial 
resolution, to examine cells in their natural state,8 
and to measure kinetics. After the measurement, 
an individual cell is not lost and can be examined 
again at a later point in time. This can be used 
either (i) to determine the evolution of global fea-
tures, i.e., similar to measuring several samples 

8 For instance, in the case of adherent cells, no detachment 
and transfer into certain buffers prior to cytometric mea-
surements are required.
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representing different points in time with the flow 
cytometer, or (ii) for tracking of individual cells 
and evaluation of certain features on the single 
cell level over time. An example for the first 
option is shown in Fig. 9.7 where the mitochondrial 
membrane potential (reported by a fluorescence 
dye) upon treatment with a chemotherapeutic 
agent is assessed in human promyelocytic leuke-
mia cells (HL-60) time-dependently. From the 
data the evolution of different cell populations 
(cells with hyperpolarized and depolarized mito-
chondrial membranes) can be observed in a high 
temporal resolution. Every outlier can be traced 
back to the underlying image and finally to the 
underlying cell object.

Still, for all these kinds of measurements, the 
segmentation of cells in every single image frame 
is required. This implies that on the one hand, the 
staining techniques have to be optimized carefully 
to avoid any interference with the cell viability 
and the actual measurements. On the other hand, 
large quantities of multidimensional image data 
whose processing is time-consuming and requires 
computing power are produced for automatic 
segmentation and feature extraction. Finally, data 
evaluation and an appropriate representation of 
the obtained results are a challenge, as the datas-
ets are highly multidimensional.

For segmentation of the image data acquired 
from living cells, DNA stains (e.g., Hoechst 
33342), commonly used for identification of 
primary cell nuclei (Image Segmentation, Sect. 
9.4), can cause problems, since they interfere 
with DNA replication and exhibit phototoxicity 
[85]. Similar problems can be attributed to mem-
brane stains, as certain receptors might be 
blocked or undesired cellular responses might be 
triggered. Consequently, the stain concentrations 
should always be kept as low as possible even if 
the quality of the acquired images is reduced by 
low fluorescence signals. Drawbacks in image 
quality can usually be solved with appropriate 
image restoration algorithms or are of no conse-
quence due to the high number of analyzed cells.

A very important point for the successful 
application of digital image cytometry is the con-
ceptual design of the experiment. Almost all 
experimental and technical parameters are inter-
related. For instance, the fluorescence character-
istics of nanomaterials should not interfere with 
the dyes introduced for later cell segmentation. 
Image resolution is competing with temporal 
resolution which in turn is limited by the total 
cell count and the number of different conditions/
samples (e.g., wells) to be captured. High cell 
numbers are desired for high statistical signifi-

**
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untreated treateda b c

Fig. 9.7  Digital image cytometry for time-resolved den-
siometric measurements. The mitochondrial membrane 
potential Δψm of human promyelocytic leukemia cells 
(HL-60) upon treatment with a chemotherapeutic agent 
cytarabine (AraC) is indicated by the fluorescence of the 
dye tetramethylrhodamine ethyl (ITMRE). TMRE and AraC 
were added at t = 0 min. (a) In untreated control cells, the 
mitochondrial membrane potential is not affected. (b) In 
treated cells hyperpolarization of mitochondrial mem-
branes can be observed before apoptosis occur. The part of 

the intensity distribution representing cells with hyperpo-
larized mitochondrial membranes is marked with (*); the 
part representing apoptotic cells is labeled with (**). The 
dashed line is drawn to allow comparison of the ITMRE val-
ues between treated and untreated cells. (c) Fluorescence 
micrograph showing cells in suspension with high mem-
brane potential (yellow, *) and apoptotic cells with depo-
larized mitochondrial membranes (**). Nuclei were 
stained in blue (Hoechst 33342). In this Figure unpub-
lished data are shown for the purpose of illustration
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cance. For cell tracking, quite a high temporal 
resolution is needed for correct cell identification 
in consecutive time-lapse image frames. On the 
contrary, a high temporal resolution also limits 
the total cell count.

Recently, several optical “super-resolution” 
methods have been developed that are capable of 
resolving nanostructures down to several tens of 
nanometers [86, 87]. The concept of digital 
image cytometry presented aims at generating 
data that represents thousands of individual cells. 
Yet, super-resolution microscopes are rather slow 
and hard to automatize. In addition, when cover-
ing a comparable growth area with a similar 
number of cells, the data output would be extreme 
and slow to process with conventional work sta-
tions. Realistically, imaging is limited to subcel-
lular structures or macromolecules in this case. 
Then, the challenge of image segmentation lies 
more in recognizing different intracellular com-
partments than in the detection of whole cells. 
However, when assessing the cellular interaction 
with nanomaterials, it is often not even necessary 
to resolve individual particles as the cellular 
response is well-detectable.

In a nutshell, high-throughput microscopy in 
combination with digital image cytometry can 
help to answer the following questions with high 
statistical relevance:

	1.	 How many nanoparticles are internalized?
	2.	 Where they are intracellularly transported to?
	3.	 How do they affect cells?

Within the field of nanobiotechnology 
particle-cell interactions, intracellular release, 
sensor particle readout, and particle-induced cel-
lular responses are generally suitable problems 
for future investigation aided by the introduced 
methodology. The development of serious nano-
medicine is an emerging and fast-growing field. 
Hence, reliable and sensitive assays are needed to 
probe nanoparticle functioning and cytotoxicity 
at an early stage, where digital image cytometry 
does function as a valuable research tool.
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Mathematical Chemodescriptors 
and Biodescriptors: Background 
and Their Applications 
in the Prediction of Bioactivity/
Toxicity of Chemicals

Subhash C. Basak

10.1	 �Introduction

At quite uncertain times and places,
The atoms left their heavenly path,
And by fortuitous embraces,
Engendered all that being hath.
And though they seem to cling together,
And form ‘associations’ here,
Yet, soon or late, they burst their tether,
And through the depths of space career.

 – James Clerk Maxwell
In: “Molecular Evolution,” Nature, 8, 1873.
In Lewis Campbell and William Garnett, The Life 
of James Clerk Maxwell (1882), 637

Many physiological, pathological, toxicologi-
cal, and biomedicinal processes are determined by 
interactions of small molecules such as endoge-
nous ligands, drugs, xenobiotics, and substrates as 
well as inhibitors of enzymes related to metabolic 
pathways with their appropriate biological targets. 
The maintenance of the integrity and continuity of 
such key ligand-biotarget interactions is critical 
for the smooth functioning of biological systems 
ranging from the single-celled organism to the 

complex ecosystems. A large number of drugs are 
small molecules that interact with specialized 
enzymes/receptors in appropriate physiological 
compartments and thereby produce effect(s) that 
bring a pathologically perturbed biological sys-
tem back to a healthy state [1–4]. Biological prop-
erties of molecules, beneficial or deleterious, can 
be looked upon as the result of ligand-biotarget 
interactions and can be expressed by the 
relationship:

	 BR f S B= ( ), 	
(10.1)

where BR represents the normal biological or path-
ological/toxicological response produced by the 
ligand (drug or toxicant) in the target biological sys-
tem and B represents the relevant biochemical part 
of the target system which is perturbed by ligand to 
produce the measurable effect. It is believed that a 
major determinant of BR is the nature or structure 
(S) of the ligand. The structure becomes the sole 
determinant of the variation of the measured BR 
from one chemical to another when the biological 
system, B, remains practically the same during the 
course of the experiment and there is alternation 
only in the structure of the ligands. Eq. 10.1 under 
such a condition approximates to:

	 BR f S= ( ) 	
(10.2)

A lot of research conducted in drug discovery, 
toxicology, environmental sciences, and bio-
chemistry follows the paradigm expressed in 
Eq. 10.2, and using this relationship researchers 
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attempt to decipher the effects as well as the 
modes and mechanism(s) of action of molecules 
on some selected biotargets, which are assumed 
not to change significantly during the course of 
the experiment.

When we embark on the characterization of 
BR based on chemical structure alone following 
Eq. 10.2, we really attempt to understand which 
characteristics of the chemical structure are rec-
ognized by the biomolecular target. What are the 
factors involved in recognition: molecular size, 
shape, chirality, stereo-electronic nature, or 
charge? Which ones are more important and 
which have a marginal impact on BR? This is 
often accomplished by the development of 
molecular descriptors, referred to by us as che-
modescriptors, which quantify various aspects of 
molecular structure such as shape, size, symme-
try, chirality, stereo-electronic nature, etc. using 
various mathematical techniques.

10.2	 �Mathematical 
Characterization 
of Structure: Molecules 
and Biomolecules

Ostensibly there is color, ostensibly sweetness, 
ostensibly bitterness, but actually only atoms and 
the void.

Galen
In: Nature and the Greeks, Erwin Schrodinger, 
1954

In order to describe an aspect of holistic reality we 
have to ignore certain factors such that the remain-
der separates into facts. Inevitably, such a descrip-
tion is true only within the adopted partition of the 
world, that is, within the chosen context.

Hans Primas
Chemistry, Quantum Mechanics and Reductionism 
[5]

10.2.1	 �The Molecular Structure 
Conundrum: Simple Graph 
to Quantum Chemical 
Hamiltonians

The structure of an assembled entity is the pat-
tern of relationship among its parts. Molecular 

structure can be looked upon as the representa-
tion of the relationship among its various con-
stituents. The term molecular structure 
represents a set of nonequivalent and probably 
disjoint concepts [5]. There is no reason to 
believe that when we discuss diverse topics, e.g., 
chemical synthesis, reaction rates, spectroscopic 
transitions, chemical reaction mechanisms, and 
ab initio calculations, using the notion of molec-
ular structure, the different meanings we attach 
to the single term “molecular structure” origi-
nate from the same fundamental concept [6, 7]. 
In the context of molecular science, the various 
concepts of molecular structure, e.g., classical 
valence bond representations, various chemical 
graph theoretic representations, ball and spoke 
model of a molecule, representation of a mole-
cule by minimum energy conformation, and rep-
resentation of chemical species by Hamiltonian 
operators, are model objects [8–15] derived 
through different abstractions of the same chem-
ical reality. In each instance, the equivalence 
class (concept or model of molecular structure) 
is generated by selecting certain aspects while 
ignoring some unique properties of those actual 
entities. This explains the plurality of the con-
cept of molecular structure and their autonomous 
nature, the word “autonomous” being used here 
in the same sense that one concept is not logi-
cally derived from the other [7].

10.2.2	 �The Philosophical Basis 
of Modeling in Mathematical 
Chemistry

The process of modeling arises out of abstraction 
from sense data derived from reality. As put for-
ward by Albeit Einstein [8] in his remarks on the 
philosopher Bertrand Russell’s theory of 
knowledge:

The more, however, we turn to the most primitive 
concepts of everyday life, the more difficult it 
becomes amidst the mass of inveterate habits to 
recognize the concept as an independent creation 
of thinking. It was thus that the fateful conception 
-fateful, that is to say, for an understanding of the 
here-existing conditions – could arise, according to 
which the concepts originate from experience by 
way of “abstraction,” i.e., through omission of a 
part of its content.

S.C. Basak
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As pointed out by Basak [8] regarding the phi-
losophy of modeling [9] of molecular structure:

Any concept of molecular structure is a hypotheti-
cal sketch of the organization of molecules. Such a 
model object is a general theory and remains 
empirically untestable. A model object has to be 
grafted onto a specific theory to generate a theo-
retical model. A theoretical model of an object can 
be empirically tested. For example, when it was 
suggested by Sylvester [12] in 1878 that the struc-
tural formula of a molecule is a special kind of 
graph, it was an innovative general theory without 
any predictive potential. When the idea of combi-
natorics was applied on chemical graphs (model 
objects), it could be predicted that “there should be 
exactly two isomers of butane (C4H10)” because 
“there are exactly two tree graphs with four 
verüces” when one considers only the non-hydro-
gen atoms present in C4H10. This is a theoretical 
model of limited predictive potential. Although it 
predicts the existence of chemical species, given a 
set of molecules, e.g. isomers of hexane (C6H14), 
the model is incapable of predicting any property. 
This is because of the fact that any empirical prop-
erty P maps a set of chemical structures into the set 
ʀ of real numbers and thereby orders the set empiri-
cally. Therefore, to predict the property from structure, 
we need a nonempirical (structural) ordering scheme 
which closely resembles the empirical ordering of 
structures as determined by P. This is a more spe-
cific theoretical model based on the same model 
object (chemical graph) and can be accomplished 
by using specific graph invariant(s).

10.2.3	 �Mathematical 
Chemodescriptors: 
Topological Indices, 3D 
Descriptors, and Quantum 
Chemical Indices

One of the important goals of structural chemis-
try, biomedicinal chemistry, and computational 
toxicology is the “optimal characterization” of 
molecular structure for the purpose of predicting 
their properties. As discussed in Sect.  10.2.1, 
optimal characterization of structure has 
remained elusive. Different groups of researchers 
have used different methods for the representa-
tion and quantification of molecular structure. In 
our quantitative structure-activity relationship 
(QSAR) and quantitative molecular similarity 
analysis (QMSA) research, we have used mainly 

three classes of descriptors for the quantification 
of structure, viz., (a) graph invariants defined on 
molecular graphs, also known as topological 
indices, (b) three-dimensional (3D) or geometri-
cal descriptors, and (c) quantum chemical 
descriptors.

In our research, we have also used atom pairs 
(APs), which are fragment-based descriptors. 
The method of Carhart et al. [10] was used to cal-
culate the atom pairs, which defines an atom pair 
as a substructure consisting of two non-hydrogen 
atoms i and j and their interatomic separation:

	
<atomdescriptor > <separation> <atomdescriptor >i j– –

	

where <atom descriptor> contains information 
regarding atom type, number of non-hydrogen 
neighbors and the number of π electrons. The 
interatomic separation is defined as the number 
of atoms traversed in the shortest bond-by-bond 
path containing both atoms.

Graph theory was discovered by Euler [11] in 
1736. Sylvester [12] in 1878 saw the clear-cut 
relationship between graph theory and molecular 
structure. He also commented on the connection 
between chemistry and mathematics in general, 
as evident from the following [13]:

Chemistry has the same quickening and suggestive 
influence upon the algebraist as a visit to the Royal 
Academy, or the old masters may be supposed to 
have on a Browning or a Tennyson. Indeed it seems 
to me that an exact homology exists between paint-
ing and poetry on the one hand and modem chem-
istry and modem algebra on the other. In poetry 
and algebra we have the pure idea elaborated and 
expressed through the vehicle of language, in 
painting and chemistry the idea is enveloped in 
matter, depending in part on manual processes and 
the resources of art for its due manifestation.

