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Abstract First and higher order digits in data sets of natural and socio-economic

processes often follow a distribution called Benford’s law. This phenomenon has

been used in business and scientific applications, especially in fraud detection for

financial data. In this paper, we analyse whether Benford’s law holds in economic

research and forecasting. First, we examine the distribution of regression coeffi-

cients and standard errors in research papers, published in Empirica and Applied
Economics Letters. Second, we analyse forecasts of GDP growth and CPI inflation

in Germany, published in Consensus Forecasts. There are two main findings: The

relative frequencies of the first and second digits in economic research are broadly

consistent with Benford’s law. In sharp contrast, the second digits of Consensus
Forecasts exhibit a massive excess of zeros and fives, raising doubts on their

information content.
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1 Introduction

Increasing differentiation and growing social and economic relevance of research

raises the temptation to make up research results (Reulecke 2006). This process is

fuelled by increasing publication pressure in academics. The traditional control

mechanisms in the publication process, such as anonymous refereeing, are easily

overstrained in dealing with empirical research papers using large data sets and

complex econometric tools.

However, independent reviews of the outcome of empirical research are a

cornerstone of science (Hamermesh 2007). In contrast to natural sciences, there is

no distinct tradition of replication in social sciences. In economics, most academic

journals do not request from their authors the filing of data and programs.1 But

‘‘research that cannot be replicated is not science, and cannot be trusted either as

part of the profession’s accumulated body of knowledge or as a basis for policy.’’

(McCullough and Vinod 2003, p. 888) Thus, if the outcome of empirical research in

economics is replicable by independent experts only in rare cases, indirect tools for

detecting fraud and checking reliability are called for.

Already in 1972, U.S. economist Hal Varian proposed to use Benford’s law as a

diagnostic tool for screening model output, in particular forecasts, for irregularities

that deserve closer inspection. In many data sets, from newspaper articles to the

length of rivers, Benford’s law has been found to hold surprisingly well. More

recently, Benford’s law has been applied quite successfully to detect fraud and

manipulation in business and administration data like balance sheets and tax

declarations. Moreover, experimental research has shown that people are not

particularly good at replicating known pattern of data. For instance, they tend to

over-report modes and to avoid long runs (Camerer 2003, p. 134). Benford’s law,

though widely applicable, is not yet widely known. Since it is unlikely that

manipulated numbers would preserve it, Benford’s law is a potentially useful

diagnostic. Diekmann (2007) investigated sociological empirical research, testing

regression coefficients and other statistics for deviations from Benford’s law. To our

knowledge, in the field of economics tests of Benford’s law have not yet been

applied to published empirical research and forecast data.

Regression results are a major outcome of empirical economic research and

published economic forecasts are an important source of information in the decision

making process of economic agents, including governments and central banks. This

paper investigates empirically whether Benford’s law can serve as a tool for

detecting irregularities in economic research and forecasting that may deserve closer

scrutiny. After a brief introduction to Benford’s law, Section 2 reviews some aspects

of fraud detection with Benford’s law. Section 3 applies Benford’s law to test

econometric research published in Empirica and Applied Economics Letters.

Section 4 examines GDP growth and CPI inflation forecasts for Germany published

in Consensus Forecasts. Section 5 concludes.

1 Even if that is the case, attempts to replicate the studies mostly fail. McCullough et al. (2006) analysed

more than 150 articles from the Journal of Money, Credit, and Banking, but were able to reproduce the

results in less than 10 percent of the cases.
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1.1 What is Benford’s law?

Intuitively, one may think that the first digits of numbers are uniformly distributed, i.e.

numbers are equally likely to start with 1, 2 or 9. The American astronomer Simon

Newcomb (1881) observed that the first pages of logarithmic tables (containing

numbers beginning with 1, 2, 3) were more worn out than the last pages (numbers

starting with 7, 8, 9). He concluded that lower digits seem to appear more often than

higher digits. Zero as a first digit is ignored. Newcomb calculated relative frequencies

of the first (d1) and second (d2) significant digits according to the formulas:

p(d1Þ ¼ log10 1þ 1

d1

� �
d1 ¼ 1; 2; . . .; 9 ð1Þ

pðd2Þ ¼
X9

k¼1

log10 1þ 1

10kþ d2

� �
d2 ¼ 0; 1; 2; . . .; 9 ð2Þ

However, Newcomb’s findings were forgotten until the American General

Electric physicist Frank Benford (1938) rediscovered the first digit phenomenon.

Benford analysed 20 data sets including population statistics, figures published in

newspapers, American League baseball statistics, atomic weights of chemical

elements etc. with more than 20,000 first digits in total. Hill (1995) derived the joint

distribution of the first and higher-order significant digits:

pðD1 ¼ d1; . . .; Dk ¼ dkÞ ¼ log10 1þ
Xk

i¼1

di10k�j

 !�1
0
@

1
A

8k 2 Z; d1 2 f1; 2; . . .; 9g and dj 2 f0; 1; 2; . . .; 9g; j ¼ 2; . . . k

ð3Þ

Applying this formula to a combination of digits, e.g. 25, yields

pðD1 ¼ 2; D2 ¼ 5Þ ¼ log10 1þ 25ð Þ�1
� �

ffi 0:017. Table 1 displays the joint prob-

abilities for combinations of the first two digits. The marginal probabilities of the

first and the second digits are shown in the final column and row, respectively.

