
ORIGINAL ARTICLE

A model for tracing variability from features to product-line
architectures: a case study in smart grids

Jessica Dı́az • Jennifer Pérez • Juan Garbajosa

Received: 16 February 2013 / Accepted: 20 January 2014 / Published online: 7 February 2014

� Springer-Verlag London 2014

Abstract In current software systems with highly volatile

requirements, traceability plays a key role to maintain the

consistency between requirements and code. Traceability

between artifacts involved in the development of software

product line (SPL) is still more critical because it is nec-

essary to guarantee that the selection of variants that realize

the different SPL products meet the requirements. Current

SPL traceability mechanisms trace from variability in

features to variations in the configuration of product-line

architecture (PLA) in terms of adding and removing

components. However, it is not always possible to mate-

rialize the variable features of a SPL through adding or

removing components, since sometimes they are materi-

alized inside components, i.e., in part of their functionality:

a class, a service, and/or an interface. Additionally, varia-

tions that happen inside components may crosscut several

components of architecture. These kinds of variations are

still challenging and their traceability is not currently well

supported. Therefore, it is not possible to guarantee that

those SPL products with these kinds of variations meet the

requirements. This paper presents a solution for tracing

variability from features to PLA by taking these kinds of

variations into account. This solution is based on models

and traceability between models in order to automate SPL

configuration by selecting the variants and realizing the

product application. The FPLA modeling framework sup-

ports this solution which has been deployed in a software

factory. Validation has consisted in putting the solution

into practice to develop a product line of power metering

management applications for smart grids.

Keywords Traceability modeling � Software product line
engineering � Product-line architecture � Variability

1 Introduction

Traceability defines and maintains relationships between

artifacts involved in the software life cycle [2, 20] in both

forward and backward directions, e.g., from requirements to

code and from code to requirements, respectively. Currently,

software systems are continuously undergoing changes due

to the competitiveness of the software market and their

changing technologies. In software systems with highly

volatile requirements, traceability has become a critical

issue. Numerous researchers have put their work over past

years on traceability from problem space to solution space in

traditional software development and evolution [13, 43, 45,

46]. In this regard, today there are still several challenges to

be dealt with. Specifically the Center of Excellence for

Software Traceability identified eight challenges related to

the purpose, cost, configuration, confidence, scalability,

portability, value, and ubiquity of traceability [19]. This

traceability is even more challenging in recent software

development paradigms such as software product line

engineering (SPLE [14, 44]). In fact, the capability of tracing

variability in a family of the products is still a challenge [35],

J. Dı́az (&)

CITSEM, Technical University of Madrid (UPM) - Universidad

Politécnica de Madrid, Ctra. Valencia Km. 7,

28031 Madrid, Spain

e-mail: yesica.diaz@upm.es

J. Pérez � J. Garbajosa
E.U. Informática - CITSEM, Technical University of Madrid

(UPM) - Universidad Politécnica de Madrid,

Ctra. Valencia Km. 7, 28031 Madrid, Spain

e-mail: jenifer.perez@eui.upm.es

J. Garbajosa

e-mail: jgs@eui.upm.es

123

Requirements Eng (2015) 20:323–343

DOI 10.1007/s00766-014-0203-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-014-0203-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-014-0203-1&domain=pdf

as well as important: ‘‘the traceability work that is emerging

from product line engineering contexts may have wider

applicability to broader traceability reuse’’ [19].

This paper focuses on the traceability between the arti-

facts resulting from the SPLE phases domain analysis [24]

and product-line architecting [33]. During the domain

analysis phase, feature models [23] are usually used to

describing requirements in terms of common and variable

features of the set of products that make up a SPL. Then,

these features are realized and described at architectural

level in product-line architecture (PLA) models. Our

approach is somewhat based on the work by Ramesh and

Jarke [46] and Pohl et al. [43], but particularizes the

traceability definition between requirements and architec-

ture in features and PLA by taking into account the

traceability of variability. This traceability of variability is

critical to configure the PLA and realize the products while

ensuring that they meet the requirements, i.e., to check that

the variability binding performed during the configuration

of products satisfies the product requirements.

How variability is specified in feature and PLA models

largely determines how variability can be traced. There has

been an extensive research on supporting the representation

of variability in feature models [5, 9, 23], PLA models [1,

6, 16, 58, 59, 60], as well as those approaches that propose

dedicated variability models [7, 28, 44]. Based on this state

of the art, current SPL traceability mechanisms trace the

existing variability in feature models to variations in the

PLA. This traceability is usually related to variations in the

configuration of architectures as well as in the configura-

tion of composite components [29], aka. subsystems [22].

These variations are realized through adding or removing

components and/or connectors. This means, the configu-

ration of architecture is customized by selecting optional,

alternative, or multiple components and their respective

connectors. We refer to these kinds of variations as

external variability.

However, external variability is not enough to com-

pletely define all kinds of variations [6] and to trace them

from features to PLA [60]. This happens when variations

have a lower granularity than the granularity of components

(e.g., classes, services, or interfaces that implement func-

tionalities such as logging, database connections, listeners

of an event-based architecture, graphical controllers), so

that they are materialized inside simple components—or

non-composite components. In these components, in which

variability occurs inside, part of their functionality is

common to the SPL and part of their functionality changes

depending on the product to be realized. As a result, in order

to support this internal variability, it is necessary to specify

variations that are internal to components. We refer to this

kind of variations as internal variability. In addition, this

internal variability is especially relevant, but no specific,

when describing variability that refers to non-functional

features or quality attributes [30], since they may crosscut

several components of the PLA. For example, suppose an

illustrative example of a SPL for banking systems that

consists of a set of core components that offer their func-

tionality to automatic teller machines (ATM) and bank web

applications (WebApp). Both ATM and WebApp aim to

provide a cost-effective service to bank customers that is

convenient, safe, and secure 24-h access for realizing a

common set of banking transactions. A few lines of code

implementing the functionality regarding quality attributes,

such as availability or data encryption, are necessary. This

code is scattered across the components WebApp and ATM,

and it has variations in its behavior depending on the spe-

cific banking system product by selecting strict or non-strict

availability or different encrypting algorithms. Therefore,

this internal variability could affect many different products

or there could even be conflicting quality attributes (e.g.,

trade-offs between availability and performance) in differ-

ent products of the same family. As a result, the absence of

traceability that considers internal variability implies that it

is not possible to check if the SPL products with internal

variability meet the requirements. Therefore, the capability

of tracing internal variability is as important as the capa-

bility of tracing external variability.

This paper presents a solution to trace variability from

features to both external and internal architectural vari-

ability. This solution has been constructed using the

metamodeling approach, since models automate devel-

opment tasks and stimulate learning and reasoning

capabilities, which is essential for tracing artifacts.

Therefore, our solution is constituted by a set of models

for describing and tracing PLAs from features. The

description of features is supported by the feature model

[15, 23]. The description of PLAs is supported by a

previous work that presents the Flexible-PLA model [41]

as a solution for specifying both (1) external variability

of the architecture configuration and composite compo-

nents, and (2) internal variability of simple components.

Specifically, in this paper, we present a model that sup-

ports traceability between features and PLA called Fea-

ture-PLA traceability model. The Feature-PLA

traceability model defines the principles that govern the

traceability links between the feature model and the

Flexible-PLA model, i.e., the rules that must be met to

create links between the two models. These rules assist

software engineers in defining both coarse-grained and

fine-grained links which trace external and internal var-

iability between features and PLA. The goal of also

tracing internal variability—i.e., at fine-grained level—is

to reduce error-prone decisions at the time of configuring

variability to derive products—from a SPL platform—

according to product-specific requirements. The usage of

324 Requirements Eng (2015) 20:323–343

123

the Feature-PLA traceability model is possible due to the

FPLA modeling framework.1

We have put the Feature-PLA traceability model into

practice in a software factory, in a project for developing a

product line of power metering management applications

for smart grids. Validation is performed using the case

study technique following the guidelines of Runeson and

Höst [48] TraceabilityLink for describing case studies. This

case study allowed us to obtain evidence of that the Fea-

ture-PLA traceability model was effective and helped

engineers in the development and configuration of a suc-

cessful product line in an industry project.

The structure of the paper is as follows: Sect. 2 describes

background in which our solution is based on. Section 3

describes the Feature-PLA traceability model. Section 4

presents the case study used to validate the Feature-PLA

traceability model, i.e., its viability, effectiveness, and

helpfulness in an industry project. This section also dis-

cusses about limitations of our solution. Section 5 analyzes

related work. Finally, conclusions and further work are

presented in Sect. 6.

2 Background

This section describes the required background to detail the

contribution of this paper, i.e., the models that the Feature-

PLA traceability model traces.

2.1 The feature model

Numerous methods for domain analysis can be found in the

literature, although one of the most widely used is the

feature-oriented domain analysis (FODA) [5, 23] in which

our work is based on. The FODA method introduces the

feature modeling technique for capturing commonality and

variability of SPL in terms of features. This method defines

a feature as ‘‘a prominent or distinctive user-visible aspect,

quality, or characteristic of a software system or system’’

[23]. Feature modeling is graphically described through the

feature diagram notation, which specifies all products of a

family through a hierarchical tree-like structure. We use the

extended feature metamodel definition proposed by Czar-

necki et al. [15] which includes the following concepts:

• A root feature modularizes the model in a tree-like

structure, in which there is a main root.

• Solitary features represent mandatory or optional

characteristics of a software system which can be

composed of zero or more solitary features and by zero

or more feature groups.

