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The bionic handling assistant is one of the largest soft continuum robots and very special in being a pneumatically operated
platform that is able to bend, stretch, and grasp in all directions. It nevertheless shares many challenges with smaller
continuum and other soft robots such as parallel actuation, complex movement dynamics, slow pneumatic actuation,
non-stationary behavior, and a lack of analytic models. To master the control of this challenging robot, we argue for
a tight integration of standard analytic tools, simulation, control, and state-of-the-art machine learning into an overall
architecture that can serve as blueprint for control design also beyond the BHA. To this aim, we show how to integrate
specific modes of operation and different levels of control in a synergistic manner, which is enabled by using modern
paradigms of software architecture and middleware. We thereby achieve an architecture with unique overall control
abilities for a soft continuum robot that allow for flexible experimentation toward compliant user-interaction, grasping,

and online learning of internal models.
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1. Introduction

In recent years, an increasing number of continuum robots
have surfaced in various forms and fields. Prominent
examples include artificial salamanders,[1] hexapods,[2]
snakes,[3] worms,[4] and smaller quadrupeds.[5] These
platforms showcase the interplay of morphology and
computation [6] and explore the benefit of highly flexible
continuum robots for future applications, like minimal inv-
asive surgery.[7] They also provide a way to implement
the understanding-by-building paradigm toward analysis of
biological systems, e.g. to understand an octopus tentacle
[8] or movements of a fish.[9]

The bionic handling assistant (BHA, Figure 1 left) has
been designed by Festo as a robotic counterpart to an ele-
phant trunk. It has gathered strong interest in the robotics
community as well as the general public because it bel-
ongs to anew class of continuum soft and lightweight robots
based on low-cost and rapid 3D manufacturing with
polyamide. It comprises several continuous parallel compo-
nents and is pneumatically operated at low pressures, which
makes the BHA inherently safe for physical interaction
with humans.[10,11] The BHA’s main body embodies three
segments', each consisting of three triangular arranged air
chambers, i.e. in total nine. These extend in length rela-
tive to the applied pressure. The robot has therefore no
fixed joint angles and each segment rather starts to bend
whenever the three chambers assume different lengths. An

active depression of the chambers is not possible. Solely the
internal tension of the extended body drives the structure
back into its default shape. The BHA is equipped with
pressure sensors inside the air valves. Potentiometers inside
the base measure the lengths of cables across the outer robot
structure and therefore provide geometric information about
the robot’s shape (Figure 1, right).

Up to the presented work, no comprehensive automatic
control has been introduced for the BHA despite the big
potential of its unprecedented movement flexibility. The
reason is likely that the BHA comprises substantial chal-
lenges for any control scheme including high dimensional-
ity and redundancy, very slow actuator dynamics, restrictive
and unknown actuation ranges, and non-stationary system
behavior due to friction and visco-elasticity.

Related work that tackles the control of soft robots mostly
focus only on single aspects rather than complete control
architectures like learning the dynamics of an octopus
tentacle [12] or even fall back to manual control.[13] These
robots share a lot of challenges with the BHA, e.g.
Shepherd emphasized that ‘... the response to actuation of
elastomeric structures having embedded PNs? is highly non-
linear and thus predictive modeling of their actuation is
currently empirical. The development of motion control
systems for these robots will require the use of non-linear
models and may require neural-net-like learning methods.’
([13], p.20403). And in fact, it was shown in other work
that for modeling the inverse kinematics of soft robots,
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Figure 1. The bionic handling assistant BHA (left). The segments and respective length sensors of the BHA (right).

machine learning can be beneficial in comparison to classi-
cal Jacobian gradient-based methods.[14]

While these studies address isolated control problems
of soft robots, no comprehensive approach toward entire
architectures that combine several control skills and fac-
ilitate the development of high level use cases has been
presented so far. The contribution of this paper is to tackle
this architectural problem. Referring to our prior work on
isolated problems on the BHA,[15-17] we now describe
the challenges induced by the special hardware properties
of soft robots and argue that well-designed software archi-
tectures are indispensable for effective implementations of
higher level functionality. We therefore show how modern
software engineering paradigms allow for flexible experi-
mentation with low-level components and higher level use
cases and provide a step forward to leverage the full poten-
tial of continuum robot applications. We argue and show
that a carefully selected hybrid combination of classical
control methods and machine learning throughout control
levels can achieve fast reaction times and high precision for
real-world applications. Further, we use this architectural
perspective to point out synergy effects between different
control skills that amplify the utility of those skills within a
larger context.

While we demonstrate our proposal based on the BHA,
we also believe that many of the underlying elements are
applicable to other robots as well. After describing the con-
trol architecture and some of the functional building blocks,
we will come back to this issue and finally elaborate on
general conclusions.

