
Web Intelligence 15 (2017) 19–33 19
DOI 10.3233/WEB-170350
IOS Press

A modular architecture for intelligent agents
in the evented web
J. Fernando Sánchez-Rada *, Carlos A. Iglesias and Miguel Coronado
Grupo de Sistemas Inteligentes, Departamento de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de
Madrid, E.T.S.I. Telecomunicación, Avda. Complutense, 30, 20840 Madrid, Spain
E-mails: jfernando@dit.upm.es, cif@dit.upm.es, miguelcb@dit.upm.es

Abstract. The growing popularity of public APIs and technologies such as web hooks is changing online services drastically. It is
easier now than ever to interconnect services and access them as a third party. The next logical step is to use intelligent agents to
provide a better user experience across services, connecting services with smart automatic behaviors or actions. In other words,
it is time to start using agents in the so-called Evented Web. For this to happen, agent platforms need to seamlessly integrate
external sources such as web services. As a solution, this paper introduces an event-based architecture for agent systems. This
architecture has been designed in accordance with the new tendencies in web programming and with a Linked Data approach.
The use of Linked Data and a specific vocabulary for events allows a smarter and more complex use of events. Two use cases
have been implemented to illustrate the validity and usefulness of the architecture.

Keywords: Agent architecture, evented web, events, web hooks, Jason

1. Introduction

Our society is relying heavily on online services to
store, share and generate new information. As users
subscribe to more and more services, the risk of over-
loading them with notifications becomes evident and
problematic [2,19]. When users are frequently inter-
rupted by notifications, their performance degrades
and they experience greater anxiety and annoyance [4].
Notifications are not always urgent or important. Some
of them require repetitive actions which could be auto-
mated. For instance, saving email attachments to your
online photo album.

The need for immediacy and interaction between
services is leading a new trend in service development,
sometimes referred to as real time web or evented web
[39]. The new wave of web services are character-
ized by their capability to notify each other about new
events.

Although this trend made a wide range of sources
available, the logic to consume that information is still

*Corresponding author. E-mail: jfernando@dit.upm.es.

up to the developer. Intelligent agents are the perfect
abstraction for that logic. In particular, personal agents
that could use additional personal and contextual in-
formation to manage notifications on behalf of users.

Agent systems are developed using existing soft-
ware agent platforms. These platforms simplify devel-
opment by eliminating design choices and providing
tools (e.g. IDE) and formalisms (e.g. DSL, domain
specific language). The main difference between plat-
forms is the agent architecture they implement. Archi-
tectures determine how agents are conceptualized, and
how agents interact with each other.

The evented web requires an agent architecture that
can seamlessly interact with external services. Unfor-
tunately, current agent platforms do not provide any
standardized mechanisms to integrate external sources.
The integration of sensors and actuators typically re-
quires extending the basic agent architecture and a
deep understanding of its implementation.

This paper proposes a new agent architecture for
real-time and dynamic scenarios, such as the evented
web. This architecture, called Modular Architecture
for Intelligent Agents (MAIA), provides an event-

2405-6456/17/$35.00 © 2017 – IOS Press and the authors. All rights reserved

mailto:jfernando@dit.upm.es
mailto:cif@dit.upm.es
mailto:miguelcb@dit.upm.es
mailto:jfernando@dit.upm.es

20 J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web

based perspective and a modular design. Additionally,
it follows a Linked Data approach to event modeling,
which allows agents to reason about these real time
scenarios. This paper also explains how this architec-
ture can be embraced for applications that interact with
a variable and increasing number of services, as well
as its inner workings and implementation challenges.
In particular, we describe the use of MAIA to imple-
ment a personal cloud agent and a meeting manage-
ment system.

This paper is structured as follows: Section 2 intro-
duces several concepts of agent platforms, event pro-
gramming and semantic representation that are rele-
vant to this paper; Section 3 presents an overview of
the proposed architecture, and describes its compo-
nents in detail; Section 4 presents an ontology for de-
scribing events; Section 5 describes two use cases for
MAIA; Section 6 discusses related work; and in Sec-
tion 7 we present our conclusions and future work.

2. Background

This section covers three aspects: agent architec-
tures, event-based programming, and semantic repre-
sentation of events. Section 2.1 gives an overview on
agent architectures and platforms, which are the basic
pillar for agent development. It also hints the limita-
tions they impose for the integration of evented web
services. Event-based programming (Section 2.2) ex-
plicitly addresses some of those limitations. For in-
stance, loose coupling and conceptual simplicity ease
web development and facilitate integration. Section 2.2
explains what an event-based architecture really is,
and some basic concepts behind event-based program-
ming. Lastly, Section 2.3 introduces semantic web
concepts which can be leveraged in our agent architec-
ture to provide advanced features.

2.1. Agent architectures

In the 1990s, research interest was focused on the
investigation of architectural issues raised by three in-
fluential threads of agent research (i.e. reactive agents,
deliberative agents and interacting agents), as collected
in the excellent survey by Müller [23].

Software agent platforms are usually specialized in
a particular agent architecture. For instance, most plat-
forms for deliberative agents have adopted the Belief–
Desire–Intention (BDI) model (e.g. Jadex [27], Jack
[37] or Jason [8]), while the most popular agent plat-

form for interacting agents, Jade [6], is based on FIPA
[36]. Some of these platforms provide facilities to
combine reasoning and interacting features, such as
Jadex or Jason, which can be integrated with Jade.

The BDI architecture defined by Rao and Georgeff
[30] is based on the original model proposed by Brat-
man for modeling human reasoning [9]. The BDI ab-
stract architecture models human-like reasoning by
capturing the mentalistic notions of belief, desire and
intention, which are processed according to a generic
interpreter. This interpreter assumes that events are
atomic and recognized after they have occurred.

Traditionally, both messages and percepts have been
managed in the same interpretation cycle, as both are
considered forms of external events. Consequently,
most agent implementations mix reasoning processes
with the communication logic and make them hard
to reuse, debug and develop. Recently, several works
such as ACRE [22] and Alfonso et al. [1] have pro-
posed to delegate conversation management in a spe-
cific module external to the agent reasoning process.
The interaction between these two modules is done
through actions and perceptions. The reasoning mod-
ule can reason about the outcomes of every conversa-
tion through a set of predefined perceptions, and then
execute several actions to manage the status of those
conversations (e.g. canceling, forgetting or retrying a
conversation).

Several works have proposed different mechanisms
for integrating agents and web services, as surveyed
in [16]. The existing solutions provide mappings be-
tween addressing and messaging schemes in web ser-
vices and agent systems. They are implemented using
a gateway that publishes web service descriptions into
FIPA’s directory facilitator and vice versa. Neverthe-
less, this solution is rather complex. For some applica-
tions, a more lightweight solution that integrates intel-
ligent agents and web services would be desirable.

