
Hydrol. Earth Syst. Sci., 21, 6401–6423, 2017
https://doi.org/10.5194/hess-21-6401-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development of a monthly to seasonal forecast framework tailored
to inland waterway transport in central Europe
Dennis Meißner1, Bastian Klein1, and Monica Ionita2,3

1Federal Institute of Hydrology, 56068 Koblenz, Germany
2Alfred-Wegener-Institute, 27568 Bremerhaven, Germany
3MARUM, Bremen University, Bremen, Germany

Correspondence: Dennis Meißner (meissner@bafg.de)

Received: 18 May 2017 – Discussion started: 29 May 2017
Revised: 22 September 2017 – Accepted: 2 November 2017 – Published: 15 December 2017

Abstract. Traditionally, navigation-related forecasts in cen-
tral Europe cover short- to medium-range lead times linked to
the travel times of vessels to pass the main waterway bottle-
necks leaving the loading ports. Without doubt, this aspect is
still essential for navigational users, but in light of the grow-
ing political intention to use the free capacity of the inland
waterway transport in Europe, additional lead time support-
ing strategic decisions is more and more in demand. How-
ever, no such predictions offering extended lead times of sev-
eral weeks up to several months currently exist for consider-
able parts of the European waterway network.

This paper describes the set-up of a monthly to seasonal
forecasting system for the German stretches of the interna-
tional waterways of the Rhine, Danube and Elbe rivers. Two
competitive forecast approaches have been implemented: the
dynamical set-up forces a hydrological model with post-
processed outputs from ECMWF general circulation model
System 4, whereas the statistical approach is based on the
empirical relationship (“teleconnection”) of global oceanic,
climate and regional hydro-meteorological data with river
flows. The performance of both forecast methods is evalu-
ated in relation to the climatological forecast (ensemble of
historical streamflow) and the well-known ensemble stream-
flow prediction approach (ESP, ensemble based on historical
meteorology) using common performance indicators (cor-
relation coefficient; mean absolute error, skill score; mean
squared error, skill score; and continuous ranked probability,
skill score) and an impact-based evaluation quantifying the
potential economic gain.

The following four key findings result from this study:
(1) as former studies for other regions of central Europe indi-
cate, the accuracy and/or skill of the meteorological forcing
used has a larger effect than the quality of initial hydrological
conditions for relevant stations along the German waterways.
(2) Despite the predictive limitations on longer lead times
in central Europe, this study reveals the existence of a valu-
able predictability of streamflow on monthly up to seasonal
timescales along the Rhine, upper Danube and Elbe water-
ways, and the Elbe achieves the highest skill and economic
value. (3) The more physically based and the statistical ap-
proach are able to improve the predictive skills and economic
value compared to climatology and the ESP approach. The
specific forecast skill highly depends on the forecast loca-
tion, the lead time and the season. (4) Currently, the statisti-
cal approach seems to be most skilful for the three waterways
investigated. The lagged relationship between the monthly
and/or seasonal streamflow and the climatic and/or oceanic
variables vary between 1 month (e.g. local precipitation, tem-
perature and soil moisture) up to 6 months (e.g. sea surface
temperature).

Besides focusing on improving the forecast methodology,
especially by combining the individual approaches, the focus
is on developing useful forecast products on monthly to sea-
sonal timescales for waterway transport and to operationalize
the related forecasting service.
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Figure 1. Diagram of the interaction between hydrologic conditions (water level), waterway parameters (fairway depths), specific navigation
thresholds and transport costs.

1 Introduction

Competitive transport systems are vital for Europe’s pros-
perity and its economic growth and the demand, especially
for freight transport, will significantly increase within the
coming years. Besides safeguarding a high degree of effi-
ciency, accessibility and safety, today’s European and na-
tional transport policy is clearly oriented towards sustain-
able and energy-efficient transport systems. In this regard,
the importance of inland waterway transport (IWT) will fur-
ther increase, because it is an environmentally friendly and
safe mode of transport, which still has plenty of spare ca-
pacity (European Commission, 2001). But IWT also faces a
few drawbacks. Besides the low transport velocity and the
comparatively low network density, the natural variability of
the fairway conditions and the availability along substantial
parts of the European waterway network pose the main weak-
nesses. In this respect, low streamflows, floods and river ice
are the significant hydrological hazards concerning IWT in
central Europe. The relevance of these impacts depends on
the geographical position, the season and the characteristic
of the waterway (Nilson et al., 2012; Meißner and Klein,
2016). The main vulnerability of IWT with regard to hydro-
logical impacts, results from (long-lasting) droughts leading
to low streamflow and low water levels along the free-flowing
waterways, which represent a substantial share of Europe’s
inland waterway network. Although there is no low-water
threshold beyond which navigation is prohibited, low wa-
ter levels and the corresponding reduced water depths are a
limiting factor. During low-flow situations, additional (small)
ships are needed to handle the same amount of cargo as dur-
ing periods with mean water-level conditions. This causes
increasing transport costs (see Fig. 1). Especially in the case
of extreme or long-lasting low-flow periods, the available
small-ship volume is limited compared to the transport de-
mand and goods have to be shifted to other modes of trans-
port, that is if this is technically possible and if transport vol-
ume is available. Besides determining the maximum cargo-
carrying capacity the water level affects energy consumption

and time of travel, altogether being reflected in the transport
costs. Figure 1 depicts the close correlations between water
level, fairway and vessel parameters and transportation costs.
Furthermore, low-flow situations increase the danger of ship
grounding and ship-to-ship collisions due to a reduced depth
and width of the affected fairways.

Originally, navigation-related forecasts have been devel-
oped in order to primarily support the individual skipper, who
aims at maximizing the load of an upcoming trip. Therefore
current lead times of water level forecasts for the central Eu-
ropean waterways range from one to several days complying
with the travel time of the vessels to pass the main bottle-
necks of a waterway leaving the loading port. Such forecasts
allowing short-term operational decision-making remain vi-
tal to the waterway transport sector, but there is an increas-
ing demand for additional forecast information going be-
yond this short- to medium-range (Klein and Meißner, 2016;
Meißner and Klein, 2017). Extended forecast lead times offer
the possibility to sustainably increase IWT efficiency and to
support medium- to long-term waterway management. In the
context of the EU-founded project EUPORIAS (European
Provision Of Regional Impacts Assessments on Seasonal and
Decadal Timescales; www.euporias.eu) the specific vulnera-
bility of the waterway transportation sector on the Rhine was
analysed and a prototypical service, called SOS RHINE, was
designed with the collaboration of the German and the Dutch
meteorological services and the German Federal Institute of
Hydrology (Funk et al., 2015). However, so far, no such fore-
casts exist for the main parts of the trans-European water-
way network – primarily due to the limited skill of long-term
hydro-meteorological forecasts in northern extratropical re-
gions when compared to other parts of the world (Ionita et
al., 2008; Domeisen et al., 2015). Associated with this, there
is still widespread scepticism about whether seasonal predic-
tions can be trustworthy for decision-making in practice.

Despite the predictive limitations, several studies prove
skill for seasonal river flow forecasts in different parts of Eu-
rope (Wilby et al., 2004; Gámiz-Fortis et al., 2008; Ionita
et al., 2012, 2014). In recent years, multiple region-specific
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forecast methods and systems have been developed to pre-
dict hydrological variables several weeks and months in ad-
vance to anticipate water availability in Europe (Olsson et
al., 2016; Svensson, 2016; Demirel et al., 2015; Gelfan et al.,
2015; Fundel et al., 2013, Jörg-Hess et al., 2015). The most
common objectives behind these systems are water supply,
reservoir operations and hydropower. The European Flood
Awareness System (EFAS; Bartholmes et al., 2009) also pub-
lishes a seasonal hydrological outlook with a lead time of up
to 2 months since 2016. This outlook offers Europe-wide ho-
mogenous information on surplus or deficit water resources
as weekly averages aggregated for major hydrological units.
Nevertheless the generation of early warning flood informa-
tion up to 2 weeks ahead for regional, national or Euro-
pean authorities remains the focal point of EFAS, but the
seasonal products supplement this continental hydrological
information service. Regarding the underlying methodolo-
gies applied in seasonal hydrological forecasting, two cat-
egories, aside from using observed climatology, are usu-
ally distinguished: dynamical and statistical approaches (e.g.
Crochemore et al., 2016, and references therein). Although
the models of the second category rely on the statistical re-
lationship between various observed predictors and the hy-
drological predictand (Demirel et al., 2013), the methods
of the first category use seasonal meteorological forecasts
and hydro-meteorological observations to drive hydrologi-
cal models. Ensemble streamflow prediction (ESP) is proba-
bly the most famous dynamical approach applied already for
many years in research contexts as well as in operational ap-
plications (Day, 1985; Wood et al., 2002; see also Sect. 3.3).
The choice between the different approaches is usually based
on the purpose and the region of the forecast as well as the
availability of models and data, but sometimes the princi-
ples and philosophy within the executing institutions also in-
fluence such a decision. In addition, to use the two afore-
mentioned methods alongside some studies show that within
so-called hybrid or mixed approaches statistical and dynam-
ical methods could complement each other leading to an in-
creased forecast performance (Robertson et al., 2013).