2. Overview of the control architecture
2.1. Challenges and requirements

The bionic handling assistant (BHA) is a prominent,
award winning>, continuum soft robot. It displays typical

challenges in soft robotics. The most significant challenge
is induced by its novel actuation principle of co-activation
of three low-pressure pneumatic actuators in each segment
that cause continuous deformations in shape. This is com-
plementary to revolute or prismatic joints that drive classical
robots. Classical rigid body mechanics and respective con-
trol schemes can therefore not be transferred easily from
traditional robotics.

Neither standard serial kinematic chains, nor parallel but
rigid mechanisms model the BHA well. In the BHA, con-
tinuous deformations are caused by parallel actuation, but
mediated through flexible material and morphology in a
highly non-linear and difficult to predict manner. This set-
ting calls for new and advanced algorithms to cope with the
resulting redundancy, with non-stationarity due to the semi-
fluid properties of the material, and the slow dynamics of
the pneumatic actuation.

More technical, but for soft robotics very typical chal-
lenges include the lack of software infrastructure for con-
trol, simulation, or even task-level operation. It is neither
provided by the producer FESTO nor does the futuristic
and experimental hardware allow application of standard
tools. For instance, due to the lack of a kinematic descrip-
tion in standard DH-parameters, no off-the-shelf simula-
tion and visualization tools can be used. On the hardware
level, the BHA provides heterogeneous I/0 channels com-
bining pressure sensing and control via a CAN bus with
length sensing via an analog-digital converter PCI card.
In our lab, we also integrate external end-effector position
sensing via a VICON motion tracking system that com-
municates with yet a different proprietary network
protocol. Finally, beyond just controlling the robot we tar-
get to leverage the full potential of the BHA for safe
interaction with humans in different use-cases and applica-
tions which request stability, robustness, and repeatability
of experimentation.
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The challenges translate to a multitude of requirements
for a comprehensive control architecture for the BHA. It
needs: abstraction of sensory data sources of different tem-
poral resolution that are read from hardware sensors or
internal models; different hardware abstraction levels that
include pressure control, posture control, and end-effector
control; the integration of multiple models that depend on
each other and share data across several abstraction lev-
els; the hierarchical combination of controllers over several
layers of abstraction; realtime and online capabilities for
interactive scenarios; high modularization to allow a flexi-
ble reconfiguration for different use cases. We address these
requirements in form of the control architecture depicted in
Figure 2 and by means of efficient software and middleware
tools realizing the control flow, the structural modules and
their communication, possibly across different processes.

2.2. How to control the bionic handling assistant

All components of the control architecture are assigned to
three levels. The bottom level (Figure 2, bottom) is related
to hardware specific implementations and the BHA robot
itself. This level is described in detail in Section 3.1. It
schematically visualizes the implementation details related
to the hardware protocols (denoted with Real Plant) and
the kinematic simulation of the BHA (denoted with Virtual
Plant). The involved components of this level are hardware-
specific, deal with the peculiarities of proprietary software
modules, and can be distributed across several computing
machines. The nextlevel (Figure 2, middle) provides arobot
specific interface and hides the complexity of the underlying

low level by means of hardware abstractions. It is further
described in Section 3.2. A central component of this level
is the Control Interface Library that allows both a seamless
swapping between the simulation and the hardware of the
BHA and a parallel operation as use cases require. Important
roles play the learned Inverse Equilibrium Model (IEM) and
the learned Inverse Kinematics Model (IKM), as shown in
Figure 2. They are kept externally and can be loaded at
runtime, which makes them available in higher and lower
level components and allows for offline or online learning.
This renders the overall architecture much more flexible
and enables to utilize hybrid control schemes across levels
and applications. The top level of abstraction contains the
software components representing the actual Use Cases for
experimentation and application development, see Section
5. They communicate with the unified interfaces at the sec-
ond level and are thereby independent of hardware details,
can flexibly recruit and load learned models, and deploy the
actual BHA, the kinematic simulation, or both. In Section
5, we elaborate some of our more complex applications
comprising Visualization (Section 5.1), an Active Compli-
ant Control Mode (Section 5.2), and the exploration and
learning of an Inverse Kinematics Model by means of Goal
Babbling.[16]

2.3. Software architecture and middleware

The overall architecture is modular and relies on software
abstractions to facilitate software and application develop-
ment. It uses the Robot Control Interface (RCI) [18] which
provides a set of domain-specific abstractions to represent
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Figure 2. Schematic view of the system architecture. The BHA (real plant) and its kinematic simulation (virtual plant) are connected via
the control interface library to the use cases. This software and system architecture provides a profound basis for experimentation and

development of diverse applications.
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common features of compliant robotics systems. These
abstractions comprise for instance a synchronized robot
interface that supports sensory readout and command trans-
mission. The flexibility of RCI, which abstracts from the
low-level signals, is also used to bundle actuators segment-
wise, as the elongation of one single actuator is meaningless
for the posture of one segment (see Figure 1).

