
ORIGINAL ARTICLE

A genetic approach to automatic neural network architecture
optimization

K. G. Kapanova1 • I. Dimov1 • J. M. Sellier1

Received: 29 October 2015 /Accepted: 20 July 2016 / Published online: 28 July 2016

� The Natural Computing Applications Forum 2016

Abstract The use of artificial neural networks for various

problems has provided many benefits in various fields of

research and engineering. Yet, depending on the problem,

different architectures need to be developed and most of

the time the design decision relies on a trial and error basis

as well as on the experience of the developer. Many

approaches have been investigated concerning the topology

modelling, training algorithms, data processing. This paper

proposes a novel automatic method for the search of a

neural network architecture given a specific task. When

selecting the best topology, our method allows the explo-

ration of a multidimensional space of possible structures,

including the choice of the number of neurons, the number

of hidden layers, the types of synaptic connections, and the

use of transfer functions. Whereas the backpropagation

algorithm is being conventionally used in the field of neural

networks, one of the known disadvantages of the technique

represents the possibility of the method to reach saddle

points or local minima, hence overfitting the output data. In

this work, we introduce a novel strategy which is capable

to generate a network topology with overfitting being

avoided in the majority of the cases at affordable compu-

tational cost. In order to validate our method, we provide

several numerical experiments and discuss the outcomes.

Keywords Neural networks � Architecture evolution �
Genetic algorithms � Neural network architecture �
Function approximation

1 Introduction

Since their inception in the 1940s, artificial neural networks

(ANN) have proved to be a successful approach to many

problem solving tasks. While conventional software tech-

niques need to be programmed to accomplish certain goals,

neural networks utilize learning techniques to adapt their

connections when new information is provided. Because of

that, various paradigms and network architectures have

been proposed and studied in the last 80 years which

provide optimal performance for particular problems [1–3].

Many aspects of neural network structures and how the

different parts of the network influence its performance

have been investigated [4]. Important considerations have

been given to the possible number of layers, the amount of

neurons in the network and per layer, the type of connec-

tions, the type of activation functions, weight initialization,

training algorithms, error functions and pre- and post-pro-

cessing of data. Those components are crucial for the

computational performance, efficiency and accuracy of

every network [5, 6]. The architecture of ANNs actually

influences the performance of the network, and particular

example of this can be found in the field of computer

vision, where researchers have found that convolutional

networks provide the best performance in this particular

case [7].

Nowadays, developers usually rely on a trial and error

basis to reach the correct network topology1 that can effi-

ciently and effectively learn and generalize input patterns

to output patterns. This method is prone to errors, often

times resulting in loss of productivity and leading to high

computational complexity. One may even say that we face& K. G. Kapanova

kapanova@parallel.bas.bg; kkapanova@gmail.com

1 IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str.

25A, 1113 Sofia, Bulgaria

1 The reader should note that in this paper we interchangeably use the

words topology and architecture having in mind the same meaning.

123

Neural Comput & Applic (2018) 29:1481–1492

https://doi.org/10.1007/s00521-016-2510-6

http://orcid.org/0000-0002-3995-2741
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2510-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2510-6&domain=pdf
https://doi.org/10.1007/s00521-016-2510-6

an exponential number of parameters to choose from

depending on the knowledge we have about the problem

and the definition of these parameters. Moreover, the

capacity of the system to learn is recognized as a distinct

property of the network’s structure, along with the values

of the weights. To deal with those inherent difficulties,

some types of self-organizing topologies have been pro-

posed and implemented [7–10]. One can broadly separate

those methods in two categories. The first one is parametric

learning, where one searches for weight values. The second

one is structural learning, where one searches for the best

topology of the neurons and connections. Most of the time,

the topology is defined before the initialization of the

network, with one or more hidden layers and with full

sequential connection of every neuron. The simplest

implementation of the structural type of evolving topolo-

gies is through the addition or removal of neurons, which

limits the architecture, without exploring the whole space

of possible topologies [11, 12]. Another possible approach

is the adoption of a predefined list of modifications such as

adding only fully connected hidden neurons [13, 14]. If, for

example, the network topology is deemed to be insuffi-

cient, a new one is developed and the previous is discarded.

