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Agriculture plays a vital role in the South African economy, as well as in the production of maize for 
food. Genetically modified maize is transformed to encode for crystalline (Cry) proteins found in Bacillus 
thuringiensis (Bt) and is referred to as Bt maize. Ingestion of specific Cry proteins causes the death of 
target insects that cause harm to maize plants. Bt crops, along with herbicides such as glyphosate and 
2,4-dichlorophenoxyacetic acid (2,4-D), are widely adopted as part of the South African farming regime that 
aims to increase crop yield and reduce costs of production. As chemical compounds used in agriculture often 
end up in water sources, their presence should be monitored. There are many such monitoring programmes 
worldwide, but not in South Africa. We screened surface water sources in a maize-dominated agricultural 
area in the North West Province in South Africa for the presence of Cry1Ab, glyphosate and 2,4-D using 
enzyme-linked immunosorbent assays (ELISAs). Cry1Ab was not detected at any site; glyphosate was below 
the limit of detection at most of the sites but one sample had quantifiable traces of glyphosate; and 2,4-D was 
detected at all the sites. The concentrations of 2,4-D exceeded those for drinking water according to European 
guidelines, thus highlighting the need for regular monitoring of these compounds. Many people depend on 
untreated water resources, which may be contaminated by toxic agricultural chemicals. This report is the first 
on levels of these target compounds in South African water systems.

Significance:
•	 This report is the first on the presence of glyphosate, 2,4-D and Cry1Ab in the South African aquatic 

environment.

•	 Concentrations of 2,4-D in South African surface waters exceed the European guideline for drinking 
water, indicating a risk to people using these water sources.

•	 These preliminary results highlight the need to regularly monitor for the presence of glyphosate, 2,4-D 
and Cry1Ab in water resources in South Africa.

Introduction
In a water-scarce country such as South Africa, water contaminated with chemicals is of even greater concern for 
residents dependent on untreated surface and groundwater resources because less water causes these compounds 
to concentrate. One sector of the economy that inadvertently contributes to water pollution is agriculture. A large 
portion of the South African economy is driven by the agricultural sector; maize is grown on 2.8 million hectares, 
with the Free State, Mpumalanga and North West Provinces accounting for approximately 84% of total maize 
production in the country.1 Moreover, maize serves as the staple food for the majority of South Africans. Therefore, 
meeting the basic needs of the population relies on successful agriculture.2 

Globally, there have been major advances in the agricultural sector over the past 40 years which have increased 
crop yield and reduced pesticide use.3 The genes that encode for crystal (Cry) proteins, which are produced by 
Bacillus thuringiensis (Bt), have been incorporated into maize, thereby creating genetically modified (GM) crops. 
Ingestion of these proteins can be lethal for specific insect groups; for example, ingestion of Cry1Ab toxin is lethal 
for lepidopterans. In South Africa, Cry1Ab maize has been used with success against the stem borer Busseola 
fusca.4 However, resistance evolution by target pests threatens the sustainability of Bt maize in Africa5, in part 
because of unique challenges, such as a lack of refugia where healthy and susceptible insects can be produced6.

Cry proteins are considered to be environmentally benign with little or no effects on non-target organisms.7 However, 
studies on Cry in aquatic ecosystems have been scarce and recent reports indicate negative effects in mussels, some 
insects and other invertebrates like Daphnia magna.8 Cry1Ab proteins are not commonly found in water sources but 
the Cry1Ab transgene was detected in river water as far as 82 km away from an area intensively cultivated with Bt 
maize in Canada.9 When Cry1Ab occurs in the aquatic system, it readily partitions to clay and organic materials.10 

Another genetic modification of maize makes plants tolerant to the herbicide glyphosate (the active ingredient 
in Roundup®). These herbicide-tolerant crops are referred to as Roundup-ready maize and can be sprayed with 
glyphosate-based herbicides in larger quantities and during the entire period of the growing season without causing 
damage to the crops.11

