
A service-oriented architecture and its ICT-infrastructure to support eco-efficiency performance
monitoring in manufacturing enterprises

Priscila Angulo, Claudia Cristina Guzmán, Guillermo Jiménez* and David Romero*

Center for Innovation in Design and Technology, Tecnológico de Monterrey, Monterrey, México

(Received 5 May 2015; accepted 18 January 2016)

Energy consumption and contaminant emissions to the ecosphere are two of the main environmental concerns nowadays in
the industrial landscape. Both environmental performance indicators are currently being observed very closely by govern-
ments and society for their long envisioned impact on our planet’s future. Moreover, the environmental performance of
manufacturing enterprises should not be studied in isolation, since production contributes significantly to the gross
development product of all nations, so enterprises’ economic productivity and environmental performance, known as
eco-efficiency, should be considered intertwined. Therefore, at the same time that production environmental footprint is
considered, production economic aspects are also part of the green equation for achieving eco-efficient manufacturing
enterprises. Furthermore, as enterprise information systems and manufacturing technologies evolve, their usefulness should
be considered to aid factories to become more eco-efficient and reduce their energy consumption and emissions footprints in
a competitive way. The Research & Technological Development work reported in this paper is part of the Factory ECO-
MATION EU-FP7 project, which aims to create eco-efficiency monitoring solutions for eco-factories. The Factory ECO-
MATION architecture integrates data from environmental sensors, production information and energy consumption records
in order to allow their simultaneous monitoring, so that the production planning and control parameters can be adjusted to
keep all production goals at a reasonable scale while protecting the environment. This paper describes an ICT-Infrastructure
based on a service-oriented architecture (SOA) capable of integrating production and environmental information from
diverse data sources in order to support the eco-efficiency performance monitoring of manufacturing enterprises.

Keywords: eco-efficiency; energy consumption; emissions footprints; production; SOA

1. Introduction

Manufacturing contributes significantly to Gross
National Product (GNP) and employs a significant task-
force in industrialised countries (Bi, Xu, and Wang
2014). A good reference describing how manufacturing
enterprises contribute to the GNP in industrialised coun-
tries can be found in Cirani et al. (2014). However,
while these enterprises contribute to the economic
development of nations, they also affect the environ-
ment with the depletion of production resources such as
the consumption of non-renewable energy sources and
scarce raw materials (Shao et al. 2012). Although there
are many technologies and techniques for achieving
eco-friendly production operations, it is clear that any
eco-efficiency strategy should simultaneously consider
three types of efficiency in order to allow a manufactur-
ing enterprise to pursue it in a viable way: (1) economic
efficiency, thus enterprises can financially survive; (2)
resources efficiency, necessary for keeping operations
competitive at a low-cost determined by energy and
raw materials consumption; and (3) emissions effi-
ciency, since it is very important to maintain contami-
nant emissions at a low-rate due to environmental
regulations and responsibility.

Information and Communication Technologies (ICTs),
especially enterprise information systems (e.g. production
planning and control systems), have helped to improve
information management and therefore decision-making at
different enterprise levels, including the shop-floor, and
thus leading to higher levels of productivity (Ren, Zhang,
and Tao 2010). However, most of the Research &
Technological Development (RTD) conducted at the
shop-floor has been addressing only production informa-
tion management with software architectures (Xie and Gui
2012) and frameworks (Shao et al. 2012) targeting tradi-
tional manufacturing information integration for decision-
making, disregarding in many cases the environmental
information related to manufacturing, which nowadays
has become extremely relevant for environmental compli-
ance, auditing and certification (Amrina & Yusof, 2011;
Koho, Torvinen, and Romiguer 2011).

The RTD work reported in this paper is part of the
Factory ECO-MATION (Factory ECO-friendly and energy
efficient technologies and adaptive autoMATION solu-
tions) EU-FP7 project, which aims to create eco-efficiency
monitoring solutions for eco-friendly factories. In order to
accomplish this, different sensing and communication net-
work technologies were used to gather data from

*Corresponding authors. Email: (Guillermo Jiménez) guillermo.jimenez@itesm.mx; (David Romero) david.romero.diaz@gmail.com

International Journal of Computer Integrated Manufacturing, 2017
Vol. 30, No. 1, 202–214, http://dx.doi.org/10.1080/0951192X.2016.1145810

© 2016 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com

environmental sensors, production information and energy
consumption records in order to allow their simultaneous
monitoring, so the production planning and control para-
meters can be adjusted to keep all production goals at a
reasonable scale while protecting the environment.
Moreover, within the Factory ECO-MATION architecture,
sensors are responsible for gathering real-time data
directly from environment, while production information
and energy consumption records are gathered from exter-
nal applications using Web services.

Furthermore, one of the main goals of this RTD work
is to develop a service-oriented architecture (SOA) and its
ICT-infrastructure that can be easily deployed in different
manufacturing enterprises, so that the integrated data can
be used by a Decision Support System (DSS), which will
be able to analyse it in order to suggest how the produc-
tion planning and control parameters can balance produc-
tion productivity goals and expected environmental
production performance. The integrated data can also be
used by other enterprise information systems such as
Environmental Management Systems (EMS) for not only
reporting environmental performance, but also eco-
efficiency1 performance.

The paper has been organised as follows: Section 2
briefly presents related work on data integration; Section 3
concentrates on the importance of eco-efficiency achieve-
ment by manufacturing enterprises; Section 4 describes
the functional requirements that justify the design of an
SOA and its ICT-infrastructure; Section 5 defines the
requirements of a middleware to handle the identified
functional requirements; Section 6 analyses different alter-
native services technologies based on their complexity and
specific needs from the Factory ECO-MATION architec-
ture; Section 7 presents the architectural solution for vir-
tualising the data sources for eco-efficiency performance
indicators measurement at a manufacturing enterprise
coming from its enterprise information systems and sensor
networks; Section 8 provides the technical implementation
details of the SOA and its ICT-infrastructure; Section 9
describes the resulting functional prototype and the chal-
lenges in its development; and Section 10 offers conclu-
sions and future work.