For implementation of functional components and
integrating RCI entities into the applications, we leverage
the Compliant Control Architecture (CCA).[18] CCA is an
event-based, middleware-agnostic component architecture
for robotics research and focuses on control of compli-
ant hardware and machine learning. The library serves as
technology mapping for platforms modeled in RCI and
as component architecture for implementing applications.
This leads to independent software components that can be
flexibly combined in component circuitry. Communication
between components is realized by the Robotics Service Bus
(RSB) middleware.[19] RSB is very lightweight, fast, and
can be used with a very small footprint of source code, i.e.
it does not create a significant ‘lock-in’ of source code that
would prevent using the same code without RSB.

There are several advantages of this strategy: processing-
intensive applications can be distributed; a central software
instance to operate the robot can be running while other
applications (high-level applications, visualization, logging)
can be turned on and off flexibly as it is needed; the network
interface permits vast changes of the implementation with-
out requiring other components to change. This backbone of
software engineering provides the basis for the realization
and seamless integration of the functional blocks that are
shown in Figure 2 and described below. Due to the modular
structure of the software framework, each component of
the low-level control is available by a unified interface
and can be reused for other control modules as required.
This is demonstrated in the Use Case scenarios in Section
5. We proceed by describing in more detail the functional
components in the different levels of the architecture and
their interactions.

3. Functional building blocks
3.1. Bottom layer and hardware abstraction

The lowest level of the system architecture provides an abs-
traction of the underlying hardware. It allows to control the
actuators and to access the sensors without knowledge about
the specific hardware implementation. It thereby provides
the means to address the BHA (Real Plant) and its kinematic
simulation (Virtual Plant) through identical interfaces.

3.1.1. Real plant

This functional module deals with the immediate actuation
and sensors of the actual BHA. The only immediate actu-
ation on the BHA is pressure control, which is integrated

in two valve units manufactured by Festo. They comprise
eight compact Piezo valves each and control the BHA’s
pneumatic actuators. Both valve units with their pressure
controllers are connected to a PC via CAN-Bus with a
proprietary protocol. Our software abstracts from that CAN
interface and provides generic methods to read current pres-
sures and set control targets.

The length sensors that sense the BHA’s shape can be read
via an analog/digital PCI card with high frequency. Since
the cables span the entire length from the BHA’s base to
the end of each actuator (see Figure 1), the values along the
robot are automatically subtracted to obtain the outer length
of each separate actuator. The sensor readings are Kalman-
filtered for noise reduction before being dispatched through
the software. Additionally, we use an external Vicon motion
tracking system [20] to determine the 3D spatial location
of the robot’s end-effector. The Vicon software [20] sends
data with 200 Hz via a proprietary data protocol on a TCP
network connection. In order to utilize this data, we use a
converter that broadcasts the data via the RSB middleware
in a computationally very efficient binary format.

3.1.2.  Virtual plant

An essential part of the overall system is a useful kinematics
model in order to support higher level use cases for the BHA
robot is a useful kinematics model. However, the simulation
of a continuum robot such as the BHA cannot be solved by
classical approaches and standard software tools cannot be
applied. While a model of the BHA dynamics is clearly
out of reach, we have developed in previous work [15]
an approximate kinematic model ignoring pressures and
solely operating on the lengths of virtual air chambers. To
this aim, we followed the constant curvature approach that
is based on torus segments in order to allow continuous
deformations. Figure 1(left) shows how the three actuators
in each main segment cause a deformation between two
rigid segment bases (shown in red). The three measured
lengths of these actuators can be used to estimate the coordi-
nate transformation between two platforms, which can then
be chained in order to get the complete forward kinematics
from base to end effector. For each particular deformation
in three dimensions, a segment of the robot can be modeled
by a torus segment. Figure 3(left) shows this relation with
the overall torus in light green and the robot segment in
dark green. The only free parameters of the segment model
are the segement radii. We estimated these radii according
to a best-fit solution by recording ground-truth data from
different movements.