Table 1 Benford distribution

d1/d2 0 1 2 3 4 5 6 7 8 9 p(d1)

1 0.041 0.038 0.035 0.032 0.030 0.028 0.026 0.025 0.023 0.022 0.301

2 0.021 0.020 0.019 0.018 0.018 0.017 0.016 0.016 0.015 0.015 0.176

3 0.014 0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.011 0.011 0.125

4 0.011 0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.097

5 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.079

6 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.067

7 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.058

8 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.051

9 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.046

p(d2) 0.120 0.114 0.109 0.104 0.100 0.097 0.093 0.090 0.088 0.085 1.000

Empirica (2009) 36:273–292 275

123



Pinkham (1961) and Hill (1995) proved that Benford’s law is base invariant (i.e.

the distribution remains unchanged irrespective whether the numbers are expressed

in base 2, 4, 8 etc.) and scale invariant (e.g. if Benford’s law holds for distances

expressed in kilometres, it also holds if the data are transformed into miles).

However, as will be discussed later, Benford’s law is not invariant to rounding.

Mathematical explanations for the appearance of Benford’s law can be found in Hill

(1995, 1998) who proved a ‘‘random samples from random distributions theorem.’’

It states, under fairly general conditions, that if distributions are selected randomly

and random samples are taken from each distribution, then the frequency of digits

will converge to Benford’s law.

2 Detecting fraud with Benford’s law

2.1 Brief review of applications in business and economics

In the last two decades, in particular, Benford’s law was increasingly applied to

business and scientific data as a method to identify fraud or manipulation. Recently,

Diekmann (2007) investigated the first and second digits of published statistical

results in the field of sociology. He analysed regression results in two samples

(approximately 2,600 observations) drawn from four volumes of the American
Journal of Sociology. In addition, he investigated results from experimental studies

with test persons. While he found that (the first and second digits of) published

regression coefficients approximately obey Benford’s law, his experimental data

suggest that the second digits (not the first ones) of faked regression coefficients

were less in accordance with it.

Carslaw (1988) investigated the second digits of profits of New Zealand firms

and found that managers tend to round up the firm’s profits due to psychological

reasons. A profit of € 3.00 million appears to be much higher than a profit of €
2.99 million. Thus, there is an excess of zeros but a lack of nines in the second digits

compared to the Benford distribution. Similar results were found by Thomas (1989),

who conducted a study for U.S. firms, distinguishing between profits and losses.

While the results for U.S. firms’ profits are in line with Carslaw, he finds the reverse

phenomenon for losses, i.e. managers tend to optically ‘‘shrink’’ losses by rounding

appropriately (less zeros, more nines). Additional studies on this issue have been

conducted by Niskanen and Keloharju (2000) for Finnish companies and Van

Caneghem (2002) for U.K. companies.

Nigrini’s (1996a, b, 1999) publications were quite influential for introducing

Benford’s law in finance and accountancy. He analysed tax declarations of

American taxpayers and figured out that people tend to understate their true taxable

income. Due to U.S. law, where taxes are set after tax tables, even minor

understatements can result in significant tax reductions. These findings inspired tax

authorities in e.g. the U.S., Switzerland, the Netherlands and Germany, to check tax

declarations for inconsistencies by applying Benford’s law. Recently, Quick and

Wolz (2003) examined balance sheet and income statement data of German

companies for the years 1994–1998. Their results show that the first and second
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digits in most of the cases (on a year by year analysis as well as for the whole

period) closely follow the Benford distribution.

Benford’s law has also been applied to check predictions of mathematical models

for plausibility provided that the real data follow Benford’s law. Ley (1996) has

shown that a series of one-day returns (using data for more than half of the 20th

century) on the Dow Jones Industrial Average Index and the Standard & Poor’s

Index is in line with the Benford’s distribution. A similar result is obtained by

Tödter (2007) for the first digits of closing prices of German stocks. Moreover, he

shows that the predictions for share prices by the Black and Scholes model are

consistent with the Benford distribution for the first digit. In addition, Benford’s law

can be applied to test for psychological barriers in stock markets (see De Ceuster

et al. 1998 among others) and ebay auctions (Giles 2007). Schatte (1988) showed

that the expected storage space for computers with binary-base is at its minimum for

base 8. Recent results for survey data, e.g. the German Socio-Economic Panel, can

be found in Schräpler and Wagner (2005) and Schäfer et al. (2005).

Provided the population of specific data is distributed according to Benford’s law

it is widely accepted in empirical literature that manipulated data do no longer adhere

to the specific distribution. However, in general one can not conclude a priori that a

certain data set contains faked numbers if it deviates from Benford’s law. Hence, in a

first step, it needs to be established that the Benford distribution applies to the

population of a data set before an appropriate sample is checked for deviations.

