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However, CGRAs are not yet mature in terms of programmability, productivity, and adaptability. This article
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1 INTRODUCTION

In recent years, with the rapid developments in society and technology, the demand for perfor-
mance, energy efficiency and flexibility has grown continuously in the field of computing chips. A
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Fig. 1. Architecture comparison in terms of flexibility, performance, and energy efficiency.

large amount of popular or emerging applications (e.g., neural networks and bioinformatics) have
led to unprecedented demand for computing power. Traditionally, computing fabrics have taken
advantage of integrated circuit technology advances as a major measure to improve the computing
power in the past decades. However, this measure becomes invalidate as Moore’s Law and Dennard
scaling are slowing down or even terminating. A well-known problem of the power wall arises: the
power budget of integrated circuits becomes tighter in many applications, and worse still, the en-
ergy efficiency has a diminishing return with new technologies, resulting in a limitation on the
feasible computing power [1–4]. Consequently, computer architecture designers have to shift their
focus from performance to energy efficiency. However, flexibility has also become an important
consideration in circuit design. As software is evolving rapidly with emerging applications, user
needs, and scientific progress, the hardware that cannot adapt to software (e.g., application-specific
integrated circuits, ASICs) will suffer from a short lifecycle and high nonrecurring engineering
(NRE) cost. The situation becomes even worse for expensive new circuit technology. Overall, both
energy efficiency and flexibility have become the main criteria for computing fabrics [5, 6].

Nevertheless, it is challenging for the mainstream computing fabric to meet this new demand.
ASICs have extremely low flexibility, whereas Von Neumann processors, such as general-purpose
processors (GPPs), graphics processing units (GPUs), and digital signal processors (DSPs), have ex-
tremely low energy efficiency. Field-programmable gate arrays (FPGAs) appear promising to some
extent, but this architecture is more challenging to program than central processing units (CPUs)
and is less energy-efficient than ASICs. Therefore, none of these options can achieve a satisfac-
tory balance between the two criteria, which raises an urgent demand for novel architecture, as
evidenced by industry’s adoption of domain-specific accelerators in many important areas, such
as machine learning and big data.

Coarse-grained reconfigurable architectures (CGRAs) are a natural coarse-grained implementa-
tion of the concept of reconfigurable computing proposed in 1960s [7]. This architecture originated
in the 1990s [8, 9] and has been developing rapidly since the 2000s [10–13]. CGRAs continue to at-
tract increasing interest because they possess near-ASIC energy efficiency and performance with
post-fabrication software-like programmability [14–18]. The comprehensive comparison provided
in Figure 1 compares CGRAs with ASICs, FPGAs, DSPs, GPUs and CPUs in terms of the energy
efficiency, flexibility and performance [14, 18]. In academia, many researchers consider CGRAs
a strong competitor for mainstream computing fabrics, as evidenced by the substantial works
published at leading conferences [19, 20] and the important foundation supports by, e.g., the De-
fense Advanced Research Projects Agency (DARPA) [21]. The goal of the DARPA ERI (electronics
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resurgence initiative) is software-defined hardware (SDH) that enables near-ASIC performance
(within 10×) without sacrificing programmability for data-intensive algorithms. The DARPA has
already thought of CGRAs as a potential direction for the SDH project. In industry also, CGRAs
have gained increasing acceptance. For instance, Samsung integrated a CGRA accelerator into its
8K high-definition television (HDTV) and Exynos System-on-Chips (SoC) [22, 23]. PACT Inc. has
had CGRA intellectual property (IP) cores applied to the satellite payload of Astrium [24]. Intel
started a project to incorporate CGRAs into its Xeon processor in 2016 [25]. Many other com-
panies also have related plans, prototypes or products, such as the DRP [26] and DAPDNA [27].
Despite these commercial applications, CGRAs have much more popularity in academia than in
industry for the reason that their technology is still immature.

First, a definition of CGRAs is presented as the foundation of this work. We argue that a CGRA

is a computing fabric that has all the following characteristics:
(1) Domain-Specific Flexibility. CGRAs have a degree of post-fabrication flexibility between

general purpose and fixed function. Their hardware can be defined by software at runtime, but their
processing elements (PEs) are not as powerful as those of GPPs, and their interconnections are not
as complex as those of FPGAs. This architecture is just flexible enough for specific domains. Al-
though CGRAs are mostly reconfigurable at the coarse-grained level (as indicated by their name),
they actually differ across applications. For instance, a CGRA for cryptographic algorithms might
contain fine-grained components.

As opposed to general-purpose flexibility (e.g., FPGAs and GPPs), domain-specific flexibility
tailors the hardware to target applications and keeps redundant resources minimized. As a result,
for the target domain, CGRAs are typically 1–2 orders of magnitude more energy-efficient than
FPGAs and more than 2–3 orders of magnitude more energy-efficient than GPPs [28–30]. For
general applications, the advantage of CGRAs typically shrinks [16]. Therefore, domain-specific
flexibility proves to be one of the critical reasons for CGRAs’ balance between energy efficiency
and flexibility.

(2) Combining Spatial and Temporal Computation. In spatial computation, CGRAs take ad-
vantage of parallel computing resources and data transferring channels to perform computation.
In temporal computation, CGRAs take advantage of time-multiplexing resources to perform com-
putation. Therefore, the mapping of a CGRA is actually equivalent to identifying the spatial and
temporal coordinates of every node and arc in the control/data flow graph (CDFG). Compilers are
responsible for making this arrangement.

The combination of spatial and temporal computation provides a more flexible and powerful
implementation framework for applications. Relative to architectures that enable only temporal
computation (e.g., GPPs), CGRAs can obviate costly deep pipelines and the centralized communi-
cation overhead. Relative to architectures that enable only spatial computation (e.g., conventional
FPGAs, programmable array logic (PAL) architectures, and ASICs), CGRAs can improve area ef-
ficiency. Therefore, combining spatial and temporal computation is one of the critical reasons for
CGRAs’ high energy/area efficiency without reducing flexibility.

(3) Configuration- or Data-driven Execution. As opposed to sequential processors whose
operations are driven by control flow (statically determined by compilers), CGRAs have their
operations driven mostly by configuration flow or data flow. The configuration of CGRAs defines
PE operations in addition to interconnections. All the PEs defined by one configuration execute
in lockstep and under the same flow of control (thread). Although the configurations are also
driven by control flow mostly, the operations in each configuration are in parallel or pipelined,
which exploits compiler-directed parallelism. More importantly, configuration-driven CGRAs can
exploit efficient explicit dataflow via interconnections, which is not supported in conventional
instruction sets. A data-driven CGRA is an implementation of an explicit dataflow machine [31],
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Table 1. Comparisons Between CGRAs and Important Computing Fabrics

Architecture Flexibility
Computation form Execution mechanism

Temporal Spatial
Reconfiguration

time(4)
Configuration-

driven
Dataflow-

driven
Instruction-

driven

CGRA Domain � � ns-μs � � ×

FPGA General ×(1) � ms-s � � ×

ASIC Fixed ×(2) � × × (3) � ×

In-Order
Processor/ VLIW

General � × ns × × (5) �

Out-of-Order
Processor

General � × ns × � �

Multicore General � � ns × × (5) �

Notes: (1) FPGAs can perform temporal computation, but it is not practical considering the overhead and effectiveness;

(2) ASICs support hardware resource sharing as temporal computation to some extent;

(3) ASICs do not support reconfiguration, but there might exist configuration codes;

(4) The reconfiguration time is not accurate. The data come from recent works with technologies below 90nm [21].

(5) Dataflow mechanisms can be supported in software at the task/thread level, e.g., data-triggered multi-threading

[32, 33]. A thread of computation is initiated when its input data are ready, continuation is ready, or an address is

changed.

which abandons control flow execution completely. With all operations in one configuration as
candidates, any one that has its operands prepared will be executed. Here, data-driven CGRAs
follow an explicit producer-consumer data-dependent relationship.

Compared to control-flow-driven or instruction-driven execution, as occurs in, e.g., multicore
processors, configuration-/data-driven execution can avoid over-serialized execution of PEs, ex-
ploit fine-grained parallelism, and provide efficient synchronization among PEs. This execution
style further supports explicit data communication, which can minimize the energy overhead of
data movement. Therefore, configuration-/data-driven execution is one of the critical reasons for
CGRAs’ high performance and energy efficiency.

In summary, CGRAs are defined as domain-specific flexible hardware, on which the computation
is performed both spatially and temporally and the execution is driven by configuration flow or
data flow. This definition, a superset of previous definitions that are either controversial or unilat-
eral [34–36], avoids ambiguity. As reported in Table 1, the three characteristics distinguish CGRAs
from the other computing architectures. FPGAs are similar to CGRAs in terms of flexible spatial
computing (reconfigurable computing). However, FPGAs are a fine-grained general-purpose flex-
ible architecture and rarely support temporal computation because their reconfiguration process
is much slower than that of CGRAs (ns vs. ms to s) and thus the reconfiguration is challenging to
be pipelined with kernel-level computation. Although some commercial FPGAs support runtime
reconfiguration (RTR), the broad usefulness of RTR remains an open question [35]. Multicore
processors are similar to CGRAs in terms of structure, including multidimensional PE arrays and
message-passing interconnection. However, their processing units are individual sequential cores
driven by control flow or instructions. Moreover, this definition identifies the relationship between
CGRAs and other classic concepts in computer architecture. CGRAs are a subset of spatial archi-
tecture because they essentially support spatial computation. Some overlap exists between CGRAs
and dataflow architectures because some CGRA implementations adopt the dataflow mechanism.

The above characteristics also identify the key reasons for the advantages of CGRAs over other
architectures. However, since CGRAs are still immature in terms of programmability, productivity,
and adaptability, their commercial applications are limited today. First, CGRAs are challenging to
program in high-level languages with desirable efficiency, and their automatic compiling is difficult
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to surmount. Second, CGRAs vary greatly from one design to another, making them costly to
incorporate in real systems. Third, CGRAs applications are strictly limited to purely computation-
or data-intensive kernels, and their performance degrades severely in cases involving any irregular
codes or complex control flow. Since these problems are not only related to microarchitecture,
CGRAs must be thoroughly reviewed at all system abstraction levels to determine the root causes
for these fatal problems.

In recent years, many surveys and books about reconfigurable computing have been published
[15, 34–45]. Some of them concentrate on FPGAs and pay less attention to CGRAs [35, 37, 40,
42–45]. The literature focused on CGRAs has covered a lot of topics, including classifications,
architectures, applications, compilation methods and tools, and challenges. However, several im-
portant problems are missing or require further discussion. First, most classifications are based
on low-level characteristics or trivial details, which cannot reveal the inherent characteristics of
CGRAs. Second, challenges have not been analyzed comprehensively. Third, the future develop-
ment of architecture and applications has not yet been discussed in-depth. Therefore, a compre-
hensive survey is necessary.

In this survey, a comprehensive introduction to the architecture and design of CGRAs is pre-
sented in terms of the aspects of classification, challenges and applications. Relative to previous
works [15, 36–39, 41], the main contributions are as follows:

(1) A novel CGRA classification method from the abstraction levels of programming, compu-
tation and execution.

(2) A complete top-down analysis of the challenges that are currently encountered by CGRAs
and corresponding state-of-the-art measures and prospective solutions.

(3) An in-depth discussion of CGRAs’ architecture and application development.