The development of the kinematic model is required for a
3D visualization of the robot, however, without millimeter
accuracy. To this aim, length measurements from the BHA
can be taken to predict and visualize the Cartesian move-
ment of the robot (Figure 3(center)). Our implementation
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Figure 3. Kinematic simulation: Segment model including geometric parameters (left), posture example along with visualization based
on the simulation model (center), and evaluation of the model quality for exemplary movements (right).

of the constant curvature model including the visualization
is available as open source.*

3.2. Medium level control interface library

The core element of the control architecture is the Control
Interface Library, as shown in Figure 2. The library uni-
fies the interfaces of BHA simulation and BHA hardware
and provides the basic control algorithms. It provides the
sensing of the current lengths L"°¥ | pressures p, predicted
pressures for target lengths p, and the end-effector position
EE relative to the robot base. Based on the abstractions to
access the hardware, we can command target pressures p?¢s
to Festo’s valve units as most direct form of control. Still,
pressures only describe forces acting on the robot structure
which does not allow for a robust postural control of the
robots shape. Hence, it is pivotal to actively control the
posture of the robot, i.e. the lengths of the actuators through
commanding target lengths L9¢*. This invokes either a stan-
dard PID length controller or a more sophisticated hybrid
length controller, which additionally employs an external
and learned feedforward model. This controller is described
in more detail in Section 4. Each high-level module of the
framework integrates the Control Interface Library and is
able to connect to the underlying setup via the Control
Server, given in Figure 2.

The Control Interface Library is pivotal to the over-
all architecture by fully utilizing the power of the RSB
middleware. It automatically instantiates an RSB structure
called Informer that broadcasts information throughout the
network to all components and applications that have sub-
scribed to it. The library broadcasts all available sensory
data, as well as all motor commands currently active on the
robot. Since this is fully automatic, the information is avail-
able in the middleware whenever and however the robot is
operated. Hence, tools e.g. for logging or visualization can
be started and stopped at any time. Additionally the robot’s
low-level control can be accessed via the Control Server that

receives commands via RSB. The entire broadcast as well
as the control server utilizes a flexible text/XML format for
exchange. This allows to distinguish semantically different
values of the same measure (e.g. measured versus desired)
and to fluently add additional information.

3.3. External models and learning

External models play a special role in our architecture.
As emphasized before, there is no simple way to model
actuators, kinematics or dynamics in classical terms or with
standard tools. We therefore opt to apply machine learning
methods, as proposed also in [13] and much of our previous
work,[16,17,21,22] in particular for learning internal mod-
els. We keep these models separate and loadable, as they
may be re-trained, re-calibrated or even re-learned online.
The models can then be utilized in several parts of an appli-
cation. Two such models, which are of crucial importance
in any control architecture, are depicted in Figure 2. On the
right hand side, an inverse model for the actuator dynamics
is pre-learned offline as described in more detail in Section
4 because of its importance even for the lower level length
control. From the point of view of architecture design, it
is important to see that this model is exploited from the
Control Interface Library to operate in parallel to the basic
PID control loop to speed-up pneumatic actuation. Yet, it is
as well used in the compliant control application as detailed
in Section 5.2.

In a similar vein, a learned inverse kinematics model is
displayed on the left hand side of Figure 2, which can be
loaded and exploited, e.g. for grasping applications. But
it can also be explored, learned, and modified online, for
instance to cope with a changing redundancy resolution
that is necessitated by the non-stationarity of the BHA.[16]
Again, the software architecture allows for the flexible use
of this model and its embedding in different applications.
Both non-stationarity and redundancy resolution are typi-
cal problems for soft robots, which often require to apply
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learning methods and therefore we believe that the solution
to separate these models from the control library could be
useful also for other platforms.

3.4. Higher level control and applications

The tools introduced so far provide the necessary com-
ponents for application development. Three such applica-
tions will be functionally described in detail in Section 5.
Applications and use cases can flexibly recruit components,
models, the hardware and the simulation, and all quan-
tities broadcasted by the control library. Relying on the
middleware communication, an arbitrary number of such
applications can run simultaneously, for instance to perform
high-level tasks and experimental evaluations. Components
that implement task-specific behaviors can be connected or
disconnected at runtime. Figures 1 and 3 already emphasize
this flexibility by showing the combination of a basic control
loop running on the real BHA and the visualization of the
robot in the background through the kinematic simulation.
In this case, the real and the virtual models are running in
parallel.

Human-robot interaction, grasping tasks, and other
applications require an interaction with the physical envi-
ronment and rely on realtime capabilities of the underlying
control framework. Although specific scenarios typically
involve many components, the utilized software architec-
ture is able to deal with the data flow in real time. The timed
Control Interface Library can be configured with millisec-
ond precision to satisfy control and platform demands. For
our control tasks, a high-level discretization time frame of
20ms is sufficient. The distribution of components over
several computing machines, which is supported by the
middleware RSB,[19] can contribute to the relaxation of
temporal constraints.

