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We analyze linear panel regression models with interactive fixed effects and pre-
determined regressors, for example lagged-dependent variables. The first-order
asymptotic theory of the least squares (LS) estimator of the regression coefficients
is worked out in the limit where both the cross-sectional dimension and the number
of time periods become large. We find two sources of asymptotic bias of the LS
estimator: bias due to correlation or heteroscedasticity of the idiosyncratic error
term, and bias due to predetermined (as opposed to strictly exogenous) regressors.
We provide a bias-corrected LS estimator. We also present bias-corrected versions of
the three classical test statistics (Wald, LR, and LM test) and show their asymptotic
distribution is a χ2-distribution. Monte Carlo simulations show the bias correction
of the LS estimator and of the test statistics also work well for finite sample sizes.

1. INTRODUCTION

In this paper, we study a linear panel regression model in which the individual
fixed effects λi , called factor loadings, interact with common time-specific effects
ft , called factors. This interactive fixed effect specification contains the conven-
tional individual specific effects and time-specific effects as special cases but is
significantly more flexible because it allows the factors ft to affect each individual
with a different loading λi .
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Factor models have been widely studied in various economics disciplines,
for example, in asset pricing, forecasting, empirical macro, and empirical labor
economics.1 The panel literature often uses factor models to represent time-
varying individual effects (or heterogenous time effects), so-called interactive
fixed effects. For panels with a large cross-sectional dimension (N ) but a short
time dimension (T ), Holtz-Eakin, Newey, & Rosen (1988) (hereafter HNR) study
a linear panel regression model with interactive fixed effects and lagged depen-
dent variables. To solve the incidental parameter problem caused by the λi ’s, they
estimate a quasidifferenced version of the model using appropriate lagged vari-
ables as instruments, and treating ft ’s as a fixed number of parameters to estimate.
Ahn, Lee, & Schmidt (2001) also consider large N but short T panels. Instead of
eliminating the individual effects λi by transforming the panel data, they impose
various second-moment restrictions including the correlated random effects λi ,
and derive moment conditions to estimate the regression coefficients. The more
recent literature considers panels with comparable size of N and T . The inter-
active fixed effect panel regression model of Pesaran (2006) allows heterogenous
regression coefficients. Pesaran’s estimator is the common correlated effect (CCE)
estimator that uses the cross-sectional averages of the dependent variable and the
independent variables as control functions for the interactive fixed effects.2

Among the interactive fixed effect panel literature, most closely related to our
paper is Bai (2009). Bai assumes the regressors are strictly exogenous and the
number of factors is known. The estimator he investigates is the least squares
(LS) estimator, which minimizes the sum of squared residuals of the model jointly
over the regression coefficients and the fixed effect parameters λi and ft .3 Using
alternative asymptotics where N ,T → ∞ at the same rate,4 Bai shows the LS
estimator is

√
N T -consistent and asymptotically normal, but may have an asymp-

totic bias. The bias in the normal limiting distribution occurs when the regression
errors are correlated or heteroscedastic. Bai also shows how to estimate the bias,
and proposes a bias-corrected estimator.

Following the methodology in Bai (2009), we investigate the LS estimator for
a linear panel regression with a known number of interactive fixed effects. The
main difference from Bai is that we consider predetermined regressors, thus al-
lowing feedback of past outcomes to future regressors. One of the main findings
of the present paper is that the limit distribution of the LS estimator has two
types of biases: one type of bias due to correlated or heteroscedastic errors (the
same bias as in Bai) and the other type of bias due to the predetermined regres-
sors. This additional bias term is analogous to the incidental parameter bias of
Nickell (1981) in finite T and the bias in Hahn & Kuersteiner (2002) in large T .

In addition to allowing for predetermined regressors, we also extend Bai’s
results to models in which both “low-rank regressors” (e.g., time-invariant and
common regressors, or interactions of those two) and “high-rank-regressors”
(almost all other regressors that vary across individuals and over time) are present
simultaneously, whereas Bai (2009) only considers the low-rank regressors
separately and in a restrictive setting (in particular, not allowing for regressors
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that are obtained by interacting time-invariant and common variables). A general
treatment of low-rank regressors is desirable because they often occur in applied
work, for example, Gobillon & Magnac (2013). The analysis of those regressors
is challenging, however, because the unobserved interactive fixed effects also rep-
resent a low-rank N × T matrix, thus posing a nontrivial identification problem
for low-rank regressors, which needs to be addressed. We provide conditions un-
der which the different types of regressors are identified jointly, and under which
they can be estimated consistently as N and T grow large.

Another contribution of this paper is to establish the asymptotic theory of the
three classical test statistics (Wald test, LR test, and LM (or score) test) for test-
ing restrictions on the regression coefficients in a large N , T panel framework.5

Regarding testing for coefficient restrictions, Bai (2009) investigates the Wald test
based on the bias-corrected LS estimator, and HNR consider the LR test in their
2SLS estimation framework with fixed T .6 What we show is that the conventional
LR and LM test statistics based on the LS profile objective function have noncen-
tral chi-square limits due to incidental parameters in the interactive fixed effects.
We therefore propose modified LR and LM tests whose asymptotic distributions
are conventional chi-square distributions.

To establish the asymptotic theories of the LS estimator and the three classical
tests, we use the quadratic approximation of the profile LS objective function
derived in Moon & Weidner (2015). This method is different from Bai (2009),
who uses the first-order condition of the LS optimization problem as the starting
point of his analysis. One advantage of our methodology is that it can also directly
be applied to derive the asymptotic properties of the LR and LM test statistics.

In this paper, we assume the regressors are not endogenous and the number
of factors is known, which might be restrictive in some applications. In other
papers, we study how to relax these restrictions. Moon & Weidner (2015) investi-
gates the asymptotic properties of the LS estimator of the linear panel regression
model with factors when the number of factors is unknown and extra factors are
included unnecessarily in the estimation. We find that under suitable conditions,7

the limit distribution of the LS estimator is unchanged when the number of fac-
tors is overestimated. The extension to allow for endogenous regressors is very
briefly discussed in Section 6 of the current paper, and is closely related to the
results in Moon, Shum, & Weidner (2012) (hereafter MSW). MSW’s main pur-
pose is to extend the random coefficient multinomial logit demand model (known
as the BLP demand model from Berry, Levinsohn, & Pakes (1995)) by allowing
for interactive product and market specific fixed effects. Although the main model
of interest is quite different from the linear panel regression model of the current
paper, MSW’s econometrics framework is directly applicable to the model of the
current paper with endogenous regressors.8

Comparing the different estimation approaches for interactive fixed effect panel
regressions proposed in the literature, it seems fair to say that the LS estima-
tor in Bai (2009) and our paper, the CCE estimator of Pesaran (2006), and
the IV estimator based on quasidifferencing in HNR all have their own relative
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advantages and disadvantages. These three estimation methods handle the inter-
active fixed effects quite differently. The LS method concentrates out the inter-
active fixed effects by taking out the principal components. The CCE method
controls the factor (or time effects) using the cross-sectional averages of the de-
pendent and independent variables. The HNR’s approach quasidifferences out the
individual effects, treating the remaining time effects as parameters to estimate.
The IV estimator of HNR should work well when T is short, but is expected to
also suffer from an incidental parameter problem when T becomes large, because
then many factors need to be estimated as parameters that enter the model nonlin-
early. Pesaran’s CCE estimation method does not require the number of factors to
be known and does not require the strong factor assumption that we will impose
below, but for the CCE estimator to work, not only the DGPs of the dependent
variable (e.g., the regression model) but also the DGPs of the explanatory vari-
ables need to be restricted such that their cross-sectional average can control for
unobserved factors. The LS estimator and its bias-corrected version perform well
under relatively weak restrictions on the regressors, but requires that T should
not be too small and that the factors should be sufficiently strong to be correctly
picked up as the leading principal components.

The paper is organized as follows. In Section 2, we introduce the interactive
fixed effect model and provide conditions for identifying the regression coeffi-
cients in the presence of the interactive fixed effects. In Section 3, we define the
LS estimator of the regression parameters and provide a set of assumptions that
are sufficient to show consistency of the LS estimator. In Section 4, we work
out the asymptotic distribution of the LS estimator under alternative asymptotics.
We also provide a consistent estimator for the asymptotic bias and a bias-corrected
LS estimator. In Section 5, we consider the Wald, LR, and LM tests for testing
restrictions on the regression coefficients of the model. We present bias-corrected
versions of these tests and show that they have chi-square limiting distributions.
In Section 6, we briefly discuss how to estimate the interactive fixed effect linear
panel regression when the regressors are endogenous. In Section 7, we present
Monte Carlo simulation results for an AR(1) model with interactive fixed effects.
The simulations show the LS estimator for the AR(1) coefficient is biased, and the
tests based on it can have severe size distortions and power asymmetries, whereas
the bias-corrected LS estimator and test statistics have better properties. We con-
clude in Section 8. We present all proofs of theorems and some technical details
in the appendix or supplementary material.

A few words on notation are due. For a column vector v , the Euclidean norm
is defined by ‖v‖ = √

v ′v . For the n-th largest eigenvalues (counting multiple
eigenvalues multiple times) of a symmetric matrix B, we write μn(B). For an
m ×n matrix A, the Frobenius norm is ‖A‖F = √

Tr(AA′), and the spectral norm
is ‖A‖ = max0�=v∈Rn

‖Av‖
‖v‖ , or equivalently ‖A‖ = √

μ1(A′ A). Furthermore, we
define PA = A(A′ A)† A′ and MA = I− A(A′ A)† A′, where I is the m ×m identity
matrix, and (A′ A)† is the Moore–Penrose pseudoinverse, to allow for the case that
A is not of full column rank. For square matrices B, C , we write B > C (or B ≥ C)
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to indicate B − C is positive (semi) definite. For a positive definite symmetric
matrix A, we write A1/2 and A−1/2 for the unique symmetric matrices that satisfy
A1/2 A1/2 = A and A−1/2 A−1/2 = A−1. We use ∇ for the gradient of a function;
that is, ∇ f (x) is the column vector of partial derivatives of f with respect to each
component of x . We use “wpa1” for “with probability approaching one”.

2. MODEL AND IDENTIFICATION

We study the following panel regression model with cross-sectional size N , and
T time periods:

Yit = β0′ Xit +λ0′
i f 0

t + eit , i = 1 . . . N , t = 1 . . .T, (1)

where Xit is a K × 1 vector of observable regressors, β0 is a K × 1 vector of
regression coefficients, λ0

i is an R ×1 vector of unobserved factor loadings, f 0
t is

an R × 1 vector of unobserved common factors, and eit are unobserved errors.
The superscript zero indicates the true parameters. We write f 0

tr and λ0
ir , where

r = 1, . . . , R, for the components of λ0
i and f 0

t , respectively. R is the number of
factors. Note that we can have f 0

tr = 1 for all t and a particular r , in which case the
corresponding λ0

ir become standard individual-specific effects. Analogously, we
can have λ0

ir = 1 for all i and a particular r , so that the corresponding f 0
tr become

standard time-specific effects.
Throughout this paper, we assume the true number of factors R is known.9

We introduce the notation β0 · X = ∑K
k=1 β0

k Xk . In matrix notation, the model
can then be written as

Y = β0 · X + λ0 f 0′ + e ,

where Y , Xk , and e are N ×T matrices, λ0 is an N × R matrix, and f 0 is a T × R
matrix. The elements of Xk are denoted by Xk,i t .

We separate the K regressors into K1 “low-rank regressors” Xl , l = 1, . . . , K1,
and K2 = K − K1 “high-rank regressors” Xm , m = K1 +1, . . . , K . Each low-rank
regressor l = 1, . . . , L is assumed to satisfy rank(Xl) = 1. Therefore, we can write
Xl = wlv

′
l , where wl is an N -vector and vl is a T -vector, and we also define the

N × K1 matrix w = (w1, . . . ,wK1) and the T × K1 matrix v = (v1, . . . ,vK1).
Let l = 1, . . . , K1. The two most prominent types of low-rank regressors are

time-invariant regressors, which satisfy Xl,i t = Zi for all i, t , and common
(or cross-sectionally invariant) regressors, in which case Xl,i t = Wt for all i, t .
Here, Zi and Wt are some observed variables, which only vary over i or t ,
respectively. A more general low-rank regressor can be obtained by interacting
Zi and Wt multiplicatively, namely, Xl,i t = Zi Wt , an empirical example of which
is given in Gobillon & Magnac (2013). In these examples, and probably for the
vast majority of applications, the low-rank regressors all satisfy rank(Xl) = 1, but
our results can easily be extended to more general low-rank regressors.10

High-rank regressors are those whose distribution guarantees they have high
rank (usually full rank) when considered as an N × T matrix. For example,
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a regressor whose entries satisfy Xm,i t ∼ i idN (μ,σ), with μ ∈ R and σ > 0,
satisfies rank(Xm) = min(N ,T ) with probability one.