2.2 Requirements to data sets for testing Benford’s law

Benford (1938, p. 552) stated that ‘‘the method of study consists of selecting any

tabulation of data that is not too restricted in numerical range, or conditioned in some

way too sharply.’’ More precisely, in the literature a number of ‘‘rules’’ are formulated

(see Durtschi et al. 2004 and Mochty 2002 among others) on which data are expected

to follow Benford’s law. The data set should either be complete or a random sample

drawn from it to avoid biases. Moreover, data should be expressed in the same

dimensions such as dollar or miles. Mochty (2002) advises not to use statistical

estimates (means, variances) since they themselves follow certain distributions

(Normal-, Chi2- etc.). However, that does not preclude the leading digits to obey

Benford’s law. Some of these statistics are checked in this study with surprising results.

It is unanimously agreed in the literature that data shall not be restricted to certain

minimum or maximum values (e.g. the body height of persons). Problems may also

arise where data are restricted by psychological barriers (e.g. prices in supermarkets

often have nine as a last digit—€ 1.99). In addition, numbers shall not be artificial or

made up by humans (e.g. telephone numbers, postal codes). Last but not least, rounded

numbers do on average no longer follow Benford’s law even if the original data do.

2.3 Testing Benford’s law

Several statistical tests can be applied to inspect whether the distribution of the first

and higher order digits conforms to Benford’s law, such as the Chi2 test, the Mean
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test or the Kuiper test. If hd (pd) denotes the observed relative frequencies

(probabilities) of digit d in a data set with N observations, the Chi2-statistics for first

and second (and higher order) digits are defined as

T1 ¼ N
X9

d1¼1

ðhd1
� pd1

Þ2

pd1

; T2 ¼ N
X9

d2¼0

ðhd2
� pd2

Þ2

pd2

ð4Þ

Under the null hypothesis of the Benford law, the statistics are Chi2—distributed

with 8 (9) degrees of freedom. As quadratic measures, the statistics are sensitive to

the pattern of deviations from Benford’s law. Moreover, with a fixed significance

level a and increasing sample size (N), the tests will eventually reject the null, as the

probability of a type II error (b) approaches zero.2

Under Benford’s law the mean of the first digit is 3.940 (with variance 6.057) and

the mean of the second digit is 4.687 (with variance 8.254). To test whether the

mean of the observed digits, calculated as �d1 ¼
P9

d1¼1 ðd1 þ 0:5Þ hd1
and

�d2 ¼
P9

d2¼0 ðd2 þ 0:5Þ hd2
, respectively, deviates from these values, the approxi-

mately standard normal statistics

T�d1
¼

ffiffiffiffi
N
p �d1 � 3:940ffiffiffiffiffiffiffiffiffiffiffi

6:057
p ; T�d2

¼
ffiffiffiffi
N
p �d2 � 4:687ffiffiffiffiffiffiffiffiffiffiffi

8:254
p ð5Þ

can be used. The Mean tests are less sensitive to deviations in single digits and less

responsive to the sample size.3

The Kuiper (1959) test is a modification of the Kolmogorov–Smirnov test (Giles

2007). Let Hd (Pd) denote the cumulated empirical relative frequencies (cumulated

probabilities), then the Kuiper-statistic is

TK ¼ DþN þ D�N
� � ffiffiffiffi

N
p
þ 0:155þ 0:24=

ffiffiffiffi
N
ph i

ð6Þ

where DþN ¼ sup ½Hd � Pd� and D�N ¼ sup ½Pd � Hd�. 4

3 Benford’s law in published econometric research

Intuitively, if a researcher intends to manipulate regression results to confirm or to

refute a specific economic hypothesis, he is most likely to forge the leading digits,

i.e. the first and second digit, of estimated coefficients and/or standard errors.

2 For specific digits, e.g. whether there is an excess of fives, the standard normal statistic Td ¼ffiffiffiffiffiffi
Nd

p
hd � pdð Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdð1� pdÞ

p
can be used to check whether the observed frequency significantly deviates

from its theoretical value.
3 A closely related statistic is Nigrini’s (1996a,b) distortion factor.
4 Recently, Tam Cho and Gaines (2007) proposed the Euclidean distance as a measure to characterize the

deviation from the Benford distribution. This measure is independent of the sample size, however, it is

lacking a statistical foundation.
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Hence, the analysis focuses on the first and second digits only.5 To test the Benford

hypothesis, we investigate volumes 30, 31, 32, and 33 of Empirica (years 2003 to

2006) with more than 14,000 first and second digits of coefficients and standard

errors. In order to check the robustness of the results, volume 13 of Applied
Economics Letters (year 2006) with more than 15,000 observations is analysed, too.

We collected regression coefficients and standard deviations from a broad range

of regression types, e.g. OLS, (inter-) quantile regressions, GMM, IV estimations,

(censored) Tobit regressions, random and fixed effects estimations, SURE, VAR-

models. Thereby, only regression results from empirical data are considered but no

data obtained by simulation procedures.

Not in all cases a standard error (S.E.) was published along with the coefficient. If

possible, the S.E. was calculated from the published t-value, taking into account that

this might cause rounding problems. To illustrate this point, imagine that the

original value of the coefficient is 1.394 with a t-value of 3.475. Calculating the S.E.

gives 0.40115108. Suppose, the published data in an article are 1.39 and 3.48 for the

coefficient and the t-value, respectively. The calculated S.E. equals 0.39942529.

