Int J Parallel Prog (2017) 45:1420-1460 @ CrossMark
DOI 10.1007/510766-017-0495-0

3D-Stacked Many-Core Architecture for Biological
Sequence Analysis Problems

Pei Liul® - Ahmed Hemani! - Kolin Paul?® -
Christian Weis®> - Matthias Jung? -
Norbert Wehn3

Received: 14 June 2016 / Accepted: 23 February 2017 / Published online: 11 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract Sequence analysis plays extremely important role in bioinformatics, and
most applications of which have compute intensive kernels consuming over 70% of
total execution time. By exploiting the compute intensive execution stages of pop-
ular sequence analysis applications, we present and evaluate a VLSI architecture
with a focus on those that target at biological sequences directly, including pairwise
sequence alignment, multiple sequence alignment, database search, and short read
sequence mappings. Based on coarse grained reconfigurable array we propose the use
of many-core and 3D-stacked technologies to gain further improvement over memory
subsystem, which gives another order of magnitude speedup from high bandwidth and

Bd Pei Liu
peiliu@kth.se

Ahmed Hemani
hemani @kth.se

Kolin Paul
kolin@cse.iitd.ac.in

Christian Weis
weis@eit.uni-kl.de

Matthias Jung
jungma@eit.uni-kl.de

Norbert Wehn

wehn@eit.uni-kl.de

Department of Electronic System, School of ICT, KTH Royal Instaitute of Technology,
16440 Stockholm, Sweden

Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi,
India

Microelectronic Systems Design Research Group, University of Kaiserslautern, Kaiserslautern,
Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0495-0&domain=pdf
http://orcid.org/0000-0001-7769-7123

Int J Parallel Prog (2017) 45:1420-1460 1421

low access latency. We analyze our approach in terms of its throughput and efficiency
for different application mappings. Initial experimental results are evaluated from a
stripped down implementation in a commodity FPGA, and then we scale the results to
estimate the performance of our architecture with 9 layers of 70 mm? stacked wafers
in 45-nm process. We demonstrate numerous estimated speedups better than corre-
sponding existed hardware accelerator platforms for at least 40 times for the entire
range of applications and datasets of interest. In comparison, the alternative FPGA
based accelerators deliver only improvement for single application, while GPGPUs
perform not well enough on accelerating program kernel with random memory access
and integer addition/comparison operations.

Keywords Accelerator architectures - Application specific integrated circuits - Bioin-
formatics - Computational biology - Coprocessors - Reconfigurable architectures -
Three-dimensional integrated circuits

1 Introduction

Sequence analysis in bioinformatics field is an enabling technology that allows
researchers to process biological sequence data. It finds similarity between biological
sequences in same type, e.g., deoxyribonucleic acids (DNA), ribonucleic acids (RNA),
and amino acids (protein). There have been a large number of programs developed
with diverse approaches to solve biological sequence analysis problems, including
pairwise sequence alignment, multiple sequence alignment (MSA), database search,
genomic analysis, motif finding, short read sequence mapping and so on.

Similar with other scientific research domains, a dominant portion of overall exe-
cution time is consumed by a small number of kernel functions in biological sequence
analysis applications, thus exporting those functions to hardware accelerators, e.g.,
FPGAs and GPGPUs, becomes a hot topic in recent years [1-30]. It’s particularly
noticeable that those hardware accelerators rarely reach typical biology labs; bioinfor-
matics researchers still prefer using general purpose platforms such as workstations,
clusters, supercomputers, or clouds.

One of the key reasons is that previous researches mostly focused on accelerating
individual processing stages of a specific application, thus researchers facing real
problems do not have the flexibility to adopt different accelerated workflows. Typical
bioinformatics researches usually replicates multiple workflows using various similar
applications of the same purpose in each stage to ensure high sensitivity. Meanwhile,
there is no significant “best” or “worst” program among others in biological analysis,
since the results vary in practice.

Although bioinformatics researchers prefer general purpose platforms, the high-end
workstations cannot keep pace with rapidly growing problem size. Next Generation
Sequencing (NGS) now allow genomes to be sequenced more quickly and cheaply
than ever before, thus the size of sequence databases is increasing exponentially, as
well as the problem size of database oriented sequence analysis.

Cloud computing is somehow expected to be a solution for high performance
computing, but its general availability has caused a big waste of time during data

@ Springer

1422 Int J Parallel Prog (2017) 45:1420-1460

distribution. For every specific task, all the necessary data have to be transferred from
storage server nodes to computing nodes. This would consume a lot of time in case of
large data, e.g., 70 x coverage for whole genome sequencing would be over 330 GB in
size, compressed. Therefore cloud computing is less efficiency than dedicated platform
in such cases [31].

In order to address both performance and availability gap of biological sequence
analysis problems, we turn to architectural innovation. Our goal is to provide an
effective solution for multiple applications in biological sequence analysis workflow,
giving computational biology researchers flexible choices over popular approaches.

The remainder of this paper is organized as follows. Section 2 details the contribu-
tions of our paper. Section 3 introduces a series of applications in biological sequence
analysis, and presents a performance study that some common elements could be
figured out within their compute intensive kernels. Section 4 describes an efficient
implementation of coarse grained reconfigurable array (CGRA) using integer addi-
tion/comparison operations, while Sect. 5 introduces a many-core architecture with
3D stacked DRAM so that CGRA based sub-processor could benefit from both circuit-
switching and exclusive DRAM access policy. We analyze our approach in terms of
its throughput and efficiency for application mappings in Sect. 6. Experimental results
are presented in Sect. 7. Our architecture (with its concomitant software support) is the
first that accommodates a series of applications covering different stages of biological
sequence analysis workflow while providing both high performance and energy effi-
ciency. Estimated results show that our design outperforms all known approaches for
the entire range of applications and datasets of interest. Section 8 introduces related
work, and Sect. 9 offers conclusions.

2 Contributions

We present a novel architecture for biological sequence analysis problems, using
CGRA, many-core and 3D-stacked technologies. In summary we make the following
contributions:

e We present an analysis of multiple applications in different subfields of biological
sequence analysis. We categorize those applications with computation stages and
data flow, then identify the kernel functions which consumes a dominant portion
of overall execution time. Then we summarize the similarity of operations and
datapath of target applications, enabling the use of a reconfigurable architecture
to suite all the requirements.

e We describe a reconfigurable processing element (PE) which is designed to facil-
itate both simplification and scalability with integer operations. An array of PEs
forming a CGRA as a processing core can be reconfigured to accelerate target appli-
cations, while shared buffers are efficiently interconnected to maximize throughput
and minimize congestion.

e We introduce a memory access policy to maximize the throughput of local DRAM
access in sub-processor while devoid bus congestion within a circuit-switching
many-core system. Benefit from this policy, 3D-stacked DRAM has been adopted,
which provides both high bandwidth and low access latency.

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1423

e We present that our architecture is specially customized for biological sequence
analysis problems in terms of both operations and datapath. The compute intensive
kernel functions of target biological sequence analysis applications can be well
mapped to our architecture.

e We present results from prototyping stripped down implementation of our design
on a commodity FPGA, representing the performance of a single processing core
of our architecture. Then we scale the results to give a plausible estimation of
our design with many-core and 3D stacked architecture. Based on conservative
area estimation and simulation results, we show that our design achieves the high-
est performance and greatest energy efficiency comparing with all other known
accelerators.

3 Biological Sequence Analysis Applications

In this Section, we introduce all the biological sequence analysis algorithms and appli-
cations that have been successfully accelerated with our architecture.

3.1 Pairwise Sequence Alignment

The pairwise sequence alignment algorithms are the most important components of
biological sequence analysis field; most famous sequence analysis applications have
incorporated with one or more types of pairwise sequence alignment algorithms as
part of the processing flow [32-36]. There are two major classes in pairwise sequence
alignment: global and local alignment. In case of global sequence alignment, two
individual sequences of similar length are aligned from one end to another, while
local sequence alignment only relatively align the subsequences within the originals
that present the highest similarity.

For sequence a and b with length m and n respectively, adopting pairwise sequence
alignment would build a distance score matrix filled with alignment scores at first,
where each element is the best alignment score representing the evolution distance
between the segments in the two individual sequences. Needleman and Wunsch [37]
is the most popular global alignment algorithm. For Needleman—Wunsch algorithm
using affine gap, the distance scores between sequence a and b are given recursively
to fill the distance score matrix as Algorithm 1:

@ Springer

1424 Int J Parallel Prog (2017) 45:1420-1460

Algorithm 1 Distance score matrix filling stage of
Needleman-Wunsch Algorithm (Affine Gap)

1: Fog=Mpo=1Ip0=Doo=0 // Initialization
2:fori=1toH,j=1toL

3: Myy=—e+ M.y, My;=—e+ M,;,// Initialization
4:endi,j

Sifori=1toH,j=1toL

6: M;;=max{ M., li1j1, Diiji}y +S;;// Matching
7. Ly=max{M.;—d, I.;;—e} // Insertion
8 Djj=max{ M ,—d, D;j,—e} // Deletion
9. Fy=max{M,;, I,;, D;; } // Filling

10: end i, j

e For a matching event between segment i from sequence a and segment j from
sequence b, which means that i and j are identical character symbol, the matching
score M; ; is given by the maximum alignment score of segment pair at (i — 1,
J — D plus S; ;, where §; ; is the substitution matrix [38] score with entry of
residues i, j .

e For an insertion event between i and j, which means that j is likely to be an
inserted symbol character that different from i — 1 and 7, the insertion score /; ; is
given by the maximum value between the matching score of segment pair (i — 1, j)
minus a gap open d and the insertion score of which minus a gap extension e.

e For a deletion event between i and j, which means that a character symbol in b
is likely being deleted and j is the same as i — 1, the deletion score D; ; is given
by the maximum value between matching score of segment pair (i, j — 1) minus
a gap open d and insertion score of which minus a gap extension e.

e The distance score matrix element at location (i, j) is then filled by the maximum
value of corresponding matching, insertion and deletion scores.

The gap penalties depend on the length of the gap and are generally assumed to be
independent of the gap residues. For linear gap, the value is given by a constant penalty
d times a linear function of gap length g as (1). For affine gap, the constant penalty d
is predefined as well, while a linear penalty is given to subsequent gap extensions as

).

Penaltylinear =dxg (D
Penalty,g,, = d +e x (g —1))
Smith and Waterman [39] algorithm is the standard model for local sequence align-

ment. The distance score matrix filling stage of Smith—Waterman is slightly different
from Needleman—Wunsch as Algorithm 2:

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1425

Algorithm 2 Distance score matrix filling stage of Smith-
Waterman Algorithm (Affine Gap)

1: Fog= Moo= 1p9=Dyy=0 // Initialization
2:fori=1toH,j=1toL

3: My=0,M;;=0 // Initialization
4:endi,j

Sifori=1toH,j=1toL

6: M;;=max{{{ M1 li1j1, Disj1} +Si;},0} //M
7. Ly=max{M.;—d, I.;;—e} // Insertion
8 Djj=max{ M ,—d, Djj,—e} // Deletion
10: end 7, j

During the distance score matrix filling stage, there is not of much differences
between Needleman—Wunsch and Smith—Waterman algorithm in the form of compu-
tation. Gapped penalties are replaced by “0” during initialization, and another “0” is
added for comparison in case of matching event. The sequential execution flow of
the distance score filling stage for sequences using either global or local sequence
alignment is demonstrated as Fig. 1.