2. Related work on data integration

Data integration challenge has been addressed in several
research works and projects. For instance, Hoschek and
McCance (2001) described in their work the Spitfire pro-
ject efforts to address complexity, high performance and
interoperability in data-grids. The Spitfire project provides
a grid-enabled relational database middleware as a solu-
tion to reduce complexity and deliver high performance in
data integration efforts. Furthermore, Rodríguez-Martínez
and Roussopoulos (2000) in their work offer a self-exten-
sible database middleware system for distributed data

sources called MOCHA, which interconnects over com-
puter networks. MOCHA is designed to scale to large
environments and it is based on the idea that some of
the user-defined functionality in the system should be
deployed by the middleware itself. It uses Java code for
implementing advanced types of query operators to remote
data sources and executing them remotely. In the case of
Kim et al. (2014), their work describes the design and
implementation of an information and communication
system for managing a livestock farm. The system consists
of sensors, sensor manager, database, servers and a user
interface for an environmentally optimal breeding live-
stock farm. A common approach in these projects is the
use of XML-based Web services to deliver the data
obtained from the sensors. One difference between these
approaches and the approach proposed later in this paper
is the use of RESTful-based Web services.

3. Eco-efficiency importance for manufacturing
enterprises

Being the manufacturing sector one of the main consu-
mers of energy and accountable for a large percentage of
contaminant emissions in the industrial landscape, and at
the same time one of the biggest contributors to the GNP
and employability rates in nations, it requires a special
attention and assistance in finding eco-efficient ways for
balancing its productivity and environmental performance.
It is important then that manufacturing enterprises harmo-
nise production efficiency with energy consumption and
emissions (Amrina & Yusof, 2011), since it is no longer
enough for an enterprise to be economically viable, neither
to control their energy consumption to set it at the lowest
possible level as well as their contaminant emissions, it is
about to achieve the optimal production performance with
the right balance between energy consumption, emissions
and productivity (Zhang et al. 2011; Programme 2014).

4. SOA and its ICT-infrastructure functional
requirements

Modern enterprises are heavily based on enterprise infor-
mation systems that leverage information and communica-
tion technologies. These technologies enable intra- and
inter-organisational cooperation and collaboration while
supporting business processes and strategic decisions.
Usually, this kind of support originates from data that
constitute the building block of the analysis of each pro-
cess. These data are also fundamental in driving and
monitoring the execution of some enterprise business pro-
cesses or allowing the completion of some others. For
these reasons, data must be collected, filtered, merged
and finally made available as information for the deci-
sion-makers (or to trusted users) through enterprise infor-
mation systems (Xu et al. 2014).

International Journal of Computer Integrated Manufacturing 203

Among the various sources of data related to all business
processes of an enterprise, the physical environment can be
considered as one of the most important ones (Ren, Zhang,
and Tao 2010). In fact, the production process has usually
strict interactions with the environment, which can have a
significant impact on the quality of the final product, both
directly, in case of outdoor production, and indirectly, by
affecting the correct functioning of the factory plant.
Nowadays, available technologies for such sensing capabil-
ities are characterised by some distinctive features that must be
carefully taken into account. In particular, the ICT infrastruc-
ture within an enterprise can be characterised not only by a
huge amount of different kinds of software running over
different operating systems, but also by a lot of different
hardware platforms. From business level to shop-floor level,
different data exchange standards are used because various
types of data have to be communicated. At shop-floor level,
sensed data have to be gathered by consumer applications
through, generally, a proprietary communication protocol
while at business level applications data exchange is much
more standardised. Then, at shop-floor level, sensors are
usually of very small size and, sometimes have few resources
such as: limited amount of power (e.g. they are typically
battery-powered with little or no capability of harvesting
power), small communication bandwidth and reduced com-
putational capabilities. They embed a very simple operating
system that provides essential features as: event-driven com-
putation andmultitasking, basic interaction with other sensors,
power control, and radio communication. At business and
shop-floor levels, applications that gather sensed data or use
it are different among them in terms of access levels, commu-
nication protocols and data availability constraints. As a con-
sequence, because of these constraints, operations within
sensor networks have to be performed by directly exploiting
the underlying hardware components and/or the embedded

operating system. This complexity is certainly unacceptable
for non-trivial applications, which must preferably be
designed to be flexible, reusable and reliable. Thus, the neces-
sity of a middle layer of software arises, i.e. a middleware,
which should be laid between the embedded operating sys-
tems and the applications; a software layer which hides the
complexity of low-level pervasive technologies while helping
the higher software layers gather heterogeneous real-time data
coming from the production (see Figure 1).

5. Middleware layer functional requirements

Following the presented objective for the Factory ECO-
MATION sensing and monitoring platform, a software
layer should provide the following components, which
are considered the guidelines for the functional require-
ments definition:

● Programming abstractions that provide high-level
programming interfaces with different abstraction
levels and programming paradigms.

● Standardised system services that are exposed
through abstraction interfaces and can provide var-
ious management functions.

● Run-time environments that can extend the sensors
embedded operating system in supporting and coor-
dinating multiple applications to be concurrently
run over the developed platform.

● Quality-of-Service (QoS) mechanisms that allow the
adaptive and efficient utilisation of system
resources.

Moreover, the software layer should obey to certain design
principles that, as it can be argued, on the one hand should
address the heterogeneous sensor networks distinctive

Figure 1. Factory ECO-MATION architecture.

204 P. Angulo et al.

features, and on the other hand should meet the application
needs. Especially, the following key principles have to be
considered when designing the software layer:

● Data orientation – within a sensor network, the
main focus is not on the node that produces data
but on the data itself, i.e. the application is more
interested on data than on the identity of the data
source. For this reason, a software layer should
support this principle of data-centric networking
by means of proper techniques of data extrapolation
or specific routing and querying within the network.