This paper describes the set-up and performance of a
monthly to seasonal forecasting framework for the major wa-
terways crossing Germany, namely the Rhine, Danube and
Elbe. The work was initiated by the Federal Institute of Hy-
drology, which is in charge of developing, maintaining and
operating the navigation-related forecasting systems for the
German waterways, realizing the high demand of long-term
hydrological forecasts by the transport sector. The paper is
structured as follows: first we describe the study area focus-
ing on the hydrological characteristics relevant for IWT. This
is followed by the specification of the forecasting methods
and the underlying data implemented in the framework. Af-
ter defining the methods and metrics to evaluate forecast skill
and value, Sect. 4 shows the intercomparison of the different
approaches. In Sect. 5 the main conclusions are discussed
and an outlook on the forthcoming steps to an operational

monthly to seasonal forecasting service tailored to IWT is
given.

2 Study domain – the German waterways

The European inland waterways offer a more than 40 000 km
network of canals, rivers and lakes connecting cities and
industrial regions across the continent. The German inland
waterway network – an integral part of the trans-European
waterway system – comprises about 7350 km, of which ap-
proximately 75 % are rivers and 25 % canals. The major in-
land waterways with regard to freight transport are the Rhine
(with its tributaries Neckar, Main, Moselle and Saar) and
the Danube, as well as parts of the Elbe and some canals
interconnecting the natural waterways. About two-thirds of
the German waterways are of international relevance, where-
upon the importance of the Rhine is outstanding: with almost
200 million tons transported along the Rhine per year (ap-
proximately two-thirds of the European IWT volume). The
Rhine is not solely Germany’s but also Europe’s most im-
portant inland waterway (CCNR, 2016). Approximately one-
third of the rivers in Germany used as waterways are free-
flowing, so they are particularly affected by low flows as the
dominating hydro-meteorological impact on IWT. Therefore
this study focusses on the free-flowing stretches of the in-
ternational waterways of the Rhine, Danube and Elbe (see
Fig. 2).

The River Rhine, with a total length of 1230 km, drains
an area of approx. 200 000 km2 with a mean flow rate of ap-
prox. 2500 m3 s−1 at its mouth in the North Sea. It is ship-
pable for large vessels between Rotterdam and Basel on a
length of about 800 km. Although the main shippable tribu-
taries of the River Rhine are impounded, offering a guaran-
teed fairway depth, the Rhine itself is a free-flowing water-
way between Iffezheim–Karlsruhe and the beginning of the
delta near Pannerdensche Kop in the Netherlands (approx-
imately 500 km). The flow regime of the River Rhine (see
right panel of Fig. 2) shifts in downstream direction from a
snow-dominated regime (nival, e.g. gauge Maxau) induced
by the Alps to a complex flow regime in the middle (gauge
Kaub) and lower Rhine stretch (gauge Ruhrort) due to the
increasing influence of the rainfall-dominated (pluvial) flow
regimes of the major tributaries (Neckar, Main, Moselle).
Low flows, leading to restrictions for waterway transport,
typically occur in the River Rhine in late summer and autumn
due to high evaporation and low melt water input from the
Alpine region (Funk et al., 2015). The River Danube, with a
total length of 2826 km, drains an area of 817 000 km2 with a
mean flow rate of approximately 6500 m3 s−1. It is shippable
on a length of 2415 km between Kelheim and the Black Sea.
The German part of the waterway (ca. 220 km) is impounded
offering a minimum fairway depth of 2.70 up to 2.90 m, ex-
cept for a 70 km section between Straubing and Vilshofen
an der Donau. The flow regime in this critical stretch for
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Figure 2. Map showing the German stretches of the international waterways the Rhine, Danube and Elbe (a), for relevant gauges (black dots)
the long-term monthly mean flow rates (1981–2000) are visualized (b).

waterway transport is pluvio-nival with a complex broad-
peaked runoff shape resulting from an overlapping of rain-
fall and snowmelt influences. Autumn is the typical low-flow
season, often extended to the winter months. Further down-
stream after the Alpine river Inn enters the Danube, the flow
regime changes to a nival regime (see gauges Kienstock and
Nagymaros). The Elbe, with a total length 1090 km, drains
an area of approx. 150 000 km2 with a mean flow rate of
approximately 860 m3 s−1. About 930 km are shippable be-
tween Pardubice in the Czech Republic and the mouth in the
North Sea at Cuxhaven, Germany. The stretch upstream of
Geesthacht up to the German–Czech border (nearly 600 km)
is free-flowing. The Elbe between Dresden and Neu Dar-
chau shows pronounced pluvial runoff regimes with maxi-
mum flows in late winter to spring and lowest flow values
in summer and autumn. Compared to the Rhine and Danube,
the low-flow season relevant for waterway transport already
starts in early summer and lasts until autumn. Figure 2b vi-
sualizes the flow regime of the three waterways represented
by the long-term monthly mean flow rate at selected gauges
(period 1981–2010).

In order to analyse the performance of the different fore-
cast approaches implemented in the forecast framework, as
described in the following sections, one gauge at the Rhine,
Danube and Elbe has been selected, which is of special rel-
evance for navigation along the particular waterway (black

dots, bold labels in Fig. 2). Gauge Kaub is an especially
prominent station: up to 4500 requests per day on the current
short-term forecasts, which are published via the river infor-
mation system ELWIS (www.elwis.de), are recorded during
low flows. Table 1 gives an overview of characterizing statis-
tics of the three selected gauges. The mean flow has been
calculated as the arithmetic mean of the daily flows within
the reference period (listed in Table 1), while the mean low
flow is calculated as the arithmetic mean of the lowest daily
flows of each year within the particular reference period.

3 Forecast framework

3.1 Input data and hydrological model

Various sorts of input data from different providers have been
integrated into the monthly to seasonal forecasting frame-
work presented in this study. The basic requirement is that
all data sources are operationally available, that means the
data are continuously updated near real time. The input data
selected could be grouped as hydrological measurements, cli-
mate and reanalysis data or seasonal meteorological fore-
casts.

Measured streamflow and water-level data (daily mean
values) at the gauges relevant for navigation were pro-
vided by the Federal Waterway and Shipping Administration
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Table 1. Catchment size, annual mean and mean low flow at selected gauges for the Rhine, Danube and Elbe.

Gauge River Area (km2) Mean flow (m3 s−1) Mean low flow (m3 s−1)

Kaub Rhine 103 488 1659 (1911–2011) 799 (1911–2011)
Hofkirchen Danube 47 518 638 (1901–2008) 301 (1901–2008)
Neu Darchau Elbe 131 950 710 (1890–2006) 290 (1890–2006)

(WSV) for the period 1951 to 2015. The data were used to
validate model and forecast performance as well as to cal-
culate climatological forecasts. The latter are generated by
averaging the measured values for the same month(s) of the
year as the one(s) forecasted.

The precipitation and temperature data, used to force the
hydrological model in simulation mode up to the initial-
ization of the particular forecast, is taken from the E-OBS
dataset, version 13.1 (Haylock et al., 2008). The downward
surface solar radiation is extracted from the ERA-Interim
reanalysis (Dee et al., 2011) for the period 1979–2015. In
order to preserve the statistical properties of the 5 km by
5 km HYRAS dataset (Rauthe et al., 2013), which was used
for calibrating the hydrological model LASIM-ME, the data
from E-OBS and ERA-Interim had to be downscaled and
bias-corrected. A large number of different bias correction
methods are available ranging from simple methods, such as
linear scaling (see e.g. Lenderink et al., 2007), linear scal-
ing with additional correction of the standard deviation (Le-
ander and Buishand, 2007), to more complex methods such
as the distribution-based correction method “quantile map-
ping” (see e.g. Piani et al., 2010). We applied these differ-
ent methods to bias correct E-OBS and ERA-Interim and
compared the goodness-of-fit of the flow simulation using
the downscaled and bias-corrected meteorological input. As
the goodness-of-fit measures such as the Nash–Sutcliffe ef-
ficiency and correlation were very similar, we decided to
use the most simple bias correction method linear scaling.
Monthly linear scaling with reference to the HYRAS dataset
was applied on a coarse grid (25 km× 25 km). The monthly
scaling factors and monthly additive terms for precipitation
and temperature, respectively, have been derived for the pe-
riod 1951–2000. Subsequently the processed E-OBS data
were downscaled to the required 5 km by 5 km model grid
by taking into account the long-term monthly ratio between
HYRAS at the two different resolutions (5 km, 25 km) for
precipitation and by assuming a constant lapse rate of 0.48◦

per 100 m between the grid cell heights for temperature.
The ERA-Interim downward surface solar radiation was pro-
cessed in a similar way as the E-OBS precipitation. As high-
resolution global radiation reference data for bias correc-
tion and downscaling, the surface solar irradiance (SIS) of
EURO4M (DWD, 2013) for the period 1991–2010 was used.
In addition, to initialize the hydrological model before start-
ing a forecast, the aforementioned input data were used to

run the continuous model simulation and the ESP forecasts
(see Sect. 3.2).