After generation of the distance score matrix, both global and local sequence align-
ment algorithms adopt a backtracking stage to find the final optimal alignment result.
A path of relatively max values from the bottom-right to top-left cell of the score
matrix has to be recovered. For Needleman—Wunsch algorithm, the best global align-
ment chain is established by tracking back diagonally from position (m, n), which
must be the element with global maximum score, to (1,1) of the filled m-by-n distance
score matrix, sequentially given by (3) and demonstrated as Fig. 2a:

Backtracki,j = max{Fi,Lj, Fij-1, Fi,1’j,1} 3)
And for Smith—Waterman, the starting point of best local alignment chain is given

by the global maximum distance score as (4), and then tracking back diagonally using
(3) till “0” as (5) and Fig. 2b. Those zeros that different from Needleman—Wunsch

Sequence a of length m —— initialization
a; a, az a; ... — processing
| 0 | r.r.r.rr.r.rr 1.1 T T T T T T, |
& & § 1 | | J=
= ~| | 1 r1r 1 1 T T T T 11 |
= P ¢ [[T T [T T 79
-
5 ~
c ~| | o1t r 1 r 1 1T T T T 11 |
o= P T ¢ [T T T T 7Y
Y P 7
o m| | o1t r 1 r 1 1 T T T 11 |
Q= Lt 1 1 T T T T [[1y
Py —.
o £z
<. v| | o1t r 1 r 1 1T T T T 11 |
gQ P ¢ [T T [T T 7Y
[on y ~
Q | v | ot r1r 11 1 T T TT T/ |
n P+ & 1 F 7 7"

Fig. 1 Sequential execution of distance score matrix filling stage in pairwise sequence alignment

@ Springer

1426 Int J Parallel Prog (2017) 45:1420-1460

D Initial element

< <« < D Relatively maximum of
o< 4 < Up, Up-left, and Left
Jr element scores

‘ .Global maximum score

(a)

DEIement of zero score

DReIatively maximum of
Up, Up-left, and Left
< element scores

‘H .Global maximum score

-

(b)

Fig. 2 Backtracking stage of a global sequence alignment, and b local sequence alignment

algorithm would “reset” the alignment in a region where the other option element
scores are negative values, which does not help to find an aligned subsequence.

Startioear = max;';_ {M;) “4)
Stoplocal =0 ®)

3.2 Multiple Sequence Alignment

Multiple sequence alignment is used to discover conserved subsequences across mul-
tiple long sequences of similar length, so that sequence homology can be inferred to
assess the shared evolutionary origins. The MSA problem is an extension of pairwise
sequence alignment, which is NP-Hard, made it impractical to give an exact solution.
Considering homologous sequences are evolutionarily related, MSA programs often
incorporate heuristics progressive alignment to solve this problem. Those popular
multiple sequence alignment applications such as ClustalW [32] and T-Coffee [33]
shares the same heuristic idea consists of three main stages:

o All sequences to be processed are pairwise aligned with each other in order to give
corresponding similarity distance score matrices, representing the divergence of
each pair of sequences. This stage is performed with deterministic method using
distance score matrix filling of local sequence alignment.

e A phylogenetic-like guided tree is calculated from the distance score matrices with
its leaves representing sequences and sub sequence groups. The branch lengths
reflect sequence divergences along with tree topology.

e All the sequences are progressively aligned according to the branching order of
the guide tree, from leaf to root. Profiles are often created for tree branches instead

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1427

Fig. 3 Processing flow of

multiple sequence alignment Seq.1 =====c==-- e
Seq.2 ====cccc=.
Seq.3 e==ecccaa.
Seq. 4 ===cccca-. soe
Seq.5 ===ccccc-.

Seq. 4 =— ¢ — . —
Se(. 3 == ¢ — —
seqlm—m - — - — {1 3@ @
Seq. 2 ==+ — —
I D20 ®

of aligning two subgroups of sequences directly, but the alignment processes of
profile-wise, profile-sequence and sequence-wise are all equivalent to pairwise
sequence alignment. The tree topology indicates the order of pairwise sequence
alignment for left and right node/branch of each ancestor tree node.

Therefore solving MSA problem can be seen as solving a series of pairwise sequence
alignment problems and sub-problems, along with building a heuristic tree. An exam-
ple of five sequences of similar length being processed with MSA is shown as Fig. 3.

3.3 Database Search

Database searching is used to uncover homologous sequences, which might be the most
frequently used applications in computational biology. Considering the exponentially
growing size of biological sequence databases, it’s not applicable to use deterministic
approach such as pairwise sequence alignment directly on database searching, there-
fore heuristic approaches have been introduced to find a suspecting region to be further
verified. The heuristic idea adopted in the most popular database searching toolset,
BLAST [34], is that the pairwise sequence alignment would be executed only after
two small regions of exact match has been found nearby.

During data preparation, a large database is partitioned with overriding area on
partition edge, then the k-mer set in each partition is used to generate large hash tables
respectively. k-mer means a group of substrings of length k belongs to the original
string; all the k-mers are different from each other; the original sequence string can be
formed as a combination of all its k-mers with overlapping and duplication.

After generation of the large hash tables for each database partition, corresponding
smaller pointer tables are built as entry index for each large hash table. It’s used to
address a small range of entries in the large hash table, thus it’s not necessary to
traverse the whole large table on every access.

Searching against a indexed database using BLAST, the heuristic approach consists
of three stages:

e For each query sequence, all the k-mers and their close similarities are obtained and
tested against a user-defined threshold. Those passed strings are called seed strings.
The seed length k is normally 3-5 for protein and 11 for DNA/RNA sequences. All

@ Springer

1428 Int J Parallel Prog (2017) 45:1420-1460

Query Seq. ABCDEF Seeds
— X Candidate matching location
3-mer ABC BCD CDE DEF X
Variations iABD BCA CDA DEE! s X

ABE BCE CCE DAFi 8 X .

AEC BED AEF > «

AFC ACD i g »

CBC FCD o

FBC : X

Threshold X

ABF BCA CcDbB DEA

ACC BCB CDC DEB Database

ADC BCE CDF DEC g

/ Extended matching location
Gapped extension on
nearby matching . /
g o
s <j n / /
> Z
] g /
3
3 S|/
Database Database

Fig. 4 Processing flow of BLAST for database searching

the seeds are used to build a bloom filter [40]. The original database or its partitions
is inputted to test against the bloom filter, in order to get a series of candidate
matching locations including fake-positives. For each candidate matching location,
all the seeds are evaluated, which produces the exact seed-location matching pairs.

e For each seed-location matching pair, the seed is stepwise extended from both
ends towards the query sequence, where pairwise distance scores are generated
between seed extension and corresponding extension of matched database string.
The extension does not stop until the accumulated total score reaches user-defined
threshold.

e Subsequences with extension distance scores higher than user-defined threshold
will be used in the third stage for evaluation. Pairwise local sequence alignment is
used to verify the similarity between query sequence and database at the suspected
regions that indicated by two nearby extensions.

An example of seed generation for query sequence ABCDEF is shown in Fig. 4,
along with following processes of matching, ungapped extension and gapped extension
in BFAST [35] for database searching.

3.4 Short Read Sequence Mapping

Short read sequence mapping is a general category of applications that finding the
corresponding positions of short fragments to reconstruct the original form. NGS
technologies randomly breaks down many sample organism copies of genome or
protein into small pieces, then “read” in parallel and output as huge amount of randomly
fragmented strings with equal length. It guarantees read quality by multiple times of

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1429

redundant coverage over original organism sample. Those fragmented strings called
“read” are typically representing 50—-400 base-pairs (bp) in length for DNA. In order to
reconstruct the original sequence structure of target organism sample, a mapping stage
is introduced with two different approaches: de novo assembly and reference-guided
assembly. In this paper we focus on the reference-guided assembly cases.

Reference-guided assembly is to reconstruct the original genome sequences of tar-
get organism sample when a sequence model is existed. Either indexing the input reads
and then scanning through the reference model, or aligning each read independently
against indexed reference sequence, nearly all the programs within this category share
the same principle: index, search, and pairwise local sequence alignment. Rapidly
developing sequencing technologies produces more and more read data than ever
before, which make the read indexing approaches to be deprecated in real practice
nowadays, thus we focus on database indexing methods. There are mainly two types
of database index methods, hash-index and Ferragina—Manzini index (FM-index) [41].

Hash-index based mapping is a deterministic method. The reference sequence
model is used to generate hash index and corresponding pointer tables during data
preparation, which is very similar to the data preparation part of BLAST. During map-
ping stage, the computation is focused on searching indexed database using hashed
seed of each short read, in order to determine the candidate matching location:

e For each read, the head part of each is obtained as seed string and properly hashed.

e Prefix part of each hashed seed is used to access the pointer table, and a valid hit
would give an address range pointing to the large hash table. Suffix part of the
hashed seed is then compared with a series hash values retrieved from the large
hash table respectively. Each equivalent indicates an exact seed matching between
the query sequence and the database, called candidate matching location.

e Pairwise local sequence alignment is executed between the complete short read
and the reference sequence at each candidate matching location for verification.

The hash-index method requires large amount of memory space to store the index
tables and the reference sequence. The software execution of typical hash-index based
short read sequence mapping is demonstrated as Fig. 5.

» Pairwise local
I-> sequence alignment

ML Equivalent(s)

Compare

Candidate

i I Location(s
e bl Hash1 | Location 1 | s)
| Hash2 { Location 2 |
[. I

Reference
Sequence

Fig. 5 Processing flow of hash-index based short read sequence mapping

@ Springer

1430 Int J Parallel Prog (2017) 45:1420-1460

read > Pairwise local
I-> sequence alignment

Head apa;a,a; - a,

STW L

Matching
Location(s)

<=

<=
Reference
Sequence

N L]

\%
The same FM-index table of reference sequence

Fig. 6 Processing flow FM-index based short read sequence mapping

With the help of Burrows—Wheeler transform (BWT) [42], The FM-index guided
assembly reduces the memory footprint by an order of magnitude with backward
search. The FM-index is created by encoding the BWT table for suffix array [43] of
the reference sequence model. In case of exact matching with FM-index, the execution
is mainly in two stages:

e For each read, the head part is obtained as seed to query against the FM-index
table. Sequentially evaluating every character of the seed, two pointers fop and
bottom are updated that specify the range of positions of the verified pattern in
the suffix array. When the two pointers are equal or if top is less than bottom,
the search is terminated indicating target seed does not exist in the reference
sequence. After processing the last character of the seed without termination, the
two pointers indicate a number of candidate matching locations where the seed
string are located in reference sequence.

e Pairwise local sequence alignment is then executed between the read and original
sequence model at each candidate matching location for verification.

Figure 6 demonstrates exact backward searching with FM-index based method
without termination. In case of termination of backward searching, which indicates
unmatched seed between the corresponding read and the reference sequence, this read
will be marked as unsuccessful mapped.

For inexact matching search, which is the real case, it is required to exhaustively
traverse all the possible symbol combinations for user-defined mismatch counts, thus
the execution time is much more than exact matching. The processing flow would be
a branched structure, which will be discussed in Sect. 6.

3.5 Application Analysis
Our target biological sequence analysis take original biological sequences (e.g., DNA,

RNA, and protein) as input. A list of execution stages of those applications under
analysis are shown in Table 1. It can be seen that most of the operations during

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1431

Table 1 Main execution stages of target applications

Target applications Execution stages

Pairwise sequence alignment Distance score matrix filling
Backtracking

Multiple sequence alignment Distance score matrix filling

Guided tree construction

Pairwise local sequence alignment
Database searching Seed generation

Seed matching?