The rest of this article is organized as follows. Section 2 proposes a multidimensional taxonomy.
Section 3 analyzes challenges in terms of the aforementioned aspects. Section 4 surveys state-of-
the-art techniques and prospective solutions. Section 5 discusses the future trends of architecture
and applications. Section 6 concludes the article.

2 A TAXONOMY OF CGRAS

As defined above, CGRAs are a class of reconfigurable computing processors that are specialized
for coarse-grained kernels in applications. Their architecture design has been controversial till
now. Classification opens a door to in-depth understanding of their architecture. This section re-
views previous classification methods and then presents a novel multidimensional taxonomy.

2.1 Review of Previous Classification Methods

This part reviews previous classification methods for reconfigurable computing. Hartenstein et al.
[34] introduced CGRAs in three major categories in terms of interconnections and topology:
mesh-based architecture (the most common one is a 2D array with horizontal and vertical connec-
tions), linear array architecture (aiming at mapping pipelines), and cross-bar-based architecture
(most powerful for routing with most overheads). Compton and Hauck [44] classified reconfig-
urable systems according to the degree of coupling between the reconfigurable fabric and

the host processor. Four classifications of reconfigurable fabric were proposed: (1) stand-alone,
(2) attached to the host processor without shared cache, (3) as a coprocessor with shared cache,
and (4) as a data path in the host processor. Todman et al. [45] added an additional classification:
(5) the processor is embedded in a reconfigurable fabric as a soft core or hard core. Chattopadhyay
et al. [41] advocated a simplified three-classification system: (1) add-on reconfigurability, which
incorporates reconfigurable fabric into the baseline GPP system; (2) add-on processing, which
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allocates a part of the reconfigurable fabric to form processors; and (3) custom processing and
reconfigurability, which combines customizable processors and custom-designed reconfigurable
fabrics. Zain-ul-Abdin and Svensson [39] presented a classification based on PE function and

coupling that divides CGRA into four categories: (1) hybrid architecture, in which the PE array
is coupled with an ordinary processor; (2) array of function units, in which the control scheme is
based on special PEs or modules; (3) array of processors, in which every PE is a simple proces-
sor with reconfigurable interconnections; and (4) array of soft processors, in which programmable
logics are aggregated into multiple soft cores. Chattopadhyay et al. [41] also proposed another clas-
sification based on application domains: (1) general purpose, such as prototyping and demon-
stration, and (2) specific domains, such as digital signal processing, high-performance computing,
multimedia processing and cryptography. Dehon et al. [46] and Wijtvliet et al. [36] adopted a
more sophisticated classification method based on design patterns or property categories. A
very large design space could be built on the basis of multiple properties or design patterns, such
that any CGRA can be located in this design space. Dehon et al. [46] adopted the design patterns
of area-time trade-off, parallelism expression, processor-FPGA integration, runtime partial recon-
figuration, communication expression, synchronization, and so on. Wijtvliet et al. [36] adopted a
simplified classification based on four properties: structure, control, integration and tools. How-
ever, since the adopted patterns and properties are often nonorthogonal and incomplete (such as
system integration and tools) in defining architectures, these classifications cannot offer global or
comprehensive perspective of CGRA architectures, somewhat like unfocused descriptions whose
key information is drowned out by trivial details. For example, DySER has such an architecture
with a 2D direct interconnection, scratch-pad memory, static scheduling, dynamic reconfiguring
control scheme, tightly coupled integration, and a compiler using an imperative language [47].

Most of the previous classification methods are based on single dimensions of characteristics.
Thus, they cannot reveal the entirety of the characteristics of CGRAs. Some classification methods
use several dimensions of characteristics to characterize CGRAs, but they still include too many
trivial design considerations that obscure the nature of CGRAs.

2.2 A Multidimensional Taxonomy for CGRAs

We propose a multidimensional taxonomy that classifies CGRAs according to the following ab-
straction levels of the system architecture:

(1) A programming model is an abstraction of an underlying computer system that allows
for the expression of both algorithms and data structures [48]. This model bridges the
gap between the underlying hardware and the supporting layers of software available to
applications. In fact, all programming languages and application programming interfaces
(APIs) are instantiations of programming models. The programming model can describe
software applications as well as program hardware [49]. This model abstracts away the
hardware details so that programmers can specify parallelism without worrying how this
parallelism is implemented in hardware. The model determines which part of algorithmic
parallelisms within applications can be explicitly expressed by the programmer. Thus,
compiling the algorithms is simplified. For example, a multi-thread programming model,
e.g., PThread, abstracts hardware resources as threads so that programmers can represent
the parallelism of the application as coordinating threads.

(2) A computation model is an abstract representation of computational semantics that
defines a high-level composition of an application [39]. This model provides a computa-
tion engine that is capable of producing solutions to any tasks described with the cor-
responding programming model. Such a model needs to reflect the salient computing
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Fig. 2. Comparison of an FPGA and single sequential core under the guidance of the proposed multidimen-

sional taxonomy: high-level abstractions help to improve the quality of classification.

characteristics of the physical computing platform [48]. A computation model actually
determines which part of algorithmic parallelisms within applications can be supported
and utilized by a specific computation substrate. For instance, thread-level parallelism
typically cannot be exploited by a single-threaded computation model.

(3) An execution model is an abstract representation of microarchitectures that defines a
scheduling scheme for the intermediate representations of computation models. This
model needs to reflect the salient working mechanisms of hardware, such as the trigger-
ing, firing, execution and retiring of instructions/configurations. Therefore, the execution
model provides a basic framework of microarchitecture design, which determines the run-
time executing sequence and concurrency of the representations of computation models.

Figure 2 demonstrates the multidimensional taxonomy method from the perspectives of archi-
tecture as well as software on the left. The programming model layer transforms a target appli-
cation into various programs with different explicit parallelisms. The computation model layer
transforms the programs into intermediate representations that consist of operations, data sets
or threads in parallel. The execution model layer maps these intermediate representations onto
the underlying microarchitecture, generating (offline or on-the-fly) a runtime bitstream that is
directly run by the hardware. Figure 2 further clarifies the proposed taxonomy with classic ar-
chitectures on the right, which compares an in-order single-core processor with FPGA at the ab-
straction layers as described above. For the microarchitecture, a single sequential core and an
FPGA have a large quantity of differences. It is challenging to identify which difference is essen-
tial. Moreover, the processors/FPGAs of different types vary a lot in terms of microarchitecture.
In contrast, the higher-level abstraction helps differentiate these architectures clearly. An FPGA
is typically programmed with a declarative programming model, while an in-order processor uses
an imperative model. An FPGA adopts spatial computation, while an in-order processor adopts
time-multiplexing computation. An FPGA is statically scheduled and driven by data flow, while
an in-order processor is dynamically scheduled and executes sequentially. Therefore, in terms of
clarity, the proposed multidimensional taxonomy performs better than previous ones based on mi-
croarchitectures. Moreover, this taxonomy help choose the architecture framework according to
system-level requirements. Figure 3 illustrates this taxonomy, which is further explained in detail
in the following subsections.
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Fig. 3. Classification based on the system architecture.

2.2.1 Programming Model. CGRAs can be classified into two major categories based on the
programming model.

The first major category uses an imperative programming model and imperative languages,
such as C/C++. An imperative model uses an ordered sequence of statements or commands or
instructions to control the system states and therefore cannot express any parallelism semanti-
cally (note that some extensions of imperative languages can express explicit parallelism, such as
PThreads; these extensions fall into the category of parallel programming models). This model can
be used by all imperative hardware, such as most processors. A CGRA’s operation is controlled by
its configuration sequence, so an imperative model can also be used. Because imperative languages
are relatively easy for programmers and convenient to integrate with general processors, many
CGRAs are programmed with imperative models [10, 13, 47].

The second major category uses a parallel programming model. For simplicity, the concept
of parallel programming model is used in this article, referring to the programming models that
can express some parallelisms. This concept comprises a declarative programming model

(such as functional languages, dataflow languages, and hardware description languages, HDLs),
expressing parallelism implicitly, and a parallel/concurrent (imperative) programming model

(such as OpenMP, PThreads, Massage Passing Interface (MPI), and CUDA C), expressing paral-
lelism explicitly or partially explicitly with directives. The declarative programming model uses
declarations or expressions instead of imperative statements to describe the logic of computation.
This model does not describe any control flow, so computation parallelism is implicitly expressed.
The concurrent programming model uses multiple concurrent imperative computations to build a
program. Therefore, the model expresses computation parallelism explicitly. Relative to imperative
models that rely on compilers and hardware to exploit parallelism, the major difference of parallel
programming models is that programmers can express some computational parallelism with them,
alleviating the burdens on compilers and hardware and consequently improving efficiency. Al-
though there are fewer CGRAs adopting parallel programming models [20, 50], CGRAs are essen-
tially suitable for these models. The reason is that CGRA hardware is not imperative but perform
computations in parallel when it processes one configuration that contains multiple operations.

The third category, transparent programming, does not have any static compilation for a
specific CGRA architecture. This category requires dynamic compilation, relying on hardware to
translate and optimize common program representations, such as instructions. Thus, its under-
lying computation models, execution models or microarchitectures could be totally transparent
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Fig. 4. Computation models of CGRAs: (a) SCSD, (b) SCMD, and (c) MCMD (in this figure, configuration-

1 through configuration-3 are independent and asynchronous; rectangles with different colors represent

different configurations, and blank ones represent idle).

to programmers. For example, DORA [51], CCA [52], and DynaSPAM [53] are tightly coupled
with GPPs, and their configurations are generated according to runtime instruction streams. Re-
markably, some CGRAs, e.g., PPA [54], have their runtime bitstream generated on-the-fly from the
static compilation results, and thus they do not belong to this category. Transparent-programming
CGRAs have two major advantages: productivity can be greatly improved with transparent pro-
gramming, and optimization can be performed with runtime information that is impossible offline.
The major drawback is insufficient performance and considerable energy overhead because addi-
tional hardware is responsible for all parallelism exploration at runtime.

2.2.2 Computation Model. All CGRAs belong to multiple instructions, multiple data (MIMD)

computation according to Flynn’s taxonomy [55]. For a more detailed division, considering that
the concept of instructions cannot reflect the computing mechanism of CGRA, we introduce a
configuration-based classification for computation models, as depicted in Figure 4.

The first category is the single configuration, single data (SCSD) model. This model refers to
a spatial computation engine that executes a single configuration on a single data set. The model
is a basic implementation of spatial computation. All the operations of an application or kernel are
mapped onto the underlying hardware, so instruction-level parallelism can be extracted unlimit-
edly. SCSD is a general and powerful engine for different programming models, albeit one limited
by the hardware scale. Pegasus is an intermediate representation of the SCSD model, and ASH is a
microarchitecture template. Pegasus generates one configuration of ASH for an entire application
[56, 57]. The SCSD model mainly exploits instruction-level parallelism. As shown in Figure 4(a),
configuration-1 through configuration-3 must be mapped onto three different time slots in the
SCSD model because this model does not support simultaneous multi-threading in a PE array.

The second category is the single configuration, multiple data (SCMD) model. This model
refers to a spatial computation engine that can execute one configuration on multiple data sets
(spread in spatial). The model can be viewed as a spatial implementation of the SIMD or SIMT
model. The SCMD model is suitable for the popular stream-oriented and vector applications, such
as multimedia and digital signal processing; hence, it is adopted by many CGRAs [10, 13]. This
model mainly exploits data-level parallelism. As shown in Figure 4(b), the configurations of mul-
tiple threads in one time slot are identical in the SCMD model.