Unfortunately, in those cases, the provided possibilities

often fall in a structural local optima, with a problem for

the further identification of available parameters [5, 15]. In

the last years, focus has been on the use of evolutionary

algorithms (EAs) in two specific areas: in the optimization

problem and in the automatic design of neural networks

[5, 16–22]. Since EAs are heuristic methods, developed to

mimic similar biological phenomena through the evolution

of populations of individuals examining specific behavior,

this method is efficient in exploring the possible space of

solutions for the optimization problem [20]. Focusing on

the automatic search for the various parts of a topology,

one can implement genetic algorithms, as shown in [8, 23].

The latter model operates in a sequential layer search

process, where the information for every layer is found in a

specific genetic algorithm. This leads to prohibitive com-

putational costs and high processing time. Additionally,

most evolutionary approaches to network architectures

implement the backpropagation training algorithm as the

main training strategy for the networks [24]. In many cases,

the developed architecture is often affected by the well

known overfitting problem.

Therefore, a very crucial question is whether the

implementing an automatic evolutionary algorithm for the

network’s topology along with parametric weight change

can provide definite advantage over standard fixed-topol-

ogy strategy. When one utilizes a strategy for the automatic

evolution of a network architecture, one of the most viable

considerations is about the computational cost and the

expected benefits provided from such a method. In this

work, we introduce a novel approach to the evolution of the

neural network architecture in order to provide an auto-

matic and computationally feasible self-organization of an

artificial neural network layout to solve a given problem.

The proposed technique introduces a new hybrid genetic

algorithm, with several distinct advantages. On the one

hand, the underlying method provides several degrees of

freedom for the selection of a network structure. On the

other hand, the hybrid genetic algorithm implements an

additional stochastic layer, which provides a more

sophisticated and computationally permissable strategy for

the evolutionary algorithm. Through this new hybrid evo-

lutionary strategy, we obtain a method which is easily

parallelized and is capable of escaping overfitting of the

output data when the minimal amount of training data is

available.

The paper is organized as follows. In the next section,

we introduce the evolutionary neural network architecture

method, as well as a description of the possible structures

available for the network to choose from. Then we show

results from basic application of a network which task is to

fit a known function. We restrict ourselves to this trivial

problem for the sake of simplicity. Finally, we conclude

with remarks and future directions.

2 Methodology and development

The current research on evolutionary neural network

architecture has purposefully introduced various limitations

to the number of possible parameters that could be ran-

domized. The necessity for such limitations occurs due to

the increase of complexity of the search space of possible

architectures with the additions of more free structural

parameters [5, 6].

In this paper, we first introduce an automatic strategy for

the search of neural network architectures. Our approach

allows to recombine the following components during the

evolutionary process:

• number of possible hidden layers,

• number of possible neurons in every hidden layer,

• the connections between neurons,

• the type of activation function.

The recombination of all those components creates a

multidimensional search space of possible structures, while

capable of achieving sufficient performance at affordable

computational resources.

For the validation of the approach and the specific task

solved by the neural network, we have restricted the input

layer to consist of one neuron with scalar activation func-

tion, and the output layer to represent only one neuron with

scalar activation as well.

1482 Neural Comput & Applic (2018) 29:1481–1492

123

The following subsections provide more details about

those options.

2.1 Layers, neurons and connections

The number of layers, the amount of neurons per hidden

layer and the available connections are the first three

parameters that could be randomly selected by the algo-

rithm. There is no specific implementation in the code for

the addition or removal of neurons during the process.

Many evolutionary models described in the literature

generally avoid arbitrary connectivity due to increase of

computation cost, difficulties in simulation and analysis of

the network. Our method implements dynamic connec-

tions, and we are not limiting the type of connections

between neurons. The evolutionary algorithm can choose

to connect the neurons sequentially or non-sequentially-

connecting neurons irrespective of their position between

layers.

We have implemented certain constraints to the mini-

mum and maximum number of hidden layers, neurons and

connection per neurons the algorithm can utilize. These

restrictions are added to simplify the network in this par-

ticular work, but are in no way a limiting factor.

2.2 Activation functions

The fourth criterion provides several distinct activation

functions which can be selected in the automatic evolu-

tionary method:

• Identity Function—where f ðxÞ ¼ x. It is the simplest

activation function where the activation is passed as the

output of the neuron,

• Exponential Activation, where f ðxÞ ¼ expðxÞ,
• Hyperbolic Tangent (tanh)—a trigonometric function

with output in the range ½�1;þ1�. One of the most used

activation functions,

• Function based on orthogonal polynomials—Laguerre,

Legendre or Fourier.

There are at least two possibilities during the evolutionary

search for the network topology: One may request all

neurons in the hidden layer to use the same activation

function, or to allow the algorithm to choose the best one

for every neuron in the hidden layers.