Seed extension®

Pairwise local sequence alignment
Short read sequence mapping (hash-index) Seed hashing

2-hit string matching

Pairwise local sequence alignment
Short read sequence mapping (FM-index) Backward searching

Pairwise local sequence alignment

4 Bloom filter adopted in software execution
b Including distance score matrix filing

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

m Other

W Stepwise string matching
W 2-hit string matching

W Seed matching

H Pairwise alignment
 Backtracking

<
.\‘_,Q/

&

&

M Distance score matrix filling

Fig. 7 Profiling of biological sequence analysis applications

execution are variations of pairwise sequence alignment or its sub-stages, and substring
matchings. The profiling of those applications presenting the proportion of time spent
in the different execution stages are shown as Fig. 7. It can be seen that a dominant
portion of overall execution time is consumed by a few stages of all the applications of
interest, which makes them to be the initial target for parallel acceleration. Meanwhile
the rest stages are also not negligible, since the speedup of overall computation is
limited by the time needed for the sequential fraction of the application as Amdahl’s
law [44].

The main operations within distance score matrix filling stage of pairwise sequence
alignment are addition and comparison according to Algorithms 1 and 2, thus makes it

@ Springer

1432 Int J Parallel Prog (2017) 45:1420-1460

45,000

S 40,000 g

& ——Serial read —8-Serial write
35,000 .

= Random read ——Random write

£ 30,000

= -,

s 25,000 ———t

z

= 20,000

=

>3 JA

2 15,000

>

S 10,000

g

D

=

5,000
0 . M

T T | T

RN I SR ,\@\,:;729'\1_\@‘ 40 G 0

I DS g P
N
Target data block size in KB

Fig. 8 Real memory bandwidth with different data block size on i7-4960 x

a considerable basement to be further derived for other targeting computation stages.
By exploiting the common feature between distance score matrix filling, backtracking,
and string matching operations, we are able to propose a generalized architecture for
acceleration of those compute intensive functions in different biological sequence
analysis applications.

Figure 8 demonstrates benchmark results for memory bandwidth utilization gener-
ated by Randmem [45] on our 17-4960 x platform, which has a theoretical maximum
memory bandwidth of 51.2 GB/s (DDR3-1600 in 4 channels) [46,47]. For various size
of data blocks stored in DDR3 memory, randomly reading from or writing to one 64
bit double/integer value is normalized as real memory bandwidth, which dropped to
575-1556 MB/s in case of target data blocks larger than on-chip cache size (15 MB
on 17-4960x processor).

The principle of random cases in Randmem benchmark is similar with the case of
string matching in biological sequence analysis. During the string matching, various
tables stored in main buffer are randomly retrieved with tiny payload. It could hardly
benefit from bursts, as the payload is very small on each access and the access address
is unpredictable. This principle leads to extremely low memory bandwidth utilization
in real, which is the major cause of the sharp drop over random access curves in Fig. 8.
FPGA and GPGPU also suffer from this bottleneck, since each DDR2/3/4/5 SDRAM
channel could only response to limited request at the same time. Therefore theoretical
bandwidth does not yield high random access bandwidth in such extreme applica-
tions. Now we present a novel architecture in follow sections that would override the
restriction of random memory access bandwidth while still remaining devoid of data
congestion between sub-processors.

4 CGRA for Biological Sequence Analysis
Based on analysis introduced in Sect. 3, a coarse grained reconfigurable array is

proposed in this section that would provide impressive performance boost while retain
flexibility on accelerating most subfields of biological sequence analysis.

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1433

21 l—
L, =

21
21 _I_ j+<:| OE(S

I, Co—

2

Equal
00 < OEq

ofg —>

Fig. 9 Reconfigurable Add/Compare-Select (A/C-S) block

Fig. 10 Reconfigurable 21—
processing element A/C-S—

Ib 21 = A/C-S] 21
Ie=5 wes4X 57 ACS Orep
D+
21 2
I ~ L . p E |—<:'0PEJ
A/C-S || E |_<:|0p[_-'2
Ig 21 —=r— A/C} 21
21

A/C-St— X

o] 21
2 AT A D—GOPE4

4.1 Reconfigurable Processing Element

Analysis of the computational needs in both operation and data-path reveals that those
target applications involves elementary mathematical operations mainly in additions
and comparisons. Based on this observation, we propose a reconfigurable two-input
function block, shown in Fig. 9 as the basic building block of processing element (PE).

Similar to the well-known add-compare-select (ACS) unit for viterbi decoder, this
building block also incorporate with add, compare and select functions while add and
compare are composed together, formed as an ACS unit. It has two working modes
for either signed addition or comparison operation, along with a constant output for
equivalence flag.

By composition along with crossbars, 7 basic building blocks in 3 stages forms a
PE as Fig. 10, which can be reconfigured:

e To address the varying additions and comparisons of the distance score matrix
filling stage for pairwise sequence alignment algorithms.

e To address the varying comparisons of the backtracking stage for pairwise
sequence alignment algorithms.

e To address the varying comparisons of the seed matching and seed extension stages
for database searching.

e To address the varying comparisons of various string matching stages for short
read sequence mapping applications.

e To be deployed as an array of arbitrary size to massively parallelize the computa-
tions.

@ Springer

1434 Int J Parallel Prog (2017) 45:1420-1460

[J Interconnections

Buffered scores —
Sequence data—> PE, PE; PE; PE; PE,4 PEs

Configurations — y x x
126 27 126 27 126 27
\4 \4 \ 4
X A A 7'y
126 27 126 27 126 27
A4 v v

PEg PE; PEg PEg PEyo PEy;

126

126

Buffer I—% Output

Fig. 11 Reconfigurable PE group with nearest neighbor interconnections and dedicated buffer

In Fig. 10, the ACS units and crossbars can be either statically configured or dynam-
ically switched due to applications requirements. One level of register files are placed
at the outputs with 21 bits for general ports and 6 bits for equivalence flags.

4.2 CGRA Interconnection

In order to take efficiency use of 128 bits width DRAM interface and reduce inter-
connection complexity, 12 PEs are grouped together along with a shared buffer block
as Fig. 11. Within the same group, PEs within the reconfigurable group are intercon-
nected with their nearest neighbor by leftwards and rightwards with distance one and
two. Note that PEs and PEg¢ are close neighbor, and the distance in Fig. 11 does not
represent the interconnection distance.

The proposed CGRA is composed of an array of identical reconfigurable PE groups.
Reconfigured in different working mode, the PE groups can be replicated multiple
times to fulfill the requirements of target algorithms and applications introduced in
Sect. 3. This is accomplished by an optimized MATRIX architecture [48].

The main idea of MATRIX architecture is to build an adaptable system which could
reallocate general computing resources to meet application requirements. By analyzing
the characteristics of biological sequence analysis applications, we are able to optimize
the MATRIX architecture with a shallow pipeline and compact interconnection.

The routing architecture of our CGRA depicted as Fig. 12 is a hierarchical network
with two levels, consisting different coverage type of interconnection. The levels are
nearest neighbor connections and global lines. Despite the interconnection inside a
PE group, the nearest neighbor connections link the PEs located at group edge to all
its neighbors within distance two. Meanwhile, the global lines span the entire row of
PE groups as shared inputs and outputs from/to sequencer.

4.3 Input and Output Buffers
There are various type of shared inputs among PEs during biological sequence analy-

sis, such as substitution matrices for sequence alignments and suffixes of hashed seed
strings for hash-index based database searching and short read sequence mapping.

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1435

[Sequencer |
144 A 'Y
Yofof ofef [|efofot ofef
| PE | PE | PE | .-+ | PE | PE > PEJ/PE | PE | | PE | PE
. \
% 1,800 \\ w Buffer
o
5 Xl I |) I | —
= Vi T
g -)PE|PE|PE|--- PE”[PESH] Ez' |PE|PE|---|PE PE
SN
AR N Buffer H
X I |/ s S — | —
T -)PE|PE|PE|---|PE|PE -)PETPE|PE|---|PE PE
Buffer = Buffer =

Fig. 12 CGRA with 6 PE groups and optimized nearest neighbor interconnections by group edge

Considering the maximum bit-width requirement of shared inputs, substitution matrix
for protein sequence analysis: there are 24 amino acids represented by character sym-
bols, thus a pre-computed score matrix with 24 x 24 elements is required for each
step of computation. By observing the data structure of the substitution matrices, all
of them consists of data elements within a value range between —32 and 32, and all
of those 24 x 24 matrices are formed in symmetric.

Therefore the maximum shared data input among PEs are (24 + 1) x 24/2 = 300
scores, each with signed 6 bits, thus a specialized interconnection for shared buffer
input is shown in Fig. 12. 1800 bits shared input representing the whole substitution
matrix lies outside CGRA, while the input amino acid string at each PE would retrieve
the relative matrix scores through a 300—12 crossbar as shared inputs of corresponding
PE groups (12 x 6 = 72 bits in total), then the dynamically inputted amino acid
symbols at each PE would pick the exact score for computation.

This static shared buffer distribution method is also part of the second level of
hierarchical network in CGRA, which improves both timing and silicon efficiency.
Similar cases such as substitution matrices for DNA or suffixes of hashed seed strings
for hash-index based database searching and short read sequence mapping could take
use of the same buffer block and interconnections but omitted in detailed description,
since the overall.

Figure 11 also demonstrate private buffer block for a PE group. The buffer block
provides two 126 bits I/O ports, so that PE number 0, 2, 4, 6, 8, and 10 could read from
the buffer at once from crossbar, or a combination of 126 bits can be written from the
outputs of PE number 1, 3, 5, 7, and 9 that each with 21 bits.

In case of distance score matrix filling stage in pairwise sequence alignment, it
would generate a 21 bits distance score in each clock cycle for each segment pair.
But the output of each PE to crossbar is 22 bits, which includes 1 bit that indicate the
equivalence test results of the A/C-S units. The required buffer depth will be discussed
in Sect. 6.

5 3D-Stacked Many-Core Architecture

Most of the modern parallel processors are many-core based designs; nearly all of
them suffer from the high cost of on-chip communication that dominates the sili-

@ Springer

1436

Int J Parallel Prog (2017) 45:1420-1460

CGRA CGRA CGRA
Sequencer Sequencer Sequencer
MEM MEM MEM MEM MEM MEM
CTRL X CTRL CTRL X CTRL CTRL X CTRL
E‘ TSVs TSVs TSVs TSVs TSVs TSVs
=
gl 4G e
T =
4
TSVs TSVs
MEM [~ X MEM
CTRL CTRL
Sequencer Sequencer Sequencer
CGRA CGRA CGRA

Fig. 13 Reconfigurable many-core processor

con area, power, and performance budgets. Benefit from word-sized computation and
reconfigurable interconnection, CGRAs as spatial processors could eliminate some
performance gap over interconnection, while the mismatch between performance
density and available throughput still exists. Our architecture provides a solution for
biological sequence analysis fields that could devoid of such gaps.

5.1 Sub-Processor with Integrated Memory Interface

The CGRA structure introduced in Fig. 12 scales very well in terms of array, while
it’s constrained by the external data throughput. For distance score matrix filling,
classical approach demands high throughput over writing to external memory. For
hash matching and string matching stages, large tables are randomly and frequently
accessed simultaneously. By exploiting the behavior of those stages, we propose a
sub-processor that integrates two DRAM controllers, which would benefit from well-
balanced throughput versus performance density.

As shown in Fig. 13, each sub-processor is equipped with two DRAM controllers
that interface with dedicated external DRAM channels respectively, where local
accesses to DRAMs are routed to an integrated sequencer, and remote accesses are
routed to circuit-switching bus. The system host writes data to those DRAMs and
programs the sequencer on data preparation stage, then the sequencer takes control of
the CGRA as well as DRAM controllers to accelerate specific processing stages of
target applications. The generated results are stored in DRAMs and then read back by
host after processing finished. Detailed application stage mappings are demonstrated
in Sect. 6.