Glyphosate [N-(phosphonomethyl)glycine] is the most used herbicide in the world.12 It is a broad-spectrum, non-
selective, post-emergent herbicide used for weed and vegetation control. Glyphosate is known to rapidly degrade 
and strongly adsorb to the soil.13 Glyphosate’s mechanism of action is to inhibit the enzyme 5-enolpyruvyl-shikimate-
3-phosphate synthase of the shikimate pathway. The shikimate (shikimic acid) pathway is responsible for the 
biosynthesis of folates and aromatic amino acids (phenylalanine, tyrosine and tryptophan) in plants, bacteria, fungi, 
algae and some protozoan parasites.14 Glyphosate is known to be non-toxic to animals and has a low ecotoxicological 
potential.15 However, recent evidence of more profound toxicological effects has made the use of glyphosate (Roundup 
products) more controversial.16 Moreover, glyphosate has been classified as a probable human carcinogen by the 
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International Agency for Research on Cancer17, but not by the European 
Food Safety Authority18.

Insufficient crop management has led to glyphosate-resistant weeds.19 
To address the tolerance of weeds towards glyphosate, farmers use 
herbicides with different mechanisms of action.20 One of the herbicides 
used in South Africa, against which fewer weeds have developed 
resistance, is 2,4-dichloro-phenoxyacetic acid (2,4-D).21,22 2,4-D is a 
post-emergent auxin herbicide and has been used for selective control of 
broadleaf weeds.

South Africa is the biggest user of pesticides in sub-Saharan Africa and 
has more than 500 registered active ingredients.23 The use of herbicides 
on GM maize – of which 80% is the Roundup-ready version – has 
increased drastically over past years, and further increases are expected 
to occur in the next few years.22 Glyphosate-based herbicides are the 
most used herbicides in South Africa, with an estimated 23 million litres 
sold in 2012. The amount of herbicides used in South Africa (with a 
maize production of 2 million ha) is far less than that by the top producers 
such as the USA (40 million ha maize production), Brazil (13 million ha 
maize production) and China (7 million ha maize production).24 
Generally, pesticides are developed to target specific pests and to be 
immobile. However, run-off, leaching and spray drift occur and spread 
the compounds into unintended sections of the environment, and to 
water sources. These compounds generally occur at low concentrations 
and it is assumed that they would not have detrimental effects on non-
target organisms. However, exposure to low levels of pesticides poses 
a chronic risk to human health, including endocrine disruption, immune 
impacts, neurotoxicity, genotoxicity, carcinogenesis and mutagenicity.25

This report is the first on the presence of the herbicides glyphosate 
and 2,4-D as well as Cry proteins in water sources in South Africa. In 
this study, the aforementioned herbicides were applied to GM maize 
expressing Cry1Ab proteins on two farms in South Africa. Because this 
was a screening survey, further studies are needed to determine how 
these contaminants reach the water; how long after application they 
remain in the aquatic environment; and how their concentrations change 
within and between seasons. These compounds are not regularly 

monitored in South Africa. However, South Africa has a target water 
quality guideline level for 2,4-D of 20 µg/L of water used for livestock.26 
The persistence of glyphosate, 2,4-D and Cry proteins in the environment 
and their toxicity are still under scientific discussion worldwide. To the 
best of our knowledge there are no data published on environmental 
concentrations of these compounds for South Africa. 

Materials and methods
Study area
The sampling sites were located on two farms in close proximity to the 
Renoster and Vaal Rivers in South Africa. Farm A is in the Free State 
Province and Farm B is on the border between the North West and Free State 
Provinces (Figure 1). Fields on Farm A were planted with Bt and Roundup-
ready maize and those on Farm B were planted with Roundup-ready maize 
only. Farm A employed rainfed farming practices whereas Farm B used an 
irrigation system. On both farms, the pesticide spraying regime consisted 
of pre-emergent Roundup® and post-emergent Roundup® as well as 2,4-
D. It was assumed that the farmers applied the herbicides according to 
the manufacturer’s guidelines. Climatic conditions, such as rainfall, are 
one of the mechanisms that move these compounds from the point of 
application to water sources. Rainfall during the month of the sampling 
periods was 10–25 mm for the pre-herbicide application (October 2014), 
100–200 mm for the post-herbicide application (November 2014) and 
50–100 mm after the harvest (March 2015).27