4. Hybrid actuator dynamics control

A reliable and fast controller of the BHA’s actuator lengths
that determine the robot’s shape is an indispensable pre-
requisite for higher level control skills and applications.
In principle, the length control can be accomplished with
standard proportional integral derivative (PID) schemes.
The fundamental problem is that these feedback control
approaches can be applied only with low gains in case of
slow plant dynamics, which consequently results in very
slow movements. This is in particularly the case for the
BHA due to its pneumatic actuation and the visco-elastic
mechanics, however, the BHA shares this issue with many
other soft robots with pneumatic or cable-driven elastic
actuation.

A classical approach to achieve fast control in such cases
is to combine feedback and feedforward control. The feed-
forward controller provides anticipative commands and can
significantly reduce control delays. However, feedforward

requires an inverse model of the plant’s dynamics. For the
BHA, such an inverse model would map actuator lengths
1 and their derivatives I and 1 to pressures p and pres-
sure changes p in the actuators according to the pneumatic
dynamics [23]:

p(1) = £1(1), 1), 1(1), p(@)). ey

Although the inverse model does not have to be very accu-
rate because the feedback part of the control law compen-
sates errors, there is no analytic model available for the soft
BHA. This context qualifies learning as an essential tool for
modeling.

4.1. Fast control with an inverse equilibrium model

The fundamental challenge for learning is the generation of
sufficient data. Equation (1) describes very high-dimensional
interactions that cannot be fully explored on the real robot
because of the exponential increase in exploration costs with
the increasing dimensionality of the configuration space,
i.e. here the lengths. We therefore consider a simplified
model of the robot’s dynamics, which is restricted to the
mechanical equilibrium points 1* of the robot’s dynamics.
Equilibrium points are achieved by applying a constant
pressure p* until convergence of the lengths for a single
segment. In such equilibrium states, neither lengths nor
pressures of the pneumatic actuators change over time: p =
1 = 1 = 0. The formulation of the inverse dynamics in
Equation (1) then simplifies to

0=1£(%0,0,p") & pd") =p", 2)

where p denotes the inverse equilibrium model that repre-
sents the direct relation between length I* and pressures p*.
The inverse equilibrium model provides a direct estimation
of air chamber pressures in a mechanical equilibrium and
can therefore serve as a feedforward control signal. Figure 4
depicts the BHA plant with its slow dynamics, the low-gain

. /p

PID — fbc

slow, accurate | _fb

Ldes. /I/ /

real des.
L

BHA - Plant

noisy, delayed

Figure 4. Control loop with a learned inverse equilibrium model
and a feedback controller. The model leads to a fast estimation of
the pressure configuration p?es for the chamber lengths Ldes.
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PID feedback controller, and the inverse equilibrium model.
The BHA receives pressure commands, which are computed
by superimposing the PID and the feedforward control sig-
nals. The feedforward controller computes pressures from
desired lengths by means of the inverse equilibrium model.
PID control is based on the difference of the desired and
sensed length values. The PID controller corrects errors of
the feedforward control signal in the feedback loop.

4.2. Learning an inverse equilibrium model

Despite these simplifications, the learning is still difficult:
first, data sampling for learning is limited because the time
until the physical deformations of the robot have reached
a mechanical equilibrium can take up to 20 seconds for
a single data point. Second, the underlying dynamics of
the BHA result in non-linear behavior which requires a
model with appropriate complexity in order to capture the
structure of the data sufficiently. Third, data is very noisy
due to hysteresis effects induced by the visco-elasticity of
the robot’s soft material.

Machine learning approaches which are trained on such
sparse and noisy data without additional efforts are prone to
overfitting, whereas well-behaved extrapolation is a strong
requirement from the BHA. To achieve this generaliza-
tion from sparse data, we employ the constrained ELM,
which is able to embed prior knowledge about the physical
behavior of the BHA to prevent strong overfitting. The
learning scheme is called constrained extreme learning mac-
hine (CELM, [22]) and comprises a feedforward neural
structure with three layers of neurons. Due to the special
form of this approach, learning reduces to a linear opti-
mization problem and the prior knowledge can be incorpo-
rated by introducing linear inequalities to the optimization
program. For learning an inverse equilibrium model of the
BHA, the following prior knowledge is considered: (i) max-
imum and minimum pressure of the actuators, and (ii) that
the ground-truth behavior per axis is strictly monotonous,
because higher pressure in one actuator physically leads to
an extension of this actuator.