2.2. Event-based programming

Event-based programming [25], also called Event-
Driven Architecture (EDA) is an architectural style in
which one or more components in a software system
execute actions in response to one or more notifica-
tions. On the web it differs from other approaches in
that, instead of the traditional synchronous request-
response cycle, the interaction is asynchronous and
based on atomic messages. Hence, it is not composed
of clients and services but of event producers and con-
sumers.

J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web 21

One of the main advantages of this architecture is
that event producers and consumers can be decoupled.
Decoupling improves scalability and fault-tolerance.
There are three main interaction styles in event pro-
gramming [25]: push event distribution, where event
producers emit an event and usually do not expect
any specific action by event producers; channel event
distribution, where event producers send events to an
event channel which acts as a broker that redirects the
event to event consumers subscribed to that particular
event and is usually implemented using Message Ori-
ented Middleware (MOM); and pull event distribution,
where event consumers follow the traditional request-
response pattern to request an event from; an event pro-
ducers or from an event channel.

Event-based programming has been traditionally
popular for programming user interfaces (e.g., Swing
or JavaScript) as well as for integration architectures
based on a Enterprise Service Bus.

2.3. Semantic representation of events

Ontologies and vocabularies are one of the pillars
of the Semantic Web. They are the difference be-
tween an ad hoc representation format, and a rich
machine-readable format that can be understood, rea-
soned about, and reused. They contain the definition
of concepts and relationships that describe a particu-
lar domain. Concepts and relationships are unambigu-
ously represented by a Universal Resource Identifier
(URI).

Semantically described resources can be linked to
one another, checked for validity, reasoned with, and
easily retrieved using SPARQL, the language and API
for semantic queries. Furthermore, describing and rep-
resenting events using semantics allows filtering and
selecting events with a high degree of expressibility
(including temporal expressions), binding events to ex-
ternal objects they are related to, and creating relations
between events in real time (including those that hap-
pened in the past or lazy bind object to future events).

There are several ontologies that model the concept
of Event in different domains and from different per-
spectives [15,21,28,29]. Among them, the model of
events in the Evented Web Ontology (EWE) [14] is the
most suitable for the purpose of this work.

EWE stands as a reference model to describe task
automations, i.e. rules that command the execution of
a particular action when a triggering event occurs. An
example of automation may be “when I receive an
email, save its attachment in Dropbox”.

Fig. 1. Detail of EWE Ontology Model.

The core of the ontology comprises four major
classes: Event, Action, Channel and Rule (see Fig. 1).
An EWE Event is an occurrence of a process, e.g.
“New email in inbox”. An Action defines an opera-
tion or process provided by an entity, e.g. “Send an
email”. A Channel is any individual that can generate
Events, provide Actions, or both. E.g. a mail service,
or any other source that generates events, including
sensors. Rule defines an Event–Condition–Action rule
[26], e.g. “send me an SMS when I receive an email if
I am not online”. The result of executing a rule is an
action. Rules involve transferring information from the
event to the action that is just created.

As opposed to the definition given in other ontolo-
gies [28], EWE defines instantaneous events, i.e. they
have no duration over time. The Event class may be
subclassed to define particular types of Events. For in-
stance, the class NewChatMessage is subclass of Event
and defines the type of event that is generated when a
new chat messaged is typed. Instances of Event class
offer information of the particular event e.g. instances
of NewChatMessage have information of the chat mes-
sage and the date when it was sent. We subclass the
Event class in Section 5.1 to define an event taxonomy.

In a similar manner to Events, the Action class may
be subclassed to specific actions. Again, the definition
of an Action is not bound to a Channel, because dif-
ferent channels might provide the same actions. e.g.
Linkedin and Facebook channels provide the Change-
ProfilePicture action.

22 J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web

3. MAIA architecture

This section discusses the main design choices be-
hind MAIA and presents the main modules of the ar-
chitecture (Fig. 2), focusing on the relationship be-
tween them. Each module is described in greater detail
in a separate subsection. The underlying communica-
tion mechanism is covered in Section 4.

The driving forces behind the architecture of MAIA
are modularity and loose coupling. Every compo-
nent or functionality is treated as an isolated mod-
ule. Hence, there are independent modules such as
“µblogging”, “Calendar”, “BDI Platform”, etc. The
core of the platform then provides the infrastructure to
communicate the different modules, plus a set of fea-
tures to orchestrate and facilitate that communication.

The architecture is designed to allow adding new
modules that expand the capabilities of the system.
Each module performs a different task (e.g. BDI rea-
soning, User Interface). All the modules are connected
to a core component that controls the flow of infor-
mation between them. All the communication is car-
ried via events, i.e. atomic messages (Section 4). More
specifically, MAIA follows channel event distribution
style (Section 2.2).

The main components of the architecture are: the
Evented Web Bus, the Agent Bus and the Event Man-
ager. External modules are connected to one of the
two buses, either directly or through an adapter (Sec-
tion 3.1).

Fig. 2. High level representation of the MAIA architecture.

The Evented Web Bus (Section 3.2) connects to ex-
ternal services. E.g., an email server or a social net-
work. In general, an adapter will be needed.

The Agent Bus (Section 3.2) connects to the mod-
ules that are closely related to a typical agent (BDI
platform, sensors, actuators, etc.) In particular, all BDI
functions and logic are encapsulated in the BDI Plat-
form module, which is connected to the Agent Bus by
means of a special adapter (Section 3.1). This platform
can be used to develop and run BDI agents that will
communicate with the rest of the modules in the archi-
tecture.

The Event Manager mediates between both buses,
providing extra services to the Agent Bus as described
in Section 3.3. These services will have an important
role in the development of BDI agents. Section 3.1.2
contains several plans and goals in Agent Speak that
make use of these services.

3.1. Adapters

To be able to connect to any of the MAIA buses a
module must communicate via events that are MAIA
compliant (see Section 4) and use one of the protocols
that its bus implements. Unfortunately, not all systems
are natively evented. Even when they are, they do not
always follow the MAIA events format or use the same
protocol as the bus.

An Adapter is a piece of software that mediates be-
tween such systems and the rest of the modules. In the
best case scenario, which is that of software that is al-
ready event oriented, the adaptation process is as sim-
ple as translating event formats on the fly and dealing
with protocol differences. In the worst case scenario,
deeper changes in the software itself might be needed.

We group the adapters in two categories according
to the level of integration they provide: basic adapters
and Agent Adapters. Basic adapters make the features
of an external service or module available to the rest of
the modules. Agent Adapters also make the advanced
services provided by the Event Manager available to
the module in question.

In essence, basic adapters simply add sources of in-
formation or interaction with external services, whereas
an Agent Adapter connects to a module with more
complex logic.

3.1.1. Basic adapters
These adapters take care of: connecting with the

Event Manager; translating event formats back and
forth; generating MAIA events and storing events for

J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web 23

later consumption. Every adapter that connects to the
Evented Web Bus is a basic adapter.