In this particular work, for each hidden layer, we pro-

vide complete freedom to the network to choose the type of

activation function.

2.2.1 The training process

A variety of evolutionary architecture algorithms have

incorporated the backpropagation algorithm as a training

strategy. It is a first-order method, which goal is to mini-

mize the error function by updating the weights through a

steepest descent method. A known drawback of the training

technique is the presence of local minima [1]. The problem

is even more pronounced in an evolutionary network

topology task, where the high dimensionality of possible

solutions increases the possibility of failure to escape from

local minima, and therefore the presented output can be

overfitted [2].

Therefore, for our method we use simulated annealing

[25]. By analogy with physical systems, we initially

increase an effective temperature to a maximum value and

then we start to decrease it until the particles reach an

equilibrium (which represents a solution to the task). One

describes the probability of a point to move by

Pr½accept� ¼ e
�DE
T ; ð1Þ

where DE is the difference between the actual energy and

the energy before the move, and T is the effective tem-

perature of the system. A move is accepted if the generated

random number ½0; 1� 3 R \Pr½accept�.

2.3 Evolutionary strategy

Genetic algorithms has been some of the most commonly

utilized approaches in the studies of evolution of neural

network architectures [5, 8, 9, 13, 23]. In this subsection,

we introduce our hybrid genetic algorithm, the imple-

mentation of an entirely stochastic layer, as well as a

combination of mutation and crossover approach, through

which we evolve the possible architectural solutions where

the offspring with the best fitness is selected.

2.3.1 Fitness and selection strategy

The evolutionary method assigns a fitness score to every

individual belonging to the population, which characterizes

the quality of the specific network topology. In this par-

ticular case, we use the L2 � norm fitness function. The

algorithm selects the individual with the best fitness func-

tion for further evolution. The process is similar to the

Tournament selection method [26].

2.3.2 Training process

Every individual from the population, at each time step, is

trained by the simulated annealing method described

above. The combination of the architecture selection and

the training process can be seen as two nested optimization

problem. It is possible for both strategies to influence each

other, but we are incapable of defining the complexity of

such interaction.

Neural Comput & Applic (2018) 29:1481–1492 1483

123

2.3.3 Initialization of the technique

The technique can select topologies by choosing from the

four specified parameters described in the previous sub-

section: number of possible hidden layers, number of

possible neurons in every hidden layer, number of con-

nections per neurons and type of activation function.

The algorithm involves two synchronous steps. We

initialize the genetic algorithm to create populations of

individual architectures C1;C2;C3; . . .Cn from the space of

possible configurations. Simultaneously, the stochastic

layer of the algorithm creates another batch of populations

of individual architectures S1; S2; S3; . . .Sn. The next step

evaluates the fitness of each individual from both batches

and selects one individual from both the genetic and

stochastic layer with the best fitness. The algorithm pro-

ceeds selecting the individual with the best fitness. The

next iteration stochastically evolves the individual, using

the controlled settings described above, creating a new set

of populations of individual network topologies for both

parts (genetic and stochastic) of the algorithm. The entire

run of the algorithm utilizes both crossover, as well as

mutation strategies at different steps.

The stochastic evolution of the best individual provides

us with several conceptual advantages. Firstly, it allows the

algorithm to escape from local optima, especially if the

overall solution has various populations. This is accom-

plished through adaptation according to minimum design

standards in the changing environment. Secondly, the

stochastic evolution of a new individual allows the pro-

gram to create a new architecture to solve a problem in an

affordable computational time even in the presence of

multidimensional search space.

2.3.4 Termination

The algorithm is terminated after one of two conditions is

met. Either the maximum assigned number of generation is

reached or the fitness error is decreased by more than a

threshold value after r consecutive generations.

3 Numerical experiments

To demonstrate the abilities of the proposed method, we

perform a simple numerical experiment of fitting a known

function f ðxÞ ¼ x2. Although one might regard the function

to be an oversimplified model, the purpose of this work is

to introduce a novel technique for automated evolutionary

architecture of neural networks. The reader should

nonetheless note that the presented results in the section are

averaged over 4� 5 number of runs of the algorithm,

involving the computation of 32 points. Several examples

are provided, presenting the method’s outcomes with

restrictions in the number of hidden layers and neurons in

them. We present architectures from 4 scenarios—imple-

menting architectures with 3, 4, 5 and 6 hidden layers and

different number of neurons allowed for each hidden layer

2, 3, 4, 5, 6. In this numerical analysis, we have limited

the amount of input connections per neuron to be maxi-

mum 2. The reader should note that those restrictions are

applied only for these particular experiments and are not

intrinsic to the efficient work of the proposed evolutionary

method.