● Energy awareness – Energy management is another
key issue for a sensor network, especially for wire-
less devices where sensor nodes are typically pow-
ered by batteries that could not be easily replaced;
particularly when many nodes are involved and
distributed over wide and sometimes impervious
areas. Therefore, in order to increase the network
lifetime, the software layer should be capable of
managing properly the sensor hardware resources,
especially communication bandwidth and proces-
sing speed.

● Quality-of-Service support – A sensor network
should always provide the performance level
required by the applications, i.e. the required QoS
level. Unfortunately, sensor networks are subject to
many status variations (e.g. energy loss, hardware
failures, etc.) during their lifetime, and thus the
required QoS level could not be provided if proper
in-time actions are not taken into account. The soft-
ware layer for sensor networks should provide QoS
support by allowing adaptive changes in the net-
work, affecting determined QoS properties like
event notification reliability or sensing information
accuracy.

● In-network processing – Sensor nodes constitute
elements of a distributed network in which trans-
mitted bits regard not only to the collected data but
also to the information about the network itself. For
example, in-network processing should be sup-
ported by the software layer, and data aggregation
and data compression are two techniques that are
important in this case because they allow reducing
data transmission in the network, respectively, by
condensing it or by correlating it. The classic exam-
ple of data aggregation is the distributed evaluation
of a maximum value.

● Scalability and Robustness – are correlated from a
software layer point of view, as they both relate to
the performance of the network as a function of its
size. On the one hand, the software layer should
support scalability by continuing to offer a certain
performance level even when the number of net-
work nodes grows, and on the other hand the

software layer should support robustness by tolerat-
ing node failures that can reduce network size or
change network topology.

● Reconfigurability and Maintainability – A sensor
network is usually deployed to be long time living,
as the coverage area can be very wide and imper-
vious, and sensor nodes could not be easily reach-
able. However, after the initial deployment, new
necessities may arise and applications may need to
change tasks of some nodes or assign them new
tasks to perform. For these reasons, the software
layer should support reconfigurability and maintain-
ability of the network with minimal or null manual
intervention.

● Heterogeneity – Sensor nodes can differ from each
other due to their hardware features (such as battery
capacity, transmitting power, processing speed, sen-
sing capability, etc.) at deployment time or while
the system evolves, due to different tasks each node
has to perform. The software layer should support
this heterogeneity by adopting a proper task dis-
patching policy based on the state of nodes.

● Real-world awareness – Sensor networks are used
to monitor phenomena that happen in the real
world, subjected to time and space laws. In many
cases, applications could be interested in knowing
when and where a certain datum has been collected
or an event happened, the software layer should
support them in this sense.

NOTE: In some cases, these principles could affect each
other; in that case, appropriate solutions that balance all
the aspects need to be found, keeping in mind the specific
application requirements.

Having in mind the components and the above-men-
tioned features, and within the context of Factory ECO-
MATION sensing and monitoring requirements, the men-
tioned software layer has to be conceived. For such aim,
the adoption of SOA approach, in which all systems
functionalities are deployed as services, was chosen.
These services can manage requests from different high-
level applications and communicate to achieve the
required level of performance. For this reason, two types
of interfaces have to be defined. The first is to enable the
connection with applications and the second one is to
allow the connection with the low-level sensor layer.

Other important requirement is the appropriate set-up
stage of the type of services. In the set-up stage it performs
an analysis of compatibility, reliability and quality of service
in order to avoid undesired delays during operation stage.

Several technologies and frameworks were analysed in
order to identify the most appropriate one for fulfilling the
Factory ECO-MATION sensing and monitoring platform
objective. The following section presents an analysis of
those technologies.

International Journal of Computer Integrated Manufacturing 205

6. Middleware supporting technologies background

In order to understand why Web services are one of the
better choices for achieving the Factory ECO-MATION
goals of interoperability and flexibility, it is necessary to
review a little history of the evolution in information
sharing and data exchange technologies. The trend has
been guided by the necessity of information and data
integration across dissimilar platforms. Each platform
uses different data representations, thus the need for stan-
dardisation has been the major driver for different techni-
ques and technologies (Linthicum 2003).

Among the several techniques and technologies that
have been proposed along the time, the most significant
ones are the following, chronologically organised, from
older to newer:

● Text file sharing – Every platform uses a different
internal representation for data, so it makes difficult
the direct data sharing among platforms. The only
data representation that is standard across platforms
is ASCII text. This is why, in the beginning, to port
data from one platform to another, the data were
translated to some structured representation in an
ASCII text file in a magnetic media of some sort.
Then the magnetic media was inserted in the target
platform and translated to that platform’s internal
representation. That process was necessary for
every chunk of data that needed to be ported from
one platform to another.

● Electronic Data Interchange (EDI) – The first ver-
sion of a middleware to automatically move data
from one platform to another was EDI, which was
used a proprietary and very cryptic representation of
data, and only those platforms for which the EDI
middleware existed were able to use EDI. One
constrain in EDI was that the only interaction
among platforms was for file interchange, other
types of interactions were not possible (Qi 2001).

● Common Object Request Broker Architecture
(CORBA) – CORBA was the proposal of a specifi-
cation from several of the bigger technology com-
panies for object-oriented based applications (e.g. C
++, Java, etc.). In CORBA, the broker consisted in
three components: a proxy, an adapter and a com-
munication layer. In CORBA, the two objects
requiring interaction were named the client and the
server. When a CORBA client sends a message to a
server, the proxy at the client side translates the
message to an internal representation, and then the
server uses the adapter to translate the message to
its internal representation, performs the necessary
tasks, and sends the result back to the client. A
main contribution that CORBA made was that cli-
ents and servers could interchange many messages,

with every message directed to a specific server.
However, besides allowing interoperability,
CORBA also included security, transaction manage-
ment, naming services and many other specifica-
tions, thus making its complete implementation
very difficult. These reasons caused the reduced
use of CORBA for application integration
(Feinberg 1950).