For the statistical approach, different meteorological, cli-
matological and oceanic data products have been selected as
predictors. These datasets or reanalysis products are listed in
Table 2.

As seasonal meteorological forecast used in the dynam-
ical forecast approach, we used the reforecast dataset from
ECMWF’s Seasonal Forecast System 4 (S4 hereafter) for
the period 1981–2014. For the period 1981–2011 the ensem-
ble size varies between 15 members (initialization months
January, March, April, June, July, September, October, De-
cember) and 51 members (for the remaining months). Since
2012, the ensemble size is 51 members throughout the year.
Before feeding the hydrological model, the output from S4
(daily total precipitation and air temperature), interpolated
to a 50 km× 50 km grid (multiple of the 5 km× 5 km model
grid), was bias-corrected with the meteorological observa-
tion dataset used for the baseline simulation. Again sev-
eral bias correction and post-processing methods of different
complexities for ensemble forecasts are available (see e.g.
Crochemore et al., 2016; Zhao et al., 2017). After the experi-
ences of the bias correction of E-OBS and ERA-Interim, we
decided to stick to the most simple bias correction method
linear scaling, successfully applied for bias correction of sea-
sonal forecasts (Crochemore et al., 2016). We corrected daily
values of the different parameters on a monthly basis, which
means each daily value of the same month is corrected by the
same scaling. In future applications, different bias-correction
and post-processing methods will be applied and analysed.
As meteorological seasonal forecasts tend to drift towards
the climate model from which they are issued with increas-
ing lead time, giving rise to model bias, separate bias correc-
tion factors have been estimated for each forecast initializa-
tion date (calendar month) and monthly lead time (month 1
to month 6). In the final step the corrected precipitation and
temperature are downscaled to the 5 km× 5 km model grid.

The hydrological model used in this forecasting envi-
ronment is based on the model software LARSIM (Large
Area Runoff SImulation Model). LARSIM is a determinis-
tic distributed conceptual hydrological model for the simu-
lation and forecasting of the terrestrial water cycle and flow
in rivers. It has been originally developed by Ludwig and
Bremicker (2006) and is currently maintained and developed
by a transnational developer community of several forecast-
ing centres from Germany and Switzerland. The spatial dis-
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Table 2. Climate and oceanic data sources used in the statistical forecast approach.

Dataset (Provider) Variables Spatial coverage Spatial resolution Reference

E-OBS v13.1
(ECA&D Project, KNMI)

precipitation
temperature

Europe 0.25◦× 0.25◦ Haylock et al. (2008)

CDC
(DWD)

precipitation
temperature

Germany areal mean values
(2500–48 000 km2)

–

ERSST v4
(NOAA)

sea surface temperature global 2◦× 2◦ Huang et al. (2010)

NCEP/NCAR Reanalysis 1
(NOAA NCEP-NCAR)

volumetric soil moisture global 2.5◦× 2.5◦ Kistler et al. (2001)

CDAS-1 MONTHLY
(NOAA NCEP-NCAR)

soil moisture
geopotential height (700 mbar)
relative humidity, specific humidity
zonal and meridional wind (700 mbar)
mean sea level pressure

global 2.5◦× 2.5◦ Kalnay et al. (1996)

cretization of the model can be grid-based subareas or sub-
areas according to hydrologic sub catchments. Hydrologi-
cal processes are modelled for each single land use category
or alternatively for each land use and soil type combination
in a subarea (hydrological response unit, HRU). Due to the
strong altitude dependence of temperature HRU could be fur-
ther subdivided into elevation zones for the simulation of the
snow processes. To avoid unnaturally high snow accumula-
tion and to consider the snow mass transport mechanism,
the new LARSIM snow mass transport option could be ac-
tivated. Using this option, snow can only accumulate up to a
gradient-dependent threshold and exceeding snow is simply
passed to the next model element downhill. These options
(subdivision in elevation zones and snow mass transport) in
LARSIM are currently used for the Rhine basin. For the Elbe
and Danube they will be implemented in the near-future. The
LARSIM model used in this context is called LARSIM-ME
(ME – Mittel Europa or central Europe). LARSIM-ME cov-
ers the catchments of the rivers Rhine, Elbe, Weser–Ems,
Odra and Danube up to gauge Nagymaros in Hungary. The
total catchment size, simulated by the model, is approxi-
mately 800 000 km2. The spatial resolution is 5 km× 5 km
and the computational time step is daily. To estimate the
model parameters of such a large model domain, a region-
alization approach based on clustering was applied. In total
nine clusters with similar flow characteristics have been iden-
tified for the model domain based on the following steps:

1. Definition of statistical flow values for 132 headwater
catchments, relatively free of anthropogenic influences.
As statistical values we chose

– mean flow in relation to basin area,

– high flow with a 2-year recurrence frequency in re-
lation to the mean flow,

– monthly mean low flow in relation to the mean flow,

– mean flow in winter in relation to the mean flow in
summer.

2. Identification of nine clusters using the k-means cluster-
ing algorithm,

3. Selection of seven geographical factors (e.g. height,
slope, areal share of forest, areal share of field, areal
share of unconsolidated rock, mean permeability of up-
per and lower soil) in order to characterize the clusters,

4. Rule-based mapping of all subbasins to the clusters.

Subsequently a subset of 72 catchments, that are rela-
tively free from anthropogenic effects (catchment sizes rang-
ing from 200 to 2100 km2) and evenly distributed over the
model domain, were calibrated manually together with the
nine clusters using the HYRAS dataset as forcings. The man-
ual calibration for the period 1998 to 2006 (validation 1976–
2006) followed the guideline to calibrate LARSIM water bal-
ance models (Haag et al., 2016), which recommends the rel-
evant parameters to be calibrated, the parameter range and
a calibration procedure. The manual calibration strategy ap-
plied involved the following steps: (1) adjustment of the pa-
rameters of the snow modules with a focus on the water
balance and floods caused by snow melting, (2) adjustment
of base flow storage relevant parameters to reproduce dis-
charges at low-flow conditions, (3) adjustment of the parame-
ters relevant for interflow to reproduce mean flow conditions,
(4) adjustment of relevant parameters to reproduce flood hy-
drographs and (5) final validation and fine adjustment of all
parameters. By using this well-proven process-based calibra-
tion strategy for LARSIM models conducted by experienced
hydrologists instead of a non-process based automatic cali-
bration procedure, we expected to reduce the degree of pa-
rameter uncertainty in the clusters due to the problem of pa-
rameter equifinality (Beven, 1996). But the fact that different
sets of model parameters reproduce equally good output sig-
nals remains an issue in any hydrological model calibration
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Figure 3. Comparison of the simulated (red) and observed (black) long-term (1981–2015) monthly mean streamflow and the distribution
of the simulated and observed monthly mean streamflow within the different months and for the whole year illustrated as box-and-whisker
plots of the gauges Kaub–Rhine (a), Hofkirchen–Danube (b) and Neu Darchau–Elbe (c).

and it is a significant aspect in particular when applying those
models for predictions. Afterwards, the parameter means and
parameter spans have been derived for the clusters and trans-
ferred to the respective clusters in the whole model domain.
As a next step, a fine calibration of the model parameters
within the parameter spans of the clusters have been con-
ducted for selected parts or gauges of the upper Danube, Elbe
and River Rhine. The fine calibration for the Elbe, Danube
and Rhine was based on the same period as the input dataset
(HYRAS). Special attention was given to anthropogenic ef-
fects dominating the flow behaviour in several catchments
(dams, regulated lakes, water transfers) and the most rele-
vant structures have been implemented explicitly. In order to
retain the consistent spatial parameter distribution, the pa-
rameters have been optimized within the identified parame-
ter spread of the specific cluster of the initial calibration. The
standard deviation of the parameter values has been used as
indicator to identify potential room for parameter optimiza-
tion.

In the forecast framework, different meteorological in-
puts (E-OBS, ERA-Interim instead of the non-operational
HYRAS dataset) have to be used. Therefore in Fig. 3 we
show the output from the LARSIM model set-up for monthly
to seasonal forecasting for the hindcast period from 1981 to
2015. Figure 3 illustrates the simulated and observed long-
term monthly mean streamflow of the period 1981–2015,
the distribution of the simulated and observed monthly mean

flows within the individual months of the year as box-and-
whisker plots, as well as the correlation r and Nash–Sutcliffe
efficiency (NSE). The boxes of the box-and-whisker plots
represent the 25–75 % inter-quantile range with the median
as a band inside the boxes. The whiskers represent 1.5 times
the inter-quantile range and values beyond are plotted as sin-
gle data points. All gauges show an NSE > 0.8 and r > 0.9
for monthly mean values. On the original daily time step, the
gauges show an NSE > 0.7 and r > 0.85. Especially for the
Elbe, the model performance on a daily basis is somewhat
lower, mainly due to shortcomings in the river routing. The
climatological seasonality of streamflow is well reproduced
at the gauges Hofkirchen–Danube and Neu Darchau–Elbe.
At gauge Kaub–Rhine, especially in the spring months ef-
fected by snow melt, LARSIM-ME underestimates the flow.
This underestimation is an indicator for problems in mod-
elling snow processes, which will be a focus in the future
model developments of LARSIM-ME.

