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This dissertation utilizes data from four sub-watersheds in the Little River 

Experimental Watershed, GA to develop models to improve forecast predictions related 

to the management of surface-water pollution due to non-point source runoff.  Non-point 

source pollution is the primary cause of US surface-water quality impairment and a main 

transport mechanism for pathogens and other pollutants into receiving surface water 

bodies (US EPA 2008).   In response to pollution reduction and watershed remediation 

mandates under the Federal Clean Water Act (1972)—particularly the Total Maximum 

Daily Load (TMDL) program—the role of water quality modeling in effectively 

rehabilitating impaired waters has taken on greater importance.  Consequently, the 

significance of this study is that it is the first of its kind to incorporate a multi-model 

approach to address limitations in using single water quality models.  In this regard, it 

builds on water quality engineering research by presenting methods to estimate 

contaminant concentrations and reduce uncertainty in overall model predictions in 

impaired water-bodies.  

Methodologically, the key point of departure in this dissertation is centered on the 

fact that water quality modeling is the cornerstone of TMDL analyses but the associated 

 



     

prediction uncertainty affects their adequacy in providing reliable contaminant loadings 

estimates in an impaired water body.  As such, utilizing hydrological and water-quality 

process equations embedded in the two most widely used watershed-scale models, the 

Soil and Water Assessment Tool (SWAT) and Hydrological Simulation Program-Fortran 

(HSPF), and observed data from the sub-watersheds mentioned above, the dissertation 

addresses this limitation by combining results from the two competing models to reduce 

uncertainty and enhance accuracy of predictions.  

The study was conducted in two phases.  First, HSPF and SWAT—two 

extensively-used, scientifically-rigorous, US EPA-approved watershed-scale codes—

were used to build models of the four study catchments.   The models were individually 

calibrated and shown (based on Nash-Sutcliffe Efficiency (NSE) ratios) to produce 

reliable simulations of the hydrologic and water quality conditions in the watershed.  The 

second phase of the analysis involved using a multi-model approach to combine model 

forecasts.  Model combination, introduced by Bates and Granger in 1969, has emerged as 

a viable analytical technique (Claesken and Hjort, 2008;  Ajami et al., 2006) and widely-

used across disciplines to improve model-forecasting results (Kim et al., 2006; 

Shamseldin et al., 1997; Granger, 2001; Clemens, 1989; Thompson, 1976; Newbold and 

Granger, 1974; Dickinson, 1973). 

After calibration, the model predictions were combined for each catchment using 

three different methods: the Weighted Average Method (WAM), the Nash-Sutcliffe 

Efficiency Maximization Method (NSE-max) and an Artificial Neural Network Method 

(ANN).   Comparison of the results of the multi-model formulation with original 

individual model results showed improved estimates with all three combination methods.  

 



     

The improvement in model accuracy (based on NSE ratios) varied from modest to 

significant in both hydrologic and water quality variables.   These improvements were 

attributed to a reduction in model structural uncertainty resulting from the ability to 

capture aspects of some of the more complex watershed interactions from exogenous 

information provided by the contributing models.   It should be noted here, however, that 

as model availability increases, if additional models (beyond those utilized here) are used 

with this approach, care should be taken to ensure the credibility of each individual 

model for simulating the watershed scale processes under review.    

Limitations of this study include possible bias introduced by the use of 

deterministic models to estimate probabilistic contaminant distributions, limitations in 

available data, and the use of a seven-year study period that did not account for possible 

impacts of shorter periods of extreme hydrologic conditions on the individual model 

performances and model combination weightings.  Recommendations for future research 

include (a) improving watershed-scale codes to better describe the probability distribution 

functions characteristic of contaminant distributions and data collection on wildlife 

species and populations; and investigating the fate and transport processes of pathogenic 

indicator bacteria deposited in forested areas and the impact of extreme hydrologic 

conditions on model performance and weighting.   

Overall, the findings from this dissertation suggest that water quality modeling 

incorporating a multi-model approach has the potential to significantly improve 

predictions compared to the predictions obtained when only one model is used.   Clearly, 

the findings reported here have significant implications in improving TMDL analyses and 

remediation plans by presenting an approach that exploits the strengths of two of the most 

 



     

complete and well-accepted watershed-scale water quality models in the United States.  

Moreover, the findings of this dissertation auger well for the future of TMDL 

management in that it provides a more robust and cost effective basis for policy makers 

to decide on effective management strategies that incorporate acceptable risk, allowable 

loading and land use.   
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 CHAPTER 1: INTRODUCTION 

1.0   Overview 

The impact of non-point source pollution on surface-water bodies is one of the 

more serious contemporary environmental challenges facing US policymakers (Natural 

Resources Defense Council 1999a, Goonetilleke et al. 2005, Mein and Goyen 1988).  In 

fact, over the last decade or so, non-point source pollution surpassed all other sources to 

become the leading cause of water quality impairment to US surface-water bodies (US 

EPA 2008).  However, while the role of non-point source pollution as a medium of 

transport for pollutants (such as pathogens) into receiving waters is well established, the 

link between terrestrial loading and the impacts on receiving water bodies is not well 

understood (Goonetilleke et al. 2005,  Parker et al.  2000). 

Considerable research and water quality assessments have been conducted by the 

United States Environmental Protection Agency (US EPA) on the impact of non point 

source pollutants on receiving water bodies (US EPA 2006).  The thrust of the EPA’s 

effort has been to establish standards and regulations that ensure states identify, develop 

remediation plans, and implement programs to address impaired surface water bodies 

within their boundaries.  The legislative authority to make recommendations and develop 

mandates for impaired water bodies is stipulated in Section § 303 (d) of the Federal Clean 

Water Act (1972).  Specifically, the statute mandates that each state, territory and tribe 

designate uses for every natural surface water body within its jurisdiction and establish 

water quality criteria to protect them (US EPA 1991).  

 1



    2
 

 Surface water bodies identified and assigned a designated use by a state (or other 

governing body) must undergo a water quality assessment (Copeland 2006).  Any water 

body that fails to meet the designated criteria—even after the application of pollution 

controls—is classified as impaired and placed on a local (state) and the National Section 

303(d) List (Copeland 2005).  Listed water bodies undergo a use attainability analysis 

(UAA) to determine the maximum pollutant loads consistent with attaining the associated 

water quality criteria (Chin 2006).  These loads, more commonly referred to as total 

maximum daily loads or TMDLs, are used to determine the quantity of a specified 

pollutant a water body can assimilate without violating the qualitative water quality 

standards based on its designated use (Roffolo 1999).     

When the application of technology-based pollution controls fail to bring a 

surface water body into compliance with required water quality standards, a TMDL must 

be proposed and implemented for the impaired water body.  Common pollutants 

requiring the implementation of TMDLs include pathogens, nutrients, heavy metals, 

dissolved oxygen, temperature, organics and pesticides.  According to the US EPA (40 

CFR 130.2), a TMDL should indicate the sum of the allowable loads of a single pollutant 

from all contributing point and non-point sources and must include a margin of safety 

(US EPA 2002).   

TMDLs are usually estimated using either or both of the following US EPA-

approved methods:  load duration curves and/or water quality models.  In most small 

watersheds where flow is the primary mechanism in pollutant loading, duration curves 

are usually adequate to quantify contaminant loading on the receiving water body (US 

EPA 2007).    Larger, more complex watersheds, on the other hand, frequently require a 
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more thorough analysis to determine causal relationships between contaminant loading 

and concentration in the receiving water body.  This analysis typically entails the use of a 

watershed-scale fate and contaminant transport model. 

Watershed-scale fate and transport models are widely used in TMDL analyses to 

quantify the complex relationships between the loading of a contaminant and its spatial 

and temporal distribution within a receiving water body (Chin 2009).  A major 

shortcoming of these models, however, is the inherent predictive uncertainty associated 

with all simulation-based methods.  This uncertainty stems from three major sources and 

is usually attributable to:  (a) uncertain parameter values (parameter uncertainty), (b) the 

use of over-simplified and/or inadequate model equations or invalid assumptions 

(structural uncertainty), or (3) errors in the measured data (data uncertainty).   In fact, one 

of the fundamental problems associated with watershed modeling is the limitation in the 

minimum predictive uncertainty that can be achieved based on the uncertainty stemming 

from errors or limitations in the structure of a given model (Chin, Sakura-Lemessy, 

Bosch and Gay 2009).       

Although no systematic methods currently exist to reduce a model’s structural 

uncertainty, combining the predictions of multiple models has emerged as a viable 

analytical technique to improve model-forecasting results (Claesken and Hjort 2008, 

Ajami et al. 2006).  Since its inception, model combination has been used widely across 

disciplines (Bates and Granger, 1969; Granger, 2001; Clemens, 1989; Thompson, 1976; 

Newbold and Granger, 1974; Dickinson, 1973); however, it has never before been 

applied to predicting the fate and transport of pollutants in a watershed.  Consequently, 

this dissertation addresses this gap in four ways.  It builds on existing water quality 
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engineering research by using a multi-model approach to: (1) estimate the concentration 

of a contaminant in a receiving water body, (2) predict and quantify the dominant fate 

and transport processes in a watershed (3) determine which process equations better 

represent the watershed, and (4) quantify the reduction in predictive uncertainty 

obtainable by combining process equations in available codes in the analysis of a 

watershed. 

 

1.1   Background of the problem 

As early as 1996, the US EPA recognized non-point source pollution as the 

leading cause of surface-water quality impairment in the US (EPA 2000).  One of the 

major implications of this is that it serves as a direct conduit for pathogenic organisms—

presently the principal cause of water quality impairments—into receiving waterways 

(Zeckoski et al 2005).   According to the US EPA, there are currently well over a hundred 

thousand miles of pathogen-impaired stream segments on the National 303 (d) list (US 

EPA 2009) and the affected states, territories and tribes are legally required to establish 

priority rankings and develop TMDLs for each.   
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TMDLs specify the maximum contaminant loading on a water body that is 

consistent with the water body not being impaired.  They are designed to remediate 

impaired water bodies and estimated using a two-step process (Chin 2006).  The first step 

involves a linkage analysis in which a water body is analyzed to determine the 

relationship between the contaminant loading on a water body and the concentration of 

the contaminant in the water body.  The second step involves the disaggregation of 

terrestrial sources of the contaminant loading entering the water body (Chin 2006).  

Terrestrial sources are disaggregated according to the following relationship: 

 

   TMDL  =   ΣWLA   +  ΣLA   +   MOS         ( 1) 

 

where ΣWLA is the water load allocation associated with point sources, ΣLA the load 

allocation associated with non-point sources  (including background concentrations) and 

MOS  the required margin of safety as stipulated in section § 303 (d) of the Federal Clean 

Water Act (1972).  The MOS is designed to account for any scientific uncertainty 

between the estimated and actual load allocations (EPA 1997).  It can be expressed either 

implicitly as a portion of the load allocations or explicitly as a percentage (usually 10%) 

of the TMDL. 

 Waste load allocations (WLA) are typically associated with discharges from 

domestic wastewater treatment plants and municipal separate storm sewer systems 

(MS4s).  However, while loadings from wastewater treatment plants can be reliably 

estimated from the US EPA’s National Pollutant Discharge Elimination System (NPDES) 

permit allocations and mandatory monitoring reports, the process is not as clear-cut for 
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MS4s.  This is attributable to the fact that though MS4s discharge through conduits such 

as drains, pipes, canals or ditches and classified as point sources, they actually originate 

from diffuse non-point sources in a watershed (Phillips 1988).  Load allocations (LA) or 

loads from non-point sources, by contrast, are much harder to quantify than WLA.   In 

fact, non-point source loads are particularly difficult to estimate without some 

understanding of the quantitative relationships between the terrestrial mass loading and 

the resulting concentration of a pollutant in the receiving water body.  

In simple watersheds, TMDLs are most commonly determined using load 

duration curves.  Load duration curves can be very effective in estimating pollutant loads 

when flow is the primary mechanism in pollutant loading and all other processes are 

relatively insignificant to the total loading to a water body (US EPA 2007).  Whenever 

flow is only one of the components affecting the total loading on the water body, as in 

most complex watersheds, a terrestrial analysis is required to predict the relevant fate and 

transport processes of the pollutant and determine a strategy for any required loading 

reductions.  Terrestrial analyses usually require the use of a watershed-scale fate and 

contaminant transport model. 

When terrestrial fate and transport models are used, the uncertainties associated 

with relating load allocation on water bodies with land use activities in surrounding 

uplands can be significant (Chin 2009).  This can result from uncertainty in:  (1) model 

structure, (2) input parameters, and/or (3) input data.  Uncertainty in model structure 

stems from the use of incorrect, inadequate or over-simplified process equations; invalid 

or unfulfilled assumptions; or the inadequate scaling of point to watershed processes.  

Parameter uncertainty is primarily due to errors in model input parameters (such as soil 
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profiles, land uses, stream geometry etc.) or imputing general values over an entire 

watershed with characteristics that vary in time and space.  Data uncertainty, for both 

calibration and input data, results from limitations and/or errors in measured values (Chin 

2009, Arabi et al. 2007, Shirmohammadi et al. 2006).   

Conventional fate and transport models provide scientifically rigorous tools for 

quantifying relationships and estimating non-point source loading in impacted watersheds 

(Goonetilleke et al. 2005, Sartor and Boyd 1972, Parker et al 2000, Lopes et al 1995, Hall 

and Anderson 1986).    Although these models have been instrumental in advancing our 

understanding of these relationships, significant gaps remain in our knowledge of the 

processes involved and the true impacts of terrestrial mass contaminant fluxes on the 

loading on receiving water bodies (Goonetilleke et al. 2005).   The limited understanding 

of these processes manifest as—sometimes marked—differences between the predictions 

calculated by the model and the values observed in the watershed.  The resultant 

generally weak correlation between model predictions and observed concentrations that 

plague water quality models stem from the significant predictive uncertainty introduced 

by unfulfilled/invalid structural assumptions or the oversimplification and resulting 

inadequate representation of the fate and transport process in the watershed (Shamseldin, 

O’Conner and Liang 1997). 

Uncertainty related to model structure is extremely difficult to overcome.  This is 

primarily because a model’s efficiency is a direct measure of how well its incorporated 

algorithms simulate relevant processes.  Currently, there is no systematic way to reduce a 

model’s structural uncertainty without changing the actual model code.  Therefore, short 

of reformulating the incorporated process equations, the only other option is to replace 
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the original model with another with process equations that better represent the processes 

within the watershed (Chin et al. 2009).      While the latter option may frequently 

produce better individual results, no model—thus far—has been identified as ideal or 

shown to produce better results under all circumstances (Shamseldin et al. 1997, World 

Meteorological Organization 1975, 1992).  While a bit dated, this observation is still  

relevant and supported by the proliferation of new models and the continuous revision of 

existing models in the current literature. 

In sum, in spite of the insights gained from current analytical methods, watershed 

analysis continues to suffer from poor understanding of cause and effect relationships.  

This results in a gap in our ability to link watershed mechanics with the processes that 

control the terrestrial loading and transport of non-point source pollutants to a receiving 

water-body.  This incomplete understanding of the dynamics in a watershed leads to 

uncertainty in model predictions, which is the basis of the environmental health 

assessments and evaluations currently utilized to determine strategies and management 

actions for the remediation of impaired waters.   

At present, all fifty states and several US territories have impaired surface water-

bodies that are officially included on the National Section 303(d) list, the majority of 

which are due to pathogen contamination (EPA 2008).  Listed water bodies require the 

development of a TMDL, and more than half of all the pathogen-impaired water bodies 

will require the use of a watershed-scale fate and transport models to unravel the complex 

relationships between land use, pollutant loading and pollutant concentration in the 

receiving water bodies.   Water quality models are known to produce inaccurate results 

(Chin 2009) but still constitute the foundation of management strategy decision-making.  
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Since the implementation of these management plans can have significant social and 

financial impacts, an efficient method to improve model predictions that does not require 

new model development and its attendant economic burden is not only necessary- it is 

also urgent.  

 

1.2 Purpose and Significance 

The purpose of this study is to use a multi-model approach to: (a) predict and 

quantify their dominant fate and transport processes of pathogenic indicator bacteria at 

the watershed scale; (b) determine the process equations that best represent the 

watershed; and (c) quantify the reduction in predictive uncertainty attainable by 

combining predictions from two watershed-scale terrestrial fate and transport models.  

The significance of the study lies in its potential for advancing knowledge on 

TMDL development in several aspects.  First, it has the ability to predict and quantify the 

dominant pathogenic indicator bacteria fate and transport processes which can present an 

effective means for relating required reductions in pathogenic indicator bacteria loading 

to impaired waters to reductions in terrestrial mass loadings.  Second, the study identifies, 

quantifies and compares relevant fate and transport processes and process algorithms.  

This can assist in the determination of the process equations/watershed codes that best 

describe the processes in the watershed, which will not only improve model selection 

methods, but facilitate model development in watersheds with similar characteristics.   

Thirdly, the study has the ability to improve water quality model predictions by 

presenting an approach to reduce structural model uncertainty. Because this approach 

utilizes the predictions from two comprehensive water quality models to estimate bacteria 
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concentration, the overall model uncertainty has the potential to be less that if either 

individual model was used.   

 Although only pathogenic indicator bacteria are addressed in this study, the 

methodological approach presented here has greater applications and can be extended to 

include many other water quality contaminants.  Overall, this study considerably 

improves watershed and water quality management by providing an adequate basis for 

policy makers to make decisions regarding acceptable risk, allowable loading, and 

terrestrial land use that is compatible with unimpaired receiving waters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



    
 

 

CHAPTER 2:  LITERATURE REVIEW 
 

 
2.1    Surface water pollution  

Though identified as a potential problem for centuries, water pollution and its 

attendant problems were relatively ignored in the United States until well into the 20th 

century.  In fact, it was not until the Cuyahoga River in Cleveland, Ohio spontaneously 

ignited in 1969 that US water quality issues came to a head (NOAA 2005, EPA 2003).  

This crisis led to the establishment of several federal and state agencies (for example, the 

US EPA) and the evolution and enforcement of several federal mandates, including the 

Clean Water Act (1972), which oversees surface water quality protection in the US.   

Under the authority of the Clean Water Act (1972), the US EPA regulates the 

concentration and frequency of all pollutants discharged directly into receiving surface 

water bodies in the US (EPA 2006).    

Strict control on direct or point source discharges into surface water bodies—a 

direct result of the Clean Water Act—helped to substantially reduce US surface water 

pollution.   Concomitantly, this reduction helped illuminate the far subtler but no less 

insidious problem posed by the discharge of diffuse or non-point source pollutants into 

receiving waterways.   By 1996, US EPA identified non-point source pollution as the 

leading cause of surface-water quality impairment in the US (EPA 1996).   According to 

the US EPA, the primary sources of non-point source pollution to surface water bodies in 

the US are agricultural sources, municipal sources and urban runoff (1996).   

Non point source pollution is now directly responsible for the impairment of 

water in thousands of surface water bodies throughout the US (US EPA 2008).  While, in 
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fairness to the US EPA, it should be noted that this legislation was addressed in 

section § 303(d) of the Federal Clean Water Act (1972), it was none-the-less virtually 

ignored for well over 15 years.  The apathy was abruptly ended by a spate of civil laws 

suits, fuelled by public concern about the deleterious impact of non-point source 

pollution on receiving water bodies, which propelled the US EPA to step up efforts to 

enforce the legislative mandates as stated in Section § 303(d) of the CWA (Ruffolo 

1999).    

The final mandates implementing Section §303(d) of the Clean Water Act (1972) 

were published on July 13th 2000 (Birkeland 2001).  The thrust of the latest regulations is 

less on restricting “end of pipe” discharges and more on instituting pollution abatement 

measures to improve and control the quality of US surface waters.  They place a ceiling 

on the quantity of pollutants entering a water body and now require states to allocate 

maximum pollutant loads (TMDL) to keep the total concentration under applicable water 

quality standards based on specified designated uses (Birkeland 2001).   

