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Abstract This paper studies the problem of asset allocation in a mean-variance frame-
work. The theoretical model of portfolio optimization is specified and then applied to a
long panel data set from historic to most recent times, March 1990 – March 2013. The
paper contributes in three ways. First, an alternative asset return model is proposed that
combines the historical returns, capital asset pricing model (CAPM) and returns esti-
mated based on firm fundamentals. These return estimates enter the optimization
problem. The second contribution is the application of an improved covariance matrix
estimator that has superior properties compared to the typical sample covariance
estimator. Third, the paper proposes two investments strategies. The first proposition
suggests always choosing the maximized Sharpe ratio portfolio and the second one, the
portfolio with the highest information ratio. The nature of both strategies is designed for
investors with different appetites for risk. The performance of these choices is analyzed
in light of four types of constraints: upper/lower investment limits, group constraints and
transaction costs. The one-period optimal investment portfolio is rebalanced at quarterly
intervals. Both strategies are benchmarked against an alternative investment choice such
as holding the S&P 500 index, or investing in a risk-free asset such as a bond. Portfolio
analysis and backtesting reveal that the strategies are superior to simply holding an
equally weighted portfolio, a risk-free asset or the S&P 500 index.

Keywords Mean-varianceoptimization .Assetallocation. Investmentdecision.Finance
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Introduction

Modern portfolio theory began its development almost 50 years ago thanks to the
pioneering work of Markowitz (1952). This started a new branch of financial
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economics, dealing with the optimal allocation of financial assets. Every investor
decides in which assets to invest depending on his personal risk tolerance and objec-
tives. Some investors (mostly speculators) will accept very high risk for the attractive
prospect of greater return. Others (mostly conservative and institutional investors)
tolerate lower levels of risk and prefer less volatile portfolios. The “mean-variance”
optimization (hereafter referred as MV) searches for the optimal investment allocation,
taking into account the trade-off between risk (represented by the variance of returns)
and the expected (mean) return of the chosen assets in a portfolio. The optimal portfolio
lies on an efficient frontier, which shows the maximum return possible for given levels
of risk. Alternatively, the MVoptimization can be set to minimize the portfolio variance
for a given expected target return.

In this paper I apply the MV framework and seek to optimize the holdings of assets for
an investor by also considering the impact of transaction costs and additional portfolio
constraints. I predicted expected returns by specifying an alternative model that combines
a market model (CAPM), past historical means of returns and analyst predictions based on
stock fundamentals. The latter ones are estimated from the fundamental business of each
individual firm. For example, such fundamentals are innovation, product lines, market
share, and leadership in the company. Thus, this information does not come from a typical
historical regression but captures these additional elements of firm performance that are
based on the fundamental characteristics of the business as mentioned above. Since in the
backtesting, the representative investor rebalances quarterly, it is very important to capture
these forward-looking impacts on the firm performance and account for the most recent
stock development predictions. The most common practice for return estimation has been
to compute the average historical excess return and add it to the risk-free rate. However,
solely relying on historical estimates may not be a good choice for a portfolio manager as
these estimates are not good predictors of future returns and may produce portfolios with
unreasonable weights. Furthermore, I estimated the covariance matrix using a shrinkage
covariance estimator (Ledoit & Wolf, 2003) that has desirable properties, such as impos-
ing a low-dimensional factor structure. This is why the shrinkage estimator is a weighted
average of the sample covariance matrix with Sharpe’s (1963) single-index model
estimator where the structure is determined by a shrinkage coefficient k as will be seen
in a further section. This approach is different from the traditional case in which the
sample covariance matrix is implemented.

I undertook a benchmark investigation where the performance of the optimal
portfolio is compared to a naïve strategy (equal weights on all assets), holding a market
index strategy (investing in an index) and finally full investment in a risk-free asset.
Despite its theoretical appeal, in practice several factors have prevented the theory from
gaining wider application. First, the model is very sensitive to even small changes to the
inputs and the available estimates may not be accurate enough. Second, in a typical
financial institution it is the top management that finally approves portfolio allocation
decisions and not quantitative models (Michaud, 1989).

Literature Review

Since the influential contribution of Markowitz, the field has expanded very rapidly and
new approaches toward portfolio optimization have been developed. Puelz (2001)
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performs value-at-risk (VaR) optimization on four model frameworks that apply the
VaR approach on ex ante portfolio decisions.