5.2 Circuit-Switching Many-Core Processor

Although packet-switching based Network-on-Chip (NoC) architecture dominates
many-core designs, our sub-processors are interconnected alternatively using circuit-

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1437

switching. The many-core architecture in 2D mesh is demonstrated as a 3 x 2 array
in Fig. 13, where sub-processors are linked with circuit-switching bus and communi-
cating with system host through PCIE interface.

By exploiting the data flow of target biological sequence analysis problems, we
do not consider the remote data accesses between local DRAMs and neighborhood
sub-processors. Remote accesses to DRAMs in a sub-processor are only requested
from system host during data preparation and finishing stages, one sub-processor
after another. There is also no interactive communication between sub-processors
during computation. Therefore we are able to take advantage of low complexity and
high bandwidth with circuit-switching bus without considering the coherence and
congestion issues.

5.3 3D-Stacked DRAM with Scatter/Gather Read

According to JEDEC compliant DRAM model, a read request is executed in 3 phases:

e The target row and bank is activated during the Activate phase

e The column address is selected while a Read command is sent to select specific
column of the entire row, and a latency of several clock cycles is required before
the data reaches the DQ port.

e The precharge phase is needed only if the current row must be deactivated; as the
precharge command recharge the consumed energy in this row, this bank is ready
for a new read or write request on any row.

For 3D compliant DRAM model proposed by Loi and Benini [49], Activate and
Precharge phases show the same latency as JEDEC since they rely on the physical
interconnections, while the Read/Write phase is shorter due to improvement on the
I/O interface and lean column decoder architecture. The protocol translation between
processor and DRAM is still needed but the access time is much less than classical
approaches. Our design follows this model with further optimizations.

Our many-core architecture works in classical ASIC design space, but its scalability
is strictly limited by the physical availability of DRAM channels from PCB layout. If
the accelerator system equipped with 4 DRAM channels per processor chip, similar
to the existed commercial products, it would have only two sub-processors working
together. 3D-stacking eliminates this limitations and we can enhance memory paral-
lelism with novel memory architecture. An overview of the 3D-stacked technologies
to be adopted in our architecture is illustrated as Fig. 14.

The cache line in general purpose processor helps reducing DRAM access latency
by scheduled prefetching. It’s not practical to adopt the cache line in our accelerator,

Fig. 14 3D-stacked DRAM DRAM layer 8
layers above sub-processor DRAM layer 7
DRAM layer 6

TSVs DRAM layer 5
Bumplesq | DRAM layer 4
Wafer-on-Wafer DRAM layer 3
stacking|" | | | DRAM layer 2
INAA DRAM layer 1

MEMCTRLL Logic layer MEMCTRL2

@ Springer

1438 Int J Parallel Prog (2017) 45:1420-1460

0

[1
2 Row a | Column b |Bank 1
3 ':D Row b |Column ¢ |Bank 2
Sequencer R :d 1 4 Scatter/Gather Row ¢ [Column o [Bank 4
ea 5| >catter/bather s e [Column 7 |Bank 7

requests 3 Reads
Scheduled read
mr -

Read access buffer

Fig. 15 Scatter/Gather read policy in 3D-stacked DRAM

2D DRAM rank 3D DRAM rank (channel)
A

acti}/ o ‘

L—1 T

e — e —
e 7t Sttt L8~
‘ board circuit, SSTL, mem ctrl, bus ‘

x64
PEs

Fig. 16 Read accesses over typical 2D DRAM and our 3D-stacked DRAM

but it’s still possible to benefit from scheduled memory access due to the extreme
low latency when accessing stacked DRAM layers. With a random read scheduler
implemented in the memory controller, a Scatter/Gather read policy has been adopted
in each DRAM channel as Fig. 15, thus the DRAM read is optimized for random or
strided accesses in 128 bit, instead of the classical cache line access policy.

This customized policy allows PEs to directly address individual words in DRAM,
which dramatically increased effective memory bandwidth of random read accesses.
A comparison between random read accesses over classical 2D DRAM and our 3D-
stacked SDRAM is shown as Fig. 16.

Figure 16 demonstrates the differences of random read access between classical
2D DRAM and our 3D DRAM, where the small blocks of active rows indicate data
read. It depicted 3D-stacked DRAM with 4 banks for theory demonstration, while our
designated architecture has 8 banks for each DRAM channel. We assume that all banks
in a DRAM channel share a common 128-bit wide TSV data bus, a single channel is
achieved by 8 banks in 8 layers, each bank with a size of 64 Mb.

For 2D DRAM rank, the data is distributed over all banks, and each access targets a
small fraction of the same active address to all banks. A Scatter/Gather read policy in
our 3D-stacked architecture allows accessing different banks at the same time, while
the target column address can be different between each bank. Although data from
different banks can’t be transferred altogether, the I/O width to each bank is exact
the same as the channel width, therefore random read from different banks can be
sequentially accomplished in continuous clock cycle, so that achieving much higher
bandwidth efficiency.

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1439

Fig. 17 Random read with burst length 1 in 3D-stacked SDRAM

Data-path latency is another factor that affects DRAM random access, as cache
line won’t be of much help in this case. Signal from classical 2D DRAM has to
be transferred through PCB, SSTL pads, memory controller, and system bus before
reaching PE, while in our 3D architecture it becomes much simpler and more efficient.
We don’t even have to consider the system bus latency in general 3D designs, as remote
access to local DRAM channels is avoided by careful dataset partitioning and task
scheduling.

For external DRAM channel with 8 banks, considering the most extreme random
read case, 4 banks are selected and opened for reading the least data and then closed,
the command order from memory controller ignoring NOP will be: Active0, Activel,
Active2, Active3, Read0, Readl, Read2, Read3, Precharge0, Prechargel, Precharge2,
Precharge3. Typical DDR3-1600 DRAM with customized memory controller adopting
Scatter/Gather read policy would take a minimum of 28 clock cycles to execute this
command string, which is 35ns in total. The working mode can be BC4 or BLS8, thus
the data read from each bank can be 64 x4 = 256 bits or 64 x 8 = 512 bits respectively.

According to SDRAM specification, data from a fixed-length Read burst can be
followed immediately by data from another Read burst. Therefore our designated
Scatter/Gather policy for random read access to 3D-stacked SDRAM banks can be
demonstrated as Fig. 17, CL = 3.

After initial Active of four selected banks, read access with burst length 1 is issued
to each open bank, and the DRAM output form is small data fragments of 128 bits
from every open bank transferred in 4 continuous clock cycles. Assume the 3D-stacked
SDRAM running at 333 MHz adopting the Scatter/Gather read policy, it would take
12 clock cycles, which is 36ns in total to execute the same command string.

According to targeting biological sequence applications detailed in Sects. 3 and
6, random read from external DRAM is the most critical bottleneck, and 128 bit is
the efficient requirement to the size of data over each read access. Therefore it can
be concluded that DDR3-1600 and SDR-333 gives almost the identical performance
over random read with customized memory controller. It must be figured out as well
that 64 banks are required to achieve such performance in case of DDR3-1600. Con-
sidering energy efficiency and silicon efficiency between DDR3-1600 and SDR-333
in conjunction, we prefer using the latter in our 3D-stacked architecture.

Wide I/O DRAM has been standardized by JEDEC (JESD229) [50] as a 3D DRAM
solution for embedded SoC systems with lots of low power consideration. In order to
conform to the WIDE I/O standard, we use LVCMOS signaling for interconnection
so that we could devoid of using complex SSTL interface, results in both silicon
and energy efficiency. We adopt the wafer-to-wafer bumpless stacking process which
provides aggressively small TSVs at an extremely fine pitch (5 wm). This approach

@ Springer

1440 Int J Parallel Prog (2017) 45:1420-1460

Two 64Mb DRAM tiles per layer

oz

64 Mb

3D DRAM stack, 8 layers

Column

|II Processor

Power supply, Control, Signaling

Master
logic die

TSVs: 10 and Power

integrated SDRAM controllers
(a) (b)

Fig. 18 a 3D DRAM core tile of 64 Mb, and b 3D-stacked architecture of single processing cube

provides much better silicon efficiency than microbump based die-to-die stacking with
large pitch (20—40 pm).

Figure 18a shows the layout structure of a single DRAM core tile for 3D archi-
tecture, which forms the basis to compose 3D DRAM layers. The tile size is 64 Mb,
and we assume 128 I/Os per tile (IOPT) and a page size of 1 kB. Figure 18b depicts a
high-level view of our 3D integrated architecture over single stacked tile. Note that the
two stack of DRAM memory tiles are accessed using an alternative DRAM interfacing
protocol respectively, paired with dedicated memory controller.

Our design does not rely on NoC since all the mapped algorithm and application
stages takes use of local data only. Although our design is many-core architecture
on the horizontal logic plane, there is no remote access between local DRAMs and
neighborhood processing cores. Each processing core works independently with two
integrated memory controllers exclusively, which interfaces with a 3D-stacked DRAM
of 64 MB in size respectively. This approach provides an extremely high bandwidth
for fast local access without consideration of remote access during computation. In
case of write or read from host processor, each local processing core will be accessed
in a serialized queue, thus no congestion shall be considered on shared bus.

6 Application Mappings
Considering that all the target biological sequence analysis applications are composed

of a few characterizable computing stages, the application mapping is introduced by
individual kernel stage mappings over our architecture.

6.1 Distance Score Matrix Filling

In order to accelerate the distance score matrix filling stage in pairwise sequence
alignment, the wave-front [51] method is a promising solution which has been adopted

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1441

Sequence a of length 15
ACGT -

IO S N A O A A A A

~Teea- [[[[T [T[]

IR

t=1

Array

t=2
t=3

t=4
t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14
t=15
t=16
t=17
t=18
t=19
t=20
t=21
t=22

Sequence b of length 8

Fig. 19 Wave-front method for distance score matrix filling in parallel

in most hardware accelerators. The distance score matrix filling is defined to be the
path from the top-left corner to the bottom-right corner of the matrix. The wave-front
method reduces the time complexity of complete filling from O (m x n)—O(m x n/p),
where m and n is the length of the sequence pair to be aligned, p is the number of
processing elements in parallel.

The wave-front method can be achieved by using a systolic array [52] with m depth
of processing units, example of which is shown as Fig. 19.

Comparing with sequential implementation as Fig. 1, which would take at least
15 x 8 = 120 clock cycles for processing sequence pair with length 15 and 8 symbols
respectively, the wave-front approach takes only 22 clock cycles. Mapping wave-front
method to our accelerator for distance score matrix filling stage in Needleman—Wunsch
and Smith—Waterman algorithms are shown as Figs. 20 and 21 respectively, both with
affine gap. The unused logics are grayed out, and the configuration logics have been
omitted since no dynamic reconfiguration is required during computation. Note that
extra logics are added in mapped PEs for Smith—Waterman algorithm to give Fmax; j,
which will be used in the backtracking stage.

The input ports labeled with 21 bits width are the efficient input width for each port.
Although both Needleman—Wunsch and Smith—Waterman algorithms can be used for

@ Springer

1442 Int J Parallel Prog (2017) 45:1420-1460

Adderf—

Adderf—

Mt B3 e | xﬂ—c D,
d o — 10,

Max —

Adderf—

Max — [
1; o5 vax L1 X 0Adder—E|—<:| Fy
Dy I:>21+ M,

I oo —

21 —
Dy >

Fig. 20 Distance score matrix filling stage of Needleman—Wunsch algorithm mapped to two PEs (Affine
gap)

protein sequences, the data structure of computation is not influenced by the type of
sequence except the scoring matrix.