● COM+ and DCOM – The Communication Object
Model (COM) and its distributed versions were
proposed by Microsoft (Davis and Zhang 2002).
Although in principle they would be implemented
in different platforms, in reality only Windows
implemented them. Microsoft Windows being the
dominant platform in the IT marketplace, COM+
and DCOM were broadly used in business and
manufacturing integration. However, both COM+
and DCOM were complex and evolving very
rapidly with many changes in their specifications,
making difficult their implementation and keeping
updated to their last version.

● Java RMI – Java is a platform-independent pro-
gramming language, mainly based on packages or
frameworks for its extensibility. Remote Method
Invocation (RMI) was the Java proposal for remote
object interaction, and an RMI package was added
to the Java programming language (Burke 2009).
RMI is very flexible, but it is limited to interoper-
ability between Java only applications. Because
many applications were implemented in C++ and
other object-oriented programming languages, using
RMI was a limited solution.

● Web Services – The Web services SOAP standard
was proposed by many of the main IT enterprises,
among which was Microsoft itself (Davis 2012).
The proposed standard specifies that all necessary
interactions among clients and servers would be in
an ASCII text representation, in a specific format:
XML. Because, as explained before, ASCII text is
the basic representation that every platform under-
stands. Web services were the most flexible inter-
operability proposal at that time. It was now
possible that a client running in any platform
could interchange messages with a server running
in any other platform. A server could implement
and deploy many services for clients to call (con-
sume). At the beginning, it was difficult to describe
and consume Web services because many XML
codes were necessary to specify services. These
problems were highly reduced by a combination
of programming language compilers and the devel-
opment of environmental enhancements. Currently,
the code intended to be consumed (called
from clients) is annotated by predefined syntax,
and the integrated development environment (IDE)

206 P. Angulo et al.

generates the necessary XML code to deploy it as a
service.

● Internet Communications Engine (ICE) – is a dis-
tributed computing platform designed with intero-
perability and scalability in mind (ZeroC 2003).
ICE can be deployed in a large number of operating
systems (Windows, Linux, OS X, Windows RT,
Solaris, etc.) and programming languages (C++,
C#, Java, Python, Objective-C, Ruby, PHP and
ActionScript). The main design goals of ICE are to:
○ Provide an object-oriented middleware platform

suitable for use in heterogeneous environments.
○ Provide a full set of features that support devel-

opment of realistic distributed applications for a
wide variety of domains.

○ Avoid unnecessary complexity, making the plat-
form easy to learn and use.

○ Provide an implementation that is efficient in
network bandwidth, memory use and CPU
overhead.

○ Provide an implementation that has built-in
security, making it suitable for use over insecure
public networks.

How the previous approaches and technologies support
the needs for the Factory ECO-MATION platform are
summarised in Table 1.

Among the main concerns in the Factory ECO-
MATION architecture are flexibility and interoperability,
but also simplicity should be added as an important factor.
Considering the requirements from the Factory ECO-
MATION sensing and monitoring platform, and according
to Table 1, it could be seen that Web Services are the best
choice. The following subsection describes the main char-
acteristics of architectures based on services.

6.1. Service-oriented architecture evolution

The SOA is a reference architecture in which functional
resources are exposed through interfaces defining the
available services, including their name and input and
output parameters. How services are described, and the
mechanisms for their access, is determined by a specific

middleware. Along the time, several technologies have
been proposed for supporting the services concept with
every one using a different approach. These technologies
differ mainly in flexibility and supported software plat-
forms (e.g. programming languages and operating sys-
tems) (Murer and Szyperski 2002; Linthicum 2003). It is
important to understand them, so a well-founded approach
could be defined.

As described above, the evolution of middleware (or
services) technologies can be divided into two stages.
The first generation of middleware was aimed at integrat-
ing legacy systems in a single platform (e.g. COM,
DCOM), and among different platforms (e.g. CORBA).
Meanwhile, the second generation was aimed to create a
market of services available to everyone with access to
the Internet. While the first generation was developed
mainly based on interoperability concerns between and
among enterprises, the second generation expanded the
possibility to be available to any individual with Internet
access, or more specifically, through the Web (e.g. the
HTTP protocol). Data communication in the first genera-
tion was mainly represented in binary content. The sec-
ond generation allowed multimedia content to be shared
among applications.

The first generation was addressed to software appli-
cations communication, using specific APIs (Application
Programming Interfaces) particular to every implementa-
tion. The second generation represented the democratisa-
tion of communication, because they allowed access to
information from a Web browser or software library sup-
porting the HTTP protocol (in which the Web is based).
Borrowing the concept of services from the first genera-
tion, and with the possibility to communicate through the
HTTP protocol (the protocol of the Web), the second
generation was generally recognised as Web Services
(e.g. software services accessible through the Web
protocol).

The first implementation of the Web Services concept
offered several capabilities through SOAP payload and
WSDL description (de Oliveira et al. 2013):

● Web services as a standard protocol – The main
interoperability attraction on the second generation

Table 1. Middleware technologies and approaches summary.

Text File EDI CORBA COM+ Java RMI Web Services ICE

Flexibility + - - +- +- + -
Messaging - - + - - +- -
Performance N/A + + + + +- +
Availability N/A + + + + + +
Simplicity + - - - - +- -
Interoperability + - + - +- + +-

International Journal of Computer Integrated Manufacturing 207

was the Web protocol for information communica-
tion, and its universal support by the Internet.

● Web services as proxies to information sources – A
simple way for communication was the possibility
of Web browsers to communicate through proxies
to consume services, which could communicate to
local or remote applications.

● Web services choreography – Many applications
require consuming more than a single service and
services consumption require specifying an order in
which they should be consumed. Web services sup-
ported that functionality through BPEL (Business
Process Execution Language), which allows speci-
fying the order in which a set of services should be
accessed.

● Web service negotiation – With the possibility of
multiple Web services implementing similar func-
tionality, but with different characteristics (e.g.,
cost, security, etc.), it was necessary to be able to
select among alternatives. Service negotiation
addressed the possibility to select the most appro-
priate alternative.