Sampling
Water was sampled at different intervals during the planting season of 
2014/2015 (October–May): (1) pre- and (2) post-herbicide application, 
as well as (3) after the harvest (Table 1). Water was sampled on Farm A 
from the Renoster River (A1) and from a dam on the farm (A2) and on 
Farm B from the Vaal River (B1), from an inflow dam on the farm where 
water is recycled from run-off after rainfall and irrigation (B2) and used 
again for irrigation, and from a dam on the farm used for recreational 
activities (B3). Surface water at a 30-cm depth was sampled in 250-
mL high-density polyethylene bottles (Nalgene™, Rochester, NY, USA), 
protected from UV radiation and kept at 4 °C during transportation. 
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Figure 1:  Map of the sampling sites situated on Farms A and B. A1: Renoster River; A2: water from a farm dam; B1: Vaal River; B2: inflow dam; B3: water 
from a farm dam.
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Concentrating Cry1Ab proteins from water samples
Each water sample was concentrated using an Amicon® ultracentrifugation 
tube (Millipore, Billerica, MA, USA) with a 30 000 molecular mass cut-
off membrane. In short, a 15 mL aliquot of the sample was centrifuged 
at 870 g for 30 min. The eluent was discarded and another 15 mL was 
added and again centrifuged at 870 g for 30 min. The Amicon® tubes 
were subjected to a third centrifugation cycle whereafter the Cry proteins 
were rinsed off the membrane with 1 mL phosphate-buffered saline and 
Tween assay buffer. This concentrate of the samples was stored at 4 °C 
and quantified within 24 h. 

Enzyme-linked immunosorbent assays
Over the past few years, enzyme-linked immunosorbent assays (ELISAs) 
have demonstrated results comparable with those of instrumental 
analytical methods for the quantification of contaminants in water 
sources. ELISA assays are therefore reliable and good substitutes for 
screening and monitoring such systems.28 

Cry1Ab
The commercially available ELISA kit used for quantification of Cry1Ab 
in the water samples was obtained from Envirologix (Portland, ME, USA) 
(QualiPlate Kit for Cry1Ab/Cry1Ac Cat # AP003CRBS). The kit does not 
include a reference standard with a known concentration; the package 
insert advises that, if the kit is to be used for quantification purposes, 
a reference standard should be obtained from elsewhere. Lyophilised 
activated Cry1Ab toxin prepared from Cry1Ab protoxin was acquired 
from Marianne Pusztai-Carey at the Department of Biochemistry, Case 
Western University (Cleveland, OH, USA).29 The lyophilised protein was 
re-suspended in 10 mM CAPS buffer at pH 10.5 at a concentration of 
100 µg/mL and frozen at -80 °C until use.30 The quantification of the 
Cry1Ab protein was determined by including two independent 12-point 
standard curves ranging from 0 to 3.5 µg/L. The samples, blanks and 
calibrators (Cry1Ab) were loaded in triplicate on the 96-well-microtitre 
plate pre-coated with antibodies specific for Cry1Ab/Ac and containing 
Cry1Ab/Ac enzyme conjugate. The plates were left to incubate for 2 h 
and washed four times with 300 µL wash buffer. A substrate was then 

added, resulting in a blue colour produced by the hydrolysis of hydrogen 
peroxide by peroxidase. After 20 min, the stop solution containing 
1 N HCl was added and the optical density was measured at 450 nm 
and 650 nm (reference) using a multimode microplate reader (TriStar LB 
941, Berthold, Bad Wildbad, Germany).31 

Glyphosate
Glyphosate was quantified through the use of the Abraxis ELISA kit (PN 
500086; Warminster, PA, USA). The method was performed according 
to the manufacturer’s instructions. A six-point calibration curve that 
ranged from 0 to 4 µg/L was used to quantify the levels of glyphosate in 
the sample. In short, the samples, blanks and standards were derivatised 
and loaded into a 96-well plate coated with antibodies. A glyphosate 
antibody solution was added and the plates were incubated for 30 min. 
After incubation, the enzyme conjugate solution was added and the 
second incubation time was 60 min. Thereafter, the plate was washed 
three times with 250 µL wash buffer. A colour solution was added and 
after 30 min incubation, the stop solution was added. Absorbance was 
measured at 450 nm.28,32 