Applications of graph theory to chemical prob-
lems are part of a fast developing field of science 
called mathematical chemistry or, more correctly, 
discrete mathematical chemistry. Although 
Sylvester [12] saw the connection between molec-
ular structure and chemistry as back as 1878, 
modern research in chemical graph theory had its 
humble beginning at the middle of the twentieth 
century probably with the publication of the semi-
nal paper by Harry Wiener [14] on the calculation 
of structural indices for the prediction of molecu-

10  Mathematical Chemodescriptors and Biodescriptors: Background and Their…
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lar properties. Invariants of graphs associated 
with molecules and biomolecules quantify certain 
aspects of their structure and have been used in 
the characterization and comparison of such 
structures as well as prediction of their properties 
Specifically, such invariants and orthogonal fac-
tors like principal components (PCs) derived 
from them have found applications in QSAR 
studies [15–18], QMSA research [18–22], clus-
tering of large libraries of structures into smaller 
subsets [20, 21], and in the discrimination of path-
ological structures like isospectral graphs [15].

The author of this chapter (Basak) and his 
coworkers have been involved since the early 
1970s in the development of novel numerical 
graph invariants or topological indices (TIs) [16–
19, 22–26] as well as biodescriptors derived from 
DNA/RNA sequences [16, 27] and proteomics 
maps [28]. It may be mentioned here that graph 
theoretical numerical indices were called “topo-
logical indices” by Hosoya [29] for the first time 
in a paper published in 1971.

Many topological indices can be conveniently 
derived from various matrices including the adja-
cency matrix A (G) and the distance matrix D (G) 
of a chemical graph G. These matrices are usu-
ally constructed from labeled graphs of hydrogen-
suppressed molecular skeletons. For details of 
theoretical basis and calculation of topological 
indices, see refs [17, 18, 23–29].

Basak et al. have divided the topological indi-
ces (TIs) into two major groups: topostructural 
(TS) indices and topochemical (TC) indices. TS 
indices are calculated from skeletal graph mod-
els of molecules which do not distinguish among 
different types of atoms in a molecule or the 
various types of chemical bonds, e.g., single 
bond, double bond, triplet bond, etc. Thus, TS 
indices quantify information regarding the con-
nectivity, adjacency, and distances between ver-
tices ignoring their distinct chemical nature. TC 
indices, on the other hand, are sensitive to both 
the pattern of connectedness of the vertices 
(atoms), as well as their chemical bonding char-
acteristics. Therefore, the TC indices are more 
complex and chemically informative as com-
pared to the TS descriptors.

The geometrical or 3D parameters quantify 
the volume, size, and shape of molecules from 

various models. We have used van der Waals’ 
volume as a measure of gross size of molecules. 
The three-dimensional Wiener indices calcu-
lated on the hydrogen-suppressed and hydrogen-
filled graphs are also quantifiers of molecular 
shape and size. With respect to calculation of 
quantum chemical descriptors, we have used 
both the AM1 semiempirical method and ab ini-
tio calculations based on the STO-3G, 6-31G(d), 
6-311G, 6-311G(d),  and aug-cc-pVTZ basis 
sets. For chemodescriptors used by Basak group 
in their studies, see [18, 29–35]. Table 10.1 gives 
the symbols and definition of molecular 
chemodescriptors.

10.2.4	 �Hierarchical Classification 
of Descriptors

The combination of topological, geometrical, and 
quantum chemical chemodescriptors, and biode-
scriptors (vide infra) derived from proteomics, 
genomics, and DNA sequence characterization, 
leads to a hierarchy of descriptors that begins 
with the simplest graph invariants and ends with 
the biodescriptors, which require expensive and 
time-intensive laboratory test data (Fig. 10.1). It 
should be clearly stated here that descriptors in 
the higher levels of the hierarchy are not neces-
sarily superior to those placed at lower levels. The 
scheme simply shows a gradation based on the 
need for computational and laboratory resources.

The molecular descriptors itemized in 
Table  10.1 are calculated by Basak’s team 
using Molconn-Z [30], POLLY [31], APProbe 
[32], and Triplet [33], MOPAC [34], and 
Gaussian [35].

10.3	 �Quantitative Structure-
Activity Relationship (QSAR) 
Using Chemodescriptors

Those alone are wise who act after investigation.

Charaka
In Sutrasthana, 10:5

We haven’t got the money, so we’ve got to think

Ernest Rutherford

S.C. Basak
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Table 10.1  Symbols, definitions, and classification of 
structural molecular descriptors

Topostructural (TS)

ID
W Information index for the magnitudes of 

distances between all possible pairs of 
vertices of a graph

ID
W Mean information index for the 

magnitude of distance

W Wiener index = half-sum of the 
off-diagonal elements of the distance 
matrix of a graph

ID Degree complexity

HV Graph vertex complexity

HD Graph distance complexity

IC
Information content of the distance 
matrix partitioned by frequency of 
occurrences of distance h

M1 A Zagreb group parameter = sum of 
square of degree over all vertices

M2 A Zagreb group parameter = sum of 
cross-product of degrees over all 
neighboring (connected) vertices

hχ Path connectivity index of order 
h = 0–10

hχC Cluster connectivity index of order 
h = 3–6

hχPC Path-cluster connectivity index of order 
h = 4–6

hχCh Chain connectivity index of order 
h = 3–10

Ph Number of paths of length h = 0–10

J Balaban’s J index based on topological 
distance

nrings Number of rings in a graph

ncirc Number of circuits in a graph

DN2Sy Triplet index from distance matrix, 
square of graph order, and distance sum; 
operation y = 1–5

DN21y Triplet index from distance matrix, 
square of graph order, and number 1; 
operation y = 1–5

AS1y Triplet index from adjacency matrix, 
distance sum, and number 1; operation 
y = 1–5

DS1y Triplet index from distance matrix, 
distance sum, and number 1; operation 
y = 1–5

ASNy Triplet index from adjacency matrix, 
distance sum, and graph order; operation 
y = 1–5

DSNy Triplet index from distance matrix, 
distance sum, and graph order; operation 
y = 1–5

(continued)

Table 10.1  (continued)

Topostructural (TS)

DN2Ny Triplet index from distance matrix, 
square of graph order, and graph order; 
operation y = 1–5

ANSy Triplet index from adjacency matrix, 
graph order, and distance sum; operation 
y = 1–5

AN1y Triplet index from adjacency matrix, 
graph order, and number 1; operation 
y = 1–5

ANNy Triplet index from adjacency matrix, 
graph order, and graph order again; 
operation y = 1–5

ASVy Triplet index from adjacency matrix, 
distance sum, and vertex degree; 
operation y = 1–5

DSVy Triplet index from distance matrix, 
distance sum, and vertex degree; 
operation y = 1–5

ANVy Triplet index from adjacency matrix, 
graph order, and vertex degree; 
operation y = 1–5

Topochemical (TC)

O Order of neighborhood when ICr 
reaches its maximum value for the 
hydrogen-filled graph

Oorb Order of neighborhood when ICr 
reaches its maximum value for the 
hydrogen-suppressed graph

IORB Information content or complexity of 
the hydrogen-suppressed graph at its 
maximum neighborhood of vertices

ICr Mean information content or complexity 
of a graph based on the rth (r = 0–6) 
order neighborhood of vertices in a 
hydrogen-filled graph

SICr Structural information content for rth 
(r = 0–6) order neighborhood of vertices 
in a hydrogen-filled graph

CICr Complementary information content for 
rth (r = 0–6) order neighborhood of 
vertices in a hydrogen-filled graph

hχb Bond path connectivity index of order 
h = 0–6

hχb
C Bond cluster connectivity index of order 

h = 3–6
hχb

Ch Bond chain connectivity index of order 
h = 3–6

hχb
PC Bond path-cluster connectivity index of 

order h = 4–6
hχv Valence path connectivity index of order 

h = 0–6
hχv

C Valence cluster connectivity index of 
order h = 3–6

(continued)
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Table 10.1  (continued)

Topostructural (TS)
hχv

Ch Valence chain connectivity index of 
order h = 3–6

hχv
PC Valence path-cluster connectivity index 

of order h = 4–6

JB Balaban’s J index based on bond types

JX Balaban’s J index based on relative 
electronegativities

JY Balaban’s J index based on relative 
covalent radii

AZVy Triplet index from adjacency matrix, 
atomic number, and vertex degree; 
operation y = 1–5

AZSy Triplet index from adjacency matrix, 
atomic number, and distance sum; 
operation y = 1–5

ASZy Triplet index from adjacency matrix, 
distance sum, and atomic number; 
operation y = 1–5

AZNy Triplet index from adjacency matrix, 
atomic number, and graph order; 
operation y = 1–5

ANZy Triplet index from adjacency matrix, 
graph order, and atomic number; 
operation y = 1–5

DSZy Triplet index from distance matrix, 
distance sum, and atomic number; 
operation y = 1–5

DN2Zy Triplet index from distance matrix, 
square of graph order, and atomic 
number; operation y = 1–5

nvx Number of non-hydrogen atoms in a 
molecule

nelem Number of elements in a molecule

fw Molecular weight
hχv Valence path connectivity index of order 

h = 7–10
hχv

Ch Valence chain connectivity index of 
order h = 7–10

si Shannon information index

totop Total topological index t

sumI Sum of the intrinsic state values I

sumdelI Sum of delta-I values

tets2 Total topological state index based on 
electrotopological state indices

phia Flexibility index (kp1* kp2/nvx)

Idcbar Bonchev-Trinajstić information index

IdC Bonchev-Trinajstić information index

Wp Wienerp

Pf Plattf

Wt Total Wiener number

knotp Difference of chi-cluster-3 and 
path-cluster-4

knotpv Valence difference of chi-cluster-3 and 
path-cluster-4

(continued) (continued)

Table 10.1  (continued)

Topostructural (TS)

nclass Number of classes of topologically 
(symmetry) equivalent graph vertices

NumHBd Number of hydrogen bond donors

NumHBa Number of hydrogen bond acceptors

SHCsats E-State of C sp3 bonded to other 
saturated C atoms

SHCsatu E-State of C sp3 bonded to unsaturated 
C atoms

SHvin E-State of C atoms in the vinyl group, =CH-

SHtvin E-State of C atoms in the terminal vinyl 
group, =CH2

SHavin E-State of C atoms in the vinyl group, 
=CH-, bonded to an aromatic C

SHarom E-State of C sp2 which are part of an 
aromatic system

SHHBd Hydrogen bond donor index, sum of 
hydrogen E-State values for –OH, =NH, 
-NH2, -NH-, -SH, and #CH

SHwHBd Weak hydrogen bond donor index, sum 
of CH hydrogen E-State values for 
hydrogen atoms on a C to which a F 
and/or Cl are also bonded

SHHBa Hydrogen bond acceptor index, sum of 
the E-State values for –OH, =NH, -NH2, 
-NH-, >N-, -O-, -S-, along with –F and 
–Cl

Qv General polarity descriptor

NHBinty Count of potential internal hydrogen 
bonders (y = 2–10)

SHBinty E-State descriptors of potential internal 
hydrogen bond strength (y = 2–10)

Electrotopological state index values for 
atoms types:

SHsOH, SHdNH, SHsSH, SHsNH2, 
SHssNH, SHtCH, SHother, SHCHnX, 
Hmax Gmax, Hmin, Gmin, Hmaxpos, 
Hminneg, SsLi, SssBe, Sssss, Bem, 
SssBH, SsssB, SssssBm, SsCH3, SdCH2, 
SssCH2, StCH, SdsCH, SaaCH, SsssCH, 
SddC, StsC, SdssC, SaasC, SaaaC, 
SssssC, SsNH3p, SsNH2, SssNH2p, 
SdNH, SssNH, SaaNH, StN, SsssNHp, 
SdsN, SaaN, SsssN, SddsN, SaasN, 
SssssNp, SsOH, SdO, SssO, SaaO, SsF, 
SsSiH3, SssSiH2, SsssSiH, SssssSi, 
SsPH2, SssPH, SsssP, SdsssP, SsssssP, 
SsSH, SdS, SssS, SaaS, SdssS, SddssS, 
SssssssS, SsCl, SsGeH3, SssGeH2, 
SsssGeH, SssssGe, SsAsH2, SssAsH, 
SsssAs, SdsssAs, SsssssAs, SsSeH, SdSe, 
SssSe, SaaSe, SdssSe, SddssSe, SsBr, 
SsSnH3, SssSnH2, SsssSnH, SssssSn, 
SsI, SsPbH3, SssPbH2, SsssPbH, 
SssssPb

Geometrical (3D)/shape

kp0 Kappa zero
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Modern society routinely uses a large number 
of natural and man-made chemicals in the form 
of drugs, solvents, synthetic intermediates, cos-
metics, herbicides, pesticides, etc. to maintain the 
lifestyle. But in many cases, a large fraction of 
these chemicals do not have the experimental 
data necessary for the prediction of their benefi-
cial and deleterious effects [36]. Table 10.2 gives 
a partial list of properties, both physical and bio-
chemical/pharmacological/toxicological, needed 
for the effective screening of chemicals for new 
drug discovery and protection of human as well 
as ecological health. Because determination of 
such properties for so many chemicals in the lab-
oratory is prohibitively costly, one solution of 
this quagmire has been the use of QSARs and 
molecular similarity-based analogs to obtain 
acceptable estimated values of properties.

10.3.1	 �Statistical Methods for QSAR 
Model Development 
and Validation

In God we trust. All others must bring data.

W. Edwards Deming

To call in the statistician after the experiment is 
done maybe no more

than asking him to perform a post-mortem 
examination:

he may be able to say what the experiment died of.

Ronald Fisher:
http://www.brainyquote.com/quotes/authors/r/ron-

ald_fisher.html

In the early 1970s, when this author (Basak) 
started carrying out research on the development 
and use of calculated chemodescriptors in QSAR, 
only a few such descriptors were available. But 
now, with the availability of various software 
[30–35, 37, 38], the landscape of availability and 
calculation of molecular descriptors is very different. 
The four major pillars [18] of a useful QSAR sys-
tem development are:

	(a)	 Availability of high-quality experimental 
data (veracity of dependent variable)

	(b)	 Data on sufficient number of compounds 
(volume or reasonably good sample size)

	(c)	 Availability of relevant descriptors (indepen-
dent variables of QSAR) which quantify 
aspects of molecular structure relevant to the 
activity/toxicity of interest

	(d)	 Use of appropriate methods for model build-
ing and validation

The various pathways for the development of 
structure-activity relationship (SAR) and 
property-activity relationship (PAR) models 
either from calculated molecular descriptors or 
from experimentally determined as well as calcu-
lated properties as independent variables may be 
expressed by the scheme provided in Fig. 10.2.