Obviously, this will cause misleading results for testing the digits frequencies.

Keeping that in mind, we will comment on the importance of this phenomenon later.

For convenience, only regression results presented in tables of the respective

journals and articles are included in the study, which is by far the majority of all

available data. Moreover, in the subsequent analysis, it is not distinguished

between positive and negative regression coefficients since there is no justification

for doing so.

3.1 Results for first digits of regression coefficients in Empirica

We start by presenting the results for Empirica. The test statistics for the first digits

of the regression coefficients are displayed in Table 2. Looking first at the test

Table 2 Test statistics for the first digits of regression coefficients

Empirica 2003 2004 2005 2006 2003–06

Number of observations N 931 643 1,352 1,680 4,606

N per article 78 58 135 129 100

Chi2 test 32.60*** 11.63 27.41*** 19.08** 11.35

Probability 0.00 0.17 0.00 0.01 0.18

Kuiper test 1.83** 1.04 1.91** 1.65* 0.95

Mean test (absolute value) 1.69* 0.50 2.94*** 3.05*** 1.19

*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level

The critical test values for the respective significance levels are as follows:

Chi2 test (8 df): 13.36, 15.51, 20.09; Kuiper test: 1.62, 1.75, 2.00; Mean test: 1.64, 1.96, 2.58. They apply

throughout the paper for any first digit analysis

5 The results for third digits have been evaluated as well (overall showing a very good agreement with

Benford’s law) but are not reported due to space limitations. An analysis of higher-order digits (which are

more likely to be uniformly distributed) is impeded by insufficient digits in most published papers.
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statistics for the total sample, none of the tests yields a significant value even on a

10% significance level. Thus, the Benford distribution cannot be rejected.

However, results are more diverse if the individual years are examined. The

respective relative frequencies are displayed in Fig. 1. The year 2004 with the

smallest number of observations (N = 643) has the best statistical fit (no

significance on a 10% level) to Benford’s law. In contrast, the observations in

Empirica 2006 show significant test statistics on a 10% (Kuiper test), 5% (Chi2 test)

and 1%-level (Mean test). Although graphically the fit of the 2006 data appears to

be slightly better than the 2004 one does, the number of observations is much higher

(N = 1,680) which boosts the test statistics towards the rejection region.

Furthermore, it is worth noting that on average in 2006 there are approximately

twice as much coefficients per article (*129) as in 2004 (*59). Hence, the

dependency on single articles is higher. Regarding the years 2003 and 2005, the test

statistics for the Chi2 test are significant on a 1% level and on a 5% level for the

Kuiper test and suggest to reject the null of a Benford distribution. Graphically, in

2003 the digits 1, 5 and 8 are under-represented whereas 3 and 6 appear too often.

The dubious test statistics for 2005 can be attributed to the high relative frequency

of digit two. It should be pointed out that the tendency of the Kuiper test to reject the

null less frequently than the Chi2 test has been verified in many of our samples. In

contrast, the Mean test does not show such a clear tendency. For 2003 it rejects the

null on a 10% level, for 2005 on a 1% level.

In summary, although three out of four sub-samples seem to reject (at least

partly) Benford’s law for the first significant digit of regression coefficients, this

effect averages out in the total sample.

3.2 Results for second digits of regression coefficients in Empirica

The test statistics of the second digits of regression coefficients are displayed in

Table 3, the graphical output in Fig. 2. It can be seen that the number of

observations slightly drops compared to the first digit, because some published

coefficients only have one significant digit. On average, the test statistics are more

in line with Benford’s law than for the first digit. Only in the total sample the null is

marginally rejected at a 5% significance-level with the Chi2 test. All other tests are

insignificant on a 10% level, strongly suggesting that Benford’s law applies.
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Fig. 1 Relative frequencies of the first digits of regression coefficients
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At first glance, the figures for the years 2003, 2004 and 2005 do not appear to fit

very well to the Benford distribution. But these discrepancies in the relative

frequencies do not result in critical test statistics. However, as these deviations are

still partly present in the total sample and given the higher number of observations

the Chi2 statistic falls into the rejection area.

If one suspects manipulation in the regression coefficients, our results indicate

that first digits should be looked at. Intuitively, one would expect faked lower-order

digits such that the regression outcomes support/refute a specific hypothesis.

However, based on experimental evidence, Diekmann (2007) suggests to look at

second-order digits.

3.3 Results for standard errors in Empirica

The same analysis is conducted for the standard errors. The results for the first digit

are displayed in Table 4 and Figs. 3 and 4. The most interesting result is obtained for

the year 2005 where all three test statistics reject the null on a 1% significance level.

