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Abstract Support vector machine (SVM) is a well-re-

garded machine learning algorithm widely applied to

classification tasks and regression problems. SVM was

founded based on the statistical learning theory and struc-

tural risk minimization. Despite the high prediction rate of

this technique in a wide range of real applications, the

efficiency of SVM and its classification accuracy highly

depends on the parameter setting as well as the subset

feature selection. This work proposes a robust approach

based on a recent nature-inspired metaheuristic called

multi-verse optimizer (MVO) for selecting optimal features

and optimizing the parameters of SVM simultaneously. In

fact, the MVO algorithm is employed as a tuner to

manipulate the main parameters of SVM and find the

optimal set of features for this classifier. The proposed

approach is implemented and tested on two different sys-

tem architectures. MVO is benchmarked and compared

with four classic and recent metaheuristic algorithms using

ten binary and multi-class labeled datasets. Experimental

results demonstrate that MVO can effectively reduce the

number of features while maintaining a high prediction

accuracy.

Keywords Optimization � SVM � Support vector
machines � Multi-verse optimizer � MVO � Feature
selection � Metaheuristics

1 Introduction

Support vector machine (SVM) is a supervised machine

learning model designed for analyzing the data and recog-

nizing certain visible or hidden patterns. SVM can be used

for either classification or regression analysis. SVMwas first

designed and proposed by Vladimir Vapnik [39]. Besides

linear classification, SVM can efficiently perform nonlinear

classification by projecting the training dataset into a higher

dimensional space so the categories of the training data are

separated by a determined hyperplane. In the literature, SVM

showed high prediction accuracy and modeling capability in

wide range of real classification, pattern recognition and

regression problems [22, 27, 30–32, 34–36].

Different kernel functions were used and applied by

researchers in the literature (e.g., linear, polynomial, or

sigmoid). Radial Basis Function (RBF) kernel (also known

as Gaussian function) is the most popular and highly rec-

ommended kernel. As reported in several studies, RBF

kernel helps SVM to achieve an accurate prediction and

reliable performance [4, 15, 49]. In addition, RBF can lead

a better analysis of higher dimensional data and it has less

parameters to optimize [13].

In order to get the advantage of SVM and achieve the

best generalization ability with maximum prediction power,
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two important problems should be addressed. The first

problem is the optimization of the error penalty parameter

C of SVM and its kernel parameters. The second one is the

selection of the best representative subset of features that

will be used in the training process. Regarding the former

problem, conventionally, SVM parameters are selected

using an exhaustive grid search algorithm. However, this

method suffers from a long running time due to the need for

a huge number of possible evaluations [37, 50]. Therefore,

there are researchers who proposed other efficient solutions

for optimizing the SVM and the parameters of its kernel. A

common type of these approaches is the metaheuristic

algorithms. In the literature, Metaheuristic algorithms

showed high efficiency in generating acceptable solutions

when the problem is very complex and the search space is

extremely large [40–44]. Genetic Algorithm (GA) and Par-

ticle Swarm Optimization (PSO) are very popular examples

of the metaheuristic search algorithms. GA was designed by

John Holland and inspired by the Darwinian theories of

evolution and natural selection [11, 12, 21]. On the other

hand, PSO is a swarm intelligent-based algorithm inspired

by the movement of bird and fish flocks in nature [17–19].

Some examples that deployed GA, PSO and other nature-

inspired metaheuristic algorithms in optimizing SVM can be

found in [1, 4, 14, 29, 47, 52].

Feature selection is a process of choosing a set of M

features from a data set of N features, M\N, so that the

value of some evaluation function or criterion is optimized

over the space of all possible feature subsets. The goal of

the feature selection process is to eliminate the irrelevant

features and consequently decreasing the training time and

reducing the complexity of the developed classification

models [5, 9, 25]. It was reported in several studies that

feature selection occasionally leads to improvements in the

predictive accuracy and enhancements in the comprehen-

sibility and generalization of the developed model [2, 26].

On the other side, selecting the best subset of features from

all possible 2N subsets is not trivial and turns to be NP-hard

problem when the search space grows [2]. SVM is not

different from other data mining and machine learning

techniques and its performance could be highly improved

by applying the feature selection process.