3.1.2. Agent Adapter
Agent Adapters are the interface between an agent

system, typically an Agent Platform, and the Agent
Bus. The role of these agent systems is to implement
the logic of the final application, adding intelligence to
the system and communicating to the different mod-
ules. The Event Manager provides several services to
make it easier to perform certain common actions or
simply delegate tasks that would otherwise be done
by the agent. Thus, an Agent Adapter should integrate
these services in the agent platform.

The design and features of the Agent Adapter highly
depend on the target Agent Platform, its internals and
the programming interface it offers. Hence, we will fo-
cus on the development of an adapter for Jason. Nev-
ertheless, most of the concepts herein are general and
apply to other Agent Platforms.

We identified three main challenges in the adapta-
tion process. The first one consisted in communicat-
ing with the platform itself, and its individual agents.
The second one was translating MAIA events to Ja-
son beliefs. Lastly, there needs to be a way to use the
extra services provided by the Event Manager from
within any Jason agent. This section covers the first
two, whereas Section 5.1 contains excerpts of Agent
Speak code to deal with the most common MAIA ser-
vices.

Every agent within Jason has its own knowledge
database, which is populated by data from the different
sources. To be able to actually modify the perceptions
of the agents, a custom Jason Environment is needed,
along with an ad-hoc model for this scenario. By mod-
ifying the basic Jason Environment we are able to con-
trol not only the sources through which new informa-
tion is added, but the life cycle of such information.

More precisely, the custom model follows the data
inbox concept, the same as regular mailboxes. All in-
formation received by the agent is volatile, and will
be discarded after it is fetched. Should the agent find
the information interesting or necessary for the future,
it will save it as beliefs in its permanent knowledge
database.

Using these data boxes it is rather easy to integrate
our Java code and our agents in AgentSpeak. A spe-
cial function allows any Java method to send informa-
tion to any certain agent, and any Java function can be
wrapped and made available to the agents in the plat-

Fig. 3. Adding perceptions to agents in Jason.

form. Figure 3 shows the custom elements created for
the adapter.

Apart from the modifications explained above,
events themselves need to be converted to beliefs in-
ternally. For this purpose, we created the libraries to
translate a subset of the JSON notation to beliefs and
vice versa. Unfortunately, the limited syntax of beliefs
makes it impossible to perform a complete mapping.

Lastly, it is important to note that every agent should
subscribe only to those events that are relevant to its
functioning, and to avoid permanently storing them.
Otherwise, we risk overloading the agents with too
many facts, which hinders the reasoning process and
might lead to undesired behaviors.

3.2. The Agent Bus and the Evented Web Bus

The role of the buses is to communicate external
nodes with the Event Manager. The architecture differ-
entiates between two buses: the Agent Bus, which con-
nects to the high-level components of the agent, and
the Evented Web Bus, to connect to external services.
For instance, the Agent Platform, the User-Interface,
and the Communication Manager would be connected
to the Agent Bus. In contrast, microblogging or web
services would interact with the Evented Web Bus.

The reason behind this separation is twofold: it
draws a clear line between the access to services and
logic, and it allows the Event Manager to provide addi-
tional high level services only to the Agent Bus. Most
of these services, which will be discussed in the next

24 J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web

Fig. 4. Internal structure of the Event Manager. High level services
are implemented as plugins.

section, are focused on the development of personal
agents that interact with social networks.

3.3. Event Manager

The Event Manager (Fig. 4) is the core of the MAIA
architecture. It is the bridge between the two buses.
One of its roles is to exchange events between them,
making Evented Web and sensory information avail-
able to agents and forwarding requests from agents
to services. However, such information is usually ver-
bose and frequent. Most of the times it is redundant
or not critical. In contrast, the communication among
agents or between agents and the user interface are
usually more critical and sensitive to delays. As a con-
sequence, the exchange between both buses has to
be controlled. That is the role of the Event Manager.
In addition to plain message passing provided by the
buses, the event manager adds event filtering, event
subscription, and store and forward. Event Filtering al-
lows selecting only the relevant events in each situa-
tion and for each module. By using Event Subscription
modules can indicate their interest in certain kind of
event which they wish to receive. These subscriptions
can be used for event filtering as well. Store and For-
ward means that modules can receive the events they
subscribed to and that were sent while they were dis-
connected. It also means that events will be saved un-
til they can be forwarded to a module. Without it, an
overloaded module would not be able to consume all
the events sent to it, which might then be discarded.

Besides controlling the flow of events between dif-
ferent modules, it complements the Agent Bus by pro-
viding higher level functions that are not present in it.
The Event Manager provides several useful services
for the development of personal agents.

Namely, these services are: Identity, Event Based
Task Automation, Location, Semantic Information,
Social Networks, Calendar and Transactions.

The Identity Service allows agents to define virtual
identities. These identities can be linked to the rest of

the services. For instance, an identity can be linked to
several calendars and social networks. These identities
are defined via FOAF [10]. Each identity has a unique
ID that can be used to subscribe to the events from the
sources linked to it. The Event Based Task Automation
offers the option for agents to delegate actions to the
Event Manager. These actions will be fired by a certain
event, and their result will be another event.

The Social Network service homogenizes the con-
nection and interaction with different social networks.
Social networks are an important part of the average
user’s everyday activity. By integrating them in a per-
sonal agent, we can gather relevant information about
the user and improve the user’s experience. Each so-
cial network profile can be linked to several identities.
As we saw before, this means the events from differ-
ent profiles will share a common namespace, making
it easy to subscribe to all of them.

The Location service makes it possible to set loca-
tions to each identity. Events are sent every time there
is a location change, or when a module queries the lo-
cation of an identity.

The Calendar Service is a common interface to deal
with calendars from different sources within MAIA. It
is especially meant as an abstraction for online calen-
dar services.

The Information Service offers a simple unified in-
terface for agents to query information from exter-
nal information sources. As of this writing, the In-
formation service supports SPARQL, being able to
send queries to multiple endpoints (DBpedia, data.gov,
etc.).

The Transaction service makes it easier for agents
to handle operations with online services that follow
a known pattern. For instance, the processes between
booking a flight and arriving safe to the destination ac-
commodation are quite similar regardless of the flight
company, shuttle bus operator, etc. Given that, the
Transaction service identifies different events as steps
in such processes and acts accordingly to offer extra
information to the agents.

4. MAIA events

The communication paradigm in MAIA purposely
mimics that of the evented web [39]: all modules com-
municate through atomic messages called events. An
event can be either a notification or a request, in the
sense that it may inform of new information (e.g.

http://data.gov

J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web 25

“there are 3 new emails”) or of an intention to trigger
an action in a remote entity (e.g. “send this email”).

Events are what confers loose coupling to the ar-
chitecture. To cover all possible communication needs,
the structure and format of these events must cover a
wide range of scenarios. Moreover, it is desirable to
make events as compatible with the evented web as
possible so that the interaction is seamless.

This compatibility must be achieved both on a con-
ceptual level and on a format level.