• A feature group consists of a set of grouped features

which in turn can be composed of zero or more solitary

features and by zero or more feature groups. Feature

groups can be OR or XOR. The first one forces to

choose m grouped features (being m B total number of

grouped features). The second one forces to choose

only one grouped feature.

Figure 1 exemplifies these concepts through a simple

feature model of a family of e-readers. The root feature of

the tree is called e-readers family. A set of solitary features

are hooked to the root, such as interface and connectivity.

The solitary feature interface is composed of a XOR feature

group that supports customized interfaces, such as keyboard

or multi-touch, whereas the solitary feature connectivity is

composed of the solitary features Wi-Fi and 3G. The soli-

tary feature Wi-Fi is a mandatory feature for all products of

the e-readers family, while 3G is optional.

2.2 The Flexible-PLA model

The Flexible-PLA model [41] is a precise representation

for capturing variability as part of PLAs. The main concept

underlying Flexible-PLA model is the concept of Plastic

Partial Component (PPC [41]). The concept of PPC is a

solution to completely support the internal variation of

architectural components. Therefore, it is a component that

part of its behavior corresponds to the core of a SPL and

part of its behavior is specific of a product or set of pro-

ducts from that SPL. The other concepts that are common

to PLAs, such as components, connector, ports, are speci-

fied as it is usually done in common architecture

description languages [34].

The variability mechanism underlying PPCs is based on

the principles of invasive software composition and the

combination of two approaches to define software archi-

tectures: the component-based software development [55]

and the aspect-oriented software development [25]. The

variability of a PPC is specified using variability points

which hook fragments of code to the PPC known as vari-

ants, and weavings which specify where and when

extending the PPCs using the variants. Weavings are

defined outside from PPCs and variants so that these PPCs

and variants are independent of the weaving or linking

context. As a result, variants can be reused and crosscut

several PPCs of the PLA. Additionally, PPCs reduce de-

pendences and coupling between components and their

variants, and enable easy and cheap (un-)weaving of

variants. These advantages have been successfully applied

to SPLs [17, 42, 41].

The concepts of the Flexible-PLA model are exempli-

fied by the graphical representation of a PPC called inter-

face (see Fig. 2). The PPC interface defines a variability
1 It is available on: https://syst.eui.upm.es/FPLA/home.

Requirements Eng (2015) 20:323–343 325

123

https://syst.eui.upm.es/FPLA/home

point which hooks the code that implements the variants

keyboard and multi-touch.

3 Feature-PLA traceability model

This section presents the Feature-PLA traceability model

as a solution for tracing features to PLA. Tracing artifacts

aims to automate development tasks, as well as to stimulate

learning and reasoning. Models, traceability between

models, and model transformations are the basis to auto-

mate development tasks, which is known as model-driven

development (MDD [11]). Additionally, models help us to

understand complex problems and their potential solutions

through abstraction [52] and could stimulate learning and

reasoning [53]. For this reason, the proposed solution is

based on models, specifically the feature and Flexible-PLA

models, as well as the Feature-PLA traceability model that

defines traceability between the two first models.

The Feature-PLA traceability model provides modeling

primitives to define traceability links, i.e., relationships,

between elements belonging to the feature model (see Sect.

2.1) and elements belonging to the Flexible-PLA model (see

Sect. 2.2). These relationships are established between the

set of feature elements and a set of architecture elements that

satisfy them (aka. Satisfaction Links [46]). Hence, a feature

element may define some kind of constraint or goal which

may be satisfied by one or more architecture elements, while

an architecture element may satisfy one or more feature

elements. In this regard, the Feature-PLA traceability model

Fig. 1 SPL: feature model

Fig. 2 SPL: Flexible-PLA

model

326 Requirements Eng (2015) 20:323–343

123

defines the rules that govern the creation of these relation-

ships. These rules are called linkage rules.

To be able to use these modeling primitives, it is nec-

essary to define a domain-specific (modeling) language

(DSL [56]). The next subsections describe (1) a DSL

abstract syntax through the definition of the Feature-PLA

traceability metamodel, its domain concepts, relationships

and rules, (2) a DSL concrete syntax by defining a graph-

ical language representation, and (3) how putting these

modeling primitives in practice.

3.1 Abstract syntax: metamodel description

Metamodels describe how models can be specified and

establish the properties of models in a precise way. In

addition, a metamodel is characterized because it allows

the verification of those models that are constructed and

conformed to it [12]. The realization of MDD principles is

made around a set of OMG standards like MOF [38] which

is a meta-metamodel. Specifically, our solution is based on

MOF 2.0 and uses UML 2.0 to specify a metamodel which

we refer to as Feature-PLA traceability metamodel.

The Feature-PLA traceability metamodel (see Fig. 3) is

composed of a set of interrelated metaclasses. These meta-

classes define a set of properties and services for each con-

cept considered in the model. On the one hand, metaclasses,

their properties, and their relationships describe the structure

and the information that is necessary to define traceability

links and their linkage rules. On the other hand, the services

of metaclasses offer the primitives to develop instances by

creating, destroying, adding, or removing elements which

are compliant with the constructors of the metamodel.2

Those constraints that cannot be defined through the use of

relationships and their cardinality are specified by the Object

Constraint Language (OCL [39]), such those described as

textual information in UML notes (see Fig. 3).

The Feature-PLA traceability metamodel is created with

the aim of facilitating its integration with general-purpose

traceability metamodels, such as the metamodel for

requirements traceability [27], or the EML trace [26].

These models define the concept of traceability link

through a metaclass that supports the traceability between

any two models. We have reused this metaclass, and hence,

traceability links are described by the metaclass Trace-

abilityLink (see Fig. 3). It offers the primitives to instan-

tiate traceability links. The metaclass TraceabilityLink has

five attributes (see Fig. 3). Additionally, in order for the

user to set the traces between the right elements, it is

necessary to define a set of linkage rules that establish the

constraints that govern the creation of these traces. To that

end, the metaclass TraceabilityLink defines five linkage

rules (see dashed rectangles labeled from A to E in Fig. 3).

Attributes and linkage rules as described below.

The metaclass TraceabilityLink has the attributes

description, why, who, when, and satisfacing. These prop-

erties store semantic knowledge about the traceability links.

The attribute description keeps a brief description of the

link. The attribute why stores the traceability link’s ratio-

nale. The attributes who and when keep who creates the

traceability link and when it is created, respectively. The

definition of the attribute satisfacing is based on the work by

Ramesh and Jarke [46] who defined a scheme for assigning

qualitative degree of satisfaction to links, i.e., a measure of

the extent of how long one element affects another. Hauser

and Clausing [21] use four categories to relate how design

affects quality requirements: strong positive, medium

positive, medium negative, and strong negative. Positive

values measure the degree to which features are satisfied,

e.g., a recovery feature to provide response of 100 ms may

be considered to be well satisfied, so that 90 and 110 ms

response time may be considered to satisfy the feature with

different degrees. Negative values may capture trade-offs

between features, e.g., a component that satisfies an avail-

ability feature may have a strong negative impact on a

performance feature. This scheme is incorporated in our

traceability model as follows: an element belonging to the

Flexible-PLA model may contribute toward satisfacing an

element belonging to the feature model along these four

categories. Thereby, it is possible to assign the values strong

positive, medium positive, medium negative, and strong

negative to the attribute satisfacing of a traceability link.

The metaclass TraceabilityLink defines five linkage rules

(see the association relationships between the metaclass

TraceabilityLink and themetaclasses LinkageRule {A–E} in

Fig. 3). The linkage rules define how relationships can be

established, i.e., the rules that restrict which elements

belonging to the feature model can be traced to which ele-

ments belonging to the Flexible-PLA model. These linkage

rules act as constraints that must take variability into

account. Variability in the feature model is specified by

means of optional solitary features, feature groups, and

grouped features. Variability in the Flexible-PLA model is

specified by means of optional components and optional

connectors, which describe external variability of architec-

ture configuration, as well as variability points and variants,

which describe the internal variability of PPCs. These forms

of variability constrain the traces that can be defined in such a

way that the linkage rules define the following constraints:

Linkage Rule A: A mandatory solitary feature can trace

to a component or a PPC.

Linkage Rule B: An optional solitary feature can trace to

an optional connector. A feature group can trace to an

optional connector.
2 Most services are omitted to gain readability.

Requirements Eng (2015) 20:323–343 327

123

Linkage Rule C: A feature group can trace to a

variability point.

Linkage Rule D: A grouped feature can trace to an

optional component or an optional PPC.

Linkage Rule E: An optional solitary feature can trace to

a variant. A grouped feature can trace with a variant.

These constraints of the traces are implemented in the

Feature-PLA traceability metamodel through five meta-

classes to which we refer to as LinkageRule.{A–E} (see

Fig. 3). These metaclasses define associations with the

metaclasses from feature and Flexible-PLA metamodels.3

As a result, any link between an element from a feature

model and an element from a Flexible-PLA model must be

compliant with one of these linkage rules. As the linkage

rules support external and internal variability, both fine-

grained and coarse-grained traceability links can be

defined.

Fig. 3 Feature-PLA traceability metamodel

3 The feature metamodel is described in [15], while the Flexible-PLA

metamodel is described in [41].