Previous works proposed different techniques for opti-

mizing SVM parameters and performing feature selection

simultaneously. One of the first attempts was made by

Huang and Wang [15], in which GA was applied to this

problem. Based on comparisons with the conventional grid

search algorithm using different datasets, they showed that

GA is able to optimize SVM to reach better accuracy with a

fewer number of features. A similar approach was followed

by Lin et al. [24] where the PSO algorithm was employed

instead of GA. They compared their results with those

obtained by Huang and Wang [15]. Their results showed

that PSO was very competitive compared to GA outper-

forming it in six datasets out of ten. Another work was

conducted by Zhao et al. [51] and they used GA with

feature chromosome operation for subset feature selection

and optimizing SVM parameters. In their work, almost a

similar system architecture was experimented and com-

pared to those in [15, 24].

In this paper, we propose, experiment and discuss a

robust approach based on the recent multi-verse optimizer

(MVO) for feature selection and optimizing the parameters

of SVM in order to maximize the accuracy of SVM.

According to our knowledge, this is the first time to employ

MVO for optimizing SVM. This work also considers the

proposal of an improved architecture to improve the gen-

eralization power and robustness of the SVM. The proposed

model is named as MVO?SVM. MVO is a metaheuristic

search algorithm inspired by a number of cosmological

theories including the Big Bang theory [28]. MVO has

shown high competency and efficiency when applied to

challenging optimization problems such as training feed-

forward neural networks [7]. The proposed MVO-based

SVM is evaluated based on seven binary datasets and three

multi-class datasets selected from the UCI machine learning

repository. The MVO?SVM approach is designed and

applied using two different system architectures. The first

one is identical to those employed in [15, 24], while the

second architecture is proposed in order to maximize the

generalization ability of the model and therefore achieving

more robust results. In addition, evaluation results of MVO-

based SVM are compared with those obtained for GA, PSO

and two recent metaheuristic algorithms which are the

Firefly Algorithm (FF) [45] and Bat Algorithm (BAT) [46].

In the past few years, BAT and FF were investigated for

optimizing SVM in many studies [4, 6, 16, 48]. All our

experiments are carried out using the two aforementioned

system architectures.

This paper is structured as follows: Sect. 2 briefly

describes the SVM algorithm. Section 3 presents the

structure of the MVO algorithm. The proposed approach

for feature selection and optimizing the parameters of SVM

is provided and discussed in Sect. 4. The conducted

experiments and the results are discussed and analyzed in

Sect. 5. At last, the conclusion and future works are sum-

marized in Sect. 6.

2 Support vector machines

SVM is a mathematical model and a powerful universal

approximator proposed and developed by Vapnik [38].

SVM can be used for both classification and regression
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tasks. Recently, in an extensive comparative study [8], it

was shown that SVM stands among the best classifiers

implemented so far. Rather than the minimizing the

empirical error like in Neural Networks, the theoretical

foundations of SVM are derived from the structural risk

minimization idea [39].

As in the majority of classifiers, SVM depends on the

training process to build its model. By using the kernel

trick, SVM transforms the training data by nonlinear

mapping functions to a higher dimensional space where the

data can be separated linearly, or to find the best hyper-

planes (support vectors) with maximal normalized margin

with respect to the data points. Therefore, the goal of the

learning process of SVM is to look for the optimal linear

hyperplanes in that dimension [10]. Figure 1 depicts an

example of a binary class dataset separated by SVM opti-

mal hyperplanes.

Suppose we have a dataset fxi; yjgi¼1;...;n where the xi 2
Rd represents the input features, d is number of features in

the training dataset and yi 2 R is its corresponding actual

output, the main target of the SVM algorithm is to draw the

linear decision function given in Eq. (1):

f ðxÞ ¼ hw;/iðxÞi þ b ð1Þ

w and b a weight and a constant, respectively, which have

to be estimated from the dataset. / is a nonlinear function

which maps the input features to higher feature space.

h:; :i indicates the dot product in Rd.

This problem can be represented to minimize the fol-

lowing function:

RðCÞ ¼ C

n

Xn

i¼1

Leðf ðxiÞ; yiÞ þ
1

2
wk k2

Leðf ðxiÞ; yiÞ is known as e�intensive loss function which

can be represented as shown in Eq. (2):

Leðf ðxÞ; yÞ ¼
jf ðxÞ � yj � e jf ðxÞ � yj � e
0 otherwise

�
ð2Þ

By adding the slack variables ni and n�i , the problem can be

formulated to minimize Eq. (3) in subject to the constraints

given in Eq. (4).