The use of computed molecular descriptors 
and experimental property data in PAR/SAR/
QSAR may be illuminated through a formal 
exposition of the structure-property similarity 
principle  – the central paradigm of the field of 
SAR [39]. Figure 10.2 depicts the determination 
of an experimental property, e.g., measurement 
of octanol-water partition coefficient of a chemi-
cal in the laboratory, as a function α: C → R 
which maps the set C of compounds into the real 
line R.  A nonempirical QSAR may be looked 
upon as a composition of a description function 
β1: C → D mapping each chemical structure of C 

Table 10.1  (continued)

Topostructural (TS)

kp1-kp3 Kappa simple indices

ka1-ka3 Kappa alpha indices

VW Van der Waals volume
3DW 3D Wiener number based on the 

hydrogen-suppressed geometric distance 
matrix

3DWH 3D Wiener number based on the 
hydrogen-filled geometric distance 
matrix

Quantum chemical (QC)

EHOMO Energy of the highest occupied 
molecular orbital

EHOMO−1 Energy of the second highest occupied 
molecular

ELUMO Energy of the lowest unoccupied 
molecular orbital

ELUMO+1 Energy of the second lowest unoccupied 
molecular orbital

ΔHf Heat of formation

μ Dipole moment

10  Mathematical Chemodescriptors and Biodescriptors: Background and Their…
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into a space of nonempirical structural descrip-
tors (D) and a prediction function β2: D → R 
which maps the descriptors into the real line. One 
example can be the use of Molconn-Z [30] indi-
ces for the development of QSARs. When [α(C) – 
β2∘β1 (C)] is within the range of experimental 
errors, we say that we have a good QSAR model. 

On the other hand, PAR is the composition of θ1: 
C → M which maps the set C into the molecular 
property space M and θ2: M → R mapping those 
molecular properties into the real line R. Property-
activity relationship seeks to predict one property 
(usually a complex physicochemical property) or 
bioactivity of a molecule in terms of other (usu-

Biodescriptors

Relativistic ab initio

Solvation state ab initio

In vacuuo ab initio

In vacuuo semi-empirical

Geometrical/ Chirality parameters

Cost

Topochemical indices

Topostructural indices

Complexity

Fig. 10.1  Hierarchical classification of chemodescriptors and biodescriptors used in QSAR (Source: Basak [18]. With 
permission from Bentham Science Publishers)

Table 10.2  List of properties needed for screening of chemicals

Physicochemical Pharmacological/toxicological

Molar volume Macromolecular level

Boiling point  � Receptor binding (Kd)

Melting point  � Michaelis constant (Km)

Vapor pressure  � Inhibitor constant (Ki)

Water solubility  � DNA alkylation

Dissociation constant (pKa)  � Unscheduled DNA synthesis

Partition coefficient Cell level

 � Octanol-water (log P)  � Salmonella mutagenicity

 � Air-water  � Mammalian cell transformation

 � Sediment-water Organism level (acute)

Reactivity (electrophilicity) LD50 (mouse, rat)

LC50 (fathead minnow)

Organism level (chronic)

 � Bioconcentration factor

 � Carcinogenicity

 � Reproductive toxicity

 � Delayed neurotoxicity

 � Biodegradation

S.C. Basak
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ally simpler or easily determined experimentally) 
properties.

Basak group uses the following generic method 
in the validation of QSAR models: In the process 
of formulating a scientifically interpretable and 
technically sound QSAR model, we need to keep 
in mind some important issues. First and foremost, 
one has to check whether a specific method is the 
best technique in modeling a specific QSAR sce-
nario. In a regression set up, for example, when the 
number of independent variables or descriptors (p) 
is much larger than the number of data points 
(dependent variable, n), i.e., p >> n, the estimate of 
the coefficient vector is nonunique. This is also the 
case when predictors in the study are highly cor-
related with one another to the extent that the 
“design matrix” is rank-deficient. Both of these 
factors are relevant to QSARs. In many contempo-
rary QSAR studies, the number of initial predic-
tors typically is in the range of hundreds or 
thousands, whereas more often than not, mostly to 
keep cost of generation of experimental data under 
control, the experimenter can collect data on only 
a much smaller number (tens or hundreds) of sam-
ples. This effectively makes the problem high 
dimensional and rank-deficient (p >> n) in nature. 

Also, when a large number of descriptors on a set 
of chemicals are used to model their activity, one 
should expect that some predictors within a single 
class, e.g., TC descriptors, or even predictors 
belonging to apparently different classes are 
highly correlated with one another. Such situations 
can be tackled either by attempting to pick impor-
tant variables through model selection or 
“sparsity”-type approaches (e.g., forward selec-
tion, LASSO [40], adaptive LASSO [41]), or find-
ing a lower-dimensional transformation that 
preserves most of the information present in the 
set of descriptors, e.g., principal component analy-
sis (PCA) and envelope methods [42].

We need to check the ability of a model to give 
competent predictions on “similar” data sets via 
validation on out-of-sample test sets. For a rela-
tively small sample, i.e., a small set of compounds, 
this is achieved by carrying out a leave-one-out 
(LOO) cross-validation. For data sets with a large 
number of compounds, a more computationally 
economical way is to do a k-fold cross-valida-
tion: split the data set randomly into k (previously 
decided by the researcher) equal subsets, take each 
subset in turn as test set, and use the remaining 
compounds as training sets and use the model to 
obtain predictions. Comparing cross-validation 
with the somewhat prevalent approach in QSAR 
research of external validation, i.e., choosing a 
single train-test split of compounds, it should be 
pointed out that in external validation, the splits of 
data sets are carried out only once using the exper-
imenters’ a priori knowledge or some subjectively 
chosen ad hoc criterion. But in cross-validation, 
the splits are chosen randomly, thus providing a 
more unbiased estimate of the generalizability of 
the QSAR model. Furthermore, Hawkins et  al. 
[43] proved theoretically that compared to external 
validation, LOO cross-validation is a better esti-
mator of the actual predictive ability of a statistical 
model for small data sets, while for large sample 
size both perform equally well. To quote Hawkins 
et al. [43], “The bottom line is that in the typical 
QSAR setting where available sample sizes are 
modest, holding back compounds for model test-
ing is ill-advised. This fragmentation of the sample 
harms the calibration and does not give a trustwor-
thy assessment of fit anyway. It is better to use all 
data for the calibration step and check the fit by 

M

q2q1

b1 b2

g1

a

D

C

Fig. 10.2  Composition functions of various mappings 
for structure-activity relationship (SAR) and property-
activity relationship (PAR) (Source: Basak and Majumdar 
[46]. With permission from Bentham Science Publishers)
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cross-validation, making sure that the cross-vali-
dation is carried out correctly.” Specific drawbacks 
of holding out only one test set in the external vali-
dation method include: (1) structural features of 
the held out chemicals are not included in the 
modeling process, resulting in a loss of informa-
tion; (2) predictions are made on only a subset of 
the available compounds, whereas the LOO 
method predicts the activity value for all com-
pounds; (3) there is no scientific tool that can guar-
antee similarity between chemicals in the training 
and test sets; and (4) personal bias can easily be 
introduced in selection of the external test set.

In the rank-deficient situation of QSAR for-
mulation, special care should be taken in combin-
ing conventional modeling with the additional 
step of variable selection or dimension reduction. 
An intuitive, but frequently misunderstood and 
wrong, procedure would be to perform the first 
stage of preprocessing first, selecting important 
variables or determining the optimal transforma-
tion, and then use the transformed data/selected 
variables to build the predictive QSAR models 
and obtain predictions for each train-test split. 
The reason why this is not appropriate is that the 
data is split only after the variable selection/
dimension reduction step is already completed. 
Essentially this method ends up using informa-
tion from the holdout compound/split subset to 
predict activity of those very samples. This naïve 
cross-validation procedure causes synthetic 
inflation of the cross-validated q2, hence compro-
mises the predictive ability of the model [44, 45] 
(Fig.  10.3). A two-step procedure (referred in 
Fig. 10.3 as two-deep CV) helps avoid this tricky 
situation. Instead of doing the pre-model building 
step first and then taking multiple splits for out-
of-sample prediction, for each split of the data 
the initial steps are performed only using the 
training set of compounds each time. Since cal-
culations on two different splits are not depen-
dent on each other, for large data sets the 
increased computational demand arising out of 
the repeated variable selection can be tackled 
using substantial computer resources like parallel 
processing. It should be emphasized that the 
naïve cross-validation (naïve CV) method gives 
naïve or wrong q2 values, whereas the two-deep 

cross-validation (two-deep CV) approach gives 
us the correct or true q2.

For recent reviews and research on this topic 
of proper cross-validation, please see the recent 
publications of Basak and coworkers [46–52].

The quality of the model, in terms of its pre-
dictive ability, is evaluated based on the associ-
ated q2 value, which is defined as:

	
q2 1= ( )– /PRESS SSTotal

	
(10.3)

where PRESS is the prediction sum of squares 
and SSTotal is the total sum of squares. Unlike R2 
which tends to increase upon the addition of any 
descriptor, q2 will decrease upon the addition of 
irrelevant descriptors, thereby providing a reli-
able measure of model quality.

In order to illustrate practically the inflation of 
q2 associated with the use of improper statistical 
techniques, we deliberately developed a wrong 
model using stepwise ordinary least squares 
(OLS) regression, which is commonly used in 
many QSAR studies but often results in overfit-
ting and renders the model unreliable for making 
predictions for chemicals similar to those used to 
calibrate the model. The REG procedure of the 
SAS statistical package [53] was used to develop 
stepwise regression model. For details see [45]. 
Rat fat/air partition coefficient values for a 
diverse set of 99 organic compounds were used 
for this study. It should be noted that two com-
pounds with fewer than three non-hydrogen 
atoms, for which we could not calculate our 
entire suite of structure-based descriptors, were 
omitted from our study. A total of 375 descriptors 
were calculated using software packages includ-
ing POLLY v2.3, Triplet, Molconn-Z v 3.5, and 
Gaussian 03W v6.0. This is clearly a rank-
deficient case with the number of compounds 
(n = 97) being much smaller than the number of 
predictors (p = 375). The ridge regression (RR) 
approach [45, 51] in which the Gram-Schmidt 
algorithm was used to properly thin the descrip-
tors yielded a four-parameter model with an asso-
ciated q2 of 0.854. Each of the four descriptors 
was topological in nature; none of the three-
dimensional or quantum chemical descriptors 
were selected. An inflated q2 of 0.955 was 
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obtained from the stepwise regression approach 
which yielded a 24-parameter model.

10.3.2	 �Intrinsic Dimensionality 
of Descriptor Spaces: Use of  
Principal Component Analysis 
(PCA) as the Parsimony 
Principle or Occam’s Razor

shaile shaile na maanikyam mauktikam na gaje 
gaje

saadhavo naahi sarvatra chandanam na vane vane
(In Sanskrit)

Not all mountains contain gems in them, nor does 
every elephant has pearl in it, noble people are 
not found everywhere, nor is sandalwood found 
in every forest.

Chanakya

You gave too much rein to your imagination. 
Imagination is a good servant, and a bad master. 
The simplest explanation is always the most likely.
– Agatha Christie

As discussed earlier, these days we can calcu-
late a large number of molecular descriptors 

using the available software. But all descriptors 
are not created equal and each descriptor is 
not needed for all modeling situations. In the 
QSAR scenario, we need to use proper methods 
for the selection of relevant descriptors. Methods 
like principal component analysis (PCA) [19, 54, 
55] and interrelated two-way clustering (ITC) 
[56] can be used for variable selection or descrip-
tor thinning.

When p molecular descriptors are calculated 
for n molecules, the data set can be viewed as n 
vectors in p dimensions, each chemical being 
represented as a point in Rp. Because many of the 
descriptors are strongly correlated, the n points 
in Rp will lie on a subspace of dimension lower 
than p. Methods like principal component analy-
sis can be used to characterize the intrinsic 
dimensionality of chemical spaces. Since the 
early 1980s, Basak and coworkers have carried 
out PCA of various congeneric and diverse  
data sets relevant to new drug discovery and  
predictive toxicology. Principal components 
(PCs) derived from mathematical chemodescrip-
tors have been used in the formulation of quanti-
tative structure-activity relationships (QSARs), 
clustering of large combinatorial libraries, as 

Data

Data Split

Split

Train

Train

Select
variables

Select
variables

Test

Test

Predict

Build model f(.)

Build model f(.)

f(Test)

f(Test)

Naïve CV

Two-deep CV

Predict

Repeat for a number of splits

Repeat for a number of splits

Fig. 10.3  Difference between naïve and two-deep cross-validation (CV) schemes (Source: Basak and Majumdar [46]. 
With permission from Bentham Science Publishers)
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well as quantitative molecular similarity analysis 
(QMSA), the last one to be discussed later. This 
section of the article will discuss PCA studies on 
characterization and visualization of chemical 
spaces of two data sets, one congeneric and one 
structurally diverse: (1) a large and structurally 
diverse set of 3692 chemicals which was a subset 
of the Toxic Substances Control Act (TSCA) 
Inventory maintained by the US Environmental 
Protection Agency (USEPA) and (2) a virtual 
library of 248,832 psoralen derivatives,

In the early 1980s, after Basak joined the 
University of Minnesota Duluth, the software 
POLLY [31] was developed and large-scale cal-
culation of TIs for QSAR and QMSA analyses 
was initiated. In one of the earliest studies of its 
kind, Basak et al. [19, 57] used the first version of 
POLLY for the calculation of 90 TIs for a collec-
tion of 3692 structurally diverse chemicals which 
was a subset of the Toxic Substances Control Act 
(TSCA) Inventory of USEPA. The authors car-
ried out PCA on this data set and asked the ques-
tion: What is the intrinsic dimensionality of 
chemical structure measured by the large 
number of TIs? As shown in the summary in 
Table 10.3, first ten PCs with eigenvalues greater 
than or equal to 1.0 explained 92.6 % of the 
variance in the data of the calculated descriptors, 
and first four PCs explained 78.3 % of the variance 
[19, 57]. For a recent review of our research in 
this line, see Basak et al. [58].

It is clear from the data in Table 10.3 that PC1 
is strongly correlated with those indices which 
are related to the size of chemicals. It is note-
worthy that for the set of 3692 diverse chemi-
cals PC1 was also highly correlated with 
molecular weight (r = 0.81) and K0 (0.95) which 
is the number of vertices in hydrogen-sup-
pressed graphs. PC2 was interpreted by us as an 
axis of molecular complexity as encoded by the 
higher-order information theoretic indices 
developed by Basak group [23, 59]. PC3 is most 
highly related to the cluster/path-cluster-type 
molecular connectivity indices which quantify 
structural aspects regarding molecular branch-
ing. The data in Table 10.3 clearly show that PC4 
is strongly correlated with the cyclicity terms of 
the connectivity class of topological indices [19].