Another effect is anthropogenic influences, especially reg-
ulated dams, lakes and water transfers. As it is quite challeng-
ing to account for such impacts in a large-scale hydrological
model like LARSIM-ME, just the major barrages and water
transfers together with their regulation rules have been im-
plemented so far. This is not due to limitations in the model
functionality but due to the difficulties in getting the required
information. Therefore some of the problems the LARSIM
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models show to reproduce the flow behaviour result from
missing or incomplete reproduction of anthropogenic effects.

3.2 Forecast parameter and forecast benchmark

In preparation for the development of the forecast frame-
work, three forecast parameters have been selected in agree-
ment with the users. For the monthly forecast, the monthly
mean flow (MoMQ) and the lowest arithmetic mean of
flow on seven consecutive days within a month (MoNM7Q)
were chosen. For the seasonal forecast, the tri-monthly mean
flow (3MoMQ; the average of three months) is predicted.
MoMQ and 3MoMQ are quite common forecast parame-
ters on longer lead times (e.g. Yossef et al., 2013; Svensson,
2016; Tucci et al., 2003), NM7Q is a variable primarily used
as low-flow indicator in the context of hydrological moni-
toring or ecological purposes (Richter et al., 1998; Marke,
2008). Low NM7Q values imply the existence of a long-
lasting drought period (Klein and Meißner, 2016). Further-
more, the NM7Q is a robust indicator, because it is insensi-
tive to distorting singularities like short-term fluctuations due
to natural or anthropogenic errors. For decision-making in
the IWT sector on monthly or seasonal timescales a monthly
or tri-monthly resolution is sufficient. Users do not estimate
the load of a specific ship on a specific trip, as it is the case
on short- to medium-ranges timescales, but typical decisions
(e.g. how to compose an optimal fleet for the coming month)
require information on “average” or the “worst” conditions
characterized e.g. by the monthly mean flow or the lowest
arithmetic mean of seven consecutive daily values within a
month.

Traditionally, for short- to medium-range forecasts, the
water level is the parameter of main interest for naviga-
tion purposes as it determines via the shape of the river bed
the available water depths and therefore the possible vessel
draught. As in many river stretches the shape of the riverbed
changes over time due to morphological dynamics and this
is problematic to compare water levels over long periods of
time. To overcome this issue, we decided at this stage of de-
velopment to analyse discharges rather than water levels.

As reference data, in order to evaluate the forecast quality
of each forecast approach, we used two datasets: (1) observed
discharges at the forecasting gauges representing the real-
world situation and (2) simulated discharges at the forecast-
ing gauges generated by the hydrological model LARSIM-
ME forced with observed meteorology (see Sect. 3.1). This
reference, also called pseudo-observations, was used in some
of the analysis on the predictability in order to mask the er-
ror coming out of the hydrological model itself (Shukla and
Lettenmaier, 2011; van Dijk et al., 2013; Wood et al., 2016).

Forecast benchmarks are used to demonstrate and quan-
tify the added skill and value of the analysed forecast ap-
proaches. On the one hand the benchmarks have been se-
lected on current practice (climatological forecast) and on
the other hand a standard method requiring extensive input

data was chosen. As Fig. 2 shows, the discharges along the
waterways are subject to seasonal variability dependent on
the flow regime. Therefore, only flows of the same month in
each year have been included into the respective climatolog-
ical forecast, e.g. the climatological forecast for January is
based on the measured flows of the first 31 days within each
year. As standard seasonal forecasting method, we applied
the already mentioned ESP approach. The set-up of ESP is
relatively simple although a hydrological model of the basin
of interest is required. Each forecast run is initialized with the
best estimated initial hydrological conditions, which is based
on forcing the hydrological model with measured meteoro-
logical inputs. Potential improvements might be achieved by
data assimilation techniques (see e.g. Yossef et al., 2013).
Based on this initialization, from which the predictive skill
of ESP originates, the hydrological model is forced with an
ensemble of historical time series of observed meteorology
from previous years (Wood et al., 2002). ESP does not re-
quire seasonal meteorological forecasts but it solely relies
on the resampled meteorology, which is a limitation at the
same time, because meteorology does not contribute to an
improved forecast skill in relation to the climatological fore-
cast. Nevertheless, ESP proved to be a robust forecast ap-
proach used in several operational applications for years.

In addition to ESP, Wood and Lettenmaier (2008) sug-
gested a complementary approach for sensitivity analysis,
called reverse ESP. In contrast to an ESP forecast, the hy-
drological model in a reverse ESP run is initialized with an
ensemble of initial conditions based on climatology. Along
the forecast period the model is driven with the measured
meteorology. As reverse ESP requires the “perfect” meteo-
rology along the forecast lead time, it is not suitable as fore-
cast approach in operational practice. Although the skill of
ESP results from the initial hydrological conditions, reverse
ESP obtains skill from the (perfect) meteorological forecast.
That is why Wood and Lettenmaier (2008) suggested com-
paring the skill of ESP and reverse ESP as a function of lead
time, season, basin etc. in order to determine which of the
two main components of a seasonal hydrological forecast
(hydrological memory or meteorological forcing) is domi-
nating the particular forecast skill. Recently, this method was
extended by Wood et al. (2016) to a method called VESPA
(Variational Ensemble Streamflow Prediction Assessment),
which is able to blend the two sources of seasonal forecast
skill systematically.

3.3 Forecast approaches

In order to find an optimized (related to forecast quality, data
and model requirements, computing time etc.) seasonal fore-
cast procedure for navigation-related forecasting, multiple
approaches representing the different philosophies (dynam-
ical versus statistical) in seasonal hydrological forecasting
have been implemented and tested under operational condi-
tions. The above-mentioned dynamical method ESP is pri-
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marily applied to analyse the different sources of predictabil-
ity on seasonal timescales as well as to act as benchmark for
the other methods. Furthermore, a dynamical approach sim-
ilar to the one used for short- to medium-range forecasting
was implemented, linking a hydrological model with sea-
sonal meteorological predictions. The hydrological model
LARSIM-ME was forced with measured data (up to the
forecast starting date) and subsequently with the forecasts
from ECMWF System 4. The hydrological model, as well
as the processing of the meteorological inputs, is described
in Sect. 3.1.

For the statistical approach, a methodology has been
adopted, which was already successfully applied to pre-
dict seasonal streamflow anomalies at the Romanian Danube
(Rimbu et al., 2005) as well as monthly to tri-monthly
streamflow at the lower Elbe in Germany for specific events
and seasons (Ionita et al., 2009, 2015). The basic idea is to
use climate and hydro-meteorological variables (e.g. sea sur-
face temperature, precipitation etc.) as predictors instead of
climate indices (e.g. North Atlantic Oscillation, Southern Os-
cillation Index). Since the early days of seasonal hydrologi-
cal forecasting, large-scale climatic patterns have been used
as predictors for seasonal streamflow anomalies (Maurer and
Lettenmaier, 2003; Wang et al., 2011). For Europe, the North
Atlantic Oscillation (NAO) and the El Niño–Southern Os-
cillation (ENSO) indices are most commonly used as pre-
dictors of hydrological variables like streamflow (Rimbu et
al., 2004; Trigo et al., 2004). Although these teleconnections
are detectable, they are significantly less pronounced for Eu-
rope than for other continents like Africa or Australia. Fur-
thermore, they are characterized by non-stationarity issues,
which means that the strength of the correlation between the
indices of these two phenomena and streamflow anomalies
varies over time (Ionita et al., 2008). The climate and hydro-
meteorological variables used in the approach presented here
have to fulfil a stability criterion for the correlation between
predictor and predictand. The concept of predictor stability,
wherein the so-called stability maps are a crucial tool, was
introduced by Lohmann et al. (2005). In order to detect sta-
ble predictors the variability of the correlation between the
streamflow at a specific location and the potential predic-
tors are investigated within a 31-year moving window within
the period 1948 to 2012. The correlation is considered to be
stable for those spatial units where the current streamflow
and previous months climate variables are significantly cor-
related at the 90 % or 80 % level for more than 80 % of the
moving window. Based on the following three steps stability
correlation maps are generated:

1. Each predictand (e.g. 3MoMQ for March–April–May at
station Kaub/Rhine) is correlated with numerous poten-
tial predictors. Different lags (e.g. mean sea level pres-
sure in February, mean sea level pressure in January)
and regions of the same variable are regarded as inde-
pendent predictor.

2. The correlation is computed in a moving window of
31 years within the period from 1948 to 2012 (win-
dow 1: 1948–1979, window 2: 1949–1980, . . . , win-
dow 34: 1981–2012).