4.3. Experimental results

For training of inverse equilibrium models, a data-set of
pressure-length pairs is recorded. It captures the relation
between the geometric length of the actuators for each seg-
ment and the corresponding pressures in a mechanical equi-
librium. A pressure grid comprising 5 x5 x5 = 125 samples
repeated five times is available for learning. Experiments
on the robot show the benefits of the learned inverse equilib-
rium model for length control. For a quantitative evaluation,
we measure the time until convergence of the lengths to
different target values up to accuracy e. Figure 5 shows
the mean convergence time for repetitively approaching
five random length configurations with the BHA. Length

10 —

Converge time [s]

— CELM
|| = — —none

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Threshold € [cm]

Figure 5. Convergence time of two different length controllers:
simple PID (none) versus feedforward control with inverse
equilibrium model (CELM).

control with simple PID control requires a much longer
convergence time than with CELM model.

Note that the data recording and substitution of different
models for the length control is strongly supported by the
system architecture. Learning an inverse equilibrium model
is essential for agile motion control of the BHA and repre-
sents a building block that is heavily used by other BHA
applications (see Figure 2).

5. Use cases

This section exhibits three exemplary use cases as depicted
in the top level of Figure 2. These illustrate how to orches-
trate modularization, interface unification, data sharing, and
extensibility toward real applications. Use cases address for
instance high-level control or task learning, novel technol-
ogy demos, exploration of novel learning schemes, or user
evaluation and can be easily developed and integrated into
the framework. Thereby the development of new use cases
can utilize the overall well-structured software organization
together with the development tools offered by the middle-
ware and component architecture.

5.1. Use case 1: visualization

One of the simpler but most prominent use case is the visu-
alization of the BHA’s current state and its control values.
Itillustrates a central element of our overall strategy how to
perform development and experimentation on this platform.
The basis for the visualization is the constant curvature
model of the BHA as mentioned in Section 3.1.2. A torus
model is used to render each segment of the robot (based
on the current length measurement) in a 3D environment.
The same environment can also be used to render various
objects or coordinates that arise in other use cases such as
learning (see Section 5) or object manipulation. Additional
windows show the pressure and length values of the nine
main actuators. If a motor command is active on any of
those, the ‘raw’ target as well as its filtered and clamped
value is shown in relation to the measured sensory values.
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The utility of this tool largely roots in the automatic cre-
ation of a RSB Informer and the connection to the Control
Server (see Figure 2) by any BHA application as previously
described. Due to this informer the to be displayed values
are available within a unified interface supported by the
middleware whenever a BHA application is running. The
visualization tool hence can be started and stopped as a
separate process when it is needed and there is no need
to restart the visualization when the BHA application is
stopped or restarted.

Figure 3(center) shows an example posture of the robot
during data-set recording and its visualization generated by
the constant curvature model. Note that this experiment un-
derlines the effectiveness of how we integrated the kinemat-
ics simulation into the system architecture: the visualization
actually requires to run the virtual plant, i.e. the kinematic
simulation, as a parallel and independent module, which
estimates the most likely posture with regard to the data
from the BHA in real time and then feeds the graphical
interface with the simulated posture.

The evaluation [15] of the model on the example data
in Figure 3(right) shows the comparison of ground-truth
data (blue) and model predictions (red). With the estimated
segment radii, the average accuracy is 0.0102 m. Related to
an approximate (average) robot length, this corresponds to a
relative error slightly above 1%. Neither the assumption of
circular shapes, nor the assumption of equal radii within
segments hold exactly on the real robot. However, it is
noteworthy to see that the model reaches 1% relative error,
while constant curvature models have dramatically failed
for other robots, and even expensive, ‘geometrically exact’
models have only reached 1.5-5% relative error.[24,25] The
1% error holds only for the prediction of postures that are
known to be possible (e.g. actually measured). We found
that prediction from ‘hypothetical” postures is much more
difficult because it needs to be tested whether they are in
range, and need to be projected to the closest possible one if
they are not. Due to the specific geometry of the BHA even
slight errors in this process can cause large mispredictions,
e.g. 10 cm sideward deviation of the end-effector for only
lem mispredicted ranges on the lowest segment, see also
the details in [15].

5.2. Use case 2: actively compliant actuator control

To leverage the potential of the BHA for human—robot in-
teraction, kinesthetic teaching, i.e. physical guidance of the
BHA toward desired postures is a means of choice. In com-
parison to kinesthetic teaching on stiff robots,
[26-28] a flexible robot structure as in the BHA allows
for mechanical deformation of its body due to its softness.
The detection of a deformation, e.g. caused by a human
tutor, can then be utilized to initiate a modification of the
control variables such that the robot complies with the de-
formed configuration by actively controlling its actuators.