Adopting systolic array with m processing units requires 2m of PEs in our archi-
tecture at this stage. If m is less than PE group buffer depth d, n instances of systolic
array can be mapped to our CGRA as Fig. 22a. Otherwise multiple systolic arrays
can be composed to give buffer depth of 24 for alignment of long sequences as shown
in Fig. 22b, while the effective number of PEs are halved in each PE group.

The initial biological sequence input can be encoded using 2 bits to represent DNA
or RNA sequence symbols, or 5 bits for protein symbols. Assume m to be the array
depth of our CGRA, which is the number of PE groups located at the first column
of CGRA, and PE groups at the same column would share the same input from the
sequencer block, then the effective CGRA width n can be theoretically given by (6)
or (7) in case of DNA/RNA or protein sequences, respectively:

B .
n o= eff _in (6)
fcGra xm x 2
B .
n = eff _in (7)

fcGra X m x5

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1443

Adder—

; 21 Max 2
15 T3 pggerl X H | max —E|—<:I max{Z; Dy}
e o>
4E |—<:| L
21 — X
M’V'ID21+ Max | 4E|—<:I Dy
d o] g

D,
21 Max [—
D,;j-1I:>21+ vax L1X
e o
21 Fapi+ Sy
Fiyj —
0 5T e ;
s, = \ | i
v 21 ||
Max |—
0 DﬁAdder_x_ || max —EI—GF,;/
0 2.

1
M,

max{z, D> | N
S] X I

21 Max — i

Py 250 Max |—

Fij1 D21+ Max L 4E|—<:| D
Fmexi.; I:>21+ 4E |—< Fmax,;
]
Iy oo —

21 —
Dy >

Fig. 21 Distance score matrix filling stage of Smith—Waterman algorithm mapped to two PEs (Affine gap)

Buffer Buffer Buffer Buffer
Buffer Buffer Buffer Buffer

(a) (b)

Fig. 22 Wave-front method for distance score matrix filling in parallel

where Bef_in is the effective external dynamic input bandwidth, and fcra is the clock
frequency of CGRA. PEs in deeper stages of PE group could receive data spread by
former stages, while the output of each PE group is stored in buffer to fill the distance
score matrix, which would produce w bits of data to be stored in each computation
cycle, where w is 21 denotes the output bit-width of a PE. In this case, the theoretical
output bandwidth of our CGRA Bcgra_out without buffer is given by (8):

@ Springer

1444 Int J Parallel Prog (2017) 45:1420-1460

BCcGRA_our = m X n X feGra X 21 (8)

Assume By iy = Befr_our» Which is roughly the real case of sequential operations
over external DRAM subsystem shown in Fig. 8, then:

BCGRA_itout = Beﬁ'_out X 21/2 (DNA/RNA) 9
BcGrA_out = Beff_our x 21/5 (Protein) (10)

From (9) and (10), we can observe over 10 times mismatch for CGRA output
bandwidth in case of DNA/RNA sequence, and over 4 times mismatch in case of
protein sequence. This mismatch made classical approaches of distance score matrix
filling benefit less than anticipated on massively paralleled accelerators if the distance
score matrixes have to be transferred to external DRAM. This issue will be further
discussed in next subsection.

6.2 Backtracking

During the backtracking stage of pairwise sequence alignment, the saved distance
score matrix is evaluated to give the optimal alignment score. Assume the matrix is
stored in external DRAM and evaluation can be assigned to individual PEs in parallel,
the maximum number of active PES npackrrack 18 estimated by (11), where another
bandwidth mismatch exists as npgcrrack < 4 based on estimation of commodity ASIC
performances.

Beﬁjn

Npacktrack = m (11)
'RA

In order to reduce the performance loss caused by the bandwidth mismatches,
internal buffer with reasonable depth is coupled with PE group in our CGRA. In
case of sequence pairs with length k and /, both k, [< m, then the buffer instances
with depth m could store the complete distance scores produced by corresponding PE
group.

In case of Needleman—Wunsch global sequence alignment, the distance score matrix
is evaluated right after generation, and the backtracking chain is given sequentially
in every clock cycle as (3) and Fig. 23. For sequence pairs with length k and /, both
k, I < m, the footprint of reading buffered distance scores is separately colored for
different PE groups. With the help of local buffer, it takes 20 clock cycles to finish
the backtracking in Fig. 23, which is much faster than retrieving distance score matrix
from external DRAM.

For Smith—Waterman local sequence alignment mapped to our architecture, the
value of global maximum distance score F,,, has been recorded after distance score
matrix filling stage, which has been described in Fig. 19. Therefore the backtrack-
ing stage of Smith—Waterman local sequence alignment can be partial accelerated as
Fig. 24a.

After distance score matrix filling, the individual PE groups within the same syszolic
array could compare distance scores stored in local buffer against Fj,,, in parallel.
When the corresponding matrix element with global maximum score value has been

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1445

MIN

MAX

Fig. 23 Mapped backtracking stage of Needleman—Wunsch global sequence alignment using local buffer

Stop by Sequencer Stop by matching

\
\
|

A A A A

MAX

MAX

(b)

Fig. 24 Mapped backtracking stage Smith—Waterman local sequence alignment using local buffer

found, parallel comparisons are stopped by sequencer, and then backtracking starts
at the element with global maximum value. Sequentially tracking back using (3), the
process would stop until “0”, demonstrated as Fig. 24b.

For long sequence pairs, the size of distance score matrix would increase by 2
orders of magnitude, so that 2m x 4 = 8m PEs and corresponding buffer instances
would fit for k£ and [< 2m. In this case, the distance score matrix must be filled in
sub-blocks, and the backtrack order of a sub-block is sequentially from bottom-right,
while different sub-blocks are still evaluated in parallel.

From exploration of real experiments we found that the most common usage of
pairwise sequence alignment is to align sequence strings with length less than 200,
so that we set m = 192 in our current design. Thus our architecture has the ability
to massively accelerate pairwise sequence alignment with maximum length of 384

@ Springer

1446 Int J Parallel Prog (2017) 45:1420-1460

0 25 28 36 45 54 63
Address 0 |Dummy | Offset 0 | Offset 1 | Offset 2 | Offset 3

Address 8 |Dummy | Offset 0 | Offset 1 | Offset 2 | Offset 3
Address 16 |Dummy | Offset 0 | Offset 1 | Offset 2 | Offset 3
Address 24 |Dummy | Offset 0 | Offset 1 | Offset 2 | Offset 3

64 89 91 100 109 118 127
Address 4 |Dummy | Offset 0 | Offset 1 | Offset 2 | Offset 3

Address 12 |Dummy| Offset 0 | Offset 1 | Offset 2 | Offset 3
Address 20 |Dummy | Offset 0 | Offset 1 | Offset 2 | Offset 3
Address 28 |Dummy| Offset 0 | Offset 1 | Offset 2 | Offset 3

Fig. 25 Offset data structure of pointer table for seed matching of BLAST

for both stages without output to external DRAM. For even longer sequence pairs,
external DRAMs have to be used for temporary buffer.

6.3 Seed Matchings and Seed extension

The original seed matching stage introduced in Sect. 3 is not suitable for parallelization
on many-core accelerator, since its process is almost sequential and the function blocks
are rather large in terms of hardware logic. As the final goal of seed matching is to find
out the exact seed-location matching pairs, we turn this problem into an equivalent
solution using indexed table searching that can be executed in parallel:

e During data preparation, the original database is hashed according to hash functions
and indexed to hash table. A pointer table is created using all the possible seeds
as access entry, which stores the accessing range of the database hash table that
corresponding to each seed.

e The seeds are used to access the pointer table, and a valid pointer table value
indicates a series of exact seed-location matching pairs in the original database.

Considering the size of the pointer table, the length of seed for DNA/RNA sequence
type is 10, and that of protein sequence is 3 or 4. Therefore the theoretical address
range of pointer table can be 20 or 15 bits, thus it can be only stored in external DRAM.

The channel width of our proposed 3D-stacked DRAM is 128 bits, which is too
big for single record of addressing to the hash table. We adopt a offset data structure
as Fig. 25.

In order to access the hash index table, each record in pointer table gives an address
entry following with four offset values. The offset values indicates the access range
of hash index table records for current seed, and also can be used to give the access
address for next seeds, though some computation is required:

Address,+1 = Address, + offset (12)
Addressp+2 = Address, + offsety + offset, (13)
Addressp+3 = Address, + offsety + offset| + offset, (14)

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1447

After finding out all the exact seed-location matching pairs, the original software
implementation of BLAST would execute a ungapped seed extension stage to find high
score pairs (HSP). Starting by stepwise extending the seed-location matching from
both end and evaluating the distance score, if two extended seeds are found nearby, a
gapped extension stage will be executed to give exact local sequence alignment.

In case of our massively paralleled architecture, mapping ungapped extension stage
is almost the same as mapping distance score matrix filling of local sequence alignment.
The only difference from Fig. 21 is that F,,, shall be compared with current F; ;. If
Fi j < Fpayx, extension will be stopped and Fpq; will be compared with a threshold
value Fiypreshold- Distances within the original database between all the extended seeds
that with Fy,ox > Finreshold Will be pairwise evaluated. Two or more extended seeds
found close by indicates a HSP.

All the HSPs will be evaluated with gapped extension, which is an alternative version
of pairwise local sequence alignment, called “banded local sequence alignment”. It
adopt a premise that the weak alignment results caused by long insertions or deletions
shall be abandoned in final result, thus the alignment domain can be restricted within
a narrow band along the diagonal curve of distance score matrix [53].

This approach highly reduced resource requirement on matrix filling stage. Assume
a small band of width d, the valid distance score matrix is reduced from m x n to
(m24+n%)1/2 x d. d can be narrowed to 3 or 2 in extreme case, as only 1 mismatch or
exact match is allowed over alignment region, so that backtracking after matrix filling
can be omitted due to existed unique score chain. An example of d = 7 is shown as
Fig. 26a.

The PE Mapping of banded local sequence alignment is identical to Fig. 19 except
the PEs on band edge, which has fixed “0” inputs for ¥, M, I, D values from the ele-
ments outside the banded area. Adopting banded local sequence alignment would filter
out those alignments which exceed the banded area during computation as Fig. 26b,
so that the sequence pair under process will be abandoned for any further process-

Sequence a of length 15 Sequence aof Iength 15
ACGT . A c T
) # BRI

RN ERE RN
~TeCA> TTTTTTTTTTTTITT] TGC/HIIIIIIIIIIIIIIII
TN

Y %
e L‘ 2 7
3 3
e ijon‘t care 2 N <
E \ E N
2 X] 2 N
5 | 5 - Stop §
5 — T @ L Habanpdon
5 = NI]
< LL B
9] 5] [-
g X g [
g X g & Aot
» Don'tcare | @ Lf —>
Stop & |
‘ abandon ‘
Stop & Accept
(a) (b)

Fig. 26 Banded Smith—Waterman local sequence alignment

@ Springer

1448 Int J Parallel Prog (2017) 45:1420-1460

ing. Backtracking stage will be executed only for the sequence pairs that passed
banded distance score matrix filling stage. This policy would save both computa-
tion resources and runtime comparing with the typical solution introduced in previous
subsections.

6.4 2-Hit String Matching

The 2-hit string matching stage in hash-index based short read sequence mapping
shares the very similar idea to the seed matching stage in database searching: a valid
hit to pointer table gives an access range to the corresponding hash table.