3. The correlation is considered to be stable for those grid
points or regions where predictor and predictand are sig-
nificantly correlated at the 90 % level and 80 % level,
respectively, for more than 80 % of the 31-year window
within the period 1948–2012. According to the level of
significance, grid points or regions are coloured in red
to yellow shades (stable positive correlation), shades of
blue to green (stable negative correlation) or white (non-
stable correlation) in order to create a stability corre-
lation map for each potential predictor. Figure 4 illus-
trates this procedure: tri-monthly mean flow in spring
(March–April–May) at Kaub/Rhine and mean sea level
pressure (SLP) of previous winter (December–January–
February) from region (a) are positively correlated for
all 31-year windows of the period 1948–2012 and above
the 90 % significance level for more than 80 % of the
windows (left panel of Fig. 4). Therefore, these grid
points are stable, correlated with streamflow and are
represented on the stability map in red (right panel of
Fig. 4). The 3MoMQ and SLP from the grid points in
region (b) are negative and above the 90 % significance
level correlated for more than 80 % of the moving win-
dows. These grid points are represented on the stability
correlation map as blue. Grid points significantly corre-
lated for less than 80 % windows, like those in region
(c) are regarded as “unstable” (white colour on the sta-
bility correlation map). In the left panel of Fig. 4, the
correlation is plotted in the middle of each 31-year win-
dow. Therefore the first point represents the correlation
between 3MoMQ and previous winter SLP from 1948
to 1979, while the last point represents the correlation
from 1981 to 2012.

The final composition of the predictors for the forecast-
ing model is established by stepwise regression of the stable
predictors using the Akaike information criterion and the ex-
plained variance of forecast errors. Originally, this method
was solely applied for European and global climate datasets
like E-OBS or ERSST (see Table 2). In the context of this
navigation-related forecast framework, regional to local pre-
cipitation and temperature datasets from the German Meteo-
rological Service (DWD) also have been included, as well as
the historical discharges at the gauges of interest. The con-
sideration of the measured discharges, which are an aggre-
gated proxy of the hydrological history and of the current
conditions, especially led to an additional increase in fore-
cast skill. To quantify the importance of measured discharges
it has been excluded from the regression model in an exper-
imental set-up. The last column of Fig. 11 shows the fore-
cast results without using measured discharges as predictor
for June (month with the highest MoNM7Q), September and
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Figure 4. Example of a stability correlation map. (a) correlation between tri-monthly streamflow at Kaub/Rhine and SLP of the previous
winter in a 31-year moving window for selected grid areas, (b) map showing the areas with the corresponding correlations.

November (a low-flow month, typically affecting inland nav-
igation) MoNM7Q at the station Kaub/Rhine. The selected
scores clearly indicate an improved forecast skill when using
measured discharge of previous months as predictor.

3.4 Forecast evaluation – skill and value

The skill of the forecasts was assessed in terms of the corre-
lation coefficient (CC), the mean absolute error (MAE) and
the mean squared error (MSE) as deterministic measures. In
order to evaluate the skill improvement with respect to the
reference forecast (climatology, ESP) as well as to be able to
compare the skill amongst the different waterways, the cor-
responding skill scores (SS) have been additionally used for
evaluation (MAE-SS, MSE-SS). Although the perfect score
is 0 for MAE and MSE, an optimal forecast produces a CC,
MAE-SS and MSE-SS of 1. The skill scores are a function of
the forecast as well as the reference forecast and the observa-
tions. The skill scores are positive (negative) if the forecast
skill is higher (lower) than the one of the reference forecasts.
A skill score might be interpreted as the percentage improve-
ment with regard to the reference forecast by multiplying the
skill score by 100. As probabilistic measure of forecast skill,
we applied the continuous ranked probability score (CRPS)
and the respective CRPSS as its corresponding skill score
(Hersbach, 2000). CRPS and CRPSS are appropriate indica-
tors of the overall performance of probabilistic forecast sys-
tems comparable to the MAE and MAE-SS in the case of a
deterministic forecast.

For the ensemble-based forecasts (ESP, dynamic approach
based ECMWF S4) the deterministic metrics MAE and MSE
have been determined relative to the observation for each en-
semble member separately and afterwards the average of the
single values was calculated. The CC is calculated from the
ensemble mean. The forecasts of interest as well as the clima-
tology are thereby treated as real ensembles instead of single
realizations (e.g. the ensemble mean or median).

For the climatological forecast, as well as for the ESP ap-
proach, we considered a subsample of observations covering
the study period from 1981 to 2014. In each case, we used
the historical values of the same days in each year along the
forecast length. Additionally, we followed the leave-one-out
cross validation procedure by excluding the values of the val-
idation year from the measurements when generating the re-
spective climatological forecast as well as the meteorological
input to the hydrological model in the case of ESP.

Besides the verification of forecast skill, we aim at eval-
uating the economic value of the forecast too. The value of
a forecast arises by its ability to improve decisions made by
the forecast users (Murphy, 1993). Forecast value and skill
are not necessarily the same and their relationship in real-
world applications could be quite complex as the analysis of
forecast value always has to consider the specific user con-
text. A feasible approach successfully applied in several ap-
plications before, most often in meteorological (Richardson,
2000, 2011; Wilks, 2001) and seldom in hydrological con-
texts (Roulin, 2007; Fundel and Zappa, 2011), is the concept
of the relative economic value. In order to evaluate the po-
tential economic gain of a forecast dependent on the user-
specific cost/loss ratio, the original continuous hydrological
forecasts are converted to categorical forecasts and subse-
quently combined with a relatively simple static cost/loss
model. According to this model, costs (C) will incur when-
ever the forecast indicates an event, because the user will take
preventive actions. It is assumed that these preventive actions
offer a total protection, so that the investment prevents any
losses (L). Losses will only incur, if the forecast misses an
event. If no event is forecasted and it actually did not hap-
pen, neither costs nor losses incur. The decision strategy be-
hind the relative economic value assumes that the user aims
at a long-term economic optimum, the users decisions solely
depend on economic reasons and that the users actions are
risk-neutral. In order to compare different forecasting sys-
tems based on their economic value Richardson (2000) sug-
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gested to calculate a relative score, showing the added value
of a forecast compared to the climatological forecast. The
relative economic value score V is defined as the difference
of the long-term average expected expenses (EE) of the cli-
matological forecast and the forecast of interest in relation to
the difference of the climatological and a perfect forecast:

V =
EEclim−EEforecast

EEclim−EEperfect
. (1)

A perfect forecast prevents losses (all events are predicted
correctly) and costs only incur in case of an event which
occurs with climatological recurrence interval Pi . Therefore
EEperfect = Pi ·C. The best strategy to act, based on a clima-
tological forecast, is to find the optimum of the two options
“always protect” or “never protect” by minimizing the related
expenses EEclim =min(C,Pi ·L). In the long-term average,
a user with a specific cost/loss ratio below the climatological
recurrence interval Pi of the event will always protect, other-
wise it is economically advantageous to accept the losses of
the event. All of the aforementioned assumptions lead to the
definition by Richardson (2000):

V = (2)

min
(

C
L

,Pi

)
−POFD · C

L
− (1−Pi)+POD ·Pi ·

(
1− C

L

)
−Pi

min
(

C
L

,Pi

)
−Pi ·

C
L

,

with

– POD is the probability of detection or hit rate (fraction
of observed events that is forecast correctly)

– POFD is the probability of false detection or false alarm
rate (fraction of false alarms conditioned on observa-
tions)

– C/L is the cost/loss ratio

– Pi is the recurrence interval of the disastrous event.

The maximum value score is 1 for perfect forecasts, while
V = 0 indicates no added value of the forecast under in-
vestigation compared to the optimal use of a climatologi-
cal forecast. In case of relative economic values below zero,
the user should refuse the forecast and better use climatol-
ogy. The maximum relative value score Vmax is reached for
Pi = C/L. Vmax corresponds to the difference in hit and false
alarm rates, which is also known as the Pierce skill score
or Kuipers skill score (Manzato, 2007). The economic value
depends on the quality of the forecast (expressed via the hit
rate and the false alarm rate); the definition of the event, ex-
pressed through the climatological frequency; and on the in-
dividual user represented by the cost/loss ratio. As different
forecast users with different decision problems will gain dif-
ferent levels of economic value from an optimal use of the
same forecasts, the relative value score is often expressed
graphically as a function of the cost/loss ratio. A suitable

numerical score, aside from Vmax, is the area below the eco-
nomic value function (Figs. 9 and 10), with an optimum value
of 1.

4 Results

4.1 Sources of predictability

In the course of designing the forecasting framework, we
conducted the typical ESP and reverse ESP experiments, as
various predictability studies did before (Wood and Letten-
maier, 2008). Being aware that this experiment is just able
to represent the two (in most cases unrealistic) endpoints
of forecast uncertainty (zero and perfect information about
future forcings and initial conditions, see Sect. 3.2), it is a
feasible and pragmatic way to gain more insight into the
relative role of the two main sources of predictability as
a function of forecast location, lead time and initialization
month. Figure 5 visualizes the MSE-SS for ESP and reverse
ESP in relation to the simulated climatology at the gauges
Kaub/Rhine, Hofkirchen/Danube and Neu Darchau/Elbe for
forecast months 1 to 6. Eight initialization months (Jan-
uary, March, May, July, August, September, October, De-
cember) have been selected in order to clearly arrange the
graphs, while focussing on the typical low-flow period (July–
October).