The third category is the multiple configuration, multiple data (MCMD) model. This
model refers to a computation engine that can execute multiple configurations (i.e., from mul-
tiple programs or subprograms) on multiple data sets. Therefore, the model should support both
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simultaneous multithreading (SMT) and temporal multithreading (TMT). The threads can com-
municate via the mechanisms of message passing or memory sharing. Because CGRAs comprise
distributed interconnections, interthread communication is typically implemented on this inter-
connection instead of in shared memory (multiprocessors). Therefore, there are two common sub-
categories to describe CGRAs’ process and communication mechanism. Communicating sequen-
tial processes (CSP) is a nondeterministic model for concurrent computation with interprocess
communication managed by unbuffered messages passing channels in a blocking manner [58].
Processes can be synchronized through these communicating channels. The Kahn process net-
work (KPN) is another model often adopted by CGRAs. The model comprises a group of deter-
ministic processes that communicate with each other through unbounded first-in, first-out (FIFO)
buffers [59]. The communication is asynchronous and nonblocking except when the FIFO buffer
is empty. The CSP model, adopted by Tartan to some extent [60], implements asynchronous hand-
shaking communication among PEs for energy efficiency. The KPN model has been applied to
many dataflow CGRAs, such as triggered instruction architecture [61] and Wavescalar [62], which
use FIFOs and CAMs as communicating channels among asynchronous PEs. The MCMD model
mainly exploits thread-level parallelism. As shown in Figure 4(b), the MCMD model supports si-
multaneous multi-threading in a PE array.

2.2.3 Execution Model. CGRAs can be classified based on the execution model, specifically
the scheduling and executing of configurations. (1) The scheduling of configurations refers to
the mechanisms of fetching configurations from memory and mapping configurations onto hard-
ware. To minimize hardware overhead, the fetching order and the place where configurations are
mapped can be statically decided by compilers. For instance, FPGAs schedule configuration bit-
streams totally through compilers. To maximize performance, configurations can be scheduled ac-
cording to runtime system states (e.g., predicate and data token) and viable resources. For instance,
superscalar processors schedule instructions dynamically through predictors and reservation sta-
tions. (2) The execution of configurations mainly refers to the mechanism of executing operations
within a single configuration. If operations execute in an order determined by compilers, then
the process is called sequential execution. If the operations whose operand data are ready takes
precedence on execution, then the process is called dataflow execution. Dataflow execution can be
further divided into static dataflow execution [63] and dynamic dataflow execution [64, 65]. The
static dataflow requires the hardware to execute operations with operand data tokens ready. The
dataflow model further requires the hardware to attach tags to tokens. Only if all the operand data
tokens that are ready have identical tags, can the corresponding operation instance be executed.
The static dataflow execution model does not allow multiple instances of the same routine to be
executed simultaneously, whereas the dynamic dataflow execution model does. Therefore, CGRA
can be classified into four major categories according to the execution model, as illustrated in Fig-
ure 5: (1) static-scheduling sequential execution (SSE), (2) static-scheduling static-dataflow

(SSD) execution, (3) dynamic-scheduling static-dataflow (DSD) execution, and (4) dynamic-

scheduling dynamic-dataflow (DDD) execution. Note that the SSD model adopts static dataflow
mechanism to schedule the operations within a configuration (at instruction level) while it fetches
and maps configurations statically (at thread level). This case is different from that of SSE whose
configuration is required to contain only parallel operations or statically sequenced operations.
The CGRAs that adopt the former two execution models are more suitable as spatial accelerators,
such as DySER and CCA [52], while the CGRAs that adopt the latter two execution models are
more suitable as spatial dataflow machines, such as TRIPs and Wavescalar.

2.2.4 Microarchitecture Model. The microarchitectures of CGRAs have been extensively stud-
ied in previous works. There are many different classifications based on microarchitectural
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Fig. 5. Comparison between different execution models of CGRAs: (a) an example DFG (a loop body with op-

erations 1–8), (b) spatially mapping configurations, (c) how the configurations execute with different models

(operations 1’–8’ from the next iteration). Note that DSD and DDD generally require a capability of partial

reconfiguration (or MCMD computation).

characteristics, such as network/interconnect topology, data path granularity, reconfigurable

logic function, memory hierarchy, operation scheduling, reconfiguration mechanism, cus-

tom operations, coupling with the host, and resource sharing with the host. At the microar-
chitectural level, it is easy to distinguish two CGRAs, but it is difficult to generate a complete classi-
fication with clear boundary. For example, a previous work performed an architecture exploration
with different interconnect topologies on ADRES [66], implying that interconnect topologies are
not essential to characterize ADRES. The situation with most microarchitectural characteristics is
similar. An individual CGRA design could have a series of application-dependent variations with
different granularity, reconfigurable logic functions, memory hierarchy or integration methods
[17]. Therefore, it is not necessary to include these trivial microarchitecture characteristics in our
multidimensional taxonomy.

2.2.5 Relations of Different Dimensions. The programming model, computation model and ex-
ecution model are top-down approaches in hierarchical system design. Therefore, these models
have some common corresponding relations, as illustrated in Figure 3. (1) The SCSD model can
implement programs with imperative languages and hardware description languages. This model
can be implemented on static-scheduling sequential or dataflow execution models. (2) The SCMD
model can implement programs with imperative languages and dataflow and functional languages.
This model can be implemented on the dynamic-scheduling static dataflow execution model.
(3) The MCMD model can implement programs with concurrent programming models. This model
can be implemented on the dynamic-scheduling dynamic dataflow execution model. These corre-
spondences expose the intrinsic difference from one CGRA design to another, proving the rea-
sonableness of our taxonomy. Since these correspondences are not one-to-one, it is a challenge to
determine which one generates a more efficient CGRA system. The following sections discuss this
problem.

Furthermore, the correspondence between the execution model and microarchitecture is ana-
lyzed. The dynamic-scheduling model requires a dynamic configuration control scheme, which
is not needed in a static-scheduling model. The static-dataflow model requires the microarchi-
tecture to support checking data availability and executing operations dynamically. The dynamic
dataflow further requires token passing and a matching scheme. Related problems are discussed
in the following sections.
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Note that the classifications are neither absolute nor complete. CGRAs in reality might combine
several execution models in their architecture or adopt other models in rare cases.

2.2.6 Classifying CGRA Architectures. Table 2 lists the representative CGRAs reported over the
past two decades and classifies them according to the above methods.

2.3 Evolution of CGRAs

This section reviews the CGRA evolution in the past two decades under the guidance of the pro-
posed taxonomy and the architecture summary in Table 2.

The dominant programming model of CGRAs is imperative, as indicated in Table 2, for the pur-
pose of being user-friendly. However, the fundamental contradiction between the spatial architec-
ture and imperative programming cannot be reconciled yet [49]. CGRAs with high-level impera-
tive programming languages require significant manual effort for optimization [16, 85]. This has
become a compelling problem that hinders widespread adoption of CGRAs. Now, it is a good time
to start considering the declarative and parallel/concurrent programming models, although they
might be more challenging to use for the programmer. Some novel CGRAs have already altered
their programming models [19, 61]. Even if CGRAs might still use imperative programming for
productivity in future, they surely need much more powerful programming extensions, including
general-purpose and domain-specific parallel patterns.

The mainstream computation model of CGRAs has been SCSD for a long time because SCSD
has balanced energy efficiency and flexibility. SCMD could have better energy efficiency for some
data-intensive applications, but it is less flexible for general applications [82]. In contrast, MCMD
increases control overhead and thus might decrease the computational efficiency [75, 84]. However,
as the scale of CGRAs increases, MCMD instances are observed more frequently. The technique
of multi-threaded processing can improve the throughput of a large MCMD CGRA [84, 86] but
the additional area and power overhead caused by complicated control scheme is a key problem
that must be solved to maintain high energy efficiency. This could be a trade-off depending on
the application demands. For example, Google still uses classic systolic arrays (SCSD) on TPU for
accelerating deep neural networks (DNNs) because of the application type and power budget [87].
In fact, as indicated in Table 2, all three computation models are frequently adopted according to
the target domain.

The most popular execution model of CGRAs is SSE because SSE provides an easy-to-use sub-
strate for computation and management. Current compilers can perform static optimization for
SSE CGRAs [85]. However, this is insufficient for irregular applications, of which the algorith-
mic parallelism cannot be exploited offline or working loads change greatly on-the-fly [83]. As a
result, a considerable number of CGRAs adopt the other execution models that employ dynamic
scheduling or dataflow mechanism to exploit dynamic parallelisms. These models enable high
performance for more applications types and alleviate burdens on compilers [19, 20, 83, 84]. The
execution models of CGRAs are evolving from static scheduling to dynamic scheduling and from
sequential execution to dataflow execution, as indicated in Table 2. This trend is quite analogous to
the evolution of CPU architectures from VLIW to out-of-order. Although the dynamic scheduling
and dataflow mechanism consume additional power, they are worthwhile if greater performance
improvement can be achieved.

2.4 Application Status

This part summarizes the domains to which CGRAs have already been applied. Since they sacrifice
a degree of fine-grained flexibility and interconnect flexibility, CGRAs are favored as domain-
specific accelerators rather than general-purpose prototyping and demonstration platforms. More
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Table 2. Classification of Representative CGRAs

Architecture Year
Programming

model*
Computation

model
Execution
model**

Specifications

Xputer [8] 1991 D SCSD SSE

PADDI [9] 1992 I SCSD SSE

PADDI-2 [67] 1993 D SCMD DSD

RAW [68] 1997 I MCMD DSD More like a multicore processor

PipeRench [69] 1998 D SCMD SSE

Morphosys [11] 2000 I SCMD SSE

Wavescalar [62, 70] 2003 I MCMD DDD Dataflow-driven ISA

PACT-XPP [13] 2003 I/C SCSD DSD

DRP [26] 2004 I SCSD SSE programmable FSM controller

ADRES [10] 2004 I SCSD SSE VLIW controller

ASH [57] 2004 D SCSD SSD

TRIPS [12] 2004 I MCMD DSD Dataflow-driven ISA

CCA [52] 2004 transparent SCSD SSE Runtime-generated configurations

Tartan [60] 2006 I MCMD DSD Asynchronous circuit

TFlex [71] 2007 I MCMD DSD Dataflow-driven ISA

RICA [72] 2008 I SCSD SSE

PPA [54] 2009 I SCSD SSE Polymorphic configurations

TCPA [50] 2009 D SCSD SSE

C-Cores [73] 2010 I SCSD SSE Targeted reconfigurability, ASIC-like

DySER [47] 2012 I SCSD SSD

REMUS [30] 2013 I SCSD SSE

Triggered Inst. [61] 2013 D MCMD DSD

T3 [74] 2013 I/C MCMD DSD Dataflow-driven ISA

SGMF [75] 2014 I MCMD DDD

FPCA [76] 2014 I SCSD SSE

DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench

NDA [77] 2015 - SCSD SSE Process-in-memory

HARTMP [78] 2016 I SCMD DSD

DORA [52] 2016 transparent SCSD / SCMD SSD Based on DySER

HRL [79] 2016 D/I SCSD SSE Process-in-memory, mix-grained

HReA [16] 2017 I SCSD SSD General-purpose

Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming

Stream-dataflow [20] 2017 I SCSD DSD Vector memory interface

CGRA-ME [80] 2017 I SCSD SSE ADRES-like

Wave DPU [18] 2017 I/C SCSD SSD Commercial product for DNN

PX-CGRA [81] 2018 - SCSD SSE Approximate PEs

i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE

Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing

dMT-CGRA [84] 2018 I/C MCMD DDD Based on SGMF

*I–imperative programming model, D–declarative programming model, C–parallel/concurrent (imperative) program-

ming model, “transparent” means that CGRA-related programming is not required, “-” means that programming is not

mentioned in that work.