2,4-D
To determine the levels of 2,4-D in the surface water, an ELISA 
specifically for 2,4-D (PN 54003A, Abraxis, Warminster, PA, USA) was 
employed. The 7-point calibration curve ranged from 0 to 80 µg/L. The 
water samples, standards and blanks were added to the wells on the 
test plate. The enzyme conjugate and antibody solution followed shortly 
after and the plate was incubated for 60 min. After the incubation period, 
the plates were washed three times using 250 µL wash buffer. After 
the washing step, a colour substrate was added and incubated for 
30 min, after which a stop solution was added and absorbance was 
read at 450 nm. 

Quality control 
All samples were quantified in triplicate using ELISAs specific for each 
target compound. The mean absorbance values were calculated and 
the coefficient of variation was determined for each sample, requiring a 

Table 1:  Concentrations of the target compounds from various water sources after three different sampling events 

Site Sampling event Sampling date
Cry1Ab
(µg/L)

Glyphosate
(µg/L)

2,4-D
(µg/L)

Farm A

River (A1)

Before planting 6 October 2014 <LOD <LOD <LOQ

After spraying 26 November 2014 <LOD <LOD 0.93±0.08

End of season 9 March 2015 <LOD <LOD <LOQ

Dam (A2)

Before planting 6 October 2014 <LOD <LOD <LOQ

After spraying 26 November 2014 <LOD <LOD 0.72±0.02

End of season 9 March 2015 <LOD <LOD 0.72±0.07

Farm B

River (B1)

Before planting 6 October 2014 <LOD <LOD <LOQ

After spraying 26 November 2014 <LOD <LOD 1.02±0.03

End of season 9 March 2015 <LOD <LOD 0.96±0.16

Inflow (B2)

Before planting 6 October 2014 <LOD <LOD 0.83±0.10

After spraying 26 November 2014 <LOD 0.42±0.04 1.08±0.04

End of season 9 March 2015 <LOD <LOD 0.99±0.03

Dam (B3)

Before planting 6 October 2014 <LOD <LOD 0.74±0.02

After spraying 26 November 2014 <LOD <LOQ 0.90±0.08

End of season 9 March 2015 <LOD <LOD 0.92±0.08

LOD, limit of detection; LOQ, limit of quantification
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coefficient of variation of <20%. The limit of detection (LOD) and limit of 
quantification (LOQ) were determined using a regression analysis of the 
calibration curves where LOD=3Sb/b and LOQ=10Sb/b with Sb=slope 
uncertainty and b=slope (Table 2).33 The concentrations of glyphosate, 
2,4-D and Cry1Ab were determined against the linear regression line 
of the calibration curve, with a correlation coefficient (R2) as close as 
possible to 1. 

Table 2:  Limit of detection (LOD) and limit of quantification (LOQ) values 
for each of the target compounds

2,4-D Glyphosate Cry1Ab

LOD (µg/L) 0.2 0.2 0.1

LOQ (µg/L) 0.7 0.4 0.5

Results and discussion
Concentration of the compounds in water sources

Cry1Ab
Although the water samples were concentrated 30 times, there were no 
detectable levels of Cry1Ab proteins in any of the water samples. It is well 
known that Cry1Ab proteins degrade quickly in water sources, and this 
was corroborated by the results of the current study (Table 1). Cry1Ab 
proteins break down when exposed to high temperatures (24–33 °C), 
thus resulting in microbial degradation. Soil type influences adsorption, 
making these proteins more persistent, but also decreasing their 
extractability. Cry1Ab has high conformational stability and retains its 
activity when absorbed to polar, charged surfaces in soils, which is 
important when assessing its potential adverse effects in agricultural 
systems.34 There is a lack of evidence on the bioactivity and potential 
health risks of Cry1Ab fragments that may be present in the environment. 