During seed matching stage, valid access to pointer table using a seed would give an
address range of the records in the large hash table that contains candidate matching
locations. These locations will be further verified with ungapped extension.

For 2-hit string matching, valid access to pointer table using prefix of a seed
would give an address range of the records in the large hash table that contains hash-
location pairs. The hash part of which will be compared with suffix of the seed for
verification.

Despite using distance score matrix filling for ungapped extension, comparison
between hashed seed suffix and hash value bucket can be easily mapped to PE as
Fig. 27.

For short read sequence mapping, the number of isolated reads to be processed is
tens of millions or even more in practical, in order to ensure enough redundancy to
cover everywhere of the target sequences. Using head part of each read as a seed, the
hashed seed prefix is isolated as well, and the input order of which is also unpredictable.
Therefore accessing to pointer table is completely random read to DRAM and the
payload is relatively small, which could benefit from the Scatter/Gather read policy.

Initial string matching is direct equivalence test between two values, thus string
matchings performance is limited by I/O throughput. The hash table accessing in 2-hit
string matching retrieves hash-location pairs that each consists of 38—42 bits according

21
Suffix T —
21 Equal —
hash 0 Dﬂ+ —
Suffi
uffix Dﬂ+ X

Equal —
hash 1 D+

21 —

Suffix C>— Equal Hm X
hash 2 D27+
Suffix >+
21 Equal L 1X
hash 3 >—

_ﬂ—GOEQ

Fig. 27 Mapped PE for 2-hit string matching

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1449

to different seed length, and the number of hash-location pairs in each bucket could
be any value between 1 and 12. Therefore reading from hash table could also benefit
from Scatter/Gather read policy, since the burst read length for each access can be 1,
2, or 4 only.

6.5 Backward Searching

The FM-index for short read sequence mapping is a data structure which contains the
BWT of the reference genome and corresponding suffix array checkpoints. Backward
searching against FM-index would find out whether the read occurs in the reference
genome and the corresponding location(s). Accelerating backward searching on FPGA
has been proposed by Fernandez et al. [20] using Convey HC-1 to process the whole
short read. We follow the similar idea over hardware design, but also incorporate
the method used in BWA-SW [36] that searching against FM-index would find out
whether the head part of a read, called seed, occurs in the reference genome and the
corresponding location(s).

The Burrows—Wheeler transform of the reference genome is represented as two
tables, called C-table and I-table. The I-table is an array with four entries that stores
the position of the first occurrence of each nucleotide symbol in the reference genome
after the reference genome has been sorted lexicographically. The C-table is a two
dimensional matrix, with a number of rows equal to the length of the reference genome,
and a number of columns equal to four as nucleotide symbol. Assume BTW(ref) to
be the Burrow—Wheeler transform of the reference genome, entry i, j of the C-Table
represents the number of occurrences of nucleotide symbol j in the prefix of BWT(ref)
of length i.

During backward searching, the seed is gradually matched with the reference
genome for every single nucleotide symbol s within the seed by accessing the FM-
index using two pointers, called fop and bottom, which are defined by (15) and (16):

10D ey = ClOP cyyrens» 1+ 115] (15)
bottomy,e,, = Clbottomcyrrent, S| + 1[5] (16)

These two pointers are updated at each processed character of the seed. If at any
one time top,,,,, < bottomy,,, the search is terminated and the corresponding read is
reported unmapped. Otherwise if the last character in the seed is reached, the range
between current top and bottom indicates the number of occurrences of the seed in the
reference genome. PE Mapping of backward searching is shown as Fig. 28. (15) and
(16) have been implemented using two adders, while whether top,,,,, < bottonmye,, is
also verified.

In case of inexact searching which is the realistic case, a limited number of mis-
match events might be occurred during backward searching, which leads to branched
executions of exact searching with insertions or deletion at the mismatched location.
Our massively paralleled architecture could handle this problem by allocating free PEs
with dynamic reconfiguration for branched computation as Fig. 29. The corresponding

@ Springer

1450 Int J Parallel Prog (2017) 45:1420-1460

CLT0Pcurreny, S| C>—— —
Adder—
I[s] = i

C[bottomeureny s1C—>—— X

o Adder —
S
= 4E|_<:| {OPnen
CTPares 1 >——]] X4E |—<:“’0”"”’"EW
Clbottomeyyeny 5] C—>———] Equal [—|
CLT0Purens 5] C=>—— X[

Equal —
Clbottomeureny 5] C>———
CLT0Peurenyy S| C>———

L] AE'—G OEQ

Fig. 28 Mapped PE for backward searching

Fig. 29 Mapped inexact Mismatched!
backward searching ACTTAGCGXCATTG
- -5

Matched symbols

Current PE DT> CATTG
eletion

BranchedPEo'—> ACATTG

ITnsertion
|
Branched PE; Il —> CCATTG

:Insertion

Branched PE, :I_rt> GCATTG
_________ |Insertion

Allocated through
dynamic reconfiguration

top and bottom pointers within each branch will be refreshed respectively according
to the new forms of the seed.

The number of allowed mismatch can be defined by user, while 2 or 3 is common
used. Larger allowed mismatch values would greatly impact the overall performance
due to much more DRAM accesses. The mismatched location is not required to be
specifically stored, since the inexact backward searching leads to reference genome
locations that should be further verified by banded local sequence alignment.

After backward searching without termination, the values of top and bottom pointer
as well as those between them will be used as addresses to access the suffix array stored
in external DRAM to retrieve the corresponding matched seed location(s). Banded
local sequence alignment, or so called gapped extension, will be executed for each
read at each matched location between the seed and the reference genome.

During the whole backward matching stage, accessing C-table is completely ran-
dom by each PE, thus the Scatter/Gather read policy would be of great help on
increasing the effective read bandwidth.

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1451

6.6 Further Improvements

For seed matching, 2-hit string matching, and backward searching stages, the uti-
lization ratio of CGRA is extremely low due to bandwidth mismatch, thus not many
PEs are working actively. In order to make efficiency use of resources, the follow-
ing pairwise local sequence alignment stages can be executed in parallel along with
the matching stages. Since our architecture has two DRAM channels for each sub-
processor, genome sequences required for pairwise sequence alignment can be stored
in DRAM channel that different from the large tables, thus both the tables and cor-
responding genome sequences can be accessed simultaneously. The overlapped run
time between matching stages and pairwise local sequence alignment stages provides
another factor of performance improvements.

7 Experimental Results

In this section, we evaluate the performance and energy efficiency of our architecture.
We don’t report individual performance for pairwise sequence alignment since it has
been integrated as important component in all the other applications.

7.1 Test Environments

Without loss of generality, we use an example design based on 45-nm silicon pro-
cess. Previous research shown that a typical 3D DRAM core tile of 64 Mb occupies
1.92 mm? in 45 nm process node with a maximum frequency of 357 MHz [54]. With
two DRAM core tiles of 64 Mb stacked on, we estimate that each silicon layer of our
sub-processor occupies 4.2 mm? with 2 DRAM channels clocked at 333 MHz, and
our 3D-stacked cube consists of 9 silicon layers.

The planned chip area of each layer is approximately 70 mm? which consists of
4 x 4 = 16 sub-processor cubes. Typical 45-nm process provides a density of 2000 K
equivalent gates per 1 mm? [55], while our PE cost around 4000 gates. With 4.2 mm?
of silicon area for logic layer, a sub-processor is synthesized with a clock frequency
of 666 MHz and verified with post-synthesize simulation.

From synthesis area report, 72.3% of a sub-processor is occupied by 64 PE groups
that each contains 12 PEs and a instances of 24 Kb buffer block, while we estimate
that 5.6% is occupied by memory controllers and TSVs. The rest 22.1% area of sub-
processor is occupied by shared input buffer, sequencer block and interconnections.
The number of PEs in CGRA and buffer size of a sub-processor are well balanced
by exploration of mapped biological sequence analysis application stages in Sect. 6,
while the consumed silicon area fits well over process shrinking.

The wire model in CACTI-3DD [56] is used to estimate the 3D DRAM bus delay,
where | mm wire introduces 0.087 and 0.03 ns delay for TSV at45-nm process node. As
the RC delay is proportional to wire length, the longest route from memory controller
across 8 layers to the corner of DRAM layer is around 4.9 mm, thus introduces 0.42ns
delay. Comparing with DRAM clock period of 3.3 ns, the signal propagation across
3D layers does not incur extra bus delay in clock cycle.

@ Springer

1452 Int J Parallel Prog (2017) 45:1420-1460

We evaluated our architecture in classical design domain on terasIC DES-NET
FPGA board, which is equipped with Altera SSGXEA7N2F45C2N Stratix V device.
A stripped down version representing single sub-processor of our architecture has
been synthesized to fit the DE5 board, which contains 768 PEs and two DRAM
channels as well. Because of insufficient interconnection resources, we can only
generate pre-configured netlists that equivalent to each specific working mode of
CGRA, corresponding to each target biological sequence analysis application. Those
FPGA implementations utilizes around 70% of LUTs, running at a clock frequency of
200 MHz. This category of implementations with two channels of 2GB DDR3-1600
DRAM is listed as “FPGA” in the following evaluations.

The benchmark platform for software performance is a workstation equipped with
Intel Core 17 4960 x 3.60 GHz CPU, 64 GB DDR3-1600 RAM running Redhat Enter-
prise Linux v5.11 x64 system. Sequential software performances as baseline are
reported as “Seq.” in all the evaluations, while multithreaded executions with 12
threads are reported as “MT”. GPU implementations are evaluated on a nVIDIA
Geforce Titan Black device with 980 MHz core frequency and 6 GB onboard DRAM,
equipped on the same workstation.

All the source codes are compiled with GCC v4.4.7 and “—03” optimization flag.
CUDA Toolkit 6.5 is used to compile all the GPU source codes. Modified sequential
software implementations are served as front-end to utilize our FPGA implementation
as hardware accelerator. The host sessions for FPGA and 3D implementations are
not working during acceleration, but some of the overhead processing in software is
required for all the implementations, which is omitted here. For each specific test, all the
implementations use the same default options such as gap penalties, gap extensions,
and substitution matrices, in order to ensure equivalent complexity and quality of
results.

7.2 Performance Scaling

The performances of our 3D-stacked many-core accelerator labeled as “3D” are esti-
mated through proper scaling of FPGA generated results.

We recorded the memory traces through simulation of our original 3D-stacked
design with each mapped application stages by a short period. By analysis of those
memory traces, corresponding memory access patterns has been extracted.

Then we designed a function block and inserted it between the memory controller
and sequencer block at the FPGA implementations, which slow down the DRAM
interface to 100 MHz. The available memory size is also restricted by 64 MB for each
DRAM channel.

Since the external DRAM is working at 800 MHz, it’s easy to reform the memory
access traces according to the designated patterns that occurs on 3D design. Therefore
we received a sub-processor that has 2:1 clock ratio with external DRAM as well, and
the computation traces shall be almost identical to a sub-processor in 3D design.

There is no communication between sub-processors in our 3D design, thus
sequentially evaluating each partitioned problem with FPGA would give the iso-
lated performance for each sub-processor running in parallel at working frequency

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1453

of 200MHz for core logic and 100 MHz for DRAM. Therefore for 16 partitioned
problems that could been solved in parallel, pick the result with highest runtime and
divide by 3.33 would give the rough performance estimation of the 3D-stacked accel-
erator.

This scaling approach does not affect the kernel function performance, and the
overhead time consumed by disk I/O, data transaction between host and accelerator
devices, data compression, and data decompression are not included in all the results.