This separation of the regressors into low- and high-rank regressors is important
to formulate our assumptions for identification and consistency, but actually plays
no role in the estimation and inference procedures for β̂ discussed below.

Assumption ID (Assumptions for Identification).

(i) Existence of Second Moments:
The second moments of Xk,i t and eit conditional on λ0, f 0, w exist for all
i , t , k.

(ii) Mean Zero Errors and Exogeneity:
E
(
eit |λ0, f 0,w

)= 0, and E
(
Xk,i t ei t |λ0, f 0,w

)= 0, a.s., for all i , t , k.

The following two assumptions only need to be imposed if K1 > 0, that is, if low-
rank regressors are present:

(iii) Noncollinearity of Low-Rank Regressors:
Consider linear combinations α · X low = ∑K1

l=1 αl Xl of the low-rank re-
gressors Xl with α ∈ RK1 . For all α �= 0, we assume

E

[
(α · X low)Mf 0(α · X low)′

∣∣λ0, f 0,w
]

�= 0 , a.s.

(iv) No Collinearity between Factor Loadings and Low-Rank Regressors:
rank

(
Mwλ0

)= rank
(
λ0
)
.11

The following assumption only needs to be imposed if K2 > 0, that is, if high-rank
regressors are present:

(v) Noncollinearity of High-Rank Regressors:
Consider linear combinations α · Xhigh = ∑K

m=K1+1 αm Xm of the high-

rank regressors Xm for α ∈ RK2 , where the components of the K2-vector
α are denoted by αK1+1 to αK . For all α �= 0, we assume

rank
{
E

[
(α · Xhigh)(α · Xhigh)

′∣∣λ0, f 0,w
]}

> 2R + K1 , a.s.

All expectations in the assumptions are conditional on λ0, f 0, and w; in partic-
ular, eit is not allowed to be correlated with λ0, f 0, and w. However, eit is allowed
to be correlated with v (i.e., predetermined low-rank regressors are allowed). If
desired, one can interchange the role of N and T in the assumptions, by using the
formal symmetry of the model under exchange of the panel dimensions (N ↔ T ,
λ0 ↔ f 0, Y ↔ Y ′, Xk ↔ X ′

k , w ↔ v).
Assumptions ID(i) and (i i) have standard interpretations, but the other assump-

tions require some further discussion.
Assumption ID(i i i) states the low-rank regressors are noncollinear even

after projecting out all variation that is explained by the true factors f 0. This
assumption would, for example, be violated if vl = f 0

r for some l = 1, . . . , K1
and r = 1, . . . , R, because then Xl Mf 0 = 0 and we can choose α such that
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X low = Xl . Similarly, Assumption ID(iv) rules out, for example, that wl = λ0
r for

some l = 1, . . . , K1 and r = 1, . . . , R, because then rank(Mwλ0) < rank(λ0), in
general. It ought to be expected that λ0 and f 0 have to feature in the identification
conditions for the low-rank regressors, because the interactive fixed effects
structure and the low-rank regressors represent similar types of low-rank
N × T structures.

Assumption ID(v) is a generalized noncollinearity assumption for the
high-rank regressors, which guarantees any linear combination α · Xhigh of the
high-rank regressors is sufficiently different from the low-rank regressors and
from the interactive fixed effects. A standard noncollinearity assumption can be
formulated by demanding the N × N matrix E

[
(α · Xhigh)(α · Xhigh)

′∣∣λ0, f 0,w
]

is nonzero for all nonzero α ∈ RK2 , which can be equivalently expressed as
rank

{
E
[
(α · Xhigh)(α · Xhigh)

′∣∣λ0, f 0,w
]}

> 0 for all nonzero α ∈RK2 . Assump-
tion ID(v) strengthens this standard noncollinearity assumption by demanding
the rank not only to be positive, but larger than 2R + K1. This also explains the
name “high-rank regressors,” because their rank has to be sufficiently large to
satisfy this assumption. Note also that only the number of factors R, but not λ0

and f 0, features in Assumption ID(v). The sample version of this assumption
is given by Assumption 4(i i)(a) below, which is also very closely related to
Assumption A in Bai (2009).

THEOREM 2.1 (Identification). Suppose the Assumptions ID are satisfied.

Then, the minima of the expected objective function E

(∥∥∥Y − β · X − λ

f ′
∥∥∥2

F

∣∣∣λ0, f 0,w
)

over (β,λ, f ) ∈RK+N×R+T ×R satisfy β = β0 and λ f ′ = λ0 f 0′.
This shows that β0 and λ0 f 0′ are identified.

The theorem shows the true parameters are identified as minima of the expected
value of

∥∥Y − β · X − λ f ′∥∥2
F =∑

i,t (Yitβ
′ − Xit −λ′

i ft )
2, which is the sum of

squared residuals. We use the same objective function, to define the estimators β̂,
λ̂ and f̂ below. Without further normalization conditions, the parameters λ0 and
f 0 are not separately identified, because the outcome variable Y is invariant under
transformations λ0 → λ0 A′ and f 0 → f 0 A−1, where A is a nonsingular R × R
matrix. However, the product λ0 f 0′ is uniquely identified according to the theo-
rem. Because our focus is on identification and estimation of β0, we do not need
to discuss those additional normalization conditions for λ0 and f 0 in this paper.

3. ESTIMATOR AND CONSISTENCY

The objective function of the model is simply the sum of squared residuals, which
in matrix notation can be expressed as

LN T (β,λ, f ) = 1

N T

∥∥Y −β · X −λ f ′∥∥2
F

= 1

N T
Tr
[(

Y −β · X −λ f ′)′ (Y −β · X −λ f ′)] . (2)
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The estimator we consider is the LS estimator that jointly minimizes
LN T (β,λ, f ) over β, λ and f . Our main objects of interest are the regression
parameters β = (β1, ...,βK )′, whose estimator is given by

β̂ = argmin
β∈B

L N T (β) , (3)

where B ⊂ R
K is a compact parameter set that contains the true parameter,

namely, β0 ∈ B, and the objective function is the profile objective function

L N T (β) = min
λ, f
LN T (β,λ, f )

= min
f

1

N T
Tr
[
(Y −β · X) Mf (Y −β · X)′

]
= 1

N T

T∑
r=R+1

μr
[
(Y −β · X)′ (Y −β · X)

]
. (4)

Here, the first expression for L N T (β) is its definition as the minimum value of
LN T (β,λ, f ) over λ and f . We denote the minimizing incidental parameters by
λ̂(β) and f̂ (β), and we define the estimators λ̂ = λ̂(β̂) and f̂ = f̂ (β̂). Those min-
imizing incidental parameters are not uniquely determined – for the same reason
that λ0 and f 0 are nonuniquely identified – but the product λ̂(β) f̂ ′(β) is unique.

The second expression for L N T (β) in Equation (4) is obtained by concentrating
out λ (analogously, one can concentrate out f to obtain a formulation whereby
only the parameter λ remains). The optimal f in the second expression is given
by the R eigenvectors that correspond to the R largest eigenvalues of the T × T
matrix (Y −β · X)′ (Y −β · X). This insight leads to the third line that presents
the profile objective function as the sum over the T − R smallest eigenvalues of
this T × T matrix. Lemma A.1 in the appendix shows equivalence of the three
expressions for L N T (β) given above.

Multiple local minima of L N T (β) may exist, and one should use multiple start-
ing values for the numerical optimization of β to guarantee the true global mini-
mum β̂ is found.

To show consistency of the LS estimator β̂ of the interactive fixed effect
model, and also later for our first-order asymptotic theory, we consider the limit
N ,T → ∞. In the following we present assumptions on Xk , e, λ, and f that
guarantee consistency.12

Assumption 1. (i) plimN ,T →∞
(
λ0′λ0/N

)
>0, (ii) plimN ,T →∞

(
f 0′ f 0/T

)
>0.

Assumption 2. plimN ,T →∞
[
(N T )−1Tr

(
Xk e′)]= 0, for all k = 1, . . . , K .

Assumption 3. plimN ,T →∞
(
‖e‖/√N T

)
= 0.

Assumption 1 guarantees the matrices f 0 and λ0 have full rank, that is, that
R distinct factors and factor loadings exist asymptotically, and that the norm of
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each factor and factor loading grows at a rate of
√

T and
√

N , respectively. As-
sumption 2 demands the regressors are weakly exogenous. Assumption 3 restricts
the spectral norm of the N × T error matrix e. We discuss this assumption in
more detail in Section 4, and we give examples of error distributions that satisfy
this condition in Section S.2 of the supplementary material. The final assumption
needed for consistency is an assumption on the regressors Xk . We already intro-
duced the distinction between the K1 “low-rank regressors” Xl , l = 1, . . . , K1, and
the K2 = K − K1 “high-rank regressors” Xm , m = K1 +1, . . . , K above.

Assumption 4.

(i) plimN ,T →∞
[
(N T )−1 ∑N

i=1
∑T

t=1 Xit X ′
i t

]
> 0.

(ii) The two types of regressors satisfy:

(a) Consider linear combinations α · Xhigh = ∑K
m=K1+1 αm Xm of the

high-rank regressors Xm for K2-vectors α with ‖α‖ = 1, where the
components of the K2-vector α are denoted by αK1+1 to αK . We as-
sume a constant b > 0 exists such that

min
{α∈RK2 ,‖α‖=1}

N∑
r=2R+K1+1

μr

[
(α · Xhigh)(α · Xhigh)

′

N T

]
≥ b wpa1.

(b) For the low-rank regressors, we assume rank(Xl) = 1, l = 1, . . . , K1;
that is, they can be written as Xl = wlv

′
l for N -vectors wl and

T -vectors vl , and we define the N × K1 matrix w = (w1, . . . ,wK1)
and the T × K1 matrix v = (v1, . . . ,vK1). We assume a constant B > 0
exists such that N−1 λ0′ Mw λ0 > B IR and T −1 f 0′ Mv f 0 > B IR ,
wpa1.

Assumption 4(i) is a standard noncollinearity condition for all the regressors.
Assumption 4(i i)(a) is an appropriate sample analog of the identification As-
sumption ID(v). If the sum in Assumption 4(i i)(a) were to start from r = 1,

we would have
∑N

r=1 μr

[
(α·Xhigh)(α·Xhigh)

′
N T

]
= 1

N T Tr[(α · Xhigh)(α · Xhigh)
′], so

that the assumption would become a standard noncollinearity condition. Not
including the first 2R + K1 eigenvalues in the sum implies the N × N matrix
(α · Xhigh)(α · Xhigh)

′ needs to have rank larger than 2R + K1.
Assumption 4(i i)(b) is closely related to the identification Assump-

tions ID(i i i) and (iv). The appearance of the factors and factor loadings in this
assumption on the low-rank regressors is inevitable to guarantee consistency. For
example, consider a low-rank regressor that is cross-sectionally independent and
proportional to the r ’th unobserved factor, for example, Xl,i t = ftr . The corre-
sponding regression coefficient βl is then not identified, because the model is
invariant under a shift βl �→ βl + a, λir �→ λir − a, for an arbitrary a ∈ R. This
phenomenon is well known from ordinary fixed effect models, where the coeffi-
cients of time-invariant regressors are not identified. Assumption 4(ii)(b) therefore
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guarantees for Xl = wlv
′
l that wl is sufficiently different from λ0, and vl is suffi-

ciently different from f 0.

THEOREM 3.1 (Consistency). Let Assumptions 1, 2, 3, and 4 be satisfied; let
the parameter set B be compact; and let β0 ∈ B. In the limit N ,T → ∞, we then
have

β̂ −→
p

β0.

We assume compactness of B to guarantee existence of the minimizing β̂.
We also use boundedness of B in the consistency proof, but only for those
parameters βl , l = 1 . . . K1, that correspond to low-rank regressors, that is, if only
high-rank regressors (K1 = 0) are present, the compactness assumption can be
omitted, as long as existence of β̂ is guaranteed (e.g., for B= RK ).

Bai (2009) also proves consistency of the LS estimator of the interactive fixed
effect model, but under somewhat different assumptions. He also employs what
we call Assumptions 1 and 2, and he uses a low-level version of Assumption 3.
He demands the regressors to be strictly exogenous. Regarding consistency, the
main difference between our assumptions and his is the treatment of high- and
low-rank regressors. He first gives a condition on the regressors (his Assump-
tion A) that rules out low-rank regressors, and later discusses the case in which all
regressors are either time-invariant or common regressors (i.e., are all low rank).
By contrast, our Assumption 4 allows for a combination of high- and low-rank
regressors, and for low-rank regressors that are more general than time-invariant
and common regressors.

4. ASYMPTOTIC DISTRIBUTION AND BIAS CORRECTION

Because we have already shown consistency of the LS estimator β̂, it is sufficient
to study the local properties of the objective function L N T (β) around β0 to derive
the first-order asymptotic theory of β̂. Moon and Weidner (2015) derived a useful
approximation of L N T (β) around β0, and we briefly summarize the ideas and
results of this approximation in the following subsection. We then apply those
results to derive the asymptotic distribution of the LS estimator, including working
out the asymptotic bias, which was not done previously. Afterward, we discuss
bias correction and inference.