In contrast to our results, Tank et al.35 detected Cry1Ab proteins in 23% of 
215 water samples taken from streams near agricultural fields 6 months 
after harvest. They reported a mean concentration of 14 ng/L and a 
maximum of 32 ng/L. Whiting et al.36 detected no Cry1Ab in groundwater 
samples, but found concentrations of 129 ng/L in run-off water between 
maize fields. The same research group also analysed soil and run-off 
sediment, but in contrast to the high levels in water, a maximum mean 
concentration of only 9 ng/g was detected in soil during the pollination 
stage of the maize plants. Cry1Ab was detected in run-off water from a 
non-Bt maize field with levels from below LOD to 42 ng/L, whilst higher 
levels (maximum concentration of 130 ng/L) were detected from a 
Bt maize field.37 It should be noted that the concentrations of Cry1Ab 
detected in other studies were below the LOD of the current study. The 
ELISA method used could therefore have missed the presence of Cry1Ab 
at lower levels. The presence of Cry1Ab proteins in water, although at 
low levels, highlights the importance of investigating the potential long-
term effects of these proteins on non-target organisms. 

Glyphosate
The levels of glyphosate were below the LOD at most of the sites 
(Table 1). The water sampled from the dam (B3) on Farm B had traces 
of glyphosate with levels between LOD and LOQ after the spraying event. 
Glyphosate levels of 0.42 µg/L were detected at the in-flow dam on 
Farm B (B2) after the spraying event. These levels decreased to <LOD 
at the end of the season (Table 1). Glyphosate is very water soluble and 
has been found in various water sources around the world, but it also 
degrades quickly, which can be the reason for low detection. Some studies 
ascribe the lower than detection limit levels of glyphosate and its quick 
metabolising capability to its main metabolite aminomethylphosphonic 
acid (AMPA).38,39 AMPA was, however, not quantified within the scope 
of this study. Glyphosate concentrations are also highly influenced by 
precipitation and can change from year to year.40

In contrast to the current study, in other studies from all over the world, 
glyphosate has been detected in water sources. Sanchís et al.41 analysed 
140 groundwater samples from Spain and found quantifiable levels for 
41% of the samples. The mean concentration of glyphosate in Sanchís et 
al.’s study was 200 ng/L and the maximum concentration was 2.5 µg/L. 
Glyphosate concentrations of 663 ng/L were found in the Nottawasaga 
River watershed in Canada.42 According to Smith et al.43, 45 µg/L of 
glyphosate was detected in well water at the Massey Drive substation 
in the USA 7 weeks after spraying. This station is built on a limestone 
bed that has high permeability, thus emphasising that glyphosate is very 
mobile in water sources. In the USA, glyphosate was detected in a stream 
and wastewater treatment plant effluent samples in a study by Kolpin et 
al.44 The maximum concentration they reported was 2.2 µg/L. Also in the 
USA, an extensive study by Battaglin et al.39 reported glyphosate levels 
for different environmental matrices: 73 µg/L in streams; 2.03 µg/L in 
groundwater; 427 µg/L in ditches and drains; 3.08 µg/L in large rivers; 
1 µg/L in soil water; 301 µg/L in wetlands, lakes, and ponds; 2.5 µg/L in 
precipitation; 476 µg/L in soil and sediment; and 0.3 µg/L in wastewater 
treatment outfall. It is evident that glyphosate ends up in water sources.

2,4-D
Most of the samples in the current study contained quantifiable levels of 
2,4-D with a minimum of 0.72 µg/L and a maximum of 1.08 µg/L. Before 
planting, the concentrations of 2,4-D were below the LOD in both river 
samples and the dam on Farm A. It was also detected at low quantifiable 
levels before planting in both dams on Farm B. The highest concentration 
was detected after the spraying event and decreased towards the end of 
the season (Table 1).

According to Wilson et al.45, 2,4-D amine salts and 2,4-D esters are very 
mobile but they are not persistent under most environmental conditions. 
2,4-D does not adsorb to the soil but readily moves into water resources 
– a finding confirmed by Mountassif et al.46 who reported that 91.7% of 
the applied 2,4-D eventually ends up in water, thus explaining the high 
levels detected in various countries. 