The concept of Web services gained momentum mainly
because of their simplicity for interoperability. Along the
time, it was observed that in many software applications,
mainly for application integration inside a single enter-
prise or even among enterprises, service negotiation was
never required. These observations were one of the main
reasons why a new reference architecture for Web services
description and consumption was proposed by Roy
Fielding (2000), known as the RESTful approach for
Web services. The RESTful approach proposal has
become an adequate alternative mainly because how enter-
prises were using Web services. However, as the simpli-
city and characteristics of RESTful Web services are better
understood, its use has grown enormously, becoming the
main way in which companies such as, e.g., Google,
Amazon, Dropbox, Microsoft, etc. are implementing
their Software-as-a-Service (SaaS) offers for their custo-
mers (Lomotey and Deters 2013). Besides, REST services
are processed up to three times faster than SOAP services
(Aihkisalo and Paaso 2012).

Now, with two ways on how Web services could be
implemented, it is important that requirements should be
carefully analysed to determine the most appropriate
approach.

6.2 SOAP vs. RESTful for the service layer
implementation

This subsection analyses SOAP and RESTful approaches
using several criteria: easy-of-deployment, performance,
security, simplicity and adaptability. Table 2 shows the

differences between a SOAP-based approach and a
REST-based approach.

The requirements of the Factory ECO-MATION archi-
tecture and infrastructure are different from those
described in Pautasso, Zimmermann, and Leymann
(2008). However, the evidence gathered from other
research results conveys a similar result: RESTful services
provide a software architecture paradigm appropriate to
comply with the Factory ECO-MATION architecture
expectations. When Web services will be used inside an
enterprise, as in this case, service negotiation would
become of lesser importance, this being one of the main
reasons why RESTful approach was selected for Web
services implementation. Another important thing not
addressed in this paper is that in order to simplify the
architecture of the Services Provisioning Layer, something
that should be considered is how services would be mod-
elled (Liskin, Singer, and Schneider 2012). This modelling
is necessary before services implementation.

7. Architectural solution for virtualising the eco-
efficiency performance indicators

This section describes how different data sources in man-
ufacturing enterprises can be integrated to create a single
database to support the measurement of eco-efficiency
performance indicators. Figure 2 shows a scenario detail-
ing consumers and data sources. There are three data
sources: production management information systems,
energy consumption sensors and environmental sensors.
Pollution records are obtained from a set of wireless
sensors distributed along the shop-floor that take measure-
ments from liquids and the air. Energy consumption and
production data are obtained from applications already
operating in a manufacturing enterprise (e.g. production
planning and control systems).

All those data are available to consumer applications
through the virtualisation layer, which hides the data
sources by defining and implementing a consistent way
of communication from applications to data sources.
Communication between virtualisation layer and produc-
tion and energy recording applications is performed
through different protocols and data formats, as shown in
Figure 3.

The sensor layer records the sensors outputs in a
database server which is directly accessible through the
virtualisation layer. The payload between consumer appli-
cations and the virtualisation layer can be delivered in
JSON or XML formats, as specified by the consumer
applications, as depicted in Figure 4.

One important requirement is that the ICT-infrastruc-
ture should be easily deployed in different manufacturing
enterprises. The following section describes how this
requirement is being dealt with.

208 P. Angulo et al.

8. Prototype implementation details

The IT platform that has been used for services provision-
ing is GlassFish 2, a Java EE application server reference

Table 2. SOAP vs. RESTful.

SOAP RESTful

Easy-of-deployment
At the server side, when using WS* Web services (SOAP, WSDL,

WS-Addressing, WS-Security), whenever a service is relocated
its WSDL needs to be regenerated in order to include the new
end points. Similarly, SOAP schemas and deployment
descriptors need to be modified (this is so, because all mentioned
files bring with them the URL of the server in which they will be
deployed). At the client side (the Factory ECO-MATION
applications), the new WSDL specifications should be used to
recreate (or complete the definition of) the clients.

In RESTful services, the state is dynamically maintained at the
client side. The state could be changed by new values received
from the server. Among the values there could be URLs to
resources that can be accessed from the current Web page. This
means that the server keeps a structured organisation of the
resources (only the root changes from one server to another),
making simple the deployment of RESTful services.

Performance
According to Mulligan and Gracanin (2009), SOAP encloses each

message payload within an additional SOAP envelope (set of
XML tags) and adds a few SOAP-related headers to the out-
bound HTTP packet. This and this alone contributes to the added
bloated in SOAP packets. Besides, the servers incur in additional
latency because of the need to parse the additional payload.

The Factory ECO-MATION infrastructure will be mainly
performing GET operations. Besides the ID of the KPI or sensor,
requests will not include any XML code (Mulligan and Gracanin
2009), thus the server will not incur in any additional delay to
dispatch them.

Security
The SOAP specification includes both authentication and

authorisation mechanisms for securing Web services. This is
necessary when the services will be available for their
consumption from outside the enterprise, which will be the case
for the Factory ECO-MATION infrastructure, when portable
devices will have access to the services from all abroad.

As mentioned in Burke (2009), RESTful services also define
authentication and authorisation mechanisms for securing access
to the services. Besides sensitive data could be protected with
cryptographic services like SSL. The Web defines the HTTPS
protocol to leverage SSL and encryption. Thus RESTful services
may use already available HTTP protocols and encryption
mechanisms and implementations.

Simplicity
The WS*services stack requires WSDL, XML-schema, UDDI and

XSL (Pautasso, Zimmermann, and Leymann 2008). Although
such specifications have been around for some time, it is not so
simple to implement all of them for every service. This adds to
the complexity of WS*services.

The advantage of RESTful services proposal remains in its
simplicity, because the only mechanisms that need to be
understood are those of the Web (HTTP particularly), and those
have been among us for more than 20 years (Pautasso,
Zimmermann, and Leymann 2008). Comparing the complexity
of Web service interface design, we can conclude that RESTful
appears to be simpler.

Adaptability (how easy it is to add services)
Every SOAP service requires creating a WSDL and perhaps a WS-

schema for the service. If the development environment does not
automatically generate them, it would also be necessary to
manually modify the deployment file to include every new
service.