Although the US EPA has been very successful in drastically reducing water 

pollution due to point sources, attempts to regulate non point source pollution is not as 

straightforward and presents a new and quite different set of challenges.  One of the 

primary challenges associated with controlling non point source pollution is that this 

current threat to water quality can only be ameliorated by addressing previously 

unregulated non point sources.   Because of the direct relationship between non point 

source pollution and the land uses in a contributing watershed (McFarland and Hauck 

1999, Wang et al. 1997), the pollution can invariably only be controlled by managing 

these land uses.   However, the EPA (neither at the state or federal level) has no 
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jurisdiction over land management practices in the US (Birkeland 2001), so the only 

alternative is to attempt to regulate these sources indirectly which can prove a major 

challenge for regulatory bodies. 

 
 
The Clean Water Act 

Growing public awareness and concern for controlling water pollution, led to the 

enactment of the Federal Water Pollution Control Act in 1948 (for reviews see Copeland 

1999).   Since its enactment, the statute has undergone several substantive amendments, 

the most significant of which was in 1972, after which it became commonly known as the 

Clean Water Act (EPA 2003, Copeland 1999).   The Clean Water Act (CWA) is the 

cornerstone of surface-water quality protection in the United States.   As constituted 

today, the act consists of two major parts:  Title II provisions, which authorize federal 

funding and Title IV, which outlines the regulatory requirements (Copeland 1999).   The 

Clean Water Act (1972) establishes the framework for regulating the discharge of 

pollutants into the nation’s waterways.  It utilizes a combination of regulatory and non-

regulatory tools to provide financing for municipal wastewater facilities, guidelines for 

reducing the direct discharge of pollutants (point source pollution) and regulations for 

managing stormwater runoff (non-point source pollution) into the nation’s surface 

waterways (EPA 2003). 

The Clean Water Act utilizes two overlapping approaches to the regulation of 

water quality: (a) regulating point source pollution and (b) establishing water quality 

standards for all contaminants in surface water bodies (Roffolo 1999).   Section §303(d) 

of the act, requires each state to prepare a list of impaired water bodies—that is, all 
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bodies of water not meeting applicable water quality standards—and establish Total 

Maximum Daily Loads (TMDLs) for each pollutant identified for each impaired water 

body on the list.  However, this requirement was virtually ignored for several years after 

the federal mandate, and most of the focus placed on regulating point source pollution, 

which both decreased pollution levels and increased the visibility of the impacts on 

surface water quality specifically attributable to diffuse or non-point pollution.  

As the impact of non point source pollution on surface water bodies became one 

of the most dominant factors in maintaining surface water quality, a wave of 

environmental lawsuits ensued.   Of particular importance is Scott vs. City of Hammond 

(1984), when in a landmark decision the Seventh Circuit Court ruled that the EPA had to 

develop Total Maximum Daily Loads (TMDLs) if the states failed to do so (for reviews 

see Ruffolo 1999).   This decision now known as the “theory of constructive submission” 

began a series of similar lawsuits all culminating with the courts forcing the EPA to issue 

lists of impaired water bodies and establish TMDLs if the states had failed to do so 

(1999).   Ultimately, in response to the pressure from both the courts and the public, 

Congress amended the Clean Water Act in 1987 to include section §319 the non point 

source program requiring states to prepare and submit a non point source assessment 

report for approval by the EPA (1999).  This requirement was subsequently revised and 

the EPA now also requires states to develop implementations plan for TMDLs in addition 

to their assessment plans. 
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2.2   Total Maximum Daily Loads 

Total Maximum Daily Loads (TMDLs) are federally mandated standards that 

define the quantity of a particular pollutant that a given water-body can assimilate daily 

without exceeding the water quality standards for the designated uses of a water body 

(Roffolo, 1999).   TMDLs were designed by the EPA as a systemic approach to 

establishing objective, quantitative standards for water quality in surface water bodies.  

They are specific to individual pollutants and designed to control pollutant loadings and 

improve the quality of receiving waters (for reviews see Roffolo, 1999).   According to 

the federal mandate, a TMDL should be “established at a level necessary to implement 

the applicable water quality standards with seasonal variations and a margin of safety 

which takes into account any lack of knowledge concerning the relationship between 

effluent limitations and water quality” (US Code: Title 33  §1313 (d) (1) (C)). 

The regulations set forth by the US EPA (40 CFR 130.2) stipulate that a TMDL 

should indicate the sum of the individual waste load allocations for point sources, load 

allocations for non-point sources and load allocations for natural background 

concentrations.  Where a waste load allocation is “the portion of receiving water’s 

loading capacity that is allocated to one of its existing or future point sources” and a load 

allocation “the potion of a receiving water’s loading capacity that is attributed either to 

one existing or future nonpaying sources of pollution or to natural background sources” 

(US EPA 2002). 

According to the US EPA (40 CFR 130.2), a TMDL should indicate the sum of 

the allowable loads of a single pollutant from all contributing point and non-point sources 

and must include a margin of safety (US EPA, 2002).  They are estimated using a two-
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step process (Chin, 2006), involving (a) a linkage analysis used to determine the 

relationship between the terrestrial mass contaminant loading and the concentration of the 

contaminant in a water body; and (b) the disaggregation of terrestrial sources of 

contaminant loading entering the water body (Chin, 2006). 

   TMDLs are calculated as the sum of the waste load allocation (WLA) which is 

comprised of all the point sources, the load allocation (LA) which accounts for all the 

nonpoint sources and includes the natural background concentrations and a margin of 

safety (MOS) which accounts for scientific uncertainty between estimated and actual load 

allocations (see equation 1).  The margin of safety is usually expressed either implicitly 

as a portion of the load allocations or explicitly as a percentage (usually 10%) of the 

TMDL (US EPA, 1997).  

Waste load allocations (WLA) are typically associated with discharges from 

domestic wastewater treatment plants, which can be reasonably estimated from National 

Pollutant Discharge Elimination System (NPDES) permit allocations and mandatory 

monitoring reports and municipal separate storm sewer systems (MS4s).  TMDLs are 

usually determined by either or both of the most commonly used US EPA-approved 

methods:  the load duration curve method or a terrestrial fate and transport model.  The 

load duration curve method is typically used in watersheds where it is not necessary to 

track the contributions from individual sources and detailed terrestrial fate and 

contaminant transport models are used in more complex and typically larger watersheds 

when detailed terrestrial analysis may be necessary to adequately assign load allocations 

(US EPA, 2007). 
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2.3   Pathogenic indicator bacteria: Water quality impairment and TMDLs 

 Microorganisms are ubiquitous in the environment and while many are beneficial, 

a small percentage of them are pathogenic.  Extensive or prolonged contact or the 

ingestion of pathogenic organisms can lead to illness or even death in humans (US EPA 

2001).  In 2001, the US EPA cited pathogenic microorganisms as the leading cause of 

water quality impairment in the United States and listed as the number one contributor to 

non point source pollution (US EPA, 2001).  In addition, the general consensus, based on 

extensive research conducted by the US EPA (1983) under the Nationwide Urban Runoff 

Program (NURP), and several others including Geldreich (1965), Field et al. (1975), 

Olivieri et al. (1977) and Ellis and Wang (1995), is that contact with water impaired by 

pathogen contamination poses a significant health concern (see Table 1). 

 Risks posed to humans through exposure to pathogen-impaired waters are 

typically assessed using theoretical evaluations (Pitt et al. 2008).  However, because there 

are usually numerous different types of pathogenic microorganisms present in relatively 

small numbers (when compared with other organisms) in polluted waters, attempts to 

analyze and monitor pathogens can be difficult, expensive and prone to errors.  

Consequently, researchers normally choose to monitor a strain of more numeruos 

nonpathogenic bacteria that can be directly associated with pathogens transmitted by 

fecal contamination, but are far easier to sample and analyze (US EPA 2001).  These are 

referred to as “pathogen indicator bacteria” and used to develop the water quality criteria 

necessary to sustain the designated uses of surface water bodies. 

The adequate selection of pathogen indicator bacteria to support water quality 

criteria has been both contentious and difficult.  Based on recommended guidelines (US 
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EPA 2001, Thomann and Mueller 1987), in order for an organism to adequately function 

as an indicator of fecal contamination, it should:  

 be easily detectable using simple laboratory analysis   

  be generally not present in unpolluted waters  

Pathogen Type Disease Effects
Adenovirus (types 40 
and 41) Virus

Respiratory disease, 
gastroenteritis Various effects

Astrovirus Virus
Gastroenteritis Vomiting, diarrhea

Balantidium coli Protozoa Blantidiasis Diarrhea, dysentery

Calicivirus e.g. 
Norwalk-like, 
Sapporo-like viruses)

Virus Gastroenteritis Vomiting, diarrhea

Cryptosporidium
Protozoa Cryptosporidium Diarrhea, death in susceptible populations

Entamoeba 
histolytica Protozoa Amebiasis (amoebic 

dysentery
Prolonged diarrhea with bleeding, abscesses of the liver and 
small intestine

Enterovirus ( e.g. 
polio, echo, 
encephalitis, 
conjunctivitis, 
Coxsackie viruses

Virus
Gastroenteritis, heart 
anomolies, 
meningitis

Various effects

Eschericheria coli 
(0157:H7) Bacteria Gastroenteritis Vomiting, diarrhea

Giardia lamblia Protozoa Giardiasis
Mild to severe diarrhea, nausea, indigestion

Hepatitis A Virus Infectious hepatitis Jaundice, fever

Reovirus Virus Gastroenteritis Vomiting, diarrhea

Rotavirus Virus Gastroenteritis Vomiting, diarrhea

Salmonella  Bacteria Salmonellosis Diarrhea, dehydration
Salmonella  typhi Bacteria Typhoid Fever High fever, diarrhea, ulceration of small intestine
Shigella Bacteria Shigellosis Bacillary dysentery

Vibrio cholerae Bacteria Cholera Extremely heavy diarrhea, dehydration
Yersinia enterolitica Bacteria Yersinosis Diarrhea
  
                           Pathogens of Table 1:  concern to water quality    (EPA 2007) 
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 appear in concentrations that can be correlated with the extent of contamination;  

 have a die-off rate that does not exceed that of the pathogen of concern. 

 
  Some of the most commonly used indicators include coliform bacteria (total, 

fecal and E. Coli) and fecal streptococci (US EPA 2001).  However, studies have proven 

that the use of fecal coliform as an indicator may be problematic because fecal coliform 

not only replicate in the tropical and subtropical environments, they have different rates 

of inactivation based on the geography and climate in a region (US EPA 2007).     

  Other suggestions include those by Davies-Colley et al (1994) who looked at 

using the enterococcus group because the die-off is slower than fecal coliform and Howel 

et al. (1995) proposed using the ratio between fecal coliform / fecal streptococci counts to 

determine the origin of bacterial pollution.  Neither of these suggestions have been fully 

accepted as alternatives because enterococci are not human specific and relationships 

between the fecal coliform and streptococci are difficult to generalize because different 

species of fecal streptococci have different die-off rates (Novotony and Olem 1994; 

APHA, 1995). 

  The Clean Water Act requires the implementation of ambient water quality 

criteria, established by US EPA in 1986, and monitoring indicators of fecal 

contamination to determine the level of pathogen contamination and assess risks to 

human health associated with exposure.  These water quality standards were based on 

epidemiological studies which examined the resulting concentration of fecal indicator 

bacteria in a receiving water body that was impacted by human sewage from point 

sources (US EPA 2007).  Since then, more recent research has shown this approach to be 

limited in that it failed to consider the impacts of geography, climate, ecology and other 
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contributing sources of fecal coliform on the overall pollutant concentration in the 

receiving water body (US EPA 2007).   Suggestions for improving the methodology 

include the use of a “tiered” approach, which will begin conservatively (using the 

traditional fecal indicators) and progress to more specific indicators that account for 

source specificity and contaminant loading (US EPA 2007).    

 The results of studies conducted on pathogen indicators, for example Cabelli at al 

(1982), Wade et al (2003) and Wiedenmann et al. (2006), have indicated that of the 

traditional pathogen indicators used, only Escherichia coli has been found to consistently 

relate human health outcomes to exposure for freshwater.  Escherichia coli, however, is 

inactivated far more readily that enterococci in saltwater and therefore not as well 

correlated (US EPA 2007).  To date, there is still no single approach that can accurately 

identify the sources of fecal pollution but the lists of alternative fecal indicators for the 

new-tiered approach include:  

(a)  Escherichia coli,  

(b) enterococci (E. faecium)  

(c) Clostridium perfringens (in tropical environments where Escherischia coli and     

enterococci are also naturally present in soil and sediments),  

(d) Bactericides of which some isolates may be definitely associated with human feces; 

and 

(e) Bacteriophages which are not only hardy, but can be detected using standardized 

internationally acceptable methods e.g. US EPA, European Council (EU) and the 

International Organization for Standardization (ISO)   (US EPA 2007).    
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Pathogen indicator bacteria TMDLs 

By law, each impaired water body documented in the Clean Water Act’s Section § 

303(d) list requires the development of a TMDL.  A glance at the US EPA’s National 

Section § 303(d) List confirms that the majority (14.2%) of reported water quality 

impairments are due to pathogens.  Based on this, thousands of the TMDLs currently 

legally required will have to be developed for pathogenic indicator bacteria.    

TMDL analysis generally requires determining the contaminant loading on an 

impaired water body.  Loading is typically determined either by load reduction equations 

where allocated loads are estimated from a flow duration curve (estimated from flow 

measurements) or by a detailed fate and contaminant transport model (usually HSPF or 

SWAT).  TMDLs are developed from a thorough assessment of the impairment of the 

listed water body, which involves assessment of the regulatory water quality criteria and 

measurements of contaminant concentrations.   

Regulatory water quality criteria for pathogenic indicator bacteria are generally 

expressed in statistical terms, usually as a geometric mean, a specified percentile and/or a 

maximum allowable value.  The criteria are based on US EPA recommendations that 

require regulatory bacteria water quality standards be comprised of both an individual 

maximum pollutant concentration (usually taken as the 95-percentile concentration value) 

and a maximum acceptable geometric mean concentration.  These measurements must be 

based on a minimum of five equally-spaced sampling results obtained during a 30 day 

monitoring period.   The individual sample maximum or percentile value must not exceed 

a specified upper confidence limit determined by the designated use and frequency of 

contact with the water body, which is not to exceed 95 % (US EPA, 1986).  In light of 
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this, the water quality criteria for pathogens in most states include a target geometric 

mean and specified percentile value (between 75 and 95 %) in a 30-day sampling period.   

 Current typical (percentile) regulatory water quality standards for pathogen 

impairment are that concentrations of fecal coliform bacteria not exceed 400/100 ml more 

than 10% over a given time (US EPA 2001).  However, if the binomial test for delisting 

impaired water bodies is used, a higher percentile may be more appropriate (Lin et al., 

2000; Smith et al., 1997; Shabman and Smith, 2003).    Regulatory guidelines in the state 

of Georgia, assert that if a water body exceeds a water quality threshold (200/100 ml in 

May through October or 1000/100 ml from November to April) more than 25% of the 

time then it is classified as impaired (Georgia Department of Natural Resources 2003a; 

2003b).  Whenever the contaminant concentrations in a water body violate any of the 

statistical water quality standards mentioned above, the water body is deemed to be 

impaired and a TMDL must be developed to remediate it.   

 

 

   



    
 

 
     

CHAPTER 3:  STUDY AREA 

 
3.0    Site Selection  
 

The area selected for this study is the Little River Experimental Watershed, 

located in the Suwannee River Basin in south-central Georgia.  This site was selected for 

several reasons, but specifically because (a) it has a lengthy and comprehensive 

hydrologic and water quality data record; and (b) as a research watershed it provides a 

microcosmic framework for evaluating and studying watershed processes at a level of 

detail that can facilitate the development and testing of methodologies (Dedrick, 2004; 

USDA-ARS, 2008). 

 

3.1   Little River Experimental Watershed 

The Little River Experimental Watershed (LREW) lies in the Tifton Upland sub-

province of the US Southern Coastal Plain physiographic region.  The center of 

watershed is located at approximately 31.61° N Latitude and 83.66° W Longitude, and it 

is one of twelve benchmark watersheds in the USDA’s Conservation Effects Assessment 

Project - Watershed Assessment Studies (Sullivan et al. 2007, USDA-ARS 2008).  The 

LREW is 334 km2 in area and straddles three counties in south-central Georgia: Tift, 

Turner and Worth.  It is instrumented to measure both rainfall and stream flow, and 

consists of a primary watershed and seven nested sub-watersheds ranging from 3 km2 to 

115 km2 in size (Bosch et al., 2007).    

The LREW is a heavily vegetated, slow moving stream system located in an area 

characterized by broad floodplains, river terraces and mild slopes.  The upland slopes are 
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predominantly between 2 % and 5%, though some may range from around 5% to 

as much as 15% in some of the valleys (Bosch et al., 2007).  The major soil series in the 

watershed is loamy sand with an underlying limestone layer (part of the geologic 

formation of the Floridan aquifer), and the watershed sits on a seasonally dependent 

shallow aquifer that drains into the stream network (USDA-ARS 2008; Bosch et al., 

2007).   

The stream slopes range from 0.1% to 0.4% (Bosch and Sheridan, 2007) and the 

depth of the surficial alluvium ranges from 2 m in the headwater streams to about 6 m at 

the lower end of the watershed (Shirmohammadi et al., 1986).  The hydrology is 

characterized by high infiltration rates (~5 cm/hr), low surface runoff and high 

groundwater inflow to streams, which is normal for regions in the southern Coastal 

plains.   
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Figure 2:  The Little River Experimental Watershed, South-Central Georgia 
 

3.2   Instrumentation 

  The LREW is outfitted with an extensive network of instruments that includes 

46  rain gages, 8 stream gages, and 3 ground-water stage sites (Sullivan 2006, Bosch and 

Sullivan 2007).  The rain gages are set up to continuously record data, and spaced 

roughly 2.4 km apart (upper portion) and 4.8 km apart (lower portion) throughout the 

watershed (Bosch et al., 2007).  Most of the gages consist of Texas Electronics® TE525 

tipping buckets with operational specifications of 0.254 mm (minimum measurement 
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precision), ± 0.5 mm/hr (accuracy), and a recording interval of 5 minutes.  Readings from 

the individual rain gages in the watershed are combined by the USDA-ARS South East 

Watershed Research Laboratory (SEWRL) and used to generate average daily quantities 

for each sub-basin.  An explanation of the weighting procedure is detailed in Bosch et al 

(2000).   

Stream flow is measured by horizontal weirs with V-notch center sections, which 

are installed at the pour points of each sub-basin (Bosch and Sheridan 2007).   Horizontal 

broad-crested weirs were used to measure flow from Catchments I, J, K, and a horizontal 

sharp-crested weir was used at Catchment O.  All weirs are rectangular with a 10:1 side 

slope V-notch center section in the weir cap.  The dimensions for each of the weirs used 

in this study are as follows: 

 
 

Catchment 
ID 

Weir Length 
(m) 

V-notch depth  
(cm) 

25-yr max flow 
rate  (m3/s) 

I 26.6 49.7 41.7 
J 16.8 47.2 20.8 
K 178 44.2 16.5 
O 14.8 62.5 14.5 

 
Table 2:    Weirs in selected sub-catchments in the LREW (Bosch and Sheridan, 2007)  
 
 

 Digital data loggers installed in the catchments also recorded surface water 

elevation at 5-minute intervals throughout the study period.  Water elevation 

measurements (to the nearest 2 mm) were taken, both upstream and downstream from the 

weir, by a pressure transducer.  Field measurements, in conjunction with laboratory 
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results and theoretical considerations, were used to develop rating curves for the flow 

measurements structures installed in the watershed (Bosch and Sheridan, 2007). 