4.1. Expansion of the Profile Objective Function

The last expression in Equation (4) for the profile objective function is convenient
because it does not involve any minimization over the parameters λ or f . On the
other hand, this expression cannot be easily discussed by analytic means, because
in general, no explicit formula exists for the eigenvalues of a matrix. The conven-
tional method that involves a Taylor series expansion in the regression parameters
β alone seems infeasible here. In Moon and Weidner (2015), we showed how to



168 HYUNGSIK ROGER MOON AND MARTIN WEIDNER

overcome this problem by expanding the profile objective function jointly in β
and ‖e‖. The key idea is the following decomposition:

Y −β · X = λ0 f 0′︸ ︷︷ ︸
leading

term

−
(
β −β0

)
· X + e︸ ︷︷ ︸

perturbation term

.

If the perturbation term is zero, the profile objective L N T (β) is also zero, because
the leading term λ0 f 0′ has rank R, so that the T − R smallest eigenvalues of
f 0λ0′λ0 f 0′ all vanish. One may thus expect that small values of the perturbation
term should correspond to small values of L N T (β). This idea can indeed be made
mathematically precise. By using the perturbation theory of linear operators (see,
e.g., Kato), one can work out an expansion of L N T (β) in the perturbation term,
and one can show this expansion is convergent as long as the spectral norm of the
perturbation term is sufficiently small.

The assumptions on the model made so far are in principle already sufficient to
apply this expansion of the profile objective function, but to truncate the expansion
at an appropriate order and to provide a bound on the remainder term that is
sufficient to derive the first-order asymptotic theory of the LS estimator, we need
to strengthen Assumption 3 as follows.

Assumption 3∗. ‖e‖ = op
(
N 2/3

)
.

In the rest of the paper, we only consider asymptotics in which N and T
grow at the same rate; that is, we could equivalently write op

(
T 2/3

)
instead of

op
(
N 2/3

)
in Assumption 3∗. In Section S.2 of the supplementary material, we

provide examples of error distributions that satisfy Assumption 3∗. In fact, for
these examples, we have ‖e‖ = Op

(√
max(N ,T )

)
. A large literature studies the

asymptotic behavior of the spectral norm of random matrices; see, for example,
Geman (1980), Silverstein (1989), Bai, Silverstein, & Yin (1988), Yin, Bai, and
Krishnaiah (1988), and Latala (2005). Loosely speaking, we expect the result
‖e‖ = Op

(√
max(N ,T )

)
to hold as long as the errors eit have mean zero, uni-

formly bounded fourth moment, and weak time-serial and cross-sectional corre-
lation (in some well-defined sense, see the examples).

We can now present the quadratic approximation of the profile objective func-
tion L N T (β) that we derived in Moon and Weidner (2015).

THEOREM 4.1 (Expansion of Profile Objective Function). Let Assump-
tion 1, 3∗, and 4(i) be satisfied, and consider the limit N ,T → ∞ with N/T → κ2,
0 < κ < ∞. Then, the profile objective function satisfies L N T (β) = Lq,N T (β)+
(N T )−1 RN T (β), where the remainder RN T (β) is such that for any sequence
ηN T → 0, we have

sup
{β:‖β−β0‖≤ηN T }

|RN T (β)|(
1+√

N T
∥∥β −β0

∥∥)2
= op (1) ,
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and Lq,N T (β) is a second-order polynomial in β; namely,

Lq,N T
(
β
) = L N T

(
β0) − 2√

N T

(
β −β0

)′
CN T +

(
β −β0

)′
WN T

(
β −β0

)
,

with K × K matrix WN T defined by WN T,k1k2 = (N T )−1 Tr
(
Mf 0 X ′

k1
Mλ0 Xk2

)
,

and K -vector CN T with entries CN T,k = C (1)
(
λ0 , f 0 , Xk e

) +
C (2)

(
λ0 , f 0 , Xk e

)
, where

C (1)
(
λ0, f 0, Xk, e

)
= 1√

N T
Tr
(
Mf 0 e′ Mλ0 Xk

)
,

C (2)
(
λ0, f 0, Xk, e

)
= − 1√

N T

[
Tr

(
eMf 0 e′ Mλ0 Xk f 0

(
f 0′ f 0

)−1(
λ0′λ0

)−1
λ0′
)

+Tr

(
e′Mλ0 e Mf 0 X ′

k λ0
(
λ0′λ0

)−1 (
f 0′ f 0

)−1
f 0′
)

+Tr

(
e′Mλ0 Xk Mf 0 e′ λ0

(
λ0′λ0

)−1 (
f 0′ f 0

)−1
f 0′
)]

.

We refer to WN T and CN T as the approximated Hessian and the approximated
score (at the true parameter β0). The exact Hessian and the exact score (at the
true parameter β0) contain higher-order expansion terms in e, but the expansion
up to the particular order above is sufficient to work out the first-order asymptotic
theory of the LS estimator, as the following corollary shows.

COROLLARY 4.2. Let the assumptions of Theorem 3.1 and 4.1 hold; let β0

be an interior point of the parameter set B; and assume CN T = Op(1). We then
have

√
N T

(
β̂ −β0

)= W −1
N T CN T +op(1) =Op(1).

Combining consistency of the LS estimator and the expansion of the profile
objective function in Theorem 4.1, one obtains

√
N T WN T

(
β̂ − β0

) = CN T +
op(1); see, for example, Andrews (1999). To obtain the corollary, one needs in
addition that WN T does not become degenerate as N ,T → ∞; that is, the smallest
eigenvalue of WN T should be bounded from below by a positive constant. Our
assumptions already guarantee existence of such a lower bound, as is shown in
the supplementary material.

Analogous to the expansions of the profile objective function L N T (β), one
can also derive expansions of the projectors Mλ̂ and M f̂ , and those can be used

to show consistency of λ̂ and f̂ , up to normalization; see Lemma S.10.4 in the
supplementary material.

4.2. Asymptotic Distribution

We now apply Corollary 4.2 to work out the asymptotic distribution of the LS
estimator β̂. For this purpose, we need more specific assumptions on λ0, f 0, Xk ,
and e.
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Assumption 5. A sigma algebra C = CN T (which in the following we will refer
to as the conditioning set) exists that contains the sigma algebra generated by λ0

and f 0, such that

(i) E
[
eit
∣∣C∨σ({(Xis,ei,s−1),s ≤ t})]= 0, for all i, t .13

(ii) eit is independent over t , conditional on C, for all i .

(iii) {(Xit ,eit ), t = 1, . . . ,T } is independent across i , conditional on C.

(iv) 1
N T

∑N
i=1
∑T

t,s=1

∣∣∣Cov
(

Xk,i t , X	,is

∣∣∣C)∣∣∣=Op(1), for all k,	 = 1, . . . , K .

(v) 1
N T 2

∑N
i=1
∑T

t,s,u,v=1

∣∣∣Cov
(

eit X̃k,is, eiu X̃	,iv

∣∣∣C)∣∣∣ = Op(1), where

X̃k,i t = Xk,i t −E[Xk,i t
∣∣C], for all k,	 = 1, . . . , K .

(vi) An ε > 0 exists such that E
(
e8

i t

∣∣C) and E
(‖Xit‖8+ε

∣∣C) and E‖λ0
i ‖4 and

E‖ f 0
t ‖4+ε are bounded by a nonrandom constant, uniformly over i, t

and N ,T .

(vii) β0 is an interior point of the compact parameter set B.

Remarks on Assumption 5.

(1) Part (i) of Assumption 5 imposes that eit is a martingale difference se-
quence over time for a particular filtration. Conditioning on C, the time
series of eit is independent over time (part (i i) of the assumption) and the
error term eit and regressors Xit are cross-sectionally independent (part
(i i i) of the assumption), but unconditional correlation is allowed. Part (iv)
imposes weak time-serial correlation of Xit . Part (v) demands weak time-
serial correlation of X̃k,i t = Xk,i t −E[Xk,i t

∣∣C] and eit . Finally, parts (vi)
and (vi i) require bounded higher moments of the error term, regressors,
factors and factor loadings, and a compact parameter set with an interior
true parameter.

(2) Assumption 5(i) implies E
(
Xk,i t ei t |C

) = 0 and E
(
Xk,i t ei t X	,iseis |C

) = 0
for t �= s. Thus, the assumption guarantees Xit eit is mean zero and uncor-
related over t , and independent across i , conditional on C. Notice the con-
ditional mean independence restriction in Assumption 5(i) is weaker than
Assumption D of Bai (2009), besides sequential exogeneity. Bai imposes
independence between eit and ({X js,λj , fs}j,s).

(3) Assumption 5 is sufficient for Assumption 2. To see this, notice
Tr(Xk e′) = ∑

i,t Xk,i t ei t , and also that the sequential exo-
geneity and the cross-sectional independence assumption imply

E

[(
(N T )−1∑

i,t Xk,i t ei t

)2∣∣∣C] = (N T )−2∑
i,t E

[(
Xk,i t ei t

)2∣∣∣C].
Then, together with the assumption of bounded moments, we have
(N T )−1∑

i,t Xk,i t ei t = op(1).

(4) Assumption 5 is also sufficient for Assumption 3∗ (and thus for Assump-
tion 3), because eit is assumed independent over t and across i and has
a bounded fourth moment, conditional on C, which by using results in
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Latala (2005), implies the spectral norm satisfies ‖e‖ = √
max(N ,T ) as

N and T become large; see the supplementary material.

(5) Examples of regressor processes, which satisfy Assumptions 5(iv) and (v),
are discussed in the following. These examples also illuminate the role of
the conditioning sigma field C.

Examples of DGPs for Xit .
Here we provide examples of the DGPs of the regressors Xit that satisfy the

conditions in Assumption 5. Proofs for these examples are provided in the sup-
plementary material.

Example 1
The first example is a simple AR(1) interactive fixed effect regression:

Yit = β0Yi,t−1 +λ0′
i f 0

t + eit ,

where eit is mean zero, independent across i and t , and independent of λ0 and f 0.
Assume |β0| < 1 and that eit , λ0

i , and f 0
t all possess uniformly bounded moments

of order 8+ε. In this case, the regressor is Xit = Yit−1 = λ0′
i F0

t +Uit , where F0
t =∑∞

s=0(β
0)s f 0

t−1−s and Uit = ∑∞
s=0(β

0)sei,t−1−s . For the conditioning sigma
field C in Assumption 5, we choose C = σ

({λ0
i : 1 ≤ i ≤ N },{ f 0

t : 1 ≤ t ≤ T }).
Conditional on C, the only variation in Xit stems from Uit , which is indepen-
dent across i and weakly correlated over t , so that Assumption 5(iv) holds.
Furthermore, we have E(Xit |C) = λ0′

i F0
t and X̃i t = Uit , which allows us to verify

Assumption 5(v).
This example can be generalized to a VAR(1) model as follows:(

Yit

Zit

)
= B

(
Yi,t−1

Zi,t−1

)
︸ ︷︷ ︸

=Xit

+
(

λ0′
i f 0

t

dit

)
+
(

eit

uit

)
︸ ︷︷ ︸
=Eit

, (5)

where Zit is an m ×1 vector of additional variables and B is an (m +1)× (m +1)
matrix of VAR parameters whose eigenvalues lie within the unit circle. The m ×1
vector dit and the factors f 0

t and factor loadings λ0
i are assumed to be independent

of the (m + 1)× 1 vector of innovations Eit . Suppose our interest is to estimate
the first row in Equation (5), which corresponds exactly to our interactive fixed
effects model with regressors Yi,t−1 and Zi,t−1. Choosing C to be the sigma field
generated by all f 0

t , λ0
i , dit , we obtain X̃i t =∑∞

s=0Bs Ei,t−1−s . Analogous to the
AR(1) case, we then find Assumption 5(iv) and (v) are satisfied in this example if
the innovations Eit are independent across i and over t , and have appropriate
bounded moments.

Example 2
Consider a scalar Xit for simplicity, and let Xit = g (vi t ,δi ,ht ). We assume (i){
(eit ,vi t )i=1,...,N ;t=1,...,T

}⊥{(λ0
i ,δi

)
i=1,...,N ,

(
f 0
t ,ht

)
t=1,...,T

}
, (ii) (eit ,vi t ,δi )
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are independent across i for all t, and (iii) vis ⊥ eit for s ≤ t and
all i . Furthermore, assume supi t E|Xit |8+ε < ∞ for some positive ε. For
the conditioning sigma field C in Assumption 5, we choose C = σ({

λ0
i : 1 ≤ i ≤ N

}
, {δi : 1 ≤ i ≤ N } , { f 0

t : −∞ ≤ t ≤ ∞}
, {ht : −∞ ≤ t ≤ ∞}).