328 Requirements Eng (2015) 20:323–343

123

In this regard, it is necessary to highlight that we deci-

ded not to add a new attribute (with the types of linkage

rules and define the corresponding OCL constraints) into

the metaclass TraceabilityLink in order to preserve the

metaclass TraceabilityLink of general-purpose traceability

models. In order to realize this typing, we defined five

linkage rules through five metaclasses. In this way, we

guarantee that the Feature-PLA traceability model can be

reused by and integrated in other traceability models.

Finally, it is necessary to highlight that this metamodel

conforms to a general-purpose traceability model (see [18])

which is located in an upper layer of the MOF architecture

[38] (meta-metamodel layer). In this way, the metaclasses

TraceabilityLink and LinkageRule.{A–E} conform to two

meta-metaclasses (TraceLink and LinkageRule) of this

meta-metamodel. The definition of the metaclasses Link-

ageRule.{A–E} allowed us to extend the rationale of the

linkage rules.

Fig. 4 SPL: Feature-PLA traceability model

Fig. 5 SPL: weaving definition

Requirements Eng (2015) 20:323–343 329

123

3.2 Concrete syntax: graphical language description

A graphical modeling language has been defined as this

kind of languages is usually more intuitive.

Figure 4 illustrates the Feature-PLA traceability graph-

ical language through an example of a SPL of e-readers.

Figure 4 shows six traceability links and their properties—

satisfacing, who, and when (see ID_001 to ID_006). The

traceability link ID_003 defines a relationship between the

optional solitary feature 3G and the optional component

that implements it (e.g., see the properties: strong positive,

J.Smith and 03/09/2012). This link traces a variation that is

materialized by adding or removing the component 3G to/

from the configuration of the PLA. Therefore, this link

traces external variability. The traceability link ID_005

defines a relationship between a point of variability related

to the types of interfaces—a feature group—and the vari-

ability point that implements it. Finally, the traceability

link ID_006 defines a relationship between the grouped

feature 2-point multitouch and the variant that implements

it. This link traces a variation that is not materialized by

adding or removing a component because of its small

size—it is a service called listenTouch (see Fig. 5). This

variation is materialized by weaving or unweaving the

variant multi-touch to/from the PPC interface, i.e., by

injecting (or not) the service listenTouch instead, before, or

after the execution of the service listenAction of the PPC

interface. Therefore, this link traces internal variability.

3.3 Feature-PLA traceability model in practice

The solution presented in this paper for tracing variability

from features to PLA is supported by the FPLA modeling

framework. FPLA is an open-source graphical tool that is

available for the community as an Eclipse plug-in.4 The

use of the FPLA modeling framework to put this solution

into practice is described through a set of activities as

follows.

1. SPL domain analysts model the problem space, i.e.,

specify common and variable features through a

feature model.

2. SPL architects model the solution space (PLA), i.e.,

specify the PLA structural configuration through a

Flexible-PLA model.

3. Both domain analysts and architects define the trace-

ability links between a feature model and a Flexible-

PLA model, i.e., establish the relationships between

elements from these two models through a Feature-

PLA traceability model.

4. SPL developers implement and test the components

and services of the SPL. The resulting source code is

linked to the components specified in the Flexible-PLA

model. To do this, Flexible-PLA models provide links

to external sources.

5. Product engineers configure specific products through

the binding of the variability according to the product

needs—product-specific requirements. The FPLA

modeling framework allows product engineers to

specify this binding (see the \checkmark mark in

Fig. 5 that selects the multi-touch feature).

6. Product engineers examine the Feature-PLA traceabil-

ity model to ensure that the variability binding was

correctly performed. This means, to check that the

binding performed in the PLA meets and satisfies the

product-specific requirements.

7. Finally, the FPLA modeling framework automatically

binds the variability from PLA to code in order to

configure components and generate code for specific

products. This means, FPLA automatically generates

code skeletons from Flexible-PLA models and com-

poses the code from external sources by model-to-text

transformations.

4 Case study

This section aims to provide empirical evidence that vali-

dates that the use of the Feature-PLA traceability model is

viable in an industry project, as well as effective and

helpful for developing and configuring software product

lines. Since the goals to be validated are qualitative, we use

the case study technique. Case study research is a tech-

nique that consists of the investigation of contemporary

phenomena in their natural context [61] to search for evi-

dence, gain understanding, or test theories by primarily

using qualitative analysis [47].

The case study was conducted in an experimental

i-smart software factory (iSSF [31]) which is deployed in

the Technical University of Madrid (UPM5) and Indra

Software Labs.6 Specifically, the case study was performed

within an industrial project on smart grids [32] to develop a

SPL of a family of power metering management systems.

The authors of this paper have been involved since 2011

with this particular investigation.

The iSSF is a software engineering research and edu-

cation setting in close cooperation with the top industrial

and research collaborators in Europe. It is a global and

distributed software development initiative set up at the

4 https://syst.eui.upm.es/FPLA/home.

5 http://www.upm.es/internacional.
6 http://www.indracompany.com/en.

330 Requirements Eng (2015) 20:323–343

123

https://syst.eui.upm.es/FPLA/home
http://www.upm.es/internacional
http://www.indracompany.com/en

end of 2011. Indra Software Labs leads this initiative at the

corporate level in Spain, in conjunction with UPM,

although it is framed into a broader scope that includes

other software factories such as that located at the Uni-

versity of Helsinki, University of Eastern Finland, Uni-

versity of Bolzano, and companies such as Tieto and Indra

in Spain. This initiative aims to put in practice models and

tools that will contribute both toward the implementation

of the new processes and methodologies, and the moni-

toring and tracking of the results.

The iSSF in which the case study has been run, comprises

laboratories in two different geographical locations in

Madrid (UPM and Indra’s factories), equipped with

sophisticated computer and monitoring equipment. This

equipment facilitates tracking of the project’s progress using

real-time data from development tools. The iSSF facility

continuously runs projects in 16-week cycles. Therefore, it

is a suitable setting to deploy, track, and evaluate the

applicability of the Feature-PLA traceability model.

Next, the case study is reported according to the

guidelines for conducting and reporting case study research

in software engineering by Runeson and Höst [48]. The

goal of reporting a case study is twofold: to communicate

the findings of a study, and to work as a source of infor-

mation for judging the quality of the study. With this

twofold goal, the reporting of the case study is described as

follows.

4.1 Case study design

This section describes the case study, the research objective

and questions, the data collection procedure, analysis and

validation procedures, and the subjects participating in the

case study.

4.1.1 Research objective and questions

Evidence of the viability of the Feature-PLA traceability

model can be obtained by putting the model into practice in

a real-life setting. Therefore, the research objective focuses

on evaluating the effectiveness of the Feature-PLA trace-

ability model as well as the helpfulness that it could pro-

vide SPL engineers. The criterion to validate the

achievement of the objective is defined as the capabilities

to (1) trace both coarse-grained and fine-grained variability

in order to satisfy the traceability of most common kinds of

variations, and (2) provide knowledge to help SPL engi-

neers at the time of configuring the different products that

make up a SPL, i.e., when variability has to be bound

according to the product-specific requirements. Hence, the

research questions to be answered through the case study

analysis can be formulated as follows:

RQ1: Are Feature-PLA traceability modeling primitives

effective in providing SPL engineers the means for

specifying traceability for most common kinds of

variations that they define on their product family?

RQ2: Do Feature-PLA traceability models assist and

guide SPL engineers at the time of configuring products

of their product family?

Research question RQ1 aims to find out if the Feature-

PLA traceability model effectively provides SPL engineers

with mechanisms to trace all types of variations that they

commonly define, which includes the capability of tracing

those features that are realized through external variations

of the PLA configuration (i.e., traceability of external var-

iability) as well as the traceability of those features that are

realized through internal variations of the components (i.e.,

traceability of internal variability). The level of effective-

ness is a dependent variable, i.e., a variable of interest for

being analyzed and evaluated. It is measured in terms of the

percentage of variations existing in the domain of the SPL

under study (i.e., variations in the feature model) that can be

traced by the modeling primitives provided by the Feature-

PLA traceability model. The potential independent vari-

ables that might have an influence on the dependent variable

are the project size, the SPL domain, the complexity of

Feature and PLA models, and the total number of variations

identified in the product family.

Research question RQ2 aims to find out if the knowledge

stored in Feature-PLA traceability models is really helpful

for SPL engineers at the time of configuring the products of

their product family. In this regard, helpfulness is defined

in this paper as the facilities provided for engineers to

enable product configuration (i.e., selection of variants and

construction of product applications). As a dependent

variable, the level of helpfulness to configure products is

qualitatively estimated by analyzing questions asked to the

SPL engineers involved in the cases study through a set of

interviews. These questions asked the SPL engineers about

specific situations in which the assistance of Feature-PLA

traceability models to configure products was analyzed.

Hence, the SPL engineers were asked if Feature-PLA

traceability models helped them when trying to bind vari-

ability to configure specific products from the product

family, while ensuring the product requirements compli-

ance. The potential independent variables which might

have an influence on the dependent variable are the engi-

neers experience, the project size, the PLA complexity, the

misinterpretation of interview questions, and the total

number of variations identified in the product family.

It is necessary to mention that it is in the nature of case

studies that independent variables cannot be controlled

[47]. This and other potential threats to validity are dis-

cussed in Sect. 4.2.3.

Requirements Eng (2015) 20:323–343 331

123

4.1.2 Data collection procedure

In the case study, we have gathered both quantitative and

qualitative data. The collection methods which have been

used are the following:

• Observation. Two observers attended project meetings

and visited the team twice a week. They took notes

from these meetings and, thanks to the iSSF technol-

ogies, meetings were video recorded, transcribed, and

analyzed using the constant comparison method as

described in [57].