The conceptual level deals with questions such as:
what type of information does an event carry?, how
do events relate to each other?, how are modules/ser-
vices and events related? Most of these questions have
already been answered in the previous sections, espe-
cially those related to the purpose and usage of events.
The Live Web [39] introduces a very generic schema
for events. However, a formal definition of the infor-
mation within events is still missing. The format level
relates to how events are represented, serialized and
transferred.

EWE (Section 2.3) by Coronado et al. [11] formal-
izes the idea of events on the web in the form of an on-
tology. In EWE, there are: Events, which are notifica-
tions of new information (e.g. “New email received”);
Channels, which are event producers or consumers
(e.g. “email service”); and there are Actions, which are
the result of the execution of a rule. In MAIA, every
module is a Channel. In the case of an adapter, the
Channel actually represents the module it is adapting.
Since MAIA events (or messages) can be either infor-
mative or a request, they are represented with EWE’s
Events or Actions respectively.

In Listing 1 the semantic representation of an Event
and an Action are presented in Notation3 (N3) [7].
They represent a notification about new meeting added
to the user’s calendar, and the request of sending an
email to inform about the meeting. For sake of read-
ability flat instances were used. However, more com-
plex semantic relations may be derided involving third
party vocabularies, e.g., to represent the meeting loca-
tion, its agenda, sender’s Persona, etc.

On the other hand, there are several possible for-
mats to serialize semantic information. As shown in
the former example, Notation3 is suitable for repre-
senting semantic information in a human readable way,
however it does not have wide support in most pro-
gramming languages. To simplify the task of develop-
ing new adapters to the evented web, MAIA events use
the JSON-LD [35] format in its compact form.

@prefix maia: <http://demos.gsi.dit.
upm.es/maia#>.

@prefix ewe: <http://gsi.dit.upm.es/
ontologies/ewe/ns#>.

maia:MailChannel a ewe:Channel .
maia:CalendarChannel a ewe:Channel .

maia:NewMeetingAdded_1
a ewe:Event;
ewe:source maia:CalendarChannel;
dcterms:title "new meeting added";
ewe:title "Meeting name";
ewe:where "Building A, Room 101";
ewe:starts "Jul 31, 2015 10:00PM";

maia:SendEmail_1
a ewe:Action;
ewe:source maia:MailChannel;
dcterms:title "send new email";
ewe:subject "New meeting";
ewe:recipient "email@example.com";
ewe:body "A new meeting was

scheduled".
ewe:related maia:NewMeetingAdded_1

Listing 1. Example of an action and an event in N3.

This approach has multiple advantages: it is a
lightweight human-readable format; there are libraries
to efficiently process JSON in almost every program-
ming language and JSON-LD libraries have been made
for most of them; semantic and non-semantic informa-
tion can coexist in the same JSON object; and plain
JSON information from the evented web might be con-
verted to semantic JSON-LD by adding an appropriate
context.

In summary, MAIA events are messages in JSON-
LD format that are modeled using the EWE ontology.
Events have the following fields:

– id (@id) Unique identifier of the sent event for
the specified entity (source).

– timestamp (dcterms:created) Time of the orig-
inal emission. This makes time reasoning possi-
ble and prevents the side effects of asynchronous
communications.

– source (ewe:source) Unique identifier of the
sending entity.

– name (ewe:description) Which describes the
event, and is the only required field. Ideally, it
will not only consist of a basic string, but of a
complete namespace. This allows for a complex

26 J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web

processing of the events and an advanced filtering
for triggers. We will get into details later in this
section.

– parameters (ewe:hasParameter) For any kind
of non-trivial event, we will need more informa-
tion about the entities involved in the event, or the
parameters if it is a request. This field is a list of
objects that provide further information or param-
eters. Each object includes the name of the prop-
erty, and its value.

– expiration Used to announce other entities that
after this time the success or error callbacks will
not be called, to prevent them from replying to or
acknowledging the event.

In addition to these fields, a complete JSON-LD ob-
ject also includes a context, to provide the semantic
metadata of each field. Listing 2 contains an event in
JSON-LD format. The content of the event is similar to
that in Listing 1, with the exception of some additional
fields that unambiguously identify event messages.

All events are named following a simple convention,
the names are strings separated by double colons, the
first string being the name of the module that sent it,
for example: MailChannel::email::new. Modules use
these names to subscribe to events from other sources.
For instance, in our previous example a module would
need to subscribe to MailChannel::email::new to re-
ceive the new email events from MailChannel.

What is interesting about MAIA events is that they
may contain wildcards * or double wildcards **. Us-
ing wildcards, a module can subscribe to a wide range
of events. If the name of the event and the name used
in the subscription match, the event will be forwarded.
A single wildcard replaces/matches any string between
double colons (e.g. a::b::c and a::*::c match). A dou-
ble wildcard replaces/matches zero or more slots (e.g.
a::b::c and **::c match, and also a::b::c::**). Wild-
cards can appear either in the subscription name or in
the event name, the comparison is applied symmetri-
cally.

In order to efficiently process these matches and
achieve high throughput of events, MAIA buses use
an optimized subscription handling algorithm based on
subscription trees.

Although one of the aims of the events system is
to achieve asynchronous communication, it is worth
noting that namespaces and the expiration informa-
tion allow some sort of remote method invocation.
To reply to an event, another event with the name
<source>::success::<id> or <source>::error::<id>

{
"@context": {
"ewe": "http://www.gsi.dit.upm.es/

ontologies/ewe/ns",
"dcterms": "http://purl.org/dc/terms

",
"id": "@id",
"@type": "ewe:Event",
"source": "ewe:source",
"timestamp": {
"@id": "dcterms:created",

},
"name": "dcterms:title",
"parameters": {
"@id": "ewe:hasParameter",
"@container": "@list",
"@type": "ewe:Parameter"

},
"description": "dcterms:description

",
"title": "dcterms:title",
"value": "dcterms:value",

},
"id": "http://demos.gsi.dit.upm.es/

maia#MailChannel_"
"source": "http://demos.gsi.dit.upm.

es/maia#
MailChannel_ev_1389937684001

"timestamp": 1389937684,
"name": "MailChannel::email::new",
"parameters": [

{
"title": "subject",
"value": "Testing Maia",
"description": "Subject of the

email"
}

],
"expiration": 1389937694

}

Listing 2. Example of an event in MAIA that represents a MailChan-
nel using JSON–LD.

can be sent before Expiration, where <source> is the
identifier of the sender and <id> is the ID of the orig-
inal event. These events are currently not being for-
warded to the rest of the modules.

As a last comment about the format of events, we
have developed adapters for SPARQL and Spotlight
endpoints. A W3C recommendation [33] can be used
to include the results from SPARQL queries in events.

J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web 27

5. Case studies

To clarify some of the concepts explained before, we
will present two use cases of the MAIA architecture.