The training data used in this numerical experiment are

limited to three points—(0.1, 0.01), (0.5, 0.25) and

(0.9, 0.81). To provide a good function approximation NNs

Table 1 Scenario 1: network

architecture is limited to only

one hidden layer process

Case Num. layers # Neurons in hidden layer # Neurons in the network Error

3 � 2 � 2 3 1 3 0.017309

3 � 3 � 2 3 2 4 0.018815

3 � 4 � 2 3 1 3 0.017909

3 � 5 � 2 3 1 3 0.0185091

3 � 6 � 2 3 3 5 0.0477594

There are 5 cases in this scenario—with the maximum of 2, 3, 4, 5 and 6 neurons per hidden layer. The

fourth column represents the total amount of neurons in the network (including the neurons in the input and

output layer), while the last column represents the final error from the evolutionary process

cFig. 1 The plots represent the output of the network (left column) and

the respective architectures used in each case (right column). The first

case is 3� 3� 2 with the (red) line representing the function we try

to fit, the (blue) squares describing the neural network output and the

(red) stars representing the three data points provided for the training.

The right side plots characterize the respective architecture for every

case. The (yellow) node depicts the input node in the input layer, the

(red) node shows the output node in the output layer, and the (blue)

nodes represents the neurons in the hidden layers, respectively. The

edges from the nodes account for the synaptic connections between

nodes. The numbers next to every neuron display the type of

activation function used by every neuron. The legend on the right

lower side of each plot describes which function corresponds to which

number. The middle left and right plots represent the output and

network architecture in the case for 3� 4� 2. The lower left and

right plots represent the network’s output and architecture in the case

for 3� 6� 2 (colour figure online)

1484 Neural Comput & Applic (2018) 29:1481–1492

123

Neural Comput & Applic (2018) 29:1481–1492 1485

123

require large enough training samples [2]. Often when

limited training data are supplied, the network is unable to

learn complex relationship and overfitting occurs [27],

especially with the implementation of the backpropagation

training algorithm. Therefore, one of the aims is to show

that when limited training data are supplemented, our

evolutionary architecture could overcome those limitations.

3.1 Three layers from 2 to 6 neurons

The first experiment limits the possible layers to 3—one

input layer, one hidden layer and one output layer. For all

the numerical experiments, we have implemented limita-

tions of the maximum amount of neurons in every hidden

layer to 3, 4, 5 or 6. The results in Table 1 indicate that the

cases2 (3� 2� 2 and 3� 4� 2) with the smallest error are

the ones when only one neuron in the hidden layer is

generated. One should note that in the last case (where 6

neurons can be used in the hidden layer) the model rarely

utilizes all the available neurons. The inherent limitations

of the number of hidden layers enforce our model to gen-

erate feedforward networks. In the cases of 3� 3� 2 and

3� 4� 2 the method provides an output with nearly per-

fect function approximation (see Fig. 1, upper left and

middle left plots, respectively).

All the cases in this scenario provide for a model of a

feedforward neural network, with the 3� 3� 2 and 3�
4� 2 networks and their outputs in the range of desired

accuracy (see Fig. 1, left column, top and middle rows,

respectively). In the last case, 3� 6� 2, one might draw

the conclusion that the type of activation function selected

may impact the desired network performance. On the other

hand, the number of neurons selected in the hidden layer

appears to expose the network to an overfitting of the

output. Such a conclusion is supported by [27].