 

3.3 Sampling 

Instruments installed at the flow sites in the LREW were set up to record flows 

and simultaneously collect composite samples for water quality analysis (Vellidis et al., 

1999).  In addition to the composite samples, a biweekly on-site analysis was also 

conducted in each sub-basin.  The on-site analysis consisted of collecting a grab sample 

for fecal coliform/fecal streptococci analysis, and measuring in-situ parameters, including 

stream depth, pH, water temperature and dissolved oxygen concentration.  The 

parameters were measured using a standard YSI 6820 Water Quality Multi-parameter 

Sonde probe (Vellidis et al., 1999) and the grab samples collected in 530 ml sterile plastic 

sampling bags, stored on ice, and analyzed within two hours of collection (APHA 1995). 

Grab samples were analyzed for fecal coliform using the EC Medium test, which 

utilizes a membrane filtration technique and mFC media to identify fecal coliform 

colonies (APHA, 1995).  According to guidelines published in the US EPA’s 

Microbiology Manual Part III (1978), when incubated at 44.5°C, 93 % of blue colonies 

produced on this medium are verifiable as fecal coliform.  A confirmatory test for fecal 

coliform was conducted on each sample in conjunction with the medium test.  Precision 

and accuracy were documented using sample duplicates, laboratory blanks, and National 

Institute of Standards and Technology (NIST) traceable reference standards (Vellidis et 

al., 1999).  None of the sample duplicates deviated by more than 25% from the calculated 
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mean, and over 75% deviated by 10% or less.  No correction factors were applied to the 

data.   

 

 
3.4  Land use  

   The principal land uses in the LREW are forest and agriculture, but they also 

include some wetlands and a small percentage of urban areas (see table 3 below).    

 
Land Use Percentage 

 
Forest 

 
44 

                    Agriculture       
                                 Cultivated 

Pasture 
 

 
25 
15 

   Wetlands 13 

Urban 3 

 
      Table 3:    Land use distribution in Little River Experimental Watershed in 1998 

 
 The forested lands are primarily comprised of both planted and naturally 

regenerated pine trees (Sullivan 2006).  The forested areas are largely very heavily 

populated with wildlife and some areas are commonly used as recreational hunting 

reserves (Bosch 2008).  The most common wildlife species is deer, but the area also has 

relatively high populations of wild turkeys, geese, raccoons, beavers, muskrats, river 

otters and migratory ducks (DNR 2006).  Most of the game animals inhabit the riparian 

areas along the stream banks increasing the potential for fecal matter to enter the stream 

during storm events.  In spite of this, waterfowl (primarily geese and ducks) are still 
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generally considered to potentially be the greatest contributors of fecal coliform to the 

surrounding water-bodies (DNR 2006).  Unfortunately, it was not possible to estimate 

their bacteria contribution to the study watershed because only population estimates for 

deer are currently available in the state of Georgia (DNR 2006, EPD 2006). 

 

Water 
Young Pine 
Agriculture 
Urban 
Wetland 
Forest

 

Figure 3:   Land Use Distribution in LREW 
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Row crops and pasture dominate the agricultural land-uses in the LREW.   

Roughly, two-thirds of the agricultural area is devoted to row crops (mostly peanuts and 

cotton) and the remainder to pasture (USDA-ARS 2008).  During the study period, there 

were approximately 7,700 head of beef cattle and 240 dairy cows in the watershed.  The 

watershed  also contains two broiler houses that grow approximately 440,000 chickens 

per year.  In addition, there were about 1500 pigs in the watershed at the beginning of the 

study period; however, this number continually dwindled and was down to around 500 by 

the middle of 1998.  The watershed also contains the University of Georgia’s Tifton 

Campus Animal Science Farm, a research dairy housing 200 milking cows.  

 

3.5 Sub-basins 

 The LREW (USGS HUC 03110204) is comprised of one primary and seven 

nested sub-basins.  Four of the sub-basins in the watershed were selected for use in this 

study: Catchment I (ID 6840), Catchment J (ID 4850), Catchment K (ID 4860), and 

Catchment O (ID 6860).  The drainage area of Catchment I is 50.0 km2 and it is centered 

at 31°40 29″ N Latitude and 83° 41′ 26″ W Longitude, southwest of the city of Ashburn, 

in Turner County, Georgia. Catchment J is located west of the city of Ashburn, in Turner 

County, Georgia.  The coordinates at its center point are 31°41 33″ N Latitude and 83° 

42′ 08″ W Longitude and is 22.1 km2 in area.  Catchment K is also located west of the 

city of Ashburn, in Turner County, Georgia.  It drains an area of  16.8 km2, and  the 

location of its center coordinates are 31°41 47″ N Latitude and 83° 41′ 51″ W Longitude.  

Catchment O is 15.9 km2 and is located northwest of the city of Tifton in Tift County, 

Georgia.  It is centered at 31°29 37″ N Latitude and 83° 34′ 03″ W Longitude. 
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                  Georgia 

 

 
Figure 4:  Sub-basins in the Little River Experimental Watershed (Bosch et al., 2007) 

 
 
3.6    Data 

The study period for this project was seven years, beginning in January 1996 and 

ending December 2002.  Data collected in the experimental watershed during the study 

period include daily flow, maximum and minimum instantaneous discharge, 

precipitation, in situ parameters (pH, dissolved oxygen, conductivity), turbidity, and 

water quality parameters including fecal coliform and fecal streptococci.  The 

hydrological constituents were collected daily and water-quality constituents roughly 
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every two weeks depending on daily average stream flows.  All of the streams in the 

study area are ephemeral and typically go dry (no flow) during the summer from around 

the middle of May until early to mid September.  In addition to this natural variability in 

stream flow, the study period includes a period of drought which began in 1998 and 

ended in 2000 (United States Geological Survey 2000).  This is reflected in the dataset by 

some extended periods with very low or no flow. 

Hourly rainfall for each catchment was calculated from the five-minute 

measurements at rain gages RG 34, RG 43, and RG 63 (see table 3).  Meteorological data 

(solar radiation, wind speed, cloud cover, dew point, air temperature, potential 

evaporation) were collected at MET station 747810 located at the Valdosta Regional 

Airport, in Valdosta, Georgia.  MET Station 747810 was selected because it was the 

closest station to the study area with a complete meteorological data record.  Although it 

is located about 70 km from the LREW, this distance should not significantly affect the     

model results since meteorological parameters do not vary appreciably over such 

relatively small length scales, and overall are not as important as rainfall in simulating 

runoff in a catchment (Chin et al., 2009). 
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Catchment 

ID 
Area  
(km2) 

Rain 
Gage No. 

Center  of  Catchment 
(Lat/Long) 

Location  of rain 
gage  (Lat/Long) 

     
I 50.0 34 31° 40’ 29” (N) 31° 41’ 30” (N) 
   83° 41’ 26” (W) 83° 41’ 34” (W) 
     
J 22.1 43 31° 41’ 33” (N) 31° 43’ 33” (N) 
   83° 42’ 08” (W) 83° 42’ 59” (W) 
     

K 16.8 43 31° 41’ 47” (N) 31° 43’ 33” (N) 
   83° 41’ 51” (W) 83° 42’ 59” (W) 
     

O 15.9 63 31° 29’ 37” (N) 31° 31’ 17” (N) 
   83° 34’ 03” (W) 83° 32’ 53” (W) 

 
Table 4:  Areas, coordinates and rain gages for Catchments I, J, K and O.

   



     
 

 
 

    CHAPTER 4:  THEORY 

4.0 Theoretical Overview 

The primary aim of this study was to utilize a multi-model approach to (a) predict 

the concentration of pathogen indicator bacteria in a receiving water body; (b) quantify 

the dominant bacteria fate and transport processes within the watershed; (c) determine the 

process equations that best represent the watershed; and (d) quantify the reduction in 

predictive uncertainty obtained by implementing a multi-model approach to water quality 

analysis.   The study utilized two watershed-scale fate and transport codes: Hydrological 

Simulation Program-Fortran (Bicknell et al. 2001) and the Soil and Water Assessment 

Tool (Neitsch et al. 2005) in the analysis.  These codes were selected because they are not 

only US-EPA approved, but they are also the most widely used codes in TMDL analysis.  

The individual models developed form these codes were used to predict the concentration 

of pathogen indicator bacteria (fecal coliform) in the watershed and their predictions were 

combined to reduce model uncertainty and improve the overall accuracy of the  

predictions.  

The first step of the analysis involved the calibration of the individual models.  

Each model was calibrated first for hydrology and then for water quality.  Both phases of 

the calibration process involved the use of a three-step approach that systematically 

adjusted the model’s process parameters to replicate the measured stream flow values for 

the hydrology and concentration values for the water quality.   The models were 

considered to be calibrated when the model predictions were in reasonable agreement 

with the measured data evaluated by the Nash-Sutcliffe Efficiency coefficient (NSE).  

 34 
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The NSE was selected because it is extensively used in hydrological studies and 

recommended for use in model evaluation by the American Society of Civil Engineers 

(ASCE) (1993). 

 The next step in the analysis involved combining the model predictions.  Three 

different methods were used to combine the model predictions: (1) the weighted average 

method (WAM),   (2) the Nash-Sutcliffe Efficiency Maximization method (NSE_max)  

and (3) using an artificial neural network (ANN).  Both the WAM and the NSE_max 

method are linear combination methods; specifically, they utilize linear regression 

functional relationships to relate individual model output to an overall combined 

estimate.  However, since many of relationships within watersheds are not linear, an 

ANN approach was included in the analysis to take advantage of its ability to exploit 

complicated non-linear relationships between the input variables. 

 

4.1 Watershed-Scale Codes 

EPA BASINS® 

Better Assessment Science Integrating Point and Non-point Sources (BASINS®) 

Version 4.0, the most recent release of EPA’s BASINS® software system was used to 

facilitate the implementation of HSPF.  BASINS® is a multipurpose, environmental 

analytical system designed to perform watershed and water quality analyses.  Originally 

released in 1996, BASINS® has since undergone revisions in 1998, 2002 and 2004, with 

the most substantive in April of 2007, when the software was reconstructed to include an 

open source GIS software architecture (US EPA 2007).  The open source GIS not only 
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allows the model to run without the use of proprietary software, it utilizes standard GIS 

files including shapefiles, dbf and GeoTiff files.    

BASINS© version 4.0 has all the functionality of the previous version (3.1) 

including a data extractor, projector, project builder, GIS interface and tools, a series of 

models and a custom database (available for download through a web data extraction 

tool) (US EPA 2007).  However, while like the previous version (BASINS 3.1), the 

program contains linkages to many of the models including the Hydrological Simulation 

Program-Fortran (HSPF) (also used in this analysis); it does not link to either the 

Automated Geospatial Watershed Assessment Tool (AGWA) or Soil and Water 

Assessment Tool (SWAT) models. BASINS© version 4 was used to identify and extract 

the watershed characteristics for the four sub-watersheds used in this study.  These 

characteristics included the drainage area, stream network, the length of the watershed, 

the slope, surface roughness, soil texture and structure, land use/land cover and soil 

moisture. 

SWAT was run using the ArcSWAT® graphical user interface.  The interface runs 

on the ESRI® ArcGIS platform which provides the GIS functionality required to extract 

the watershed characteristics, delineate the watershed and define the stream network to 

prepare the data to build the SWAT model.   

 

Selection of models   

 The Hydrological Simulation Program -Fortran (HSPF) and the Soil and Water 

Assessment Tool (SWAT) are two watershed-scale loading and transport models 

recommended by the US EPA for TMDL research.  In fact, until its most recent version 
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(version 4), both models were integrated into the framework of US EPA’s BASINS® 

system.  Current trends suggest that these models will more than likely continue to be 

extensively used in the future as analytical tools for the development and management of 

water resources (Van Liew et al., 2003).    

Amongst the currently available models, HSPF has been identified as one of most 

complete models for predicting runoff and non-point source constituent loads in 

watersheds (Fontaine and Jacomoni, 1997; Whittemore and Beebe, 2000; Laroche et al., 

1997; Van Liew et al., 2003).  Comparatively speaking, SWAT, a relatively newer 

model, offers the user more flexibility than HSPF in the configuration of a watershed 

during analysis (Srinivasan and Arnold, 1994).  In light of the aforementioned and their 

widespread use in TMDL analysis, both HSPF and SWAT were used in this study.  

 

4.1.1   Hydrological Simulation Program Fortran 

The Hydrological Simulation Program-Fortran (HSPF) codeis a watershed-scale 

physically based, lumped-parameter code that originated from Crawford and Linsley’s 

Stanford Watershed Model (1966).  HSPF continuously simulates hydrological and water 

quality processes on pervious and impervious surfaces, both in streams and in well-mixed 

impoundments (Bricknell et al. 2001).  The model simulates hydrological processes using 

a water balance approach that incorporates a series of flows and storages in the upper, 

lower and groundwater zones.  It initially divides the watershed into land and 

reservoirs/reaches, before subdividing the land segment into pervious and impervious 
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areas.  Land segmentation allows the model to effectively simulate fate and transport 

processes unique to pervious and impervious areas (Hydrocomp Inc., 2008).   

Hydrologic processes including infiltration, overland flow, interception and 

evapotranspiration are modeled using empirical equations, and the volume and rate of 

outflow from the reaches are simulated using the kinematic wave approximation 

(Bricknell et al. 2001).  The model includes a water quality module, which uses a 

separate subroutine to simulate fate and transport processes both on land and in water.  

The constituent modeled in this study, fecal coliform, is simulated on land as a 

completely dissolved constituent using buildup/wash off relationships, and in water using 

first order decay equations (Im et al. 2004).   

 

4.1.2    Soil and Water Assessment Tool 

The Soil and Water Assessment Tool (SWAT) is a watershed-scale code 

developed by the USDA-ARS to simulate the relationship between land management 

practices, water quality, sediment, and agricultural yields in large complex watersheds 

over long periods (Neitsch et al. 2005).  SWAT is a physically based, distributed 

parameter, continuous time code that utilizes a water-balance approach to simulate 

numerous different physical processes.  The hydrology is simulated by dividing the 

hydrologic cycle into two separate phases: (i) a land phase that controls the quantity of 

water and contaminant loads (nutrients, sediments, pesticides etc) to the main channel 

and a (ii) water/routing phase that controls the movement of water and contaminants 

through the watershed channel network to outlets (Neitsch et al 2005).   

 In SWAT, the hydrology is modeled using the following equation:  
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where SWt  is the final soil water content, SW0  the initial soil water content on day i, t  the 

time, Rday the amount of precipitation on day i, Ea the amount of precipitation, Qsurf 

surface runoff, wseep amount of water entering the vadose zone from the soil profile on day 

i and Qgw the amount of return flow on day i.  

Bacteria are assumed to either interact with surface runoff (present on foliage or 

in the top 10 mm of soil), or become incorporated deeper into the soil (transport or 

tillage) and die-off.  Bacteria on foliage and in top soil are simulated using a wash-off 

and a die-off/re-growth process.  Wash-off is modeled as a function of the characteristics 

of the bacteria, timing and intensity of the rainfall and plant morphology. Die-off/re-

growth is modeled using Chick’s Law to simulate the quantity of bacteria loss through 

die-off and added through re-growth in the system. 

 

 
4.1.3 Comparison of the codes 

Though both HSPF and SWAT are physically based watershed-scale codes, they 

differ significantly in three fundamental respects: (1) the spatial disaggregation of the 

watershed, (2) the simulation time step, and (3)  the process equations used to simulate 

the both hydrological and the fate and transport processes associated with bacteria. 
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 Spatial disaggregation 

 The HSPF and SWAT algorithms both divide the watershed into sub-units during 

an analysis. However, while HSPF divides the watershed based on the type of land use 

and previous and impervious areas based on their hydrology, SWAT divides the 

watershed into a number of sub-catchments, before sub-dividing each sub-catchment into 

a number of smaller hydrologic response units (HRU) based on uniform land use and soil 

type (Neitsch et al 2000).  The pervious and impervious areas and hydrologic response 

units form the unit of analysis for HSPF and SWAT respectively.  

 

 Temporal  aggregation  

Another fundamental—but no less important—difference between HSPF and 

SWAT is the simulation time-step.  Of the two models, SWAT is more constrained in 

that it operates using a daily time-step.  HSPF, conversely, can run simulations at time-

steps ranging from a minute to a day, though one-hour intervals are the most common 

analytical unit utilized.  In this study, HSPF was used with the time step of one hour and 

SWAT used with the time step of one-day.   

 

4.2   Process Equations 

 The section that follows provides a comparative analysis of the process equations 

used by HSPF and SWAT in the hydrological and water quality analysis routines in each 

model.  
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4.2.1   Hydrology 

Hydrologic processes in HSPF are modeled by a water balance approach that 

divides the watershed into land and streams, the land into pervious and impervious areas, 

and finally the pervious land area into a series of interconnected water storage zones.  

Flux is simulated between the zones (upper, lower and groundwater) and the flows 

(surface, interflow and groundwater) from the land area to a stream reach using equations 

containing parameters determined either by measurement or calibration..  Overland flow 

is modeled as turbulent flow and simulated using the Chezy-Manning equation and an 

empirical relationship that relates outflow depth to depression storage (Bicknell et al., 

2001).  The rate and volume of the outflow in each stream segment calculated using the 

kinematic wave approximation and a storage-routing technique is used to move water 

from one reach to the other during stream processes.   

The model calculates actual evapotranspiration (ET) as a function the potential 

evapotranspiration (PET) and the amount of moisture available for ET on the land and in 

the soil.  In addition, HSPF uses several lumped parameters to account for the effect of 

vegetation and tile flow in the watershed (Singh et al., 2008).  For example, one lumped 

parameter not only controls ET from the lower storage zone, it also accounts for the 

effects of the vegetation type, density, developmental stage and root growth of the plants 

in the watershed.  Water removal due to tiling is controlled by the lumped parameters that 

also control water storage in the upper and lower storage zones  (Singh et al., 2008). 

SWAT also uses a water balance approach to simulate hydrologic processes but 

this approach divides the watershed into separate storage zones representing the canopy, 
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soil and deep and shallow aquifers.  SWAT employs a soil-water balance method that 

uses measured precipitation values to simulate a daily balance of the soil water content, 

surface runoff, evapotranspiration, percolation and return flow (Benaman et al 2005).  

The model simulates ground-water flow by routing a component of the shallow ground 

water to the stream reach and estimates surface water runoff using the SCS curve number 

approach (Arnold and Allen 1996).  Interflow is simulated usng a kinematic storage 

model and the water is routed to the stream reach to simulate important in-stream 

hydrological and sediment transport mechanisms (Benaman et al 2005). 

 Other processes modeled in the soil layer include infiltration, evaporation, plant 

uptake, lateral flow and percolation (Singh et al. 2008). Sediment erosion is simulated 

using the modified universal soil loss equation (Williams and Berndt 1977) and actual 

evapotranspiration (ET) estimated as the sum of the evaporation and transpiration in the 

system.  Evaporation is estimated using an exponential function that relates the soil depth 

and the available water and the transpiration is estimated as a linear function of the 

potential ET, leaf area index, rooting depth and soil water content (Singh et al. 2008).   

Unlike the lumped parameter method used by HSPF, SWAT models tile flow as a 

function of the tile depth, the time required to drain the soil to field capacity and the lag 

time. 

 

4.2.2   Water Quality: Bacteria 

 Modeling the fate and transport of bacteria in a watershed involves simulating 

several complex natural processes including the release of bacteria into the environment, 
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how they are transported over land (with surface runoff and sediment) and in sub-surface 

flow, and their die-off and re-growth rate.   Both watershed-scale codes used in this study 

contain modules that utilize built-in hydrologic codes for simulating the transport of 

bacteria, though the methods used by the two models are substantially different.  The 

section that follows contains a review and comparison of the major differences between 

the bacteria fate and transport process equations in the two codes. 