Publication bias (Roberts and Stanley 2005) arises from the tendency of

researchers, referees and editors to handle positive (and significant) results

differently from negative (or insignificant) results. To chalk up a publication,

authors may have an incentive, either through extensive data mining or—in the

extreme case—by directly manipulating data or regression output, to turn

Table 3 Test statistics for the second digits of regression coefficients

Empirica 2003 2004 2005 2006 2003–06

Number of observations N 831 550 1,067 1,529 3,977

N per article 69 50 107 118 86

Chi2 test 12.15 11.47 14.36 6.68 17.99**

Probability 0.20 0.24 0.11 0.67 0.04

Kuiper test 1.11 0.90 1.09 0.92 1.29

Mean test (absolute value) 1.04 0.30 0.65 0.28 0.75

*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level

The critical test values for the respective significance levels are as follows:

Chi2 test (9 df): 14.68, 16.92, 21.67; Kuiper test: 1.62, 1.75, 2.00; Mean test: 1.64, 1.96, 2.58. They apply

throughout the paper for any second digit analysis
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Fig. 2 Relative frequencies of the second digits of regression coefficients
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insignificant key coefficients into significant ones. Thus, published regression

results may be more likely to violate Benford’s law, and, in particular, standard

errors with t-values above 1.96 may be more likely having been engineered than

those below 1.96. To check this issue, we divided the sample 2005 into two sub-

samples which separates standard errors with t-values above 1.96 and below 1.96,

respectively. It turns out that the dubious result is mainly caused by standard errors

from the first sub-sample. In that region (t [ 1.96, standard 5% significance level)

the null hypothesis of a coefficient being zero is rejected. Therefore, one might

tentatively argue that some statistics could have been amended in order to get

significant regression coefficients. Another explanation might be that using the

published (and rounded) data for calculations could yield to misleading results (see

example in the beginning of this section). In 2005, only 38% of the 632 analysed

Table 4 Test statistics for the first digits of standard errors

Empirica 2003 2004 2005 2006 2003–06

Number of observations N 797 285 632 1,323 3,037

N per article 66 26 63 102 66

Chi2 test 19.22** 9.99 29.33*** 10.02 6.70

Probability 0.01 0.27 0.00 0.26 0.57

Kuiper test 1.45 0.76 2.46*** 1.21 1.04

Mean test (absolute value) 0.33 0.13 2.71*** 0.47 1.14

*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level
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Fig. 3 Relative frequencies of the first digits of standard errors
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Fig. 4 Relative frequencies of the second digits of standard errors
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standard errors were published, the remainder had to be calculated. For the whole

sample (incl. 2005) more than half of the S.E.s were available without calculation.

All other test statistics—with exception of the Chi2 test value for 2003—indicate

accordance of the first digits of standard errors with Benford’s law.

The results for the second digit of standard errors show a high consistency with

Benford’s law. Only for 2003 the Mean test and for 2004 the Chi2 test reject the null

of a Benford distribution at a 5% significance level (see Table 5). It is worth noting

that the second digits of the year 2005 do not exhibit any irregularities.

Consequently, our arguments for possible manipulations above may be

substantiated.

3.4 Results for coefficients and standard errors in Applied Economics Letters

The above findings shall be checked by analysing all articles published in Applied
Economics Letters 2006. It can be seen from the test statistics displayed in Table 6

that regression coefficients (no graphics shown) exhibit a distribution approximately

equal to Benford’s law. In contrast, the test statistics (except the Mean test) for the

first and second digits of standard errors are highly significant. This is also

graphically illustrated (Fig. 5). Regarding the first digit, there is an excess of ones

whereas a lack of nines for the second digit mainly causes the dubious statistics.

Dividing the sample into two sub-samples of S.E. classified by the implied t-values

(below or above t = 1.96), the results are ambiguous: The dubious test statistics for

the first digit seem to be caused by the sub-sample with t \ 1.96, whereas the

reverse is true for the second digit. However, the problems might again be caused by

rounding effects since approximately 63% of the first digits had to be calculated.

Again it can be shown that by only looking at digits that are not rounded the

results deteriorate dramatically. Regarding the regression coefficients, the Chi2 test

and the Mean test reject the null of a Benford distribution at a minimum 5%

significance level (the Kuiper test shows significant results only for the second

digit). Interestingly, although the results for the standard errors get worse too, the

Mean test still shows no significance on a 10% level.6

Table 5 Test statistics for the second digits of standard errors

Empirica 2003 2004 2005 2006 2003–06

Number of observations N 663 261 552 1,297 2,773

N per article 55 24 55 100 60

Chi2 test 12.42 19.02** 12.51 8.09 6.05

Probability 0.19 0.03 0.19 0.52 0.73

Kuiper test 1.46 1.38 1.45 0.97 0.98

Mean test (absolute value) 2.18** 1.38 1.15 1.32 0.07

*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level

6 For both journals also the possible sequences of the first and second digits (e.g. 14, 73, 86) have been

analysed. The results, which are not reported here, show no clear pattern, neither regarding the tendencies

of tests (which rejects more often) nor the effects of sample size.
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Overall, the results suggest that in economic research Benford’s law applies to

regression coefficients and standard errors. Given the large sample sizes, the

probabilities for a type II error, i.e. falsely accepting the null hypothesis of

Benford’s law, are very small. Nonetheless, in some cases there are doubts about the

reliability of first digits but none for higher order digits. While the results for the

regression coefficients are robust, the analysis (and consequently the interpretation)

of the standard errors was restrained by limited data availability.

3.5 Problems with testing single articles

It is not the aim of this study to identify specific articles which might include

irregularities in the regression results. Nevertheless, one can ask whether the tests

would be able to detect manipulation if it were present, given the small sample size

of first or second digits in a typical article. As shown in Table 2 (6), in Empirica
(Applied Economics Letters) there were on average 100 (73) first digits per article.