**SSE–static-scheduling sequential-execution, SSD–static-scheduling static-dataflow-execution, DSD–dynamic-

scheduling static-dataflow-execution, DDD–dynamic-scheduling dynamic-dataflow-execution.
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specifically, since they provide sufficient computation resources but have less support for control
flow, CGRAs are mostly used in computation- and data-intensive domains, which is consistent
with the trend of emerging applications. The application status of CGRAs is introduced in terms
of the following aspects.

Security. Security applications, e.g., encryption and decryption, impose requirements on the
flexibility and physical-attacks-resistance of underlying hardware because security applications
typically contain hundreds of ciphers that evolve continuously and suffer from physical attacks
that are more threatening than conventional attacks. CGRAs meet these requirements. In addi-
tion to flexibility, CGRAs possess a capability to resist physical attacks because software-defined
hardware is safer than individual hardware implementation or software implementation. CGRA-
based cryptographic processors have attracted increasing interest in recent years. COBRA was
proposed in Reference [88] as a reconfigurable processor, which is customized for over 40 sym-
metric ciphers. Celator was proposed in Reference [89] as a reconfigurable coprocessor for block
ciphers (AES and DES) and hash functions (SHA). Cryptoraptor is a reconfigurable cryptographic
processor proposed in Reference [90] for symmetric-key cryptography algorithms and standards.
This processor is reported to support the widest range of cryptographic algorithms, with a peak
throughput of 128Gbps for AES-128.

Signal and image processing. Signal and image processing applications are typical stream
processing. Since CGRAs perform well at streaming processing, a large quantity of CGRA archi-
tectures targets these applications. The classic architecture, ADRES, has been applied to video
processing (H.264/AVC decoding [91]), image processing [92], a software defined radio (SDR) sig-
nal processing (SDM-OFDM) receiver [93], and MIMO SDM-OFDM baseband processing [94]).
The commercial XPP-III has also been applied to video processing (MPEG4 and H.264/AVC decod-
ing [30]). A FLEXDET was proposed in Reference [95] for a multimode MIMO detector. The CGRA
proposed in Reference [96] implemented the multioperable GNSS positioning function. The CGRA
proposed in Reference [30] implemented MPEG4/H.264/AVS standards. In industry, Samsung has
applied a CGRA video processing platform for 8K UHD TV [22].

Deep learning. DNNs have become quite popular since the 2010s in modern artificial intelli-
gence (AI) applications, including computer vision, speech recognition, medical, game play and
robotics. DNNs perform complex computation on a large amount of data with frequent interlayer
communications. CGRAs are capable of high-throughput computation and on-chip communica-
tion, making them a superior implementation for DNNs. Eyeriss, proposed in Reference [97], mini-
mizes data movement energy consumption through maximizing input data reuse. A reconfigurable
architecture that can reconfigure its data paths to support a hybrid data reuse pattern and scalable
mapping method was proposed in References [98, 99]. A runtime reconfigurable 2D dataflow com-
puting engine that can implement a variety of CNN operations in a systolic manner was proposed
in Reference [100].

Others. All the domains above contain intensive computation and data movement, which bene-
fit most from CGRA acceleration. Other similar domains, such as network processing [101], space-
craft [24], biomedicine, and scientific data analysis are also suitable for CGRAs.

3 CHALLENGES REGARDING CGRAS

Currently, CGRAs are still too immature for wide commercial use in terms of programmability, pro-

ductivity and adaptability. This section analyzes the root causes for these shortages and identifies
the most critical challenges under the guidance of the proposed taxonomy. Figure 6 illustrates the
analytical method of this work. The challenges are discussed, and then the corresponding technical
trends are discussed in the next section.
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Fig. 6. Relations between the taxonomy, challenges, and technical trends in this survey.

3.1 Challenge 1: Challenging-to-Program Architecture

3.1.1 Problem Formulation. As the top level of architecture abstraction that describes applica-
tions, the programming model has a major impact on the performance and productivity of the un-
derlying computation architecture [49]. An extremely low-level programming model is unfriendly
to programmers and requires a long compilation time, while an extremely high-level programming
model makes it challenging to create a high-performance implementation. However, this problem
has been only rarely considered in previous works, which makes most CGRA implementations
challenging to use or inefficient [19]. Therefore, it is a crucial problem to identify the most suit-
able programming model at the very beginning of CGRA design.

3.1.2 Major Challenges. It is a major challenge that an ideal programming model for CGRAs
must balance the competing goals of productivity and implementation efficiency. (1) From a hard-

ware perspective, the fundamental reason is that CGRAs are powerful computing substrates
completely different from conventional sequential processors. Their architectures are far more
complicated than CPUs because a two-dimensional array of hardware resources must be sched-
uled and cooperate. They are even more difficult to program than VLIWs (general-purpose VLIWs,
e.g., Itanium, turned out to be a dramatic failure, since the wished-for compilers were basically im-
possible to write), because explicit dataflow via interconnections is more difficult to manage than
implicit dataflow via shared memory. CGRAs task partitioning is also more difficult than that for
FPGAs due the characteristic of temporal computation, and programming FPGAs with high-level
languages is still formidable. Therefore, the extreme architectural complexity makes programming
CGRAs particular challenging. (2) From a software perspective, there are fundamental conflicts
between the complicated CGRA architectures that demand massive fine-grained parallelism and
the popular software programming models that exhibit sequential styles. To achieve productiv-
ity, the programming model should use abstraction to avoid the need for programmers to learn
the architecture’s intricate details. High-level abstraction can only provide coarse-grained paral-
lelism, which is insufficient to fulfill the hardware potential. To achieve high efficiency, the model
should explicitly expose the key elements of the architecture that have an impact on implementa-
tion efficiency such that programmers can explore the architectural design space to determine the
performance bottleneck. For example, FPGAs can be programmed with high-level models (such as
OpenCL) and high-level synthesis tools, generating less-efficient designs [102–104]. Alternatively,
FPGAs can be programmed with low-level models (such as VHDL) and compiled by synthesis,
placement and routing tools, thereby generating an implementation of higher performance but
consuming longer design and compiling time [105]. The struggle is delivering performance while
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increasing the level of abstraction [49]. In other words, the challenge of designing a CGRA pro-
gramming model lies in how to expose only the architecture features that have a severe impact on
performance while isolating the other hardware details. There are successful examples of similar
architectures, such as CUDA for GPGPU.

Since CGRAs are mostly domain-specific and their performance also depends on applications,
another challenge is how to take application characteristics into consideration during program-
ming model design (such as in the MATLAB language). It is expected that the application-
oriented extensions to the programming model could ease the programming effort and improve
performance.

Currently, there are no perfect programming paradigm for CGRAs. Most CGRAs and their com-
pilers, if any, require a significant amount of manual work. Specifically, these CGRAs use high-
level languages for programming and rely on the compiler front-end to transform the high-level
input into a lower-level intermediate representation, which will subsequently be optimized and
converted into machine code. In these cases, a remarkable gap exists between the compiler results
and manual optimization results [38], which implies that exposing more architecture details to pro-
grammers (in other words, adopting a lower-level programming model) would be more efficient
than merely relying on compiler-oriented optimization.

3.2 Challenge 2: Computation with Limited Parallelism

3.2.1 Problem Formulation. As the abstraction level that exploits algorithmic parallelism, the
computation model is often required to support efficient implementation of various parallelism
semantics in the programming model. The key motivation is implementation efficiency. Real ap-
plications always contain various proportions of algorithmic parallelism. An architecture that can
exploit more algorithmic parallelism achieves better performance. This can be realized with archi-
tectural support of multilevel parallelism, including instruction-level parallelism (ILP), data-level
parallelism (DLP), memory-level parallelism (MLP), task-level parallelism (TLP), and speculative
parallelism. For example, Superscalar processors are more efficient than scalar ones due to the
utilization of ILP, multi-core processors are even more powerful than the superscalar due to the
utilization of TLP, and out-of-order processors have better performance than in-order ones due to
the utilization of speculative parallelism.

However, supporting multilevel parallelism does not come without a price. The area and power
overheads are two major limitations on the forms of parallelism feasible to CGRAs. When the
power and area overheads offset the performance gain, the energy efficiency and area efficiency
are degraded. The degradation depends on both architectures and applications. Therefore, how
to implement multilevel parallelisms in the computation model is the major problem discussed in
this part.3.2.2 Major Challenges.

CGRAs already support a variety of parallelism in their computation models. For example, TRIPS
supported three modes of execution, each of which is well suited for a different type of paral-
lelism, i.e., ILP, DLP and TLP [12]. Polymorphic Pipeline Array supported fine-grained parallelism
with software pipeline and coarse-grained pipeline parallelism, which come from ILP and TLP
[54]. MLP and DLP support have become a topic in recent CGRAs for data-intensive domains
[19, 20]. However, there are few CGRAs that support speculative parallelism well, which is an
important resource for parallelism exploration. The major impediment to implement the specula-
tive parallelism lies in area and power limitations. Although speculative execution has been ex-
ploited in GPPs, problems that are challenging to surmount arise when this technique is applied to
CGRAs.

Speculation is a fundamental method in computer architecture that exploits parallelism by first
eliminating some dependences and subsequently checking and restoring/validation. Speculation
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is beneficial for performance when the gain in parallelism outweighs the checking and recovering
cost. It plays a quite important role in improving the implementation performance of many appli-
cations, because predictable dependences, e.g., control dependence and ambiguous memory depen-
dence, provide enormous potential benefit to the speculation technique. Control dependence poses
a relatively weaker order on two instructions than data dependence because the consumer instruc-
tion only needs a predicate bit from the producer instruction. Ambiguous memory dependence is
a partial data dependence, which might not require any order when aliasing memory accesses
turn out to be conflict free. According to analyses on popular benchmarks, such as SPEC2006 and
EEMBC, branch instructions account for approximately 20% of all instructions [106, 107], which
means that control dependence accounts for more than 20% of all dependences. As discussed in
[10], since the computation-intensive kernels could be accelerated to a large degree (∼30×), the
rest workload, which is often limited by the control dependence or ambiguous dependence, would
dominate the total execution cycles according to Amdahl’s Law. The authors of Reference [108]
conducted an analysis regarding the speculative parallelism potential of SPEC2006; the results
showed that speculatively parallelizing loops (including speculation on loop control dependence
and loop-carried ambiguous memory data dependence) can improve the overall performance by
more than 60%. This result motivates applying speculation techniques to CGRAs.