• Questionnaire and interview. Stakeholders were inter-

viewed following a questionnaire7 open to the discus-

sion. These interviews were video recorded,

transcribed, and analyzed using the constant compar-

ison method.

• Archival data. In addition to the storage of the video

recordings, the information about the project was

collected in Redmine8.

• Analysis of work artifacts. Feature-PLA traceability

models generated with the FPLA modeling framework

were gathered.

4.1.3 Analysis and validity procedure

In this case study, both quantitative and qualitative analysis

were used to examine the data gathered. For quantitative

data, this case study uses analysis of descriptive statistics.

For qualitative data, the procedure to explore the chain of

evidence [47] from collected data is described as follows:

Interviews and meetings are recorded, transcribed, grouped

by quotes and coded. Coding means that parts of the text

are given a code representing a certain topic of interest—

one code is usually assigned to many pieces of text, and

one piece of text can be assigned more than one code and

codes can form a hierarchy of codes and sub-codes [47].

The coded material is enriched with comments and

reflections (i.e., memos). From this material, it is possible

to identify evidence that answers the research questions.

As data gathered in case studies is mainly qualitative

[47], and it is typically less precise than quantitative data, it

is important to use triangulation to increase the precision

of the study. There are several types of triangulation [54]:

(1) methodological triangulation, i.e., the use of different

methods to measure the same concern; (2) data source

triangulation, i.e., the use of multiple data sources at

potentially different occasions; and (3) observer

triangulation, i.e., the use of more than one observer in the

case study [57]. In order to increase the precision of the

qualitative analysis and its obtained results, the three types

of triangulation were used in this case study. Methodo-

logical triangulation was performed through interviews,

observations, and the analysis of archival data. Data source

triangulation was performed by interviewing the SPL

engineers both separately and together. Finally, observer

triangulation was applied by replicating specific data col-

lection sessions by two different observers.

4.1.4 Case study description

The case study consists of a project to model, design, and

implement a ‘‘power quality monitoring and a remote

control and smart metering’’ platform. It is part of two

Fig. 6 Modules of the power quality monitoring and the remote

control and smart metering platform

Fig. 7 Power quality monitoring and the remote control and smart

metering platform variability analysis

7 The script of the interviews is available on https://www.survey

monkey.com/s/TSYCCN6.
8 Redmine is web-based project management and bug-tracking tool

http://www.redmine.org/.

332 Requirements Eng (2015) 20:323–343

123

https://www.surveymonkey.com/s/TSYCCN6
https://www.surveymonkey.com/s/TSYCCN6
http://www.redmine.org/

larger ITEA2 projects called IMPONET9 (127 man years)

and NEMO&CODED10 (112 man years), and a third

national project called ENERGOS11 (24.3 million Euros).

These three projects focused on supporting complex and

advanced requirements in energy management, specifically

in electric power networks that are conceptualized as smart

grids [32]. Smart grids are composed of an aggregation of a

broad range of energy resources, from large generating

systems (traditional sources, e.g., nuclear power plants,

hydro power plants) to smaller generating systems (called

microsources, e.g., small solar farms, distributed wind

generators), operating as a single system providing both

power and heat [32]. Smart grids promote the integration of

renewable energy resources and their distributed, open, and

self-controlled nature.

The power quality monitoring and the remote control

and smart metering platform is a software intensive soft-

ware composed of a set of coarse-grained modules: com-

munication platform, power quality monitoring, meter data

management, end-user access platform, head end, smart

metering, and data exchange (see Fig. 6). At this coarse-

grained level, the platform presents variability related to

the optionality of the module power quality monitoring

which depends on the grid, i.e., if the grid requires guar-

antee only the power supply or also power quality. Each

one of these modules has multiple levels of decomposition

and variability with different levels of detail that are briefly

described below. This is why this project was envisioned as

a SPL that allows configuring the platform depending on

the smart grid requirements.

A representative example of the multiple levels of

variability is the end-user access platform. This module is

configurable by considering the following variants: type

of GUI, end-user, and data. Regarding the type of GUI,

the end-user access platform was designed to support

Web application, desktop application, android application,

as well as specific in-home device’s application.

Regarding the end-user, the functionalities and the infor-

mation that are provided by the access platform to the

end-users vary in the case of a distributor, a retailer, or a

customer. This means that the information provided by

the end-user access platform is variable depending on the

end-user and the end-user requirements. Finally, the

information that is shown in the GUI and the technologies

used to display that information are variable depending on

whether the data are provided in real time or using his-

torical data.

Other examples of multiple levels of variability are the

smart metering and the power quality monitoring modules.

The first one implements a set of forecasting algorithms

that vary depending on the energy data used, for the next

24 or 48 h, or whether it is calculated using real-time

energy data, historical energy data from the database, or

both of them. The second one implements a set of power

quality algorithms that can be configured in order to pro-

vide a variety of information, such as events, disturbances,

alarms control. Finally, the communication platform

implements a data distribution service (DDS [37]) based on

the publication-subscription paradigm. This module is in

turn a source of internal variability that crosscuts the other

modules. Hence, DDS defines domains, partitions, and

topics in order to specify different data space and organize

the flow of data. The subscription to the topics is variable

depending on, for example, the events or alarms to be

controlled.

In order to illustrate the complexity of the system, and in

particular the level of variability, the platform has more

than 600 variants (see Fig. 7). In this paper, we specifically

Fig. 8 Metering management system—an overview and interfaces with external systems

9 Intelligent Monitoring of Power NETworks http://www.itea2.org/

project/index/view?project=10032.
10 NEtworked MOnitoring & COntrol, Diagnostic for Electrical

Distribution http://www.itea2.org/project/index/view?project=1131.
11 Technologies for automated and intelligent management of power

distribution networks of the future http://www.indracompany.com/

sostenibilidad-e-innovacion/proyectos-innovacion/energos-technologies-

for-automated-and-intelligent-.

Requirements Eng (2015) 20:323–343 333

123

http://www.itea2.org/project/index/view?project=10032
http://www.itea2.org/project/index/view?project=10032
http://www.itea2.org/project/index/view?project=1131
http://www.indracompany.com/sostenibilidad-e-innovacion/proyectos-innovacion/energos-technologies-for-automated-and-intelligent-
http://www.indracompany.com/sostenibilidad-e-innovacion/proyectos-innovacion/energos-technologies-for-automated-and-intelligent-
http://www.indracompany.com/sostenibilidad-e-innovacion/proyectos-innovacion/energos-technologies-for-automated-and-intelligent-

report the part of the SPL that develops a family of power

metering management systems for smart grids, i.e., the

meter data management module. This is due to space and

understandability reasons. We refer to this part of the SPL

as OPTIMETER SPL.

OPTIMETER SPL focuses on the development of a

family of power metering management systems for smart

grids (see the central box of Fig. 8). A power metering

management system captures and manages meter data from

a large number of distributed energy resources. It validates,

stores, and processes these data, and provides them to

external systems. Figure 8 shows an overview of a meter-

ing management system and its interaction with external

systems to capture and provide meter data. The overview

of the system functionality is as follows:

1. Meter capturing. This involves integrating all meter

capturing processes (see meter capturer in Fig. 8)

which are currently being supported by telemetering

systems and batch processes that collect measurements

at substations (see box Input in Fig. 8). The purpose is

to have a single database with the energy metering

data.

2. Meter processing. This includes three operations: the

validation of meter data according to an established

validation formula, the calculation of the optimal

vector for a measuring point for a type and period of

energy data, and the estimation of energy data

according to a established estimation formula (see

meter processor in Fig. 8).

3. Meter providing. This involves defining the interface

(see meter provider in Fig. 8) with client information

systems, such as billing and settlements, energy

demand forecast, and energy purchases, to exchange

data with them (see box output in Fig. 8).

Data processing should be done in real time. To do this,

it is necessary to account for performance when loading the

large amounts of energy data coming from the meter cap-

turing processes as well as performance when querying

these data. The OPTIMETER SPL aims to provide a family

of systems, each of which is intended to support the dif-

ferent data storing technologies shown in Fig. 9. The

objective is to carry out various proof of concept of large

data storing technologies to evaluate their performance.

Therefore, the data storing technology is a variability point.

Meter providing should be available 24/7. Metering

management systems should guarantee availability 24 h

7 days per week of their core functionality to the external

systems. Several applications require to have strict 24/7

availability, while others permit a weaker, non-strict

availability. Strict availability must provide recovery and

repair in milliseconds, whereas non-strict availability is

less available and cheaper. Therefore, the strictness of

availability is another variability point.

The OPTIMETER SPL is being iteratively and incre-

mentally developed in the iSSF in Scrum subprojects [50]

of 8 iterations, aka. sprints (1sprint = 2 weeks). This case

study focuses on two of these Scrum subprojects which we

refer to as Optimeter I and Optimeter II. Optimeter I con-

sisted of the development of the OPTIMETER SPL plat-

form from which a set of metering management system

applications can be efficiently developed and produced

(domain engineering [44]). Optimeter II consisted of the

Fig. 9 OPTIMETER SPL—

evaluation of large data storing

technologies for metering

management systems

334 Requirements Eng (2015) 20:323–343

123

development of two of these product applications (appli-

cation engineering [44]): a metering management appli-

cation running over the Berkeley database12 and Hadoop

clustering13 with strict availability, and a metering man-

agement application running over the Oracle 11g data-

base14 and Oracle Real Application Clusters (RAC)15 with

non-strict availability (see Fig. 9).