In general, a manipulation on digit d1 changes the ratio of that digit from pd1
to

hd1
¼ pd1

þ dd1
, where the contamination ratios dd1

are restricted such that the

relative frequency of a certain digit remains between zero and one and
P9

d1¼1 dd1
¼

0 holds. Whether a certain manipulation moves the test statistics into the critical

region or not depends on the significance level (a), the sample size (N) and also on

the pattern of deviations from Benford’s law. For example, manipulation may

change all digits (e.g. decreasing the relative frequency of leading digit 1 by some

Table 6 Test statistics for regression coefficients and standard errors

Applied Economics Letters 2006 Regr. coefficients Standard errors

1st digit 2nd digit 1st digit 2nd digit

Number of observations N 5,171 4,650 2,921 2,619

N per article 73 65 41 37

Chi2 test 7.23 14.27 48.01 *** 25.64 ***

Probability 0.51 0.11 0.00 0.00

Kuiper test 0.81 1.17 3.25 *** 1.66*

Mean test (absolute value) 0.31 1.77 * 1.25 0.89

*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level
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Fig. 5 Relative frequencies of the first and second digits of standard errors
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amount and increasing the frequencies of all other digits proportionally). Or only

two digits may be affected (e.g. increasing the frequency of leading digit 5 at the

expense of digit 1).

Given the sample size and the significance level, critical contamination ratios can

be readily calculated for both types of contamination. For the first pattern of

manipulation mentioned above, the Mean test performs best in the sense that it

yields the smallest critical contamination ratio (9%, compared to 16% for the other

two tests, at N = 100 and a = 10%). For the second pattern the Chi2 test yields the

smallest critical ratios (9%, compared to 10% for the Mean test and 16% for the

Kuiper test). Thus, detecting fraud at conventional significance levels of 5 or 10

percent in a typical article with 100 regression coefficients requires fairly heavy

manipulation. At the same time a probability of a type II error (ß) of around 37

percent for the Mean test is implied at the critical contamination ratios. Leamer

(1978, p. 98) criticized the mechanical rule to ‘‘set a = 0.05’’ regardless of the

sample size in classical hypothesis testing. As a remedy, the significance level could

be increased markedly in small samples, yielding a more balanced assignment of

both types of error.

4 Benford’s law in published economic forecasts

Monetary policy decisions by central banks on setting interest rates and by national

governments on fiscal policies are informed by forecasts of macroeconomic

variables. The growth rate of the real gross domestic product (GDP) and the

inflation rate of the consumer price index (CPI) are undoubtedly at the centre of

interest. Such forecasts stem from both, private and publicly funded institutions (e.g.

investment banks and research institutes; in the following referred to as institutes or

panellists). The Consensus Forecasts survey published by the London-based

company Consensus Economics belongs to one of the broadest survey data sets

available for macroeconomic research. The journal does not only report the mean

forecasts of several macroeconomic variables for meanwhile more than 70 countries

but also the data from each professional forecaster. The participating panellists are

asked to provide their economic forecasts for the current and the subsequent

calendar year on a monthly basis. Typically, forecasts are made by institutions

located in the respective country of interest.

The Consensus Forecasts survey data are widely used and analysed in the

literature. Batchelor (2001) finds that the consensus forecasts provided by

Consensus Economics are more accurate and more informative than the forecasts

of the International Monetary Fund and the World Bank for several macroeconomic

variables of the G7 countries. Hendry and Clements (2004) outline theoretical

reasons why generally consensus forecasts outperform single forecasts and support

their analysis by Monte Carlo simulations. Isiklar and Lahiri (2007) use monthly

GDP data from Consensus Economics for 18 developed countries and find that the

predictive power of forecasts is low when the forecast horizon exceeds 18 months.

However, only few studies make use of the disaggregated data of individual

forecasters published in Consensus Forecasts. Harvey et al. (2001) analyse forecasts
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from several panellists for the United Kingdom GDP growth rate, unemployment

rate and the growth rate of retail prices to assess forecast efficiency. Gallo et al.

(2002) analyse data for the United States, the United Kingdom and Japan and find

that forecasters have an imitation or herding behaviour and the tendency to

converge to the mean forecast. This yields severe consequences, e.g. the standard

deviation of the mean forecast can not be used as a valid measure of uncertainty.

Dovern and Weisser (2007) analyse the forecasting accuracy of single panellists for

four macroeconomic variables for the G7 countries. Osterloh (2008) investigates a

wide range of consensus forecasts for Germany. However, none of the above

mentioned studies takes the approach chosen in this paper.

In this study, we make use of the disaggregated data and investigate forecasts for the

German real GDP growth rate and the inflation rate (measured as the change of the

consumer price index, CPI). The data analysed run from October 1989 to July 2004.