Speculative parallelism is exploited in GPPs with the main techniques of branch prediction and
out-of-order execution. These techniques have been widely adopted by commercial GPPs to ensure
satisfactory performance. (1) Branch prediction is typically combined with speculative execution,
eliminating the control dependence at the cost of a misprediction penalty. The predicted path can
be prefetched or even promoted before the branch instruction such that the dependence chain
length can be shortened. The misprediction penalty includes flushing and refilling the processor
pipelines, employing additional buffers to store the modifications of speculative instructions to
the system states before they can be correctly committed, or implementing a roll back mechanism
for these modifications if necessary. (2) Out-of-order execution is a speculative technique aimed
at memory dependence. Ambiguous memory accesses execute concurrently as if there were no
dependence. Thus, the instructions dependent on them are not delayed. Load-store-queue is usu-
ally adopted to buffer these memory accesses before they are committed to the memory system.
Although these techniques achieve conspicuous success in improving performance, their area and
power overhead is also significant. According to the power analysis on RISC processors (90nm),
the energy dissipation of arithmetic operations that perform the useful work in a computation
only accounts for less than 1% of total power dissipation in media-processing applications [109].
Speculation techniques play an important role in decoding and scheduling instructions for deep
pipelines and multiple processing units, which are extremely power-hungry. This is evidenced by
the fact that out-of-order cores are less energy-efficient than in-order cores.

CGRAs are spatial architectures that enable temporal computation, which is different from GPPs
and makes CGRAs challenging to exploit speculative parallelism. First, the branch prediction has
a lower accuracy when performed at the configuration level because the branch history is much
shorter than the instruction-level prediction [74]. Although the accuracy could be improved by
capturing all branch-related information in configurations, the hardware cost becomes unafford-
able because of the considerable array scale. Second, the branch misprediction penalty booms
because of configuration-level checking and validation, which implies flushing and refilling the
corresponding configurations and buffering and reordering all memory accesses in these con-
figurations. Consequently, in contrast to GPPs, the performance penalty, power overhead and
area overhead could be much larger. Considering that the prediction accuracy decreases and
the misprediction penalty increases, the branch prediction technique becomes far less effective.
Third, the out-of-order execution technique also suffers from the significant overhead of buffering
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Fig. 7. CGRA virtualization and the supporting system.

configuration-level memory accesses (memory accesses within a configuration are atomic). As a
summary, the major challenges to exploiting the speculative parallelisms on CGRAs are how to
minimize mis-speculation ratio and penalty.

3.3 Challenge 3: Virtualization

3.3.1 Problem Formulation. The algorithmic parallelisms exploited by the computation model
can be represented in the forms of parallel operations, data sets or tasks. The execution model
is an abstraction that describes how to schedule these intermediate representations onto suitable
hardware substrates. The underlying hardware of CGRAs has extremely variable designs and de-
velopment environments, posing a challenge for the productivity of various CGRAs. Virtualization
is an effective solution to this problem. As illustrated in Figure 7, the CGRA virtualization method
provides a unified CGRA model, i.e., virtualized CGRA, which comprise standardized interfaces,
communication protocols and an abstraction of execution. On basis of this model and input ap-
plications, the static compilers generate virtual configurations that fit this series of CGRAs. Then,
the virtual configurations are optimized and interpreted online/offline onto a specialized physi-
cal CGRA. In addition, the generated configuration binaries are sent to system schedulers, which
determine runtime task placement and eviction according to the resource utilization and states.
Virtualization facilitates the usage of CGRAs with unified models such that CGRAs can be eas-
ily incorporated into operating systems. Virtualization also facilitate the CGRA design because
the designer can produce any application-dependent CGRAs that fit the common development
environment. Therefore, the major problem to be discussed in this part is how to implement vir-
tualization of CGRAs.

3.3.2 Major Challenges. Virtualization of reconfigurable components can be traced back to the
idea of integrating FPGAs into operating systems in 1990s. CGRA virtualization is quite similar to
the relatively developed FPGA virtualization but is much less studied. The reason is that the archi-
tecture and design of CGRAs are far from mature. Many problems are still unsettled: there are no
widespread commercial products, there are no acknowledged fundamental research platforms and
compiling systems, there are no common benchmarks for evaluation, and there are no acknowl-
edged architecture templates. Remarkably, many researchers are continually proposing various
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Table 3. Design Space of CGRAs: Microarchitectural View

Dimensions/Property Design space

PE function LUT-ALU-Approximate Unit-Custom block

Interconnect topology Crossbar-Mesh-Bus-NoC

Reconfiguration Static-Dynamic; Partial-Full

Memory system Scratchpad-Cache-PIM-computation memory

Communication among PEs RF-FIFO-Wire switch; Synchronous-Asynchronous-Elastic

Interface with the main controller Loose-Tight; Datapath-Accelerator-Coprocessor

Control scheme of PEs Distributed-Centralized

Main controller FSM-GPP-DSP-VLIW

novel architectures, but it is difficult to make any objective and detailed comparisons. This situa-
tion results from the dramatic diversity of and controversy regarding architecture designs, which
has become a major challenge to the CGRA virtualization. Currently, it seems almost impossible
to extract a unified hardware abstraction on CGRAs with dramatically varied execution models
and microarchitectures, such as external interfaces, memory systems, system control schemes, PE
functions, and interconnection. Another challenge lies in compilation. Since CGRAs mostly rely
on static compiling to exploit their computational resources and interconnections, it is difficult to
dynamically schedule those configurations whose execution sequencing and synchronous com-
munication have been settled.

3.4 Challenge 4: Memory Efficiency

3.4.1 Problem Formulation. The microarchitecture directly determines the performance, area
and power consumption of hardware implementation of algorithmic parallelisms. In this part, we
concentrate on the challenges at the microarchitecture level, and the major target is efficiency. As
indicated in Table 3, the microarchitectures of CGRAs exhibit noticeable design differences in terms
of many dimensions. Designers typically perform design space exploration of these dimensions
to customize microarchitectures for specific applications [41]. Take PE function as an example.
Approximate computing units have been introduced to improve energy efficiency at the expense
of accuracy losses [81, 110]. This method is effective only for applications that tolerate inaccuracy,
such as multimedia processing, signal processing and DNNs. Custom design can be utilized to
enhance the data processing capability through sharing single control logic among multiple ALUs
and registers [82]. This method is effective for parallelizable and reduction kernels, such as the
bio-DSP domain.

However, based on this design space, CGRAs cannot avoid the well-known problem of the mem-
ory wall, especially when performing data-intensive applications. We argue that the design of
memory systems should be further explored. Specifically, there are two motivations. First, with
the development of information technology, the size of the data on which computations are per-
formed is ever increasing, and the energy overhead of data movement has already exceeded that
associated with computation. For example, data movement between CPUs and off-chip memory
consumes two orders of magnitude more energy than a floating point operation [111]. Data move-
ment with DRAM consumes approximately 95% of the total energy of an architecture design for
data-intensive applications [112]. The era of big data has arrived, which is altering the form and lo-
cation of memory on all computing platforms. The impact will be especially significant for CGRAs.
Second, current CGRAs adopt conventional cache-based or scratch-based memory schemes that
are developed for general-purpose computers, e.g., CPUs and GPUs. Since these designs are
not carefully explored or optimized for different memory access patterns, they have become
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limitations on memory bandwidth. Developing a flexible memory system to accommodate con-
stantly evolving applications and algorithms has consequently been attracting attention.

3.4.2 Major Challenges. Since the problem of the memory wall has a similar impact on all com-
puting platforms, mature solutions could be introduced into CGRAs. However, CGRAs have some
distinct characteristics that produce additional challenges.

First, as a spatial computing fabric, many CGRAs have arrays of spatially distributed PEs, which
could launch many scattered and redundant memory address generation and memory access
events. However, regular memory access with continuous addresses or in vector style is more
efficient. Thus, CGRAs suffer more from the memory wall than vector architectures that have a
parallel memory interface.

Second, most CGRAs can specialize the computing facilities for various applications, but few of
them can customize the memory access pattern for different applications. These CGRAs typically
adopt a conventional memory system, which cannot explore memory-level parallelism efficiently
at runtime or upon compilation.

Third, as a typical spatial computing fabric, CGRAs are suitable for integration with the memory
array in a PIM manner. In theory, a DRAM can incorporate a PE into each block as described
previously [113]. However, because the logic of a PE is much more complex than Boolean logic
operations or comparators, it would be too challenging to integrate CGRAs into the DRAM process
technology. Moreover, the memory technology is optimized for storage density and has a lower
speed [114], which would limit the performance of the integrated logics.

4 STATE-OF-THE-ART CGRAS AND TECHNICAL TRENDS

In this section, we survey the state-of-the-art techniques developed in response to the four chal-
lenges described in Section 3. Note that some challenges have not attracted enough attention from
CGRA researchers, so the corresponding survey covers the techniques adopted by similar archi-
tectures, such as FPGAs. Based on existing methods, prospective solutions are further discussed.

4.1 Trend 1: Programming-Driven Architecture Design

4.1.1 State-of-the-art Techniques. As CGRAs can serve as domain-specific accelerators, the
mainstream of CGRA design is still driven by applications. Figure 8(a) illustrates a common de-
sign flow for CGRAs [41, 115, 116]. The steps on the right column show a common compilation
flow. The target applications, which are typically described in high-level languages, are first par-
titioned and optimized separately for the host processor and reconfigurable fabric. The front end
of the compilation tools generates a low-level intermediate representation, which exposes some
concurrency of input programs. The middle end of the compilation tools makes further code opti-
mizations, and the back end performs the low-level steps of mapping, placement and routing [38].
The steps on the left column show the design and verification flow. Applications are profiled first
to identify the hotspot region, which is used to guide partitions. The application features can be
extracted according to the analysis of hotspots, which are used to guide architecture design space
exploration. The performance of the generated architecture specification in architecture descrip-
tion language (ADL) is evaluated via simulation tools together with the compilation output [117].
Based on the evaluation results, the design space exploration is iterated with a loop closure to
identify the suitable architecture for target applications.

However, the application-driven design flow borrowed from ASIC designs focuses too closely
on the performance of a specific application while overlooking the programmability and overall
performance of the targeted domain of CGRAs. There are two problems in this flow. First, nei-
ther programmers nor users play any role in the whole design flow. Productivity is generally not
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Fig. 8. Comparison of (a) application-driven CGRA design flow and (b) programming-driven CGRA design

flow.

considered at all, and thus the created CGRA architecture could be challenging to use. Second,
the feasible design space exploration is typically limited to an architecture baseline or specifica-
tion format. However, it was not stated clearly in previous works which baseline was used or
why the baseline was adopted [66, 85, 118, 119]. If the baseline is not suitable to the target do-
mains, then the process of the design space exploration might converge to a suboptimal solution.
In all, application-driven design flow concentrates on improving domain-oriented performance
but neglects the importance of programmer-oriented productivity and the architecture models’
efficiency, which is insufficient to create an ideal architecture.

CGRAs that can be transparently programmed seem to be a fundamental solution to the chal-
lenge of an ideal programming model, since they do not require any CGRA-oriented programming.
However, they have major drawbacks, including insufficient efficiency and considerable energy
overhead, because all the work of compilers is offloaded to hardware translators and optimizers,
which overburdens hardware.

4.1.2 Prospective Directions. It has already been realized that programming models should be
introduced into the design flow of CGRAs as a primary design issue.