In this case, the developer will need to analyse the services
structure to decide where the implementation is to be stored, and
that is it.

Figure 2. Consumers and information sources.

Figure 3. Getting values from a production management infor-
mation system.

International Journal of Computer Integrated Manufacturing 209

implementation. The database to which services connect is
MySQL 3. The services are directly related to entities in
the database. For instance, if there is a database entity for
an enterprise supplying sensors, the entity may require
services for adding a new enterprise, updating information
of an existing one, for deleting an existing one, and for
retrieving the information of a specific one, or even
retrieving all the information of all companies.

The tight relationship between the database and the
services is supported by a Java Entity Manager, which is
provided by Java EE, in its Java Persistence API (JPA).
The Java Entity Manager maps the database entity to a
Java class, and also serves as proxy for executing the
database operations. Queries to execute over the database
are managed by an instance of the Entity Manager and –
in case there are results – the results are automatically
translated into class instances. Figure 5 shows how Java
Entity Manager mediates access to the database and trans-
lates results into Entity classes. This technology is used to
retrieve sensors’ recordings from the database.

As mentioned before, services are grouped per entity.
The code is very simple, as it just consists in a Java class
with methods. Methods that will be exposed as services
have ‘annotations’ specifying it. Every method could be a
service, with their access path determined by the entity
they belong to (Java 2013). The annotations specify the
service performing the operation:

● POST – For inserting new data.
● GET – For retrieving data.
● PUT – For updating existing data.
● DELETE – For deleting data.

The format of execution path clients that should be
specified to consume a service is: http://root/Factory
EcomationServices/webresources/entities.company/count.
The base path defines the application and the package
containing the entities, the path allows the server to find
the place of entities it handles. Entities are annotated as
stateless beans, and every method annotated with the
operation it is associated to (GET, PUT, POST, and
DELETE). In the previous path example, the specific
entity is (company) and the service is (count).

The service path is not required if there is only one
service for an entity. The service path is useful when there
is more than one service from an entity. Even if the
specific service is not specified in the URL, the request
header already has this information, which will allow the
identification of the service. There are also annotations for
specifying the expected format of consumed and produced
data. Data could be represented in JSON, XML or both.
For services that could produce both formats, the client
needs to specify which one it expects to receive in return.

9. Prototype testing results

This section describes the implementation of the ICT-
infrastructure in which the SOA layer is a main compo-
nent. The description is presented in a bottom-up way, by
first derailing how the sensors’ readings are managed, the
services implemented and then how that information could
be consumed by high-level applications.

Data readings from sensors are recorded in a database
server to which the SOA layer has direct access. The data-
base also keeps information about sensors details and their
manufacturers, among other data. Storing sensors outputs is
very important because knowing the last output is not
enough; for pollutants it is necessary to gather information
about pollutant trend along a time period, normally for the
last hours and sometimes for the last few days. The SOA
layer implements services for both possibilities.

The sensors are wireless, thus facilitating their instal-
lation at different places in the shop-floor. Every sensor is
able to provide information about very basic characteris-
tics, such as an ID, its type and reading range (minimum
and maximum values it can read). At first deployment, a
sensor provides such information to the sensor layer, so
that information is recorded in the database server. By
analysing recordings and data about sensors, the SOA
layer can identify every new sensor, thus additional infor-
mation about the sensor could be defined in the database,
such as its location, manufacturer, etc. This functionality is
similar to the concept of zeroconf (Cirani et al. 2014).
However, sensors have a rather limited memory, thus not
every aspect of a sensor could be specified in their internal
memory.

Figure 4. Sensor outputs accessible to client applications.

Figure 5. Java EE entity manager.

210 P. Angulo et al.

http://root/FactoryEcomationServices/webresources/entities.company/count
http://root/FactoryEcomationServices/webresources/entities.company/count

The representation of the whole factory data for dis-
tributed applications is divided into two layers, the sensor
virtualisation layer and the service provisioning layer.
Together, these layers constitute the virtual counterpart
architecture, depicted in Figure 6, which shows the struc-
ture of these two layers.

The Sensor Virtualisation layer represents the lower-
level of the virtual counterpart. It gathers data from the
sensors and delivers it to the database in the service
provisioning layer. The Interaction sub-layer contains the
set of functions and methods that enable and manage data
delivery towards the service provisioning layer. The
Coordination sub-layer manages communication with the
physical sensors and requests access to the
Communication layer. The latter coordinates the data
flow from individual virtual sensor networks and stores
the attributes of the whole communication structure
according to the participating networks. The
Communication sub-layer is divided into different parallel
aligned regions where each of these areas is one partici-
pant in the total communication structure. The participants
are introduced in order to represent groups of sensors in
virtual form. The necessary parameters are stored inside
the participants to maintain the communication to the
directly associated sensor network. Data are exchanged
via a defined communication protocol within the sensor
network; thus, the participants of the Communication
layer differ in the implementation of the communication
protocol and in the characteristics of the parameters,
which are stored in the participants themselves.

The Service Provisioning layer represents the high
level of the virtual counterpart. It is responsible for storing
sensors information in the database. All the information
collected in this layer can be used by high-level applica-
tions. The Web Service based on RESTful sub-layer
defines the SOA layer presented in this paper. Figure 7
shows one screen of a high-level application that connects
to the database and manages sensors specification data.

As was mentioned before, one important requirement
is simplifying the deployment of the ITC-infrastructure
within different manufacturing enterprises, in which dif-
ferent consumer applications will be required. In order to
achieve this, it would be necessary to find an easy way to
locate available services. Currently, the amount of imple-
mented services is 230, and this number would increase as
new services are required by consumer applications. To
solve this requirement, a services registration management
application was developed, thus developers of new con-
sumer applications will be able to search for services using
different queries. Users could search for services by
resource name, service name or description, among other
search criteria. The registry application thus provides
information about how a specific service could be con-
sumed (e.g. called), the required input parameters and the
result format, along with the specific URL that should be
used, and an example of how to issue a call. Once the
services descriptions are registered, users could search for
resource name, service name or description, as is shown in
Figure 8.