Figure 5 clearly indicates that the differences in flow
regime, climate region and catchment characteristics at the
waterways (see Sect. 2) sustainably affect the relative impor-
tance of the predictability sources within the seasonal cycle.
However, despite all differences amongst the gauges or wa-
terways, the overall conclusion of the ESP and reverse-ESP
experiments is that for the majority of initialization months
and lead times, the mean squared forecast error is dominated
by the meteorological forcing. In many cases, already in the
first forecast month, future weather is the leading source
of forecast skill as the MSE-SS of the ESP drops below
the corresponding reverse ESP values. Nevertheless, in some
months (e.g. July and August at gauge Kaub), the initial hy-
drological conditions noticeably influence forecast skill, at
least for the first forecast month; in rare cases, also for the
subsequent months (e.g. forecast at gauge Neu Darchau ini-
tialized in December). Although a sound estimation of ini-
tial hydrological conditions are essential (see also Demirel
et al., 2013; Fundel et al., 2013), it could be concluded that
solely relying on the “hydrological memory” as source of
predictability won’t be sufficient to produce skilful stream-
flow forecasts with lead times beyond 1 month for the Ger-
man waterways.

4.2 Long-term evaluation

Following the history of the stepwise set-up of the forecast
framework for the German waterways, we first compare the
dynamical forecast approach based on ECMWF S4 forecasts
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Figure 5. MSE-SS of the ESP (blue) and reverse ESP (red) forecast (reference: simulated to the MSE from using a climatology) for the
gauges Kaub/Rhine (a), Hofkirchen/Danube (b) and Neu Darchau/Elbe (c) over a lead time of 6 months (verification period 1981–2014).

Figure 6. MSE-SS for ESP and S4-driven forecast for each initialization and forecast month at the stations Kaub/Rhine (a), Neu Darchau/Elbe
(b), Hofkirchen/Danube (c) and CRPSS values of S4-driven forecast related to ESP for forecast months 1 to 3 (verification period 1981–
2014) (d).

with the ESP approach for the period 1981 to 2014. Although
it is well-known that central Europe is a region offering lim-
ited skill for seasonal meteorological forecasts, in particular
for precipitation as the most-important input to hydrological
models, the question was if the information of these fore-
casts could provide some additional information to the sea-
sonal hydrological forecasts. Figure 6 displays the MSE-SS
between the ESP-based as well as the S4-based forecasts and
observed climatology for the gauges Kaub, Neu Darchau and
Hofkirchen as a function of forecast month (1–6) and initial-
ization month (January–December). Dark coloured pixels in-
dicate high forecast skill compared to climatology. It is obvi-
ous that for both approaches and all stations, the skill signif-
icantly diminishes with increasing lead time, but that the use
of the S4 forecasts leads to additional skill for the majority

of lead times and initialization months at all gauges. Over-
all, the forecast skill for the Elbe (gauge Neu Darchau) is
higher than for the Rhine (gauge Kaub) and Danube (gauge
Hofkirchen). The skill scores at all stations show a notice-
able pattern indicating higher scores in spring and late au-
tumn, which might be induced snow melt (spring) and snow
accumulation (autumn). This characteristic remains visible,
in some cases becomes even more obvious, for the S4-based
forecasts (e.g. for the October to November forecast at for
the Rhine and Danube).

The increase in forecast skill is proved by the CRPSS
shown for the first three months of lead time at Kaub,
Neu Darchau and Hofkirchen in the table in Fig. 6d. As refer-
ence forecast, we selected ESP so that a positive CRPSS di-
rectly implies an improved forecast skill by using S4 inputs.
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Figure 7. Comparison of monthly forecast skill of ESP, S4-driven and statistical forecasts at the stations Kaub, Neu Darchau, Hofkirchen
predicting lowest 7-day mean flow MoNM7Q of the current month (verification period 1981–2014).

Figure 8. Comparison of forecast skill of ESP, ECMWF-driven and statistical forecasts at the stations Kaub, Neu Darchau, Hofkirchen
predicting mean flow of the next 3 months 3MoMQ initialized in March, June, September and December (verification period 1981–2014).

The first forecast months especially show an improved skill.
Unfortunately, the improvements are less pronounced in the
typical low-flow season (July–October) particularly relevant
for IWT.

As second forecast approach, the multiple linear regres-
sion model (MLR) based on the stability analysis (Sect. 3.3)
was implemented. In Fig. 7 all three forecast approaches cur-
rently implemented in the forecast framework are compared
by different skill metrics (see Sect. 3.4) for the period 1981
to 2014 for the first forecast month and initializations. The
monthly MoNM7Q was chosen as forecast variable because
it shows slightly more robust forecast results as the monthly
MoMQ. From Fig. 7 it is evident that the statistical approach
is able to further improve forecast quality of the dynamical
approach. Although, forecast skill is rather fluctuating for
ESP and S4, it is significantly more stable for the statistical
approach. There is still a decrease in forecast skill within the

typical low-flow period in late summer to autumn, but still on
a proper level.

The results for the seasonal forecasts (tri-monthly mean
discharge of the upcoming meteorological season) shown in
Fig. 8 confirm the findings described above. While forecast
skill (see Sect. 3.4) based on ESP and S4 at the Rhine and
especially the Danube is comparatively low when compared
to climatology, the skill for the Elbe turns out to be signifi-
cantly higher. The statistical approach leads to a sustainable
increase in forecast skill at all waterways, even the skill for
the Elbe could be further increased. Based on the skill met-
rics applied, the statistical approach shows the best results
overall.

The inter-comparison of the forecast approaches, based on
the relative economic value, was conducted for MoNM7Q.
In order to calculate the relative economic value, three dis-
charge thresholds have been selected to generate the categor-
ical forecast: the median of the observed NM7Q of the partic-
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Figure 9. Economic value score plotted against cost/loss ratio for three forecast approaches predicting the lowest 7-day mean MoNM7Q
of the current month at the gauge Kaub/Rhine for three different event thresholds within the typical low-flow season of July to November
(verification period 1981–2014).

ular month the forecast is issued for (period 1951–2014), the
NM7Q with a recurrence interval (RI) of 2 and 5 years. The
recurrence intervals have been calculated based on the time
series 1961–2015 using a Weibull-3 distribution fitted by a
method of moments. The relative economic value was exam-
ined for the non-exceedance of the aforementioned thresh-
olds. In Fig. 9 the relative economic value is shown for the
station Kaub (Rhine) and the different forecast approaches as
a function of the cost/loss ratio.

The value was calculated for the relevant low-flow sea-
son between July and November usually affecting IWT along
the River Rhine within the period 1981–2014. Overall the
three approaches provide positive economic values for a wide
range of cost/loss situations, but the economic value consid-
erably varies amongst the forecast methods as well as the se-
lected events. For the statistical approach the economic val-
ues decrease with decreasing return period, while the S4-
driven dynamical approach achieves stable or even higher
economic values for more extreme low-flow events. The S4-
driven forecasts show the highest POD for all events, but es-
pecially for the highest threshold (50th percentile), the POFD
is quite high (0.59) too. In this case, the median do not
seem to be the optimal representative for the ensemble and
choosing another quantile might lead to better economic val-
ues. Also, the ESP forecast suffer from a comparatively high
POFD. For the more rare low-flow events, the POFD of the
S4-driven forecast significantly drops and is relatively close
to the one from ESP and MLR forecasts, while the POD stays
the best. For all events and cost/loss situations the benchmark
approach (ESP) could be improved at least by one of the two
alternative approaches.

An inter-comparison of the economic value between the
three waterways based on the statistical forecast approach is
shown in Fig. 10. Three different thresholds based on the

50th, 25th and 10th percentiles have been selected. For the
event occurring most often (50th percentile threshold), the
forecasts for the Elbe river produce the highest economic
value, which corresponds to the best forecast skill achieved
for Neu Darchau when compared to Kaub and Hofkirchen
(see Fig. 7). Overall, the forecasts for the Danube provide the
lowest relative economic values for all selected thresholds.
Nevertheless, the values are still positive (that means added
value compared to the currently used climatological forecast)
for a wide range of cost/loss situations. For more extreme
low-flow events, the economic values for the Rhine and Elbe
get closer and for the 10th percentile threshold, the forecast
at the Rhine reaches slightly higher relative economic values
than the ones at the Elbe (see also the value score area).

As the most recent step in setting up the monthly to sea-
sonal forecast framework, we tested the combination of the
statistical approach with the ESP method. This combined
method does not require seasonal meteorological forecasts
(and its respective post-processing to force the hydrological
model), but it might benefit from the ability of the hydrologi-
cal model to emulate the initial hydrological conditions prior
to the forecast. Therefore, we added the ESP benchmark
forecasts for NM7Q at the gauge Kaub/Rhine into the corre-
sponding final statistical forecast model. Figure 11 contains
the selected skill measures comparing the basic statistical
model (MLR) with the one extended by ESP results as addi-
tional predictor (MLR+ESP) for three initialization months:
June as the month with the highest ESP skill, September as
one of the months showing the lowest skill of the ESP fore-
casts and November, which shows an intermediate ESP skill
(see Fig. 7). The forecasts of NM7Q in June and November
significantly benefit from the ESP forecasts as all measures
indicate. For the September forecasts, where ESP shows a
relative low skill, the combined approach gives comparable
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Figure 10. Economic value score plotted against cost/loss ratio for the forecast of the lowest 7-day mean flow MoNM7Q of the current month
at the gauges Kaub/Rhine, Hofkirchen/Danube and Neu Darchau/Elbe based on the statistical approach (verification period 1951–2014).

results as the basic statistical approach. So, adding (low skill)
ESP results as predictor does not improve forecast skill, as
expected but neither does it deteriorate the skill.