Furthermore, as in Hahn & Kuersteiner (2011), let F t
τ (i) = C∨σ

({(eis,vis) : τ ≤
s ≤ t}), and define the conditional α-mixing coefficient on C:

αm(i) = sup
A∈F t−∞(i),B∈F∞

t+m (i)
[P(A ∩ B)−P(A)P(B) |C] .

Let αm = supi αm(i), and assume αm = O
(
m−ζ

)
, where ζ > 12 p

4p−1 for p > 4.
Then, Assumptions 5(iv) and (v) are satisfied.

In this example, the shocks ht (which may contain the factors f 0
t ), δi (which

may contain the factor loadings λ0
i ), and vi t (which may contain past values of

eit ) can enter in a general nonlinear way into the regressor Xit .

The following assumption guarantees the limiting variance and the asymptotic
bias converge to constant values.

Assumption 6. Let Xk = Mλ0 Xk Mf 0 , which is an N × T matrix with entries
Xk,i t . For each i and t , define the K -vector Xi t = (X1,i t , . . . ,XK ,i t )

′. We assume
existence of the following probability limits for all k = 1, . . . , K :

W = plim
N ,T →∞

1

N T

N∑
i=1

T∑
t=1

Xi t X ′
i t ,

� = plim
N ,T →∞

1

N T

N∑
i=1

T∑
t=1

e2
i tXi t X ′

i t ,

B1,k = plim
N ,T →∞

1

N
Tr
[
Pf 0E

(
e′ Xk

∣∣C)] ,
B2,k = plim

N ,T →∞
1

T
Tr
[
E
(
ee′ ∣∣C) Mλ0 Xk f 0 ( f 0′ f 0)−1 (λ0′λ0)−1 λ0′] ,

B3,k = plim
N ,T →∞

1

N
Tr
[
E
(
e′e
∣∣C) Mf 0 X ′

k λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′] ,
where C is the same conditioning set that appears in Assumption 5.

Here, W and � are K × K matrices, and we define the K -vectors B1, B2, and
B3 with components B1,k , B2,k and B3,k , k = 1, . . . , K .

THEOREM 4.3 (Asymptotic Distribution). Let Assumptions 1, 4, 5, and 6 be
satisfied,14 and consider the limit N ,T → ∞ with N/T → κ2, where 0 < κ < ∞.
Then we have
√

N T
(
β̂ −β0)→

d
N (W −1 B, W −1 �W −1),

where B = −κ B1 −κ−1 B2 −κ B3.
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From Corollary 4.2, we already know the limiting distribution of β̂ is given by
the limiting distribution of W −1

N T CN T . Note WN T = 1
N T

∑N
i=1

∑T
t=1 Xi t X ′

i t ; that
is, W is simply defined as the probability limit of WN T . Assumption 4 guarantees
W is positive definite, as shown in the supplementary material.

Thus, the main task in proving Theorem 4.3 is to show the approximated score
at the true parameter satisfies CN T →d N (B,�). We find the asymptotic vari-
ance � and the asymptotic bias B1 originate from the C (1) term, whereas the two
further bias terms B2 and B3 originate from the C (2) term of CN T .

The bias B1 is due to correlation of the errors eit and the regressors
Xk,iτ in the time direction (for τ > t). This bias term generalizes the Nickell
(1981) bias that occurs in dynamic models with standard fixed effects, and
it is not present in Bai (2009), where only strictly exogenous regressors are
considered.

The other two bias terms B2 and B3 are already described in Bai (2009). If eit

is homoscedastic, that is, if E(eit |C) = σ 2, then E
(
ee′|C)= σ 2

IN and E
(
e′e|C)=

σ 2
IT , so that B2 = 0 and B3 = 0 (because the trace is cyclical and f 0′Mf 0 = 0

and λ0′Mλ0 = 0). Thus, B2 is only nonzero if eit is heteroscedastic across i , and
B3 is only nonzero if eit is heteroscedastic over t . Correlation in eit across i or
over t would also generate nonzero bias terms of exactly the form B2 and B3, but
is ruled out by our assumptions.

4.3. Bias Correction

Estimators for W , �, B1, B2, and B3 are obtained by forming suitable sample
analogs and replacing the unobserved λ0, f 0, and e by the estimates λ̂, f̂ , and the
residuals ê.

DEFINITION 1. Let X̂k = Mλ̂ Xk M f̂ . For each i and t, define the K -vector

X̂i t = (X̂1,i t , . . . , X̂K ,i t )
′. Let � : R → R be the truncation kernel defined by

�(x) = 1 for |x | ≤ 1, and �(x) = 0 otherwise. Let M be a bandwidth param-
eter that depends on N and T . We define the K × K matrices Ŵ and �̂, and the
K -vectors B̂1, B̂2, and B̂3 as follows:

Ŵ = 1

N T

N∑
i=1

T∑
t=1

X̂i t X̂ ′
i t ,

�̂ = 1

N T

N∑
i=1

T∑
t=1

(̂eit )
2 X̂i t X̂ ′

i t ,

B̂1,k = 1

N

N∑
i=1

T −1∑
t=1

T∑
s=t+1

�

(
s − t

M

) [
Pf̂

]
ts êi t Xk,is,

B̂2,k = 1

T

N∑
i=1

T∑
t=1

(̂eit )
2
[

Mλ̂ Xk f̂ ( f̂ ′ f̂ )−1 (̂λ′̂λ)−1 λ̂′]
i i

,
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B̂3,k = 1

N

N∑
i=1

T∑
t=1

(̂eit )
2
[

M f̂ X ′
k λ̂ (̂λ′̂λ)−1 ( f̂ ′ f̂ )−1 f̂ ′]

t t
,

where ê = Y − β̂ · X − λ̂ f̂ ′, and êi t denotes the elements of ê, [A]ts denotes the
(t,s)th element of the matrix A.

Notice the estimators �̂, B̂2, and B̂3 are similar to White’s standard error
estimator under heteroskedasticity, and the estimator B̂1 is similar to the HAC
estimator with a kernel. To show consistency of these estimators, we impose some
additional assumptions.

Assumption 7.

(i) ‖λ0
i ‖ and ‖ f 0

t ‖ are uniformly bounded over i , t , and N , T .

(ii) There exist c > 0 and ε > 0 such that for all i, t,m, N , and T , we have∣∣∣ 1
N

∑N
i=1E(eit Xk,i t+m

∣∣C)∣∣∣≤ c m−(1+ε).

Assumption 7(i) is made for convenience to simplify the consistency proof for
the estimators in Definition 1. Weakening this assumption is possible by only as-
suming suitable bounded moments of ‖λ0

i ‖ and ‖ f 0
t ‖. To show consistency of B̂1,

we need to control how strongly eit and Xk,iτ , t < τ , are allowed to be corre-
lated, which is done by Assumption 7(i i). It is straightforward to verify Assump-
tion 7(i i) is satisfied in the two examples of regressor processes presented after
Assumption 5.

THEOREM 4.4 (Consistency of Bias and Variance Estimators). Let Assump-
tions 1, 4, 5, 6, and 7 hold, and consider a limit N ,T → ∞ with N/T → κ2,
0 < κ < ∞, such that the bandwidth M = MN T satisfies M → ∞ and M5/T → 0.
We then have Ŵ = W +op(1), �̂ = �+op(1), B̂1 = B1 +op(1), B̂2 = B2 +op(1),
and B̂3 = B3 +op(1).

The assumption M5/T → 0 can be relaxed if additional higher- moment re-
strictions on eit and Xk,i t are imposed. Note also that for the construction of the
estimators Ŵ , �̂, and B̂i , i = 1,2,3, knowing whether the regressors are strictly
exogenous or predetermined is unnecessary; in both cases, the estimators for W ,
�, and Bi , i = 1,2,3, are consistent. We can now present our bias-corrected esti-
mator and its limiting distribution.

COROLLARY 4.5. Under the assumptions of Theorem 4.4, the bias-
corrected estimator

β̂∗ = β̂ + Ŵ −1
(

T −1 B̂1 + N−1 B̂2 + T −1 B̂3

)
satisfies

√
N T

(
β̂∗ −β0

)→d N
(
0, W −1 �W −1

)
.

According to Theorem 4.4, a consistent estimator of the asymptotic variance of
β̂∗ is given by Ŵ −1 �̂ Ŵ −1.
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An alternative to the analytical bias-correction result given by Corollary 4.5
is to use Jackknife bias correction to eliminate the asymptotic bias. For panel
models with incidental parameters only in the cross-sectional dimensions, one
typical finds a large N ,T leading incidental parameter bias of order 1/T for the
parameters of interest. To correct for this 1/T bias, one can use the delete-one
Jackknife bias correction if observations are iid over t Hahn & Newey (2004)
and the split-panel Jackknife bias-correction if observations are correlated over t
Dhaene & Jochmans (2015). In our current model, we have incidental parameters
in both panel dimensions (λ0

i and f 0
t ), resulting in leading bias terms of order 1/T

(bias term B1 and B3) and of order 1/N (bias term B2). Fernández-Val & Weidner
(2013) discuss the generalizations of the split-panel Jackknife bias-correction to
that case.

The corresponding bias-corrected split-panel Jackknife estimator reads β̂ J =
3β̂N T −βN ,T/2 −βN/2,T , where β̂N T = β̂ is the LS estimator obtained from the
full sample, βN ,T/2 is the average of the two LS estimators that leave out the
first and second halves of the time periods, and βN/2,T is the average of the two
LS estimators that leave out half of the individuals. Jackknife bias correction is
convenient because only the order of the bias, and not the structure of the terms
B1, B2, and B3, needs not be known in detail. However, one requires additional
stationarity assumptions over t and homogeneity assumptions across i to justify
the Jackknife correction and to show that β̂ J has the same limiting distribution as
β̂∗ in Corollary 4.5; see Fernández-Val & Weidner (2013) for more details. They
also observe through Monte Carlo simulations that the finite sample variance of
the Jackknife-corrected estimator is often larger than of the analytically corrected
estimator. We do not explore Jackknife bias-correction further in this paper.

5. TESTING RESTRICTIONS ON β0

In this section, we discuss the three classical test statistics for testing linear re-
strictions on β0. The null hypothesis is H0 : Hβ0 = h, and the alternative is
Ha : Hβ0 �= h, where H is an r × K matrix of rank r ≤ K , and h is an r × 1
vector. We restrict the presentation to testing a linear hypothesis for ease of expo-
sition. One can generalize the discussion to the testing of nonlinear hypotheses,
under conventional regularity conditions. Throughout this subsection, we assume
β0 is an interior point of B; that is, no local restrictions are on β as long as the
null hypothesis is not imposed. Using the expansion of L N T (β), one could also
discuss testing when the true parameter is on the boundary, as shown in Andrews
(2001).

The restricted estimator is defined by

β̃ = argmin
β∈B̃

L N T (β), (6)

where B̃ = {β ∈ B| Hβ = h} is the restricted parameter set. Analogous to Theo-
rem 4.3 for the unrestricted estimator β̂, we can use the expansion of the profile
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objective function to derive the limiting distribution of the restricted estimator.
Under the assumptions of Theorem 4.3, we have

√
N T (β̃ −β0) −→

d
N
(
W−1 B, W−1 �W−1

)
,

where W−1 = W −1 − W −1 H ′(H W −1 H ′)−1 H W −1. The K × K covariance
matrix in the limiting distribution of β̃ is not full rank, but satisfies
rank(W−1 �W−1) = K − r , because HW−1 = 0 and thus rank(W−1) = K − r .
The asymptotic distribution of

√
N T (β̃ −β0) is therefore K − r dimensional, as

it should be for the restricted estimator.

Wald Test

Using the result of Theorem 4.3, we find that under the null hypothesis,√
N T

(
H β̂ −h

)
is asymptotically distributed asN (H W −1 B, H W −1 �W −1 H ′).

Thus, due to the presence of the bias B, the standard Wald test statistic

W DN T = N T
(
H β̂ −h

)′ (
H Ŵ −1 �̂ Ŵ −1 H ′)−1 (

H β̂ −h
)

is not asymptotically

χ2
r distributed. Using the estimator B̂ = −

√
N
T B̂1 −

√
T
N B̂2 −

√
N
T B̂3 for the bias,

we can define the bias-corrected Wald test statistic as

W D∗
N T =

[√
N T

(
H β̂∗ −h

)]′(
H Ŵ −1 �̂ Ŵ −1 H ′)−1 [√

N T
(
H β̂∗ −h

)]
, (7)

where β̂∗ = β̂ − Ŵ −1 B̂ is the bias-corrected estimator. W D∗
N T is just the standard

Wald test statistics applied to β̂∗. Under the null hypothesis and the Assumptions
of Theorem 4.4, we find W D∗

N T →d χ2
r .