One issue found along the development was that users
from different manufacturing enterprises use different
names for concepts involved. A unification of concepts
was necessary. To solve this, an ontology was developed
after finding that there was not a consistent terminology in
already available ontologies. Figure 9 shows the ontology
structure. The ontology was used for the database names
and as a dictionary to keep a consistent meaning in the
information elements and what they represent.

Figure 6. Virtual counterpart architecture.

Figure 7. Sensor values management.

International Journal of Computer Integrated Manufacturing 211

Finally, in order to have a prototype to demonstrate the
SOA layer functionality, a Web application was developed
to show plots of the different information sources. The
context model of the ICT-infrastructure is depicted in
Figure 10. This model represents the dependencies
among data and their users (Manager) or consumer appli-
cations; it also shows that ‘Data recorder’ application
directly stores data from sensors, without the participation
of a service, but users access the data through services. A
layered perspective of the ICT-infrastructure was pre-
sented in Figure 2, showing the role of the virtualisation
layer as an integrator of information sources of manufac-
turing operations including production, energy and pollu-
tant agents.

As more data about sensors and services are registered,
the deployment on new sites is simplified by not requiring

a complete description of potential sensors or services that
may be used.

Some lessons learned from the implementation of the
virtualisation layer and prototype applications are:

● A RESTful implementation of Web services for
integrating different data sources indeed hides low-
level details for consumer applications.

● The implementation of service documentation (e.g.
a dictionary of available services) is of great help to
provide information about available services, thus
helping their consumption by new application
clients.

● The development of an ontology is very useful in
standardising the terminology and for defining
names when developing a database.

10. Conclusions & future work

Manufacturing enterprises contribute significantly to both
gross development product and labour in a significant
way. However, it is very important that their operation
does not jeopardise the geographic sectors in which they
operate, by being one of the main sources of pollution
being expelled to the environment.

This paper described a SOA-based infrastructure to
integrate information sources about manufacturing opera-
tions, energy consumed and pollution control. All these
three factors should be considered for the future eco-
efficiency of manufacturing enterprises.

The diversity of manufacturing enterprises requires
flexibility in simplifying the deployment of an ICT-infra-
structure to integrate the diverse data sources relevant to
eco-efficiency operation. The paper described how an
SOA ICT-infrastructure can be complemented to simplify
its deployment.

The paper describes the implementation of a services-
based software layer to abstract the way information is

Figure 8. Screen to search for details of available services.

Figure 9. Ontology structure.

Figure 10. Context model of information and their users.

212 P. Angulo et al.

obtained from different data sources and consumed by
application clients. A plotting application consumes sen-
sors records at a medium rate; an undergoing emulator of a
manufacturing factory plant will help the authors to eval-
uate eco-efficiency performance at higher rates for a hun-
dred sensors. From the results obtained through the
prototype applications, it is clear that the software layer
implementation can satisfy the requirements for future
application clients.

Another requirement that needs evaluation is the
deployment of the ICT-infrastructure in different manufac-
turing enterprises.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The research presented in this document is a contribution for the
Factory ECO-MATION (Factory ECO-friendly and energy effi-
cient technologies and adaptive autoMATION solutions) project
funded by the European Commission, FP7 FoF.NMP.2012-1,
under the Grant Agreement No [314805].

Note
1. Eco-efficiency – strategy that aims at minimising ecologi-

cal damage while maximising efficiency of the production
processes.

References
Aihkisalo, T., and T. Paaso. 2012. “Latencies of Service

Invocation and Processing of the REST and SOAP Web
Service Interfaces.” In IEEE 8th World Congress on
Services, 100–107. Honolulu, HI: IEEE.

Amrina, E., and S. M. Yusof. 2011. “Key Performance Indicators
for Sustainable Manufacturing Evaluation in Automotive
Companies.” In IEEE International Conference on
Industrial Engineering and Engineering Management, edited
by E. Qi, J. Shen, and R. Dou, 1093–1097. Singapore: IEEE.

Bi, Z., L. Xu, and C. Wang. 2014. “Internet of Things for
Enterprise Systems of Modern Manufacturing.” IEEE
Transactions on Industrial Informatics 10 (2): 1537–1546.
doi:10.1109/TII.2014.2300338.

Burke, B. 2009. Restful Java with Jax-Rs. Boston, MA: O’Reilly
Media, Inc.

Cirani, S., L. Davoli, G. Ferrari, R. Leone, P. Medagliani, M.
Picone, and L. Veltri. 2014. “A Scalable and Self-configur-
ing Architecture for Service Discovery in the Internet of
Things.” IEEE Internet of Things Journal 1 (5): 508–521.
doi:10.1109/JIOT.2014.2358296.

Davis, A., and D. Zhang. 2002. “A Comparative Study of
DCOM and SOAP.” In 4th International Symposium on
Multimedia Software Engineering, edited by B. Werner,
48–55. Newport Beach, CA: IEEE.

Davis, C. 2012. “What If the Web Were Not Restful?” In 3rd
International Workshop on RESTful Design, edited by C.

Pautasso, E. Wilde, and A. Marinos, 3–10. Lyon: ACM
Press.

de Oliveira, R. R., V. Sanchez, R. Vinicius, J. C. Estrella, R.
Pontin De Mattos Fortes, and V. Brusamolin. 2013.
“Comparative Evaluation of the Maintainability of RESTful
and SOAP-WSDL Web services.” In 7th International
Symposium on Maintenance and Evolution of Service-
oriented and Cloud-based Systems, edited by A.
Serebrenik, 40–49. Eindhoven: IEEE.

Feinberg, R. 1950. “A Review of Transductor Principles and
Applications.” IEEE-Part II: Power Engineering 97 (59):
628–644.

Fielding, R. T. 2000. “Architectural Styles and the Design of
Network-based Software Architectures.” Doctoral Diss.,
University of California, Irvine.