Rðw; n�i Þ ¼
1

2
wk k2þC

Xn

i¼1

ðni þ n�i Þ ð3Þ

yi � hw; xii � b � eþ ni
hw; xii þ b� yi � eþ n�i
ni; n

�
i � 0

8
><

>:
ð4Þ

C represents a penalty for a prediction error that is greater

than e. ni and n�i are slack variables that measure the error

cost based on the training data.

This optimization problem with the specified constraints

can be handled by means of Lagrangian multipliers as a

quadratic optimization problem. The solution can be rep-

resented as given in Eq. (5).

f ðxÞ ¼
Xn

i¼1

ðai � a�i ÞKðxi; xÞ þ b ð5Þ

where ai and a�i are Lagrange multipliers which are subject

to the following constraints:

Xn

i¼1

ðai � a�i Þ ¼ 0

0� ai �C i ¼ 1; . . .; n

0� a�i �C i ¼ 1; . . .; n

K(.) is the kernel function and its value is an inner product

of two vectors xi and xj in the feature space /ðxiÞ and

/ðxjÞ. K(.) can be represented as shown in Eq. (6).

Kðxi; xjÞ ¼ /ðxiÞ:/ðxjÞ ð6Þ

The most popular and used kernel functions in the literature

are the Polynomial, Hyperbolic Tangent Kernel and the

RBF Kernel as given in Eqs. (7), (8) and (9), respectively.

Kpðxi; xjÞ ¼ hxi; xj þ 1id ð7Þ

Khðxi; xjÞ ¼ tan hðc1ðxi:xjÞ þ c2Þ ð8Þ

Krbf ðxi; xjÞ ¼ expð�cjjxj � xijj2Þ; where c[ 0 ð9Þ

One of the key issues here is that selection of kernel

functions and the values of their parameters have a great

impact on the accuracy of the SVM model. The values ofFig. 1 Optimal hyperplane in support vector machine
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SVM parameters have high influence of its performance.

As we discussed in Sect. 1, there are different approaches

for optimizing these parameters. Since the metaheuristic

algorithms are very efficient to find optimal values for

optimization problems, we employ MVO to do that for the

first time in the literature.

3 Multi-verse optimizer

The multi-verse optimizer [28] is a recent evolutionary

metaheuristic algorithm, which mimics the rules in one of

the theories of multi-verse. The main inspiration of this

algorithm comes from the theory of existence of multiple

universes and their interactions via black, white, and worm

holes. This algorithm is a population-based stochastic

algorithm and approximates the global optimum for opti-

mization problems with a collection of solutions.

In this algorithm, two parameters should be calculated

first to update the solutions: Wormhole Existence Proba-

bility (WEP) and Traveling Distance Rate (TDR). Such

parameters dictate how often and how much the solutions

change during the optimization process and defined as

follows:

WEP ¼ aþ t � b� a

T

� �
ð10Þ

where a is the minimum, b is the maximum, t is the current

iteration, and T represents the maximum number of itera-

tions allowed.

TDR ¼ 1� t1=p

T1=p
ð11Þ

where p defines the exploitation accuracy.

The main parameter of TDR is p. The exploitation is

emphasized proportional to the value of this parameter.

After calculating WEP and TDR, the position of solu-

tions can be updated using the following equation:

xi
j ¼

xjþTDRþððubj� lbjÞ � r4þ lbjÞÞ if r3\0:5
xj�TDRþððubj� lbjÞ � r4þ lbjÞÞ if r3�0:5

�
if r2\WEP

x
j
RouletteWheel if r2�WEP

8
<

:

ð12Þ

where Xj is the jth element of the best individual, WEP,

TDR are coefficients, lbi and ubi are the lower and upper

bounds of the jth element, r2; r3; r4 are randomly generated

numbers drawn from the interval of [0, 1], x
j
i represents the

jth parameter in ith individual, and x
j
RouletteWheel is the jth

element of a solution picked by the roulette wheel selection

mechanism.

This equation shows that the position of solution can be

updated with respect to the current best individual obtained

using the WEP. If the r3, which is a random number in [0,

1], less than 0.5, the solution is required to get the value of

the jth dimension in the best solution. WEP is increased

during optimization, so this is how the MVO increases the

exploitation of the best solution obtained so far.

The exploration and local optima avoidance are guar-

anteed with the second part of the above equation, in which

the jth variable in the solution i is replaced with that in a

selected solution using a roulette wheel. When using the

second part, the current solution is considered to have a

black hole, and the one of the best solutions contain a white

hole.