 

4.2.2.1   Loading  

 The bacteria loading rates to the watershed can typically be represented either as a 

constant or varying loading rate; however, while these rates can be varied daily in 

SWAT, they are only allowed to vary monthly in HSPF.  Additionally, the two codes use 

different methods to specify loading rates to the watershed: as a direct loading rate (cfu 

) in HSPF and as the product of the loading rate of the manure (kg ) and 

its associated bacteria content (cfu ) in SWAT. 

11 −− hha 11 −− dha

1−g

 Bacteria deposited in a watershed is modeled as becoming dissolved in the 

available water in the upper soil layer and become entrained in the surface runoff.  The 

quantity of bacteria (in solution) released into the surface runoff from the upper soil layer 

at each time step is estimated differently by each of the codes.  HSPF uses an exponential 

relationship (equation 5) and SWAT a linear relationship (equation 6) to model the 

release of bacteria to the environment (Benham et al., 2006).  The relationships can be 

expressed as follows: 
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where  ∆Mr is the amount of bacteria (in solution) released from the soil solution into the 

surface water, Ms the quantity of bacteria in the soil storage layer at the beginning of the 

time interval,  ∆Q is the runoff within the time interval and k1 is the release rate constant 

(SWAT)  and k2 the release rate constant (HSPF).   

Unlike HSPF, SWAT also simulates wash-off of bacteria from foliage, which is 

modeled as a function of the characteristics of the bacteria, the timing and intensity of the 

rainfall and the morphology of the plant.  The wash-off of bacteria from foliage is 

estimated using the equation below: 

 

        (7) folwshwsh bactfrbact ×=

 
where the quantity of bacteria washed off the plant (bactwsh) is equal to the product of the 

wash-off fraction for the bacteria (frwsh) and the quantity of bacteria originally on the 

foliage (bactfol) (Neitsch et al. 2005).  A wash-off factor of 1 was used in this analysis 

  

4.2.2.2   Partitioning  

HSPF models deposited bacteria either as (a) fully dissolved in the upper layer of 

the soil water facilitating entrainment in surface runoff  (b) associated (by a potency 

factor) with sediments in the overland flow (Chin 2006), or (c) suspended in the 

groundwater (Benham et al., 2006).   In SWAT, only a portion of bacteria is modeled in 
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)

solution, and the model uses a partitioning coefficient and the linear isotherm given 

below (equation 8) to divide the bacteria load into a soluble/suspended phase and a 

sorbed phase:    

 

                 (8) ckS p=

 

where S is the density of the sorbed bacteria (cfu ),  kp the partitioning coefficient 

(mL ) and c the concentration of the bacteria (in solution) in the top 10 mm of soil  

(cfu ).   Another important difference in the simulation routines is that while both 

models simulate the direct entrainment of a portion of the bacteria solution in the upper 

soil water layer in the surface runoff, SWAT also allows a portion of the sorbed bacteria 

to be transported with the sediment entrained in the surface runoff.    

1−g

1−g

1−mL

 

 4.2.2.3    Fate processes 

 HSPF simulates bacteria die-off on land by limiting the quantity of bacteria that 

accumulates on the land’s surface.  SWAT uses different first-order decay rates to 

simulate the die-off of bacteria on foliage, dissolved in the soil solution and adsorbed to 

soil particles (Mancini, 1978).  Die-off in water, in both HSPF and SWAT is simulated 

using Chick’s Law (first order decay) as follows: 

 

                (9) ( tkNN dt −= exp0
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where Nt is the number of bacteria (cfu) at time t,  N0 the initial number of bacteria (cfu) 

and Kd the decay constant that varies with temperature.    

Though in nature several factors contribute to die-off rates, temperature is the 

only variable that can be varied to adjust die-off rates in either code (Benham et al., 

2006).  If required, the die-off rate can be adjusted using the following equation: 

 
20

20
−= Tθμμ      (10) 

 

where μ20 is the die-off rate at 20°C, θ is the temperature correction parameter for the     

first-order decay and T is the temperature.   

 

4.2.2.4    Transport processes 

 Bacteria transport to receiving water bodies is simulated as dissolved constituents 

in surface runoff.  In both model formulations, a series of overland and groundwater 

process equations account for the dispersion of bacteria in the watershed.  The mass flux 

is modeled as a purely advective process using the following equation: 

 
           (11) vCq =

 
where q is the mass flux per unit area (cfu cm-2 h-1), v is the velocity of the flow and C is 

the concentration of the bacteria (Benham et al., 2006).  Besides mass flux, HSPF allows 

bacteria to be transported suspended in the groundwater by allowing the user to specify 

either a constant or a monthly variation of the concentration of bacteria in both the 
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interflow and the shallow ground water flow to the stream reach.  SWAT, conversely, 

assumes complete die-off of all bacteria beyond the top 10 mm of soil (Neitsch et al. 

2005).  This reduces the bacteria concentrations in subsurface flows to zero, in spite of 

abundant evidence suggesting that bacteria can not only exist in the subsurface but can  

move very far along preferential pathways in saturated conditions (Benham et al., 2006; 

Ferguson et al., 2003; Tyrrell and Quinton, 2003; Jamieson et al., 2002).    

 

4.3    Other processes 

 In addition to the difference discussed above, SWAT allows for the tracking of  

two different types of bacteria (persistent and less persistent) simultaneously.  This 

feature facilitates the simulation of two different types of bacteria with different growth 

and die-off rates concurrently.  It also allows the accounting of the presence and long-

term impacts of persistent and often serious pathogen strains in conjunction with less 

hardy indicator bacteria (Neitsch et al.  2005).   HSPF models a single type of bacteria 

only.   

  

  



       

 

    CHAPTER 5: METHODS 

 
5.1   Data Preparation 

 The four catchments (I, J, K, and O) used in this study are nested sub-watersheds 

located in the LREW (USGS HUC 3110204 (see Figure 4) Time series of meteorological 

data collected at the Valdosta Regional Airport in Georgia were prepared and used in this 

analysis.  Precipitation files were prepared from the 5-minute rain gage data collected in 

the study catchments.  The average daily flow measurements were obtained from the 

USDA Southeast Watershed Research Laboratory (SWERL) database 

(ftp://www.tiftonars.org/) and observed fecal coliform measurements for each of the 

catchments were obtained from the National Environmentally Sound Production 

Agricultural Laboratory (NESPAL) at the University of Georgia, Tifton Campus, GA.  

The fecal coliform data consisted of forty-three instantaneous data points for Catchment 

I, fifty-five data points for Catchment J, fifty-three for Catchment K, and forty-eight for 

Catchment O. 

  US EPA’s BASINS system was used to prepare data for the HSPF model.  The 

watersheds were delineated and stream system defined based on the digital elevation 

model (DEM) and national hydrography dataset (NHD) which were included in BASINS 

system.  After delineation of the catchments and definition of the stream network and 

catchment outlets in BASINS,   HSPF was used to combine the data and meteorological 

information and build a model simulating the hydrology and water quality in each 

catchment.  Based on the stream network definition, the channel geometry characteristics 

were estimated and related the stage and runoff in the relevant stream segment (US EPA 
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BASINS Technical Note 6).  The SWAT model was built using the ArcSWAT version 

2.0 interface which runs on the ArcGIS® platform.  ArcGIS provides the GIS 

functionality required by the program to build models of the catchments.  Digital 

elevation models were used to delineate the watersheds and define the stream network.  

The coverages were then overlain with soil and land use map layers and used to create 

HRUs the analytical unit used by SWAT.   

The same data set created for each catchment was used to build both models with 

the exception of the digital elevation models (DEM).  The DEM packaged with the 

BASINS system and used with HSPF was not readily transferable to ArcSWAT and was 

therefore replaced by a DEM obtained from the USGS (http://seamless.usgs.gov) and 

imported into the ArcSWAT model.  The same precipitation and meteorological data sets 

were used to build both the HSPF and SWAT models and both models were calibrated 

using the same flow and measured fecal coliform concentration values.   

 

5.2 Single-model calibration  

The models were calibrated for both the hydrological and water quality 

components using a three-step approach introduced by Chin (2009).  This calibration 

technique utilizes a response-surface approach to (i) identify the sensitive model 

parameters (ii) estimate the maximum conditional likelihood functions, and (iii) verify 

that the model errors are normally-distributed, random and homoscedastic (i.e. its 

standard deviation and variance are constant).   The method, which uses a Box-Cox 

transformation to normalize the model error distribution, is explained in Chin (2009) and 

summarized below.    
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The calibration of hydrologic and water quality watershed models is based on a 

comparative analysis between model predications and observed values and Bayesian 

methods are among the more common methods used to estimate the probability 

distributions (Chin 2009).   From a Bayesian perspective, it can be shown that the 

probability distribution of a predictand, y, can be estimated using the equation below: 

 
 

         (12)  ( ) ( ) ( ) θθθ dpxypxyp 321 ,|| ∫Θ=

 
 

where p1(y|x) is the conditional probability density of the predictand, y, for the given 

input (covariate) data set;  p2(y|θ,x) the conditional probability density of y for a given 

parameter set θ ;  p3(θ) the probability density of the parameter set; and Θ the support 

space of θ or set of all possible parameters (Chin 2009).   Implementation of this 

equation, however, can be , where computationally infeasible, so it is usually 

approximated using the generalized likelihood uncertainty estimation (GLUE) approach 

(Beven and Binley 1999, Chin 2009).    

Despite frequent use of the GLUE algorithm to approximate equation 12, there 

are several disadvantages associated with its use to estimate probability distributions.  For 

example, it (a) calculates the model-predicted ( ) and not the actual ( ) 

value of the predictand where is defined as model-predicted value of y (Chin 2006) and 

(b) is typically used with “less formal” likelihood functions that are generally inconsistent 

with the probability distribution of the model errors (Mantovan and Todini 2006).   In 

light of this, the probability distribution is more frequently approximated using the 

alternative equation listed below: 

( xyp |ˆ1 ) ( )xyp |1

ŷ
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( ) ( xypxyp ,|| *
2 θ=′ )                                                 (13) 

 
 

where θ* is the maximum-likelihood value of the parameter vector θ.   This equation 

(equation 13) is particularly well suited for predicting y* (the expected value of y) when 

using a calibrated deterministic model with maximum likelihood parameters θ*, and the 

probability density of y is derived directly from the probability density of the model 

errors relative to y* (Chin 2009).   

To reduce uncertainty in the probability density of y obtained from the probability 

density of the model errors relative to the predicted value of y, the parameter likelihood 

function used to calibrate the model must be consistent with the probability density of the 

model errors (Chin 2009).    This requires that the model errors be random and have a 

quantifiable, stationary probability distribution.  Since this is highly improbable under 

normal circumstances, a transformation method is usually applied to force the model 

errors to become stationary and normally distributed.  The response-surface technique 

(Chin 2009) used in this analysis employs the Box and Cox transformation method 

(1964) which can be represented as follows: 
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where yi is the untransformed variable (measured value),  zi the transformed variable, i 

the data index and  λ the transformation parameter.    

For instance, if the model errors are assumed to be normally distributed in a 

transformed domain for a deterministic model gi(θ), where θ is the parameter vector, then 

the likelihood function for the parameter vector of a given set of observations y, used to 

predict yi (the measured concentration) can be expressed as follows (Chin 2009): 
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where σ is the standard deviation of the model errors in the transformed space,  is the 

Box-Cox transformed output of the deterministic model and is the Jacobian of the 

transformation.   As constituted, equation 15 above incorporates the assumption that the 

model errors are random, homoscedastic and normally distributed in its determination of 

the likelihood value of the parameter vector θ.   

( )λ
ig

1−λ
iy

 Evaluating equation 15 can be extremely computationally intensive particularly 

when model parameters are correlated which is quite common when modeling natural 

phenomena such as watershed processes.  To address this problem, sensitivity analyses 

are typically conducted to reduce the parameter set prior to estimating the likelihood 

parameter values.  Sensitivity analyses identify the most influential process parameters in 

model predictions.  The identified parameters are then used to reduce the significant 

computational requirements by confining the likelihood functions to the set of sensitive 

parameters.  Though relatively effective, sensitivity analytic methods are limited by the 
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fact that they tend to utilize nominal range sensitivity in an effort to reduce the 

computational burden and to ignore any interactions between and nonlinearity in the 

parameters (Chin 2009, Lenhart et al 2002).   

 One suggested method for overcoming this shortcoming is the application a 

response-surface iterative scheme as proposed by Chin (2009) which identifies the 

sensitive parameters, their maximum likelihood functions and values and verifies that the 

model errors are normal, random and homoscedastic.  The response-surface iterative 

scheme is performed sequentially, where all but one of the parameter values (θi), are held 

constant and its maximum conditional likelihood found iteratively.  This parameter is 

then fixed at its maximum conditional likelihood value, and the process repeated for each 

parameter until the parameter set converges to produce the maximum conditional 

likelihood parameter set.   Specifically, if parameter likelihood functions at n discrete 

values for a model with p parameters, θ1……..θp, are to be identified for a defined 

parameter space, the procedure can be carried out using the following steps: 

Step 1:  Initialize the parameter vector as , where   

represents the 1st iteration on the first parameter  

( ) ( ) ( )[ T

p
00

21
1,1 ,,, θθθθ K= ] ( )1,1θ

1θ  and   indicates that   is held at 

its initial zero-iteration value.  The conditional likelihood function for  is calculated as 

follows: 

( )0
iθ iθ
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The maximum likelihood value of  1θ   determined from the conditional likelihood 

function is denoted by  . ( ),*1
1θ

 

Step 2:    Update the parameter vector to   and calculate the 

conditional likelihood function for 

( ) ( ) ( ) ( )[ T

p
00

32
,*1

1
2,1 ,,,, θθθθθ K= ]

2θ  as follows: 
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The maximum likelihood value of  1θ  determined from the conditional likelihood 

function is denoted by . ( ),*1
2θ

 
Step 3:  Repeat step 2 for all the sensitive parameters to complete the first iteration.  

Iteration 1 ends with taking the parameter vector as         and 

calculating the conditional likelihood function for  
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Step 4:    Start the 2nd iteration by taking the parameter vector as   

 where   indicates that is held constant at its 1st iteration 

maximum-likelihood value.  The conditional likelihood function for  

( ) ( ) ( )[ ] T

p
,*1,*1

21
2,1 ,,, θθθθ K= ( ),*1θ iθ

1θ   is then 

calculated as follows: 
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The maximum likelihood value of  1θ  determined from the conditional likelihood 

function is denoted by . ( ),*2
1θ

 

Step 5:  Repeat step 4 for each parameter to complete the 2nd iteration.   Iteration 2 ends 

with taking the parameter vector as         and calculating the 

conditional likelihood function for  
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Step 6:     Repeat steps 4  and 5 until the conditional likelihood function converges to its 

asymptote. The jth iteration ends with the parameter vector given as  

 and the conditional likelihood function for  ( ) ( ) ( )[ T

p
j

p
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1
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−= K ] pθ  is given by:  
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The final iteration cycle provides the maximal conditional likelihood function of all the 

parameters, where the maximal conditional likelihood function for each parameter is 
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defined as the likelihood function trained on the maximum likelihood values of all the 

other parameters (Chin 2009).  As such, equation 21 will provide the conditional 

maximum likelihood for a model with p parameters, θ1……..θp. 

 Comparatively, the approach described above is more efficient at estimating the 

conditional maximum likelihood parameter values than the commonly used Monte Carlo 

methods (Stow et al 2007).  The primary reason for this is that the method proposed by 

Chin (2009) uses the maximal conditional likelihood functions rather than the entire 

likelihood functions to identify the sensitivity and maximum likelihood values of the 

model parameters.  The reduction in the parameter set significantly reduces the 

computational burden required to investigate all possible parameter combinations needed 

to define the response surface.  This method was utilized to calibrate both the hydrology 

and water quality components of the analysis and is summarized in figure 5 below. 
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Maximize parameter 
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function 

No Change 
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Maximum-
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Figure 5:  Flow chart of the calibration methodology 
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 Each sub-basin was modeled using HSPF and SWAT and calibrated using the 

method described above.  The calibrations were done for each of the four catchments (I, 

J, K and O) first for hydrological and subsequently for water quality parameters.  Along 

with the maximum conditional likelihood values, quantitative comparisons between the 

predicted and observed daily flows (hydrology) and the measured and predicted 

concentrations for fecal coliform (water quality) were computed using the Nash-Sutcliffe 

Efficiency coefficient described by the equation below (Nash and Sutcliff, 1970): 
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2
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where yi is the observed discharge and mi the modeled discharge at time step i.  Model 

performance ratings based on the distribution of NSE values are as follows (Moriasi et al. 

2007): 

     0.75 < NSE < 1.00 Very Good 
     0.65 < NSE < 0.75 Good 
     0.50 < NSE < 0.65 Satisfactory 
  NSE ≤ 0.50 Unsatisfactory 
      

 
  

5.2.1 Hydrology 

The parameters identified as having a significant influence on hydrological 

processes in a watershed typically include the rate at which precipitation infiltrates into 

the soil, the water balance in upper and lower storage zones and the recession rates.  The 

primary parameters that control these processes are listed and described below: 
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(1) HSPF   

 
Infiltration rate (INFILT) 

Infiltration is determined by changes in the moisture in the soil profile and can vary both 

spatially and temporally in the watershed.  In HSPF, the parameter (INFILT) is used to 

account for this process.  INFILT determines the allocation of water in the soil profile 

and controls the division of the available moisture from precipitation into surface runoff 

or more specifically - the quantity of water available for storage in a system.  As a rule, 

the lower the values of INFILT – the greater the overland flow.  INFILT is a function of 

soil characteristics in the area (for example, hydraulic conductivity and moisture content), 

closely related to SCS hydrologic soil groups and modeled using the Green-Ampt 

infiltration equation (1911). 

 

Lower-zone nominal  storage (LZSN) 

The lower zone nominal storage capacity is a function of the precipitation patterns and 

the soil characteristics in a watershed.  The lower zone nominal storage parameter 

(LZSN) is used to account for storage and based on the sum of the direct infiltration, 

percolation, lateral inflow and irrigation application that enters the storage zone.  High 

LZSN values increase the quantity of water stored in the lower zone, which in turn, 

increases the potential for evapotranspiration.  Low LZSN values increase the flow rates 

in the reach.  
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Ratio of soil infiltration (INFILD) 

This parameter describes the ratio of the maximum infiltration and mean infiltration 

capacity over the land segment. 

 

Fraction of groundwater lost to deep aquifer (DEEPFR) 

The fraction of infiltrating water that is lost to the deep aquifer is represented by the 

parameter DEEPFR.  Percolation and direct infiltration in the watershed that does not 

directly enter the lower storage zone will either flow into the active ground water or be 

lost to the deep aquifers (inactive groundwater).  The parameter DEEPFR determines the 

distribution of this inflow to the active or inactive groundwater storage zones.  The 

portion of the inflow not designated as inactive ground water will be routed  and 

combined with the lateral and irrigation flow (if available) to make up the total inflow to 

active groundwater storage.  DEEPFR also accounts for other losses that may not be 

measured by installed flow gages and reflected in the observed values used in the 

calibration of the model. 

 

Active groundwater recession coefficient (AGWRC) 

The active ground water recession coefficient is the ratio of the current groundwater 

discharge to that of the preceding 24 hours.  The recession rate for a watershed is usually 

a complex function of several watershed conditions including climate, topography, soil 

and land-uses and it is typically estimated from the observed daily flow data using 

hydrograph separation techniques.  