Likelihood Ratio Test

To implement the LR test, we need the relationship between the asymptotic
Hessian W and the asymptotic score variance � of the profile objective func-
tion to be of the form � = cW , where c > 0 is a scalar constant. This con-
dition is satisfied in our interactive fixed effect model if E(e2

i t |C) = c, that is,
if the error is homoskedastic. A consistent estimator for c is then given by
ĉ = (N T )−1∑N

i=1
∑T

t=1 ê2
i t , where ê = Y − β̂ · X − λ̂ f̂ ′. Because the likelihood

function for the interactive fixed effect model is just the sum of squared residuals,
we have ĉ = L N T (β̂). The likelihood ratio test statistic is defined by

L RN T = ĉ −1 N T
[
L N T

(
β̃
)− L N T

(
β̂
)]

.

Under the assumption of Theorem 4.3, we then have

L RN T −→
d

c−1C ′W −1 H ′(H W −1 H ′)−1 H W −1C,

where C ∼N (B,�), i.e. CN T →d C . It is the same limiting distribution that one
finds for the Wald test if � = cW (in fact, one can show W DN T = L RN T +op(1)).
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Therefore, we need to do a bias-correction for the LR test to achieve a χ2 limiting
distribution. We define

L R∗
N T = ĉ −1 N T

[
min{β∈B| Hβ=h} L N T

(
β + (N T )−1/2Ŵ −1 B̂

)
−min

β∈B L N T

(
β + (N T )−1/2Ŵ −1 B̂

)]
, (8)

where B̂ and Ŵ do not depend on the parameter β in the minimization problem.15

Asymptotically, we have minβ∈B L N T
(
β + (N T )−1/2Ŵ −1 B̂

) = L N T (β̂), be-
cause β ∈B does not impose local constraints; in other words, close to β0, whether
one minimizes over β or over β + (N T )−1/2Ŵ −1 B̂ does not matter for the value
of the minimum. The correction to the LR test therefore originates from the first
term in L R∗

N T . For the minimization over the restricted parameter set, whether
the argument of L N T is β or β + (N T )−1/2Ŵ −1 B̂ matters, because generically,
we have H W −1 B �= 0 (otherwise, no correction would be necessary for the LR
statistics). One can show that

L R∗
N T −→

d
c−1(C − B)′W −1 H ′(H W −1 H ′)−1 H W −1(C − B) ;

that is, we obtain the same formula as for L RN T , but the bias-corrected term
C − B replaces the limit of the score C . Under the Assumptions of Theorem 4.4,
if H0 is satisfied, and for homoscedastic errors eit , we have L R∗

N T →d χ2
r . In

fact, one can show L R∗
N T = W D∗

N T +op(1).

Lagrange Multiplier Test

Let ∇̃LN T be the gradient of the LS objective function (2) with respect to β,
evaluated at the restricted parameter estimates; that is,

∇̃LN T = ∇LN T (β̃, λ̃, f̃ ) =
(

∂LN T (β, λ̃, f̃ )

∂β1

∣∣∣∣
β=β̃

, . . . ,
∂LN T (β, λ̃, f̃ )

∂βK

∣∣∣∣
β=β̃

)′

= − 2

N T

(
Tr
(
X ′

1ẽ
)
, . . . ,Tr

(
X ′

K ẽ
))′

,

where λ̃ = λ̂(β̃), f̃ = f̂ (β̃), and ẽ = Y − β̃ · X − λ̃ f̃ ′. Under the assumptions of
Theorem 4.3, and if the null hypothesis H0 : Hβ0 = h is satisfied, one finds that16

√
N T ∇̃LN T = √

N T ∇L N T (β̃)+op(1). (9)

Due to this equation, one can base the Lagrange multiplier test on the gradient of
LN T (β̃, λ̃, f̃ ), or on the gradient of the profile quasilikelihood function L N T (β̃),
and obtain the same limiting distribution.

Using the bound on the remainder RN T (β) given in Theorem 4.1, one can-
not infer any properties of the score function, that is, of the gradient ∇L N T (β),
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because nothing is said about ∇ RN T (β). The following theorem gives a bound
on ∇ RN T (β) that is sufficient to derive the limiting distribution of the Lagrange
multiplier.

THEOREM 5.1. Under the assumptions of Theorem 4.1, and with WN T and
CN T as defined there, the score function satisfies

∇L N T (β) = 2 WN T (β −β0) − 2√
N T

CN T + 1

N T
∇ RN T (β),

where the remainder ∇ RN T (β) satisfies for any sequence ηN T → 0:

sup
{β:‖β−β0‖≤ηN T }

‖∇ RN T (β)‖
√

N T
(

1+√
N T

∥∥β −β0
∥∥) = op (1) .

From this theorem, and the fact that β̃ is
√

N T -consistent under H0, we obtain
√

N T ∇̃LN T = √
N T ∇Lq,N T (β̃)+op(1)

= 2
√

N T WN T (β̃ −β0)−2CN T +op(1).

Remember β̃ is the restricted estimator defined in Equation (6). Using this result
and the known limiting distribution of β̃, we now find
√

N T ∇̃LN T −→
d

−2H ′(H W −1 H ′)−1 H W −1C. (10)

Note also that
√

N T H W −1∇L N T (β̃) →d −2H W −1C . We define B̃, W̃ , and �̃,
analogous to B̂, Ŵ , and �̂, but with unrestricted parameter estimates replaced by
restricted parameter estimates. The LM test statistic is then given by

L MN T = N T

4
(∇̃LN T )′W̃ −1 H ′(H W̃ −1�̃W̃ −1 H ′)−1 H W̃ −1∇̃LN T .

One can show the LM test is asymptotically equivalent to the Wald test: L MN T =
W DN T + op(1); that is, again, bias-correction is necessary. We define the bias-
corrected LM test statistic as

L M∗
N T = 1

4

(√
N T ∇̃LN T +2B̃

)′
W̃ −1 H ′(H W̃ −1�̃W̃ −1 H ′)−1

H W̃ −1

×
(√

N T ∇̃LN T +2B̃
)
. (11)

The following theorem summarizes the main results of the present subsection.

THEOREM 5.2 (Chi-Square Limit of Bias-Corrected Test Statistics). Let the
assumptions of Theorem 4.4 and the null hypothesis H0 : Hβ0 = h be satisfied.
For the bias-corrected Wald and LM test statistics introduced in Equation (7) and
(11), we then have

W D∗
N T −→

d
χ2

r , L M∗
N T −→

d
χ2

r .
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If, in addition, we assume E(e2
i t |C) = c, that is, the idiosyncratic errors are ho-

moscedastic, and we use ĉ = L N T (β̂) as an estimator for c, the LR test statistic
defined in Equation (8) satisfies

L R∗
N T −→

d
χ2

r .

6. EXTENSION TO ENDOGENOUS REGRESSORS

In this section, we briefly discuss how to estimate the regression coefficient β0

of Model (1) when some of the regressors in Xit are endogenous with respect to
the regression error eit . The question is how instrumental variables can be used to
estimate the regression coefficients of the endogenous regressor in the presence
of the interactive fixed effects λ0′

i f 0
t .

The existing literature has already investigated similar questions under various
setups. Harding & Lamarche (2009; 2011) investigate the problem of estimating
an endogenous panel (quantile) regression with interactive fixed effects, and
show how to use IVs in the CCE estimation framework. Moon, Shum, and
Weidner (2012) (hereafter MSW) estimate a random coefficient multinomial de-
mand model (as in Berry, Levinsohn, & Pakes (1995)) when the unobserved
product-market characteristics have interactive fixed effects. The IVs are required
to identify the parameters of the random coefficient distribution and to control
for price endogeneity. They suggested a multi-step “least squares-minimum dis-
tance” (LS-MD) estimator.17 The LS-MD approach is also applicable to linear
panel regression models with endogenous regressors and interactive fixed effects,
as demonstrated in Lee, Moon, & Weidner (2012) for the case of a dynamic linear
panel regression model with interactive fixed effects and measurement error.

We now discuss how to implement the LS-MD estimation in our setup. Let
X end

i t be the vectors of endogenous regressors, and let X exo
i t be the vector of ex-

ogenous regressors, with respect to eit , such that Xit = (X end′
i t , X exo′

i t )′. The model
then reads

Yit = β0′
end X end

i t +β0′
exo X exo

i t +λ0′
i f 0

t + eit ,

where X exo
i t denotes the exogenous and X end

i t denotes the endogenous regressors
(wrt to eit ). Suppose Zit is an additional L-vector of exogenous instrumental
variables (IVs), but Zit may be correlated with λ0

i and f 0
t . The LS-MD estimator

of β0 = (
β0′

end,β
0′
exo

)′
can then be calculated by the following three steps:

(1) For given βend, we run the least squares regression of Yit −β ′
end X end

i t on the
included exogeneous regressors X exo

i t , the interactive fixed effects λ′
i ft , and

the IVs Zit :(
β̃exo (βend) ,˜γ(βend) , λ̃ (βend) , f̃ (βend)

)
= argmin

{βexo,γ,λ, f }

N∑
i=1

T∑
t=1

(
Yit −β ′

end X end
i t −β ′

exo X exo
i t −γ ′Zit −λ′

i ft

)2
.
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(2) We estimate βend by finding ˜γ(βend), obtained by step (1), that is closest
to zero. To do so, we choose a symmetric positive definite L × L weight
matrix W γ

N T and compute

β̂end = argmin
βend

˜γ(βend)
′ W γ

N T ˜γ(βend) .

(3) We estimate βexo (and λ, f ) by running the least squares regression of Yit −
β̂ ′

end X end
i t on the included exogeneous regressors X exo

i t and the interactive
fixed effects λ′

i ft :(
β̂exo, λ̂, f̂

)= argmin
{βexo,γ,λ, f }

N∑
i=1

T∑
t=1

(
Yit − β̂ ′

end X end
i t −β ′

exo X exo
i t −λ′

i ft

)2
.

The idea behind this estimation procedure is that valid instruments are excluded
from the model for Yit , so that their first-step regression coefficients ˜γ(βend)
should be close to zero if βend is close to its true value β0

end. Thus, as long
as X exo

i t and Zit jointly satisfy the assumptions of the current paper, we obtain˜γ
(
β0

end

) = op(1) for the first-step LS estimator, and we also obtain the asymp-
totic distribution of ˜γ

(
β0

end

)
from the results derived in Section 4.

However, to justify the second-step minimization formally, one needs to study
the properties of ˜γ(βend) also for βend �= β0

end. To do so, we refer to MSW. Our
βend,βexo, and Yit −β ′

end X end
i t correspond to their α, β, and δj t (α), respectively.

Assumptions 1–5 in MSW can be translated accordingly, and the results in MSW
show large N ,T consistency and asymptotic normality of the LS-MD estimator.

The final step of the LS-MD estimation procedure is essentially a repetition of
the first step, but without including Zit in the set of regressors, which results in
some efficiency gains for β̂exo compared to the first step.

7. MONTE CARLO SIMULATIONS

We consider an AR(1) model with R = 1 factors:

Yit = ρ0 Yi,t−1 + λ0
i f 0

t + eit .

We estimate the model as an interactive fixed effect model; that is, no distribu-
tional assumptions on λ0

i and f 0
t are made in estimation. The parameter of inter-

est is ρ0. The estimators we consider are the OLS estimator (which completely
ignores the presence of the factors), the least squares estimator with interactive
fixed effects (denoted FLS in this section to differentiate from OLS) defined
in Equation (3),18 and its bias-corrected version (denoted BC-FLS), defined in
Theorem 4.5.

For the simulation, we draw the eit independently and identically distributed
from a t-distribution with five degrees of freedom, the λ0

i independently dis-
tributed from N (1,1), and we generate the factors from an AR(1) specifica-
tion, namely, f 0

t = ρ f f 0
t−1 + ut , where ut ∼ iidN (0, (1 −ρ2

f )σ
2
f ), and σ f is the

standard deviation of f 0
t . For all simulations, we generate 1,000 initial time
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periods for f 0
t and Yit that are not used for estimation. This approach guarantees

the simulated data used for estimation are distributed according to the stationary
distribution of the model.

This setup contains no correlation and heteroscedasticity in eit ; that is, only
the bias term B1 of the FLS estimator is nonzero, but we ignore this information
in the estimation; that is, we correct for all three bias terms (B1, B2, and B3, as
introduced in Assumption 6) in the bias-corrected FLS estimator.

Table 1 shows the simulation results for the bias, standard error, and root mean
square error of the three different estimators for the case N = 100, ρ f = 0.5, and
σ f = 0.5, and different values of ρ0 and T . The OLS estimator, the FLS estimator
(computed with correct R = 1), and the corresponding bias-corrected FLS
estimator with factors (BC-FLS) were computed for 10,000 simulation runs. The
table lists the mean bias, the standard deviation (std), and the square root of the
mean square error (rmse) for the three estimators. As expected, the OLS estimator
is biased because of the factor structure and its bias does not vanish (it actually
increases) as T increases. The FLS estimator is also biased, but as theory predicts
its bias vanishes as T increases. The bias-corrected FLS estimator performs
better than the noncorrected FLS estimator, in particular, its bias vanishes faster.
Because we only correct for the first-order bias of the FLS estimator, we could

TABLE 1. Simulation results for the AR(1) model described in the main text
with N = 100, ρ f = 0.5, σ f = 0.5, and different values of T (with corresponding
bandwidth M) and true AR(1) coefficient ρ0.