4.1.5 Subject description

In total, 10 people participated in Optimeter I and II: four

analysts/developers, two product owners, one scrum master

(who performs both the tasks of the Scrum master and of a

part-time architect), and one full-time architect. During the

domain engineering—i.e., Optimeter I—the people

involved in the project are referred in this case study as

SPL engineers, while during the application engineering—

i.e., Optimeter II—the peopled are referred as product

engineers. It is necessary to highlight that the engineers

involved in Optimeter I and II are not the same. Finally,

two observers had access to all project information and

collaborated directly with product owners and fellow team

members.

4.2 Results

This section describes the execution, analysis, and inter-

pretation of the results from the case study execution, as

well as the evaluation of its validity.

4.2.1 Case study execution

This section describes the execution of Optimeter I first,

and then the execution of Optimeter II. These executions

has been performed following the activities presented in

Sect. 3.3. The models resulting from these activities have

been captured through snapshots from the FPLA modeling

framework.

The first activity was feature domain analysis. Figure 10

shows the feature model that represents the features that

OPTIMETER SPL must meet. The feature model has three

points of variability—feature groups—that implement dif-

ferent data storing technologies (database and clustering)

and different degrees of availability. The feature model is

described in detail as follows:

• F1_Meter Reading (see Fig. 10) consists of reading

metering data associated with different energy

resources, periods (quarterly, hourly, daily, and

monthly), and intervals.

• F2_Meter Storing (see Fig. 10) consists of a large data

store. There are two mutually exclusive alternative

variations: one variant is Berkeley DB and the other

variant is Oracle 11g (see the grouped features Berke-

lyDB and Oracle11g in Fig. 10).

• F3_Meter Data Accessing (see Fig. 10) consists of

initial data loading of historical metering data of

1 month and querying of these data. Both loading and

querying require to leverage high performance through

Fig. 10 Optimeter I—feature model

12 Oracle Berkeley DB is a high-performance embeddable database

providing Java Object and Key/Value storage (NoSQL). http://www.

oracle.com/technetwork/products/berkeleydb/.
13 Apache Hadoop is a framework for running applications on large

cluster built of commodity hardware. http://hadoop.apache.org/.
14 Object-relational database management system. http://www.ora

cle.com/technetwork/database/.
15 Software for clustering and high availability in Oracle db

environments. http://www.oracle.com/technetwork/products/cluster

ing/.

Requirements Eng (2015) 20:323–343 335

123

http://www.oracle.com/technetwork/products/berkeleydb/
http://www.oracle.com/technetwork/products/berkeleydb/
http://hadoop.apache.org/
http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/products/clustering/
http://www.oracle.com/technetwork/products/clustering/

Fig. 11 Optimeter I—Flexible-

PLA model

Fig. 12 Optimeter I—Feature-PLA traceability model

336 Requirements Eng (2015) 20:323–343

123

the use of clustering technologies. There are two

mutually exclusive alternative variations: one variant is

Hadoop clustering over Berkeley DB and the other

variant is RAC over Oracle 11g (see the grouped

features Hadoop and RAC in Fig. 10).

• F4_Meter Data Processing (see Fig. 10) consists of the

algorithms for validating raw and optimal data, as well as

calculating the optimal vector (integrated processing) of

raw and optimal data, i.e., the energy data for a specific

origin, period, and date is retrieved, and the system adds

data to obtain the energy data of the next period.

• F5_Meter Data Providing (see Fig. 10) consists of an

interface that provides metering data query to external

systems.

• F6_Availability (see Fig. 10). It ensures availability of

metering data 24 h 7 days per week. There are two

mutually exclusive alternative variations: One variant

implements strict availability and the other variant

implements non-strict availability (see the grouped

features strict and non-strict in Fig. 10).

The second activity was product-line architecting.

Regarding availability, various architectural tactics are

proposed in the literature [8, 51]. The SPL engineers

selected active redundancy and passive redundancy tactics

to implement strict and non-strict availability, respectively.

These tactics are briefly described as follows.

• The tactic active redundancy is based on a ‘‘configu-

ration wherein all of the nodes (active or redundant

spare) in a protection group receive and process

identical inputs in parallel, allowing the redundant

spare(s) to maintain synchronous state with the active

node(s)’’ [51]. Therefore, from the architectural view,

this tactic requires (1) a load balancer for all nodes—

active and redundant nodes—to process identical

inputs, and (2) a synchronizer in order for the active

and redundant nodes to maintain an identical state. If

there is a failure, the repair occurs on time as the

redundant spare has an identical state to the active

node. The cost of this tactic is high due to the cost of

synchronization between redundant spare and active

node(s).

• The tactic passive redundancy is based on a ‘‘config-

uration wherein only the active members of the

protection group process input traffic, with the redun-

dant spare(s) receiving periodic state updates’’ [51].

Therefore, from the architectural point of view, this

tactic requires (1) a router to ensure that only the active

node process all the inputs, as well as to change the

route to the redundant node(s) when there is a failure,

and (2) a periodic data controller in order for active

and redundant node(s) to maintain periodic state

updates. If there is a failure, the router selects a

redundant spare after checking the state update. This

Fig. 13 Optimeter I—PPC DataLoader

Requirements Eng (2015) 20:323–343 337

123

tactic achieves a balance between the more highly

available but more complex active redundancy tactic

and the less available but significantly less complex

spare tactic.

The PLA resulting is shown in Fig. 11 and described as

follows. The feature F1 is implemented by the component

MeterCapturer, which reads text files of metering data

associated to different energy resources, periods (quarterly,

hourly, daily, and monthly), and intervals, and processes

the previously read data to form key/value pairs. The

variability of the feature F2 is implemented by the optional

components BerkeleyDB and Oracle11g. The feature F3,

and specifically the subfeatures DataLoading and Data-

Querying are implemented by the PPCs DataLoader and

DataQuery, respectively. The architects took advantage of

the PPC’s variability mechanism to specify the variability

of the feature high performance as internal variability. This

variability is internal to the PPCs DataLoader and Data-

Query, i.e., the variability crosscut these two PPCs. Hence,

both PPCs implement the variability of performance

through the variability point clustering and the variants

HadoopClustering and RealApplicationClusters (see

Fig. 11). These variants implement the operations for

clustering and distributing work around a cluster to

improve the data accessing performance (for loading and

querying). Figure 13 shows an extract of the PPC Data-

Loader code and how internal variability works. Specifi-

cally, the figure shows how the code of the variant

HadoopClustering is linked to the code of the PPC Data-

Loader through the weavings. The feature F4 is imple-

mented by the component MeterProcessor, which

implements the algorithms for validating metering data and

calculating optimal vectors. Finally, the feature F5 is

implemented by the PPC MeterProvider. Again, the

architects took advantage of the PPC’s variability mecha-

nism to specify the variability of the feature F6 as internal

variability to the PPC MeterProvider. This PPC imple-

ments the variability of availability through the variability

points Updating and RequestManaging, and the variants

DataMonitoring, Synchronization, LoadBalancing, and

Routing.

The third activity of the case study execution was the

definition of traceability links between the Optimeter fea-

ture model (see Fig. 10) and the Optimeter Flexible-PLA

model (see Fig. 11). The resulting Feature-PLA traceability

model is described as follows (see Fig. 12): The links

ID_001 and ID_002 trace the grouped features BerkelyDB

and Oracle11g to the optional component BerkeleyDB and

Oracle11gDB, respectively. The links ID_001 and ID_002

trace the features DataQueriying and DataLoading to the

PPCs DataLoader and DataQuery, respectively. The fea-

ture group that implements the variability of performance

is traced to the variability point clustering through the link

ID_005. The links ID_006 and ID_007 trace the grouped

features Hadoop and RAC to the variants HadoopCluster-

ing and RealApplicationClusters, respectively. The feature

group that implements the variability of availability is

traced to the variability points Updating and Request-

Managing through the link ID_008. The link ID_009 traces

the grouped feature strict to the variants Synchronization

and LoadBalancing. The link ID_010 traces the grouped

feature non-strict to the variants DataMonitoring and

Routing. All these traceability links store semantic

knowledge. To gain readability, Fig. 12 only shows the

attributes satisfacing, who, and when. The value of the

attribute satisfacing from all of these links is strong posi-

tive. This means that the architectural elements—compo-

nents, PPCs, variants—involved in the links fully satisfy

the expected functionality of the features also involved in

the links. Finally, the link ID_011 traces the variant Syn-

chronization to the feature high performance. This link

shows the value medium negative for the attribute satis-

facing, which means that the synchronization may nega-

tively affect to the performance.

Once the features, the PLA, and the traceability links

were described and modeled by the SPL engineers, the

following activities were the implementation and the test-

ing (see the fourth activity in Sect. 3.3). The resulting

source code (such as the code shown in Fig. 13) is also

linked to the components specified in the Feature-PLA

traceability model. All these activities comprise a typical

domain engineering process in which the commonality and

the variability of a SPL is defined and realized [44]. The

result is a common structure—the OPTIMETER SPL

platform—from which a set of derivative products—

metering management system applications—can be effi-

ciently developed and produced.

Next, Optimeter II started. Each one of the two product

owners involved in the case study selected to implement

two different products:

• A metering management system running over Berkeley

DB and Hadoop, which has to be strictly available 24/7

(product A).