4.3 Evaluation for a significant low-flow event

In 2015 a long-lasting drought hit Europe, especially af-
fecting its central and eastern part, where it was one of the
worst drought events since the major droughts of 1976 and
2003 (van Lanen et al., 2016; Ionita et al., 2017; Laaha et
al., 2017). Large-scale deficits in precipitation in combina-
tion with high evapotranspiration losses led to deficit in soil
moisture and subsequently manifested itself as a long-lasting
hydrological drought, with low water levels and deficits in
streamflow along several major European rivers. The 2015
drought showed numerous socio-economic impacts, like con-
straints in drinking water supply, energy production and agri-
culture. Also IWT was significantly impacted, especially in
the second half of 2015, notably in France, the Netherlands,
Germany and eastern Europe. In Germany, load losses on the
Rhine, Danube, Elbe, Odra and Weser rivers and in Russia
on the Don River were up to 50 % (van Lanen et al., 2016).

At the beginning of 2015, the aforementioned forecast
framework was in place, at least for off-line use to sup-
port advisory activities. The forecasts could be issued within
the first days of the particular month or the particular sea-
sons as soon as all input data and predictands became avail-
able. The monthly MoNM7Q for the year 2015 at the station
Kaub/Rhine is plotted in Fig. 12, together with the climatol-
ogy (mean, selected percentiles) and the forecasts (mean, un-
certainty range between the 5th and 95th percentiles) based
on the ESP method, the dynamical approach (S4) and the
statistical approach (MLR). Within the first half of 2015, the
already ongoing meteorological drought was not yet visible
along the Rhine and the observed values were quite close to

Figure 11. Comparison of forecast skill of the statistical forecast
approach using ESP results as additional predictor for June and
September forecasts at station Kaub/Rhine (predictand lowest 7-
day mean flow MoNM7Q of the current month, verification period
1981–2014).

the climatological mean (except for January). As expected, in
this period the use of a climatological forecast produced good
results. From July onwards, the flow dropped significantly
for the rest of the year. This change was predicted most accu-
rately by the statistical approach. In the subsequent months,
all methods provided meaningful forecasts, while ESP and
the dynamical approach are slightly advantaged compared to
the statistical method in this particular situation. The statisti-
cally based forecasts tended to underestimate the MoNM7Q,
with the September forecast being significantly too low. Al-
though the range of the 5th to 95th percentiles significantly
differs in the first half of 2015, with the ESP-based forecasts
showing the widest range, the ranges converge in the second
very dry half of the year 2015 and all approaches show simi-
lar ranges.

Regarding the tri-monthly forecast issued at the begin-
ning of the particular meteorological season, the statistical

www.hydrol-earth-syst-sci.net/21/6401/2017/ Hydrol. Earth Syst. Sci., 21, 6401–6423, 2017



6416 D. Meißner et al.: Development of a monthly to seasonal forecast framework

Figure 12. Comparison between the three navigation-related forecast approaches for the lowest 7-day mean MoNM7Q of the current month
in the year 2015 at gauge Kaub/Rhine in relation to the observed values and the climatology (1951–2014).

Figure 13. Comparison between the three navigation-related forecast approaches for the monthly mean flow of the next three months 3MoMQ
initialized in December 2014, March 2015, June 2015, September 2015 (meteorological seasons 2015) at gauge Kaub/Rhine in relation to
the observed values and the climatology (1951–2014).

approach significantly outperformed the other methods in
spring (Fig. 13). For summer (JJA) and autumn (SON) the
forecasts of all approaches are relatively similar. But the sta-
tistical approach and the S4-driven forecast slightly outper-
formed the ESP-based results. For the autumn season, all ap-
proaches overestimated the observed value (up to 25 %), but
they at least indicate below-average conditions, which is al-
ready a valuable information for the navigational users. Re-
garding the range of the 5th to 95th percentiles, the statistical
approach produces the sharpest forecast with the narrowest
ranges. Except for the winter forecast (DJF), the observed
values fall in the range of the statistical approach. Although

all approaches overestimated the flow in autumn, the mea-
sured values still fall into the 5th to 95th percentiles range of
all approaches.

The performance of the seasonal forecasts for the water-
ways Elbe and Danube is shown in Fig. 14. These results
approve of the long-term evaluation. The seasonal forecast
results for the Elbe were markedly good, particularly for the
statistical and the S4-driven approach producing nearly per-
fect predictions of MAM and SON flows. For JJA the flow
was overestimated by all methods, but the forecasts con-
sistently indicated below the long-term average conditions.
The range between the 5th and 95th percentile are similar
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Figure 14. Comparison between the statistical forecast approaches for the monthly mean flow of the next 3 months 3MoMQ initialized in
December 2014, March 2015, June 2015, September 2015 at gauges Hofkirchen/Danube (a) and Neu Darchau/Elbe (b) in relation to the
observed values and the climatology (1951–2014).

for the statistical and the S4-driven forecast, while the ESP-
based forecast is significantly less sharp. For the 2015 event
at the Danube, gauge Hofkirchen, the S4-driven dynamical
approach produced the best forecast results, except for the
spring season. Although the dynamical approach still over-
estimated the flows in summer and autumn, it was a good
indicator for the significant low-flow situation observed. The
measured value was covered by the 5th to 95th percentile
range at least. The statistical approach especially failed to
predict these low values. Even the 5th to 95th percentile
range did not cover the measured values in summer and au-
tumn.

5 Discussion

The increasing number of seasonal hydrological forecasting
systems (see e.g. Zappa et al., 2014; Olsson et al., 2016;
Bell et al., 2017) proves the need as well as the feasibil-
ity of long-range predictions over Europe despite the gener-
ally limited hydro-meteorological predictability when com-
pared to other continents. Furthermore, the European Flood
Awareness System EFAS provides a continental-wide sea-
sonal hydrological outlook with a lead time of 2 months of
weekly river flow anomalies and its probability for large Eu-
ropean regions since 2016. The work presented in this paper
fit into this progress and the results prove possibilities and
limitations with regard to monthly to seasonal forecasting
along Germany’s major inland waterways. Our findings sup-
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Table 3. Statistics for the forecast models based on NCEP and GDM soil moisture data for forecasted lowest 7-day mean flow MoNM7Q of
June at gauge Kaub/Rhine (period 1954–2014).

Skill measure NCEP GDM NCEP GDM

Soil data – May Soil data – April

Pearson correlation coefficient (–) 0.43 0.71 0.50 0.60
Coefficient of determination (–) 0.19 0.51 0.25 0.36
p value (–) 3.826× 10−4 6.523× 10−11 4.120× 10−5 2.248× 10−7

Residual standard error (m3 s−1) 373 290 361 332

port previous studies (e.g. by Yossef et al., 2013) which indi-
cate that meteorological forcings dominate initial hydrolog-
ical conditions for many European rivers beyond lead times
of 1–2 months, within specific seasons already for shorter
lead times. Furthermore, the study reveals that for setting-
up a specific forecasting system tailored to particular user
needs the heterogeneity within Europe requires a basin-wise
as well as a use-oriented consideration of forecast sensitiv-
ities and forecast approaches. Already the differences be-
tween the Rhine, upper Danube and Elbe are significant in
order to identify skilful initialization months and correspond-
ing forecast approaches (see Sect. 4.1 and 4.2). Differences
within Europe become even more apparent when comparing
our findings for the German waterways with related stud-
ies in other parts of the continent. For example Olsson et
al. (2016) analysed a quite similar framework of compet-
ing forecast approaches for predicting the spring-flood vol-
ume relevant for hydro power generation in a Swedish river
basin. Here, none of the approaches tested (conditional ESP
approach, dynamical approach using the HBV model forced
with ECMWF seasonal meteorological forecasts, a statistical
approach based on the correlation of large-scale circulation
variables) consistently outperformed the ESP-based method
currently applied operationally. This proves the importance
of initial hydrological conditions, primarily snow pack, for
this forecasting service. In contrast, along the German wa-
terways the dynamical and the statistical approach showed
significantly higher skill (and economic value) for the ma-
jority of initialization months and lead times than the ESP
forecasts, which mainly reveals the different effect of initial
hydrological conditions for long-range forecasting in both re-
gions. For parts of Europe, like Scandinavia (Olsson et al.,
2016) or the Alpine region (Fundel et al., 2013; Jörg-Hess
et al., 2015), snow pack accumulated over the season prior
to the initialization of a forecast could significantly dominate
the predicted flow for several months, at least within spe-
cific seasons. Even for the central European rivers initial hy-
drological conditions could affect forecast skill on monthly
to seasonal timescales (see Sect. 4.2), but compared to the
aforementioned regions the signal is noticeably masked by
the meteorological impact within the forecast period. Fur-
thermore over the course of the year other elements of initial
hydrological conditions could have a stronger influence on

flows than snow. Soil moisture and anthropogenic storages,
along the Rhine, upper Danube and Elbe (mainly dam man-
agement and lake regulation), especially act as buffers to the
meteorological input. But in order to benefit from this “hy-
drological memory” in forecasting, the relevant processes or
information have to be included adequately in the specific
approaches.