Some of the TIs used in this study, e.g., 
Randic’s [60] first-order connectivity index (1χ) 
and the information theoretic indices developed 
by Bonchev and Trinajstić [61] and 
Raychaudhury et al. [24], were used to discrim-
inate the set of congeneric structures including 
alkanes. In the case of 18 octanes, the mole-
cules do not vary much from one another with 
respect to size, but primarily in terms of branch-
ing patterns. Therefore, these indices were 
rightly interpreted based on those data as 
reflecting molecular branching. But when PCA 
was carried out with a diverse set of 3692 
chemical structures, the results entered an 
uncharted territory and were counterintuitive, 
to say the least. As shown from the correlation 
of the original variables with PC1, 1χ and related 
indices were now strongly correlated with 
molecular size in the large and diverse set, not 
to molecular branching. PC3 emerged  
as the axis correlated with indices that encoded 
branching information, the cluster-type molec-
ular connectivity indices in particular. This 
result shows that the structural meaning of TIs 
that we derive intuitively or from correlational 
analyses is dependent on the nature and rela-
tive diversity of the structural landscape under 
investigation. Further studies of TIs computed 
for both congeneric and diverse structures are 
needed to shed light on this important issue.

Table 10.3  Correlation of the first four PCs with the 
original variables in the 90 topological indices, [19, 57]

PC1 PC2 PC3 PC4

K1 (0.96) SIC3 (0.97) 4χb
C (0.69) 4χCH (0.85)

2χ (0.95) CIC4 (−0.96) 4χb
C (0.69) 4χb

CH (0.84)
3χ (0.95) CIC3 (−0.95) 5χb

C (0.68) 4χv
CH (0.80)

K2 (0.95) SIC4 (0.95) 4χC (0.68) 3χCH (0.75)

K0 (0.95) SIC2 (0.94) 3χvC (0.67) 3χb
CH (0.75)

1χ (0.94) CIC5 (−0.94) 5χC (0.64) 4χb
CH (0.74)

3χb (0.94) CIC6 (−0.92) 6χC (0.64) 3χv
CH (0.72)

4χ (0.94) SIC5 (0.92) 3χC (0.61) 5χCH (0.71)
4χb (0.93) SIC6 (0.89) 6χb

C (0.60) 5χv
CH (0.67)

0χ (0.93) CIC2 (−0.87) 5χv
C (0.60) 6χb

CH (0.47)

The symbols and definitions of the indices shown in  
this Table can be found in Table 10.1. The bonding con-
nectivity indices were defined for the first time by Basak 
et al. [19]
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A virtual library of 248,832 psoralen deriv-
atives [21] was created and analyzed using 
PCs derived from calculated TIs. This set may 
be called congeneric because although it is a 
large collection of structures, it is derived 
from the same basic molecular skeleton: pso-
ralen. For this study, 92 topological indices 
were calculated by POLLY. In this set, the top 
3 PCs explained 89.2 % of the variance in the 
data; first 6 PCs explained 95.5 % of the vari-
ance of the originally calculated indices. The 
PCs were used to cluster the large set of chem-
icals into a few smaller subsets as an exercise 
of managing combinatorial explosion that can 
happen in the drug design scenario when one 
wants to create a large pool of derivatives of a 
lead compound. For details of the outcome of 
clustering of the 248,832 psoralen derivatives, 
please see [21].

To conclude this section on the exploration 
of intrinsic dimensionality of structural spaces 
using PCA and calculated chemodescriptors, 
the data on the congeneric set of psoralens and 
the diverse set of 3, 692 TSCA chemicals 
appear to indicate that as compared to conge-
neric collections of structures, diverse sets 
need a higher number of orthogonal descrip-
tors (dimensions) to explain a comparable 
amount of variance in the data. The fact that 
PCA brings down the number of descriptors 
from 90 or 92 calculated indices to 10 or 6 PCs 
keeping the explained variance at above 90 % 
level reflects that the intrinsic dimensionality 
of the structure space is adequately reflected by 
a small number of orthogonal variables. 
Thinking in terms of the philosophical idea 
known as the Ockham’s razor or the parsi-
mony principle – it is futile to do with more 
what can be done with fewer – PCA helps us 
to select a useful and smaller subset of factors 
from a collection of many more. To quote 
Hoffmann et al. [62]:

Identifying the number of significant components 
enables one to determine the number of real 
sources of variation within the data. The most 
important applications of PCA are those related to: 
(a) classification of objects into groups by quanti-
fying their similarity on the basis of the Principal 

Component scores; (b) interpretation of observ-
ables in terms of Principal Components or their 
combination; (c) prediction of properties for 
unknown samples. These are exactly the objectives 
pursued by any logical analysis, and the Principal 
Components may be thought of as the true inde-
pendent variables or distinct hypotheses.

It is noteworthy that Katritzky et al. used PCA 
for the characterization of aromaticity [63] and 
formulation of QSARs [64] in line with the parsi-
mony principle.

10.3.3	 �Some Examples of Hierarchical 
QSAR (HiQSAR) Using 
Calculated Chemodescriptors

10.3.3.1	 �Aryl Hydrocarbon (Ah) 
Receptor Binding Affinity 
of Dibenzofurans

Dibenzofurans are widespread environmental 
contaminants that are produced mainly as unde-
sirable by-products in natural and industrial pro-
cesses. The toxic effects of these compounds are 
thought to be mediated through binding to the 
aryl hydrocarbon (Ah) receptor. We developed 
HiQSAR models based on a set of 32 dibenzofu-
rans with Ah receptor binding affinity values 
obtained from the literature [65]. Descriptor 
classes used to develop the models included the 
TS, TC, 3D, and the STO-3G class of ab initio 
QC descriptors. Statistical metrics for the ridge 
regression (RR), partial least square (PLS), and 
principal component regression (PCR) models 
are provided in Table 10.4. We found that the RR 
models were superior to those developed using 
either PLS or PCR. Examining the RR metrics, it 
is evident that the TC and the TS + TC descrip-
tors provide high-quality predictive models, with 
R2

cv values of 0.820 and 0.852, respectively. The 
addition of the 3D and STO-3G descriptors does 
not result in significant improvement in model 
quality. When each of these classes viz., 3-D and 
STO-3G quantum chemical descriptors, is used 
alone, the results are quite poor. This indicates 
that the topological indices are capable of ade-
quately representing those structural features 
which are relevant to the binding of dibenzofu-
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rans to the Ah receptor. Comparison of the exper-
imentally determined binding affinity values and 
those predicted using the TS + TC RR model is 
available in Table 10.5. The details of this QSAR 
analysis has been published [66].

10.3.3.2	 �HiQSAR Modeling 
of a Diverse Set of 508 
Chemical Mutagens

TS, TC, 3D, and QC descriptors for 508 chemical 
were calculated, and QSARs were formulated 
hierarchically using these four types of descrip-
tors. For details of calculations and model build-
ing, see [67]. The method interrelated two-way 
clustering, ITC [56], which falls in the unsuper-
vised class of approaches [68], was used for vari-
able selection. Table 10.6 gives results of ridge 
regression (RR) alone as well as those where RR 
was used on descriptors selected by ITC.  For 
both RR only and ITC+ RR analysis, the TS + TC 
combination gave the best models for predicting 
mutagenicity of the 508 diverse chemicals. The 
addition of 3-D and QC descriptors to the set of 
independent variables made minimum or no 
improvement in model quality.

Recent review of results of HiQSARs carried 
out by Basak and coworkers [46, 69–71] using 
topostructural, topochemical, 3-D, and quantum 
chemical indices for diverse properties, e. g., 
acute toxicity of benzene derivatives, dermal 
penetration of polycyclic aromatic hydrocarbons 

(PAHs), mutagenicity of a congeneric set of 
amines (heteroaromatic and aromatic), and oth-
ers, indicates that in most of the above mentioned 
cases, TS+ TC combination of indices gives rea-
sonable predictive models. The addition of 3-D 
and quantum chemical indices after the use of TS 
and TC descriptors did very little improvement in 
model quality.

How do we explain the above trend in 
HiQSAR? One plausible explanation is that for 
the recognition of a receptor, e.g., the interaction 
of dibenzofuran with Ah receptor, discussed in 
Sect. 10.3.3.1, the dibenzofuran derivatives prob-
ably need some specific geometrical and stereo-
electronic factors or a specific pharmacophore. 
But once the minimal requirement of this recogni-
tion is present in the molecule, the alterations in 
bioactivities from one derivative to another in the 
same structural class are governed by more gen-
eral structural features which are quantified rea-
sonably well by the TS and TC indices derived 
from the conventional bonding topology of mole-
cules and features like sigma bond, π bond, lone 
pair of electrons, hydrogen bond donor acidity, 
hydrogen bond acceptor basicity, etc. More stud-
ies with different groups of molecules with diverse 
bioactivities are needed to validate or falsify this 
hypothesis in line with the falsifiability principle 
of Sir Karl Popper [72], a basic scientific paradigm 
in the philosophy of science which defines the 
inherent testability of any scientific hypothesis.

Table 10.4  Summary statistics for predictive Ah receptor binding affinity models

R2 c.v. PRESS

Independent variables RR PCR PLS RR PCR PLS

TS 0.731 0.690 0.701 16.9 19.4 18.7

TS+TC 0.852 0.683 0.836 9.27 19.9 10.3

TS+TC+3D 0.852 0.683 0.837 9.27 19.9 10.2

TS+TC+ 3D + STO-3G 0.862 0.595 0.862 8.62 25.4 8.67

TS 0.731 0.690 0.701 16.9 19.4 18.7

TC 0.820 0.694 0.749 11.3 19.1 15.7

3D 0.508 0.523 0.419 30.8 29.9 36.4

STO-3G 0.544 0.458 0.501 28.6 33.9 31.3
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Table 10.5  Experimental and cross-validated predicted Ah receptor binding affinities, based on the TS + TC ridge 
regression model of Table 10.4

No. Chemical Experimental pEC50 Predicted pEC50 Exp. – Pred.

O

1
2

3

46

7

8
9

1 2-Cl 3.553 3.169 0.384

2 3-Cl 4.377 4.199 0.178

3 4-Cl 3.000 3.692 −0.692

4 2,3-diCl 5.326 4.964 0.362

5 2,6-diCl 3.609 4.279 −0.670

6 2,8-diCl 3.590 4.251 −0.661

7 1,2,7-trCl 6.347 5.646 0.701

8 1,3,6-trCl 5.357 4.705 0.652

9 1,3,8-trCl 4.071 5.330 −1.259

10 2,3,8-trCl 6.000 6.394 −0.394

11 1,2,3,6-teCl 6.456 6.480 −0.024

12 1,2,3,7-teCl 6.959 7.066 −0.107

13 1,2,4,8-teCl 5.000 4.715 0.285

14 2,3,4,6-teCl 6.456 7.321 −0.865

15 2,3,4,7-teCl 7.602 7.496 0.106

16 2,3,4,8-teCl 6.699 6.976 −0.277

17 2,3,6,8-teCl 6.658 6.008 0.650

18 2,3,7,8-teCl 7.387 7.139 0.248

19 1,2,3,4,8-peCl 6.921 6.293 0.628

20 1,2,3,7,8-peCl 7.128 7.213 −0.085

21 1,2,3,7,9-peCl 6.398 5.724 0.674

22 1,2,4,6,7-peCl 7.169 6.135 1.035

23 1,2,4,7,8-peCl 5.886 6.607 −0.720

24 1,2,4,7,9-peCl 4.699 4.937 −0.238

25 1,3,4,7,8-peCl 6.699 6.513 0.186

26 2,3,4,7,8-peCl 7.824 7.479 0.345

27 2,3,4,7,9-peCl 6.699 6.509 0.190

28 1,2,3,4,7,8-heCl 6.638 6.802 −0.164

29 1,2,3,6,7,8-heCl 6.569 7.124 –0.555

30 1,2,4,6,7,8-heCl 5.081 5.672 −0.591

31 2,3,4,6,7,8-heCl 7.328 7.019 0.309

32 Dibenzofuran 3.000 2.765 0.235
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10.3.4	 �Two QSAR Paradigms: 
Congenericity Principle 
Versus Diversity Begets 
Diversity Principle Analyzed 
Using Computed 
Mathematical 
Chemodescriptors 
of Homogeneous and Diverse 
Sets of Chemical Mutagens

The age-old paradigm of quantitative structure-
activity relationship (QSAR) is the congenericity 
principle which states that similar structures usu-
ally have similar properties. But these days, a lot 
of large and structurally diverse data sets of 
chemicals with the same experimental data 
(dependent variable) are available. Starting with 
the same classes of descriptors, we extracted the 
two subsets of statistically most significant pre-
dictors for the formulation of QSARs for two sets 
of chemicals: a homogeneous set of 95 amine 
mutagens and a diverse set of 508 structurally 
diverse mutagens. The predictors included calcu-
lated TS, TC, geometrical, and QC indices. 
Whereas for the homogeneous amines, a small 
group of only seven descriptors were found to be 
significant in model building, for the 508 diverse 
set 42 descriptors were found to be statistically 
significant [73]. This preliminary and empirical 
study supports the DIVERSITY BEGETS 

DIVERSITY principle of QSAR formulated for 
the first time by Basak [18].

10.3.5	 �Applicability Domain of QSAR 
Models

A very important issue in the development of a 
QSAR model is that of defining the applicability 
domain (AD) of the model. This is necessary for 
any valid implementable QSAR model accord-
ing to OECD principles [74]. There are a few 
methods of defining the AD of statistical models 
which can be roughly divided into two classes: 
(a) AD methods that define the active predictor 
space through some method like bounding box, 
PCA, or convex hulls and (b) distance-based 
methods which compute the similarity/dissimi-
larity of a new compound to the set of com-
pounds which have been used in formulating the 
training QSAR model. To obtain predictions for 
any incoming sample set using the model, the 
first group of methods is used to ensure that the 
compounds are within the so-called active sub-
space: which essentially means we are actually 
performing interpolation, not extrapolation [75, 
76]. For the distance-based approach, a pre-
defined statistic is calculated to quantify the 
proximity of the test compounds to the training 
set, and based on whether that statistic is above 

Table 10.6  HiQSAR model (RR and ITC + RR) for a diverse set of 508 chemical mutagens. All four means the model 
used TS+TC+3D+QC descriptors

Model type Predictor type Predictor number % Correct classification Sensitivity Specificity

RR TS 103 53.14 52.34 53.97

TS+TC 298 76.97 83.98 69.84

All four 307 77.17 84.38 69.84

ITC TS 103 66.34 73.83 58.73

TS+TC 298 73.23 77.34 69.05

TS+TC+3D 301 74.80 77.34 72.22

All four 307 72.05 76.17 67.86
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or below a certain cutoff value, predictions for 
that compound are considered reasonable or not 
[75, 77].