This trend emerged earlier in FPGA design, which can be considered as a commercial fine-
grained analog of CGRAs. George et al. [120] introduced a high-level domain-specific language
(DSL) into FPGA development. This language helps programmers expose the computing features
of applications and then map them into a set of structured computation patterns, such as map,
reduce, foreach, and zipwith. Because these computation patterns are few and well understood,
it is natural to use premeditated strategies to optimize these patterns and generate high-quality
hardware modules to implement them. Therefore, this design flow uses the application features to
design a programming model (in declarative functional language) with domain-specific semantics,
achieving a suitable balance among productivity, generality and efficiency. Prabhakar et al. [121]
further performed optimization on the compilation process from parallel patterns to FPGA design
with tiling and metapipelining. Koeplinger et al. [122] presented an overall framework of an FPGA
design generation from a high-level parallel patterns programming model, where a parameterized
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IR and DHDL were adopted to refine the design space exploration. The results demonstrate a 16.7×
speedup relative to a multicore commodity server processor. Li et al. [123] introduced a program-
ming model with thread-level speculation into FPGA hardware generation to accommodate irreg-
ular applications whose data or control dependences are determined at runtime. Accordingly, an
inherently parallel programming abstraction that packages parallelism in the form of concurrent
tasks for the runtime schedule was proposed. The generated hardware could manage the software
tasks dynamically according to task rules. A performance improvement relative to server-grade
multicore processors was observed.

Clearly, the trend of programming-driven design flow of FPGAs can be applied to CGRAs.
Prabhakar et al. [19] proposed a CGRA architecture specialized for a parallel patterns program-
ming model in which pattern compute units were specialized for computing nested patterns as a
multistage pipeline of SIMD PEs and pattern memory units were specialized for data locality as
banked scratch-pad memory and configurable address decoders. Nowatzki et al. [20] proposed a
so-called stream dataflow architecture that was composed of a CGRA, a control core and a stream
memory interface. In this architecture, the design flow begins with a target domain analysis. The
characteristics of applications are summarized as follows: high computational intensity with long
phases and small instruction footprints with simple control flow, straightforward memory access
and reuse patterns. Subsequently, a stream-dataflow programming model, its execution model,
and ISA were proposed. Finally, the microarchitecture was implemented with up to 50% power
efficiency of an ASIC (matching performance).

In Figure 8(b), a programming-driven design flow is summarized according to the above works
for both FPGAs and CGRAs (the virtualization is discussed in the following part). In contrast to
the application-driven design flow in Figure 8(a), programmers play a key role in designing a pro-
ductive and efficient programming model, which determines the underlying computation model,
execution model and microarchitecture to a large degree. Two critical factors should be considered
by programmers. First, the abstraction level of the programming model should be high enough to
abstract away hardware details such that programmers without hardware knowledge can use it.
Second, the abstraction of the programming model should be able to explicitly express the features
that boost performance of the target applications. At least the following features should be covered
during application analysis:

(1) Independent task parallelism is straightforward to use and orthogonal to other paral-
lelisms. Such parallelism should be supported in programming model designs.

(2) Word-level parallelism is common in computation-intensive applications and has already
been supported by most CGRA hardware.

(3) Bit-level parallelism can be found in some cryptography applications such as SHA but is
incompatible with normal CGRA granularity. Therefore, such parallelism results in ex-
tensive modifications to the whole design if it is required by applications. Of course, the
benefit is also significant if a mix-grained CGRA targeted at cryptography could support
bit-level parallelism.

(4) Data locality in various applications is diverse. If this aspect can be explicitly expressed in
programming and then implemented with spatially distributed efficient CGRA intercon-
nections, then the burden on the external memory bandwidth will be lowered.

(5) The memory access patterns of target domains should be analyzed to help alleviate the
possible memory bound in low-level architecture design.

In summary, the design of the programming model is the first step of CGRA design flow. De-
termining how to design a programmer-oriented and application-oriented efficient programming
model is the primary problem that should be considered by CGRA designers.
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4.2 Trend 2: Multilevel Parallel Computation

4.2.1 State-of-the-art Techniques. Instruction-level parallelism means to perform multiple
independent instructions or operations from one task in parallel. Such parallelism can be imple-
mented with many architectural techniques. For instance, in a general-purpose processor, the in-
struction pipelining technique overlaps multiple instructions’ execution. The instructions could
be dependent, but this condition will bring about a pipeline race and hazard. In superscalar and
VLIW processors, multiple execution units are used to execute multiple independent instructions
in parallel. These instructions are typically exploited by compilers. In out-of-order processors,
instructions are executed in an order that is determined dynamically by data flow. Thus, out-of-
order execution exploits ILP in a dynamic hardware manner. All of the above techniques have
already been introduced into CGRAs. First, the instruction or operation pipelining does not match
CGRAs in nature, because CGRAs rely mainly on energy-efficient spatial computation rather than
time-multiplexing instruction pipelines. Nevertheless, many CGRAs adopt the software pipelining
technique to explore a coarser granularity of kernel- or loop-level parallelism [124–127]. Second, in
contrast to one-dimensional spatial computation in the VLIW or superscalar processors, CGRAs
advance to two-dimensional spatial computation, which is one of their essential characteristics
and is adopted by almost all CGRAs. Third, the dataflow technique is widely used in CGRAs [12,
20, 62, 75]. This technique can be used in hardware to manage the inherent execution order and
data preparation order of a static-scheduling DFG, or it can be used to accommodate simultaneous
multiple DFGs on a single array. Therefore, in general, CGRAs use the spatial computation tech-
nique to implement the ILP that is statically explored by compilers, while they use the dataflow
technique to dynamically explore the ILP that cannot be traced by compilers. Memory-level par-
allelism can be viewed as a special type of ILP, and it is typically implemented with a dataflow
technique.

The major differences between the ILP in CGRAs and other architectures are area and power
overhead. First, CGRAs provide distributed interconnect, which is much more energy-efficient
than the multiport register files in CPUs, GPUs, DSPs, and so on, resulting in a much smaller power
overhead. Second, CGRAs rely on both compilers and the dataflow dispatch method, resulting in
a smaller area and power overhead than out-of-order processors.

Data-level parallelism means to perform the same operation on different subsets of a large
data structure. This term typically refers to SIMD computation such as that performed by GPG-
PUs. Although CGRAs are generally considered more compatible with MIMD computation, a few
CGRAs adopt an SIMD-like structure, i.e., SCMD to reduce the power and area overhead of in-
struction dispatch [19, 11]. CGRAs can implement DLP with higher efficiency than SIMD/SIMT,
because they can provide programmable interfaces to consolidate memory accesses and avoid re-
dundant address generation. CGRAs also provide efficient memory for data reuse. However, these
CGRAs could be quite domain-specific.

Task-level parallelism or thread-level parallelism means to perform uncorrelated instructions
or operations from different tasks in parallel. The multiple tasks typically execute asynchronously,
while many CGRAs adopt a centralized control scheme in which all PEs’ execution and reconfig-
uration occur in lockstep, i.e., using a large configuration for energy and resources consideration
[10, 47, 69]. Because of synchronization conflicts, TLP cannot be implemented on such CGRAs.
Nevertheless, multiple centralized CGRAs could be integrated to form a larger CGRA that en-
ables coarse-grained TLP. More recent CGRAs have adopted a distributed control scheme such
that operations from multiple tasks can execute simultaneously [86]. The dataflow technique is
suitable to implement TLP. The static dataflow enables multiple DFGs to execute in spatial parallel
(such as TRIPS [12]), whereas the dynamic dataflow further enables multiple DFGs to execute in
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an overlapping manner (such as Wavescalar and SGMF [75]). Various implementation forms for
intertask communicating in CGRA, such as shared memories, distributed FIFOs and circuit-switch
interconnections, exist.

Compared to multiprocessing, CGRAs rely on the dataflow technique to enable fine-grained
TLP, avoiding complicated multi-issue and multithreading logic overhead. They also provide much
more energy-efficient intertask communication than the usual shared memory.

Speculative parallelism means to perform multiple dependent operations in parallel as if they
were independent or uncorrelated. Conservative parallelism must be strictly consistent with the
data and control dependences, which means that any instruction pair that possibly has an internal
control or data dependence must execute in sequence. In contrast, speculative parallelism needs to
break these dependences to shorten the length of the dependence chain. To ensure the accuracy of
program execution, speculative operations must be squashed and the modification to the system
state should be rolled back if these operations turn out to be not performed. Such parallelism can
provide a large quantity of supplementary instruction-level, data-level or task-level parallelisms
at the cost of dynamic buffering, detecting and squashing mechanisms. For example, a general-
purpose processor uses the branch prediction technique to exploit speculative parallelism in the
pipeline. Two control-dependent instructions can be predicted as independent and then issued
to the pipeline successively without any bubbles, thus avoiding pipeline stalling. If the predic-
tion is incorrect, then the pipeline is thoroughly flushed, causing even longer pipeline stalling.
In a multiprocessing system, speculative parallelism is typically exploited at the task level. The
task-level speculation (TLS) technique can perform multiple threads that may have internal data
dependence in parallel. Threads should be squashed at the detection of any dependence violations.
Reorder buffers or similar structures are typically used to buffer all the modifications to the system
state by speculative operations or threads to avoid rolling back the whole system state.

To the best of our knowledge, only a few CGRAs support speculative parallelism at either the
instruction level or the block level. Partial predicated execution [128, 129] is a method to explore
ILP through speculatively executing the branching paths in parallel with conditional computation.
The side effect of the paths not taken must be limited inside the array, so the method has limited
applications. TFlex [71] proposed a block-level fused predicate/branch predictor for CGRAs that
uses all the predicates in a block to predict the next block. The speculative block is flushed from
its pipeline if misprediction is detected.

4.2.2 Prospective Directions. The control flow in programs can be implemented in three forms
on CGRAs. First, the external configuration controller (e.g., the GPP and FSM module) could ex-
press all control dependences as configuration sequencing. Second, the PE array could express the
forward control dependence inside a single configuration (HyperBlock [130]). Third, one PE could
express a local control flow if this PE is autonomous, such as in TIA. For nonautonomous CGRAs,
such as DySER, the third form is disabled.

In theory, a speculation technique could be applied to all these architecture levels. Figure 9(a)
shows a simple control flow to compare their implementation results. Figure 9(b) illustrates the re-
sult of applying the speculation technique to the external controller. Assuming that the alternative
path B is predicted, CGRAs may only execute the first configuration with A, B and P. If mispredic-
tion is detected according to the result of A, then the first configuration is flushed, and the second
one with C and P is fetched and executed. Simultaneously, the side effects of the speculative block
B in the first configuration should be eliminated. Figure 9(c) illustrates the result of applying the
speculation technique to the PE array. The original predicated blocks B and C become speculative
and execute in parallel with A. Mis-speculation will always occur either in B or C. The side effects
of both B and C should be constrained inside the PE array. The major advantage is the reduction in
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Fig. 9. (a) Forward control flow, (b) speculation at the external controller of the PE array, (c) speculation at

PE arrays, and (d) speculation at individual PEs. The operations on orange PE are executed speculatively.

the reconfiguration time. Figure 9(d) illustrates the results of applying the speculation technique
to individual PEs in a CGRA with a distributed control scheme. Block B is executed speculatively
in parallel with block A. Upon detection of misprediction, only the PE that executes block B is
reconfigured. Simultaneously, the side effects of B should be eliminated. Several conclusions can
be drawn:

(1) Exploring speculative parallelism in a PE array (Figure 9(c)) is the most profitable ap-
proach, because it does not incur any reconfiguration penalty [129, 131]. However, this
strategy executes all the alternative paths, which consumes more power and degrades the
performance if the hardware resources cannot provide matching parallelism. Additionally,
the PE array alone cannot implement backward control dependence (e.g., irregular loops),
so the speculative parallelism that can be explored is also limited.