Specifically, we investigate if Benford’s law applies to the second digits of the single

forecasts. In this context, the second digit is defined as the ‘‘first digit after decimal

point’’. Obviously, it is not plausible to check the first digit (before decimal point) for

accordance with the Benford distribution since they are mostly in the range from zero

to four for the GDP growth rate and inflation. For example, 46% of the first digits of the

realised CPI growth rates start with the digit ‘‘1’’ and another 20% with the digit ‘‘2’’7,

in sharp contrast to Benford’s law. Nevertheless, the second digits broadly conform to

Benford’s law. However, for the ‘‘first digits after the decimal point’’ the agreement

with Benford’s law is even better.8 Moreover, the ‘‘first digits after the decimal point’’

better represent the economic weight of the digits with respect to rounding. For

example, for the growth rates 1.25 and 0.92 the digit ‘‘2’’ carries not the same weight

but would be counted as second digit according to Benford in both cases.

During the sample period some changes in the forecast variables published for

Germany have occurred: Until December 1992, panellists had to report the gross

national product for West-Germany. From January 1993 onwards this was replaced

by the gross domestic product: At first only for West-Germany, but finally for the

unified Germany (since May 1997). The shift in the CPI from West-Germany to the

unified Germany took place in October 1996. In addition, the structure of panellists

is not the same for the sample period: The number of participation institutes (around

25) varied across time and some institutes merged with others, were acquired or

even went bankrupt. However, we neglect these effects in our analysis. Forecast

values equal to 0.0 are included as well.

A specific feature of the data is that all published forecasts are restricted to one

digit after the decimal point. This suggests that each participating panellist is forced

to round its (possibly more precise) predictions before submitting it to the journal.

Hence, it is necessary to adjust Benford’s law to take account for such rounding

effects. The new distributions for the first and second digit are listed in Table 7.

Suppose, one rounds to only one leading digit, then for example ‘‘3’’ as a first digit

appears for all (not rounded) values between 2.5 and \3.5 (rounded: 3.00) with

7 Based on an analysis of the realised CPI growth rates for Germany (10/1989–07/1994).
8 The Chi2 statistic for the second digits is 11.61 (p-value: 0.24) and for the ‘‘first digit after the decimal

point’’ 5.61 (p-value: 0.82).
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probability 0.146. Accordingly, if the second digits are rounded, for example ‘‘4’’

appears for all values between 1.35 and \1.45 (rounded: 1.4). The final column

shows that rounding also distorts the mean of the distribution of first digits (from

3.940 to 4.193) and of second digits (from 4.687 to 4.761). The third row applies for

the case that the second digits are boldly rounded to half-percentage points such that

only zeros and fives are reported as second digits. The final row is a mixture of both,

as will be explained below.

We start by presenting the results of four time series for the whole observation

period and all panellists: The real GDP growth rate and the inflation rate for the

current and the subsequent year. The test statistics are displayed in Table 8, a

graphical illustration is given in Fig. 6.

There are more than 4,400 observations for each time series and 55 panellists in

total. The exact number of observations varies across the series’ since not every

panellist reports figures for all asked variables at each record date. As it can easily

be seen, all test statistics (except one) are highly significant. Thus, the null of a

(rounded) Benford distribution for the second digits has to be rejected. The graphics

show that this is due to an excess of zeros and fives in the forecasts. This effect is

similarly strong for all four time series and consequently for the pooled sample. In

other words, in approximately 23% of all data, the forecasts look like 0.0 and in

21% like 0.5 (with any first digit).

A priori, the value added from asking many (instead of a few) professional forecasters

for their opinions is higher forecast accuracy. Therefore, one would expect at least a

difference in the forecasts of the individual institutes for the second digit (the first digit

Table 8 Test statistics for the second digits of consensus forecast data

Variable GDP CPI Total

Forecast period (year) Current Subseq. Current Subseq. Sample

Number of

observations N

4,652 4,445 4,697 4,498 18,292

Chi2 test 1,934 *** 2,434 *** 1,345 *** 1,632 *** 7,048 ***

Probability 0.00 0.00 0.00 0.00 0.00

Kuiper test 12.67 *** 13.21 *** 14.02 *** 10.58 *** 25.22 ***

Mean test

(absolute value)

7.95 *** 10.63 *** 2.17 ** 7.72 *** 11.97 ***

*, **, *** denote a significant test value on the 10%-, 5%- and 1%-level

Table 7 Rounded Benford distribution

d 0 1 2 3 4 5 6 7 8 9 Mean

p(d1_rd) n.a. 0.198 0.222 0.146 0.109 0.087 0.073 0.062 0.054 0.048 4.193

p(d2_rd) 0.103 0.117 0.111 0.107 0.102 0.098 0.095 0.092 0.089 0.086 4.761

p(d2_bold_rd) 0.506 * * * * 0.494 * * * *

p(d2_mix) 0.222 0.082 0.078 0.075 0.072 0.216 0.067 0.065 0.063 0.061 4.231

Source: Own calculation
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should in most cases be the same across institutes for one prediction period). Figure 7

shows the distribution for the second digits of the pooled sample (i.e. all four time series)

for each of the nine most mentioned institutes (A, B,…, I). The selection does not account

for mergers and acquisitions of institutes. The sample size for each institute lies in the

range of (roughly speaking) 600 and 700 observations which can be seen as sufficiently

large (the sample size for the individual time series is too low to be analysed by institute).

At first glance, institutes C, D and G graphically have quite a broad distribution.