 

  



     60
 
 

Interflow recession coefficient (IRC) 

The interflow recession coefficient is the ratio of the present rate of interflow to the rate 

of the preceding 24 hours.   It is used to determine the quantity and update the storage of 

the interflow.  Interflow can significantly influence storm hydrographs particularly if 

there are shallow, less permeable soil layers present that may impede vertical percolation 

through the soil.   Flow added to the interflow from surface flows or upslope external 

lateral flows are either retained in storage or routed as outflow from land segments.  The 

IRC is assumed to have a linear relationship to storage and estimated as a function of a 

recession parameter, inflow, and storage. 

 

 

Other potentially influential parameters include: 

 

Exponent in the infiltration equation (INFEXP) 

The exponent in the infiltration equation determines how much a deviation from the 

nominal lower zone storage affects the infiltration rate in the watershed.  

 

Upper-zone nominal storage (UZSN) 

The upper zone nominal storage is a function of the land surface characteristics, the 

topography and the quantity of lower zone nominal storage (LZSN) in a watershed.  

Because it is related to land surface characteristics, changes in land use including plant 

growth over a season and other agriculture processes can affect its value.  As a general 

rule, the higher the value of UZSN in a area, the more water will be retained in the upper 
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zone and be available for evapotranspiration, which in turn decreases the quantity 

available for surface and  direct overland flow. 

 

Interflow inflow (INTFW) 
 
The interflow inflow coefficient determines the quantity of water entering the ground 

from surface detention storage and converted to interflow.   Because interflow can have a 

significant influence on storm hydrographs, changes to the interflow inflow coefficient 

can influence the shape of the hydrograph by delaying or accelerating the timing of the 

runoff.  Increasing the INTFW affects the quantity of interflow, which decreases the 

direct overland flow and reduces the peak flows while maintaining the same runoff 

volume.  As such, it can be used to raise or lower peaks to improve the agreement 

between the simulated and observed hydrographs. 

 

Ground water recession flow (KVARY) 

The groundwater recession flow parameter is used to describe the non-linear recession 

rate.  This parameter is important when observed groundwater recession demonstrates 

seasonal variability such as faster recession during wet periods.   KVARY controls the 

actions of groundwater recession flow, enabling it to be non-exponential in its decay with 

time. 

 

Hydraulic routing weighting factor (KS) 

The hydraulic weighting factor is used to estimate of the stream reach outflow.  The 

outflow given at a time step is computed as the sum of the product of the weighting factor 
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at the beginning of the time-step and the product of the complement of the weighting 

factor at the end of the time-step.  

 
 
(2) SWAT  

 
Runoff curve number (CN2) 

The CN2 is the initial runoff curve number for moisture condition II or average moisture 

conditions in the watershed.   SWAT utilizes the USDA Soil Conservation Service runoff 

curve number method (SCS 1972) to estimate runoff under varying land uses and soil 

types. The curve number equation is as follows: 
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and Qsurf  the accumulated runoff, S the retention parameter, Rday the daily precipitation in 

the watershed and CN the SCS curve number.   The curve number is a function of the soil 

permeability, the land uses/land cover and antecedent soil moisture condition in the 

watershed.  Typical curve number II values (SCS Engineering Division 1986) are 

appropriate for 5% slopes and can be adjusted to reflect changes in land covers conditions 

including but not limited to plants,  tillage and harvest/kill operations.   
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Groundwater revap  (GW_REVAP) 

The groundwater revap coefficient is used to control the amount of water that moves 

from the shallow aquifer to the root or overlying unsaturated zone.  During dry periods, 

water from the capillary fringes that separate the saturated and unsaturated zone will 

evaporate and diffuse upwards into the overlying dry layer.  Water removed from the 

saturated zone by capillary action is replaced by water from the underlying aquifer.  

GW_REVAP is a function of the overlying land use and only allowed to occur if the 

shallow aquifer exceeds a certain threshold.  GW_REVAP is estimated as follows: 

 

wrevap    =     0     if    aqsh   ≤  aqshthr, rvp 

wrevap    =    wrevap, mx – aqshthr, rvp  if    aqshthr,rvp  <  aqsh  < (aqshthr,rvp + 

wrevap,mx) 

wrevap = wrevap, mx    if   aqsh   ≥  (aqshthr,rvp + wrevap,mx) 

 

where       wrevap, mx =   βrev  ×   Eo 

 
and aqshthr,rvp is threshold level in the shallow aquifer for revap to occur, βrev  the revap 

coefficient,   Eo  the potential evapotranspiration for that day,  aqsh  the amount of water 

stored in the shallow aquifer at the beginning of the day and wrevap   the actual amount of 

water moving into the soil zone in response to the water deficiency. 

 

Threshold aquifer water level depth for revap (REVAPMN) 

In SWAT, the term revap is used to refer to the movement of water from the underlying 

shallow aquifer to the unsaturated layer above.  Revap is a function of the water demand 
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for evaporation.  It is closely related to the land use in an area and can be significant in 

watersheds with deep-root plants or saturated zones close to the surface.  The threshold 

depth of water in the shallow aquifer for revap to occur is modeled by the parameter 

REVAPMN. 

 
 
Threshold water level in shallow aquifer for base flow (GWQMN) 

The threshold depth of water in the shallow aquifer required for return flow to occur to 

the stream (GWQMN) controls the amount of percolation to the deep aquifer and 

regulates the quantity of groundwater lost to the system.  Groundwater flow to the stream 

reach is restricted if the depth of water in the shallow aquifer is less than the GQWMN 

threshold. 

 

Aquifer percolation coefficient (RCHRG_DP) 

The aquifer percolation coefficient determines the fraction of percolation from the root 

zone that recharges the deep aquifer.  SWAT allows a portion of the total daily recharge 

to be routed to the deep aquifer.  The quantity of water routed to the deep aquifer is 

estimated as the product of the aquifer percolation coefficient and the total amount of 

recharge entering both the shallow and deep aquifers. 

 

Other potentially influential parameters include: 

 
The base flow recession constant (ALPHA_BF) 

The base flow recession constant or constant of proportionality is a direct index of the 

response in groundwater flow to changes in recharge (Smedema and Rycroft 1983).  
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Though this parameter can be calculated, it is best estimated by analyzing stream flows 

during periods of no recharge. 

  

The ground water delay (GW_DELAY)  

Water infiltrating or percolating through a soil profile will flow through the vadose zone 

and recharge the underlying shallow and deep aquifers.  The lag between the time the 

water leaves the soil profile and when it enter the aquifers is measured by the ground 

water delay parameter in SWAT.  Groundwater delay time is a function of the depth of 

the water table and the hydraulic properties of the geologic formation in the vadose and 

groundwater zones.  The delay time cannot be measured directly and is usually estimated 

by simulating aquifer recharge while varying the delay time and comparing the 

simulations with observed values. 

 

The effective hydraulic conductivity of the main channel (CH_K2) 

The effective hydraulic conductivity of the main channel to used to relate the height of 

the groundwater level to the groundwater flow in the watershed.  

 
 
Manning’s n of the main channel (CH_N2) 

Manning’s coefficient n is based on land uses and to calculate the velocity and rate of 

flow in the stream reach at a given time step.  Manning’s equation for velocity and flow 

are given below: 
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where  q is the rate of flow in the channel, v is the velocity,   A is the cross-sectional area 

of flow, R  is the hydraulic radius for a given depth and  s is the slope and n the 

Manning’s n for the channel. 

 

 

5.2.2  Water Quality 

The most influential parameters controlling the environmental fate and transport 

of bacteria in the watershed were identified as follows: 

(1)  HSPF   

HSPF models bacteria as a water quality constituent and simulates the constituent as: 

• a basic accumulation and depletion rate together with depletion with wash off, 

where the constituent outflow from the surface is a function of the water flow 

over the surface and the quantity of the constituent in storage; and/or 

• associated with the inflow in the area.   

Based on this, the most influential parameters associated with the bacteria fate and 

transport processes are: 

 
The rate of terrestrial accumulation of bacteria (ACQOP) 

The rate of terrestrial accumulation of bacteria determines the rate at which bacteria 

accumulate on the surface that can be washed off. 
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The storage limit of bacteria on the surface of the land (SQOLIM) 

The storage limit of bacteria on the surface of the land indicates the maximum quantity of 

bacteria (highest concentration) that can be stored on the surface. 

  
 
 The rate of surface runoff that removes 90% of stored bacteria per hour (WSQOP) 

The rate of surface runoff that removes 90% of stored bacteria per hour determines the 

rate of the surface runoff require to remove 90% of the stored bacteria from the available 

surface. 

 

 The interflow bacteria concentration (IOQC) 

 The interflow bacteria concentration determines the concentration of bacteria available 

in the interflow. 

 

The point source mass flux (PSRC) 

The point source mass flux determines the concentration per unit time from available 

point sources –or sources not associated with a land area in the watershed—that 

contribute to the stream reach. 

 

First-order decay rate (FSTDEC) 

The first-order decay rate, based on Chick’s Law, determines the survival/die off rate of 

the bacteria in the system. 
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(2)  SWAT  

Bacteria application rate (CFRT_KG) 

Land application of animal waste is one of the most common methods of disposing of 

animal manure.  In SWAT, this process is accounted for by the bacteria application rate 

which indicates the amount of fertilizer or manure is applied to the watershed.   

 

Bacteria soil partitioning coefficient (BACTKDQ)  

The bacteria soil-partitioning coefficient is the ratio of the concentration of bacteria in the 

surface soil solution (top 10 mm of soil) to the concentration of bacteria in the surface 

runoff.   Model assumptions in the simulation of the fate and transport processes of 

bacteria include the assumption that because of the low motility of bacteria, surface 

runoff will only interact with the top 10 mm of soil. 

 

Bacteria percolation partitioning coefficient (BACTMX) 

The bacteria percolation coefficient is the ratio of the concentration of bacteria in the 

surface soil solution (top 10 mm of soil) to the concentration of bacteria in the percolate. 

  

The die-off factor for bacteria in water (WDPRCH) 

The die off factor (survival rate) for bacteria in moving water (streams) per day at 20° C. 

  

The die-off factor for bacteria in soil (WDPQ)  

The die-off factor (survival rate) for bacteria in soil solution per day at 20° C. 
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The point source flux (BCNST) 

The point source flux determines the concentration per unit time from available point 

sources –or sources not associated with a land area in the watershed—that contribute to 

the stream reach. 

 

5.3 Multi-model formulation  

 The idea of combining the estimates from different model codes to improve 

forecasting was first introduced by Bates and Granger in 1969.  Since then, an impressive 

body of work using forecasts combination has emerged in diverse fields ranging from 

economics and management science to statistics and meteorology (Granger, 2001; 

Clemens, 1989; Thompson, 1976; Newbold and Granger, 1975; Dickinson, 1973).   In 

1997, the method of combining forecasts was applied to the field of hydrology to 

improve rainfall-runoff models estimates (Kim et al., 2006; Shamseldin et al., 1997).  The 

results of the study provided support for the notion that the method had the potential to 

improve hydrological forecasting estimates.  Yet, in spite of the veritable abundance of 

studies conducted over the last forty years, this method has never been applied to water 

quality modeling or used to predict contaminant levels at a watershed scale.  In this 

regard, this study is a significant improvement over existing watershed analytic methods, 

and more specifically, current TMDL analyses. 

 There are several reasons why a multi-model approach holds great promise for 

water quality/water resources engineering.  First, the combination of model estimates 

facilitates the reduction in predictive uncertainty by including exogenous information 

from contributing models to improve overall predictions (Kim et al., 2006).   Second, it 

  



     70
 
 

allows the exploitation of the strengths of several models simultaneously.   Models are 

essentially abstractions or simplifications of  complex natural phenomena and quite often 

use different algorithms to model the same process; accordingly, models may 

complement each other and in tandem better approximate true processes.  Third, models 

usually include assumptions that not only vary from model to model but are not always 

met with data and other input information (Shamseldin et al 1997).  This too, has the 

potential to substantially reduce overall model uncertainty.     

In this study, model forecast results were combined using three different methods: 

(a) the weighted average method (WAM), (b) the Nash-Sutcliff Efficiency Maximization 

method (NSE-max) and (c) the artificial neural network method (ANN).   The first two 

methods (WAM and NSE-max) are linear combination methods.  However, although 

linear combination methods are relatively robust, they tend to produce unstable weights 

in the presence of multi-collinearity (Winkler, 1989).  Unfortunately, an artifact of the 

majority of hydrological models is that the degree of multi-collinearity in a model is 

directly proportional to increases in its forecasting ability (Shamseldin et al., 1997).  To 

account for this limitation in the linear combination models, a third method (ANN) which 

utilizes a nonlinear combination approach was included in the analysis. 

 

5.3.1   Weighted Average Method (WAM) 

 The weighted average method (WAM) is the first of three methods used to 

combine model results in this study.  WAM has been identified as an efficient method to 

combine the results of individual models particularly when the results of one model tend 

to be consistently more accurate than the other models used (Armstrong 1989).  The 
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estimated outputs from the individual models are combined using the following equation 

(Granger and Ramanathan, 1984; Shamseldin et. al., 1997): 

 

                     (27) iij
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where Qi is the observed discharge in the ith time step, aj the weight assigned to the jth 

model,  the estimated combined discharge and ei the combination error term 

(Shamseldin et. al., 1997).   Using matrix algebra notation, this equation is expressed as 

follows: 

ijQ ,
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where the number of observations is denoted by k, and:  

the output vector          Q =  (Q1 , Q2, Q3, …….., Qk-1, Qk)T   
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If equation 28 is conceptualized as a multiple linear regression model, then the weight 

vector (A) can be estimated using the ordinary least squares solution to the equation 

below (Draper and Smith, 1981): 

 

                    (29) ( ) QPPPA TT 1ˆ −=

 

To reduce bias, the weights in a WAM analysis are usually constrained to sum to unity 

(Dickinson, 1975).  This is done to ensure that the mean output error of all the input 

models is zero, since if all the input models are unbiased, the combined output will also 

be unbiased (Granger and Ramanathan, 1984).  The models are constrained using the 

following equation:      
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and the original equation (equation 29) adjusted to reflect the constraints by estimating 

the weight vector using the method of constrained least squares as follows (Breun, 1985): 

 

    ( ) ( λbQPPPA TT
cls 2

11ˆ += − )     (31) 

 
where  is the weight vector estimated using the method of constrained least squares, b  

is the unit vector having the same dimension as the parameter vector A and λ is the 

clsÂ
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Lagrangian multiplier calculated as follows and the variables defined as above 

(Shamseldin et. al., 1997): 

 

      (32) ( )( ) ( )( QPPPbbPPb TTTTT 111 12 −−− −=λ )
 

 

 

5.3.2   Nash-Sutcliff Efficiency Maximization Method 

 Chin et al. (2009) introduced the Nash-Sutcliff Efficiency maximization method 

(NSE-max) as an alternative method to combine prediction estimates in a multi-model 

analytic approach.  The NSE-max equation is derived from the Nash-Sutcliffe Efficiency 

coefficient (Nash and Sutcliffe, 1970) which is extensively used in hydrologic studies to 

examine performance and assess the goodness of fit of a model.  The Nash-Sutcliff 

Efficiency coefficient (NSE) is calculated as defined in equation 10: 
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If the predictions from two models are considered and the weights are constrained to sum 

to unity, then a weighted model averaged prediction can be estimated using the following 

equation (Chin et al. 2009): 
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         (33) 
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where Pi is the prediction at time step i;  I1 and I2 the inputs, where I1i  the first model 

estimate and I2i the second model estimate at time step i; and a a weighting factor 

between zero and one. 

 If the equation (equation 33) is then substituted into original NSE equation, the 

Nash-Sutcliffe efficiency coefficient can now be expressed as: 

 

      
[ ]

( )

2

1

2

1
21 )1(

1
∑

∑

=

=

−

−−−
−= N

i
i

N

i
iii

MM

IaaIM
NSE            (34) 

 

where  Mi is the measurement at time step i  and M the average of the N measurements.  

The value of the weighting factor a that maximizes the NSE can then be calculated from 

the derivative of (equation 18) and shown to be: 
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Taking the second derivative of the equation results in the equation below: 
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which confirms that the weighting factor obtained using equation 35 will maximize the 

value of the NSE, and the resulting NSE will be greater than the original NSE values 

derived from either of the original individual models. 

 

 
5.3.3   The Artificial Neural Network Method 

 The Artificial Neural Network (ANN) method is the third method used to 

combine model estimates in this study.  Formally defined as a “complex structure used to 

solve complex data-analysis problems” (Priddy and Keller, 2005), neural networks are 

based on the simulation of the physiological properties of a biological nervous system.  

The notion of an artificial neural network as a computational model was first introduced 

by McCulloch and Pitts in 1943 (McCulloch and Pitts, 1943).  The model drew 

significant scientific interest and most of its theoretical foundations were laid over the 

next two decades or so, including most notably, the development of the perceptron by 

Rosenblatt in 1958 (Rosenblatt, 1958).   

However, mathematical proof of the perceptron’s limitations, such as its inability 

to perform complex classifications (Minksy and Papert, 1969), led to waning interest in 

the model and it was abandoned by all but a handful or researchers, during the latter part 

of the 1960’s and most of the 1970’s (Priddy and Keller, 2005).  During this time of 

limited research interest, the back-propagation technique was developed by Werbos 
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(1974), which when coupled with Hopfield’s (1982) energy minimizing processes serve 

not only to revitalize but to revolutionize neural network research sparking mass interest 

and widespread use.   

ANNs are presently widely used in several areas ranging from informatics 

(email/spam filtering, virus scanning, speech and optical character recognition) and 

business applications (financial/sales forecasting, credit card fraud detection, etc) to 

weather forecasting (meteorology) and engineering.  Engineering applications employing 

this approach include but are not limited to the detection of explosives at airports, 

automatic target recognition, robotics and other artificial intelligence applications.  

     In 1993, Shi and Liu introduced the concept of using a neural network to combine 

model forecasts.  The results of their study, which combined the results of three 

individual forecasting models, suggested that the combined model estimates were a 

significant improvement (based on the mean squared error) over the results obtained from 

the individual models (Shi and Liu, 1993).  Since then, numerous studies using the neural 

network method to combine forecasts have surfaced (Donaldson and Kamstra, 1997; 

Fiordaliso, 1998; He and Xu, 2005), but none to date have applied the technique to 

watershed-scale water quality models.  Therefore, this study constitutes the first attempt 

to use this method to improve contaminant concentration estimates in water quality 

analysis.   

 

Neural  Networks 

 From a physiological standpoint, a neural network is an interconnected group of 

highly specialized cells called neurons.  In vertebrates, these interconnected neurons 
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cluster into large groups ultimately forming a control unit referred to as a brain.  Within 

the brain, the neurons receive inputs from and send outputs to other neurons (Sheir et al 

2009).  Each neuron is comprised of three major parts: a cell body or soma that processes 

information, connecting fiber dendrites that receive electrochemical stimulation from 

other neurons and axons that communicate with neighboring neurons (Sheir et al 2009).  

The axons connect to the dendrite fibers through an electrochemical junction referred to 

as the synapse (Priddy and Keller, 2005).  In highly developed animals, the brain has the 

ability to learn or adapt to a changing environment.   

  

     

 

   

  

Figure 6:  The structure of a neuron (Turchin, 1977).   
 
 

Artificial neural networks attempt to mimic biological neural networks by using 

mathematical abstractions to simulate the interactions between the neurons in the brain.  

In the brain, neurons transmit signals to other neurons by sending action potentials down 

the axon.  When a signal is received, depending on its relevance, the synapse will either 
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increase or decrease the electrical potential.  If the signal strength meets the neuron’s 

required threshold, the neuron will fire (Sheir et al.  2009) and the action potential firing 

rate determined by the relevance or strength of the stimulus.   

In an ANN, this relationship is modeled by the use of a transfer function that 

mimics the firing rate of the action potential transmitted by a neuron.  Inputs to the 

model—like inputs to the brain— depend on the relevance of the signal (i.e. whether or 

not the neuron should fire) represented in an ANN by the assignment of weights to the 

inputs (Priddy and Keller 2005).  A transfer function is then used to describe the behavior 

of the output neuron.  Neurons, as a whole, are conceptually small “computing engines” 

that accept and process inputs and transmit outputs (Priddy and Keller 2005). 