Hernandez et al.47 detected 0.05 µg/L 2,4-D in Lake Chapala, Mexico, 
which is an order of magnitude lower than the levels found in the current 
study. The concentrations of 2,4-D found in our study are in the same 
range as those in two European studies: Rodil et al.48 detected levels 
of 0.062–0.2 µg/L 2,4-D in drinking and surface water in Spain and 
Tsaboula et al.49 reported 1.16 µg/L 2,4-D in the Pinios River Basin, 
Greece. A few US studies by Serrano and DeLorenzo50, Ensminger et al.51 
and Wijnja et al.52, reported 2,4-D levels in surface water, urban run-
off, a freshwater pond and Kushiwah Creek, Charleston, of 0.1 µg/L to 
11.5 µg/L. Rodil et al.48 reported 2,4-D detected in drinking and surface 
water in Spain at concentrations ranging between 62 ng/L and 207 ng/L. 
The estimated recent environmental concentrations of 2,4-D in US water 
sources ranged from 4 µg/L to 24 µg/L.53 These concentrations are 
much higher than the levels obtained in the current study. 

The Canadian guideline for the maximum residue limit (MRL) for any 
pesticide in drinking water is 280 µg/L, and for freshwater aquatic 
life is 65 µg/L.54 In the USA, the MRL for pesticides in drinking water 
is 700 µg/L54 and the maximum contaminant level – specifically for 
2,4-D – is 70 µg/L55. In the European Union (EU), the MRL for pesticides 
in drinking water is less than 0.1 µg/L54 – a level exceeded by the 2,4-D 
concentrations found in the current study (Figure 2). Some of the levels of 
2,4-D were an order of magnitude higher than the EU guideline (Figure 2), 
which could mean possible effects on human health. A Canadian study 
found a significantly increased risk of cancer (non-Hodgkins’ disease) in 
men exposed to 2,4-D.56 Some studies reported that 2,4-D could reduce 
growth rates, induce reproductive problems, and produce changes in 
appearance or behaviour, or could cause death of non-target species, 
including plants, animals and microorganisms.57 In contrast, other 
studies examined the systemic toxicity, developmental neurotoxicity, 
developmental immunotoxicity, reproductive toxicity, endocrine 
modulation and thyroid effects in humans, and found that 2,4-D is unlikely 
to pose a significant health risk.58,59 The debate on the safety of herbicides 
continues as there may be unknown long-term effects on human health 
and the environment.60
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Conclusion
South Africa relies on agriculture to supply food to the majority of its 
people and is the 10th largest maize producer in the world. Both small-
scale subsistence farming and modern agriculture are important in the 
country and both sectors use transgenic insect toxins and may experience 
development of tolerance to herbicides. Modern agriculture increases 
food production but may involve excessive use of herbicides and toxins 
for pest control. Ideally, herbicidal compounds are developed to have a 
specific mechanism or mode of action to avoid toxic effects in non-target 
organisms. However, non-target effects need to be investigated and the risk 
assessed for each chemical substance in use. The first step is to monitor 
and determine whether herbicides and agricultural toxins used by farmers 
can be found in the environment. To our knowledge, this has not been 
done previously for Cry1Ab toxin, glyphosate and 2,4-D in South Africa, 
although these are dominant agrochemicals in modern South African 
agriculture. Thus, this report is the first investigation of the presence and 
concentrations of these substances in water sources in South Africa.

As Cry1Ab, glyphosate and 2,4-D are highly mobile once released into 
the environment, increased use will elevate the levels in the environment. 
We did not find Cry1Ab proteins at quantifiable levels and only one 
sample contained glyphosate. 2,4-D was present at quantifiable levels in 
more than 70% of the samples and all of these concentrations exceeded 
the EU guideline for drinking water. Recently, research has revealed 
adverse health effects of Cry1Ab, glyphosate and 2,4-D exposure to 
non-target organisms. These effects could also influence biodiversity; 
therefore, water sources should be monitored to ensure both healthy 
aquatic ecosystems as well as safe drinking water.

Recommendations
From the results of this first survey conducted over a single maize 
growing season it is recommended that follow-up studies be done which 
include more sampling locations across larger geographical regions in 
South Africa. Also, monitoring should be performed over longer periods 
to cover variability over seasons and between years. We recommend the 
use of ELISAs as a screening tool followed by confirmation of positive 
results using other analytical methods. 
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