The white holes are chosen with a roulette wheel pro-

portional to their fitness value. The black holes are created

inversely proportional to the fitness value for minimization

problems. This mechanism assists the MVO algorithm to

improve the poor solutions using the best solutions over the

course of iterations. Since the solutions exchange variables,

there are sudden changes in the solutions and consequently

improved exploration. If a solution stagnates in a local

optimum, this approach is able to revolve it as well.

To balance between exploration and exploitation, WEP

and TDR should be changed adaptively using Eqs. (10) and

(11). In this work we have used a ¼ 0:2, b ¼ 1, and p ¼ 6

in these equations. Figure 2 shows how the WEP and TDR

change over the course of iterations.

The MVO algorithm first generates a set of random

solutions and calculates their corresponding objectives.

The position of solutions is repeatedly updated using

Eq. (12) until the satisfaction of an end condition. Mean-

while, the random parameter (r2; r3; r4), WEP, and TDR are

updated for each solution. It has been proved that this

algorithm is able to provide very comparative and occa-

sionally superior results compared to the current approa-

ches. In this following section, this algorithm is integrated

to the SVM for the first time.

Fig. 2 WEP and TDR
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4 Proposed MVO–SVM model

In this section, we describe three important points regard-

ing the proposed implementation of MVO for feature

selection and SVM parameters optimization. They are the

encoding scheme used to represent MVO universes, the

fitness function, and the system architectures followed in

this work. The key points are described as follows:

4.1 Encoding scheme

In the two architectures investigated in this work, the

individuals are encoded as a vector of real numbers. The

number of elements in each vector equals number of fea-

tures in the dataset plus two elements to represent SVM

parameters: the Cost (C) and Gamma (c). The implemented

encoding scheme is shown in Fig. 3. Each element in the

vector is a randomly generated number in the interval [0,1].

Therefor, the elements that represent features are rounded:

if the element is larger or equal to 0.5, its value is rounded

to 1 and the feature is selected, otherwise the value is

rounded to 0 and the feature is not selected. For the C and

c, those parameters need to be mapped to different scales

since their search space is different. For example, the value

of the element corresponding to C is mapped to the interval

[0, 35000] while the element corresponding to c is mapped

to [0, 32]. In our implementation, the values of C and c are
linearly transformed using Eq. (13).

B ¼ A� minA

maxA � minA
ðmaxB � minBÞ þ minB: ð13Þ

4.2 Fitness evaluation

In order to assess the generated universes (solutions), we

rely on the confusion matrix shown in Fig. 4 which is

considered as the primary source for evaluating classifi-

cation models. Based on this confusion matrix, the classi-

fication accuracy rate is calculated as given in Eq. (14):

Accuracy ¼ TPþ TN

TPþ FN þ FPþ TN
: ð14Þ

4.3 System architectures

This subsection describes the main system architectures

that are applied to perform feature selection and optimizing

the parameters of SVM simultaneously using the MVO

algorithm. The term ‘‘system architecture’’ was used in the

previous studies to describe the processes that are carried

out to perform this task and their sequence. In this work

two different architectures are utilized. The first system

architecture used and implemented in [15], while the sec-

ond is a modified version of the first one. We will refer to

the two architectures as ‘‘Architecture I’’ and ‘‘Architecture

II,’’ respectively. In other words, we propose Architecture

II as an approach to enhance the generalization ability and

robustness of the developed model. To describe the

workflow of these architectures, we provide the following

bullet points and figures:

• Data normalization: this is a preprocessing step

performed on the features of all datasets. The values

of all features are mapped into same scale in order to

eliminate the effect of some features that have different

range values on the learning process of the algorithm.

Therefore, all features are given an equal weight and

normalized to fall in the interval [0,1] using a Eq. (15),

which is a special form of Eq. (13).

B ¼ A� minA

maxA � minA
ð15Þ

• Decoding of universes: the generated vectors (uni-

verses) by MVO are split into two parts: the first two

elements of the vector correspond to the SVM param-

eters and they are converted using Eq. (13). The rest of

the elements, which correspond to the selected features,

are rounded to form a binary vector.
Fig. 3 Encoding scheme of individuals for SVM optimization and

feature selection

Fig. 4 Confusion matrix
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• Select feature subset: after decoding the universe as

described earlier to a binary vector, the corresponding

features are selected from the training dataset.

• Fitness evaluation: every generated solution by MVO

which represents the parameters of SVM and a set of

selected features is assessed using the fitness function.