ρ0 = 0.3 ρ0 = 0.9

OLS FLS BC-FLS OLS FLS BC-FLS

T = 5 bias 0.1232 −0.1419 −0.0713 0.0200 −0.3686 −0.2330
(M = 2) std 0.1444 0.1480 0.0982 0.0723 0.1718 0.1301

rmse 0.1898 0.2050 0.1213 0.0750 0.4067 0.2669

T = 10 bias 0.1339 −0.0542 −0.0201 0.0218 −0.1019 −0.0623
(M = 3) std 0.1148 0.0596 0.0423 0.0513 0.1094 0.0747

rmse 0.1764 0.0806 0.0469 0.0557 0.1495 0.0973

T = 20 bias 0.1441 −0.0264 −0.0070 0.0254 −0.0173 −0.0085
(M = 4) std 0.0879 0.0284 0.0240 0.0353 0.0299 0.0219

rmse 0.1687 0.0388 0.0250 0.0434 0.0345 0.0235

T = 40 bias 0.1517 −0.0130 −0.0021 0.0294 −0.0057 −0.0019
(M = 5) std 0.0657 0.0170 0.0160 0.0250 0.0105 0.0089

rmse 0.1654 0.0214 0.0161 0.0386 0.0119 0.0091

T = 80 bias 0.1552 −0.0066 −0.0007 0.0326 −0.0026 −0.0006
(M = 6) std 0.0487 0.0112 0.0109 0.0179 0.0056 0.0053

rmse 0.1627 0.0130 0.0109 0.0372 0.0062 0.0053
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TABLE 2. Same DGP as Table 1, but misspecification in number of factors R
is present. The true number of factors is R = 1, but the FLS and BC-FLS are
calculated with R = 2.

ρ0 = 0.3 ρ0 = 0.9

OLS FLS BC-FLS OLS FLS BC-FLS

T = 5 bias 0.1239 −0.5467 −0.3721 0.0218 −0.9716 −0.7490
(M = 2) std 0.1454 0.1528 0.1299 0.0731 0.1216 0.1341

rmse 0.1910 0.5676 0.3942 0.0763 0.9792 0.7609

T = 10 bias 0.1343 −0.1874 −0.1001 0.0210 −0.4923 −0.3271
(M = 3) std 0.1145 0.1159 0.0758 0.0518 0.1159 0.0970

rmse 0.1765 0.2203 0.1256 0.0559 0.5058 0.3412

T = 20 bias 0.1451 −0.0448 −0.0168 0.0255 −0.1822 −0.1085
(M = 4) std 0.0879 0.0469 0.0320 0.0354 0.0820 0.0528

rmse 0.1696 0.0648 0.0362 0.0436 0.1999 0.1207

T = 40 bias 0.1511 −0.0161 −0.0038 0.0300 −0.0227 −0.0128
(M = 5) std 0.0663 0.0209 0.0177 0.0250 0.0342 0.0225

rmse 0.1650 0.0264 0.0181 0.0390 0.0410 0.0258

T = 80 bias 0.1550 −0.0072 −0.0011 0.0325 −0.0030 −0.0010
(M = 6) std 0.0488 0.0123 0.0115 0.0182 0.0064 0.0057

rmse 0.1625 0.0143 0.0116 0.0372 0.0071 0.0058

not expect the bias-corrected FLS estimator to be unbiased. However, as T gets
larger, more and more of the FLS estimator bias is corrected for; for example, for
ρ0 = 0.3, we find that at T = 5, the bias correction only corrects for about half of
the bias, whereas at T = 80, it already corrects for about 90% of it.

Table 2 is similar to Table 1, with the only difference being that we allow for
misspecification in the number of factors R, namely, the true number of factors
is assumed to be R = 1 (i.e., same DGP as for Table 1), but we incorrectly use
R = 2 factors when calculating the FLS and BC-FLS estimator. By comparing
Table 2 with Table 1, we find this type of misspecification of the number of fac-
tors increases the bias and the standard deviation of both the FLS and the BC-FLS
estimator in finite samples. That increase, however, is comparatively small once
both N and T are large. According to the results in Moon and Weidner (2015),
we expect the limiting distribution of the correctly specified (R = 1) and incor-
rectly specified (R = 2) FLS estimator to be identical when N and T grow at the
same rate. Our simulations suggest the same is true for the BC-FLS estimator.
The remaining simulation all assume correctly specified R = 1.

An import issue is the choice of bandwidth M for the bias correction. Table 3
gives the fraction of the FLS estimator bias that is captured by the estimator for
the bias in a model with N = 100, T = 20, ρ f = 0.5, σ f = 0.5 and different
values for ρ and M . The table shows the optimal bandwidth (in the sense that
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TABLE 3. Simulation results for the AR(1) model with N = 100, T = 20, ρ f =
0.5, and σ f = 0.5. For different values of the AR(1) coefficient ρ0 and of the
bandwidth M , we give the fraction of the LS estimator bias that is accounted for
by the bias correction, i.e. the fraction

√
N T E(β̂ −β)/E(Ŵ −1 B̂), computed over

10,000 simulation runs. Here and in all following tables it is assumed that R = 1
is correctly specified.

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8

ρ0 = 0 0.889 0.832 0.791 0.754 0.720 0.689 0.660 0.633
ρ0 = 0.3 0.752 0.806 0.778 0.742 0.708 0.677 0.648 0.621
ρ0 = 0.6 0.589 0.718 0.728 0.704 0.674 0.644 0.616 0.590
ρ0 = 0.9 0.299 0.428 0.486 0.510 0.519 0.516 0.508 0.495

most of the bias is corrected for) depends on ρ0: it is M = 1 for ρ = 0, M = 2 for
ρ = 0.3, M = 3 and ρ = 0.6, and M = 5 for ρ = 0.9. Choosing too large or too
small a bandwidth results in a smaller fraction of the bias to be corrected. Table 4
also reports the properties of the BC-FLS estimator for different values of ρ0, T ,
and M . It shows the effect of the bandwidth choice on the standard deviation of
the BC-FLS estimator is relatively small at T = 40, but is more pronounced at
T = 20. The issue of optimal bandwidth choice is therefore an important topic
for future research. In the simulation results presented here, we tried to choose
reasonable values for M , but made no attempt to optimize the bandwidth.

In our setup, we have ‖λ0 f 0′‖ ≈ √
2N T σ f and ‖e‖ ≈ √

N +√
T .19 Assump-

tions 1 and 3 imply ‖λ0 f 0′‖ � ‖e‖ asymptotically. We can therefore only be sure
our asymptotic results for the FLS estimator distribution are a good approximation
of the finite sample properties if ‖λ0 f 0′‖� ‖e‖, that is, if

√
2N T σ f �

√
N +√

T .
To explore this further, we present in Table 5 simulation results for N = 100,

TABLE 4. Same specification as Table 1. We only report the properties of the
bias-corrected LS estimator, but for multiple values of the bandwidth parameter
M and two different values for T . Results were obtained using 10,000 simulation
runs.

BC-FLS for ρ0 = 0.3 BC-FLS for ρ0 = 0.9

M=2 M=5 M=8 M=2 M=5 M=8

T = 20 bias −0.0056 −0.0082 −0.0100 −0.0100 −0.0083 −0.0089
std 0.0239 0.0241 0.0247 0.0253 0.0212 0.0208
rmse 0.0245 0.0255 0.0266 0.0272 0.0228 0.0227

T = 40 bias −0.0017 −0.0023 −0.0030 −0.0024 −0.0019 −0.0018
std 0.0159 0.0159 0.0159 0.0095 0.0089 0.0085
rmse 0.0160 0.0161 0.0162 0.0098 0.0091 0.0087
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TABLE 5. Simulation results for the AR(1) model with N = 100, T = 20, M = 4,
and ρ0 = 0.6. The three different estimators were computed for 10,000 simulation
runs, and the mean bias, standard deviation (std), and root mean square error
(rmse) are reported.

ρ f = 0.3 ρ f = 0.7

OLS FLS BC-FLS OLS FLS BC-FLS

σ f = 0 bias −0.0007 −0.0076 −0.0043 −0.0004 −0.0074 −0.0041
std 0.0182 0.0332 0.0243 0.0178 0.0331 0.0242
rmse 0.0182 0.0340 0.0247 0.0178 0.0339 0.0245

σ f = 0.2 bias 0.0153 −0.0113 −0.0032 0.0474 −0.0291 −0.0071
std 0.0251 0.0303 0.0229 0.0382 0.0387 0.0272
rmse 0.0294 0.0323 0.0231 0.0609 0.0484 0.0281

σ f = 0.5 bias 0.0567 −0.0137 −0.0041 0.1491 −0.0403 −0.0126
std 0.0633 0.0260 0.0207 0.0763 0.0298 0.0226
rmse 0.0850 0.0294 0.0211 0.1675 0.0501 0.0259

T = 20, ρ0 = 0.6, and different values of ρ f and σ f . For σ f = 0, we have
0 = ‖λ0 f 0′‖ � ‖e‖, and this case is equivalent to R = 0 (no factor at all). In this
case, the OLS estimator estimates the true model and is almost unbiased, and
correspondingly, the FLS estimator and the bias-corrected FLS estimator per-
form worse than OLS in finite samples (though we expect all three estimators
are asymptotically equivalent), but the bias-corrected FLS estimator has a lower
bias and a lower variance than the noncorrected FLS estimator. The case σ f = 0.2
corresponds to ‖λ0 f 0′‖ ≈ ‖e‖, and one finds the bias and the variance of the OLS
estimator and of the FLS estimator are of comparable size. However, the bias-
corrected FLS estimator already has much smaller bias and a bit smaller variance
in this case. Finally, in the case σ f = 0.5, we have ‖λ0 f 0′‖ > ‖e‖, and we expect
our asymptotic results to be a good approximation of this situation. Indeed, one
finds that for σ f = 0.5, the OLS estimator is heavily biased and very inefficient
compared to the FLS estimator, whereas the bias-corrected FLS estimator per-
forms even better in terms of bias and variance.

In Table 6, we present simulation results for the size of the various tests dis-
cussed in the last section when testing the null hypothesis H0 : ρ = ρ0. We choose
a nominal size of 5%, ρ f = 0.5, σ f = 0.5, and different values for ρ0, N , and T . In
all cases, the size distortions of the uncorrected Wald, LR, and LM test are rather
large, and the size distortion of these tests do not vanish as N and T increase: the
size for N = 100 and T = 20 is about the same as for N = 400 and T = 80, and
the size for N = 400 and T = 20 is about the same as for N = 1600 and T = 80.
By contrast, the size distortions for the bias-corrected Wald, LR, and LM test are
much smaller, and tend toward zero (i.e., the size becomes closer to 5%) as N ,T
increase, holding the ratio N/T constant. For fixed T , an increase in N results in
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TABLE 6. Simulation results for the AR(1) model with ρ f = 0.5 and σ f = 0.5.
For the different values of ρ0, N , T , and M , we test the hypothesis H0 :
ρ = ρ0 using the uncorrected and bias-corrected Wald, LR, and LM test, and
nominal size 5%. The bias-corrected tests are indicated by an asterisk super-
script. The size of the different tests is reported, based on 10,000 simulation
runs.

size size

W D L R L M W D∗ L R∗ L M∗

ρ0 = 0
N = 100, T = 20, M = 4 0.219 0.214 0.192 0.066 0.062 0.056
N = 400, T = 80, M = 6 0.199 0.198 0.195 0.055 0.054 0.054
N = 400, T = 20, M = 4 0.560 0.556 0.532 0.089 0.088 0.076
N = 1600, T = 80, M = 6 0.593 0.591 0.586 0.056 0.055 0.055

ρ0 = 0.6
N = 100, T = 20, M = 4 0.326 0.311 0.272 0.098 0.091 0.077
N = 400, T = 80, M = 6 0.260 0.255 0.248 0.056 0.053 0.057
N = 400, T = 20, M = 4 0.591 0.582 0.552 0.174 0.167 0.136
N = 1600, T = 80, M = 6 0.666 0.663 0.656 0.060 0.058 0.059

a larger size distortion, whereas for fixed N , an increase in T results in a smaller
size distortion (both for the noncorrected and for the bias-corrected tests).

In Table 7 and 8, we present the power and the size-corrected power when
testing the left-sided alternative H left

a : ρ = ρ0 − (N T )−1/2 and the right-sided

alternative H right
a : ρ = ρ0 + (N T )−1/2. The model specifications are the same

as for the size results in Table 4. Because both the FLS estimator and the bias-
corrected FLS estimator for ρ have a negative bias, one finds the power for the
left-sided alternative to be much smaller than the power for the right-sided alter-
native. For the uncorrected tests, this effect can be extreme and the size-corrected
power of these tests for the left-sided alternative is below 2% in all cases and does
not improve as N and T become large, holding N/T fixed. By contrast, the power
for the bias-corrected tests becomes more symmetric as N and T become large,
and the size-corrected power for the left-sided alternative is much larger than for
the uncorrected tests, whereas the size-corrected power for the right-sided alter-
native is about the same.