ANNs consist of a number of neurons or nodes, linked together by connection 

pathways with associated weights.  A neuron typically can receive many inputs, but 

usually transmits only one output (Wnek and Boelin 2008).  The neuron accepts and 

accumulates all inputs (using a summation function), transforms them to an output (using 

a transfer function) then transmits the output to neighboring neurons via a number of 

connection pathways (Priddy and Keller 2005).  Each neuron transmits the full output 

value to each of the neighboring neurons.   

Weighted estimates (x1/w1, x1/w2) are inputted into the model and summed (∑) as 

follows: 

 
     k

k
k xwh ,∑=      (37) 

 

where h is the output to a neuron in the hidden layer, k the number of neurons, w the 

weight and x the input from each of the other neurons. 

  



     79
 
 

 

W2

 ∑               F(.)  Output 
    (z)  

   x1 

W2

   x2 

 

Figure 7:  The structure of an artificial neural network (adapted from Priddy and Keller, 

2005) 

 
 
An appropriate transfer function (F(.)) is  then used to produce an output (z) given by:    

 

⎟
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⎞
⎜
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−

N

i
oii wywfz

1
                (38) 

                                                           

where z is the neuron output, yi the input vector , wi the weight matrix, N the total number 

of inputs or neurons in preceding layer, wo the neuron threshold or baseline value 

independent of the input,  and f  a non-linear function.  The weights of the connection 

pathways, or weight matrix, are then estimated by calibrating or training to the model to 

adapt to its environment (Shamseldin et al., 1997). 
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Multi-layer feedforward networks 

 There are several variations of neural networks in existence today (Lippman, 

1987) and one of the most commonly used network structures is the multi-layer 

feedforward network.  The multi-layer feedforward network also referred to as a multi-

layer perceptron is a universal approximator generally used to classify non-linear data 

models (Khan et al., 2007; Nielson, 1991; Shamseldin et al., 1997).  The feedforward 

model consists of three layers of neurons: 

 an inner layer  that distributes inputs to the hidden layer 

  hidden layer(s) that transforms the input values into a vector (numerical),  and  

 an outer layer that transforms the hidden values into a forecast 

  Though relatively simple in structure, a feedforward network is best described as an all-

purpose model.  In fact, its structure is so robust that a network that with one hidden layer 

can describe any continuous function and one containing two hidden layers any function 

(Hartman et. al., 1990).  Based on this, the multi-layer feedforward network was selected 

for this analysis.   

 

Transfer Functions 

After selecting a model structure, the next and final step in constructing a neural 

network model is the selection of an appropriate transfer function.   Transfer functions 

are comprised of an activation function that uses outputs to determine the total signal a 

neuron receives and an output function that determines the scalar output (Wnek and 

Bowlin 2008).   Transfer functions add both non-linearity and stability to the structure of 
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an artificial neural network (Liptak 2006).  Of the several functions available, the sigmoid 

or logistic function was selected for use in this analysis.  The sigmoid function is one of 

the most commonly used functions in neural network modeling because it has the 

mathematical properties (such as monotonicity, continuity and differentiability) that are 

essential to enable networks with gradient descent to be correctly trained (Priddy and 

Keller, 2005).  In this study, the following sigmoid function (F (.))  was  applied to 

calculate the output to each neuron z:  
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N
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oii wywfz
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      (39) 

 
yielding an overall output equal to: 

 

    ( )∑+
=

+−
i ii wywe

output
01

1     (40) 

 
 
where i is the coefficient on inputs to the neuron, xi is the input, wi the weighting factor 

attached to the inputs and w0 the bias to the neuron (Priddy and Keller, 2005).  

 The network is then calibrated or trained which can be likened to teaching the 

brain (network of neurons) to adapt.  Training, a fundamentally an unconstrained 

optimization problem, was conducted in this analysis using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm.  The BFGS algorithm is based on the Hessian 

matrix update of Newton’s method of optimization and is one of the most commonly 

used algorithms to solve unconstrained linear optimization problems in neural networks 
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(Wnek and Bowlin 2008).  The architecture of the multi-layer feedforward network used 

in this study is given below: 
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Figure 8:  Architecture of the multi-model feedforward neural network (adapted from 

Priddy and Kelly, 2005) 

 

 

  



       

 

CHAPTER 6: RESULTS 

 
6.1 Single model approach 

 All four sub-basins were analyzed and models developed for the seven-year study 

period (January 1996 thru December 2002).  The model results were evaluated the Nash-

Sutcliffe Efficiency coefficient (NSE), to compare the results simulated by the models 

with the  observed values from the sub-basins.  The models were calibrated using the 

three-step approach described in the previous chapter and the maximum likelihood 

parameter sets obtained during the calibration process are listed below.  

 

HSPF 

 The maximum likelihood parameter sets obtained for the hydrological and water 

quality components for each catchment are presented in Tables 5 - 8 as follows: 
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Table 5  HSPF: Maximum Likelihood Parameters - Catchment I 

Parameters Value Units Description 

Hydrology    
AGWRC 0.98 d-1 Basic groundwater recession rate 
DEEPFR 0.10 -- Fraction of groundwater lost to the system 
INFEXP 2.00 -- Exponent in the infiltration equation 
INFILD 2.00 --  Ratio between maximum and mean infiltration 

INFILT 0.51 cm  h-1 Infiltration capacity coefficient 
INTFW 15.00 -- Interflow inflow parameter 

IRC 0.35 d-1 Interflow recession parameter 
KS 0.50 -- Weighting factor for hydraulic routing 

KVARY 1.27 cm-1 Groundwater recession flow parameter 
LZSN 6.35 cm Lower zone nominal storage 
UZSN 3.43 cm Upper zone nominal storage 
    
    

Water Quality   

ACQOP(A) 0.18 × 108 FC  ha-1 d-1 FC accumulation rate (agriculture) 

ACQOP(F) 2.60 × 108 FC  ha-1 d-1 FC accumulation rate (forest) 

FSTDEC 4.75 d-1 First -order decay rate of FC in stream 

IOQC 3.57 × 106 cfu/100 mL Interflow FC concentration 

PSRC 2.81 × 108 FC   d-1 Mass flux from direct source 

SQOLIM 2.84 × 1011 FC  ha-1  Maximum surface storage of FC 

WSQOP 0.51 cm  h-1 Rate of surface runoff that removes 90% of FC in 1 hour 
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Table 6   HSPF: Maximum Likelihood Parameters - Catchment J 
    
Parameters Value Units Description 

Hydrology    

AGWRC 0.96 d-1 Basic groundwater recession rate 
DEEPFR 0.00 – Fraction of groundwater lost to the system 
INFEXP 2.00 – Exponent in the infiltration equation 
INFILD 2.00 – Ratio between maximum and mean infiltration 

INFILT 0.64 cm  h-1 Infiltration capacity index 
INTFW 31.00 – Interflow inflow parameter 

IRC 0.30 d-1 Interflow recession parameter 
KS 0.44 – Weighting factor for hydraulic routing 

KVARY 2.03 cm-1 Groundwater recession flow parameter 
LZSN 5.33 cm Lower zone nominal storage 
UZSN 7.01 cm Upper zone nominal storage 
    

Water Quality   

ACQOP(A) 6.68 × 107 FC  ha-1 d-1 FC accumulation rate (agriculture) 

ACQOP(F) 2.14 × 107 FC  ha-1 d-1 FC accumulation rate (forest) 

FSTDEC 4.23 d-1 First -order decay rate of FC in stream 

IOQC 0.68  × 106 cfu/100 mL Interflow FC concentration 

PSRC 1.07 × 108 FC   d-1 Mass flux from direct source 

SQOLIM 1.83 × 1011 FC  ha-1  Maximum surface storage of FC 

WSQOP 0.54 cm  h-1 Rate of surface runoff that removes 90% of FC in 1 hour 
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Table  7    HSPF: Maximum Likelihood Parameters - Catchment K 
 

Parameters Value Units Description 

Hydrology    
AGWRC 0.95 d-1 Basic groundwater recession rate 
DEEPFR 0.00 – Fraction of groundwater lost to the system 
INFEXP 2.00 – Exponent in the infiltration equation 
INFILD 2.00 –  Ratio between maximum and mean infiltration 

INFILT 0.20 cm  h-1 Infiltration capacity index 
INTFW 31.50 – Interflow inflow parameter 

IRC 0.45 d-1 Interflow recession parameter 
KS 0.50 – Weighting factor for hydraulic routing 

KVARY 0.25 cm-1 Groundwater recession flow parameter 
LZSN 6.60 cm Lower zone nominal storage 
UZSN 6.88 cm Upper zone nominal storage 
    

Water Quality   

ACQOP(A) 1.95 × 108 FC  ha-1 d-1 FC accumulation rate (agriculture) 

ACQOP(F) 6.08 × 108 FC ha-1/d-1 FC accumulation rate (forest) 

FSTDEC 5.25 
  

d-1 First -order decay rate of FC in stream 

IOQC 0.98 × 106 cfu/100mL Interflow FC concentration 

PSRC 1.45 × 109 FC   d-1 Mass flux from direct source 

SQOLIM 0.11 × 1011 FC  ha-1  Maximum surface storage of FC 

WSQOP 1.08 cm  h-1 Rate of surface runoff that removes 90% of FC in 1 hour 
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Table 8    HSPF: Maximum Likelihood Parameters - Catchment O 

    
Parameters Value Units Description 

Hydrology    

AGWRC 0.96 d-1 Basic groundwater recession rate 
DEEPFR 0.35 – Fraction of groundwater lost to the system 
INFEXP 2.00 – Exponent in the infiltration equation 
INFILD 2.00 –  Ratio between maximum and mean infiltration 

INFILT 0.25 cm  h-1 Infiltration capacity index 
INTFW 15.00 – Interflow inflow parameter 

IRC 0.45 d-1 Interflow recession parameter 
KS 0.50 – Weighting factor for hydraulic routing 

KVARY 0.00 cm-1 Groundwater recession flow parameter 
LZSN 6.35 cm Lower zone nominal storage 
UZSN 2.87 cm Upper zone nominal storage 
    

Water Quality   

ACQOP(A) 2.95 × 108 FC  ha-1 d-1 FC accumulation rate (agriculture) 

ACQOP(F) 3.50 × 107 FC  ha-1 d-1 FC accumulation rate (forest) 

FSTDEC 0.33 d-1 First -order decay rate of FC in stream 

IOQC 2.97 × 104 cfu/100 mL Interflow FC concentration 

PSRC 1.61 × 107 FC   d-1 Mass flux from direct source 

SQOLIM 0.20 × 1011 FC  ha-1  Maximum surface storage of FC 

WSQOP 7.87 cm  h-1 Rate of surface runoff that removes 90% of FC in 1 hour 
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SWAT                                                                                                                                                             

The maximum likelihood parameter sets obtained for hydrology and water quality 

for each catchment are presented in Tables 9 -12 as follows: 

 

Table  9      SWAT: Maximum Likelihood Parameters - Catchment I 
    

Parameters Value Units Description 

Hydrology    

ALPHA_BF 0.980 d-1 Base flow recession constant 

CH_K2 168.0 mm  h-1 Effective hydraulic conductivity 
CH_N 0.032 – Manning's n in main channel 
CN2 (Ag) 35.0 – Curve number for moisture condition II 
CN2 (Fr) 51.0 – Curve number for moisture condition II 
GW_DELAY 2.0 d Ground water delay time 

GW_REVAP 0.039 d-1 Ground water "revap" coefficient 
GWQMN 0.00 mm Threshold depth in shallow aquifer for return flow 
RCHRG_DP 0.00  Deep aquifer percolation factor 
REVAPMN 2.336 mm Depth in shallow aquifer for percolation to deep aquifer 
    

Water Quality   

BACTDQ 0.075 m3 Mg-1 Bacteria soil partitioning coefficient 

BACTMX 20.0 10 m3 Mg-1 Bacteria percolation coefficient 

BCNST 3.80 × 107 cfu/100mL Point-source concentration 

CFRT_Kg(A)  50.0 kg  ha-1  d-1 Application rate at 105  cfu/g (agriculture) 

CFRT_Kg(F)  80.0 kg  ha-1  d-1 Application rate at 105  cfu/g (forest) 

WDPQ 0.503 d-1 bacteria die-off coefficient in soils 

WDPRCH 2.650 d-1 Bacteria die-off coefficient in streams 
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Table 10      SWAT: Maximum Likelihood Parameters - Catchment J 
    
Parameters Value Units Description 

Hydrology    

ALPHA_BF 0.900 d-1 Base flow recession constant 

CH_K2 128.0 mm  h-1 Effective hydraulic conductivity 
CH_N 0.020 – Manning's n in main channel 
CN2 (Ag) 43.0 – Curve number for moisture condition II 
CN2 (Fr) 58.0 –  Curve number for moisture condition II 
GW_DELAY 1.0 d Ground water delay time 

GW_REVAP 0.120 d-1 Ground water "revap" coefficient 
GWQMN 120.00 mm Threshold depth in shallow aquifer for return flow 
RCHRG_DP 0.00 – Deep aquifer percolation factor 
REVAPMN 1.450 mm Depth in shallow aquifer for percolation to deep aquifer 
    

Water Quality   

BACTDQ 0.430 m3 Mg-1 Bacteria soil partitioning coefficient 

BACTMX 20.0 10 m3 Mg-1 Bacteria percolation coefficient 

BCNST 3.25 × 108 cfu/100mL Point-source concentration 

CFRT_Kg(A)  6.0 kg  ha-1  d-1 Application rate at 105  cfu/g (agriculture) 

CFRT_Kg(F)  15.0 kg  ha-1  d-1 Application rate at 105  cfu/g (forest) 

WDPQ 0.070 d-1 bacteria die-off coefficient in soils 

WDPRCH 4.000 d-1 Bacteria die-off coefficient in streams 
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Table  11     SWAT: Maximum Likelihood Parameters - Catchment K 
    

Parameters Value Units Description 
 
Hydrology    

ALPHA_BF 0.73 d-1 Base flow recession constant 

CH_K2 176.00 mm  h-1 Effective hydraulic conductivity 

CH_N 0.71 – Manning's n in main channel 
CN2 (Ag) 38.00 – Curve number for moisture condition II 
CN2 (Fr) 50.00 – Curve number for moisture condition II 
GW_DELAY 1.00 d Ground water delay time 
GW_REVAP 0.21 d-1 Ground water "revap" coefficient 

GWQMN 140.00 mm Threshold depth in shallow aquifer for return flow 
RCHRG_DP 0.00 – Deep aquifer percolation factor 
REVAPMN 7.94 mm Depth in shallow aquifer for percolation to deep aquifer 
    
Water 
Quality   

 

BACTDQ 0.31 m3 Mg-1 Bacteria soil partitioning coefficient 

BCNST 1.25 × 108 cfu/100mL Point-source concentration 

CFRT_Kg(A)  12.00 kg  ha-1  d-1 Application rate at 105  cfu/g (agriculture) 

CFRT_Kg(F)   28.00 kg  ha-1  d-1 Application rate at 105  cfu/g (forest) 

WDPQ 0.10 d-1 bacteria die-off coefficient in soils 

WDPRCH 1.94 d-1 Bacteria die-off coefficient in streams 
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Table  12     SWAT: Maximum Likelihood Parameters - Catchment O 
    
Parameters Value Units Description 

Hydrology    

ALPHA_BF 0.900 d-1 Base flow recession constant 

CH_K2 146.0 mm  h-1 Effective hydraulic conductivity 
CH_N 0.03 – Manning's n in main channel 
CN2 (Ag) 39.0 –  Curve number for moisture condition II 
CN2 (Fr) 69.0 –  Curve number for moisture condition II 
GW_DELAY 8.4 d Ground water delay time 

GW_REVAP 0.50 d-1 Ground water "revap" coefficient 
GWQMN 0.00 mm Threshold depth in shallow aquifer for return flow 
RCHRG_DP 0.31 – Deep aquifer percolation factor 
REVAPMN 0.63 mm Depth in shallow aquifer for percolation to deep aquifer 
    

Water Quality   

BACTDQ 0.080 m3 Mg-1 Bacteria soil partitioning coefficient 

BACTMX 2.70 10 m3 Mg-1 Bacteria percolation coefficient 

BCNST 9.90 × 107 cfu/100mL Point-source concentration 

CFRT_Kg (A)  2.00 kg  ha-1  d-1 Application rate at 105  cfu/g (agriculture) 

CFRT_Kg (F)  6.00 kg  ha-1  d-1 Application rate at 105  cfu/g (forest) 

WDPQ 0.08 d-1 bacteria die-off coefficient in soils 

WDPRCH 3.50 d-1 Bacteria die-off coefficient in streams 
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6.1.1 Hydrology 

The maximum-likelihood parameter sets pertaining to the dominant hydrological 

process for HSPF and SWAT (section 6.1) were used to generate flow predictions for 

each of the catchments (I, J, K and O) in the study area.  Model predictions were 

compared to observed flow for the seven-year calibration period using the Nash-Sutcliffe 

Efficiency (NSE) coefficient.  The NSE values for the HSPF models indicated very good 

agreement (above 0.8) between the model predictions and observed monthly flows and 

good (0.63) to very good agreement (0.88) for daily flows in all four catchments.  

Comparison of the observed flows with flows simulated by SWAT also indicated very 

good correlation with observed monthly flows (all above 0.8) but only satisfactory (0.56) 

to good (0.73) values for the daily flows.   

 

Table 13   HSPF: Single Model Performance (Hydrology) 
 

 

Catchment I J K O 

NSE  (daily .71 .70 .88 .63 

NSE (monthly) .82 .88 .90 .87 

                            
 
 

  Table 14    SWAT: Single Model Performance (Hydrology) 
 

Catchment I J K O 

NSE  (daily) .56 .67 .73 .61 

NSE (monthly) .86 .84 .88 .87 
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A comparative analysis of the model results indicates that both models provided 

very good estimates of monthly flow and reasonable estimates of the daily flow in all 

four study catchments in the watershed.   Quantitative comparison of the daily flow 

indicated fair to good agreement between the simulations and measured values as 

evidenced by NSE values ranging between 0.56 and 0.88.  As has been observed and 

noted in previous studies conducted using HSPF and SWAT (Chin et al., 2009), model  

predictions of daily flow generated by HSPF were in better accord with observed daily 

values (higher NSE values) than the predictions generated by SWAT.  

 This pattern can be attributed to the smaller time steps (1-hour increments) used 

by HSPF which allows the model to resolve the catchment’s response to storms with sub-

daily durations better than the much longer time step (1-day increments) used by SWAT.  

The absolute volume error of each model was 12.7% (I), 6.2% (J), 5.4% (K) and 4.2% 

(O) for HSPF and 19% (I), 1.6% (J), 2.5% (K) and 9.5% (O) for SWAT for the seven-

year calibration period (1996 – 2002).  Collectively, these metrics indicate fair agreement 

between the prediction and measurements at the daily and good agreement at monthly 

time scales (Moraisi et al. 2007, Chin et al. 2009). 
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Figure 9  Hydrology: Monthly Flow  Catchment I 
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Figure 10  Hydrology: Monthly Flow  Catchment J 
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Figure 11:  Hydrology: Monthly Flow  Catchment K 
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Figure 12:  Hydrology: Monthly Flow  Catchment O 
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6.1.2 Water Quality 

As with the hydrological parameters, the maximum-likelihood parameters 

identified for the bacteria fate and transport processes (section 6.2) were used to predict 

fecal coliform concentrations in the four sub-watersheds.  The NSE was used to evaluate 

how well the models predicted fecal coliform concentrations in the study area.  The 

concentrations predicted by SWAT were in good agreement with the measured values 

(NSE all above 0.7); however, the estimates obtained by HSPF were comparatively very 

low (ranging from 0.24 to 0.45) indicating that the predictions generated by HSPF model 

were somewhat inconsistent with the fecal coliform concentrations of the observed values 

in the stream reaches.  