Nonetheless, even for these institutes zero and five are the most frequent digits (as it is

the case for all others) and the accordance with the rounded Benford distribution is low.

The worst outcome can be attributed to institute B, where in 70% of all data the second

digit equals zero or five, and in another 18% equals eight, in sharp contrast to the rounded

Benford distribution. Moreover, the second digits of the forecasts do not only deviate

from the rounded Benford law but from the uniform distribution as well.

Given that this phenomenon (excess of zeros and fives) is present in all analysed

samples above one might ask for the reasons. At first, one can think of model uncertainty:

Suppose, an institute uses a model for prediction and the computation yields an inflation

rate of, say 1.7361%. However, the forecaster knows that there is some uncertainty

resulting from variables not incorporated in the model. To account for it, a rounding to

0.0 or 0.5 is done by a qualitative assessment of such factors. The mathematical

consequences of such a clustering on zero and five are the following: Suppose, the

population of forecasts obeys to Benford’s law. If the rounding is such that all values

which lie in the range of 0.75 and\0.25 are rounded to 0.0 and all other values are

rounded to 0.5, than it can easily be checked by Monte Carlo simulations that the mean of

the rounded data is biased (compared with the true mean). Imitation behaviour and

information inefficieny (Osterloh 2008) may also play a role: if leading forecasters resort

to bold rounding, other institutes might be inclined to follow. Furthermore, some

institutes may report bold rounded figures because they reflect more or less educated

guesses. In any case, it seems desirable to extent the existing forecasting methods.9

The foregoing results suggest that excess of zeros and fives in the distribution of

second digits may be viewed as a mixture of proportion k of forecasts with ‘‘bold-
rounded’’ second digits and the proportion 1-k of forecasts reported with two
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Fig. 6 Relative frequencies of the second digits of Consensus Forecasts data

9 One promising approach has been proposed by Berlemann and Nelson (2005). They introduce a small-

scale experimental stock market which yields the (mean) forecast of inflation rate as well as a likelihood

measure for different inflation scenarios. The main idea is to use the market as the best instrument to

uncover and aggregate private information.
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significant digits. Thus, the observed relative frequencies of second digits would

have the mixed distribution

pðd2 mixÞ ¼ k pðd2 bold rdÞ þ ð1� kÞ pðd2 rdÞ ð7Þ

with 0� k� 1. Using the observed relative frequencies of second digits shown in

Fig. 6, k can be estimated by minimizing the sum of squared differences between

hðdiÞ and pðdiÞ for i = 0…9. The estimated value is k̂ ¼ 0:296 (see Table 7). Thus,

30 percent of the observed forecasts seem to result from ‘‘bold-rounding’’ in the
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second digits, with little information content. Figure 8 shows the mixed rounded

Benford distribution together with the distribution of the observed second digits of

the total sample of Consensus Forecasts. The graphical fit is surprisingly good, in

particular for the frequencies of zeros and fives, though there is an excess of digit

eight and some deficit of ones.

5 Conclusions

This paper investigated the applicability of Benford’s law in economic research and

forecasting. We analysed the first and second digits of regression coefficients and

standard errors in four volumes of Empirica and one volume of Applied Economics
Letters, with almost 30,000 observations in total. In addition, we applied a rounded

Benford distribution to the second digit of the GDP growth and CPI inflation rate

forecasts for Germany drawn from 16 volumes of Consensus Forecasts with about

18,000 observations.

The main findings can be summarized as follows: Overall, published regression

coefficients broadly conform to Benford’s law. However, there are some irregularities

with the first digit but none with higher-ordered digits. The results for standard errors do

in general support Benford’s law as well but are not that robust, possibly due to

limitations of the available data. Thus, our results suggest that Benford’s law can serve

as a tool to assess the reliability of econometric research outcomes. Moreover, we found

that checks for data manipulation should focus on the first digit. However, detecting

deviations from Benford’s law in single articles requires relatively high contamination

ratios at conventional significance levels. The risk of overlooking doubtful papers can

be reduced by increasing the significance level of the tests. In addition, it seems

desirable that journal editors request from authors to report at least three significant

digits of regression results and to provide both, standard errors and t-values.

In sharp contrast to regression coefficients, the second digits of economic growth

and inflation forecasts exhibit a large excess of zeros and fives as the first digit after

decimal point. Although the results vary slightly between different forecasters, they

are very robust. An estimated share of 30 percent of the forecasts appears to be

rounded to half percentage points, resulting in potentially severe information losses

and, as a consequence, a distortion of the mean forecasts of the real growth rates and

inflation rates.

Benford’s law is a simple, objective and effective tool for detecting anomalies in

large data sets that deserve closer inspection. Here, we looked at the output of

economic research and forecasting. As Judge and Schechter (2007) observed,

temptations for deception-prone activities may also be present in research input such

as survey data.
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Einleitung. In Reulecke A-K, Fälschungen. Suhrkamp Verlag, Frankfurt am Main, pp 7–43

Roberts CJ, Stanley TD (2005) Meta-regression analysis: issues of publication bias in economics.

Blackwell Publishing, Oxford, UK

Schatte P (1988) On mantissa distributions in computing and Benford’s law. J Inf Process Cybern

24:443–455
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