(2) Exploring speculative parallelism in the external controller and in autonomous PEs can
minimize the required computation operations if the prediction is always correct.

(3) Considering that the total execution time of the control flow as shown in Figure 9(a)
is equal to the sum of the predicted configuration’s execution time, the reconfiguration
penalty multiplied by the misprediction rate, and the alternative configuration’s execu-
tion time multiplied by the misprediction rate, exploring speculative parallelism in au-
tonomous PEs can always achieve higher performance than in an external controller,
because less reconfiguration penalty is incurred. Of course, if a partial reconfiguration
technique is supported, then the reconfiguration penalty would be the same, but the com-
putation of the remaining PEs would be strictly constrained by the control flow, decreasing
the PE utilization rate.

(4) Exploring speculative parallelism in a PE array and in autonomous PEs (or in an exter-
nal controller for CGRAs with a centralized control scheme) is necessary, because neither
of these individual approaches can achieve better performance in all circumstances. As
discussed previously [132, 133], highly biased and highly predictable branches are pre-
ferred in the superblock method, minimally biased and highly predictable branches are
preferred in the dynamic prediction method, and minimally biased and minimally pre-
dictable branches are preferred in the predication method.

(5) Exploring speculative parallelism at any architecture level requires isolating the specu-
lative operations from the other operations and the external system until the predicate
comes out. The possible side effects include memory operations, exceptions and other
operations that modify system registers.

In summary, this part has discussed how to design a computation model to maximize the par-
allelism that can be explored from the upper programming model. Based on the state-of-the-art
architecture, the implementation of speculative parallelism is the most important problem to be
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addressed. A distributed control scheme that supports multithreads and a comprehensive solution
that operates at multiple architecture levels are preferred. It is true that speculative parallelism
can improve the performance to a large degree. However, such parallelism should be adapted to
different circumstances.

4.3 Trend 3: Virtualization

4.3.1 State-of-the-art Techniques. Virtualization is an extensively discussed topic regarding FP-
GAs, whereas virtualization for CGRAs is much less studied. A mature CGRA of high productivity
should support virtualization, and it should be easily integrated into common heterogeneous com-
puting platforms and operating systems. This is particularly important for the users and developers
that are unfamiliar with underlying hardware.

State-of-the-art FPGA virtualization techniques could provide an inspiration for CGRA virtual-
ization. Currently, FPGA virtualization research is addressing two problems that are the keys to
integrating FPGAs into operating systems: abstraction and standardization [42]. To resolve these
problems, there are three major directions. (1) Overlays, especially CGRA overlays, could be an
effective solution for FPGA abstraction [134, 135]. Overlays or intermediate fabrics improve pro-
ductivity through providing a layer of programmability that abstract the low-level details of an
FPGA. CGRA overlays free users from specialist hardware CAD tool flow and HDLs, which enables
agile development several orders faster than the analogous high-level synthesis. CGRA overlays
also provide a capability of dynamic partial reconfiguration that is easier and faster than using
the CAD tools from vendors. (2) Virtual hardware processes that provide an abstract concept
that manages the execution and scheduling of hardware resources are another direction. A virtual
hardware process is allocated a number of execution units with respect to the currently avail-
able resources. The major requirements to which virtual hardware processes are subject includes
standard software API, standard hardware interfaces and protocols, and unified execution models.
FPGAs could be abstracted as two different execution abstractions for high-level scheduling. First,
if the FPGA is used as an accelerator, then it could be controlled as a slave device with a driver.
Several papers [136–138] have discussed the standard interface and library design for such FPGA
accelerators. The usage as accelerators is common today and is widely supported by the toolchains
of commercial FPGA vendors. Second, if the FPGA is used as a parallel computing processor that
is equal to the CPU, then this architecture could be abstracted as one or several hardware ap-
plications (hw-application), which are independent from software applications and can interact
with the software applications by means of communication and synchronization. If the commu-
nication is implemented with a message passing mechanism, then the hardware application is
often called an hw-process [139]. If the communication is implemented with a coupled memory
sharing mechanism, then it is often called an hw-thread. In addition to the execution styles, re-
source management is another problem with the virtual hardware process. Most FPGAs adopt an
island-style architecture, in which one task/process/thread cannot be placed across multiple recon-
figurable areas or so-called islands, because it is the easiest for FPGA design flow and facilitates
task/process/thread pending and resuming. For a utilization purpose, finer-grid-style architectures
have been proposed, in which one thread can occupy several grids from the unused ones [140, 141].
(3) Standardization is an open problem that requires a generally accepted unified solution. If stan-
dardization could be accomplished in the future, then reconfigurable computing will spread with
faster development, better portability and reusability. Fortunately, we have observed that many
large industrial companies, including ARM, AMD, Huawei, Qualcomm and Xilinx, are engaging
in defining these standards, such as CCIX [142] and the HSA Foundation [143]. Therefore, rapid
development of FPGA standardization is likely.
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4.3.2 Prospective Directions. CGRA virtualization is still at a primary stage, and it should learn
from the state-of-the-art techniques above. (1) The standardized software API, hardware inter-
face and protocols are approximately the same as those for FPGAs. Standardization is not difficult
but requires broad agreement from researchers and users. (2) Since CGRAs are overlays of FPGAs
that are effective in terms of reconfiguration performance, what an effective overlay for CGRAs

look has not yet been discussed. It is expected that overlays of CGRAs could possess easy but
powerful programmability. The computation models discussed in Section 4.2 also provide inspi-
ration. (3) Virtual hardware processes are relatively easier to implement on CGRAs, because
coarse-grained resources facilitate dynamic scheduling. It is obvious that CGRA virtualization is
a problem closely associated with the technical maturity of CGRAs. It might remain controversial
until sophisticated CGRAs that are widely accepted by the research and industrial communities
are developed. Here, we review current design methods that are valuable for CGRA virtualization.

The execution of CGRAs is somewhat similar to that of FPGAs, because both of them are used
for the same purpose of accelerating computation-intensive and data-intensive tasks offloaded
from CPUs. Some CGRAs could be used as accelerators with standard software APIs, e.g., special
drivers and libraries in forms of configuration contexts. Most CGRAs fall into this category, such
as Morphosys, ADRES, and XPP. Some CGRAs, such as TIA and TRIPS, could be used as a parallel
computing processor that is equal to a CPU in an operating system. They could be abstracted as
hardware applications, which can interact with the CPU by means of standard hardware/software
communication and synchronization. Some CGRAs are used as an alternative data path of a CPU,
such as DySER and DynaSpAM [53]. These CGRAs could be abstracted at a lower level as an
instruction set architecture extension.

The resource scheduling of CGRAs is a little different from that of FPGAs. Since most FPGA
designers have agreed on an island-style architecture, no similar architecture templates exist for
CGRAs. Some CGRAs support only PE-array-based reconfiguration, as in FPGA islands, such as
ADRES. Some CGRAs support PE-line-based reconfiguration, such as PipeRench. Every PE line
is a pipeline stage. Some CGRAs support PE-based reconfiguration, such as TIA. Many commu-
nication channels exist among PEs, such as shared register files, wire switches and FIFOs. Some
CGRAs adopt the static dataflow execution model, in which several PEs can be aggregated into an
area to execute a thread/task, such as TRIPs. Other CGRAs adopt the dynamic dataflow execution
model, in which multiple threads/tasks can be executed on the same PE area in a time-multiplexing
dataflow manner, such as SGMF. Therefore, it is challenging for an operating system to manage
the diverse CGRA resources. Of course, there are common characteristics that might facilitate vir-
tualization. The internal communication is conducted mostly in the message-passing mechanism
instead of the shared memory model. The mechanism of internal synchronization is typically based
on the handshaking and dataflow manner.

Although CGRA virtualization is just emerging, some interesting embryonic ideas can be ob-
served. PipeRench virtualizes pipelined computation via pipelined reconfiguration [69], which
makes performing deep-pipelined computation possible even if the entire configuration is never
present in the fabric at one time. Tartan can execute an entire general-purpose application with a
realistic amount of hardware by exploring a virtualization model [60]. Therefore, PipeRench and
Tartan provide virtualizing execution models for their compilers. TFlex is a composable CGRA
whose PEs (simple, low-power cores) can be arbitrarily aggregated together to form a larger single-
threaded processor. Thus, a thread can be placed on TFlex with its optimal number of PEs, run-
ning at its most energy-efficient point. The composability comes mainly from its instruction set
architecture (explicit data graph execution). Therefore, TFlex provides a dynamic and efficient PE-
level resource management scheme for operating systems. Pager et al. [86] proposed a software
scheme for multithreading CGRAs, which transformed a traditional single-threaded CGRA into a
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multi-threaded coprocessor for a multi-threaded CPU. This approach can transform the configu-
ration binary at runtime such that this thread occupies fewer pages (a page resembles an island
of an FPGA). Therefore, this work provides a dynamic page-level resource management scheme
and addresses how to efficiently integrate a CGRA into a multi-threaded embedded system as a
multi-threaded accelerator. Overall, current CGRA virtualization techniques mainly target facili-
tating static compiling, and CGRA virtualization for an operating system and dynamic resource
management are forthcoming.

The virtualization is the first and most critical step toward widespread adoption of CGRAs.
Further development urgently requires persistent exploitation and cooperation from the CGRA
research community.

4.4 Trend 4: Efficient Memory System

4.4.1 State-of-the-art Techniques. In the era of big data, applications are demanding massive
computation on very large datasets. Because the computation is performed by a processor while
its data are stored in the main memory, massive data have to be transferred between these two
locations, applying pressure on the main memory bandwidth. As main memory speed is improved
at a much slower pace than processor speed, the bandwidth and access latency are unable to match
the processor and thus become the performance bottleneck for many applications, ranging from
cloud servers to end-user devices (referred to as the memory wall) [144]. The problem of access
latency has been alleviated to a certain extent by multilevel caches with different sizes and speeds.
However, the problem of bandwidth is much more challenging.

Compression techniques are a classic method that can alleviate memory bandwidth bottlenecks
[145–147]. These works mainly compress the configuration binaries sent to CGRAs offline with
common compression algorithms, e.g., Run Length coding, Huffman coding, arithmetic coding and
LZSS coding. Thus, the memory bandwidth requirement for configuration decreases. However, this
method incurs significant area/power/performance overheads caused by the online decompressor.
Moreover, the variable length coding causes inefficiency in configuration storage and loading in
parallel. Thus, the compression technique is not common in CGRAs now.

The second solution is to improve the bandwidth of the main memory through integrated circuit
technology, such as 3D chip stacking. For instance, AMD launched the first GPU that integrated
a 3D-stacked DRAM (HBM), called Fiji, in 2015. Subsequent generations of 3D-stacked DRAM,
namely, HBM2 and HBM3, were adopted by many more large companies, such as Samsung, Nvidia
and Hynix. The bandwidth of HBM3 could be even greater than 512GB/s. The problem of data
starving exists in computation platforms other than the GPUs. Google delivered its first generation
of TPU as a domain-specific accelerator (ASIC) for deep learning [92], which used a DDR3 memory
with a bandwidth of 30GB/s. It is anticipated that its next-generation TPU2 will use a 64GB HBM2
with a bandwidth of up to 600GB/s.