• Termination criterion: the evolutionary cycle of MVO

keeps until a termination condition is met. Here we set

a maximum number of iterations as a termination

condition.

• Reproduction operators: this is a sequence of operators

which are applied by MVO in order to evolve the

generated universes searching for a better quality

solution.

The main differences between those architectures are the

fitness evaluation and the methodology for training and

testing. In the objective function of Architecture I, the

whole training dataset is deployed to build the SVM model,

and then the returned fitness of the objective function is the

evaluation result of the trained SVM based on the testing

part. On the other side, in the objective function of

Architecture II, the training part is split again into a number

of smaller parts to perform k-folds cross-validation. So the

SVM is trained k times and the average evaluation is

returned. In the latter case, the testing part is not presented

to the SVM during the iteration of the metaheuristic but

used to assess the final selected subset of features and the

best obtained parameters. Figures 5 and 6 clearly show the

details and differences between the two architectures.

5 Experiments and results

5.1 Experiments setup

The experiments in this work are conducted on a personal

machine with Intel Core i7 processor, 2.40 GHz, 8 GB

RAM, using Windows 10 as the operating system. We also

used Matlab R2015a (8.5.0.197613) environment as an

implementation for our experiment. The LIBSVM imple-

mentation is used for the SVM classifier [3].

The proposed MVO–SVM approach is tested and eval-

uated based on ten datasets drawn from the UCI repository1

[23]. Seven of the datasets belong to binary class labeled:

Heart, Ionosphere, German, Sonar, Breast cancer, Parkin-

sons and Spectf; while Vowel, Wine and Vehicle are multi-

class labeled. Number of features and instances in each

dataset is given in Table 1.

The initial parameters of MVO, GA, PSO, BAT and FF

algorithms are set as listen in Table 2. The number of

universes, individuals and swarm size is identical in all

algorithms and set to 30. Generally speaking, there should

be special considerations when setting the maximum iter-

ations of the algorithm. This is because that the type of the

incorporated feature selection method is a wrapper one.

Although wrapper-based feature selection methods are

powerful due to the interaction between the selection of the

features and the classifier wrapped within the search

method, they have the disadvantage of being computa-

tionally expensive and they can overfit [20, 33]. Therefore,

empirically, it was found that running the algorithm up to a

small number of iterations (e.g., 50) can reduce the com-

putation time of the metaheuristic algorithms, and they can

converge to a solution.

As mentioned earlier, system Architecture I and II differ

in the training/testing methodology implemented in each

one. In Architecture I, the cross-validation is set to 10. This

means that SVM is trained 10 times where in each time

SVM is trained using different 9-folds, and then, the fitness

function returns a fitness value based on the 10th testing

Fig. 5 System architecture I

1 http://archive.ics.uci.edu/ml/.
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fold. In Architecture II, however, the outer cross-validation

is set to 10-folds and the inner one is set to 3-folds. The

experiments are repeated 10 times to get statistically

meaningful results.

5.2 Results of optimizing SVM with feature

selection

In this part of the experiments, MVO is evaluated and

compared to GA, PSO, BAT and FF in performing feature

selection and optimizing the parameters of SVM. The five

algorithms are evaluated using the ten datasets described

earlier. The average of the accuracy rate and the average

number of selected features along with the standard devi-

ation are listed in Tables 3 and 4 for Architecture I and

Architecture II, respectively. We use avg� std deviation to

represent these values.

The results of Architecture I show that MVO achieved

the highest average accuracy rates compared to GA, PSO,

BAT and FF in 8 out 10 datasets exceeding 99% accuracy

rate in six of them. Also, MVO shows lower standard

deviation values for most of the datasets. It can also be

noticed that the three optimizers have very close results

regarding the number of selected features. Figure 7 shows

the convergence curves of all optimizers based on the

averages of accuracy rates for the 10 runs. In this fig-

ure MVO clearly shows its higher convergence speed in 8

out the 10 datasets. The best results and parameters

obtained based on Architecture I are listed in Table 5. It

can be seen that MVO and GA achieved 100% accuracy

Fig. 6 System architecture II

Table 1 List of datasets

Dataset Features Instances Classes

Heart 13 270 2

Ionosphere 34 351 2

Sonar 60 208 2

German 24 1000 2

Vowel 10 528 11

Wine 13 178 3

Vehicle 18 846 4

Breast Cancer 10 683 2

Parkinsons 22 195 2

Spectf 44 276 2

Table 2 Initial parameters of the MVO, GA, PSO, BAT and FF

Algorithm Parameter Value

MVO Min wormhole existence ratio 0.2

Max wormhole existence ratio 1

Universes 30

Iterations 50

GA Crossover ratio 0.9

Mutation ratio 0.1

Selection mechanism Roulette wheel

Population size 30

Generations 50

PSO Acceleration constants [2.1, 2.1]