3.2 Four layers from 2 to 6 neurons

In the second scenario, the space of possible network

topologies is increased by adjusting the available hidden

layers to 2. There are 5 possible occurrences where the

maximum amount of neurons per hidden layer are

2, 3, 4, 5 and 6. One may observe that the expansion of

hidden layers and available neurons in them, facilitates the

automatic evolutionary method to select network archi-

tectures with the same number of neurons in every hidden

layer (see Table 2). In 4� 2� 2, the best possible archi-

tecture the method finds, consists of 2 hidden layers, each

with 1 neuron. The architecture represents a type of feed-

forward network, which differentiates from the classical

one in the amounts of synaptic connections between neu-

rons—where each neuron has two connections to the next

one. Moreover, the neurons employ the same exponential

activation function. The selected topology produces the

smallest error (0.006946, in the L2 � norm), even when the

network’s output is overfitted (see Fig. 2, first row, left and

Table 2 Scenario 2: network

architecture is limited to only

two hidden layers process

Case Num. layers # Neurons in hidden layer # Neurons in the network Error

4 9 2 9 2 4 Hidden #1—1 neuron 4 0.006946

Hidden #2—1 neuron

4 9 3 9 2 3 Hidden #1—2 neurons 4 0.017937

4 9 4 9 2 4 Hidden #1—3 neurons 8 0.019676

Hidden #2—3 neurons

4 9 5 9 2 4 Hidden #1—2 neurons 6 0.017426

Hidden #2—2 neurons

4 9 6 9 2 4 1 hidden—1 neuron 4 0.034233

Five cases in this scenario were developed—with implementation of maximum 2, 3, 4, 5 and 6 neurons per

hidden layer. The fourth column represents the total amount of neurons in the network (including the

neurons in the input and output layer), while the last column represents the final error from the evolutionary

process

cFig. 2 The plots represent the output of the network (left column) and

the respective architectures used in each case (right side plots). The

first case is 4� 2� 2 with the (red) line representing the function we

try to fit, the (blue) squares describing the neural network output and

the (red) stars representing the three data points provided for the

training. The right side plots characterize the respective architecture

for every case. The (yellow) node depicts the input node in the input

layer, the (red) node shows the output node in the output layer, and

the (blue) nodes represents the neurons in the hidden layers,

respectively. The edges from the nodes account for the synaptic

connections between nodes. The numbers next to every neuron

display the type of activation function used by every neuron. The

legend on the right lower side of each plot describes which function

corresponds to which number. The middle left and right plots

represent the output and network architecture in the case for

4� 4� 2. The lower left and right plots represent the network’s

output and architecture in the case for 4� 5� 2 (colour figure online)

2 The reader should note that when the notation nl � nmax � cmax is

used it signifies information about the number of layers in the

architecture (in this case nl), the maximum number of neurons in

every hidden layer (in this case nmax) and finally the maximum

amount of connections from neuron to neuron (in this case cmax).

1486 Neural Comput & Applic (2018) 29:1481–1492

123

Neural Comput & Applic (2018) 29:1481–1492 1487

123

right column) from which one may infer that the decrease

of the cost function might lead to irregular output pattern.

When we increase the number of hidden layers to 2 and

the maximum number of neurons per hidden layer to 4, our

evolutionary architecture provides a network topology

where we have the same amount of neurons (3) for every

hidden layer. The method selected the logistic activation

function used in 2 neurons, the identity and second-order

polynomial as activation functions for the neurons. One

may observe that in this case the automatic evolution

method has removed certain neurons from connecting any

further (see Fig. 2, right column, second right row). The

final error is actually bigger, compared to the other cases as

shown in Table 2, but the output of the network (see Fig. 2,

left column, middle row) is in the desired range accuracy.

In Fig. 2 lower right plot (case 4� 5� 2), we show the

capability of our evolutionary method to utilize the neuron

connection freedom. The topology is constituted of 4 lay-

ers—1 input, two hidden and 1 output layer. The input

layer connects to every other available neuron in this net-

work, including the neuron in the output layer. The only

other connection to the output neuron is established from

the second neuron in the first hidden layer. Our method

essentially removes the implementation of the second

hidden layer by the elimination of output connections from

those neurons. According to Table 2, the error reaches the

Fig. 3 The plots represent the output of the network (left column) and

the respective architectures used in each case (right column). The first

case is 5� 3� 2 with the (red) line representing the function we try

to fit, the (blue) squares describing the neural network output and the

(red) stars representing the three data points provided for the training.

The right side plots characterize the respective architecture for every

case. The (yellow) node depicts the input node in the input layer, the

(red) node shows the output node in the output layer, and the (blue)

nodes represents the neurons in the hidden layers, respectively. The

edges from the nodes account for the synaptic connections between

nodes. The numbers next to every neuron display the type of

activation function used by every neuron. The legend on the right

lower side of each plot describes which function corresponds to which

number. The lower left and right plots represent the network’s output

and architecture in the case for 5� 5� 2 (colour figure online)

1488 Neural Comput & Applic (2018) 29:1481–1492

123

accepted minimum and the output of the network repre-

sents the intended function approximation. One may

attempt to explain the small error and the desired output by

means of the results presented in [28] (important obser-

vation in this case is the removal of neurons through their

connection). Therefore, it seems likely that during the

evolutionary process our method builds a representation of

a model, where the option of discarding input connections

is viable and seemingly beneficial to the particular method.