The first scenario consists of a personal agent that
uses MAIA to exchange event messages with differ-
ent web services. This scenario highlights the integra-
tion of heterogeneous services with a BDI architecture.
Traditional architectures would make this integration
much more costly, as it would require modifying the
agent cycle. With MAIA, all modifications to the BDI
architecture are agnostic of service and only performed
once. This is true of other components as well, such
as adapters of clients. This high level of modularity is
the biggest advantage to MAIA. It is worth noting that
this scenario includes both a web client and an An-
droid client, which demonstrate how interaction with
the user could take place in such an architecture. These
clients could be easily extended and adapted to other
use cases just by adding new types of events. More-
over, external services are modeled using the EWE on-
tology [12], which specifies their events and actions.
Thus, intelligent agents can reason and interact with
these heterogeneous services in a uniform way, and en-
ables its interlinking with other resources of the Web
of Data.

The second scenario covers the implementation of a
Task Automation Platform (TAS). The platform con-
nects to physical sensors using an adapter to GSN
(Global Sensor Network). Hence, it hints on the use of
MAIA beyond its use with Web Services. Such an ar-
chitecture could be used in smart environments or sim-
ilar applications.

5.1. Building a personal agent

This section covers the implementation of a per-
sonal agent in the travel domain. The aim of this per-
sonal agent is to assist users with their trips. This assis-
tance includes: following the process between book-
ing a ticket and arriving to the destination; alerting of
any irregularities such as delays, cancellations or fore-
cast alerts; informing users about flight deals during
their free days; checking the activity on social net-
works about topics related to the trip; and handling
emails and social activity on behalf of the users when
they are away.

For all this to work, the agent will need to connect
to: a flight search service; a forecast service; an email
server; a calendar service; and a social network. The
interaction between the user and the personal agent

Fig. 5. Architecture of the personal agent prototype.

will be via text messages in natural language. The nat-
ural language processing of the messages is delegated
to an external REST Natural Language Understanding
(NLU) Service. The general architecture presented in
Section 3, has been particularized as seen in Fig. 5,
so that each of the external services has an associated
adapter module.

As mentioned in Section 2.3, events and modules
are modeled via Events, Actions and Channels in the
EWE ontology. In this case, we formalized the naming
convention for each module and the different types of
events exchanged in a taxonomy, as shown in Fig. 6.
Events are structured in different levels, so that spe-
cific Event classes inherit from more general ones.
This taxonomy may be used with the event descrip-
tion field of MAIA messages, to subscribe to either
particular events, or to events that inherit from another
class. For instance, the namespace of events of type
maia:NewTrip (according to Fig. 6) may be <Chan-
nel>::NewMeeting::NewTrip. Thus, to subscribe to
new messages of that type that are generated by
the CalendarChannel we use the namespace Calen-
darChannel::NewMeeting::NewTrip::new. In a simi-
lar way, subscriptions to all events of type NewTrip,
regardless of the source, may be *::NewTrip::new; and
subscriptions to all events that inherit from NewMeet-
ing may be *::NewMeeting::*::new.

The logic of the personal agent is provided by a sin-
gle Jason agent, the travel agent. The agent is running
on a modified Jason platform (Section 3.1.2), which

28 J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web

Fig. 6. Taxonomy used to model adapters and messages.

Fig. 7. User interface as a Chrome extension.

is connected to the Agent Bus. The rest of the mod-
ules that are connected to the Agent Bus are: a web
client that the user can interact with; an Android client,
which is analogous to the web client (Fig. 7); and the
natural language understanding unit [13], which the
agent uses to translate the natural language input into
beliefs. Both clients also send the location of the user,
so they are both UIs and sensors.

The remaining of this section shows excerpts of
code and simplified examples that demonstrate how
the higher level services of MAIA, such as location
and information services, can be used from within an
agent in the Agent Platform. More specifically, it con-
tains AgentSpeak plans to: get the semantic informa-
tion of the country of the flight destination, which can
later be used to fetch more information; alert the user
via email when the user has confirmed a flight and the
forecast information in the city of origin or destination

is negative; subscribe to activity in all the subscribed
microblogging sites about the country or city of desti-
nation two weeks before the flight, and alert the user
about suspicious activity.

The external forecast service can be modeled using
the EWE ontology, as shown in Listing 3. Since enti-
ties in events are linked to the knowledge graph, agents
can use additional information to reason. For example,
an agent could access DBpedia [3] to retrieve yearly
precipitation from a city and incorporate this informa-
tion in its plans.

Listing 4 contains a plan to process forecast infor-
mation during or close to a day of a scheduled flight.
To receive such forecast information, the agent must
have already subscribed to forecast alerts or any event
from the information service.

Listing 5 exemplifies how an agent can query a
SPARQL endpoint to get more information. In particu-
lar, the query fetches the list of countries, their capitals
and their geographic locations if a flight is booked to a
city whose country is not known. The query is limited
to European cities to use a simple query to a public
endpoint (DBpedia).

Lastly, Listing 6 presents a simple example which
makes use of the social service. The agent subscribes
to microblogging events up to fifteen days before a

1 ?event a maia:NewForecast ;
2 maia:temperature 16 ;
3 maia:city "dbpedia:Madrid" ;
4 maia:date "2016-01-01" ;
5 maia:forecast "rain" ;
6 maia:chances 0.5 .

Listing 3. N3 representation of a forecast event.

1 +info("forecast",data(Date,City,
Temperature,Forecast,Chances))

2 : flight(Dept,City,From,To)[id(
Identity)] | flight(City,Arriv
,From,To)[id(Identity)] & ((
Temperature < 20 | Forecast ==
"rain") & Chances > 0.3)

3 <-!suggest_deals(Identity,Dept,
Arriv,From,To);

4 sendEmail(email_address(Identity
),null,"Bad weather for your
trip",(Date,Temperature,

Meteo,Chances)).

Listing 4. Process forecast information before a flight.

J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web 29

1 +flight(_,City,_,_)
2 : ~country(City,_)
3 <-info_request("sparql", _, "
4 SELECT distinct ?country ?

capital (SAMPLE(?caplat) AS
?caplat) (SAMPLE(?caplong)
AS ?caplong)

5 WHERE {
6 ?country rdf:type dbpedia-owl:

Country .
7 ?country dcterms:subject <http

://dbpedia.org/resource/
Category:
Countries_in_Europe> .

8 ?country dbpedia-owl:capital
?capital .

9 OPTIONAL {
10 ?capital geo:lat ?caplat ;
11 geo:long ?caplong . }
12 }
13 ORDER BY ?country ",country

(1,2),location(2,3,4,_)).

Listing 5. SPARQL query to gather new information.

1 +flight(_,City,Dept(YY,MM,DD,_,_,_),
_)[id(UserID)]:

2 : ((DD > 15 &.date(YY,MM,DD-15)) |
(.date(YY,MM-1,DD+15))) &
country(City,Country)

3 <-social(event("id",UserID,"social
","ublogging","**","stream","
peak"), [Country,City], ["
alert","activity","ublogging
","away"]).