The third solution to the bandwidth limitation is to eliminate the data transfer between the off-
chip memory and processor. In this case, the storage and computation could be integrated together
in a single chip and should be coupled in a much tighter manner such that the data movements
can be performed on the extended internal channels with small access latency and high energy
efficiency. Two approaches can be taken to achieve this condition. One approach is to integrate
more memory, such as an embedded DRAM, onto the processor chip as caches, replacing the off-
chip main memory to some extent. This approach can alleviate the bandwidth and access latency
requirement for off-chip memory. This computation-centric integration suffers from the lower
density of eDRAM, however. It is challenging to add enough memory to the processor chip. The
other approach is to integrate computation components into memory. This idea was first pro-
posed as intelligent RAM in 1997 [148], which integrated vector processing units for floating point
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Fig. 10. (a) Conventional processor system, (b) expanding the on-chip memory size, (c) PIM at memory

interface, and (d) distributed PIM at memory array.

add, multiply, divide, integer operations, load/store, and multimedia operations on the memory
interface. Oskin [149] proposed to distribute FPGA blocks to a DRAM subarray interface. Such
process-in-memory (PIM) architecture or compute-capable memory has gained increasing inter-
est. Additionally, in recent years, this approach has become quite popular for data-intensive de-
mands, such as deep learning and bioinformatics. A DRAM-based PIM architecture that integrated
an ALU array into the memory interface was proposed in Reference [150]. A DRAM-based PIM
architecture called DRISA, proposed in Reference [119], integrated fine-grained logic units into the
memory array. A STT-MRAM-based PIM architecture, proposed in Reference [151], modified the
memory cell design to support the function of ternary content addressable memories. A ReRAM-
based PIM architecture called PRIME, proposed in Reference [152], used the analogous computing
feature of memory array. A PRAM-based PIM architecture proposed by IBM [153] also uses the
analogous computing feature of the memory array. The 3D chip stacking technique has also been
used to mount processing layers on the memory layers to form PIM or near-data processing (NDR)
[154, 155].

Figure 10 summarizes the above methods that are intended to bridge the gap of processor and
main memory. To alleviate the bandwidth and access latency problem, as shown in Figure 10(a), the
first method is to expand the on-chip memory (cache or scratch-pad) size, as shown in Figure 10(b),
such that many data movements can be conducted inside the processor chip. The second method
is to integrate PIM into the main memory interface, as shown in Figure 10(c), such that the many
data movements can be conducted internally on the memory chip. The third method is to integrate
PIM into the main memory array as shown in Figure 10(d), making use of the internal bandwidth of
the memory array. These approaches are common in offloading some data movements of interchip
buses to the more efficient inner-chip channels or 3D-stacking via.

4.4.2 Prospective Directions. The special challenges described above have been partly observed
by CGRA researchers. To address them, some effective methods taking different directions have
been proposed.

For the problem of fragmented and redundant memory accesses and address generation, one
possible solution is to design vectorized or streaming parallel memory interfaces for CGRAs, es-
pecially for the domains of stream processing, computer vision and machine learning. There is ex-
tensive literature about this solution. DySER, comprising a CGRA tightly coupled with a processor,
supports a wide memory interface similar to that used in streaming SIMD extensions (SSEs). The
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triggered instruction architecture manages the data input of PEs in a streaming pattern. Plasticine
designs programmable address generating units and coalescing units for the memory interface. The
stream-dataflow approach combines a static dataflow CGRA with a stream engine, which manages
the concurrent accesses to the memory interface and on-chip memory system in a streaming man-
ner. The stream engine is controlled by the stream commands generated by a single-issue in-order
processor. As a domain-specific CGRA accelerator for convolutional neural networks, Eyeriss [97]
uses a streaming access to fetch data for a dataflow CGRA. However, if there are few opportunities
for coalescing fragmented memory accesses into streams or vectors, then the second challenge is
encountered.

For the problem of an inflexible memory access pattern, one possible solution is a dynamic
CGRA framework that can adapt its memory access patterns at runtime or upon compilation.
First, a dynamic dataflow mechanism can explore MLP within the issue window at runtime. The
memory operations that incur cache misses could be suspended, and then its following memory
operations would be executed. Therefore, more parallelism of memory accesses is exploited at run-
time. WaveScalar and SGMF are typical examples. Second, exposing communication or memory
accesses explicitly in the program or ISA provides more opportunities for compilers to explore
MLP. RSVP [156] exposes streams in the core’s ISA to communicate with reconfigurable fabric.
Stream-dataflow acceleration also provides an ISA that presents memory streams explicitly. A
specialized hardware architecture called memory access dataflow (MAD) with a special ISA, pro-
posed in Reference [157], can be integrated with a different accelerator and boosts the memory
accesses that are offloaded from processors. Additionally, some studies have analyzed the data
movements and accordingly designed the cache structure and associating mechanism to improve
memory efficiency [158].

For the problem of bridging the gap between CGRAs and main memory, a possible solution is
constructing a near-memory CGRA fabric with the 3D chip stacking technique. A CGRA can be de-
signed on the logic layer of a 3D stack memory, enabling near-memory reconfigurable computing.
The 3D TSVs could provide a wider bus and thus provide larger bandwidth. This technique is also
compatible with the HBM and HBC memory technology. There are several works on this front.
Gao et al. [79] proposed a heterogeneous reconfigurable logic (HRL) that consists of three main
blocks: fine-grained configurable logic blocks for control functions, coarse-grained functional units
for basic arithmetic and logic operations, and output multiplexer blocks for branch support. Each
memory module employs HMC-like technology. Farmahini et al. [77] proposed coarse-grained
reconfigurable arrays on commodity DRAM modules with minimal changes to the DRAM archi-
tecture. These works do not yet support direct communication or synchronization between near
memory computing stacks.

In summary, because the target domains are becoming increasingly more data intensive, as in
the case of machine learning and big data, the memory systems of CGRAs require more improve-
ment and optimization, avoiding the bottleneck in data movements. The directions include the fol-
lowing: (a) improving the regularity and parallelism of the distributed memory accesses through
an efficient memory interface, (b) improving the flexibility of the memory interface through a
programmable memory-managing unit, and (c) improving the bandwidth and latency of the bus
between CGRAs and memory through 3D-stacking chip technology.

5 FUTURE DEVELOPMENT OF ARCHITECTURES AND APPLICATIONS

Since general-purpose processors have stopped their rapid increase in performance but the
demand for massive data processing capability continues to increase, application-specific accel-
erators are becoming popular. CGRAs have unique advantages of flexibility, performance and
energy efficiency relative to other accelerators, and thus it is expected to play a key role in future
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Fig. 11. (a) Architecture comparison in terms of flexibility and energy efficiency and (b) application demand

analysis in terms of repurposing and power budget (note that this figure is qualitative and considers general

cases).

computing systems. This section provides analyses and predictions regarding the future trends of
CGRA architectures and applications.

5.1 Prospective Evolutions of Architectures

The prospective evolutions of CGRA architectures have been partially discussed in Section 4 in
terms of the possible solutions to different challenges. This part presents a summary and some
extensive discussion.

(1) We argue that CGRA architectures should comply with a popular programming language,
which might be concurrent or declarative. The architecture details beyond the program-
ming paradigm should be mostly transparent to users for the purpose of alleviating the
burdens on compilers and programmers.

(2) We argue that speculative execution technique should be introduced into CGRAs for per-
formance improvement across more applications. The dataflow mechanism could be cou-
pled with speculative methods, improving the effectiveness of both.

(3) We argue that virtualization and composability shall become essential ingredients for
CGRAs. A uniform software/hardware interface and protocols are desired.

(4) We argue that process-in-memory and computation memory should be introduced into
CGRA architectures to address the bottleneck of data movement.

(5) We argue that programmable memory management is becoming increasingly important
as data-intensive applications, e.g., deep learning and big data, gain momentum. A CGRA
architecture with flexible memory system could optimize for various access patterns.

(6) We argue that dynamic compilation hardware that implements runtime optimization for
data flow is an important direction for emerging applications.

5.2 Prospective Evolutions of Applications

This part analyzes the opportunities in future to determine possible killer applications for CGRAs.
As shown in Figure 11(a), CGRAs are promising computing fabric with enormous potential. They
can achieve an energy efficiency within 10× that of ASICs and can be programmed with high-level
languages. As a reconfigurable computing fabric, CGRAs avoid two major weaknesses of FPGAs:
low performance because of long interconnection and low efficiency because of low hardware

ACM Computing Surveys, Vol. 52, No. 6, Article 118. Publication date: October 2019.



118:32 L. Liu et al.

utilization [6]. As a result, CGRAs are a superior alternative to FPGAs in accelerating applications.
However, there is a lack of killer applications for CGRAs.

The killer applications of CGRAs probably lie in the domains that have higher requirements
in terms of both power and flexibility. Figure 11(b) lists popular application scenarios and their
various requirements in terms of the power budget and repurpose frequency during their lifecycle.
A comparison with Figure 11(a) indicates that CGRAs well match the scenarios on the top right,
such as datacenters, the mobile end, cloud servers and robotics. For instance, Microsoft’s Catapult
project uses FPGAs to speed up its Bing search engine in their datacenters, leading to significant
improvements while retaining the ability to change and improve the algorithm over time within
the system [159]. IBM, Intel, and Baidu have also made similar decisions [160, 161], integrating
FPGAs into their datacenters and cloud servers, and this scheme is becoming more popular. We
argue that CGRAs, as a more efficient alternative to FPGAs, will find their place in the domain
of datacenters and servers for big data applications and network processing. Mobile end and IoT
scenarios are also promising domains for CGRAs, as these have strict requirements on power
consumption and function updating for a wide range of applications, including AI, signal and
image processing, and security.

In addition to energy efficiency and flexibility, other characteristics of CGRAs could be utilized
to enable killer applications. CGRAs typically provide massive runtime reconfigurable resources,
which typically cannot be fully used. Therefore, redundant resources at runtime could be em-
ployed for reliability and security use. First, redundant resources could replace the faulty ones
by transforming the mapping result equivalently. Thus, CGRAs can provide fault-tolerant designs
against a low-yield process and physical failures [162–165], making it suitable for applications
that have a high requirement for fault tolerance, such as aerospace and high-end servers. Sec-
ond, the redundant resources can implement security check modules to avoid physical attacks
and hardware trojans [166]. Countermeasures against physical attacks for reconfigurable crypto-
graphic processors were proposed in References [167, 168]; these used the characteristics of par-
tial reconfiguration and time-multiplexed SRAM to improve the security. The method proposed in
Reference [169] utilizes spatial and temporal randomizing reconfiguration as countermeasures for
double fault attacks. A method based on the Benes network was proposed in Reference [170] as a
random infection countermeasure for block ciphers against fault attacks.

6 CONCLUSION

CGRAs have become a viable alternative to existing computing architectures. As the circuit tech-
nology continues to scale down, the advantages of CGRAs in terms of power and flexibility have
become even more significant. Therefore, CGRAs are expected to play an important role in main-
stream computing infrastructures.

This survey presents a comprehensive survey regarding CGRAs. First, a novel multidimensional
taxonomy is proposed by abstracting the programming, computation and execution paradigm of
CGRAs. Second, the major challenges regarding the architecture and design of CGRAs are sum-
marized and discussed. Third, the application opportunities for CGRAs in the future are analyzed.
We believe that these challenges can be addressed rapidly with the cooperation of academia and
industry. Then, CGRAs could be a widespread solution to the problem of performance, energy
efficiency and flexibility beyond Moore’s Law.
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