3.3 Five layers from 2 to 6 neurons

To evaluate the performance of our method when the

multidimensional space of possible structures is expanded,

we examined a situations with 3 hidden layers, and the

maximum of 2, 3, 4, 5 and 6 neurons can be included in

every hidden layer. One might expect higher computational

costs, as well as decrease in performance as well as an

output diverging from the desired range of solution. The

latter is a probable outcome from the inability of the net-

work to learn complex patters when we provide limited

training data and purposefully increase the number of

neurons in the network [27].

In the first architecture from this scenario—5� 3� 2,

the 3 hidden layers utilize 2 neurons each. The method has

further adjusted the network’s architecture by reducing the

number of connected neurons (see Fig. 3, second column

first row). The removal of neurons as a strategy has been

used by the evolutionary method in previous cases,

although in this particular implementation one observes

rather high final error (see Table 3), and a sharp overfitting

of data. Reasonable assumption in this setting may be that

the resemblance of a regular feedforward topology with

limited data for learning could limit the capability of the

method to provide a sufficient function generalization.

The same architecture of 3 hidden layers, each consist-

ing of 2 neurons is chosen in the 5� 5� 2 experiment as

well. Similarly to the 4� 5� 2 network topology, our

method builds connections from the neuron in the input

layer to every other neuron in the structure, including the

one in the output layer (see Fig. 3, second column, second

row). Once again, the obtained topology has removed

almost all connections from the rest of the neurons, leaving

neuron 1 from hidden layer 2 to connect to the output layer,

along with the connection between the input and the output

neuron. The provided output achieves near optimal

approximation (see Fig. 3, first column, second row).

3.4 Six layers from 2 to 6 neurons

The concluding experiment introduces in the space of

possible architectures the ability to choose up to 4 hidden

layers with variations of 2, 3, 4, 5 and 6 per hidden layer.

According to Fig. 4 upper right plot (6� 3� 2 case),

our evolutionary algorithm provided an architecture with 4

hidden layers, each with 1 neuron, sequentially connected

by 2 synaptic connections, with 3 different activation

functions assigned to every neuron. Analogous to the 4�
2� 2 scenario, the feedforward topology produces bigger

error (see Table 4) and overfitting of the output data.

Nevertheless, when one considers, in this particular case,

the multidimensional space of possible architectures, with

the various levels of freedom for the number of layers,

neurons and the types of activation functions, the method

has still provided a sufficiently good data fitting at

affordable computational cost.

The composition of the topology in the last case—6�
6� 2 employs 4 hidden layers, with 2 neurons each. The

variation in this architecture is that the network is not

sequentially connected, as compared to the 6� 3� 2 case.

Table 3 Scenario 3: network

architecture is limited to only

three hidden layers process

Case Num. layers # Neurons in hidden layer # Neurons in the network Error

5 9 2 9 2 3 Hidden #1—1 neuron 3 0.019079

5 9 3 9 2 5 Hidden #1—2 neurons 8 0.016791

Hidden #2—2 neurons

Hidden #3—2 neurons

5 9 4 9 2 5 Hidden #1—1 neuron 5 0.006132

Hidden #2—1 neuron

Hidden #3—1 neuron

5 9 5 9 2 5 Hidden #1—2 neurons 8 0.015428

Hidden #2—2 neurons

Hidden #3—2 neurons

5 9 6 9 2 4 1 hidden—1 neuron 10 0.008473

Five cases in this scenario were developed—with implementation of maximum 2, 3, 4, 5 and 6 neurons per

hidden layer. The fourth column represents the total amount of neurons in the network (including the

neurons in the input and output layer), while the last column represents the final error from the evolutionary

process

Neural Comput & Applic (2018) 29:1481–1492 1489

123

Moreover, our method exploits once again the randomized

synaptic connections. The input neuron connects to every

other available neuron with one or two input connections.

Through this strategy, the algorithm removes nearly 90%

of the neurons in the network. Apart from the input neuron,

only the second neuron in hidden layer 2 provides a direct

connection to the neuron in the output layer. In a similar

manner to the 4� 5� 2 and 5� 5� 2 cases, after the

randomized connections are utilized, there is negligible

overfitting of the output in the upper 3� 4 data points.