• A metering management system running over Oracle

11g DB and RAC, which has to be available 24/7 but it

is possible to relax this restriction (product B).

At this time, the product engineers configured specific

products according to the products specifications that the

owners expected to get (see the fifth activity in Sect. 3.3).

This means that the product engineers bound the vari-

ability. To do this, the product engineers examined the

Feature-PLA traceability model to ensure that the binding

was correctly performed according to the products spec-

ifications. Hence, the product engineers, by means of the

338 Requirements Eng (2015) 20:323–343

123

link ID_009 in Fig. 12, checked that the configuration of

the product A requires the binding of the variants Syn-

chronization and LoadBalancing in order to meet strict

availability. They also checked, by means of the link

ID_011 in Fig. 12 that the variant Synchronization could

affect the required high performance. Finally, the product

engineers checked, by means of the link ID_010 in

Fig. 12, that the configuration of the product B should

bind the variants DataMonitoring and Routing which

implement a variation less available but that does not

jeopardize performance.

After selecting the specific variants for the products A

and B, the last activity (see the sixth activity in Sect. 3.3)

was performed as follows. This activity consisted of the

generation of the code for the products A and B, i.e., the

binding of the variability at the code-level. To do this, the

product engineers used the FPLA modeling framework to

automatically generate the code for each one of these two

products. Hence, for the product A, the weavings that insert

the code of the variant HadoopClustering into the PPC

DataLoader were automatically generated (see Fig. 13).

Similarly, for the product B, the weavings that insert the

code of the variant RealApplicationClusters into the PPC

DataLoader were automatically generated. In this way, the

PPC DataLoader can be easily configured to support Ha-

doop clustering as shown in Fig. 13, or to support Real

Application Clusters.

The development of these two projects provided the

necessary data to conduct the case study analysis and

interpretation.

4.2.2 Analysis and interpretation

Quantitative and qualitative analysis were used to examine

the data gathered during the case study. The data collected

consisted of the models resulting from the projects (see

Figs. 10, 11, 12), archival data from Redmine, as well as

the questionnaires and interviews performed with the SPL

and product engineers. The analysis of these data has

permitted to find evidence to answer each one of the

research questions:

RQ1: Are Feature-PLA traceability modeling primitives

effective in providing SPL engineers the means for

specifying traceability for most common kinds of

variations that they define on their product family?

The evidence to answer RQ1 is explored through

descriptive statistics that measures the number of variations

of interest for the SPL engineers that they were able to

trace by the modeling primitives provided by the Feature-

PLA traceability model. The number of points of vari-

ability is three—data storage, clustering, and availability—

with a total of six variants—BerkeleyDB and Oracle11g

for data storing, Hadoop and RAC for clustering, and

finally strict and non-strict availability.

The traceability of the variability for data storing was

well supported through links between grouped features and

optional components (see the links ID_001 and ID_002 in

Fig. 12). As the architects took advantage of the PPC’s

variability mechanism to specify internal variability of

components—specifically to specify the variability of

clustering and availability—they required the capability of

tracing this variability which is internal to one or more

components. Hence, the SPL engineers were able to trace

the variants Hadoop and RAC to the architectural elements

that implement these two different clustering technologies

through links between grouped features and variants (see

the links ID_006 and ID_007 in Fig. 12). The SPL engi-

neers were also able to trace the variants strict and non-

strict availability to the architectural elements that imple-

ment two different availability tactics with different repair

time—active and passive redundancy—through links

between grouped features and variants (see the links

ID_006 and ID_007 in Fig. 12).

Therefore, as it can be verified in Fig. 12, the SPL

engineers were able to effectively trace all kinds of vari-

ations they required.

RQ2: Do Feature-PLA traceability models assist and

guide SPL engineer at the time of configuring the

products of their product family?

The evidence to answer RQ2 is assessed by analyzing

the interviews given to the SPL and product engineers.

From these interviews, the following excerpts can be

highlighted:

It could have been very difficult for us—the product

engineers—to be able to determine a valid configu-

ration for a metering management system application

requiring strict or non-strict availability without the

use of the Feature-PLA traceability model (see

Fig. 12).

This means that the use of the Feature-PLA traceability

model of Fig. 12 was particularly useful for the product

engineers to understand the system as they hadn’t been

developed the OPTIMETER SPL platform.

To configure the products A and B, we needed

knowledge that helped us to perform the binding

according to their respective requirements. Without

the knowledge provided by the Feature-PLA trace-

ability model (see Fig. 12), it may had been difficult

to know (1) if a metering management system appli-

cation requiring strict availability had to implement

the services for synchronization and load balancing,

or (2) if a metering management system application

Requirements Eng (2015) 20:323–343 339

123

requiring non-strict availability had to implement the

services for routing and data monitoring. This means,

without the traceability model, we hadn’t feel confi-

dent about whether the variants we bound imple-

mented all the services to satisfy the requirements of

the products A and B. So the traces between (1) the

feature strict availability to the variants Synchroni-

zation and LoadBalancing, and (2) the feature non-

strict availability to the variants Routing and Dat-

aMonitoring were really useful to ensure that the

ginding of variability was realized correctly.

Feature-PLA traceability models may be useful to

identify where a feature is implemented in the PLA.

As a result, it may also be useful to identify, given a

change in a feature, where the change impacts the

PLA. From the Feature-PLA traceability model of

Fig. 12, it is easy to observe that a change in the

tactic to implement strict availability may impact the

variants Synchronization and LoadBalancing. Per-

haps, this is not easy to locate in the code, but by

making it available at the architecture-level, Feature-

PLA traceability models facilitate this task. This

impact knowledge may help us to correctly imple-

ment a change while maintaining the integrity of the

architecture.

These excerpts from the SPL and product engineers put

in evidence that our solution for tracing variability assisted

and helped them at the time of configuring the two

metering management systems (products A and B) from

the OPTIMETER PLA.

4.2.3 Evaluation of validity

Case studies are qualitative in nature. For this reason,

collected data from case studies are usually very difficult to

be objectively judged [61]. To improve the internal validity

of the results presented, the independent variables that

could influence this case study have been identified as

follows: The engineer’s experience has a great influence.

Its influence has been reduced as the expertise of the

engineers who participated in the case study were very

different (1 vs. 7 years). However, the influence of pro-

ject’s size and architecture’s complexity cannot be reduced

due to the inherent nature of case studies, which normally

focus on one project. Also to improve the internal validity

of the results, triangulation of source data has been used to

increase the reliability of the results. In this regard, inter-

views were individually conducted with the engineers,

although several questions were asked in a group setting to

encourage discussion.

Construct validity is concerned with the procedure to

collect data and with obtaining the right measures for the

concept being studies. It addresses among others misin-

terpretation of interview questions which was mitigated by

discussing the interpretations of interviews with the inter-

viewees to validate them.

However, the major limitation in case study research

concerns external validity, i.e., ‘‘the generality of the

results with respect to a specific population’’ [57], as only

one case is studied. In return, case studies allow one to

evaluate a phenomenon, a model, or a process in a real

setting. This is something important in software engineer-

ing in which a multitude of external factor may affect to the

validation results, and that other techniques such as formal

experiments, although they permit replication and gener-

alization, do not consider as they are conducting under

controlled settings.

Reliability is concerned with replication, in case studies

with the fact that the same results would be found if

redoing the analysis. This is why interviews were recorded

and interpretations were reviewed by other participants in

the study in order to avoid researcher bias.

4.3 Case study conclusions

We obtained evidence of the viability of the Feature-PLA

traceability model through the execution of a case study

performed in an experimental laboratory called i-smart

software factory. It combines both academic and industrial

efforts in R&D, with remarkable facilities for tracking the

projects’ progress. The case study puts the proposed

traceability solution into practice within the development

of a SPL of power metering management systems for smart

grids. The results show evidence of that (1) the Feature-

PLA traceability modeling primitives were effective in

providing the capabilities for tracing most common kinds

of variations that the SPL engineers required define, and (2)

the Feature-PLA traceability provided knowledge that

helped the product engineers to make better decisions at the

time of configuring the products A and B during Optimeter

II as they did not know the OPTIMETER SPL platform

because they had not participated on its construction during

Optimeter I. These promising results did not interfere with

other practices and did not incur a big cost, making

traceability possible. However, the use of the Feature-PLA

traceability model requires to know and understand the

modeling concepts on which they are based on, as well as

to learn the usage of the FPLA modeling framework. The

learning curve of these concepts as well as the usage of

FPLA could slow down the process of putting traceability

into practice. In fact, the SPL engineers expressed reluc-

tance at the time of putting traceability into practice,

although later, the product engineers found this traceability

essential to do their work during the configuration of var-

iability to derive the products A and B.

340 Requirements Eng (2015) 20:323–343

123

5 Related work

Recently, there has been a growing recognition of the

importance of traceability in SPLE, which has resulted in

more and more research in this area. Hence, Moon et al.

[36] defined a variability trace metamodel that connects

two metamodels: a metamodel for requirements and a

metamodel for architecture. Ajila et al. [3] presented an

evolution model that defines a dependency relationship

structure of various SPL artifacts. Satyananda et al. [49]

presented a framework for formally identifying traceability

between feature and architecture models using formal

concept analysis, functional decomposition, and a set of

mapping analysis rules. Finally, Berg et al. [10] also

defined a conceptual variability model that captures vari-

ability information across the various artifacts involved in

the SPLE development. All these approaches16 offer sup-

port for tracing SPL, including traceability of variability.