Although data on soil moisture is already used as predictor
for the statistical approach applied in this study (see Table 2),
no explicit information on snow pack or on any kind of an-
thropogenic storage or water transfer between catchments is
used so far. Although snow pack is at least implicitly con-
sidered via precipitation and temperature, no information on
filling levels or released volumes of lakes etc. are used as
input to the statistical model. For snow pack, potentially use-
ful data products are operationally available (Alverado Mon-
tero et al., 2016), this might be more difficult for lake or
dam-related data due to legal restrictions often imposed by
hydropower companies. In order to evaluate and to demon-
strate the additional predictive skill of improved data prod-
ucts representing initial hydrological conditions, e.g. the soil
moisture, we modified the statistical approach. The results
presented in the preceding sections are based on the global
reanalysis product provided by NCEP (see Table 2) with a
spatial resolution of 2.5◦, which is relatively coarse for most
of the central European catchments with their spatial hetero-
geneity. Therefore we tested an alternative soil moisture in-
formation for Germany with a resolution of 4 km by 4 km,
which is provided operationally by the German drought mon-
itor (GDM, www.ufz.de/droughtmonitor) since 2014 (Zink
et al., 2016). In order to evaluate the sensitivity of the fore-
cast skill to the different soil moisture data, we evaluated the
results for the forecasts of MoNM7Q at gauge Kaub/Rhine
solely based on the two different datasets (Table 3). We have
tested the model with 1 and 2 month lags, resulting in four
forecast models using the April and May soil moisture data
of the respective source. As the metrics indicate, using the
soil moisture data from the GDM could further increase the
skill of the forecast considerably.

For the dynamical approaches applied in this study, snow
pack and soil moisture are modelled by the hydrologi-
cal model LARSIM-ME. Anthropogenic storages and water
transfers, at least the most relevant ones, are implemented
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in the hydrological model for the Rhine, Elbe and upper
Danube too. The hydrological processes like snow accumu-
lation/snow melting are modelled in a simplified manner and
the management rules had to be idealized. Furthermore the
real-world regulations of any measure usually differ from
theoretical rules, and so in this regard two important as-
pects to better exploit forecast skill hidden in the hydro-
logical system exist. On the one hand the implementation
of anthropogenic storages and water transfers in the hydro-
logical model should be completed, together with a better
definition of their regulation. Additionally the use of opera-
tionally available data products representing snow pack, soil
moisture, lake levels etc. via data assimilation techniques is
an important issue to improve the internal states of the hy-
drological model. The amount and quality of useful data to
be assimilated is continuously increasing, especially pushed
by satellite missions in recent years (Jörg-Hess et al., 2015;
Alverado Montero et al., 2016).

Another aspect towards an improved forecast skill, which
is briefly touched on by our study and which poses a simi-
larity to the findings by Olsson et al. (2016), is the combi-
nation of different forecast approaches. Olsson et al. (2016)
tested two pragmatic ways of combining multiple forecasts
in a post-processing step. This finding corresponds to a first
attempt in our study testing the combination of the statistical
approach with the ESP method, but in a more direct way of
coupling. As shown in Sect. 4.2 the forecast skill could no-
ticeably increase by merging both approaches, but the added
value depends on the skill of the ESP approach. An advan-
tage of the combination procedure we used is that by merging
both forecasts, forecast skill does not deteriorate even in the
case of low ESP skill. Therefore, we see different aspects and
potential ways to further improve forecast skill even within
central Europe. Additionally, the dynamical approaches us-
ing seasonal meteorological forecasts may benefit from fu-
ture improvements achieved in the area of climate and sea-
sonal meteorological forecast skill, potentially even with a
disproportionate impact (Wood et al., 2016).

6 Conclusions and prospects

This paper asses the skill and economic value of a monthly
to seasonal forecasting system set-up for the main Euro-
pean waterways the Rhine, upper Danube and Elbe over a
35-year hindcast periods with a specific focus on the 2015
drought event. IWT along these free-flowing rivers is prone
to (long-lasting) droughts leading to low streamflows and low
water levels, which subsequently limit the maximum cargo-
carrying capacity of vessels, increase their energy consump-
tion and their time of travel. Monthly to seasonal hydrolog-
ical forecasting services are one measure to cope with these
impacts and to sustainably increase IWT efficiency as well
as to support medium- to long-range waterway management.
Despite the overall limited hydro-meteorological predictabil-

ity in central Europe, the results of the different forecast ap-
proaches tested reveal the existence of a valuable predictabil-
ity of streamflow on monthly and to some extent even up
to seasonal timescales along the major waterways in Ger-
many. We found that the skill of the meteorological forc-
ing has a larger effect than the quality of initial hydrological
conditions on seasonal forecast quality for relevant stations
along the German waterways. Just for a few initialization
months, the initial hydrological conditions could noticeably
affect forecast skill for the first forecast month. Neverthe-
less a good estimation of the initial hydrological conditions
(especially soil moisture, snow pack, groundwater storage,
but also human activities like regulated lakes/dams) forms
the basis of any monthly to seasonal hydrological forecast.
Therefore, for future development we have in mind the im-
proved integration of such kinds of information off-line in
the course of setting-up hydrological models as well as in
real-time by data assimilation techniques.

The more physically based and the statistical approach
are able to improve the predictive skills and economic value
compared to the climatology and the ESP approaches. The
forecast intercomparison showed that the specific forecast
skill along the German waterways highly depends on the
forecast location, the lead time and the season. Overall, the
statistical approach currently seems to be most skilful for
the three waterways investigated. The lagged relationship be-
tween the monthly or seasonal streamflow and the climatic
or oceanic variables vary between 1 month (e.g. local pre-
cipitation and temperature, soil moisture) up to 6 months
(e.g. sea surface temperature). However, we also observed
that in some situations the statistical approach forecasts ex-
tremely low streamflows, while the more physically based
approaches respond more moderately. This effect needs fur-
ther investigation.

Based on the present study two additional aspects will be-
come a focal point in the near-future: (i) besides improving
the individual forecast methods to tap their full potential (e.g.
increase of input data resolution, enhancement of the hydro-
logical model) an optimal combination, in terms of hybrid or
hierarchical procedures, will be investigated systematically.
(ii) In close cooperation with the users, monthly to seasonal
forecast products have to be designed in order to push the
usage of such forecast information in decision-making pro-
cesses and in order to communicate the value and uncertainty
associated with such forecasts in a transparent way.

As such, the results shown in this paper represent the basis
for setting up such an operational service, which will sus-
tainably extend the existing forecast portfolio for waterway
users and meet the growing needs in order to increase the
modal share of water-borne transportation.

Code and data availability. The runoff data used in this study are
available for non-commercial use upon request to the Federal Insti-
tute of Hydrology (datenstelle-M1@bafg.de).
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The climate and oceanic data used in the statistical forecast ap-
proach are publicly available. Gridded precipitation and tempera-
ture data are extracted from the E-OBS version 8 dataset (Haylock
et al., 2008) obtained via http://www.ecad.eu/download/ensembles/
ensembles.php.

Precipitation and temperature data, at country level and for each
German federal state, are extracted from the ftp server of the Ger-
man Meteorological Service DWD: ftp://ftp-cdc.dwd.de/pub/CDC/.

The Extended Reconstructed Sea Surface Temperature
dataset (ERSST v4; Huang et al., 2014) was downloaded
from https://www.ncdc.noaa.gov/data-access/marineocean-data/
extended-reconstructed-sea-surface-temperature-ersst-v4.

The Volumetric Soil Moisture data are based on the
NCEP/NCAR reanalysis product R-1 (Kistler et al., 2001), which
was downloaded from https://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis.derived.surfaceflux.html.

Datasets for soil moisture, geopotential height, sea level
pressure and relative humidity are provided by the Na-
tional Centre for Atmospheric Research (NCAR, Kalnay et
al., 1996) via http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/
.NCEP-NCAR/.CDAS-1/.MONTHLY/.

In addition to the E-OBS dataset, the ERA-Interim dataset was
used (Dee et al., 2011). It is a public dataset offered by ECMWF:
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/.

The HYRAS dataset, used to calibrate the hydrological model
LARSIM, is not currently publicly available. It is managed by the
German Meteorological service (DWD: hydromet@dwd.de).

The seasonal meteorological forecasts from ECMWF (Molteni
et al., 2011) are not public, but depending on who you are, different
ways and licenses in order to access the data are offered (http://
www.ecmwf.int/en/forecasts/accessing-forecasts).
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