Inertia w [0.9, 0.6]

Number of particles 30

Generations 50

BAT Loudness 0.5

Pulse rate 0.5

Frequency minimum 0

Frequency maximum 1

FF Alpha 0.2

Beta 1

Gamma 1

Neural Comput & Applic (2018) 30:2355–2369 2361
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rate in 8 out of 10 datasets while PSO, BAT and FF

managed to reach this rate in 7 datasets.

Inspecting the results of Architecture II in Table 4, it

may be observed that the obtained accuracy rates by all

optimizers are lower than those for Architecture I. This

decrease is due to the incorporated training/testing

scheme in this architecture. As it was mentioned before, the

testing part in this architecture was not represented or seen

during the optimization process. Therefore, the results are

expected to be lower but more credible. According to the

results obtained by Architecture II in Table 4, the MVO

algorithm shows higher average accuracy than the other

optimizers in all datasets except in the German and Spectf

datasets in which it is ranked second after GA. Moreover,

(a) (b) (c)

(d) (e) (f)

(g) (h)

(j)

(i)

Fig. 7 Convergence curves of MVO, GA, PSO, BAT and FF in optimizing SVM and feature selection based on Architecture I. a Breast cancer.

b Heart. c Ionosphere. d Sonar. e Vehicle. f Vowel. g Wine. h German. i Parkinsons. j Spectf
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Table 5 Best obtained results based on Architecture I

Dataset MVO?SVM GA?SVM PSO?SVM BAT?SVM FF?SVM

Heart

Best accuracy 100 100 96.3 100 96.3

No. of selected features 8 4 4 4 5

Cost (C) 31941.4 28267.28 18562.92 16395.42 16265.8

c 8.43 0.0001 27.01 19.43 12.63

Ionosphere

Best accuracy 100 100 100 100 100

No. of selected features 17 12 14 15 13

Cost (C) 7487.26 1637.64 12386.94 34665.56 22565.59

c 0.81 1.53 0.87 2.18 0.0001

Sonar

Best accuracy 100 100 100 100 100

No. of selected features 22 16 30 24 20

Cost (C) 10711.62 35000 10102.66 35000 12168.71

c 1.44 0.9 0.87 0.0001 0.21

German

Best accuracy 85 89 84 84 83

No. of selected features 15 12 11 15 13

Cost (C) 32517.1 10044.12 32700.54 35000 19536.01

c 0 0.0001 15.76 0.0001 0.0001

Vowel

Best accuracy 100 100 100 100 100

No. of selected features 5 6 5 5 6

Cost (C) 9470.25 8710.15 1322.08 34526.26 10891.24

c 12.06 13.8 16 23.16 4.17

Wine

Best accuracy 100 100 100 100 100

No. of selected features 4 4 5 5 4

Cost (C) 5149.58 13789.51 32715.96 35000 14755.23

c 1.48 5.15 3.31 0.0001 7.76

Vehicle

Best accuracy 91.76 92.86 92.94 94.05 92.86

No. of selected features 11 12 10 12 13

Cost (C) 26775.73 19883.93 7429.6 989.31 11950.47

c 0.39 0.0001 4.17 0.09 0.58

Breast cancer

Best accuracy 100 100 100 100 100

No. of selected features 3 2 2 4 3

Cost (C) 30124.21 9562.28 34005.7 35000 26687.13

c 24.29 18.56 3.62 0.0001 17.89

Parkinsons

Best accuracy 100 100 100 100 100

No. of selected features 7 7 10 8 8

Cost (C) 4691.48 4071.45 21470.18 2635.98 4275.59

c 16.17 2.14 10.15 8.24 16.16

Spectf

Best accuracy 100 100 100 96.3 100

No. of selected features 17 14 18 20 16

Cost (C) 2634.96 8045.49 27837.72 3342.66 16232.75

c 6.66 16.08 28.52 13.82 13.07
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MVO shows a higher robustness in most of datasets

especially in Ionosphere, Sonar, Vowel and Wine. Figure 8

shows the convergence curves of all optimizers based on

Architecture II. In this figure, MVO shows a higher con-

vergence speed in most of the datasets. The best results and

parameters obtained based on Architecture II are presented

in Table 6. It is shown that only MVO and PSO achieved

100% accuracy rate in 5 out of 10 datasets while BAT, GA

and FF comes next with 4, 3, 2 datasets, respectively.