We have shown that this idea can be used to implement
an active compliance control mode without explicit force
sensing.[17] To achieve this goal, the learned inverse equi-
librium model of the robot is used to detect deflections from
the equilibrium by comparing the measured pressures of
the chambers with the expected chamber pressures for the
current lengths. The control target lengths are then adjusted
accordingly such that the current configuration becomes the
new equilibrium point of the robot. This morphology-driven
external force detection principle reduces the required com-
putational effort and control complexity in comparison to
classical approaches based on a full inverse dynamics model
and accurate force sensing.

Figure 6 shows the interconnection of the active compli-
ance mode application with the previously described sys-
tem infrastructure. The figure highlights additional software
components in red while the already existing components
are depicted in gray. The application requires a realtime
communication pipeline to the inverse equilibrium model,
because comparisons between measured p and predicted
pressures P according to the learned model must be per-
formed online. The integration of this control mode into
the software framework benefits from the high degree of
modularization and the common interfaces unified by the
Control Interface Library (see Figure 2). Furthermore, it
re-uses the external model and therefore minimizes the need
for redundant implementation of certain models.

Figure 7 shows the actual use case in a sequence of two
manual reconfigurations of the BHA by a human tutor. The
start configuration of the BHA is relaxed, the pneumatic
actuators are deflated. After eleven seconds, the human
operator starts to push the robot to the right side which
deflects the robot’s state from the mechanical equilibrium
point. This instantly induces an increasing prediction error
(see Figure 7, bottom) as the actual pressure and predicted
pressure do not coincide anymore. When the error exceeds
a given threshold, the set-point of the length controller is

PID — fbc

slow, accurate pfb

real des.
L

BHA - Plant| P
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Figure 6. Active compliant control mode of the BHA achieved by
application of a learned inverse equilibrium model of the pressure-
to-length relation in a mechanical equilibrium.
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Figure 7. Active posture control in human—robot interaction. The graph on the bottom shows the prediction error ||p — p|| / dim(p) between
the actual and estimated pressure during human—robot interaction. The dashed line marks the threshold 7. The prediction error exceeds T

during the manipulation phase and falls below 7" during the resting.

updated to the current length sensor values. The length con-
troller then adopts the pressures accordingly such that the
current robot configuration becomes the new equilibrium
point of the system. This tracking of the robot posture en-
ables the user to easily change the posture of the BHA. After
a short-time span, the robot again reaches a mechanical
equilibrium such that the error falls below the threshold.
During this time, the arm stays fixed until a second manip-
ulation phase is started by the user. The manipulations ends
after the desired end posture is reached. The BHA stably
stays in this position.

The experiments show that the proposed system architec-
ture allows an easy implementation, execution, and testing
of an active compliance mode that deals with the real-
time constraints of kinesthetic teaching without the need
of complex internal models of the actuator. Such human—
robot interaction modes offer new fields of application for
continuum robots in research and practical applications.

5.3. Use case 3: end-effector control with goal babbling

The BHA is designed to manipulate objects with its end-
effector which has three flexible fingers. Unlike other con-
tinuum robots it does not possess the mechanical flexibility
to wrap around objects with its entire structure in order to
lift them, but has to fully rely on a versatile control and
usage of its end-effector. Given the length controller, the
task reduces to solve the inverse kinematics, i.e. to find
the right actuator lengths in order to reach for Cartesian
coordinates. One way of solving the inverse kinematics
problem is to use the approximate forward kinematics (see
Section 3.1.2) and invert a local linearization analytically, or
to use a numerical approximation of the inverse. However,
there occur systematic errors due to the inherent model

inaccuracies which can lead to large end-effector deviations
in the order of tens of centimeters.

We therefore demonstrated earlier that direct learning the
inverse kinematics of the BHA by goal babbling [21] leads
already to very accurate approximations. This strategy was
inspired from infant developmental studies and mimics how
infants attempt early goal -directed movements,[29] which
structures exploration in a goal-directed manner, scales to
at least 50 dimensions, and achieves human-competitive
learning speed.[30] The approach thereby does not explore
and utilize all possible redundancy resolutions or shapes
that bring the effector to the same position. It rather exp-
lores one consistent redundancy resolution in a highly effi-
cient way which enables the application of the algorithm on
high-dimensional morphologies of real-world robots like
the BHA. A novel combination of the learned inverse kine-
matics model with a feedback I-controller further increases
the accuracy of the end-effector controller to a remarkable
accuracy of a median error below one centimeter.[16]

We discuss goal babbling here from point of view of the
system architecture, because many different components
need to interact in this scenario. First, fast access to the
already learned model is crucial, because the exploration is
done online and executes and re-adapts the learned model
in every single time-step. Second, an efficient goal-directed
exploration respecting realtime constraints requires an eff-
ective and fast length controller as implemented with the
inverse equilibrium model integrated into the central
Control Interface Library. Finally, the visualization enabled
to show the relation between the current robot movement,
the goal coordinates, and the robot’s workspace which was
indispensably helpful during the development of both the
learning and the control. We also utilized the high computa-
tional efficiency of the forward kinematics approximation to
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Figure 8. The learned inverse kinematics model can be used to follow moving objects with the end-effector and grasp them (left). During
learning and exploration, we use the visualization based on the kinematic simulation extensively to show the robot in relation to its
internal, self-generated goals (right). Also, we use the simulation to predict in realtime for the entire space of goals (red) how well the

model performs (blue).

predictinrealtime how well the learner performs throughout
the entire workspace (see Figure 8) by means of massive
sampling of the inverse model at the goal positions and
substituting the approximation for the forward execution of
the BHA.