10.3.6	 �Practical Applications of QSAR

Knowledge is of no value unless you put it into 
practice.

Anton Chekhov

Practical applications of good quality QSARs, 
particularly those based on easily calculable molec-
ular descriptors, can be very useful tools in pharma-
ceutical drug design and specialty chemical design.

The journey of identified lead molecules in the 
drug discovery pipeline is a long and risky one. 
Average cost of developing a drug (including the 
cost of failures) during 2000s to early 2010s was 
US $2.6 billion [78]. One important contributing 
factor to this astronomical cost is that the drug 
developer has to produce and test a large number of 
derivatives of the lead structure for their beneficial 
and toxic side effects before one marketable drug is 
found. QSAR plays a very important role in drug 
design providing a cheaper and fast alternative to 
the medium throughput in vitro and low throughput 
in vivo screening of chemicals, which are generally 

used more frequently in the later stages of the dis-
covery cascade. It has been noted that currently no 
drug is developed without going through the prior 
evaluation by QSAR methods [79].

In Fig. 10.4, a generic scheme is presented for 
the use of QSAR in drug discovery. Starting with 
a “lead,” modern combinatorial chemistry can 
produce millions, even billions, of derivatives. 
Such real or hypothetical chemicals must be eval-
uated in real time to prioritize them for synthesis 
and testing. QSARs based on easily calculated 
descriptors can help us in accomplishing this task.

The era of “Big Data” has arrived in the realm 
of drug discovery. For a concise description of 
trends in this realm, please see Basak et al. [80].

10.4	 �Molecular Similarity 
and Tailored Similarity 
Methods

Like substances react similarly and similar changes 
in structure produce similar changes in reactivity

L P. Hammett

All cases are unique, and very similar to the 
others.

T.S. Eliot, In: The Cocktail Party

Structural
Hypothesis

Compound 
Library

Lead

Data

Candidate 
Chemicals

Virtual 
Library

Lead 
Optimization

Screening Synthesis

QSAR based 
screening

Fig. 10.4  A generic 
scheme for the use of 
QSARs in drug discovery 
protocols
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Molecular similarity is a well-known concept, 
which is intuitively understood by many research-
ers. There is a tacit consensus among molecular 
similarity researchers that similar structures usu-
ally have similar properties. In a broader scope, 
this “structure-property similarity principle” 
includes the notion that similar “structural orga-
nizations” of objects lead to similar observable 
properties. In the realms of chemistry, biology, 
and toxicology, the natural extension of this 
structure-property similarity principle is that 
atoms, ions, molecules, and macromolecules 
with similar structures will have similar physico-
chemical, biological, and toxicological proper-
ties. This principle is vindicated by a vast majority 
of facts at varying levels of structural 
organization.

In the realm of cellular biochemistry, the inhi-
bition of succinic dehydrogenase by malonate 
in vitro is explained in terms of the competition 
by malonate for the active sites of the enzyme 
succinic dehydrogenase, arising from the struc-
tural similarity between the substrate succinic 
acid and malonic acid [81, 82]. This is probably 
one of the earliest observations of the inhibition 
of an enzyme by an analog of its substrate. 
Another well-known example is that the struc-
tural similarities between p-amino benzoic acid 
and sulfanilic acid allow both compounds to 
interact with a specific bacterial biosynthetic 
enzyme. This “case of mistaken identity” is the 
basis for the antibacterial activity of sulfonamide 
antimicrobials [1].

There is no consensus regarding the optimal 
quantification of molecular similarity. In most 
cases, measures of molecular similarity are 
defined by the individual practitioner, generally 
based on his/her experience in a particular 
research area or some intuitive notion. If the 
researcher selects n different attributes for the 
molecules under investigation, then the mole-
cules can be looked upon as points in some type 
of n-dimensional space. A distance function can 
then be used to measure the distance between 
various objects (chemicals) in that space, and the 
magnitude of distance serves as a measure of the 
degree of similarity or dissimilarity between any 
pair of molecules in this n-dimensional similarity 

space. Difficulties arise from two major factors: 
(1) the selection of appropriate axes for develop-
ing the similarity space and (2) the relevance of 
the selected axes to the property under investiga-
tion. Many molecular similarity scientists have 
their own favorite measures, but the axes selected 
might be multicollinear or may encode essen-
tially the same information multiple times. One 
popular solution for this problem is the use of 
orthogonal axes derived from the original axes 
using techniques such as PCA mentioned above. 
A more serious concern is whether or not the sub-
jectively chosen axes are relevant to the property 
under investigation. This is a more difficult prob-
lem to address. One potential solution to this 
issue, pursued by our research group, is the use of 
the tailored similarity method (vide infra).

One practical application of molecular similar-
ity in pharmaceutical drug design, human health 
hazard assessment, and environmental risk analy-
sis is the selection of analogs. Once a lead struc-
ture with interesting properties is found, the drug 
designer often asks “Is there a chemical similar in 
structure to the lead, which also has analogous 
properties?” In contemporary drug discovery 
research, scientists usually search various propri-
etary and public domain databases for chemical 
analogs. Analogs can be selected based on the 
researcher’s intuitive notion of chemical similar-
ity, their similarity with respect to measured prop-
erties, or calculated molecular descriptors. Since 
most of the chemicals in many databases have 
very little available experimental property data, 
similarity methods based on calculated properties 
or molecular descriptors are used more frequently 
for analog selection. In environmental risk analy-
sis, analogs of suspected toxicants or newly pro-
duced industrial chemicals are used in hazard 
assessment when the molecule is so unique or so 
complex that class-specific QSARs cannot be 
applied in toxicity estimation [36]. The flip side 
of similarity is dissimilarity. This concept can be 
applied to both drug discovery and predictive 
toxicology to reduce the number of compounds in 
the database from a combinatorial explosion to a 
manageable number that can be handled through 
laboratory testing. One such example was dis-
cussed above in Sect. 10.3.2 for the case of a large 
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virtual library of 248,832 psoralen derivatives 
which were clustered using PCs extracted from 
92 computed POLLY indices.

10.4.1	 �Arbitrary or User-Defined 
Similarity Methods

In arbitrary similarity methods, one subjectively 
defines the similarity measure. In essence, the 
experienced practitioner says “My personal expe-
rience with data or my intuitive notion tells me 
that the prescribed similarity measures will lead 
to useful grouping of chemicals with respect to 
the property of interest.” This might work out in 
narrowly defined cases, but in complex situations 
where a large number of parameters are needed 
to characterize the property, intuition is usually 
less accurate. Also, one may want to select ana-
logs which are ordered with respect to widely dif-
ferent properties of the same chemical, e.g., 
carcinogenicity versus boiling point. The same 
intuitive measure cannot give “good analogs” for 
properties that are not mutually correlated. 
Various authors have used apparently diverse, 
arbitrary similarity measures in an effort to select 
mutually dissimilar analogs, but the rational basis 
of such selections has never been clear. The tai-
lored approach to molecular similarity may help 
solve this issue.

10.4.1.1	 �Probing the Utility of Five 
Different Similarity Spaces

A wide variety of chemical information can and 
have been used in developing molecular similar-
ity spaces. Many researchers contend that simi-
larity spaces derived from physicochemical 
property data are inherently better, since the 
results are much more readily interpretable. 
However, as was stated earlier, physicochemical 
property data is not widely available for many 
chemicals, thus necessitating the use of calcu-
lated descriptors. One interesting aspect of 
research in the field of molecular similarity has 
been the comparison of arbitrary similarity 
spaces derived from physicochemical properties 
with spaces derived from calculated molecular 

descriptors. For a recent review on the topic of 
quantitative molecular similarity analysis studies 
carried out by Basak and coworkers, please see [22].

In a 1995 study, Basak and Grunwald [83] 
developed five distinct similarity spaces and 
tested those on a set of 73 aromatic and hetero-
aromatic amines with known mutagenicity (ln 
Rev/nmol) data. The derived similarity spaces 
were based on quantum theoretical descriptors 
believed to correlate well with mutagenicity 
(property), principal components derived from 
those descriptors (PCProp), atom pairs (APs), prin-
cipal components derived from a set of topologi-
cal indices (PCTI), and principal components 
derived from the combined set of quantum theo-
retical descriptors and topological indices (PCAll). 
While the similarity spaces derived from the 
quantum theoretical descriptors resulted in the 
best correlations with mutagenicity, spaces 
derived from atom pairs and the combined set of 
topological and quantum theoretical descriptors 
estimated mutagenicity nearly as well. The 
results for the five similarity spaces are summa-
rized in Table  10.7, where r is the correlation 
coefficient, s .e. is the standard error, n is the 
number of dimensions or axes in the similarity 
space, and k is the number of selected “nearest 
neighbors” used to estimate mutagenicity for 
each chemical within the space.

10.4.1.2	 �Molecular Similarity 
and Analog Selection

As mentioned earlier, many times a researcher’s 
goal is to select a set of analogs for a chemical of 
interest from a large, diverse data set based on 
similarity spaces derived solely from calculated 

Table 10.7  Comparison of five similarity methods in the 
estimation of mutagenicity (In Rev/nmol in S. typhimurium 
TA100 with metabolic activation) for 73 aromatic and het-
eroaromatic amines

Similarity method r s.e. n k

AP 0.77 0.88 na 4

PCTI 0.72 0.96 6 5

Property 0.83 0.77 3 5

PCProp 0.84 0.75 3 5

PCAll 0.79 0.85 7 4
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descriptors of molecular structure. We described 
above in Sect.  10.3.2 our PCA analysis of the 
diverse set of 3692 industrial chemicals [19]. As 
part of this study, analogs were selected based on 
Euclidean distance within the ten-dimensional 
similarity space derived from the ten major princi-
pal components. Figure 10.5 presents an example 
of the five nearest neighbors (or analogs) selected 
for one chemical from the set of 3692 molecules.

A look at the five selected structures, particu-
larly the ones closest to 4-hydroxybenzene acetic 
acid (the probe or query chemical), shows that 
there is sufficient degree of similarity of the 
query structure with the selected analogs in terms 
of the number and type of atoms, degree of 
cyclicity, aromaticity, etc.

10.4.1.3	 �The K-Nearest Neighbor 
(KNN) Approach 
in Predicting Modes 
of Action (MOAs) 
of Industrial Pollutants

Different domains of chemical screening use 
different model organisms for the assessment of 
bioactivity of chemicals. In aquatic toxicology 
and ecotoxicology, fathead minnow is an impor-
tant model organism [84–86]. Numerous QSARs 
have been developed with subsets of fathead 
minnow toxicity (LC50) data, many such models 
being developed using small, structurally 
related or congeneric sets. But, following the 
diversity begets diversity principle discussed 

above, one will need a diverse collection of 
molecular descriptors for the QSAR formula-
tion of diverse collection of chemicals. Another 
possibility is to develop different subsets of 
chemicals from a large and diverse set based on 
their mode of action (MOA) first and then treat 
chemicals with the same MOA as biological 
congeners as opposed to structural classes which 
may be called structural congeners. Basak et al. 
[87] undertook a classification study based on 
acute toxic MOA of industrial chemicals. At 
that time the US Environmental Protection 
Agency’s Mid-Continent Ecology Division-
Duluth, Minnesota, fathead minnow database 
had LC50 data on 617 chemicals. But out of that 
list, only 283 chemicals were selected by us 
because our experimental cooperators had good 
confidence about the MOAs of that subset only. 
Such evidence consisted of concurrent informa-
tion from joint chemical toxicity studies, physi-
cochemical and behavioral response, information 
published in peer-reviewed literature, and toxicity 
over time [88]. Such caution in the selection 
of good subsets of data for modeling is in line 
with the veracity attribute mentioned above 
while discussing the major pillars of QSAR and 
issues regarding Big Data [80].

Acute toxic mode of action of the chemicals 
was predicted using molecular similarity method, 
neural networks of the Learning Vector Quantization 
(LVQ) type, and discriminant analysis methods. 
The set of 283 compounds was broken down into 
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Fig.  10.5  Molecular structures for 4-hydroxybenzeneacetic 
acid and its five analogs selected from a database of 3692 
chemicals. The numbers below each structure are the 

Euclidean distances (ED) between 4-hydreoxybenzeneace-
tic acid (the left-most structure) and its analogs

S.C. Basak



137

a training set of 220 compounds and a test set 
of 63. Computed topological indices and atom pairs 
were used as structural descriptors for model 
development. The five MOA classes represented 
included:

	1.	 Narcosis I/II and electrophile/proelectrophile 
reactivity (NE)

	2.	 Uncouplers of oxidative phosphorylation 
(UNC)

	3.	 Acetylcholinesterase inhibitor (AChE-I)
	4.	 Neruotoxicants (NT)
	5.	 Neuordepressants/respiratory blockers (RB/

ND)

In the molecular similarity approach, similar-
ity between chemicals i and j was defined as

	
S C T Tij i j= +( )2 /

	
(10.4)

where C is the number of atom pairs [10] com-
mon to molecules i and j. Ti + Tj are the total num-
ber of atom pairs in i and j, respectively. The five 
nearest neighbors (i.e., K = 5) were used to pre-
dict the mode of action of a probe or query 
chemical.

In the neural network analysis, LVQ classifi-
cation network was used, consisting of a 60-node 
input layer, a 5-node hidden layer, and a 5-node 
output layer.

Linear models utilizing stepwise discriminant 
analysis were developed in addition to the neural 
network and similarity models.

All three methods gave good results for train-
ing and test sets, with the success ranging from 
95 % for the K-nearest neighbor method to 87 % 
for the discriminant analysis technique. This con-
sistency of results obtained using topological 
descriptors in different classification methods 
indicates that the graph theoretical parameters 
used in this study contain sufficient structural 
information to be capable of predicting modes of 
action of diverse chemical species. Table  10.8 
provides the classification results obtained using 
the K-nearest neighbor method, in which 90 % of 
the training set chemicals and 95 % of the test set 
chemicals were classified correctly.

10.4.1.4	 �The Tailored Approach 
to Developing Similarity 
Spaces

From the words of the poet, men take what meanings 
please them; yet their last meaning points to thee.