In order to verify the significance of the differences

between MVO results and the other optimizers, the non-

parametric statistical test Wilcoxon’s rank-sum test is

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Fig. 8 Convergence curves of MVO, GA, PSO, BAT and FF in optimizing SVM and feature selection based on Architecture II. a Breast cancer.

b Heart. c Ionosphere. d Sonar. e Vehicle. f Vowel. g Wine. h German. i Parkinsons. j Spectf
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Table 6 Best obtained results based on Architecture II

Dataset MVO?SVM GA?SVM PSO?SVM BAT?SVM FF?SVM

Heart

Best accuracy 88.89 88.89 88.89 88.89 92.59

No. of selected features 3 3 7 7 9

Cost (C) 8090.17 16488.46 28811.03 34962.8 28465.52

c 9.5 0.33 0.0001 0.0002 0.0002

Ionosphere

Best accuracy 100 97.14 97.14 100 97.14

No. of selected features 19 17 16 15 12

Cost (C) 19636.16 6596.45 33320.6 28035.14 22814.34

c 1.54 0.64 1.63 1.44 1.92

Sonar

Best accuracy 100 95.24 100 95.24 95.24

No. of selected features 28 32 34 26 26

Cost (C) 23023.17 35000 29043.67 31331.58 19709.92

c 0.38 0.25 0.19 0.53 0.64

German

Best accuracy 78 82 82 84 79

No. of selected features 16 15 15 11 10

Cost (C) 18981.34 6585.16 35000 34948.39 13712.41

c 0.0001 0.0001 0.0001 0.0007 15.94

Vowel

Best accuracy 100 100 100 100 100

No. of selected features 7 7 7 7 7

Cost (C) 2567.54 3086.54 35000 854.76 14842.37

c 2.59 6.16 4.32 2.64 8

Wine

Best accuracy 100 100 100 100 100

No. of selected features 5 7 7 8 6

Cost (C) 17425.11 11212.74 4106.05 870.14 16346.93

c 3.57 1.34 1.23 3.09 2.62

Vehicle

Best accuracy 88.1 83.53 87.06 88.1 87.06

No. of selected features 13 13 11 11 13

Cost (C) 16452.13 29894.9 4262.44 6808.75 12268.22

c 0.11 0.28 1.77 0.09 0.11

Breast cancer

Best accuracy 98.55 98.55 100 98.53 98.53

No. of selected features 8 7 6 3 6

Cost (C) 34011.26 925.34 10457.39 34285.81 15715.01

c 0.0001 0.0001 0.0001 21.96 0.005

Parkinsons

Best accuracy 100 100 100 100 94.74

No. of selected features 10 7 12 11 10

Cost (C) 7936.23 23834.89 14260.76 15299.07 10308.68

c 9.11 11.91 5.22 3.09 4.12

Spectf

Best accuracy 92.59 96.15 88.46 92.59 85.19
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carried out. The test is performed based on the results of

the MVO against each of the other optimizers at 5% sig-

nificance level. In Table 7, the p values obatined by the test

are listed. All p-values values in the table less than 0.05

means that the null hypothesis is rejected (indicating sig-

nificant difference) at a 5% significance level. According to

the results it can be seen that MVO is significantly better

than GA and PSO in 5 datasets out of ten. While MVO is

significantly better than BAT and FF in 7 and 6 datasets,

respectively.

5.3 Comparison with grid search (without feature

selection)

In this experiment, we compareMVOwith the gird search for

optimizing the parameters of SVM. To make the comparison

fair, MVO is applied just for parameters optimization without

the feature selection part since the grid search does not have

this capability. Both techniques were applied with a 10-folds

cross- validation. Grid search is used as described in [13, 15].

Table 8 shows the results of comparison based on the

aforementioned Arch I and Arch II. The results from Arch I

show that MVO is noticeably better than the grid search in 9

datasets. For the Wine dataset, MVO is slightly better while

German dataset was the only one that shows better perfor-

mance for grid search. With checking the average classifi-

cation accuracies obtained by Arch II, it can been seen that

the accuracy rates obtained byMVO are higher than those for

the grid search even in the German dataset. The only

exception is for Spectf and Breast cancer datasets.