 

Table 15   HSPF:   Model Performance Water Quality (Bacteria) 
 

Catchment I J K O 

NSE   .44 .24 .33 .45 

 
 
                                      
 

     Table 16   SWAT:   Model Performance Water Quality (Bacteria) 
 

 
Catchment I J K O 

NSE   .78 .77 .70 .76 

 
 

A comparison of the results of the fecal coliform calibrations above show much 

better correlation with the predictions obtained from the SWAT model than with those 
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obtained from HSPF.  Relatively low to fair agreement (NSE values ranging from 0.24 to 

0.45) with HSPF predictions and good agreement (NSE values from 0.70 – 0.78) with 

SWAT predictions were obtained when the fecal coliform concentrations observed in the 

watershed were quantitatively compared to fecal coliform concentrations predicted by 

HSPF and SWAT respectively.    

 In general, quantitative comparisons between observed contaminant 

concentrations and model predictions are prone to error.  First, observed contaminant 

concentration values are actually point estimates in time and space whereas modeled 

concentrations are spatially and temporally averaged (Shirmohammadi et al., 2006; 

Richards, 2001).  Hence, the use of point estimates in a quantitative comparison has the 

potential to introduce significant estimator bias into the analysis (Chin et al., 2009; 

Shirmohammadi et al., 2006; Richards, 2001).  These errors are generally caused by 

comparing an observed value (or instantaneous concentration measurement at a sampling 

point) to a model prediction (or averaged contaminant concentrations over a selected—

usually daily—time-step).   As a rule, daily-averaged values are incapable of capturing 

the variability in concentrations over an entire day and/or within a given stream reach 

(Chin et al. 2009). 

Other explanations for the difference in accuracy (based on NSE values) obtained 

from the two models may lie in the methods used to separate overland flow and simulate 

the release and transport of bacteria.  HSPF and SWAT process equations use distinctly 

different methods to separate overland flows into surface and sub-surface runoff 

components.  For the study period, the average surface runoff volume for the four-

catchments was about 1 % of the total flows in Catchment I and 2 % in all the other 
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catchments for HSPF and around 10 % for Catchment I and 17.9 % , 23 % and 14.6 %, 

and  for Catchments J , K and O in SWAT.    

The process equations used to simulate the release and transport bacteria also 

differ significantly in the two models.  For example, SWAT partitions bacteria into 

phases and restricts transport to surface flows only; HSPF conversely, simulates transport 

in both surface and groundwater.  Since the transport of the bacteria is dependant on 

flow, the proportion of flow allocated to surface and subsurface can drastically alter the 

final concentration estimates in the receiving stream.  Relatively high total subsurface 

flow estimates of 99 % for Catchment I, 98 % for Catchment J, 98 % for Catchment K 

and 98 % for Catchment O were obtained by HSPF and 90 %, 82 %, 77 % and 85 %  by 

SWAT for Catchments I, J, K and O respectively.  Generally, high subsurface runoff 

volumes as observed in the simulations were not surprising because the hydrogeology of 

the study area is characterized by high infiltration rates and correspondingly low 

surface/high subsurface runoff (USDA-ARS 2008).   

The differences in flow allocations noted above can directly influence the 

transport of bacteria and ultimate concentration in a groundwater-dominated system such 

the LREW.  Given that HSPF allocated very small volumes to surface runoff, the 

relatively low to fair agreement between model predictions and observed values suggest 

that sub-surface flows may not be a dominant mechanism for bacteria transport in this 

study area.  Overall, the comparatively superior NSE results obtained by the SWAT 

model may indicate that the fate and transport process equations for fecal coliform 

incorporated in SWAT are more representative of the watershed conditions in the LREW 

than the equations encoded in HSPF.    
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          Figure  13:   Water Quality: Fecal Coliform -   Catchment I 
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      Figure 14:   Water Quality: Fecal Coliform -   Catchment J 
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Figure  15:   Water Quality: Fecal Coliform -   Catchment K 
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Figure 16:   Water Quality: Fecal Coliform -   Catchment O 
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6.1.2.1     Terrestrial Loading 

The terrestrial loadings of fecal coliform obtained using the 

maximum‐likelihood process parameters related to bacterial fate and transport derived 

from the HSPF and SWAT models were as follows:  

 

Table 17:     Terrestrial Loading (HSPF) 
 

Catchment I J K O 

Agriculture  
(cfu ha-1 d-1)    

0.18 × 108 0.67 × 108 1.95 × 108 2.95 × 108 

Forest   
(cfu ha-1 d-1)    

2.65 × 108 0.21 × 108 6.08 × 108 0.35 × 108 

 
 
 

Table 18:   Terrestrial Loading (SWAT) 
 
Catchment I J K O 

Agriculture  
(cfu ha-1 d-1)    

50.0 × 108 6.00 × 108 12.0 × 108 2.00 × 108 

Forest   
(cfu ha-1 d-1)    

80.0 × 108 15.0 × 108 28.0 × 108 6.00 × 108 

 
 

Table 19:   Direct Non-Point Source In-Stream Loading 

Catchment I J K O 

HSPF    2.81 × 108 1.07 × 108 14.5 × 108 0.16 × 108 

SWAT  3.80 × 1010 3.26 × 1010 1.25 × 1010 0.99 × 1010 

 
 

Terrestrial loadings estimated by HSPF were 0.2 × 108 to 2.3 × 108 cfu ha-1 d-1  

(Catchment I),  0.21 × 108  to 0.67 × 108 cfu ha-1 d-1 (Catchment J),  1.95 × 108  to 6.08 × 
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108 cfu ha-1 d-1 (Catchment K) for agricultural and forest land uses, and  0.35 × 108  to  

2.95 × 108 cfu ha-1 d-1 for forest and agricultural land uses in Catchment O.  The terrestrial 

loading predicted by SWAT were 50 × 108 to 80 ×108 cfu ha-1 d-1 (Catchment I),   6.0 × 

108  to 15.0 × 108 cfu ha-1 d-1 (Catchment J),  12.0 × 108  to 28.0 × 108 cfu ha-1 d-1   

(Catchment K), and 2.0 × 108  to  6.0 × 108 cfu ha-1 d-1 (Catchment O) for agricultural and 

forest land uses in the four-catchment study area.  These maximum-likelihood terrestrial 

loading estimates provide a reasonable level of confidence in narrowing the range of the 

existing bacteria loading to a magnitude of between 107 to 108 cfu ha-1 d-1  for Catchments 

I and J, 108 to 109 cfu ha-1 d-1 for Catchment K  and 107 to 108 cfu ha-1 d-1 for Catchment 

O .  Overall, the loading estimated for the four-catchment study area is between 107 to 

109 cfu ha-1 d-1. 

The maximum-likelihood direct non-point source loadings estimated for the four-

catchment study area were between 0.16 × 108  - 14.5 × 108 cfu d-1 for HSPF  and 

between  0.99 × 1010 – 3.8 × 1010 cfu d-1  for SWAT (see table 19).  These results indicate 

an overall direct loading of bacteria from in-stream sources in the study area in the range 

of 107 to 1010 cfu d-1.   The ranges for the individual sub-basins were between 0.2 × 109 

and 38 × 109 cfu d-1, 0.1 × 109 and 33 × 109 cfu d-1, 1.5 × 109 and 13 × 109 cfu d-1, and 

0.02 × 109 and 10 × 109 cfu d-1  for Catchments I, J, K and O  respectively.   

Based on the catchment areas analyzed, the terrestrial loading for each catchment 

was estimated  at 1.43 ×1012 cfu d-1 for Catchment I [area 50.9 km2 (5091 ha)],  2.39 

×1011 cfu d-1 for Catchment J [ area 22.3 km2 (2230 ha)], 2.26 ×1012 cfu d-1 for 

Catchment K [area 15.6 km2 (1558 ha)] and 2.65 ×1010 cfu d-1 for Catchment O [16.7 

km2 (1646 ha)].  In light of this, the average loading in the study area is estimated to fall 
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between 108 to 1012 cfu d-1 for Catchment I, 108 to 1011 cfu d-1 for Catchment J, 109 to 

1012  cfu d-1 for Catchment K, 108 to 1010 cfu d-1 for Catchment O, with an overall average 

of between 108 and 1012 cfu d-1 for the study area. 

 

 Analysis of the terrestrial loading 

The terrestrial loading of fecal coliform in a watershed is inextricably linked to 

the rainfall/runoff patterns and the land use/land cover in the area.  An examination of the 

land uses in the four study catchments indicated approximately 51% agriculture and 49% 

forest in Catchment I, 50% agriculture and 50% forest in Catchment J, 46% agriculture 

and 54% forest in Catchment K and 84% agriculture, 12% forest and 4% water in 

Catchment O.  For the purpose of this study, land use classifications were lumped into 

three basic categories: (a) agriculture (includes general agriculture and pasture), (b) forest 

(includes upland and riparian areas), and (c) water.  There were no urban areas in any of 

the catchments used in this study.    

Based on the results obtained, the largest contaminant loads were associated with 

Catchments I and K, and the highest percentage of loading to the receiving streams in the 

study area from direct non-point source loads.  While this could be attributed to a number 

of reasons, the most likely explanation is the abundance of wildlife –population and 

species—inhabiting the watershed.  Deer and other game animals are very prevalent in 

the riparian areas where fecal coliform deposited with their feces can readily enter 

streams via storm runoff (GA EPA 2006).  Other wildlife species, primarily waterfowl 

with smaller populations of otters and beavers, are also known to inhabit these 
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catchments where they spend a considerable amount of time in the water frequently 

depositing their feces directly on its surface (GA EPA 2006).    

Though the impact of water-dwelling animals on wildlife fecal coliform 

concentrations is well documented in the literature (GA EPD 2000; 2006),  several 

states—including Georgia—collect statistics for deer populations only which are 

typically used to account for all wildlife fecal coliform contributions in watershed 

analyses (GA EPD 2000, GA EPD 2006).  Deer density estimates for the study area were 

placed at between 30 and 45 animals per square mile (GA EPD, 2000) and Catchment K 

was identified as a recreational hunting preserve (personal comment D. Bosch, USDA-

ARS  April, 2008).  Fecal coliform contributions from deer estimated at 5.0 × 108 cfu per 

animal per day were used to estimate wildlife contributions to the watershed in this 

analysis (ASAE, 1998; EPA BASINS fecal tool, 2001). 

 With the given wildlife populations, it is reasonable to expect high direct non-

point source loadings of fecal coliform in these two catchments, most likely resulting 

from high fecal coliform concentrations in the riparian zones.  Land use in Catchment K 

is predominantly forest and though only roughly half of Catchment I is classified as 

forest, this forested area is close to 15% larger than Catchment J and a little less than 40% 

larger than either Catchments K or O.  The overall fecal coliform loading in the two 

catchments is estimated to be between 108 and 1012.  If the deer density in the area is 

taken in to consideration, there may have been between 300 and 450 deer living in the 

forested proportion of Catchment I and between 100 and 150 in Catchment K during the 

study period.  Fecal coliform contributions from these deer—based on estimates given 

above— would be between 1.5 × 1011 and 3.0 × 1011 cfu day-1 and between 5.0 × 1010  
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and 8.0 × 1010 cfu day-1 in Catchment I and K respectively.  A comparison of these 

concentrations with the fecal coliform loadings estimated in this study indicates that these 

concentrations are well within the estimated range of between 108 and 1012 cfu d-1 for 

fecal coliform loads and therefore very reasonable for the respective watersheds. 

  Concentrations in Catchment J were a bit lower falling between 108 and 1011.  The 

area of Catchment J is 22.3 km2 and the land use is evenly divided between forested lands 

and agriculture, as such, it would be logical to assume that wildlife contributions in this 

catchment would be much lower.  Using the same deer density population estimates as 

above, deer in Catchment J should number between 130 and 195 and contribute an 

average of 6.5 × 1010   to  1.0 × 1011 cfu day-1.  This strongly supports the suggestion that 

the source of the majority of fecal coliform contributions to this watershed is also of 

wildlife origin. 

Catchment O is the only sub-catchment in the study where the land use is 

dominated (84%) by agriculture.  Catchment O lies in Tift County, GA and contains the 

University of Georgia’s (UGA) Animal Research Farm, which encompasses 275 hectares 

and houses 200 dairy cows (Vellidis et al. 2008).  Fecal coliform estimates for dairy 

cattle assume that the animals do not roam freely through the pastures and rarely have 

any contact with streams running through the area (GA EPD 2000).  Dairy cows are 

regularly confined for a limited period every day (typically around four hours) for 

feeding and milking, and their manure usually collected, stored and distributed over crop 

and pasture lands to enrich and fertilize the soil (GA EPD, 2000).  

 Based on ASAE (1998) animal reference estimates of 1.01×1011 cfu/animal d-1, 

for the dairy cows and deer estimates given above, fecal coliform contributions from the 
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dairy cows and wildlife are estimated to be around 7.44 × 109 cfu/acre/day for agriculture 

and 5.86 × 106 cfu/acre/day for forest.  This represents a total fecal loading of 

approximately 2.53 × 1013 cfu/day.  The numbers obtained are higher than those 

estimated for the watershed; however, the higher numbers are not entirely surprising and 

most likely explained by the die-off during overland transport to the stream reach that 

were not considered in the calculations. 

The concentrations obtained using the maximum likelihood functions were 

consistent with the concentrations expected in the watershed.  Modeled loadings and the 

estimates calculated based on animal species and density provides support for the loading 

estimates concentrations obtained.  The lowest loadings were in Catchment O though it 

was the only catchment with a concentrated animal operation.  This have have occurred 

because dairy cattle do not typically deposit their feces within the riparian area or on the 

riverbanks as common with wildlife, probable effects of storage/exposure (direct 

sunlight, heat, etc) on agriculture manure, and/or the bacteria fate during overland 

transport to the stream reach may have significantly impacted the survival rates of the 

bacteria.  

 

6.2 Multi-Model approach 

 Two watershed-scale models, HSPF and SWAT, were used to simulate the 

hydrology and the fate and transport of bacteria in four sub-catchments in the LREW.  

The models were calibrated for the 7-year study period (1996 – 2002) using the three-step 

methodological approach described in Chapter 5.  The outputs were then combined using 

three model combination methods:   (a) the weighted average model (WAM), (b) Nash- 
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Sutcliff Efficiency Maximization method (NSE-max) and (c) an artificial neural network 

(ANN). 

 

6.2.1 Weighted Average Method 

 
For the Weighted Average Method (WAM), the weights for the models were 

constrained so that they summed to unity and estimated using the following equations 

(equations 31 and 32) restated below:  

 
       ( ) ( )λbQPPPA TT

cls 2
11ˆ += −    

 
where the Langrangian multiplier  λ  is calculated as follows: 

 

         ( )( ) ( )( )QPPPbbPPb TTTTT 111 12 −−− −=λ

 
The results of this analysis are presented in Tables 20 and 21: 

 
 
 

Table 20:   Estimated Model Weights -   Weighted Average Method   

 
Catchment Daily Monthly Water Quality 

I 0.762 .236 0.339 

J .454 .256 0.204 

K .813 .534 0.191 

O .526 .497 0.153 
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Table 21:  NSE Results - Method 1:   Weighted Average Method 
 

 

 
 

 
 

 

 I J K O 

NSE (daily) .67 .70 .86 .62 

NSE (monthly) .85 .87 .88 .87 

NSE (water quality .68 .66 .63 .72 

 

 
 

6.2.2   Nash-Sutcliffe Efficiency Maximization Method 

 
 Next, the model results were combined using the Nash-Sutcliffe Efficiency 

Maximization Method (NSE-max) described in Chapter 5.  The combined model 

estimates were calculated using the equation below:   

 
          (41) 

ii
SWATaaHSPFPi )1( −+=

 
and the weighting factor, a,  found by 

 

   
( )(

( )

)

∑

∑

=

=

−

−−
= N

i
ii

N

i
iiii

HSPFSWAT

SWATHSPFSWATM
a

1

2

1    (42) 

 
 

The results of this analysis are shown below (see Table 22 and 23): 
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         Table 22: Estimated Model Weights - NSE-Maximization Method   

Catchment Daily Monthly Water Quality 

I 0.762 .236 0.339 

J .454 .256 0.204 

K .813 .534 0.191 

O .526 .497 0.153 

 
 

Based on the weighted factors presented above, the prediction estimates for the sub-

basins were found to be:  

 
 

Table 23:  NSE Results - Method 2:  NSE-Maximization Method   
 
 
 I J K O 

NSE (daily) .67 .70 .86 .62 

NSE (monthly) .85 .87 .88 .87 

NSE (water quality .68 .66 .63 .72 

 
 
 
 

6.2.3   Artificial Neural Network Method 

 Thirdly, the model results were combined using the Artificial Neural Network 

(ANN) method.  A multi-layer forwardfeed network structure with one input layer, one 

hidden layer and one output layer was used in the analysis.  The data were summed, a 

sigmoid transfer function was used to stabilize and add non-linearity to the structure, and 
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a squashing function added to the network which bounded the output in the range [0, 1].  

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used in the training phase 

of the network.  For consistency with the other model combination methods used, all the 

data were used in the training of the neural network.  The results of the model are shown 

in Table 24 and 25 below: 

 

Table    24:  Estimated Model Weights:  Artificial Neural Network Method 

 
 I J K O 

 HSPF SWAT HSPF SWAT HSPF SWAT HSPF SWAT

Daily 54.25 -181.3 -1.570 -2.080 -0.120 -14.97 -36.76 -0.014 

 -1.70  0.020 -21.51 -152.1 -0.024 -29.33 3.760 -0.046 

 

Monthly -1.020  61.47 -9.800 -0.580 -4.880 -0.140 -41.03 -5.950 

 -0.860 -94.04 1.920 -2.570 -22.58 -0.620 -48.49 -6.640 

 

Water Quality -246.4 -425.9 -8.590 9.120 -5.240 -2.810 -1784 -492.5 

 -261.4 -271.3 -2.990 -4.170 -9.680 -11.24 295.0 -344.3 

 
 
 
 
 
 
 
 
 
 
 

  



     111  

Table  25:  NSE Results -Method 3:  Artificial Neural Network Method 
 

 

 

 

 

 

 I J K O 

NSE (daily) .76 .78 .91 .77 

NSE (monthly) .92 .94 .97 .89 

NSE (water quality .91 .94 .73 .84 

 

6.2.4 Comparative analysis 

  A comparison of the results of the multi-model approach and the original 

individual model results show an improvement in the estimates obtained with all three 

combination methods.  Over the four catchments, overall NSE values obtained by the 

multi-model methods ranged from good to excellent (0.73 – 0.97).  The WAM and NSE-

max methods both utilized linear relationships, constraints (to unity) and averages of the 

two model results to estimate model weights, and as expected, generated identical weight 

factors for each model and the same overall results.   

An examination of the results of the ANN approach showed marked improvement 

over individual model results and excellent agreement with the concentrations observed 

in the study catchments.  Quantitative comparison with observed values yielded NSE 

values well above either the average values obtained from the original calibrations or 

from the two model-averaging approaches used in the study.  One reason for this may 

stem from the methodology and structure of the ANN itself.  Specifically, computer 

models are designed to execute of a series of algorithms and produce a numerical solution 
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and in general, models simply apply incorporated process equations to input data and 

generate estimates.    