4 +event(["alert", "activity", "
ublogging", _], data(Volume,
Posts))[id(Identity)]

5 : Volume > 10
6 <-ui_alert(Identity, "Relevant

social activity about your
destination:", Posts).

Listing 6. Subscribe to notifications about peaks in activity about the
destination of a trip and warn the user via the UI upon alert.

flight is scheduled to depart. The social service will
then send alerts about activity when there are enough
posts related to the destination city or country. Users
are thus informed of noteworthy happenings in the des-
tination country (riots, strikes, concerts, etc.).

5.2. An event-based Task Automation Platform

This case study presents a personal agent for man-
aging work meetings. It aims to assist users to sched-
ule meetings, remind them of upcoming meetings, and
support them while the meeting is taking place. The
assistance includes setting up the meeting room: un-
lock the door, switch the lights on, connect the heating
system to acclimatize the place, and show the meeting
agenda on the wall display.

The particularization of the high level MAIA archi-
tecture (Fig. 2) for this implementation is shown in
Fig. 8. The agent (BDI Platform) has to connect to the
calendar service to know the meeting details e.g. date,
agenda, participants. It also needs to connect to the
devices (sensors and actuators) in the meeting room
to provide in-meeting assistance, e.g. lighting system,
door lock, and heating system. The system provides
two interfaces that let the agent communicate with the
users: with the web client the users can change their
preferences about the in-meeting assistance, and the
wall display (a screen located in the meeting room) is
used by the agent, to show useful information to the
participants during the meeting. Finally, the agent also
has access to the Event Based Task Automation ser-
vice, as part of the event manager service library.

In order to be aware of all events from connected
sensors or web services, the BDI Agent has to sub-
scribe to events coming from those sources. Web ser-
vices are connected throughout adapters that imple-

Fig. 8. Architecture of the event-based task automation prototype.

30 J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web

ment their APIs (more elaborated examples of adapters
are given in Section 5.1). Sensors and actuators are
connected using Global Sensor Network (GSN). GSN
is a middleware for deployment and integration of het-
erogeneous wireless sensor networks. GSN provides
entry points where event generators (i.e. sensors) push
their events to the sensor network, and accessible exit
points used by the adapter to retrieve events and push
them into MAIA. In this case study, we have modi-
fied GSN so that it is capable of transport messages to
the connected devices (i.e. actuators). In this case, the
adapter also uses an entry point to push messages into
GSN, so the actuators can retrieve them using the exit
point. Hence, the adapter must subscribe to the events
that are addressed to the actuators it manages. GSN
provides a timestamp for each generated event. It is
used to synchronize timestamps from GSN and MAIA
so that all events have a common baseline. This allows,
MAIA to know the time at which the event happened,
instead of the time at which it was pushed to MAIA,
removing undesired offsets.

As in the former case study, we model events and
event generators as Event/Actions and Channels us-
ing the EWE ontology. We define several classes to
represent them, as shown in Fig. 9. Events such as
maia:NewMeeting inform the agent about new meet-
ings according to the information from the web service
calendar (maia:CalendarChannel). Actions such as
maia:UnlockDoor or maia:SwitchLigh allow the agent
so send orders to the actuators connected to GSN. Fi-
nally, the wall display is also modeled as a channel

Fig. 9. Taxonomy used to model adapters and messages.

(maia:WallDisplayChannel), thus the agent can inter-
act with it pushing actions as normal.

The Event Based Task Automation service enables
execution of static Event–Condition–Action (ECA)
rules [26] without the intervention of the BDI agent.
These ECA rules are set by either the agent or the users
using the web client. Once loaded in the Task Automa-
tion service, ECA rules are fired by events that meets
its triggering condition. As a result of a rule execution
new events are generated and pushed to MAIA. The
Event Based Task Automation service is used to define
rules such as “If the temperature of the meeting room
is below 23C, switch the heating system on”. The for-
mer rule is fired by event messages from the tempera-
ture sensor with a measurement under 23. The result-
ing event represents an intent to switch the heating sys-
tem on. The adapter of the GSN will receive this event
and instruct the heating system to turn itself on.

Since events are represented using EWE, for con-
venience we use SPARQL for describing rules as rec-
ommended by [14]. Thus, in the prototype, the Task
Automation service implements a SPARQL engine (as
well as a rule repository to store the loaded rules).
Continuing with the former example, the rule in its
SPARQL form is presented in Listing 7.

As mentioned, shifting rules to the Task Automation
service frees the agent from executing these rules it-
self. Nevertheless, the agent is responsible of manag-
ing them, e.g. watching from collisions between rules
set by users, remove deprecated rules, introduce addi-
tional rules. Listing 8 shows the AgentSpeak goal that

1 CONSTRUCT{
2 ?action a maia:SetHeatingSystem ;
3 maia:setTemperature 26 .
4 }
5 WHERE {
6 ?event a maia:Temperature ;
7 maia:temperature ?temp .
8 }
9 FILTER (?temp < 23)

Listing 7. SPARQL representation of the rule “If the temperature of
the meeting room is below 23C switch the heating system on”.

1 +has_ended(eventID)
2 : ?ruleforevent(rule, eventID)
3 <- removeRule(rule)

Listing 8. Rule for managing Task Automation service.

J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web 31

removes all rules from the Task Automation service
that are related to a concluded meeting.

6. Related work

Several authors have addressed the definition of an
event based agent architecture. Munteanu [24] pro-
poses an event-based middleware for Cloud Gover-
nance based on multiagent system. Their work is
focused on identifying the agent roles for cloud gov-
ernance and does not deal with engineering an event-
based agent system. Thus, our solution can comple-
ment their proposal since it provides a suitable archi-
tecture for event-based processing.

In the first prototypes of this system, different multi
agent system platforms were evaluated. The most
promising of them is SPADE (Smart Python multi-
Agent Development Environment) [17]. SPADE is
based on the XMPP messaging and presence proto-
col. The resulting architecture is thus similar to MAIA:
a series of nodes connected to a central XMPP server,
with a special module to handle communication and
FIPA features. The XMPP protocol provides many
of communication features: publish-subscribe mech-
anism to allow push updates, form-data to manage
work-flow between user, libraries for many program-
ming languages and platforms, etc. However, SPADE
requires a modified XMPP server, and the protocol it-
self is quite complex, making the use of external li-
braries mandatory. In addition to this, agent communi-
cation is tied to the FIPA standard. In contrast, MAIA
offers a simpler and lighter protocol, which makes it
more convenient to develop new applications for the
evented web.

MAIA includes the basic elements and protocol to
exchange information between different parties. How-
ever, agent communication is a more sophisticated pro-
cess that has been treated broadly in other texts [22].
There are very complex agent communication solu-
tions.