8. CONCLUSIONS

This paper studies the least squares estimator for dynamic linear panel regres-
sion models with interactive fixed effects. We provide conditions under which
the estimator is consistent, allowing for predetermined regressors and for a gen-
eral combination of “low-rank” and “high-rank” regressors. We then show how
a quadratic approximation of the profile objective function L N T (β) can be used
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TABLE 7. As Table 6, but we report the power for testing the alternatives H left
a :

ρ = ρ0 − (N T )−1/2 and H right
a : ρ = ρ0 + (N T )−1/2. The bias-corrected tests are

indicated by an asterisk superscript.

power power

W D L R L M W D∗ L R∗ L M∗

ρ0 = 0

N = 100, T = 20, M = 4 H left
a 0.094 0.089 0.076 0.128 0.123 0.121

H
right
a 0.526 0.515 0.487 0.235 0.227 0.206

N = 400, T = 80, M = 6 H left
a 0.066 0.064 0.063 0.154 0.151 0.153

H
right
a 0.549 0.545 0.540 0.194 0.191 0.190

N = 400, T = 20, M = 4 H left
a 0.306 0.305 0.284 0.100 0.097 0.096

H
right
a 0.791 0.787 0.769 0.309 0.305 0.279

N = 1600, T = 80, M = 6 H left
a 0.254 0.253 0.248 0.128 0.127 0.129

H
right
a 0.871 0.869 0.866 0.225 0.224 0.224

ρ0 = 0.6

N = 100, T = 20, M = 4 H left
a 0.192 0.180 0.147 0.184 0.171 0.171

H
right
a 0.619 0.605 0.563 0.335 0.318 0.294

N = 400, T = 80, M = 6 H left
a 0.081 0.079 0.076 0.184 0.195 0.200

H
right
a 0.680 0.675 0.668 0.335 0.262 0.267

N = 400, T = 20, M = 4 H left
a 0.421 0.412 0.378 0.184 0.160 0.150

H
right
a 0.792 0.787 0.765 0.335 0.426 0.399

N = 1600, T = 80, M = 6 H left
a 0.318 0.314 0.307 0.200 0.169 0.172

H
right
a 0.912 0.911 0.908 0.268 0.316 0.320

to derive the first-order asymptotic theory of the LS estimator of β under the
alternative asymptotic N ,T → ∞. We find the asymptotic distribution of the LS
estimator can be asymptotically biased (i) because of weak exogeneity of the re-
gressors and (ii) because of heteroscedasticity (and correlation) of the idiosyn-
cratic errors eit . Consistent estimators for the asymptotic covariance matrix and
for the asymptotic bias of the LS estimator are provided, and thus a bias-corrected
LS estimator is given. We furthermore study the asymptotic distributions of the
Wald, LR, and LM test statistics for testing a general linear hypothesis on β. The
uncorrected test statistics are not asymptotically chi-square because of the asymp-
totic bias of the score and of the LS estimator, but bias-corrected test statistics that
are asymptotically chi-square distributed can be constructed. We also discussed a
possible extension of the estimation procedure to the case of endogeneous regres-
sors. The findings of our Monte Carlo simulations show our asymptotic results on
the distribution of the (bias-corrected) LS estimator and of the (bias-corrected)
test statistics provide a good approximation of their finite sample properties.
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TABLE 8. As Table 7, but we report the size-corrected power.

size-corrected power size-corrected power

W D L R L M W D∗ L R∗ L M∗

ρ0 = 0

N = 100, T = 20, M = 4 H left
a 0.010 0.011 0.010 0.105 0.104 0.112

H
right
a 0.211 0.208 0.206 0.199 0.197 0.193

N = 400, T = 80, M = 6 H left
a 0.008 0.008 0.008 0.143 0.143 0.145

H
right
a 0.236 0.237 0.235 0.181 0.182 0.181

N = 400, T = 20, M = 4 H left
a 0.008 0.008 0.009 0.055 0.052 0.062

H
right
a 0.187 0.185 0.181 0.210 0.208 0.208

N = 1600, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.119 0.119 0.120

H
right
a 0.226 0.227 0.225 0.213 0.213 0.212

ρ0 = 0.6

N = 100, T = 20, M = 4 H left
a 0.014 0.014 0.016 0.114 0.115 0.127

H
right
a 0.196 0.193 0.196 0.233 0.234 0.231

N = 400, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.114 0.187 0.184

H
right
a 0.288 0.288 0.288 0.233 0.252 0.247

N = 400, T = 20, M = 4 H left
a 0.013 0.016 0.015 0.114 0.039 0.051

H
right
a 0.128 0.127 0.126 0.233 0.201 0.209

N = 1600, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.185 0.153 0.154

H
right
a 0.236 0.236 0.238 0.248 0.291 0.291

Although the bias-corrected LS estimator has a nonzero bias in finite samples,
this bias is much smaller than that of the LS estimator. Analogously, the size dis-
tortions and power asymmetries of the bias-corrected Wald, LR, and LM test are
much smaller than for the nonbias-corrected versions.

NOTES

1. See, e.g., Chamberlain & Rothschild (1983), Ross (1976), and Fama & French (1993) for asset
pricing; Stock & Watson (2002) and Bai & Ng (2006) for forecasting; Bernanke, Boivin, & Eliasz
(2005) for empirical macro; and Holtz-Eakin, Newey, & Rosen (1988) for empirical labor economics.

2. The theory of the CCE estimator was further developed in, e.g., Harding & Lamarche (2009;
2011), Kapetanios, Pesaran, & Yamagata (2011), Pesaran & Tosetti (2011), Chudik, Pesaran, &
Tosetti (2011), and Chudik & Pesaran (2015).

3. The LS estimator is sometimes called “concentrated” least squares estimator in the literature,
and in an earlier version of the paper, we referred to it as the “Gaussian Quasi Maximum Likeli-
hood Estimator”, because LS estimation is equivalent to maximizing a conditional Gaussian likelihood
function.

4. Hahn & Kuersteiner (2002) introduced the alternative asymptotics to characterize the asymptotic
bias due to incidental parameter problems in fixed effect dynamic panel data models. See also Arellano
& Hahn (2007) and Moon, Perron, & Phillips (2014) and references therein.
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5. The “likelihood ratio” and the score used in the tests are based on the LS objective function,
which can be interpreted as the (misspecified) conditional Gaussian likelihood function.

6. Another type of widely studied tests in the interactive fixed effect panel literature are panel unit
root tests, e.g., Bai & Ng (2004), Moon & Perron (2004), and Phillips & Sul (2003).

7. In Moon & Weidner (2015) we do not consider low-rank regressors or testing problems, and we
impose more restrictive assumptions on the error term of the model implying that some leading bias
terms of the LS estimator are not present.

8. Lee, Moon, & Weidner (2012) also apply the MSW estimation method to estimate a simple
dynamic panel regression with interactive fixed effect and classical measurement errors.

9. To remove this restriction, one could estimate R consistently in the presence of the regressors.
In the literature so far, however, consistent estimation procedures for R are established mostly in pure
factor models (e.g., Bai & Ng (2002), Onatski (2010) & Harding (2007)). Alternatively, one could rely
on Moon & Weidner (2015) who consider a regression model with interactive fixed effects when only
an upper bound on the number of factors is known — but extending those results to the more general
setup considered here is mathematically challenging.

10. If we have low-rank regressors with rank larger than one, then we write Xl = wlv
′
l , where wl

is an N × rank(Xl ) matrix and vl is a T × rank(Xl ) matrix, and we define w = (w1, . . . ,wK1 ) as

a N ×∑L
l=1 rank(Xl ) matrix, and v = (v1, . . . ,vK1 ) ae a T ×∑L

l=1 rank(Xl ) matrix. All our results
are then unchanged, as long as rank(Xl ) is a finite constant for all l = 1, . . . , K1, and we replace
2R + K1 by 2R + rank(w) in Assumption ID(v) and Assumption 4(i i)(a).

11. Note that rank(λ0) = R if R factors are present. Our identification results are consistent with the
possibility that rank(λ0) < R, i.e., that R only represents an upper bound on the number of factors,
but later we assume rank(λ0) = R to show consistency.

12. We could write X (N ,T )
k , e(N ,T ), λ(N ,T ), and f (N ,T ), because all these matrices, and

even their dimensions, are functions on N and T , but we suppress this dependence throughout the
paper.

13. Here and in the following, we write σ(A) for the sigma algebra generated by the (collection
of) random variable(s) A, and we write A∨B for the sigma algebra generated by the unions of all
elements in the sigma algebra A and B, so that in the conditional expectation in AssumptionS 5(ii),
we condition jointly on C and {(Xis ,ei,s−1),s ≤ t}.

14. Assumption 2 and 3∗ are implied by Assumption 5 and therefore need not be explicitly assumed
here.

15. Alternatively, one could use B̂(β̃) and Ŵ (β̃) as estimates for B and W , and would obtain the
same limiting distribution of L R∗

N T under the null hypothesis H0. These alternative estimators are
not consistent if H0 is false, i.e. the power-properties of the test would be different. The question of
which specification should be preferred is left for future research.

16. The proof of the statement is given in the supplementary material as part of the proof of Theo-
rem 5.2.

17. Chernazhukov & Hansen (2005) also used a similar method for estimating endogenous quantile
regression models.

18. Here we can either use B = (−1,1), or B = R. In the present model, we only have high-rank
regressors; i.e., the parameter space need not be bounded to show consistency.

19. To be precise, we have ‖λ0 f 0′‖/(√2N T σ f ) →p 1, and ‖e‖/(√N +√
T ) →p 1.
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APPENDIX

A. Proof of Consistency (Theorem 3.1)

The following theorem is useful for the consistency proof and beyond.

LEMMA A.1. Let N, T , R, R1, and R2 be positive integers such that R ≤ N, R ≤ T ,
and R = R1 + R2. Let Z be an N × T matrix, λ be an N × R, f be a T × R matrix, λ̃ be
an N × R1 matrix, and f̃ be a T × R2 matrix. Then the following six expressions (that are
functions of Z only) are equivalent:

min
f,λ

Tr
[(

Z −λ f ′)(Z ′ − f λ′)]= min
f

Tr
(
Z Mf Z ′)= min

λ
Tr
(
Z ′ Mλ Z

)
= min

λ̃, f̃
Tr
(

Mλ̃ Z M f̃ Z ′)=
T∑

i=R+1

μi
(
Z ′Z

)=
N∑

i=R+1

μi
(
Z Z ′).

In the above minimization problems, we do not have to restrict the matrices λ, f , λ̃,
and f̃ to be of full rank. If, for example, λ is not of full rank, the generalized inverse
(λ′λ)† is still well defined, and the projector Mλ still satisfies Mλλ = 0 and rank(Mλ) =
N − rank(λ). If rank(Z) ≥ R, the optimal λ, f , λ̃, and f̃ always have full rank.

Lemma A.1 shows the equivalence of the three different versions of the profile objective
function in Equation (4). It also considers minimization of Tr(Mλ̃ Z M f̃ Z ′) over λ̃ and f̃ ,
which will be used in the consistency proof below. The proof of the theorem is given in the
supplementary material. The following lemma is due to Bai (2009).
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LEMMA A.2. Under the assumptions of Theorem 3.1 we have

sup
f

∣∣∣∣∣Tr
(
Xk Mf e′)

N T

∣∣∣∣∣= op(1), sup
f

∣∣∣∣∣Tr
(
λ0 f 0′ Mf e′)

N T

∣∣∣∣∣= op(1), sup
f

∣∣∣∣∣Tr
(
e Pf e′)
N T

∣∣∣∣∣= op(1),

where the parameters f are T × R matrices with rank( f ) = R.

Proof. By Assumption 2, we know the first equation in Lemma A.2 is satisfied when

replacing Mf by the identity matrix. So we are left to show max f

∣∣∣ 1
N T Tr(�e′)

∣∣∣ = op(1),

where � is either Xk Pf , λ0 f 0′Mf , or ePf . In all three cases, we have ‖�‖/√N T =Op(1)
by Assumption 1, 3, and 4, respectively, and we have rank(�) ≤ R. We therefore find

sup
f

∣∣∣∣ 1

N T
Tr(� Pf e′)

∣∣∣∣≤ R
‖e‖√
N T

‖�‖√
N T

= op(1).

Here, we used |Tr(C)| ≤ ‖C‖ rank (C), which holds for all square matrices C ; see the
supplementary material. n

Proof of Theorem 3.1. For the second version of the profile objective function in Equa-
tion (4), we write L N T (β) = min f SN T (β, f ), where

SN T (β, f )

= 1

N T
Tr

⎡⎣(λ0 f 0′ +
K∑

k=1

(
β0

k −βk

)
Xk + e

)
Mf

(
λ0 f 0′ +

K∑
k=1

(
β0

k −βk

)
Xk + e

)′⎤⎦ .