Comparing the results of Arch II to Arch I, two facts can

be observed. First, the accuracy rates decreased for MVO

and grid search-based SVM models. As mentioned the

previous section, this is expected due to the adopted testing

strategy. Second, the difference between the accuracy of

MVO and the grid search has increased. This can be an

evidence that MVO is more robust than the grid search in

Table 7 P values of the Wilcoxon test of MVO classification results

versus other algorithms (p � 0.05 are italized)

GA PSO BAT FF

Heart 0.0780 0.0038 8.66e-10 8.21e-08

Ionosphere 5.03e-05 0.0011 2.29e-05 0.1671

Sonar 8.27e-07 0.0192 0.0135 1.60e-05

German 9.39e-06 0.6211 0.5390 5.55e-21

Vowel 0.0101 6.38e-10 7.94e-04 0.4848

Wine 1.38e-08 0.0575 1.31e-08 0.0061

Vehicle 0.0013 0.9031 0.0199 9.45e-07

Breast cancer 0.0760 0.5367 0.7092 6.52e-06

Parkinsons 1.00 4.82e-05 0.0170 0.2080

Spectf 0.2702 0.9032 1.00 0.5390

Table 8 Comparison between

MVO and Grid search in

optimizing SVM parameters

Arch I Arch II

MVO Grid MVO Grid

Heart 87.41 ± 5.02 86.3 ± 4.98 82.96 ± 4.44 80.74 ± 2.22

Ionosphere 96.86 ± 3.25 96.3 ± 1.81 94.03 ± 5.89 92.87 ± 3.21

Sonar 93.69 ± 6.17 89.88 ± 7.25 87.02 ± 5.73 86 ± 5.64

German 75.4 ± 5.99 78.4 ± 3.58 75.8 ± 5.25 75.2 ± 4.45

Vowel 99.81 ± 0.57 91.3 ± 4.33 99.24 ± 0.93 89.97 ± 4.3

Wine 99.44 ± 1.67 99.41 ± 1.76 97.75 ± 3.72 97.19 ± 2.81

Vehicle 88.42 ± 2.74 77.79 ± 3.03 84.99 ± 4.12 75.18 ± 3.25

Breast cancer 98.1 ± 1.96 97.65 ± 1.89 96.63 ± 2.38 96.63 ± 1.61

Parkinsons 97.42 ± 3.49 88.63 ± 5.76 94.89 ± 4.65 86.68 ± 8.71

Spectf 84.72 ± 7.41 79.8 ± 7.19 77.88 ± 5.94 77.91 ± 6.15

Table 6 continued

Dataset MVO?SVM GA?SVM PSO?SVM BAT?SVM FF?SVM

No. of selected features 21 27 21 20 14

Cost (C) 35000 9511.23 1634.7 6281.27 13492.21

c 4.65 7.86 15.61 12 27.96
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optimizing SVM when new and unseen data are presented

to the model.

Overall, the results and findings of this section show the

merits of the MVO algorithm in improving the perfor-

mance of SVM. The more accurate results of MVO-based

SVM are due to the high exploitation of MVO. In order for

SVM to be very accurate, the parameters should be tuned

accurately as well. This paper showed that the MVO can be

very efficient, which is due the bold role of the best indi-

vidual obtained using the worm holes in improving the

quality of other solutions. The reliability and robustness of

the MVO-based SVM originate from the high exploration

and local optima avoidance of the MVO algorithm. The

sudden changes in the solutions using white/black holes

emphasize the exploration process and help in resolving the

local optima stagnation. Moreover, the WEP and TDR

parameters assist MVO to first explore the search space

broadly and, then, exploit the promising regions accurately

over the course of iterations. This dynamic control of the

exploration and exploitation processes enabled MVO to

achieve better results over the other algorithms.

6 Conclusions

In this research work we proposed the application of a

recent nature-inspired metaheuristic called multi-verse

optimizer for feature selection and optimizing the param-

eters of SVM simultaneously. Two system architectures

were implemented for the proposed approach: the first

architecture is commonly used in the literature while the

second is proposed in this work to increase the credibility

of the SVM prediction results. The developed approach is

assessed and benchmarked with four well-regarded meta-

heuristic algorithms (GA, PSO, BAT and Firefly) and the

grid search. Experiments show that MVO was able to

optimize SVM achieving the highest accuracy compared

with the other optimizers based on the two investigated

architectures. The findings and analysis of this work proved

the merits of the MVO algorithm in improving the per-

formance of SVM.
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