The granularity of traceability links relies largely on the

granularity of elements to be traced, whether requirements,

architectural elements, or classes. The approaches before

mentioned support architectural variability by adding or

removing components or connections. However, these

approaches do not have the capabilities for tracing the

variability that is internal to components, i.e., variations

that have fine granularity and cannot be designed as com-

ponents. In this sense, our traceability model takes an step

forward due to the fact that it is based on the Flexible-PLA

model which allows SPL engineers to specify both external

and internal variability thanks to the PPC’s variability

mechanism. The fact that internal variability can crosscut

several components, and that is modularized and reused by

PPCs (i.e., this variability is not scattered through these

components), makes it easier its traceability. Therefore, our

approach makes both coarse-grained and fine-grained

traceability possible.

Additionally, Satyananda et al. [49] defined a set of

mapping analysis rules similar to the linkage rules we

propose. These rules are textually described while the

linkage rules we propose are formally stated by the Fea-

ture-PLA traceability model. Models are completely sub-

ject to automation, which (1) makes it easier to define

traceability links while their correctness is guaranteed by

model-conformation, (2) promotes learning and reasoning

over the knowledge they contain, and (3) provides the

capabilities to (semi-)automatically generate other arti-

facts, such as code, through model transformations.

Finally, it is important to mention the work of Anquetil

et al. [4] that defined a common traceability framework

across the various activities of SPL development and

specified a metamodel for a repository of traceability links.

This framework provides a big picture of traceability for

SPL by offering modeling primitives for tracing any arti-

fact involved in the SPL development. This complete

framework does not embed all these artifacts but embed

references to them in order to make manageable the high

number of artifacts that a complete SPL construction

requires to trace. As a result, sources and targets of trace-

ability links are paths where the artifacts are stored or can

be found (documents, diagrams, or classes). The fact that

these artifacts are external to the traceability model makes

it difficult to guarantee that a change in an artifact is also

updated in the traceability model. Additionally, this arti-

facts outsourcing makes it difficult to understand the

traceability models and their usage as a guidance during the

configuration of the products of a SPL while ensuring that

the variability binding meets the product requirements.

This is due to the fact that the relationships inside artifacts

(e.g., a feature has a XOR feature group) are not included

in the traceability framework and traceability links do not

contain rationale and information about the traceability-

making process. The Feature-PLA traceability model

reduces its scope by focusing on the traceability between

feature and PLA models and prioritizes the knowledge and

guidance that traceability models can provide during SPL

product configuration to ensure the requirements compli-

ance. This is supported by including the source and target

artifacts—the feature and PLA models—into the trace-

ability model, as well as their relationships, and enriching

traceability links with rationale and information about the

traceability-making process.

6 Conclusions and further work

SPLE is facing new challenges, being one of the most

important the traceability of variability. To deal with this

challenge, this paper presents a solution for tracing feature

and PLA models called Feature-PLA traceability model, as

well as the modeling framework that support it. The Fea-

ture-PLA traceability model defines a set of linkage rules to

trace variable features to both the coarse-grained variability

of complex components—external variability—and the

fine-grained variability of simple components—internal

variability.

The description and the traceability of the variability

that is internal to one or many components is as important

as the description and the traceability of the external var-

iability. It is essential to cope with most kinds of variation

that SPL engineers could define on their product families.

Supporting both coarse-grained and fine-grained trace-

ability of variability helps product engineers at the time of

configuring this variability to derive products. This means

16 Although other papers propose other traceability approaches [40,

43,46], we did not include them here as they do not consider SPLE.

Requirements Eng (2015) 20:323–343 341

123

that product engineers can examine Feature-PLA trace-

ability models to ensure that variability bindings satisfy the

product requirements.

As future work, the knowledge stored in Feature-PLA

traceability models could be used to analyze the impact of

changing requirements, i.e., to analyze how a change in

features may affect the architecture by traversing the traces

that link them. This was suggested by the engineers

involved in the case study during the interviews. Addi-

tionally, the knowledge currently stored could be extended

to capture more types of knowledge, such as domain

knowledge, design decisions, assumptions.

The Feature-PLA traceability model and its usage still

have several limitations that should be addressed in the

near future. The main one is scalability, such as a scalable

visualization. However, this limitation is more related to

the algorithms to leverage and visualize the traceability

knowledge than the expressiveness of the traceability

model.

Acknowledgments The work reported in here has been partially

sponsored by the Spanish fund: INNOSEP (TIN2009-13849), IMP-

ONET (ITEA 2 09030, TSI-02400-2010-103), i-SSF (IPT-430000-

2010-038), NEMO&CODED (ITEA2 08022, IDI-20110864), and

ENERGOS (CEN-20091048). Finally, it is also funded by the UPM

(Technical University of Madrid) under their researcher training

program.

References

1. Adachi Barbosa E, Batista T, Garcia A, Silva E (2011) Pl-as-

pectualacme: an aspect-oriented architectural description lan-

guage for software product lines. In: Crnkovic I, Gruhn V, Book

M (eds) Software architecture, lecture notes in computer science,

vol 6903, Springer, Berlin, pp 139–146

2. Aizenbud-Reshef N, Nolan BT, Rubin J, Shaham-Gafni Y (2006)

Model traceability. IBM Syst J 45(3):515–526. doi:10.1147/sj.

453.0515

3. Ajila S, Kaba A (2004) Using traceability mechanisms to support

software product line evolution. In: Information reuse and inte-

gration, 2004. IRI 2004. Proceedings of the 2004 IEEE Interna-

tional Conference on, pp 157–162. doi:10.1109/IRI.2004.

1431453

4. Anquetil N, Kulesza U, Mitschke R, Moreira A, Royer JC,

Rummler A, Sousa A (2009) A model-driven traceability

framework for software product lines. Software and systems

modeling, p 25. doi:10.1007/s10270-009-0120-9. URL: http://

www.springerlink.com/content/wvm4hv8r78117785

5. Antkiewicz M, Czarnecki K (2004) Featureplugin: feature mod-

eling plug-in for eclipse. In: eclipse ’04: Proceedings of the 2004

OOPSLA workshop on eclipse technology eXchange. ACM, New

York, NY, USA, pp 67–72. doi:10.1145/1066129.1066143

6. Bachmann F, Bass L (2001) Managing variability in software

architectures. In: SSR ’01: Proceedings of the 2001 symposium

on Software reusability. ACM, New York, NY, USA,

pp 126–132. doi:10.1145/375212.375274

7. Bachmann F, Goedicke M, Leite J, Nord R, Pohl K, Ramesh B,

Vilbig A (2004) A meta-model for representing variability in

product family development. In: Linden F (eds) Software

product-family engineering, lecture notes in computer science,

vol 3014, Springer, Berlin, pp 66–80

8. Bass L, Clements P, Kazman R (2003) Software architecture in

practice. Addison-Wesley Pearson Education, Boston, MA, USA

9. Benavides D, Segura S, Ruiz-Cortés A (2010) Automated ana-

lysis of feature models 20 years later: a literature review. Inf Syst

35(6):615–636

10. Berg K, Bishop J, Muthig D (2005) Tracing software product line

variability: from problem to solution space. In: SAICSIT ’05:

Proceedings of the 2005 annual research conference of the South

African institute of computer scientists and information tech-

nologists on IT research in developing countries. South African

Institute for Computer Scientists and Information Technologists,

Republic of South Africa, pp 182–191

11. Beydeda S, Book M, Gruhn V (2005) Model-driven software

development. Springer, Berlin

12. Bezivin J (2005) On the unification power of models. Softw Syst

Model 4(2):171–188

13. Cleland-Huang J, Gotel O, Zisman A (2012) The grand challenge

of traceability (v1.0). Springer, London

14. Clements P, Northrop L (2002) Software product lines: practices

and patterns. Addison-Wesley, Boston, MA, USA

15. Czarnecki K (2005) Mapping features to models: a template

approach based on superimposed variants. In: GPCE 2005—

generative programming and component engineering. 4th inter-

national conference. Springer, pp 422–437

16. Dashofy EM, Hoek AVD (2002) Representing product family

architectures in an extensible architecture description language.