Rabindranath Tagore, Poem #75
Gitanjali

As mentioned above, user-defined or arbitrary 
molecular similarity methods perform reason-
ably well in narrow, well-defined situations. But 
the relationship between structural attributes and 
biomedicinal or toxicological properties are not 
always crisp; they are often messy. Human intu-
ition often fails in such circumstances. Similarity 
methods based on objectively defined relation-
ships are needed, rather than those derived from 
subjective or intuitive approaches. In a multivari-
ate space, this should be accomplished using 
robust statistical methods. The tailored similarity 
method starts with an appropriate number of 
molecular descriptors [89–91]. These descriptors 
are run through ridge regression analysis model-
ing the property of interest, and a small number 
of independent variables with high |t| values are 
selected as the axes of the similarity space. In this 
way, we select variables which are strongly 

Table 10.8  MOA classification results using the 
K-nearest neighbor (K = 5) method

Training set

% Correctn = 220

NE 180/183 98 %

UNC 6/10 60 %

AChE-I 7/14 50 %

NT 0/7 0 %

RB/ND 5/6 83 %

Overall 90 %

Test set

% Correctn = 63

NE 53/54 98 %

UNC 2/2 100 %

AChE-I 3/3 100 %

NT 1/2 50 %

RB/ND 1/2 50 %

Overall 95 %
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related with the property of interest instead of a 
subjectively selected group of descriptors. 
Needless to say, human intuition will be hard 
pressed to match the objective relationship devel-
oped by ridge regression techniques.

In one tailored similarity study [91], we exam-
ined the effects of tailoring on the estimation of 
logP for a set of 213 chemicals and on the estima-
tion of mutagenicity for a set of 95 aromatic and 
heteroaromatic amines. In this study we utilized a 
much larger set of topological indices than have 
been used in many of our earlier studies. Three dis-
tinct similarity spaces were constructed, though 
two were “overlapping” spaces. The overlapping 
spaces were derived using principal component 
analysis on the set of 267 topological indices. The 
PCA created 20 orthogonal components with 
eigenvalues greater than one. These 20 PCs were 
used as the axes for the first similarity space. The 
second similarity space was derived from the prin-

cipal components. In examining the PCs, we 
selected the index most correlated with each cluster 
as a representative of the cluster. One of the argu-
ments against using PCA to reduce the number of 
variables for modeling is that PCs, being linear 
combinations of the indices, are not easily interpre-
table. So, by selecting the most correlated single TI 
from each PC, we have a set of easily interpretable 
topological indices to use in modeling.

Finally, the third set of indices was selected 
based on a ridge regression model developed 
from all 267 indices to predict mutagenicity. 
From the modeling results, t-values were 
extracted and the 20 indices with the highest 
absolute [t] values were selected as axes for 
developing the similarity space. A summary of 
the correlation coefficients for estimating muta-
genicity from the three similarity spaces for vary-
ing numbers of neighbors using the KNN method 
is presented in Fig. 10.6.
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Fig. 10.6  Plot of the pattern of correlation coefficient (R) 
from k = 1–10, 15, 20, and 25 for the estimation of muta-
genicity (ln Rev/nmol) for 95 aromatic and heteroaro-
matic amines using a 20 principal component space 

derived from 267 topological indices (PCs), a 20 topologi-
cal index space selected from the principal components 
(TIs from PCs), and a 20 topological index based on space 
derived from ridge regression (TIs from RR)
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It is clear from Fig.  10.6 that tailoring the 
selected set of indices significantly improved the 
estimative power of the model, resulting in 
roughly a 10 % increase to the correlation coeffi-
cient. These results, as with all of the results we 
have seen from tailored similarity spaces, are 
promising, and we believe that tailored similar-
ity methods will be very useful both in drug 
discovery and toxicological research.

10.5	 �Formulation 
of Biodescriptors from DNA/
RNA Sequences 
and Proteomics Maps: 
Development 
and Applications

If your chromosomes are XYY,
And you are a naughty, naughty guy,
Your crimes, the judge won’t even try,
‘Cause you have a legal reason why
He’ll raise his hands and gently sigh!
“I guess for this you get a by.”
By Carl A. Dragstedt
In: Perspectives in Biology and Medicine
Vol. 14, # 1, autumn, 1970

10.5.1	 �Mathematical Biodescriptors 
from DNA/RNA Sequences

After the completion of the Human Genome 
Project, a lot of data for DNA, RNA, and protein 
sequences are being generated. In line with the 
idea of representation and mathematical 
characterization of chemicals (see Fig.  10.2 
above), various authors have developed such 
representation-cum-characterization methods for 
DNA/RNA sequences [16, 92–96]. In the past 
few years, a lot of papers have been published in 
this area. Here, we give a brief history of the 
recent growth spurt of this exciting field begin-
ning in 1998. Dilip K.  Sinha and Subhash 
C.  Basak started the Indo-US Workshop Series 
on Mathematical Chemistry [97] in 1998, the first 
event being held at the Visva Bharati University, 
Santiniketan, West Bengal, India. Raychaudhury 
and Nandy [98] gave a presentation on mathe-

matical characterization of DNA sequences using 
their graphical method. This caught the attention 
of Basak who later developed a research group on 
the mathematical characterization of DNA/RNA 
sequences supported by funds from the University 
of Minnesota Duluth-Natural Resources Research 
Institute (UMD-NRRI) and University of 
Minnesota. This led to the publication of the first 
couple of papers on DNA sequence invariants 
[99, 100]. The rest of the development of DNA/
RNA sequence graph invariants and mathemati-
cal descriptors is clear from the hundreds of 
papers published on this topic subsequently by 
authors all over the world. More recently Nandy 
and Basak applied this method in the character-
ization of the various bird flu sequences, e.g., 
H5N1 bird flu [101] and H5N2 pandemic bird flu 
[102], the latter one causing havoc in the turkey 
and poultry farms of the Midwest of the USA in 
2015. Numerous other theoretical developments 
and practical applications of DNA/RNA mathe-
matical descriptors are not discussed here for 
brevity.

10.5.2	 �Mathematical Proteomics-
Based Biodescriptors

Proteomics may be looked upon as a branch of 
Functional Genomics that studies changes in 
protein-protein and protein-drug/toxicant inter-
actions. Scientists are studying proteomics for 
new drug discovery and predictive toxicology 
[103–105]. A typical 2D gel electrophoresis 
(2DE)-derived proteomics map provided to us by 
our collaborators at Indiana University is pro-
vided in Fig. 10.7.

The 2DE method of proteomics is capable of 
detecting and characterizing a few thousand pro-
teins from a cell, tissue, or animal. One can then 
study the effects of well-designed structural or 
mechanistic classes of chemicals on animals or 
specialized cells and use these proteomics data to 
classify the molecules or predict their biological 
action. But with 1000–2000 protein spots present 
per gel, the difficult question we face is: How do 
we make sense of the chaotic pattern of the 
large number of proteins as shown in Fig. 10.7? 
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We have attacked this problem through the for-
mulation of biodescriptors applying the tech-
niques of discrete mathematics to proteomics 
maps. Described below are three major 
approaches developed by our research team at the 
Natural Resources Research Institute and its col-
laborators for the quantitative calculation of bio-
descriptors of proteomics maps, the term 
biodescriptor being coined by the Basak group 
for the first time:

	(a)	 In each 2D gel, the proteins are separated by 
charge and mass. Also associated with each 
protein spot is a value representing abun-
dance, which quantifies the amount of that 
particular protein or closely related class of 
proteins gathered on one spot. 
Mathematically, the data generated by 2DE 
may be looked upon as points in a three-
dimensional space, with the axes described 
by charge, mass, and spot abundance. 
One can then have projections of the data to 
the three planes, i.e., XY, YZ, and XZ. The 
spectrum-like data so derived can be con-
verted into vectors, and similarity of pro-
teomics maps can be computed from these 
map descriptors [106].

	(b)	 In a second approach, viz., the graph invari-
ant biodescriptor method, different types of 
embedded graphs, e.g., zigzag graphs 
neibhborhood graphs, are associated with 
proteomics maps, with the set of spots in the 
proteomics maps representing the vertices of 

such graphs. In the zigzag approach, one 
begins with the spot of the highest abundance 
and draws an edge between it and the spot 
having the next highest abundance and con-
tinues this process. The resulting zigzag 
curve is converted into a D/D matrix where 
the (i, j) entry of such a matrix is the quotient 
of the Euclidean distance and the through-
bond distance. For details on this approach, 
please see [107].

	(c)	 A proteomics map may be looked upon as a 
pattern of protein mass distributed over a 2D 
space. The distribution may vary depending on 
the functional state of the cell under various 
developmental and pathological conditions as 
well as under the influence of exogenous 
chemicals such as drugs and xenobiotics. 
Information theoretic approach has been 
applied to compute biodescriptors called map 
information content (MIC) from 2D gels [108].

10.6	 �Combined Use 
of Chemodescriptors 
and Biodescriptors 
for Bioactivity Prediction

We told above in Eq. 10.2 that in many cases, the 
property/bioactivity/toxicity of chemicals can be 
predicted reasonably well using their structure 
(S) alone. But in many complex biological situa-
tions, e.g., induction of cancer by exposure to 
chemical carcinogens, we need to use both struc-
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Fig. 10.7  Location and abundance of protein spots derived from 2D gel electrophoresis (Courtesy of Frank Witzmann 
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tural features of such chemicals and biological 
test data to make sense of such endpoints. Arcos 
[109], for example, suggested the use of specific 
biological data, e.g., degranulation of endoplas-
mic reticulum, peroxisome proliferation, 
unscheduled DNA synthesis, antispermatogenic 
activity, etc., as biological indicators of carcino-
genesis. Such biochemical data not only bring 
direct and relevant biological observations into 
the set of predictors, they also bring independent 
variables which are closer to the endpoint in the 
scale of complexity than the chemical structure. 
In line with this structural-cum-functional 
approach in predicting bioactivity of chemicals, 
we have used a combination of chemodescriptors 
and proteomics-based biodescriptors for assess-
ing toxicity of priority pollutants [28, 110].

10.7	 �Discussion

We are all agreed that your theory is crazy. The 
question which divides us is whether it is crazy 
enough to have a chance of being correct. My own 
feeling is that it is not crazy enough.

Niels Bohr

Everything should be made as simple as possible, 
but not simpler.

 – Albert Einstein

Major objectives of this chapter have been to 
review our research in the use of mathematical 
chemodescriptors and biodescriptors in the 
prediction of bioactivity/toxicity of chemicals, 
quantification of similarity/dissimilarity among 
chemical species from their chemodescriptors, 
and similarity-based clustering, as well as esti-
mation of toxicologically relevant properties of 
diverse groups of molecules.

In the chemodescriptor area, our major goal 
has been to review the utility of graph theoretical 
parameters, also known as topological indices, in 
QSAR and QMSA studies. We studied the inter-
correlation of major topological indices in an 
effort to identify subsets that are minimally cor-
related [57, 111]. We have also used principal 
components derived from TIs and all TIs simulta-
neously (e.g., ridge regression models) in QSAR 
formulation. At present a large number of descrip-

tors can be calculated for chemicals using avail-
able software. If the number of experimental data 
points (dependent variables) for QSAR model 
building is much smaller than the number of 
descriptors, i.e., the situation is rank-deficient, 
one needs to be cautious. We have discussed the 
variable selection methods including ITC [56] 
which, to our knowledge, has been brought to 
QSAR from the genomics/ genetics area for the 
first time in our research. In the calculation of q2 
in the rank-deficient case, one must follow the 
two-deep cross-validation procedure; otherwise 
the calculated q2 will reflect overfitting [43–45, 
51, 52, 55]. We have demonstrated this using one 
example where we deliberately used the wrong 
ordinary least square (OLS) approach in a rank-
deficient case and compared the results with the 
correct approach to show the difference between 
them [45]. In HiQSAR modeling, we found that 
of the four types of calculated molecular descrip-
tors, viz., TS, TC, 3-D, and QC indices, in the 
majority of cases a TS + TC combination gave 
good quality models; the addition of 3-D or QC 
descriptors after the use of TS and TC combina-
tion did not improve much the model quality. This 
is a good news in view of the fact that we are 
already at the age of Big Data [80] and easily cal-
culated indices like TS and TC descriptors, if they 
give good models in many areas, could find wide 
applications in the in silico screening of chemi-
cals. The congenericity principle has been a major 
theme of QSAR whereby there has been a ten-
dency in developing QSARs of congeneric sets of 
chemicals. When the same property, viz., muta-
genicity, of congeneric versus diverse sets was 
used to develop QSAR models, the congeneric set 
of 95 amines had much lower number of signifi-
cant descriptors as compared to the diverse set of 
508 molecules. This gives support to the diversity 
begets diversity principle formulated by us [18].

When a large number of descriptors are calcu-
lated for a set of chemicals, the data set becomes 
high dimensional. The use of PCA can derive a 
much smaller number of orthogonal variables 
which reflect the parsimony principle or Occam’s 
razor [62].

Molecular similarity is used both in drug 
design and hazard assessment of chemicals [36, 
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39, 112]. We used calculated TIs and atom pairs 
to generate similarity spaces following different 
methods and used both Euclidean distance 
derived from PCs and Tanimoto coefficient based 
on atom pairs to select analogs. The structures of 
analogs selected from the structurally diverse set 
of 3692 industrial chemicals indicated that the 
calculated property-based QMSA methods are 
capable of selecting analogs of query chemicals 
that look reasonably structurally similar to them. 
We also used our QMSA method in selecting 
analogs of environmental pollutants for which 
the modes of action are known with high confi-
dence from experimental toxicology. The results 
of the MOA prediction study show that selected 
analogs of chemicals with specified MOA fall in 
similar toxicological categories.

In the post-genomic era, the omics technolo-
gies are generating a lot of data on the effects of 
chemicals on the genetic system, viz., transcrip-
tion, translation, and posttranslational modifica-
tion, of the cell and tissue. We have been involved 
in the development of biodescriptors from DNA/
RNA sequences and two-dimensional gel elec-
trophoresis (2DE) data derived from cells/tissue 
exposed to drugs and toxicants. Results of our 
research in this area show that the biodescriptors 
developed from proteomics maps are capable of 
characterizing the pharmacological/toxicological 
profiles of chemicals [106–108]. Some prelimi-
nary studies have been done on the use of the 
combined set of chemodescriptors and biode-
scriptors in predicting bioactivity. Further 
research are needed to test the relative effective-

ness of the two classes of descriptors, chemode-
scriptors versus biodescriptors, in predictive 
pharmacology and toxicology [28, 110].