7.3 Test Results

Sequential execution of T-Coffee v11 [33] is evaluated as the baseline of MSA. GPU
accelerated T-Coffee called G-MSA [23] is evaluated; its performance is reported
only for overall execution time since it’s designed with conjunction of software mul-
tithreading. The dataset for MSA evaluation is the BAliBase v3 [57] benchmark set.

Figure 30 shows the execution times measured in seconds of multiple sequence
alignment regarding distance score matrix filling and pairwise local sequence align-
ment stages. The overall runtime with respect of acceleration ratio to sequential
implementation is shown as the secondary vertical axis.

Sequential performance of NCBI BLAST v2.2.8 [34] is the baseline of database
searching. For DNA database searching using blastn, G-BLASTN [26] is evaluated
for GPU, and we use the same datasets as the report of G-BLASTN to query NCBI
env_nt database released in Oct. 2014. For protein database searching using blastp,
same status applies to GPU-BLAST [24] and NCBI env_nr database.

Figure 31 shows the execution times measured in seconds of database search-
ing using blastn and blastp of BLAST regarding seed matching and pairwise local
sequence alignment stages. The overall runtime with respect of acceleration ratio to
sequential implementation of blastn and blastp are shown as the secondary vertical
axis respectively.

Sequential performance of BFAST v0.7.0a [35] is the baseline of hash-index based
short read sequence mapping. There is no existed GPU implementation for hash-
index based short read sequence mapping. NCBI run SRR867061 is chosen as the

mm Dist. score matrix filling Pairwise local alignment Overall Speed-up

4.5 1200
3

4 - o
a 10476 1000
2 35-
é 5
o
e 37 800 2
S e
B 25 1 — 7 c
° - 600 S
g 2 — M — H =
i]
2 154 ——— 400 &
£
£ 1 —,— — e
- + 200
B 05 — —I —
-
0- : : B 4924205 Lo
s G-MSA FPGA 3D

Fig. 30 Performance evaluation of multiple sequence alignment

@ Springer

1454 Int J Parallel Prog (2017) 45:1420-1460

i Seed matching Pairwise local alignment Overall
B Speed-up-blastn #8-Speed-up-blastp
4 600
3.5
BA 48430

Logarithmic Execution Time (sec)
\
\
|
[
|
w
8
Speedup Ratio

- 200
| || || _ B | 100
1.0%4 4104 3 =8l o
K S R R
& 0&3 »\,g-: 6’5,
& & 7
Fig. 31 Performance evaluation of database searching
i 2-hit string matching Pairwise local alignment Overall
- Speed-up-SE 8- Speed-up-PE
< 6 1600
Q
;;, B8 1,456.3 | 1400
& 190800
[— |- . ¥y | =
§ 1000 &
-3
§ 800 _§
il 600 @
2 — — — i -3
E - 400
a2 |- L L1 L
= - 200
g
= 1.0 32 4 1:0-"pd 33)

Seq-SE. MT-SE FPGA-SE 3D-SE Seq-PE MT-PE FPGA-PE 3D-PE

Fig. 32 Performance evaluation of hash-index based short read sequence mapping

dataset which represent the short read mapping problem in real practice. It consists of
63,877,967,101 paired-end short reads, each with 101 bp. Both single- and paired-end
reads from this dataset are mapped against the human genome reference GRCh38 [58],
and the corresponding results are labeled with “SE” and “PE” suffixes respectively.

Figure 32 shows the execution times measured in seconds of hash-index based short
read sequence mapping with both single-end and paired-end dataset regarding 2-hit
string matching and pairwise local sequence alignment stages. The overall runtime
with respect of acceleration ratio to single-end and paired-end reads are shown as the
secondary vertical axis respectively.

Sequential performance of BWA v0.6.2 [36] is the baseline of FM-index based
short read sequence mapping. BarraCUDA 1280 [28] is evaluated for GPU platform
of FM-index case, which is the accelerated version of BWA. The short read dataset
and reference genome are the same as hash-index based tests.

Figure 33 shows the execution times measured in seconds of FM-index based short
read sequence mapping with both single-end and paired-end dataset regarding back-
ward searching and pairwise local sequence alignment stages. The overall runtime
with respect of acceleration ratio to single-end and paired-end reads are shown as the
secondary vertical axis respectively.

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1455

mmm Backward searching Pairwise local alignment Overall

- Speed-up-SE B

Speed-up-PE
5 400

4.5 350.1
4

3.5 1

Speedup Ratio

Logarithmic Execution Time (sec)
N
wv

TN
< < < < <
i) o) L Q
~ X &
‘8@‘? S & K\

Fig. 33 Performance evaluation of FM-index based short read sequence mapping

It’s not forced to complete the 2-hit string matching or backward searching for each
read before executing pairwise local sequence alignment for verification, thus our
architecture could take full use of CGRA resources with limited memory bandwidth
available, shown as almost absence of time consumed by pairwise sequence alignment
on FPGA and 3D cases of FM-index based short read sequence mapping in Fig. 33.

It can be figured out that the estimated performance of our 3D-stacked accelerator
platform outperforms corresponding hardware accelerator solutions for at least 40
times.

7.4 Short Read Mapping Sensitivity

To measure mapping quality, the sensitivity is calculated by dividing the number of
aligned short reads by the total number of short reads as (2):

Sensitivity = Num_READ yapped /[Num_READ yyerali (17)

Using the same attributes for seed generation and gap control, our implementations
appear to be around the same sensitivity as original BFAST and BWA programs,
labeled with “3D” prefix in Table 2.

Table 2 Sensitivity

SRR867061 Single end Paired end

Sensitivity (%) Sensitivity (%) Confidence (%)
BFAST 88.85 90.77 86.65
3D-BFAST 88.87 90.81 86.65
BWA 90.15 96.53 96.49
BarraCUDA 91.02 96.61 96.55
3D-BWA 90.64 96.60 96.52

@ Springer

1456 Int J Parallel Prog (2017) 45:1420-1460

7.5 Memory Bandwidth Efficiency

The stacked DRAM layers gives single sub-processor the peak transfer rate of 128 x
2 x 333/8 = 10, 656 MB/s at a cost around 3.2 Watts based on CACTI-3DD models.
This value is theoretically worse than that of DE5 board with two DDR3-1600 channels
giving 25,600 MB/s, or the new WIDE I/O 2 [59] standard of 34 GB/s. But the idea of
extremely low latency and high bandwidth over random access shines through: 3D-
stacked SDR DRAM provides the best effort for low latency random memory access,
while the sequential transfer rate is also sufficient.

According to the recorded DRAM access traces, in case of hash-index based short
read sequence mapping, the effective read bandwidth on DRAM channel 0 of DE5
is approximately 450 MB/s, which consists of accesses to pointer table and original
reference sequence. This value is much lower than the estimated value described in
Sect. 5, since the memory controller provided by Altera IP is not optimized for random
access.

According to simulated DRAM access traces of 3D SDRAM with 333 MHz, the
random access is highly benefit from Scatter/Gather read policy, and the effective read
bandwidth of DRAM channel 0 is about 1210 MB/s in case of hash-index based short
read sequence mapping, pretty much higher than that of FPGA result.

7.6 Energy Efficiency

The logic layer of a sub-processor at 666 MHz on 45-nm process consumes around
3.1 Watts given by post-synthesis simulation. According to CACTI 3DD model, the
stacked DRAM layers consume around 3.2 Watts for each sub-processor.

Therefore our example design would consume around (3.1 + 3.2) x 16 = 100.8
Watts energy with 9 layers of 70 mm? silicon area. This power density is below the
maximum value of thermal dissipation with 200 W/cm? as defined by International
Technology Roadmap for Semiconductors [60], and liquid cooling approaches should
work well.

8 Related Work

The first hardware accelerator for bioinformatics and computational biology can be
traced back to last century, aiming to accelerate DNA sequence alignment [1]. During
recent years, a significant amount of hardware accelerators [2-6] focused on dynamic
programming algorithms such as the Needleman and Wunsch [37] and Smith and
Waterman [39] algorithms.

For MSA problem, accelerating with FPGA has been well researched [7-10], while
recent reports using GPU as accelerator gave very impressive results [22,23].

Applications based on seeds-and-extend that perform DNA sequence matching
(BLAST-like) have also been explored for acceleration. There have been researches
reported to accelerate all the computation stages of BLAST and its variations using
both FPGA [11-14] and GPU [24-27].

As the rising of demands over personalized genetic analysis services, the recent
researches focus has shifted to the analysis of NGS, and specifically to the problem

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1457

of mapping short-reads to the reference genome. A great number of papers have been
published that either use FPGAs [16-21,55], or GPUs [28-30].

A decent survey on hardware acceleration for most computational genomics and
bioinformatics problems has been published recently [61].

9 Conclusions

The significant growth of biological sequence databases and the rising demands of
personalized bioinformatics analytic services urge an innovation on computer archi-
tecture. Many accelerators have been proposed but hardly put in real use, as a wide
range of applications shall be adopted in bioinformatics while current accelerators just
focus on individual problems. Our proposed solution covers a wide range of popular
applications that would accelerate the processing of most subfields over biological
sequence analysis, including pairwise sequence alignment, MSA, database search,
and short read sequence mappings.

By profiling of those algorithms and applications, the most execution time
consuming stages have been figured out, while we find that those stages can
be categorized into a few sub-problems. We propose a coarse grained reconfig-
urable fabric which consists of an array of simple basic building blocks that
provides signed integer Add/Compare-Select functions. This architecture could
efficiently support the acceleration of target applications by analysis of those sub-
problems.

Moreover, with well-balanced PEs, buffers, data-paths and resource scheduling,
the CGRA can be incorporated with many-core architecture and 3D-stacked tech-
nologies for massively parallelization while devoid of the scalability and congestion
challenges on regular many-core designs. We implement a stripped down version
of the many-core architecture on commodity FPGA, which represents an individual
sub-processor along with dedicated DRAM channels. Based on well-balanced task
partitions, this single-processor like portion could easily address the estimated over-
all performance of the many-core design, since it’s ensured that no inter-task data
exchanges between sub-processors during computation. It leverages a fact that with
well-balanced customization of data partition and task scheduling, a reconfigurable
fabric could reach the maximum silicon efficiency with limited data throughputs avail-
able.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Hoang, D.T.: Searching genetic databases on Splash 2. In: Proceedings of the IEEE Workshop on
FPGAs for Custom Computing Machines, pp. 185-191. Napa (1993)

@ Springer

http://creativecommons.org/licenses/by/4.0/

1458 Int J Parallel Prog (2017) 45:1420-1460

10.

11.

12.

13.

14.

15.

17.

18.

20.

21.

22.

23.

24.