Due to the modularization abilities of the proposed soft-
ware framework, the learning of the inverse model, the
evaluation, and a technical demonstration are separated into
multiple applications. This allows to learn multiple mod-
els and to switch between them. Once more this use case
exploits the flexibility provided by keeping the learned
model external and loadable at runtime. Fully integrated, the
exploration loop can run online, learn the inverse kinematics
module by recruiting most of the described elements of the
overall architecture. The learned model can then be reused
in other applications, for instance for tracking and grasping
(see Figure 2).

6. Conclusion

Soft robots are a promising approach to human—robot in-
teraction due to their inherent safety and natural movement
behaviors. Potential applications include manufacturing as
well as home automation. However, many of the rather
experimental platforms that are available today have not
been shown to reliably and consistently perform higher level
tasks, let alone the problem of how complex the program-
ming of such tasks would be. Nevertheless, advances in
understanding and control of compliant actuators strongly
support the development of artificial limbs and improve
rehabilitation quality.[31,32] They also pave the way toward
support devices like lightweight powered exoskeletons,[33]
which could ensure the mobility for older people suffering
from amyotrophia or support employees in heavy industries.

Implementation of higher level functionalities raises
many questions that go beyond basic control strategies and
understanding of mechanics, which we tried to address in

this paper. Although each component of our system can
be considered separately, the composition of modules to
complex robot frameworks with advanced functionalities
requires an elaborated and structured architecture. We emp-
hasized the benefits of the proposed framework by several
examples and are convinced that such a structured work-
ing environment is an essential requirement to successfully
cope with complex robotic systems in general, and soft
robots in particular. Looking back to the requirements and
the lack of portable models from rigid body movements, we
believe that continuum robots in particular demand flexible
software integration to incorporate new concepts, e.g. for
compliantinteraction, and for learning their internal models.

Soft robots naturally address and implement morpho-
logical computation: the mechanics and the bodily physics
provide means for embodiment of seemingly sophisticated
function. We presented a striking example of this by real-
izing actively compliant actuator control by utilizing the
robot’s passive compliance together with a learned model.
Here, none of the classical complicated mechanisms of
impedance control are involved. There is no need for force
sensing, no complete inverse dynamics model, no com-
puted torque control, and no impedance regulation. While
the accuracy of the presented control mode is limited, it
still provides an interesting blueprint for the exploitation of
morphological computation. In our scenarios, model learn-
ing and hybrid control approaches are able to tackle the
problems of inaccuracies caused by the infeasibility of mod-
eling all physical properties of such complex systems and
material fatigue of soft materials.

In either case, the full potential of the ‘softness’ is fi-
nally leveraged through engineering a control architecture,
which relies on powerful tools from software engineering
and middleware, together with a mix of classical model-
ing and machine learning. Our approach for the BHA cer-
tainly is not the only possible architecture, but it displays
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a number of general principles: hardware and software ab-
stractions are important, where useful units may be defined
across sensors or actuators, e.g. by decomposing the BHA
rather into segments than single actuators; learned modules
should be flexibly usable and possibly kept separable from
the inner control loops while being heavily employed by
them; physical features of the robots may be exploited by
re-thinking and approximating classical control in hybrid
control schemes; online and real-time learning is a key
to cope with non-stationarity. A very important lesson we
learned is that exploiting the power of soft robotics, mor-
phological computation, and novel actuation does not mean
to dispense with careful control architecture design. Quite
the opposite is the case: the demand to integrate novel
combinations of control and learning, together with the
challenges posed by mechanical properties of the robot
rather calls for creative, but well-engineered solutions if soft
robots shall ever be lifted beyond simple experimentation
to perform well-defined tasks.
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Notes

1. An additional gripper segment is also available, but neglected
for this work

2. Pneumatically Actuated Pneumatic Networks (pneu-nets)
[13]

3. BHA won the prestigious German ‘Zukunftspreis’ (future
award) in 2010.

4. http://www.cor-lab.org/software-continuum-kinematics-
simulation
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