At this juncture, after reviewing results of a 
large number of QSAR studies using chemode-
scriptors and biodescriptors, we may ask our-
selves: Quo Vadimus? We have seen that 
calculated chemodescriptors are capable of pre-
dicting and characterizing bioactivity and toxic-
ity as well as toxic modes of action of chemicals. 
Research using biodescriptors of different types 
also shows that such descriptors derived from 
proteomics maps have reasonable power of dis-
criminating among structurally closely related 
toxicants. Can we, at this stage, opt for either 
chemodescriptor or biodescriptors alone? The 
answer is no, as is evident from our experience in 
predictive toxicology. This indicates that in the 
foreseeable future, we will need an integrated 
approach consisting of chemodescriptors and 
biodescriptors in order to obtain the best results 
(Fig. 10.8).

As discussed by this author [113] in a recent 
book on Advances in Mathematical Chemistry 
and applications:

Mathematical chemistry or more accurately dis-
crete mathematical chemistry had a tremendous 
growth spurt in the second half of the twentieth 
century and the same trend is continuing now. This 
growth was fueled primarily by two major factors: 
(1) Novel applications of discrete mathematical 
concepts to chemical and biological systems, and 
(2) Availability of high speed computers and asso-
ciated software whereby hypothesis driven as well 
as discovery oriented research on large data sets 
could be carried out in a timely manner. This led to 
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Fig. 10.8  Integrated QSAR, combining chemodescriptors and biodescriptors
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the development of not only a plethora of new con-
cepts, but also various useful applications to such 
important areas as drug discovery, protection of 
human as well as ecological health, bioinformat-
ics, and chemoinformatics. Following the comple-
tion of the Human Genome Project in 2003, 
discrete mathematical methods were applied to the 
“omics” data to develop descriptors relevant to 
bioinformatics, toxicoinformatics, and computa-
tional biology.

The results of various types of research using 
chemodescriptors and biodescriptors [16–21, 28, 
108, 114] derived through applications of dis-
crete mathematics on chemical and biological 
systems give us hope that an exciting future is in 
front of us.
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11.1          Introduction 

 The fi nding of DNA (Deoxyribonucleic acid) 
unfolded new era in the area of biotechnology 
and genomics. At present, genetics can precisely 
distinguish and infl uence the specifi c gene posi-
tion inside genome which induces genetic dis-
ease, thus giving doorstep for possible cure of 
various diseases. Still, the basic function and 
structure of deoxyribonucleic acid is unable to 
explain the whole mechanisms of regulating gene 
and the development of disease. Nowadays, epi-
genetic is acquiring key stage to pursuit more 
benefi cial understanding of genome and fi nally 
gene expression [ 1 ]. Epigenetic, an emerging 
area of biology, was initially specifi ed in 1942 by 
Conrad Waddington, such phenomenon in which 

genes give rise to phenotype. Later on, in 1987, 
another scientist Robin Holliday added the DNA 
methylation patterns in the defi nition which 
affect the activity of gene [ 2 ]. At present, epigen-
etic is the fi eld of changes in gene regulation 
which are not due to alterations in DNA sequence; 
genome can induce functionally applicable alter-
ations which do not alter sequence of nucleotide. 
For many years, epigenetic has been assumed as 
a biological function [ 3 ]. On developmental 
stage, zygote begins in totipotent of which 
divided cells increasingly separate into myriad 
type of cells. This immensely give every cell a 
different type of phenotype in an individual, but 
all carry same genome e.g. the cell of eye is not 
like skin or neural cell. Genome, a complete set 
of genes or inherited material, contains genes and 
sequences of non-coding DNA. Epigenome had 
both histone-chromatin family (histones, DNA 
and DNA binding proteins) and patterns of DNA 
methylation. In 2008, epigenetic was demon-
strated as ‘stably inheritable phenotype’ ensuing 
from chromosomal changes without modifi ca-
tions in Deoxyribonucleic Acid sequence [ 4 ]. 

 The fundamental mechanisms of epigenetic 
modifi cations are complex and do methylation of 
DNA, histone modifi cation and regulation of 
gene through non-coding RNAs [ 5 ,  6 ]. Further, 
epigenetic changes are transient and potentially 
reversible. These mechanisms can be affected by 
various environmental factors [ 7 ]. In the end, 
 epigenetic modifi cations regulate expression of 
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gene and also affect many functions of gene 
(Fig.  11.1 ).

11.2        Mechanisms of Epigenetic 

11.2.1     DNA Methylation 

 DNA methylation, named as “fi fth base” of DNA, 
was acknowledged in 1948 [ 8 ]. DNA methyla-
tion gives short and semi-permanent conse-
quences with expression of gene [ 9 ]. DNA 
methylation can specifi cally provoke epigenetic 
silencing of sequences like pluripotent- associated 
genes, transposons and impaired genes [ 10 ]. 
DNA methylation is one of the entire functions of 
various cellular processes, which includes devel-
opment of embryo, genome forming, preserving 
chromosome consistency and inactivation of 
X-chromosome [ 11 – 13 ]. Scientists have achieved 
the insight of DNA methylation by how it occurs 
and target the sequence. The perturbation in epi-
genetics may cause complications like cancer or 
developmental problems [ 14 ]. Researchers have 
inter-related methylation of DNA and cancer 
[ 15 ]. Firstly, Feinburg and Vogelstein described 
methylation of DNA in human colon cancer and 
made comparison to normal cells [ 16 ]. Many 
 preliminary analyses enhanced methylation of 

DNA importance in cells of cancer and predicted 
its function in other diseases and disorders.  

11.2.2     DNA Methylation 
on Molecular Basis 

 DNA methylation, a process in which methyl 
group adds to 5 carbon of cytosine which yields 
5-mC. DNA methylation takes place in circum-
stance of cytosine which introduces guanine [ 17 ]. 
Guanines are extremely interpreted in genome; 
however 70 % of them are methylated and other 
are unmethylated, often present in “guanine 
islands”. Guanine islands are part of genome 
which constitutes 200 bp in length [ 18 ]. Mostly 
an increase ratio of guanine characterizes 60 % of 
human promoters as guanine is fertilized in 5′ 
promoter area of genes [ 19 ]. Even so, guanine 
concentration does not regulate gene expression. 
Rather, transcriptional regulation depends much 
upon DNA methylation position. Generally, CpG 
(guanine) islands which are promoter-associated 
at the stage of transcriptionally active genes 
remain unmethylated [ 18 ]. For the fi rst time, it 
was demonstrated that silencing of gene takes 
place in diploid somatic cells through methyla-
tion (apart from inactivation of X-chromosome) 
comprised of malignant tumor gene suppressor 

  Fig. 11.1    Environmental components involved in epi-
genetic. Various environmental components like habit of 
smoking, eating habits, stimulation, ignition and aging 
might strike regulation of gene, that cause epigenetic 

alterations in genome. Mechanisms of epigenetic modifi -
cations are methylation of DNA, histone modifi cation and 
regulation of gene through non-coding RNAs       
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[ 14 ]. Subsequently, various tumor gene suppres-
sor constituted to silencing through mechanisms 
of epigenetic [ 18 ]. 

 The reaction of methylation which impart 5′ 
cytosine moiety is catalyzed through DNA meth-
yltransferases (DNMTs) enzymes. Such enzymes 
take methyl radical from S-adenosylmethionine 
(SAM) donor and transfer it to 5′ cytosine. 
(Fig.  11.2 ). Family of DNMT constitutes on fi ve 
members, which includes DNA methyltransferase 
1, DNA methyltransferase 2, DNA methyltrans-

ferase 3a, 3b and 3 L [ 20 ]. DNA methyltransfer-
ase 1, 3a and 3b act on cytosine base to give 
global methylation or methylome. These are fur-
ther separated as de novo DNA methyltransfer-
ease 3a and 3b or DNA methyltransferase1 
maintenance enzymes. DNA methyltransferase 2 
and 3 L could not act as CMT (cytosine methyl-
transferase) [ 18 ]. DNA methyltransferase 3 L, 
having similarity with DNMTs3a induces de 
novo DNA methylation action by enhancing the 
binding affi nity with S-adenosylmethionine, 

  Fig. 11.2    Schematic of epigenetic alterations. Strands of 
DNA are enfolded across histone octamers, thus nucleo-
some forms which organize within chromatin. Chromatin 
is the building blocks of chromosome. DNMTs from 

methyl donor group transfers SAM to 5-methylcytosine. 
Reversible histone alterations take place through ubiquiti-
nation, acetylation, phosphorylation, methylation and 
sumoylation       
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along with mediation of transcriptional repressor 
gene by inscribing histone deacetylase 1 [ 21 – 23 ]. 
DNA methyltransferase does not own N-terminal 
regulatory domain just like other DNA methyl-
transferse enzymes. It is believed that DNA 
methyltransferasae may be needed for DNA 
damaging and repairing response [ 24 ].

   DNA methlytransferase 1 impart methylation 
of template parental DNA strand to daughter DNA 
strand when replication of DNA occurs. This 
assures same methylome in the leading cells. Such 
activity is needed for proper functioning of cell 
and methylation maintenance during somatic cell 
division. DNA methyltransferase 3a and 3b 
accomplished de novo DNA methylation through-
out embryogenesis and development of germ cell 
[ 25 ]. It was observed that 5-hmC (5-hydroxymeth-
ylcytosine) formed by the oxidation of 5-methyl 
cytosine (5-mC) through TET (ten-eleven translo-
cations) proteins. 5-Hydroxymethylcytosine is 
structurally same like 5-methylcytosine, and at the 
beginning it was observed in embryonic stem cells 
and cerebellar neurons [ 26 – 28 ]. Many other 
mechanisms have been discovered which substi-
tute 5- methylcytosine onto unmethylated cytosine 
and make 5-hydroxymethylcytosine by ten- eleven 
translocation enzymes, at last DNA gylcosylase 
enzyme family repairs the base excision [ 29 ]. 
5-Methylcytosine can be changed through ten-
eleven translocation proteins into 5- formylcytosine 
and 5-carboxylcytosine during demethylation of 
DNA [ 30 ]. The distinct function of DNA methyl-
transferase have been focused for further research 
fi ndings and among them epigenetic has been dis-
covered [ 31 ]. In fact, in vitro condition DNA 
methyltransferase 3a and 3b can act as dehydroxy-
methylases and DNA methyltransferases [ 32 ].  

11.2.3     Histone Posttranslational 
Modifi cations 

 Basically, the amino end tails of core histones, 
i.e. H2A, H2B, H3 and H4, are reactive and 
 sensory to various modifications which 
includes methylation, ubiquitination, acetyla-
tion, sumoylation and phosphorylation [ 33 ,  34 ]. 
In spherical cores,  histones are strongly packed 

to N-terminal amorphous tails which project 
outwards. Histone-modifying enzymes target by 
these tails. Finally, at full extension, N-terminal 
histone tails extends substantially outside the 
super helical turns of DNA [ 35 ]. The histone 
tails are very rich within lysine residues which 
are extremely charged positively at physiologi-
cal pH [ 36 ]. The positively charged lysine bind 
to negatively charged DNA tightly, as a result 
nucleosomes get condense and structure of 
chromatin forms which is transcription factor 
cannot access. Histone modifi cations, type of 
posttranslational modifi cations, are necessary to 
control structure and function of chromatin that 
affects DNA- linked processes like transcription 
and organization of chromosomes [ 37 ]. The 
most dominant posttranslational modifi cations 
along heterochromatin euchromatin are methyl-
ation and acylation of lysine residues present at 
tails of histone [ 38 ]. Histone acetyltransferases 
(HATs) catalysis histone lysine acetylation, and 
thus positively charged histone tails are neutral-
ized by acetyl group while histones affi nity 
decreases for negatively charged DNA. The 
DNA and histones association loses, hence 
facilitates transcription factors to access pro-
moter regions and therefore transcriptional 
activity increases [ 39 – 42 ]. 

 Among epigenetic modifi cations, for the fi rst 
time histone acetylation was correlated to regula-
tion of transcriptions [ 43 – 45 ]. Activation of gene 
against transcriptional repression is achieved by 
changes in between histone acetyltransferase 
(HAT) and activities of histone deacetylase 
(HDAC), respectively [ 46 ]. The function of these 
enzymes is in mutliprotein complexes which 
modulate chromatin in extremely particular ways. 
Acetyl group transfers from acetyl CoA to amino 
radical of lysine residues through histone acetyl-
transferases with coenzyme-A as the fi nal prod-
uct. Researchers suggest that protein-protein 
interactions get site from lysine acetylation, such 
as acetyl lysine-binding bromodomain and results 
in soft euchromatin confi guration [ 47 – 50 ]. 
Histone acetyltransferase had three main classes 
i.e. GNATs (Gcn5-related N-acetyltransferase), 
MYST and p300/CBP [ 51 ,  52 ]. Bromodomain 
characterized Gcn5-related N-acetyltransferase 
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through which lysine residues acetylates on H2B, 
H3 and H4 [ 53 ]. The four members’ family MYST 
acetylates the lysine residues with H2A, H3 and 
H4 while p300/CBP acetylate lysine with all four 
histones H2A, H2B, H3 and H4. 

 Histone deacetylase catalysis the reverse reac-
tion by raising the positive charge present on his-
tone tails, thus transcriptional potential from 
under-lysine gene get hindered through close 
binding to negatively charged DNA. In fact, in 
biological systems it is substantially known that 
loci repressed transcriptionally area linked to 
deacetylated histones [ 54 – 56 ]. Histone deacety-
lase are of many kinds which on the basis of 
sequence and function constitute four groups 
similar to yeast protein. The group 1 and group 2 
primarily comprise of members which are classi-
cally zinc-dependent. Group 1 contains histone 
deacetylase 1, 2, 3 and 8. Histone deacetylase 1, 
2 and 8 are placed primarily within nucleus, as 
histone deacetylase 3 is established in nucleus, 
cytoplasm and also associated with membrane. 
Group 2 includes histone deacetylase 4, 5, 6, 7, 9 
and 10 that in response to particular signal, trans-
port in and out of nucleus [ 57 ,  58 ]. These two 
group deacetylate lysine which plays an impor-
tant role in inactivation of transcription [ 59 ]. 