Although MAIA focuses on a different problem, and
aims to be simple to implement, it was also designed to
cover those cases. Instead of covering every possible
scenario, MAIA can be extended by adding new func-
tionality to the Event Manager. In particular, to achieve
a scheme similar to Lillis et al. [22], two additions
would be needed: one in the agent level, adding the
communication logic and protocols; and another one
on the platform level, to allow agents to announce or
subscribe their services, share protocol definitions or

act as a mediator in disputes. The first addition would
be made on top or within the MAIA adapter, if it is not
already contemplated in the agent platform. The sec-
ond one is labeled as Communication Manager mod-
ule in the MAIA architecture. This paper will not cover
this specific module, but it is important to note that the
architecture was created with it in mind.

Other authors have proposed architectures for agents
in events environments such as Internet of Things
(IoT) [5,20].

CALM [20] proposes the use of a Multi-Agent Sys-
tems (MAS) communication platform on top of a stan-
dard MOM based on CORBA to provide contextual
services. This MOM is accessed both by devices and
by agents and uses COIDL based on omniIDL [18].
Our proposal differs from CALM in several aspects.
Firstly, we propose a design pattern for architecturing
event-based agent systems, where two MOM are used
for managing external and internal events. Secondly,
we propose a linked data approach for representing
events, and adapters in charge of transforming external
data to this semantic event format. Thus, we can com-
pare only the integration of external events in Maia and
CALM. Our proposal is compatible with external ser-
vices as well as accessing linked data end points and
thanks to the usage of JSON-LD it is independent of its
implementation, while CALM relies in CORBA tech-
nology.

Barbero et al. [5] propose an IoT platform based
on a Service Oriented Architecture (SOA) architecture.
Their architecture is based on two main components:
a web services management that interacts with external
services and a contextual awareness module that pro-
cess this information. The contextual awareness mod-
ule consists of semantic reasoner modules and pro-
cessing agents, that can subscribe to certain events.
An ontology is defined for entities and contextual ser-
vices. Processing agents are domain specific, and are
in charge of filtering events, dealing with sensor data
and provide contextual services. The main differences
from our proposal is that we encapsulate event pro-
cessing in the Event Manager, while Barbero et al. dis-
tribute this function across the semantic reasoner and
the processing agents. In addition, our proposal is able
to integrate existing agent platforms such as Jason.

7. Conclusions and future work

The architecture presented in this paper proves that
it is possible to achieve modern systems that combine

32 J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web

the potential of intelligent agent systems and the inter-
connection and ever-growing applications of the mod-
ern web.

The resulting application goes beyond the state of
the art, putting together already existing solutions from
different fields. It thus shows that we can make good
use of the existing technologies to implement innova-
tive ideas.

In this paper, the most important shift is in the
way we understand agents and agent communication.
Hence, MAIA focuses on describing how an agent ar-
chitecture can be conceived as a set of cooperating
modules that communicate each other through a bus.
As mentioned in the introduction, one of the function-
alities that can benefit of this approach is the decou-
pling of reasoning and agent communication. The de-
sign and integration in MAIA of this communication
module [1] as well as interaction protocols [34] such
as negotiation [40] deserves more attention and is left
as future work.

One of the main aspects to improve from a prag-
matic point of view is the security of the information
exchanged and the scope in which it is visible. Cur-
rently MAIA allows username/password authentica-
tion and mechanisms to control event subscription on a
per-module basis. Other security measures and mech-
anisms such as anonymity [38] would be of interest in
e-commerce and auction applications.

Another field for future research is to further expand
the definition of events to include other concepts such
as propagation of events. This might lead to delegation
and collective planning, but it also poses challenges
related to agent communication.

Finally, we are working on improving the interac-
tion with users by incorporating affects as well as mul-
timodal interaction. MAIA’s Linked Data approach to-
gether with a Linked Data multimodal representation
of emotions [31,32].

Acknowledgements

This work was supported by the European Union
through the SMARTOPENDATA FP7 Project (Grant
Agreement no: 603824), by the Spanish Ministry
of Economy and Competitiveness under the R&D
project SEMOLA (TEC2015-68284-R) and by the
Autonomous Region of Madrid through programme
MOSI-AGIL-CM (grant P2013/ICE-3019, co-funded
by EU Structural Funds FSE and FEDER). The au-
thors would like to thank Carlos Crespo for his work

in the implementation of the prototype described in
Section 5.2 as part of his master thesis.

References

[1] B. Alfonso, E. Vivancos, V. Botti and A. García-Fornes, In-
tegrating Jason in a multi-agent platform with support for in-
teraction protocols, in: Proceedings of the SPLASH ’11 Work-
shops, SPLASH ’11 Workshops, ACM, New York, NY, USA,
2011, pp. 221–226.

[2] L. Ardissono, G. Bosio and M. Segnan, An activity awareness
visualization approach supporting context resumption in col-
laboration environments, in: International Workshop on Adap-
tive Support for Team Collaboration, 2011, pp. 15–25.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and
Z. Ives, DBpedia: A Nucleus for a Web of Open Data, Springer,
2007.

[4] B.P. Bailey, J.A. Konstan and J.V. Carlis, The effects of in-
terruptions on task performance, annoyance, and anxiety in
the user interface, in: Proceedings of INTERACT, Vol. 1, IOS
Press, 2001, pp. 593–601.

[5] C. Barbero, P.D. Zovo and B. Gobbi, A flexible context
aware reasoning approach for IoT applications, in: 2011 12th
IEEE International Conference on Mobile Data Management
(MDM), Vol. 1, 2011, pp. 266–275. doi:10.1109/MDM.2011.
55.

[6] F.L. Bellifemine, G. Caire and D. Greenwood, Developing
Multi-Agent Systems with JADE, Wiley Series in Agent Tech-
nology, John Wiley & Sons, 2007.

[7] T. Berners-Lee, Notation 3 – An readable language for data on
the web, 2006.

[8] R.H. Bordini and J.F. Hübner, BDI agent programming in
AgentSpeak using Jason, in: Proceedings of 6th International
Workshop on Computational Logic in Multi-Agent Systems,
LNCS, Vol. 3900, Springer, 2005, pp. 143–164.

[9] M.E. Bratman, Intention, Plans, and Practical Reason, Har-
vard UP, Cambridge, Mass., 1987.

[10] D. Brickley and L. Miller, FOAF vocabulary specification,
2014, available at http://xmlns.com/foaf/spec/.

[11] M. Coronado and C.A. Iglesias, EWE ontology: Modeling
rules for automating the evented web, 2013, available at http://
www.gsi.dit.upm.es/ontologies/ewe/.

[12] M. Coronado and C.A. Iglesias, Task automation services:
Automation for the masses, Internet Computing, IEEE 20(1)
(2016), 52–58. doi:10.1109/MIC.2015.73.

[13] M. Coronado, C.A. Iglesias and A.M. Mardomingo, A personal
agents hybrid architecture for question answering featuring so-
cial dialog, in: 2015 International Symposium on INnovations
in Intelligent SysTems and Applications, 2015.

[14] M. Coronado, C.A. Iglesias and E. Serrano, Modelling rules for
automating the Evented WEb by semantic technologies, Expert
Systems with Applications 42(21) (2015), 7979–7990. doi:10.
1016/j.eswa.2015.06.031.