Hoschek, W., and G. McCance. 2001. “Grid-enabled Relational
Database Middle-ware.” Global Grid Forum 3: 7–10.

Java. 2013. “The Java EE 6 Tutorial” http://docs.oracle.com/
javaee/6/tutorial/doc/gilik.html

Kim, H., S. Jeong, H. Yoe, N. Kim, S. Lee, and Y. Wen-zheng
et al. 2014. “Design and Implementation of ICT-based
System for Information Management of Livestock Farm.”
International Journal of Smart Home 8 (2): 1–6.
doi:10.14257/ijsh.2014.8.2.01.

Koho, M., S. Torvinen, and A. T. Romiguer. 2011. “Objectives,
Enablers and Challenges of Sustainable Development and
Sustainable Manufacturing: Views and Opinions of Spanish
Companies.” In IEEE International Symposium on Assembly
and Manufacturing, edited by M. Lanz, 1–6. Tampere: IEEE.

Linthicum, D. S. 2003. Next Generation Application Integration:
From Simple Information to Web services. Sydney: Addison-
Wesley Longman.

Liskin, O., L. Singer, and K. Schneider. 2012. “Welcome to the
Real World: A Notation for Modeling REST Services.” IEEE
Internet Computing 16 (4): 36–44. doi:10.1109/
MIC.2012.59.

Lomotey, R. K., and R. Deters. 2013. “Reliable Consumption of
Web Services in a Mobile-cloud Ecosystem using REST.” In
7th IEEE International Symposium on Service Oriented
System Engineering, edited by Y. Zhang and M. Younas,
13–24. San Francisco Bay, CA: IEEE.

Mulligan, G., and D. Gracanin. 2009. “A Comparison of SOAP
and REST Implementations of a Service based Interaction
Independence Middleware Framework” In Simulation
Conference, edited by A. Dunkin, R. G. Ingalls, E.
Yücesan, M. D. Rossetti, R. Hill, and B. Johansson, 1423–
1432. Austin, TX: IEEE.

Murer, C., and C. Szyperski. 2002. Component Software-beyond
Object-oriented Programming. 2nd ed. Amsterdam:
Addison-Wesley Longman.

Pautasso, C., O. Zimmermann, and F. Leymann. 2008. “RESTful
Web services vs Big’ Web Services: Making the Right
Architectural Decision.” In 17th International Conference
on World Wide Web, 805–814. Beijing: ACM Press.

Programme, U. N. E. 2014. “UNEP year book 2014: Emerging
Issues in our Global Environment.” http://www.unep.org/
yearbook/2014/

Qi, M. 2001. “Impacts of EDI on the Supplier.” In International
Conference on Management of Engineering and Technology,
50–59. Portland, OR: IEEE.

Ren, L., L. Zhang, and F. Tao. 2010. “A Virtual SOA Model
for Network Manufacturing Integration.” In
International Conference on Mechanic Automation and
Control Engineering, edited by S. Qin, 3570–3573.
Wuhan: IEEE.

International Journal of Computer Integrated Manufacturing 213

http://dx.doi.org/10.1109/TII.2014.2300338
http://dx.doi.org/10.1109/JIOT.2014.2358296
http://docs.oracle.com/javaee/6/tutorial/doc/gilik.html
http://docs.oracle.com/javaee/6/tutorial/doc/gilik.html
http://dx.doi.org/10.14257/ijsh.2014.8.2.01
http://dx.doi.org/10.1109/MIC.2012.59
http://dx.doi.org/10.1109/MIC.2012.59
http://www.unep.org/yearbook/2014/
http://www.unep.org/yearbook/2014/

Rodríguez-Martínez, M., and N. Roussopoulos. 2000.
“MOCHA: A Self-extensible Database Middleware System
for Distributed Data Sources.” ACM Sigmod Record 29:
213–224. doi:10.1145/335191.

Shao, G., F. Riddick, J. Y. Lee, D. B. Kim, Y. Lee, and M.
Campanelli. 2012. “A Framework for Interoperable
Sustainable Manufacturing Process Analysis Applications
Development.” In Simulation Conference, edited by O.
Rose and M. Adelinde, 1–11. Berlin: IEEE.

Xie, P., and X. Gui. 2012. “Distributed Software Architecture of
Manufacturing Integrated Service Platform based on SOA.”
In International Conference on Systems and Informatics,
edited by X. Tong, 134–139. Yantai: IEEE.

Xu, W., B. Yao, V. Fang, W. Xu, Q. Liu, and Z. Zhou. 2014.
“Service-oriented Sustainable Manufacturing: Framework
and Methodologies.” In International Conference on
Innovative Design and Manufacturing, edited by Y. Zeng,
Y. Chen, and S. Achiche, 305–310. Concordia: IEEE.

ZeroC. 2003. “Welcome to zeroc, the home of ICE.” http://www.
zeroc.com/

Zhang, Y., H. Wang, S. Zhu, Y. Zhu, and P. Zhang. 2011.
“Study on the Economic Development of the Industry
Impact of Electricity and Heat Production and Supply
Industry Pollution Abatement.” In International
Conference on Electrical and Control Engineering, edited
by D. Fangmin, pp. 6131–6134. Yichang: IEEE.

214 P. Angulo et al.

http://dx.doi.org/10.1145/335191
http://www.zeroc.com/
http://www.zeroc.com/

Copyright of International Journal of Computer Integrated Manufacturing is the property of
Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted
to a listserv without the copyright holder's express written permission. However, users may
print, download, or email articles for individual use.

	Abstract
	1. Introduction
	2. Related work on data integration
	3. Eco-efficiency importance for manufacturing enterprises
	4. SOA and its ICT-infrastructure functional requirements
	5. Middleware layer functional requirements
	6. Middleware supporting technologies background
	6.1. Service-oriented architecture evolution
	6.2 SOAP vs. RESTful for the service layer implementation

	7. Architectural solution for virtualising the eco-efficiency performance indicators
	8. Prototype implementation details
	9. Prototype testing results
	10. Conclusions & future work
	Disclosure statement
	Funding
	Note
	References