Nevertheless, the network seems to be capable of building

a inner model and fitting the data regardless the training

limitations imposed and the larger error (see Table 4).

According to the numerical experiments performed and

discussed in this section, one could infer that not every

time sequentially connected network provides the best

solution to a certain task. At the same time, when our

proposed evolutionary method uses more than one hidden

layer with more neurons, it often reaches a model of a

neuron removal, essentially discontinuing redundant cal-

culations. In those situations, the network provides suffi-

ciently good results according to the user specified cost

function. One important observation is that most of the

time, the neurons that are connected to the output layer use

the logistic activation function. One might therefore con-

clude that in the bigger architectures, which provide

Fig. 4 The plots represent the output of the network (left column) and

the respective architectures used in each case (right side plots). The

first case is 6� 3� 2 with the (red) line representing the function we

try to fit, the (blue) squares describing the neural network output and

the (red) stars representing the three data points provided for the

training. The right side plots characterize the respective architecture

for every case. The (yellow) node depicts the input node in the input

layer, the (red) node shows the output node in the output layer, and

the (blue) nodes represents the neurons in the hidden layers,

respectively. The edges from the nodes account for the synaptic

connections between nodes. The numbers next to every neuron

display the type of activation function used by every neuron. The

legend on the right lower side of each plot describes which function

corresponds to which number. The lower left and right plots represent

the network’s output and architecture in the case for 6� 6� 2 (colour

figure online)

1490 Neural Comput & Applic (2018) 29:1481–1492

123

expanded search space of possible solutions, the evolu-

tionary algorithm comes with several layers, but only one

neuron from them is connected to the output layer.

4 Conclusions

In this paper, we have introduced a novel method for the

automatic search of an optimal neural network architecture,

given a specific problem (in our case, the fitting of a

function). The underlying approach in the design of the

method provides several degrees of freedom for the evo-

lutionary algorithm to work with when searching for a

network structure, which can eventually become quite

complex. Even in the presence of this multidimensional

space of possible topologies, our proposed strategy

achieves sufficient performance at affordable computa-

tional cost. Our approach is capable to generate a network

architecture while limiting the negative effects of overfit-

ting. The numeric experiments and the obtained results

validate our approach. Analogous to nature, many times

simple tasks can be effectively solved with simplified

procedures. According to the specific task, we believe the

evolutionary strategy in our method reaches the optimal

network topologies—whether through the automatic

removal of unnecessary connections, or through the fre-

quent usage of better activation function. Therefore, we

obtain a reliable network topology not based on the

experience of the researcher, but on well-defined automatic

evolutionary strategy.

Acknowledgments This work has been supported by the project EC

AComIn (FP7-REGPOT-20122013-1), by the Bulgarian Science

Fund under Grant DFNI I02/20, and by the Grant DFNP-176-A1.

References

1. Haykin S (2009) Neural networks and learning machines, 3rd

edn. Pearson Education, Upper Saddle River

2. Bishop CM (1993) Neural networks for pattern recognition.

Clarendon Press, Cambridge

3. Mucherino A, Papajorgji PJ, Pardalos PM (2009) Data Mining in

Agriculture, vol 34. Springer Science & Business Media

4. Hagan MT, Demuth HB, Beale MH, De Jesus O (2014) Neural

network design, 2nd edn. Martin Hagan, New York

5. Kordik P, Koutnik J, Drchal J, Kovarik O, Cepek M, Snorek M

(2010) Meta-learning approach to neural network optimization.

Neural Netw 23(4):568–582

6. Almeida LM, Ludermir TB (2010) A multi-objective memetic

and hybrid methodology for optimizing the parameters and per-

formance of artificial neural networks. Neurocomputing

73:1438–1450

7. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86:2278–2324

8. Yao X, Yong L (1997) A new evolutionary system for evolving

artificial neural networks. IEEE Trans Neural Netw 8(3):694–713

9. Branke J (1995) Evolutionary algorithms for neural network

design and training. In: Proceedings of the First Nordic Work-

shop on Genetic Algorithms and its Applications

Table 4 Scenario 4: network

architecture is limited to only

four hidden layers process

Case Num. layers # Neurons in hidden layer # Neurons in the network Error

6 9 2 9 2 6 Hidden #1—1 neuron 6 0.010450

Hidden #2—1 neuron

Hidden #3—1 neuron

Hidden #4—1 neuron

6 9 3 9 2 6 Hidden #1—1 neuron 6 0.027712

Hidden #2—1 neuron

Hidden #3—1 neuron

Hidden #4—1 neuron

6 9 4 9 2 6 Hidden #1—2 neurons 10 0.039770

Hidden #2—2 neurons

Hidden #3—2 neurons

Hidden #4—2 neurons

6 9 5 9 2 3 Hidden #1—1 neuron 3 0.018634

6 9 6 9 2 6 Hidden #1—2 neurons 10 0.0271704

Hidden #2—2 neurons

Hidden #3—2 neurons

Hidden #4—2 neurons

Five cases in this scenario were developed—with implementation of maximum 2, 3, 4, 5 and 6 neurons per