Conversely, neural networks—such as the ANN—do not begin with a pre-

designed set of equations for data analysis; instead, the network processes the input data, 

looks for relationships in the data structure, and uses these relationships to decipher the 

hidden algorithms in the data patterns.  The network then utilizes these algorithms to 

build a model.  Based on this, the model formulated by an ANN is potentially more adept 

at mimicking actual processes in the watershed, and ultimately at predicting model 

estimates for the watershed processes.  By combining the estimates of both watershed 

scale models, the ANN can utilize embedded patterns in both predictions to generate a 

model that contains all the processes incorporated in both model structures.   

The model weights obtained by the WAM and NSE-max methods indicated that 

predictions obtained from HSPF were weighted more heavily than predictions obtained 

by SWAT for the hydrology while SWAT predictions were weighted more heavily for 

the water quality.   However, in the case of the ANN, neither of the models was 

consistently weighted higher in all four of watersheds with SWAT predictions being 

weighted more heavily in some of the watersheds, HSPF in some and neither in others.  

Overall, the results obtained from the study indicate that HSPF better maps the hydrology 

of the watershed but only produces fair assessment of the water quality conditions while 

SWAT better describes the water quality.  Based on this, a combination of the model 

forecasts as undertaken here utilizes the strengths of both models to produce estimates 

comprised of good hydrological and water quality predictions. 
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Figure 17   Comparison of model results:  Water Quality – Catchment I 
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Figure 18   Comparison of model results:  Water Quality – Catchment J 
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Figure 19 Comparison of model results:  Water Quality – Catchment K 

 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1/
6/

19
97

3/
6/

19
97

5/
6/

19
97

7/
6/

19
97

9/
6/

19
97

11
/6

/1
99

7

1/
6/

19
98

3/
6/

19
98

5/
6/

19
98

7/
6/

19
98

9/
6/

19
98

11
/6

/1
99

8

1/
6/

19
99

3/
6/

19
99

5/
6/

19
99

7/
6/

19
99

9/
6/

19
99

11
/6

/1
99

9

1/
6/

20
00

3/
6/

20
00

5/
6/

20
00

7/
6/

20
00

9/
6/

20
00

11
/6

/2
00

0

1/
6/

20
01

3/
6/

20
01

5/
6/

20
01

7/
6/

20
01

9/
6/

20
01

11
/6

/2
00

1

1/
6/

20
02

3/
6/

20
02

FC meas HSPF SWAT WAM ANN

 

Figure 20   Comparison of model results:  Water Quality – Catchment O 

  



      

 

   CHAPTER 7: DISCUSSION AND CONCLUSIONS 

 
7.0  Summary and interpretation of major findings 

This study developed and highlighted the effectiveness of combining different 

model estimates to improve prediction forecasts for fecal coliform contamination of 

streams.  Both HSPF and SWAT, two watershed-scale terrestrial codes, were utilized in 

the analysis of four sub-catchments in the Little River Experimental Watershed (LREW) 

in South-Central Georgia. Observed flow measurements and fecal coliform 

concentrations were statistically compared with estimates from the individual models.  

With regard to the hydrology, the results showed that over the study period (1996 - 

2002), HSPF provided a better description of the daily flows based on the Nash-Sutcliff 

Efficiency (NSE) coefficient values, which ranged from (0.63 to 0.88) and both models 

performed comparatively well in describing monthly flows (all above 0.8).   

The differences in the hydrologic model performances in predicting daily flows 

are most likely due to the temporal resolution of the individual models.  The hourly time-

steps used by HSPF allows quicker model response to shorter individual storms, in 

contrast to the coarser daily time-step used by SWAT, which prohibits the model from 

accurately resolving responses to sub-daily storm events (Chin et al. 2009).  Monthly 

flows simulated by the two models were comparable and perhaps attributable to the fact 

that the effect of averaging values becomes less obvious with increasing time scales.   

As previously stated, the goal of this study was to use a multi-model approach to: 

(1) predict and quantify the dominant fate and transport processes of pathogenic indicator 

bacteria at the watershed scale; (2) determine the process equations that best represent the 
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watershed; and (3) quantify the reduction in predictive uncertainty attainable by 

combining predictions from two watershed-scale terrestrial fate and transport models. All 

three objectives were met in this study and summarized below. 

With regards to objective 1, predicting and quantifying the dominant fate and 

transport processes of pathogenic indicator bacteria at the watershed stage, the results 

indicated that SWAT provided a much better description of the fecal coliform 

concentrations with NSE values ranging from 0.70 to 0.78 versus values of 0.24 to 0.45 

obtained with HSPF.   Relative performance of the models in predicting water quality 

results indicated that SWAT might be better suited than HSPF for predicting fecal 

coliform concentrations in the Little River watershed.  This suggests that the process 

equations incorporated in SWAT may better represent the actual fate and transport 

processes in the LREW than those incorporated into HSPF.  Separation of overland flow 

into surface and sub-surface components highlights the relationship between flow 

distribution and model accuracy.  Specifically, SWAT allocated a much higher 

proportion of overland flow to surface runoff than HSPF and the results, as measured by 

the NSE, demonstrated higher correlation between the SWAT model predictions and 

actual measured concentration values than with the predictions generated by HSPF.  The 

resultant finding based on model results raises the possibility that groundwater flow may 

not be a dominant bacteria transport mechanism in the study area.  

The fecal coliform loadings determined by the models were between 107 and 1012  

cfu d-1 for the watershed.  Most of the loadings in Catchments I, J and K were due to in-

stream (direct non-point) sources of bacteria in the watershed and terrestrial sources were 

comparatively lower and ultimately had less impact on overall watershed loading.  This 
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finding deviated slightly from expectation since there are no discrete point sources—such 

as confined animal feeding operations (CFOs), landfills or wastewater treatment plants—

in these watersheds.  However, there is a high concentration of wildlife with direct access 

to the stream reaches inhabiting the riparian zones in the study areas which most likely 

led to the overall high in-stream fecal coliform loading. 

Catchment O differed slightly from the other study catchments in that terrestrial 

loadings were higher than the loading from in-stream sources in this watershed.  One 

reasonable conclusion is that while the primary sources of fecal coliform in Catchments I, 

J and K are most likely of wildlife origin, since Catchment O is predominantly 

agricultural and houses the UGA Research Dairy, there is a much greater likelihood that 

the majority of loading in this catchment may have stemmed from the land application of 

agricultural manure.   

With the exception of Catchment O, the in-stream loading to the stream reaches in 

the study area carried much higher concentrations of bacteria than the runoff from the 

land applications to the receiving stream.  Possible explanations include the observations 

that:  

 (a) sampling routines generally take place during periods of base flow and as a 

result may miss the first flush effects from surface runoff following storm events and 

significantly bias the cumulative distribution of the concentrations (see Baffaut, 2006) ; 

and/or  

(b) bacteria deposited in the cooler, damper forest buffer zones may thrive better 

(lower die off) than those subjected to longer overland transport to stream reaches or 

exposed to the elements such as with the application of manure to agricultural land.  
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However, this assertion remains speculative while we await research on bacteria fate and 

transport processes that validates or refutes this claim. 

The results discussed above were obtained by comparing estimates from the two 

most widely used codes in TMDL analysis: HSPF and SWAT.   These codes have been 

previously compared for hydrology (van Liew et al., 2003) and bacteria fate and transport 

processes (Benham et al., 2006), but not to determine loading estimates or to link loading 

on a receiving water body with upland sources.  Comparison of the model results in this 

study helped in identifying some of the dominant fate and transport processes and 

characterizing the fecal coliform loading sources in the study sub-catchments of the 

LREW. 

The second objective was to determine the process equations that best represent 

the watershed.  Based on the results, the single model approach indicates that the process 

equations embedded in HSPF are very representative of the hydrological conditions in the 

Little River Experimental Watershed.  The NSE values of between 0.63 and 0.88 indicate 

good agreement with observed values in the study area.  Conversely, SWAT produced 

better NSE values and overall agreement with observed water quality (fecal coliform) 

concentrations in the watershed.  Though HSPF hydrological predictions were in better 

accord with watershed observations, the SWAT hydrology forecasts were still within 

acceptable fair to good NSE range (0.56 to 0.73), while the HSPF water quality 

predictions showed only weak correlation with observed values.  Based on this, the 

process equation in SWAT may be a better overall alternative for watershed analysis in 

this basin.  
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The third objective of this study was to quantify the reduction in predictive 

uncertainty attainable by combining predictions from two watershed-scale terrestrial fate 

and transport models and was addressed in the second phase of the analysis.  This phase 

of the analysis involved utilizing three different model combination approaches to predict 

flow and bacteria concentrations in the sub-catchments.  The data were first analyzed 

using the Weighted Average Method (WAM) followed by Nash-Sutcliffe Efficiency 

Maximization Method (NSE-max method).  It was demonstrated that a weighted average 

of the model predictions as applied by the two methods could be used to improve the 

accuracy (as determined by the NSE) of the individual models.  However, the overall 

improvements were generally modest when compared with the relative performance of 

the models. 

The third multi-model approach applied to the data was the artificial neural 

network method (ANN).  The results obtained by the ANN showed substantial 

improvements in both the hydrological and water quality components of the models.    

The ANN uses the model predictions from both the flow and the bacteria concentrations 

to identify these hidden patterns in the data then utilizes these relationships to generate an 

algorithm that simulates the processes involved.  In essence, the model generated by the 

ANN produces greater predictive validity in terms of its ability to mimic the fate and 

transport processes in the watershed more accurately than other models with built-in but 

general algorithms. 

Presently, several studies exist that investigate the use of multi-model 

combination/ averaging as a reliable method to improve forecasting results (Granger, 

2001; Clemens, 1989; Thompson, 1976; Newbold and Granger, 1975; Dickinson, 1973).  
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While this method has previously been applied to hydrological studies (Kim et al., 2006; 

Shamseldin et al., 1997), it has never before been extended to studies of water quality.  

This study attempts to fill this gap by applying a multi-model approach to reduce the 

significant model uncertainty (Chin, 2009) and improve model prediction estimates 

associated with water quality modeling.  Consequently, this study constitutes a first 

attempt at applying these methods to water quality analysis and a potential launching pad 

for improving contaminant concentration estimates which constitute the foundation of 

TMDL analyses.   

The results presented here underscore the benefits of using a multi-model 

approach to TMDL analyses.  Amongst these benefits is a significant improvement over 

the usual a priori selection of a watershed-scale fate and transport model for use in 

TMDL linkage and terrestrial analysis, which may not provide the best description of 

both the hydrology and water quality in a study area.  It also helps to identify the 

watershed codes that best describe the processes in the study watershed.   Improving 

model forecast generally entails employing better alternatives to decrease the uncertainty 

in the parameters that degrade model performance (Kim et al., 2006).  By combining 

model forecasts, the methodology presented here also indirectly combines process 

equations, which can significantly improve prediction capability by reducing model 

uncertainty—a fundamental weakness of current water quality modeling.    

The study also identified and quantified the fate and transport processes in the 

watershed thereby advancing the knowledge on some of the complex relationships 

underpinning the link between terrestrial loading and resulting contaminant concentration 

in a watershed.  In sum, the ideas presented here constitute a step in the right direction in 

    



     121 

the effort to (i) identify relevant watershed processes; (ii) improve model selection 

methods; and (iii) build a model representative of the actual conditions under 

investigation, while presenting a solid foundation for the required evaluations necessary 

to determine strategies and develop viable TMDL implementation plans for the 

remediation of impaired waters.   

 
 

7.2    Limitations  

This study presented a new approach for improving TMDL analysis by examining 

methods to predict and quantify relevant processes in the environmental fate and 

transport of pathogens in a watershed.  It highlighted the weaknesses inherent in using the 

normal method of a priori model selection and suggested methods for improving model 

forecasts by combining model predictions to reduce inherent structural uncertainty in 

watershed-scale fate and transport models.  These strengths not withstanding, 

shortcomings derived from data and model limitations open the possibility that the 

resulting parameter estimates may either be over or understated. 

First, though the study utilized the two most widely used watershed-scale codes, 

both HSPF and SWAT are deterministic.  Water quality analysis involves estimating 

contaminant concentrations in a water-body which is both stochastic and heterogeneous 

in nature (Shirmohammadi et al., 2006).   The concentration distribution of a contaminant 

(e.g. fecal coliform) in an impacted water-body is essentially a probability distribution 

function.  Deterministic models, however, generate output estimates using  fixed input 

points that may not fully capture the variability of the pollutant concentration within the 
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body of water.  Though this weakness has been acknowledged in the literature (Benham 

et al., 2006), mention of its probable impacts should not be omitted here.    

 Secondly, limitations in the available data that were beyond the control of the 

study may have prohibited the proper characterization of bacteria sources in the 

watershed.  Hypothetically, such data limitations can potentially introduce prediction 

errors into model loading estimates (Benham et al., 2006), although they are not likely to 

affect the environmental fate or transport of the pollutant in the watershed.   Because of 

the paucity of data on wildlife populations, the impacts of direct in-stream loading of 

fecal coliform contributions from the considerable quantity of waterfowl and other water-

dwelling wildlife were essentially ignored in spite of the fact that ducks and geese are 

generally considered the largest contributors of fecal coliform to the watershed (GA EPA, 

2006).  As has been the precedent in TMDL analyses (AL DEM, 2003; SC DHEC, 2004;  

KY DFWR, 2006; GA EPD, 2006), deer estimates were used as a proxy to account for 

fecal coliform contributions from wildlife inhabiting the watershed.  

Thirdly, the study period encompassed a seven year-period that included both 

very wet and very dry water years.  The overall results obtained suggest that HSPF better 

simulates the hydrology and SWAT the water quality in this watershed; however, since 

the data were not disaggregated to examine the impact of rainfall quantities on model 

performance, it is not possible to determine if the model performances for HSPF and 

SWAT would differ under different hydrologic conditions.  In addition, because flow 

measurements are essentially used to map concentration distribution patterns during non-

sampling periods, changes in flow could have a direct and distinct effect on both 

hydrological and water quality predictions. 
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Despite these limitations, this study has yielded several new insights and findings 

consistent with existing theory and research.  Notably, the results presented here indicate 

that a multi-model approach has the potential to not only identify a watershed-scale fate 

and transport model that adequately describes the watershed under investigation, but to 

quantify the dominant fate and transport processes and utilize multiple model predictions 

to reduce predictive uncertainty in modeled contaminant loadings.   

This study addressed pathogen indicator bacteria (fecal coliform), but the methods 

introduced here can be easily extended to examine any other target contaminant in 

TMDL analyses.  By utilizing two well-established, scientifically rigorous and freely 

accessible codes, the methodology discussed here can significantly reduce watershed 

model development by eliminating the need to retrain personnel or purchase new 

software.  This can prove very useful for decision-makers as they balance environmental 

health assessments and social impacts against the economic burden associated with 

implementing successful management strategies for watershed remediation.    

 
 
 

7.3 Recommendations for future research 

 Given the limitations discussed above, the following suggestions are 

recommended to improve TMDL and watershed-scale water quality analyses:   

(a) improving current watershed–scale fate and transport models by developing 

methods to reduce uncertainty introduced by the use of averaged point values to 

describe the probability distribution functions characteristic of contaminant 

distributions;   
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(b) investigating the environmental fate (survival rate) and transport processes of 

pathogenic indicator bacteria (such fecal coliform) deposited with wildlife manure 

in moist, continually shaded forested areas such as riparian zones; 

(c) improving data collection on wildlife to include population estimates for other 

wildlife species, particularly those known to contribute significantly to fecal 

coliform concentrations in the watershed;    

(d) investigating the impact of very wet and very dry water years on model 

performance and model weights.   

   In spite of numerous attempts to estimate fecal coliform loading for agricultural 

lands (Benham et al., 2006; Crowther et al.,  2002; Soupir et al., 2006;  Tian et al., 2002), 

our understanding of the mechanics underpinning microbial transport are still sketchy.   

In addition, bacteria die-off/ re-growth and survival rates in forested environments and 

from wildlife sources have not been formally investigated and consequently not well 

understood.  As a result, more research is required to truly understand bacterial fate and 

transport processes, link terrestrial sources to resulting concentrations in receiving 

streams and assess the uncertainty associated with estimating bacteria loading in a 

watershed.  Such improvements can go a long way towards producing dependable 

assessments that accurately characterize bacteria sources and generate reliable pollutant 

estimates necessary for developing effective TMDLs to remediate impaired waters. 

In sum, this study’s contribution to the field of water resources and water quality 

engineering is indebted to my on-going research collaboration with Dr. David Chin (see 

Chin, 2009; Chin, Sakura-Lemessy, Bosch and Gay, 2009a).   The significance of Chin 

(2009) is that it represented the first study to apply a response-surface iterative approach 
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to watershed-scale model calibrations.  The multi-model approach developed in this study 

builds on these efforts which attracted the attention of scientists in the forefront of water 

quality modeling research (see Oliver et al. 2009).  In fact, the multi-model formulation 

technique has apparent potential for addressing a major limitation in extant models: the 

predictive uncertainty associated with water quality modeling.  Perhaps the most fitting 

acknowledgement of this model’s potential is the considerable interest our preliminary 

analysis, which appeared in Chin et al (2009a), [see also Chin (2009) and Chin et al., 

(2009b)] generated in a session devoted to Bacteria, Metals and Pathogens (Session D3) 

at this Summer’s 5th International SWAT Conference held at the University of Colorado 

in Boulder.  Amongst the issues highlighted by panelists (e.g. USDA scientists Drs. 

Claire Baffuat and Ali Sadeghi) regarding our approach were the high NSE values 

obtained when the study watersheds were analyzed using SWAT (see http://ssl-

video.tamu.edu/august-6/d3.aspx). 

Amongst the panelists, Dr. Baffaut’s presentation was particularly noteworthy for 

pinpointing how much the single-model calibration and NSE Maximization methods we 

developed in our paper have to offer in terms of generating results that were not only a 

considerable improvement over comparative studies but highlight the significant need to 

revaluate the manner in which current bacteria modeling is undertaken.  In fact, the 

calibration method used in the study is already recognized as one that will likely, under 

similar watershed conditions (land uses, landscape etc), produce more reliable estimates.  

Further, on the basis of a comparative analysis of four selected papers, the major 

difference was the significance of the parameter values presented by Chin et al (2009), 

which were a distinct point of departure from the values typically obtained using SWAT 
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models— and one of the significant points to emerge from the conference’s deliberations.  

Specifically, the values of the calibrated parameters for the study basin (Catchment K) for 

absorption/extraction and decay were much lower than values obtained for those 

parameters in previous studies.  The surprisingly low parameter values and corresponding 

good NSE values obtained suggest that under the existing watershed conditions almost all 

deposited bacteria enter the stream reach with insignificant population die-off.    

This represented a shift in the understanding of the fate and transport processes 

associated with watershed characteristics and brought to light the fact that all the field 

tests used to develop the SWAT process equations focused on agricultural land uses.  As 

such, virtually no research was done that examined the fate and transport of bacteria 

deposited in cooler, moister and continuously shaded forested areas such as riparian 

zones.  As a result, the differences in bacteria decay and extraction coefficients, such as 

unexpected low extraction values, minimal die-off and overall higher NSE values, were 

unexplainable with the present level of knowledge and understanding. 

 Overall, the detailed nature of our analysis, calibration and multi-model 

formulation techniques clearly make the method and research undertaken in this 

dissertation a worthy and timely addition to the on-going efforts to correct for predictive 

uncertainty and advance knowledge on water quality modeling.  I hope that the resulting 

insights on water quality modeling gained will make a valuable contribution to the field 

of water quality engineering, particularly with respect to issues surrounding whether the 

processes involved in the environmental fate and transport of wildlife fecal bacteria affect 

input parameter estimates for different land uses and landscape positions.  Moreover, I 

am convinced that when such approaches to the analysis of bacteria fate and transport are 
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undertaken, our recommendations heeded, and strengths of this model fully realized and 

utilized—the improvement of water quality modeling and ultimately TMDL formulation 

and implementation would be advanced by the contributions of this dissertation.  
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