. Caffarena, G., Bojanic, S., Lopez, J. A., Pedreira, C., Nieto-Taladriz, O.: High-speed systolic array

for gene matching. In: Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field
Programmable Gate Arrays (FPGA ’04). ACM, pp. 248-248. New York (2004)

. Oliver, T.F.,, Schmidt, B., Maskell, D.L.: Reconfigurable architectures for bio-sequence database scan-

ning on FPGAs. IEEE Trans. Circuits Syst. IT Express Briefs 52(12), 851-855 (2005)

. Gok, M., Yilmaz, C.: Efficient cell designs for systolic Smith—Waterman implementations. In: Inter-

national Conference on Field Programmable Logic and Applications, pp. 1-4. Madrid (2006)

. Jiang, X., Liu, X., Xu, L., Zhang, P., Sun, N.: A reconfigurable accelerator for Smith—Waterman

algorithm. IEEE Trans. Circuits Syst. II Express Briefs 54(12), 1077-1081 (2007)

. Benkrid, K., Liu, Y., Benkrid, A.: A highly parameterized and efficient FPGA-based skeleton for

pairwise biological sequence alignment. IEEE Trans. Very Larg. Scale Integr. Syst. 17(4), 561-570
(2009)

. Lin, X., Peiheng, Z., Dongbo, B., Shengzhong, F., Ninghui, S.: To accelerate multiple sequence

alignment using FPGAs. In: Eighth International Conference on High-Performance Computing in
Asia-Pacific Region (HPCASIA’05), pp. 5-180. Beijing (2005)

. Oliver, T., Schmidt, B., Maskell, D., Nathan, D., Clemens, R.: Multiple sequence alignment on an

FPGA. In: 11th International Conference on Parallel and Distributed Systems (ICPADS’05), pp. 326—
330. Fukuoka (2005)

. Yilmaz, C., Gok, M.: An optimized system for multiple sequence alignment. In: International Confer-

ence on Reconfigurable Computing and FPGAs, 2009, pp. 178—182. Quintana Roo (2009)

Mahram, A., Herbordt, M.C.: FMSA: FPGA-accelerated Clustal W-based multiple sequence alignment
through pipelined prefiltering. In: IEEE 20th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2012, pp. 177-183. Toronto (2012)

Jacob, A., Lancaster, J., Buhler, J., Chamberlain, R.D.: FPGA-accelerated seed generation in mercury
BLASTP. In: 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM 2007), pp. 95-106. Napa (2007)

Sotiriades, E., Dollas, A.: Design space exploration for the BLAST algorithm implementation. In: 15th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2007), pp.
323-326. Napa (2007)

Kasap, S., Benkrid, K., Liu, Y.: High performance FPGA-based core for BLAST sequence alignment
with the two-hit method. In: 8th IEEE International Conference on Biolnformatics and BioEngineering
BIBE, pp. 1-7. Athens (2008)

Chen, Y., Schmidt, B., Maskell, D.L.: Reconfigurable accelerator for the word-matching stage of
BLASTN. IEEE Trans. Very Larg. Scale Integr. Syst. 21(4), 659-669 (2013)

Olson, C.B. et al.: Hardware acceleration of short read mapping. In: IEEE 20th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 161-168. Toronto
(2012)

. Sogabe, Y., Maruyama, T.: An acceleration method of short read mapping using FPGA. In: International

Conference on Field-Programmable Technology (FPT), pp. 350-353 (2013)

Chen, Y., Schmidt, B., Maksell, D.L.: An FPGA aligner for short read mapping. In: 22nd International
Conference on Field Programmable Logic and Applications (FPL), pp. 511-514. Oslo (2012)
Arram, J., Tsoi, K.H., Luk, W., Jiang, P.: Reconfigurable acceleration of short read mapping. In: IEEE
21st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 210-217. Seattle (2013)

. Chen, P, Wang, C., Li, X., Zhou, X.: Accelerating the next generation long read mapping with the

FPGA-based system. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(5), 840-852 (2014)
Fernandez, E.B., Villarreal, J., Lonardi, S., Najjar, W.A.: FHAST: FPGA-based acceleration of Bowtie
in hardware. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(5), 973-981 (2015)

Waidyasooriya, H.M., Hariyama, M.: Hardware-acceleration of short-read alignment based on the
Burrows—Wheeler transform. IEEE Trans. Parallel Distrib. Syst. 27(5), 1358-1372 (2016)

Liu, Y., Schmidt, B., Maskell, D.L.: MSA-CUDA: Multiple sequence alignment on graphics pro-
cessing units with CUDA. In: 20th IEEE International Conference on Application-Specific Systems,
Architectures and Processors, 2009, pp. 121-128. Boston (2009)

Blazewicz, J., et al.: G-MSA—A GPU-based, fast and accurate algorithm for multiple sequence align-
ment. J. Parallel Distrib. Comput. 73(1), 3241 (2013)

Vouzis, P.D., Sahinidis, N.V.: GPU-BLAST: using graphics processors to accelerate protein sequence
alignment. Bioinformatics 27(2), 182-188 (2011)

@ Springer

Int J Parallel Prog (2017) 45:1420-1460 1459

25.

26.

27.

28.

29.

30.

31.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Liu, W., Schmidt, B., Liu, Y., Voss, G., Mueller-Wittig, W.: Mapping of BLASTP algorithm onto GPU
clusters. In: IEEE 17th International Conference on Parallel and Distributed Systems (ICPADS), pp.
236-243. Tainan (2011)

Zhao, K., Chu, X.: G-BLASTN: accelerating nucleotide alignment by graphics processors. Bioinfor-
matics 30(10), 1384-1391 (2014)

Zhang, J., Wang, H., Feng, W.C.: cuBLASTP: Fine-grained parallelization of protein sequence search
on CPU+GPU. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 99,
pp. 1-1

Klus, P, et al.: BarraCUDA-a fast short read sequence aligner using graphics processing units. BMC
Res. Notes §, 27 (2012)

Liu, Y., Schmidt, B.: CUSHAW2-GPU: empowering faster gapped short-read alignment using GPU
computing. IEEE Des. Test 31(1), 31-39 (2014)

Chacén, A., Marco-Sola, S., Espinosa, A., Ribeca, P, Moure, J.C.: Boosting the FM-index on the GPU:
effective techniques to mitigate random memory access. In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics Sept.—Oct. 1, vol. 12(5), pp. 1048-1059 (2015)

Blaststation: Benchmark tests of NCBI Blast+ on Amazon EC2. http://www.blaststation.com/freestuff/
en/benchmarkBlastCloud.html. Accessed 31 Dec 2016

. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive

multiple sequence alignment through sequence weighting, position-specific gap penalties and weight
matrix choice. Nucl. Acids Res. 22(22), 4673-4680 (1994)

Notredame, C., et al.: T-Coffee: a novel method for fast and accurate multiple sequence alignment. J.
Mol. Biol. 302(1), 205-217 (2000)

Altschul, S.F, et al.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403—410 (1990)

Homer, N., et al.: BFAST: an alignment tool for large scale genome resequencing. PLoS ONE 4(11),
e7767 (2009)

Li, H., Durbin, R.: Fast and accurate long-read alignment with Burrows—Wheeler transform. Bioinfor-
matics 26(5), 589-595 (2010). (PMC. Web. 9 June 2016)

Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443-453 (1970)

Altschul, S.F.: Amino acid substitution matrices from an information theoretic perspective. J. Mol.
Biol. 219(3), 555-565 (1991)

Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1),
195-197 (1981)

Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422—
426 (1970)

Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, pp. 390-398 (2000)

Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm. SRC Research
Report 124, Digital Equipment Corporation, Palo Alto, California (1994)

Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM J. Comput.
22(5), 935-948 (1993)

Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabili-
ties, In: Proceedings of the AFIPS ’67 Spring Joint Computer Conference, pp. 483—485 (1967)
Longbottom, R.: RandMem Benchmark. http://www.roylongbottom.org.uk/randmem%?20results.htm.
Accessed 31 Dec 2016

Intel® Core™ {7 Processor. http://ark.intel.com/products/family/59143/. Accessed 31 Dec 2016
JEDEC: DDR3 SDRAM Standard, JESD79-3F. https://www.jedec.org/standards-documents/docs/
jesd-79-3d (2012). Accessed 31 Dec 2016

Mirsky, E., DeHon, A.: MATRIX: a reconfigurable computing architecture with configurable instruc-
tion distribution and deployable resources. In: Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines, 1996, pp. 157-166 (1996)

Loi, I., Benini, L.: An efficient distributed memory interface for many-core platform with 3D stacked
DRAM. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 99-104
(2010)

JEDEC: Wide I/O Single Data Rate, JESD229. https://www.jedec.org/standards-documents/docs/
jesd229 (2011). Accessed 31 Dec 2016

@ Springer

http://www.blaststation.com/freestuff/en/benchmarkBlastCloud.html
http://www.blaststation.com/freestuff/en/benchmarkBlastCloud.html
http://www.roylongbottom.org.uk/randmem%20results.htm
http://ark.intel.com/products/family/59143/
https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd229
https://www.jedec.org/standards-documents/docs/jesd229

1460 Int J Parallel Prog (2017) 45:1420-1460

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

Edmiston, E., et al.: Parallel processing of biological sequence comparison algorithms. Int. J. Parallel
Program 17(3), 259-275 (1988)

Ibarra, O., Palis, M.: VLSI algorithms for solving recurrence equations and applications. IEEE Trans.
Acoust. Speech Signal Process. 35(7), 1046—-1064 (1987)

Chao, K.M., et al.: Aligning two sequences within a specified diagonal band. Comput. Appl. Biosci.
8(5), 481-487 (1992)

Weis, C., et al.: Exploration and optimization of 3-D integrated DRAM subsystems. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 32(4), 597-610 (2013)

Europractice: Standard Cell Library TSMC. http://www.europractice-ic.com/libraries_ TSMC.php.
Accessed 31 Dec 2016

Chen, K., et al.: CACTI-3DD: Architecture-level modeling for 3D diestacked DRAM main memory.
In: Design, Automation Test in Europe Conference Exhibition (DATE), pp. 33-38 (2012)
Thompson, J.D., et al.: BAIIBASE 3.0: latest developments of the multiple sequence alignment bench-
mark. Proteins 61(1), 127-136 (2005)

Miga, K.H., et al.: Centromere reference models for human chromosomes X and Y satellite arrays.
Genome Res. 24(4), 697-707 (2014)

JEDEC: Wide 1/0 2 (WidelO2), JESD229-2. https://www.jedec.org/standards-documents/docs/
jesd229-2 (2014). Accessed 31 Dec 2016

International Technology Roadmap for Semiconductors. http://www.itrs2.net. Accessed 31 Dec 2016
Aluru, S., Jammula, N.: A review of hardware acceleration for computational genomics. IEEE Des.
Test 31(1), 19-30 (2014)

@ Springer

http://www.europractice-ic.com/libraries_TSMC.php
https://www.jedec.org/standards-documents/docs/jesd229-2
https://www.jedec.org/standards-documents/docs/jesd229-2
http://www.itrs2.net

International Journal of Parallel Programming is a copyright of Springer, 2017. All Rights
Reserved.

	3D-Stacked Many-Core Architecture for Biological Sequence Analysis Problems
	Abstract
	1 Introduction
	2 Contributions
	3 Biological Sequence Analysis Applications
	3.1 Pairwise Sequence Alignment
	3.2 Multiple Sequence Alignment
	3.3 Database Search
	3.4 Short Read Sequence Mapping
	3.5 Application Analysis

	4 CGRA for Biological Sequence Analysis
	4.1 Reconfigurable Processing Element
	4.2 CGRA Interconnection
	4.3 Input and Output Buffers

	5 3D-Stacked Many-Core Architecture
	5.1 Sub-Processor with Integrated Memory Interface
	5.2 Circuit-Switching Many-Core Processor
	5.3 3D-Stacked DRAM with Scatter/Gather Read

	6 Application Mappings
	6.1 Distance Score Matrix Filling
	6.2 Backtracking
	6.3 Seed Matchings and Seed extension
	6.4 2-Hit String Matching
	6.5 Backward Searching
	6.6 Further Improvements

	7 Experimental Results
	7.1 Test Environments
	7.2 Performance Scaling
	7.3 Test Results
	7.4 Short Read Mapping Sensitivity
	7.5 Memory Bandwidth Efficiency
	7.6 Energy Efficiency

	8 Related Work
	9 Conclusions
	References