 Methylation of histones has been reported as 
the fundamental, differentiating, epigenetic fi g-
ure associated with gene activity [ 60 ,  61 ], while 

histone hyperacetylation is correlated positively 
to actively transcribed genes [ 62 ]. Histone 
methylation is correlated cellularly with DNA 
replication and repairing. Within these, repres-
sion and transcriptional activation area mostly 
analyzed [ 59 ]. Histones are only methylated in 
lysine/arginine residues from histone tails H3 
and H4 [ 63 ]. However, methylated histone is 
mostly found in lysine residue (Fig.  11.3 ). 
Chromatin fi gure changes by methylation not 
only by changing the charge on lysine residue 
but also by elevating and limiting the docking of 
chromatin linked proteins and transcriptional 
factors. Generally, methylated histone is 
enriched with activated regions of gene, espe-
cially at K4, K36 or K79 [ 64 – 66 ]. On the other 
side, methylation enriched at lysine residues 
K9, K20 or K27 has been concerned in inactiva-
tion and silencing of gene [ 34 ]. Amino group is 
present in both arginine and lysine residues 
which confer main hydrophobic features. Lysine 
could be mono, di or trimethylated but as far as 
arginine is concerned it might be mono or 
dimethylated. Many cofactors and substrates 
with various enzymes are needed for methyl 
group to attach with residue. Protein arginine 
methyltransferase is required for arginine meth-
ylation while histone methylation is involved in 
lysine methylation.

  Fig. 11.3    Schematic representation of reversible alterations in chromatin. Genes activated when DNA structure is open 
while genes inactivated when DNA structure in condensed       
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   Histone methyltransferase enzymes are 
enzymes in which SAM transfers methyl group 
onto lysine and/arginine. Various covalent modi-
fi cations found in histone tails could reverse 
enzymatically e.g. deacetylase and phosphate can 
reverse acetylation and phosphorylation. This 
enables the cell to react quickly to modifi cations 
inside cellular surroundings through rapidly 
modifying the regulatory gene machinery. In 
1960s, scientists discovered histone lysine meth-
ylation static [ 67 – 69 ]. Later on in 2004, histone 
demethylsae lysine-specifi c demethylase1 
(LSD1) was discovered which demonstrated his-
tone lysine methylation to be dynamic [ 70 ]. Since 
then, linker and core histones have been cata-
loged as sites of methylation and identifi ed such 
enzymes which catalysis gain or removal of 
methyl group [ 71 ]. The position of histone lysine 
methylation is regulated by KMTs (lysine meth-
yltransferases) and KDMs (demethylases). The 
substrates of non-histone are targeted by lysine 
methyltransferases [ 72 ,  73 ]. 

 The two main types of lysine demethylases 
which utilize oxidative mechanisms are 
2- oxoglutarate-(2OG) dependent JmjC and the 
fl avin-dependent (LSDs) subfamily [ 74 ,  75 ]. 
Lysine monomethylated and dimethylated resi-
dues can be demethylated by the fl avin- dependent 
demethylase (LSDs). The arginine and lysine 
abundance on tails of histone combined to the 
various potential offers tremendous regulatory 
potential. Discovery of histone demethylases had 
notable effects on epigenetic. Surely, it has been 
proved that methylation of histone is reversible, 
still scientists are working to search other 
demethylases [ 28 ]. 

 Another type of posttranslational alteration is 
histone phosphorylations that is involved in regu-
lation of transcription and also do compression of 
chromatin [ 76 ]. Each histone tail has its own 
accepter site that get phosphorylated through 
protein kinases and phosphatases dephosphory-
lated. Expression of gene is through phosphory-
lated histones, especially regulation of growing 
genes. Further, histone H3S10 phosphorylation 
has been linked with acetylation of histone H3, 
strongly entailing such alterations in activation of 
transcription [ 77 ]. Histone phosphorylation also 

functions in compaction of chromatin. In the 
beginning found to be linked to compaction of 
chromosome throughout meiosis and mitosis, 
phosphorylation of histone H3 is also needed for 
regulating and relaxing gene expression in chro-
matin [ 78 – 80 ]. 

 Many other histone tails posttranslational 
modifi cations includes sumoylation, ubiquitina-
tion and propionylation are also acknowledged 
and further crosstalk is going on about different 
histone modifi cations which change according to 
the environment changes. The active position of 
epigenetic modifi cations can infl uence chromatin 
which favors on (euchromatin) and off (heter-
chromatin) state [ 60 ].  

11.2.4     Chromatin 

 Chromatin relates with the DNA complex and 
also with histone proteins which form genome. 
Genome is about 2 m long. Nucleosomes, the 
main building block of chromatin, are formed 
when DNA transfers over histone proteins. It is 
the fi rst compaction stage in which DNA fi ts 
within the nucleus in organized way. Nucleosomes 
comprise of four proteins known as histones. 
Histones are known as H2A, H2B, H3 and H4. 
Another type of histone is H1 also called as linker 
histone. H1 (linker histone) binds with DNA 
within nucleosomes, and thus stabilizes and facil-
itates the nucleosomes to organize high order 
structure of chromatin [ 81 ,  82 ]. Due to this chro-
matin organization, DNA packaged tightly, also 
replicate properly and during cell division classi-
fi ed into daughter cells (Fig.  11.3 ). 

 Chromatin within non-dividing cell is further 
classifi ed into heterochromatin and euchromatin 
that is transcriptionally inactive or active state of 
chromosome [ 33 ,  38 ] (Table  11.1 ). Euchromatin 
is the area in which DNA is approachable while 
in heterochromatin as DNA is tightly packed so is 
inaccessible for transcription factors [ 83 ]. 
Euchromatin had fl exible genomic areas and 
genes are present in both active and inactive tran-
scriptional state. Conversely, heterochromatin 
had genomic regions which comprise of insistent 
sequences and genes are linked to morphogenesis 
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[ 84 ]. Heterochromatin plays an important role in 
stability of chromosome and also prevents trans-
locations and mutations [ 85 ].

   At present, chromatin not only functions in 
package of DNA and regulation on inherited 
information but also activates the structure of 
chromatin and controls the function of genome to 
further determine the cellular behavior [ 86 ]. The 
distribution of epigenetic markers along with 
high-order functional areas is represented by 
chromatin territories (Table  11.1 ) [ 37 ]. Various 
epigenetic mechanisms regulate active composi-
tion of chromatin throughout the cell cycle. 
However, the high-order formation, regulation of 
chromatin and their effect on activity of genome 
is still elusive.  

11.2.5     Non-Protein Coding RNAs 

 Non-protein coding RNAs are molecules of ribo-
nucleic acid which are not interpreted into pro-
tein. Non-protein coding RNAs include 
ribosomal RNAs (rRNAs), short-interfering 
ribonucleic acids (siRNAs), transfer RNAs 
(tRNAs) and microRNAs (miRNAs). Regulation 
of gene expression is through microRNAs and 
short- interfering RNAs without changing the 
sequence of DNA. For example, at posttranscrip-
tional level, micro RNAs which are 20–24 

 nucleotides small single-stranded moelcules 
regulate negatively the targeted genes expression 
[ 5 ,  6 ]. Micro RNAs can inhibit the expression of 
mRNA after binding to its target through various 
mechanisms. Although translational repression 
is one of the common mechanisms which occurs 
due to the binding of micro RNA to 3′ unstrans-
lated region of mRNA. Guo et al. proposed that 
destablization of target mRNA enable the endog-
enous microRNAs to reduce protein level. 
Recently, it has been reported that microRNAs 
are found to be involved in various processes, 
during differentiation and developmental regula-
tion of disease [ 87 ].   

11.3     Role of Epigenetics 

 Scientists are actively participating to study the 
epigenetic modifi cations occurring throughout 
the initiation, growth and metastatic levels of 
cancer, in order to help the patient by developing 
improve diagnostic tools and therapeutic treat-
ment. Epigenetic modifi cations also occur 
throughout fetal growth, cancer progression or 
within chronic diseases like diabetes mellitus, 
autoimmune, mental and cardiovascular in 
grownups [ 88 ]. Epigenetic mechanisms associ-
ated with the regulation of gene are discussed in 
the following section (Fig.  11.1 ). 

    Table 11.1    Epigenetic modifi cations infl uences chroma-
tin status into two states: on (euchromatin)/off (hetero-
chromatin). Methylation of DNA and modifi cations of 
epigenetic is exemplifi ed in this table. Among the silenc-

ing effects of gene with modifi cations, H3K9me3 plays 
critical role in formation of heterochromatin. Still, it is not 
completely understood by which means these different 
epigenetic modifi cations are generated and asserted   

  Chromatin features   Heterochromatin  Euchromatin 

 Structure  Condensed, closed, 
inaccessible 

 Less condensed, open, 
accessible 

 Activity  DNA expression silenced  Active DNA expression 

 DNA sequence  Repetitive elements  Gene rich 

  Epigenetic markers   DNA methylation  Hypermethylated  Hypomethylated 

 Histone acetylation  Hypoacetylated at H3 and H4  Hyperacetylated at h3 and h4 

 Histone methylation  H3K27me2,  H3K4me2, 

 H3K27me3,  H3K4me3, 

 H3K9me2,  H3K9me1 

 H3K9me3 
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11.3.1     Forming 

 Diploid beings inherit two gene copies, one from 
each parent. Researchers have proposed that 
inherited genes from each parent have been per-
manently differentiated and imprinted [ 89 ]. Thus, 
expression pattern which depends on inheritance 
of parental and maternal will demonstrate a 
mosaic pattern of parents. In mammals, imprint-
ing of genome mediates that alleles expression 
through certain loci of gene is not equivalent 
rather is infl uenced through parent origin [ 90 ]. 
For instance, investigators discovered that H19 
and IGF2R (Insulin-like growth factor-2 recep-
tor) are merely activated if transmitted from 
mother, while expression of insulin-like growth 
factor-2 is just passed from father. 

 Methylation of DNA is one of the main under-
lying mechanisms of impressing. On this proce-
dure, one gene imitate is marked on methylation 
of DNA which depends upon maternal source. 
During cell division, DNA methylation is asserted 
through 5-cytosine DNMT1 (DNA methytrans-
ferase- 1) [ 91 ,  92 ]. DNA methyltransferase-1 
expresses methylation inside the hemimethylated 
guanine (CpG) region and thus such methylated 
regions replicate to synthesize new strands of 
DNA. The best example of imprinting is insulin 
growth factor-2 which is regulated on fetal devel-
opment [ 89 ]. For fetus somatic growth, insulin 
growth factor-2 is considered to be essential fac-
tor and any impairment could lead to damaging 
results. Thus, epigenetic platform through which 
insulin growth factor-2 (IGF2) gene expression is 
regulated is the main constituent of proper 
development.  

11.3.2     Growth 

 Somatic epigenetic hereditary pattern such as 
methylation of DNA and remodeling of chroma-
tin patterns is the very essential for the growth 
of multicellular eukaryotic organisms. Though 
sequence of gene is stable, yet differentiations 
of cells occur in many ways. They contain 

 different functions and divergently react with 
the environment and also with intracellular sig-
naling. Thus, epigenetic mechanisms play key 
role in performing different cellular functions 
and differentiation. 

 Recently, it has been described that regulation 
of gene expression by cell lineages is through 
epigenetic mechanism. For instance, epigenetic 
program regulates T-helper cell from immune 
system [ 93 ]. As T-cells (CD4+) become mature, 
it epigenetically activates interferon gamma 
(IFNγ) gene and silences interleukin-4 (IL-4) 
gene. This mechanism contributes to improper 
responses of T-cell, as actions of antigen and 
cytokine alter the epigenetic modifi cation. Thus, 
different T-helper cells are formed to assert a 
polarized phenotype.  

11.3.3     Environmental Components 

 Environmental factors can begin the alterations 
in DNA methylation as soon as the maternal 
stage. For instance, fetal DNA methylation is 
modifi ed because of decrease level of dietary 
folate, or methionine in utero, and can persist 
substantially in adulthood [ 94 ]. Barker et al. 
reported that intrauterine exposures can induce 
fetus programming which lasts into adulthood 
and thus raise the risk of adult problems like dia-
betes mellitus type-2 and cardiovascular disease 
[ 95 ]. Thus, nutrition of intrauterine signifi cantly 
affects the fetal epigenetic programming. For 
instance, the important methyl donor of 
S-adenosylmethyltransferase (SAM) is methyl-
tetrahydrofolate that is used through enzyme, 
DNA methyltransferase, to further methylate 
guanine (CpG) residues [ 96 ]. During pregnancy, 
defi ciency of folate in mother leads to poor level 
of S-adenosylmethyltransferase (SAM) [ 91 ]. 
Therefore, defi ciency of folate in maternal can 
cause DNA hypomethylation that leads to exces-
sive gene expression and genetic imbalancing in 
fetus [ 96 ]. Additionally, during life many envi-
ronmental and dietary factors determine the epi-
genetic alterations.  
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11.3.4     Ignition 

 Ignition is a biological reaction for noxious stim-
uli like irritants and pathogens. Various studies 
proposed that epigenetic modifi cations are due to 
infl ammation which includes methylation of 
DNA, histone modifi cation and targeting through 
miRNAs [ 7 ]. Ito suggested that the action of 
nuclear component kappa-light-chain enhanced 
from the activation of B cells (NF-kB) is pro-
moted by incitive signals, thus promotes the 
expression of gene and modifi es histone methyla-
tion [ 97 ].  

11.3.5     Cancer 

 During cancer, the well-known epigenetic altera-
tion observed is DNA methylation. These epigen-
etic modifi cations are assorted as the main 
components of carcinogenesis. Mostly hypometh-
ylation takes place in tumor that raises transcrip-
tional activity. This might take place in unstable 
sequence and is associated with raised frequency 
of tumor. It has been considered as the earlier epi-
genetic alteration intending to change cells from 
normal to pre-malignant stage [ 89 ]. A few 
researches observed that hyper-methylation from 
neoplasm suppressor gene is associated with car-
cinogenesis [ 98 ]. Hyper-methylation for neo-
plasm-suppressor genes causes repression of 
genes and subsequently leads to progression of 
tumor [ 99 ]. It has been reported that epigenetic 
modifi cation may originate oncogenesis. Though 
researches are being made on epigenetics, various 
studies have highlighted the effects of epigenetic 
on health and also contributing in the develop-
ment of regenerative treatment [ 100 – 102 ].   

11.4     Conclusion and Future 
Perspectives 

 Epigenetics plays the key role in regulation of 
gene. Mechanisms relevant to epigenetic include 
methylation of DNA, modifi cation of histone and 
non-protein coding RNAs. Although functions 

from these mechanisms are altered, still expres-
sion of gene is affected by them. Epigenetic alter-
ation can lead to imprinting of gene and causes 
development of regulation among the eukaryotic 
organisms. Moreover, exogenic factors like 
smoking, infl ammation, diet and stimuli can lead 
epigenetic changes regulated by expression of 
gene. Epigenetic modifi cations can lead to cer-
tain disease progression like cancer. Today, epig-
enomic is considered as the most exciting region 
in biomedicine. Epigenetic mechanism detected 
in health and disease not only provides under-
standing about the origins of human malady but 
also gives framework for developing new medi-
cal aids.     
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