We have SN T (β0, f 0) = 1
N T Tr

(
e Mf 0 e′). Using Lemma (A.2), we find

SN T (β, f ) = SN T (β0, f 0)+ S̃N T (β, f )

+ 2

N T
Tr

[(
λ0 f 0′ +

K∑
k=1

(
β0

k −βk

)
Xk

)
Mf e′

]
+ 1

N T
Tr
(
e
(
Pf 0 − Pf

)
e′)

= SN T (β0, f 0)+ S̃N T (β, f )+op(‖β −β0‖)+op(1), (A.1)

where we defined

S̃N T (β, f ) = 1

N T
Tr

⎡⎣(λ0 f 0′ +
K∑

k=1

(
β0

k −βk

)
Xk

)
Mf

(
λ0 f 0′ +

K∑
k=1

(
β0

k −βk

)
Xk

)′⎤⎦ .

Up to this point, the consistency proof is almost equivalent to the one given in Bai
(2009), but the remainder of the proof differs from Bai, because we allow for more gen-
eral low-rank regressors, and because we allow for high-rank and low-rank regressors

simultaneously. We split S̃N T (β, f ) = S̃(1)
N T (β, f )+ S̃(2)

N T (β, f ), where

S̃(1)
N T (β, f )

= 1

N T
Tr

⎡⎣(λ0 f 0′ +
K∑

k=1

(β0
k −βk)Xk

)
Mf

(
λ0 f 0′ +

K∑
k=1

(β0
k −βk)Xk

)′
M(λ0,w)

⎤⎦
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= 1

N T
Tr

⎡⎣⎛⎝ K∑
m=K1+1

(β0
m −βm)Xm

⎞⎠ Mf

⎛⎝ K∑
m=K1+1

(β0
m −βm)Xm

⎞⎠′
M(λ0,w)

⎤⎦ ,

S̃(2)
N T (β, f )

= 1

N T
Tr

⎡⎣(λ0 f 0′ +
K∑

k=1

(β0
k −βk)Xk

)
Mf

(
λ0 f 0′ +

K∑
k=1

(β0
k −βk)Xk

)′
P(λ0,w)

⎤⎦ ,

and (λ0,w) is the N × (R + K1) matrix that is composed out of λ0 and the N × K1 matrix

w defined in Assumption 4. For S̃(1)
N T (β, f ), we can apply Lemma A.1 with f̃ = f and

λ̃ = (λ0,w) (the R in the theorem is now 2R + K1) to find

S̃(1)
N T (β, f ) ≥ 1

N T

×
N∑

i=2R+K1+1

μi

⎡⎣⎛⎝ K∑
m=K1+1

(β0
m −βm)Xm

⎞⎠⎛⎝ K∑
m=K1+1

(β0
m −βm)Xm

⎞⎠′⎤⎦
≥ b

∥∥∥βhigh −β0,high
∥∥∥2

, wpa1, (A.2)

where in the last step, we used the existence of a constant b > 0 guaranteed by Assump-
tion 4(ii)(a), and we introduced βhigh = (βK1+1, . . . ,βK )′, which refers to the K2 × 1

parameter vector corresponding to the high-rank regressors. Similarly, we define β low =
(β1, . . . ,βK1)

′ for the K1 ×1 parameter vector of low-rank regressors.

Using P(λ0,w) = P(λ0,w) P(λ0,w) and the cyclicality of the trace, we see S̃(2)
N T (β, f ) can

be written as the trace of a positive definite matrix, and therefore S̃(2)
N T (β, f ) ≥ 0. Note

also that we can choose β = β0 and f = f 0 in the minimization problem over SN T (β, f );
that is, the optimal β = β̂ and f = f̂ must satisfy SN T (β̂, f̂ ) ≤ SN T (β0, f 0). Using

this result, Equation (A.1), S̃(2)
N T (β, f ) ≥ 0, and the bound in (A.2), we find

0 ≥ b
∥∥∥β̂ high −β0,high

∥∥∥2 +op

(∥∥∥β̂ high −β0,high
∥∥∥)+op

(∥∥∥β̂ low −β0,low
∥∥∥)+op(1).

Because we assume β̂ low is bounded, the last equation implies
∥∥∥β̂ high −β0,high

∥∥∥= op(1);

that is, β̂ high is consistent. What is left to show is that β̂ low is consistent, too. In the sup-
plementary material, we show Assumption 4(ii)(b) guarantees that finite positive constants
a0, a1, a2, a3, and a4 exist such that

S̃(2)
N T (β, f ) ≥

a0

∥∥∥βlow −β0,low
∥∥∥2

∥∥βlow −β0,low
∥∥2 +a1

∥∥βlow −β0,low
∥∥+a2

−a3

∥∥∥βhigh −β0,high
∥∥∥−a4

∥∥∥βhigh −β0,high
∥∥∥ ∥∥∥βlow −β0,low

∥∥∥ , wpa1.

Using consistency of β̂ high and again boundedness of β low, the previous inequality implies

a > 0 exists such that S̃(2)
N T (β̂, f ) ≥ a

∥∥∥β̂low −β0,low
∥∥∥2 +op(1). With the same argument

as for β̂ high, we therefore find
∥∥∥β̂low −β0,low

∥∥∥= op(1); that is, β̂ low is consistent. n
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B. Proof of Limiting Distribution (Theorem 4.3)

Theorem 4.1 is from Moon and Weidner (2015), and the proof can be found there. Note
Assumption 4(i) implies ‖Xk‖ = Op(

√
N T ), which we assume in Moon and Weidner

(2015). There, we also assume that ‖e‖ =Op(
√

max(N ,T )) =Op(
√

N ), whereas in the
current paper we assume ‖e‖ = op(‖N 2/3‖). It is, however, straightforward to verify that
the proof of Theorem 4.1 is also valid under this weaker assumption.

Moon and Weidner (2015) also includes the proof of Corollary 4.2. The proof requires
consistency of β̂, which in the current paper is derived under weaker assumptions than in
Moon and Weidner (2015), where no low-rank regressors are considered. Corollary 4.2 is
therefore stated under weaker assumptions here, but the proof is unchanged. In the supple-
mentary material, we show the assumptions of Corollary 4.2 already guarantee WN T does
not become singular as N ,T → ∞.

For each k = 1, . . . , K , we define the N × T matrices Xk , X̃k , and Xk as follows:

Xk = E(Xk
∣∣C) , X̃k = Xk −E(Xk

∣∣C) , Xk = Mλ0 Xk Mf 0 + X̃k .

Note the difference between Xk and Xk = Mλ0 Xk Mf 0 , which was defined in Assump-
tion 6. In particular, conditional on C, the elements Xk,i t of Xk are contemporaneously
uncorrelated with the error term eit , although the same is not true for Xk .

To present the proof of Theorem 4.3, it is convenient to first state two technical lemmas.

LEMMA B.1. Under the assumptions of Theorem 4.3, we have

(a)
1√
N T

Tr
(

Pf 0 e′ Pλ0 X̃k

)
= op(1),

(b)
1√
N T

Tr
(
Pλ0 e X̃ ′

k
)= op(1),

(c)
1√
N T

Tr
{

Pf 0
[
e′ X̃k −E(e′ X̃k

∣∣C)]}= op(1),

(d)
1√
N T

Tr
(

ePf 0 e′ Mλ0 Xk f 0 ( f 0′ f 0)−1 (λ0′λ0)−1 λ0′)= op(1),

(e)
1√
N T

Tr
(

e′ Pλ0 e Mf 0 X ′
k λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′)= op(1),

( f )
1√
N T

Tr
(

e′Mλ0 Xk Mf 0 e′ λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′)= op(1),

(g)
1√
N T

Tr
{[

ee′ −E(ee′ ∣∣C)] Mλ0 Xk f 0 ( f 0′ f 0)−1 (λ0′λ0)−1 λ0′}= op(1),

(h)
1√
N T

Tr
{[

e′e −E(e′e
∣∣C)] Mf 0 X ′

k λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′}= op(1),

(i)
1

N T

N∑
i=1

T∑
t=1

[
e2

i t Xi t X
′
i t −E

(
e2

i t Xi t X
′
i t

∣∣C)]= op(1),

( j)
1

N T

N∑
i=1

T∑
t=1

e2
i t
(
Xi t X

′
i t −Xi t X ′

i t
)= op(1).
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LEMMA B.2. Under the assumptions of Theorem 4.3, we have

1√
N T

N∑
i=1

T∑
t=1

eitXi t →
d
N (0,�) .

The proofs of Lemma B.1 and Lemma B.2 are provided in the supplementary material.
We briefly want to discuss why the asymptotic variance-covariance matrix in Lemma B.2
turns out to be �. Note that because eitXi t is mean zero and uncorrelated across both
i and t , conditional on C, we have

Var

⎛⎝ 1√
N T

N∑
i=1

T∑
t=1

eitXi t

∣∣∣∣C
⎞⎠= 1

N T

N∑
i=1

T∑
t=1

E

(
e2

i t Xi t X
′
i t

∣∣C)

= 1

N T

N∑
i=1

T∑
t=1

e2
i t Xi t X

′
i t +op(1)

= 1

N T

N∑
i=1

T∑
t=1

e2
i t Xi t X ′

i t +op(1)

= �+op(1), (B.3)

where we also used part (i) of Lemma B.1 for the second equality and part (j) of Lemma B.1
for the third equality, and the definition of � in Assumptions 6 in the last step.

Using those lemmas, we can now prove the theorem on the limiting distribution of β̂ in
the main text.

Proof of Theorem 4.3. Assumption 5 implies ‖e‖ =Op(N 1/2) as N and T grow at the
same rate, as discussed in Section S.2 of the supplementary material; that is, Assumption 3∗
is satisfied. We can therefore apply Corollary 4.2 to calculate the limiting distribution of
β̂. Note that Mλ0 Xk Mf 0 = Xk − X̃k Pf 0 − Pλ0 X̃k + Pλ0 X̃k Pf 0 . Using Lemmas B.1 and
B.2 and Assumption 6, we find

1√
N T

C(1)
(
λ0, f 0, Xk , e

)
= 1√

N T
Tr
(

e′ Mλ0 Xk Mf 0

)
= 1√

N T
Tr
(
e′Xk

)− 1√
N T

Tr
[

Pf 0 E
(
e′ X̃k

∣∣C)]
− 1√

N T
Tr
(
e′ Pλ0 X̃k

)+ 1√
N T

Tr
(

Pf 0 e′ Pλ0 X̃k

)
− 1√

N T
Tr
{

Pf 0
[
e′ X̃k −E(e′ X̃k

∣∣C)]}
= 1√

N T
Tr
(
e′Xk

)− 1√
N T

Tr
[

Pf 0 E
(
e′ Xk

∣∣C)]+op(1).

→
d
N (−κ B1, �),
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where we also used that E
(
e′ X̃k

∣∣C)= E(e′ Xk
∣∣C). Using Lemma B.1, we also find

1√
N T

C(2)
(
λ0, f 0, Xk , e

)
= − 1√

N T

[
Tr
(

eMf 0 e′ Mλ0 Xk f 0 ( f 0′ f 0)−1 (λ0′λ0)−1 λ0′)
+Tr

(
e′Mλ0 e Mf 0 X ′

k λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′)
+Tr

(
e′Mλ0 Xk Mf 0 e′ λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′)]

= 1√
N T

Tr
(

ePf 0 e′ Mλ0 Xk f 0 ( f 0′ f 0)−1 (λ0′λ0)−1 λ0′)
− 1√

N T
Tr
{[

ee′ −E(ee′|C)] Mλ0 Xk f 0 ( f 0′ f 0)−1 (λ0′λ0)−1 λ0′}
− 1√

N T
Tr
[
E
(
ee′|C) Mλ0 Xk f 0 ( f 0′ f 0)−1 (λ0′λ0)−1 λ0′]

+ 1√
N T

Tr
(

e′ Pλ0 e Mf 0 X ′
k λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′)

− 1√
N T

Tr
{[

e′e −E(e′e|C)] Mf 0 X ′
k λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′}

− 1√
N T

Tr
[
E
(
e′e|C) Mf 0 X ′

k λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′]
+ 1√

N T
Tr
(

e′Mλ0 Xk Mf 0 e′ λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′)
= − 1√

N T
Tr
[
E
(
ee′|C) Mλ0 Xk f 0 ( f 0′ f 0)−1 (λ0′λ0)−1 λ0′]

− 1√
N T

Tr
[
E
(
e′e|C) Mf 0 X ′

k λ0 (λ0′λ0)−1 ( f 0′ f 0)−1 f 0′]+op(1),

= −κ−1 B2 −κ B3 +op(1).

Combining these results, we obtain

√
N T

(
β̂ −β0

)
= W−1

N T
1√
N T

CN T

→
d
N
(
−W−1

(
κ B1 +κ−1 B2 +κ B3

)
, W−1 �W−1

)
,

which is what we wanted to show. n
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