[15] A.R.J. Francois, R. Nevatia, J. Hobbs, R.C. Bolles and
J.R. Smith, VERL: An ontology framework for representing
and annotating video events, MultiMedia, IEEE 12(4) (2005),
76–86. doi:10.1109/MMUL.2005.87.

[16] D. Greenwood, M. Lyell, A. Mallya and H. Suguri, The IEEE
FIPA approach to integrating software agents and web ser-

http://dx.doi.org/10.1109/MDM.2011.55
http://dx.doi.org/10.1109/MDM.2011.55
http://xmlns.com/foaf/spec/
http://www.gsi.dit.upm.es/ontologies/ewe/
http://www.gsi.dit.upm.es/ontologies/ewe/
http://dx.doi.org/10.1109/MIC.2015.73
http://dx.doi.org/10.1016/j.eswa.2015.06.031
http://dx.doi.org/10.1016/j.eswa.2015.06.031
http://dx.doi.org/10.1109/MMUL.2005.87

J.F. Sánchez-Rada et al. / A modular architecture for intelligent agents in the evented web 33

vices, in: Proceedings of the 6th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS
’07, ACM, New York, NY, USA, 2007, pp. 276:1–276:7.

[17] M.E. Gregori, J.P. Cámara and G.A. Bada, A Jabber-based
multi-agent system platform, in: Proceedings of the Fifth Inter-
national Joint Conference on Autonomous Agents and Multia-
gent Systems, ACM, 2006, pp. 1282–1284.

[18] D. Grisby, S.-L. Lo and D. Riddoch, The Omniorb Version 4.1
User’s Guide, Apasphere Ltd. and AT&T Laboratories Cam-
bridge, 2009.

[19] T. Gross, W. Wirsam and W. Graether, Awarenessmaps: Visu-
alizing awareness in shared workspaces, in: CHI ’03 Extended
Abstracts on Human Factors in Computing Systems, ACM,
2003, pp. 784–785. doi:10.1145/765891.765990.

[20] S. Han, S.K. Song and H.Y. Youn, CALM: An intelligent
agent-based middleware for community computing, in: Soft-
ware Technologies for Future Embedded and Ubiquitous Sys-
tems, 2006 and the 2006 Second International Workshop on
Collaborative Computing, Integration, and Assurance, SEUS
2006/WCCIA 2006, The Fourth IEEE Workshop on, 2006, p. 6.

[21] T. Kushida, T. Takagi and K.I. Fukuda, Event ontology:
A pathway-centric ontology for biological processes, in: Pa-
cific Symposium on Biocomputing, 2006, pp. 152–163.

[22] D. Lillis, Internalising Interaction Protocols as First-Class Pro-
gramming Elements in Multi Agent Systems, PhD thesis, Uni-
versity College Dublin, 2012.

[23] J.P. Müller, Architectures and applications of intelligent
agents: A survey, The Knowledge Engineering Review 13(4)
(1999), 353–380. doi:10.1017/S0269888998004020.

[24] V.I. Munteanu, T.-F. Fortis and V. Negru, An event driven
multi-agent architecture for enabling cloud governance, in:
Proceedings of the 2012 IEEE/ACM Fifth International Con-
ference on Utility and Cloud Computing, UCC ’12, IEEE Com-
puter Society, Washington, DC, USA, 2012, pp. 309–314.

[25] E. Opher and P. Niblett, Event Processing in Action, Manning
Publications Co., 2010.

[26] G. Papamarkos, A. Poulovassilis and P.T. Wood, Event–
condition–action rule languages for the semantic web, in:
SWDB, Citeseer, 2003, pp. 309–327.

[27] A. Pokahr and L. Braubach, From a research to an industry-
strength agent platform: Jadex v2, in: Business Services:

Konzepte, Technologien, Anwendungen. 9. Internationale
Tagung Wirtschaftsinformatik, 2009, pp. 769–780.

[28] Y. Raimond and S. Abdallah, The event ontology, Technical
report, 2007, available at http://motools.sourceforge.net/event.

[29] Y. Raimond, S.A. Abdallah, M.B. Sandler and F. Giasson, The
music ontology, in: ISMIR, Citeseer, 2007, pp. 417–422.

[30] A.S. Rao, M.P. Georgeff et al., BDI agents: From theory to
practice, in: Proceedings of the First International Conference
on Multi-Agent Systems (ICMAS-95), San Francisco, 1995,
pp. 312–319.

[31] J.F Sánchez-Rada, C.A. Iglesias and R. Gil, A linked data
model for multimodal sentiment and emotion analysis, in: Pro-
ceedings of the 4th Workshop on Linked Data in Linguistics:
Resources and Applications, Beijing, China, Association for
Computational Linguistics, 2015, pp. 11–19.

[32] J.F. Sánchez-Rada and C.A. Iglesias, Onyx: A linked data ap-
proach to emotion representation, Information Processing &
Management 52 (2016), 99–114. doi:10.1016/j.ipm.2015.03.
007.

[33] A. Seaborne, SPARQL results in JSON, 2011, available at

http://www.w3.org/TR/sparql11-results-json/.
[34] J.M. Serrano and S. Ossowski, A compositional framework for

the specification of interaction protocols in multiagent organi-
zations, Web Intelligence and Agent Systems: An international
Journal 5(2) (2007), 197–214.

[35] M. Sporny et al., JSON-LD 1.0, 2014, available at http://
json-ld.org/spec/latest/json-ld/.

[36] D. Steiner, FIPA: Foundation for intelligent physical agents –
Das aktuelle schlagwort, KI 12(3) (1998), 38.

[37] P. Wallis, R. Ronnquist, D. Jarvis and A. Lucas, The auto-
mated wingman – Using JACK intelligent agents for unmanned
autonomous vehicles, in: Aerospace Conference Proceedings,
Vol. 5, IEEE, 2002, pp. 2615–2622.

[38] M. Warnier and F. Brazier, Anonymity services for multi-agent
systems, Web Intelligence and Agent Systems: An International
Journal 8(2) (2010), 219–232.

[39] P.J. Windley, The Live Web: Building Event-Based Connec-
tions in the Cloud, Course Technology, 2011.

[40] X. Zhang, V. Lesser and T. Wagner, A layered approach to
complex negotiations, Web Intelligence and Agent Systems: An
International Journal 2(2) (2004), 91–104.

http://dx.doi.org/10.1145/765891.765990
http://dx.doi.org/10.1017/S0269888998004020
http://motools.sourceforge.net/event
http://dx.doi.org/10.1016/j.ipm.2015.03.007
http://dx.doi.org/10.1016/j.ipm.2015.03.007
http://www.w3.org/TR/sparql11-results-json/
http://json-ld.org/spec/latest/json-ld/
http://json-ld.org/spec/latest/json-ld/

Copyright of Web Intelligence (2405-6456) is the property of IOS Press and its content may
not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