hidden layer. The fourth column represents the total amount of neurons in the network (including the

neurons in the input and output layer), while the last column represents the final error from the evolutionary

process

Neural Comput & Applic (2018) 29:1481–1492 1491

123

10. Carvalho R, Ramos FM, Chaves AA (2011) Metaheuristics for

the feedforward artificial neural network (ANN) architecture

optimization problem. Neural Comput Appl 20(8):1273–1284

11. Balkin SD, Ord JK (2000) Automatic neural network modeling

for univariate time series. Int J Forecast 16:509515

12. Ma L, Khorasani K (2003) A new strategy for adaptively con-

structing multilayer feedforward neural networks. Neurocom-

puting 51:361385

13. Stanley KO, Miikkulainen R (2002) Efficient evolution of neural

network topologies. In: IEEE Proceedings of the 2002 Congress

on Evolutionary Computation, vol 2

14. Stanley KO, Bryant BD, Miikkulainen R (2003) Evolving adap-

tive neural networks with and without adaptive synapses.In: IEEE

The 2003 Congress on Evolutionary Computation, vol 4

15. Fahlman SE, Lebiere C (1991) The Cascade-Correlation Learn-

ing Architecture Technical report

16. Moriarty DE, Mikkulainen R (1996) Efficient reinforcement

learning through symbiotic evolution. Mach Learn 22:11–32

17. Moriarty DE, Miikkulainen R (1997) Forming neural networks

through efficient and adaptive coevolution. Evolut Comput

5(4):373–399

18. Angeline PJ, Saunders GM, Pollack JB (1994) An evolutionary

algorithm that constructs recurrent neural networks. Trans Neural

Netw 5(1):54–65

19. Gruau F, Whitley D, Pyeatt L (1996) A comparison between

cellular encoding and direct encoding for genetic neural net-

works. In: Koza JR et al (eds) Genetic programming: proceedings

of the first annual conference. MIT Press, Cambridge, pp 81–89

20. Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolu-

tionary algorithms for solving multi-objective problems, vol 242.

Kluwer Academic, New York

21. Yu J, Wang S, Xi L (2008) Evolving artificial neural networks

using an improved PSO and DPSO. Neurocomputing

71(4):1054–1060

22. Liu LB, Wang L, Jin Y, Huang D (2007) Designing neural net-

works using PSO-based memetic algorithm. In: International

Symposium on Neural Networks. Springer, Berlin, pp. 219–224

23. Maniezzo V (1994) Genetic evolution of the topology and weight

distribution of neural networks. IEEE Trans Neural Netw

5(1):39–53

24. Yao X (1999) Evolving artificial neural networks. Proc IEEE

87(9):1423–1447

25. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by

simulated annealing. Science 220(4598):671–680

26. Thierens D, Goldberg D (1994) Convergence models of genetic

algorithm selection schemes, parallel problem solving from nat-

ure PPSN III. Springer, Berlin Heidelberg

27. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdi-

nov R (2014) Dropout: a simple way to rpevent neural networks

from overfitting. J Mach Learn Res 15:1929–2958

28. Cybenko G (1989) Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 2(4):303–314

1492 Neural Comput & Applic (2018) 29:1481–1492

123

Neural Computing & Applications is a copyright of Springer, 2018. All Rights Reserved.

	A genetic approach to automatic neural network architecture optimization
	Abstract
	Introduction
	Methodology and development
	Layers, neurons and connections
	Activation functions
	The training process

	Evolutionary strategy
	Fitness and selection strategy
	Training process
	Initialization of the technique
	Termination

	Numerical experiments
	Three layers from 2 to 6 neurons
	Four layers from 2 to 6 neurons
	Five layers from 2 to 6 neurons
	Six layers from 2 to 6 neurons

	Conclusions
	Acknowledgments
	References