In: PFE ’01: revised papers from the 4th international work-

shop on software product-family engineering. Springer,

pp 330–341

17. Dı́az J, Pérez J, Garbajosa J, Yagüe A (2013) Change-impact

driven agile architecting. In: Proceedings of the 46th Hawaii

international conference on system sciences (HICSS ’13),

Hawaii, USA, 7–10 Jan 2013, IEEE Computer Society Press,

pp 4780–4789

18. Espinoza A, Garbajosa J (2008) A proposal for defining a set of

basic items for project-specific traceability methodologies. In:

Software engineering workshop, 2008. SEW ’08. 32nd Annual

IEEE, pp 175–184

19. Gotel O et al (2012) The grand challenge of traceability (v10). In:

Cleland-Huang J, Gotel O, Zisman A (eds) Software and systems

traceability, Springer, London, pp 343–409

20. Gotel O, Finkelstein C (1994) An analysis of the requirements

traceability problem. In: Proceedings of the first international

conference on requirements engineering, pp 94–101. doi:10.1109/

ICRE.1994.292398

21. Hauser JR, Clausing D (1988) The house of quality. Harv Bus

Rev 66(3):63–73

22. Jacobson I, Griss M, Jonsson P (1997) Software reuse. architec-

ture, process and organization for business success. Addison-

Wesley, Boston

23. Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990)

Feature-oriented domain analysis (foda) feasibility study. Tech.

rep., Carnegie-Mellon University, Pittsburgh, PA, USA, CMU/

SEI-90-TR-21 ESD-90-TR-222

24. Khurum M, Gorschek T (2009) A systematic review of domain

analysis solutions for product lines. J Syst Softw 82(12):1982–

2003

25. Kizcales G, Lamping J, Mendhekar A, Maeda C (1997) Aspect-

oriented programming. In: Proceedings of the 11th European

conference on object-oriented programming (ECOOP), lecture

notes in computer science, vol 1241. Springer

26. Kolovos DS, Paige RF, Polack FAC (2006) On-demand merging

of traceability links with models. In: In Proceedings of 3 rd

ECMDA traceability workshop

342 Requirements Eng (2015) 20:323–343

123

http://dx.doi.org/10.1147/sj.453.0515
http://dx.doi.org/10.1147/sj.453.0515
http://dx.doi.org/10.1109/IRI.2004.1431453
http://dx.doi.org/10.1109/IRI.2004.1431453
http://dx.doi.org/10.1007/s10270-009-0120-9
http://www.springerlink.com/content/wvm4hv8r78117785
http://www.springerlink.com/content/wvm4hv8r78117785
http://dx.doi.org/10.1145/1066129.1066143
http://dx.doi.org/10.1145/375212.375274
http://dx.doi.org/10.1109/ICRE.1994.292398
http://dx.doi.org/10.1109/ICRE.1994.292398

27. Letelier P (2002) A framework for requirements traceability in

uml-based projects. In: In Proceedings of 1st International.

Workshop on traceability in emerging forms of software engi-

neering, pp 32–41

28. Loughran N, Sánchez P, Garcia A, Fuentes L (2008) Language

support for managing variability in architectural models. In:

SC’08: Proceedings of software composition, 7th international

symposium, lecture notes in computer science, vol 4954,

Springer, pp 36–51

29. Magee J, Kramer J (1996) Dynamic structure in software archi-

tectures. In: Proceedings of the 4th ACM SIGSOFT symposium

on foundations of software engineering, SIGSOFT ’96, ACM,

New York, NY, USA, pp 3–14

30. Mahdavi-Hezavehi S, Galster M, Avgeriou P (2013) Variability

in quality attributes of service-based software systems: a sys-

tematic literature review. Inf Softw Technol 55(2):320–343

31. Martin JL, Yague A, Gonzalez E, Garbajosa J (2010) Making

software factory truly global: the smart software factory project.

In: Fagerholm F (ed) Software factory magazine. http://www.

softwarefactory.cc/magazine, p 19

32. Massoud Amin S, Wollenberg B (2005) Toward a smart grid:

power delivery for the 21st century. Power Energy Mag IEEE

3(5):34–41. doi:10.1109/MPAE.2005.1507024

33. Matinlassi M (2004) Comparison of software product line

architecture design methods: COPA, FAST, FORM, KOBRA and

QADA. In: ICSE ’04: Proceedings of the 26th international

conference on software engineering. IEEE Computer Society,

Washington, DC, USA, pp 127–136

34. Medvidovic N, Taylor RN (2000) A classification and compari-

son framework for software architecture description languages.

IEEE Trans Softw Eng 26(1):70–93. doi:10.1109/32.825767

35. Mens T (2010) Future research challenges in software evolution

and maintenance—report from EC expert meeting. ERCIM News

81

36. Moon M, Chae HS, Nam T, Yeom K (2007) A metamodeling

approach to tracing variability between requirements and archi-

tecture in software product lines. In: CIT ’07: Proceedings of the

7th IEEE international conference on computer and information

technology, IEEE Computer Society, Washington, DC, USA,

pp 927–933

37. Object Management Group (2006) Data distribution service for

real-time systems, v1.2

38. Object Management Group (2006) Meta-object facility (MOF)

specification 2.0 TR formal-06-01-01. http://www.omg.org/spec/

MOF/2.0/PDF/

39. Object Management Group (2011) OCL specification version 2.2.

http://www.omg.org/spec/OCL/2.2/

40. Olsen G, Oldevik J (2007) Scenarios of traceability in model to

text transformations. In: Akehurst D, Vogel R, Paige R (eds)

Model driven architecture: foundations and applications, lecture

notes in computer science, vol 4530, Springer, Berlin,

pp 144–156

41. Pérez J, Dı́az J, Soria CC, Garbajosa J (2009) Plastic partial

components: a solution to support variability in architectural

components. In: Proceedings of joint working IEEE/IFIP con-

ference on software architecture 2009 and European conference

on software architecture 2009, WICSA/ECSA 2009, Cambridge,

UK, 14–17 Sept 2009. IEEE, pp 221–230

42. Pérez J, Dı́az J, Garbajosa J, Alarcón PP (2010) Flexible working

architectures: agile architecting using ppcs. In: Proceedings of the

4th European conference on software architecture (ECSA 2010),

LNCS, Springer, Berlin, pp 102–117

43. Pohl K, Brandenburg M, Gülich A (2001) Integrating require-

ment and architecture information: a scenario and meta-model

approach. In: REFSQ’01: Proceedings of The seventh interna-

tional workshop on requirements engineering: foundation for

software quality, pp 68–84

44. Pohl K, Böckle G, Linden F (2005) Software product line engi-

neering: foundations, principles and techniques. Springer,

Germany

45. Poshyvanyk D, Di Penta M, Kagdi H (2011) Sixth international

workshop on traceability in emerging forms of software engi-

neering: (tefse 2011). In: 33rd international conference on soft-

ware engineering (ICSE 2011), pp 1214–1215. doi:10.1145/

1985793.1986052

46. Ramesh B, Jarke M (2001) Toward reference models for

requirements traceability. IEEE Trans Softw Eng 27(1):58–93.

doi:10.1109/32.895989

47. Runeson P, Höst M (2009) Guidelines for conducting and

reporting case study research in software engineering. Empir

Softw Eng 14:131–164

48. Runeson P, Höst M, Rainer A, Regnell B (2012) Case study

research in software engineering: guidelines and examples.

Wiley, Hoboken

49. Satyananda TK, Lee D, Kang S, Hashmi SI (2007) Identifying

traceability between feature model and software architecture in

software product line using formal concept analysis. In: Pro-

ceedings of the international conference computational science

and its applications. IEEE Computer Society, Washington, DC,

USA, pp 380–388

50. Schwaber K, Beedle M (2002) Agile software development with

scrum. Prentice-Hall, Englewood Cliffs

51. Scott J, Kazman R (2009) Realizing and refining architectural

tactics: Availability. Tech. rep., CMU/SEI-2009-TR-006 ESC-

TR-2009-006, Pittsburgh, USA

52. Selic B (2003) The pragmatics of model-driven development.

IEEE Softw 20(5):19–25. doi:10.1109/MS.2003.1231146

53. Staab S, Walter T, Grner G, Parreiras F (2010) Model driven

engineering with ontology technologies. In: Amann U, Bartho A,

Wende C (eds) Reasoning web semantic technologies for soft-

ware engineering, Lecture Notes in Computer Science, vol. 6325,

Springer, Berlin, pp 62–98

54. Stake RE (1995) The art of case study research. Sage, London

55. Szyperski C (2002) Component software: beyond object-oriented

programming. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA

56. Taha WM (2009) Domain-specific languages IFIP TC 2 working

conference, DSL, lecture notes in computer science, vol 5658.

Springer, Berlin

57. van Heesch U, Avgeriou P, Hilliard R (2012) A documentation

framework for architecture decisions. J Syst Softw 85(4):

795–820. doi:10.1016/j.jss.2011.10.017

58. van der Hoek A, Heimbigner D, Wolf AL (1999) Capturing

architectural configurability: variants, options, and evolution.

Tech. rep., Technical Report CU-CS-895-99, Department of

Computer Science, University of Colorado, Boulder, Colorado

59. van Ommering R, van der Linden F, Kramer J, Magee J (2000)

The koala component model for consumer electronics software.

Computer 33(3):78–85. doi:10.1109/2.825699

60. Weiler T (2003) Modelling architectural variability for software

product lines. In: SVM’03: Proceedings of the software vari-

ability management workshop, pp 53–61

61. Yin R (2008) Case study research. Design and methods. 4th edn.

Sage, London

Requirements Eng (2015) 20:323–343 343

123

http://www.softwarefactory.cc/magazine
http://www.softwarefactory.cc/magazine
http://dx.doi.org/10.1109/MPAE.2005.1507024
http://dx.doi.org/10.1109/32.825767
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/OCL/2.2/
http://dx.doi.org/10.1145/1985793.1986052
http://dx.doi.org/10.1145/1985793.1986052
http://dx.doi.org/10.1109/32.895989
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1016/j.jss.2011.10.017
http://dx.doi.org/10.1109/2.825699

Copyright of Requirements Engineering is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	A model for tracing variability from features to product-line architectures: a case study in smart grids
	Abstract
	Introduction
	Background
	The feature model
	The Flexible-PLA model

	Feature-PLA traceability model
	Abstract syntax: metamodel description
	Concrete syntax: graphical language description
	Feature-PLA traceability model in practice

	Case study
	Case study design
	Research objective and questions
	Data collection procedure
	Analysis and validity procedure
	Case study description
	Subject description

	Results
	Case study execution
	Analysis and interpretation
	Evaluation of validity

	Case study conclusions

	Related work
	Conclusions and further work
	Acknowledgments
	References