The assumption that historical mean returns could be used as plausible predictors of
future expected return has caused wide divergence of opinions in the academic field.
Black and Litterman (1992); Merton (1980) and Michaud (1989) show that past returns
are poor predictors of future expected returns. Thus reliance on purely historical return
estimates may be problematic in the traditional MV optimization framework. These
empirical findings stimulated the proposition of alternative ways of expected return
estimation. The MV approach established the basis for other influential developments
within the field of financial economics such as Sharpe-Lintner’s capital asset pricing
model (CAPM) (1964; 1965).

Single-index and multi-index models have been used for the return and correlation
estimation. These approaches significantly reduce the amount of inputs required for the
optimization problem. Dhrymes et al. (1984) report that the number of indices needed is
dependent on the number of firms that are included in the analysis. Jorion (1991)
compares the accuracy of alternative estimation techniques based on actual data. The
paper concludes that the CAPM provides the best expected return estimates.

The view of constant correlation and variance of assets has been challenged by
various studies. For example, Flavin and Wickens (2002) use a multivariate GARCH
model for the variance-covariance estimation of security returns. Their conclusion is
that macroeconomic variables affect the mean-variance inputs across time. Yilmaz
(2010) provides evidence for the improved covariance estimation using the DCC-
GARCH model for a global minimum variance portfolio by using data from the
Istanbul Stock Exchange.

The Model

I start by presenting the model and the allocation problem. The returns of securities are
expressed as Ri,t+1:=(Pi,t+1−Pi,t)/Pi,t for i=1,…,n securities and Pi,t is the price of asset
i at time t.

Mean-variance analysis holds if either the investor has quadratic utility or the returns
of risky assets are normally distributed, ReN μ;Σð Þ , where μ is a vector of mean
returns and Σ is the covariance matrix. The assumption of having normally distributed
of returns implies that the expected return is equal to the mean of the historical sample:
E[Ri,t+1]=μi, i=1,…,n.

The variance and covariance of returns are specified as:

Var Ri;tþ1

� � ¼ E R2
i;tþ1

h i
− E Ri;tþ1

� �� �2 ¼ σ2 ¼ σii; Cov Ri;tþ1;Rj;tþ1

� � ¼ Σij; i; j ¼ 1;…; n

The covariance matrix (Σ) is a n×n symmetric matrix with the main diagonal being
the variance of the individual securities. The covariance of two random variables
satisfies the following equality: |σij|≤σiσj, where σi is the standard deviation of return
of asset i. The same follows for asset j.

Now, let us consider an investor who wishes to allocate optimally a budget
amount of mt≥0, mt∈ℝ at time t. All the investments in stocks are non-negative
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e.g. xi≥0, xi∈ℝ. The investment budget is then equal to mt ¼ ∑
i¼1

n

xiPi;t . Furthermore,

the investor requires that all available capital is invested in the appropriate securities so

that ∑
i¼1

n

ψi;t ¼ 1; where ψ=(ψi,…,ψn),ψi≥0,ψ∈ℝ is a vector of weights representing

the percentage share of the total budget invested in security i. Every weight is defined as:

ψi=xiPi,t/mt. The value of the current portfolio at time t is mt ¼ Π t ¼ ∑
i¼1

n

xiPi;t: The

value of next period’s portfolio is represented as: Π tþ1 ¼ ∑
i¼1

n

xiPi;tþ1: Intuitively the

return of the portfolio is expressed as: Rπ;tþ1 ¼ Π tþ1−Π tð Þ=Π t ¼ ∑
i¼1

n

ψi;tRi;tþ1:

Following this, the expected return and variance of the entire portfolio respectively are:

E Rπ;tþ1

� � ¼ X
i¼1

n

ψi;tμi;

Var Rπ;tþ1

� � ¼ X
i¼1

n X
j¼1

n

ψi;tσijψ j;t ¼ Var ψi;tRi;tþ1

� �þ Var ψ j;tR j;tþ1

� �þ 2Cov Ri;tþ1;Rj;tþ1

� � ¼ σ2
π;

The objective is to minimize the variance of expected returns subject to a lower
bound target expected return and the usual constraints:

minπ∈ℝnVar Rπ;tþ1

� �
s:t
X
i¼1

n

ψi;t ¼ 1;ψi≥0; E Rπ;tþ1

� � ¼ X
i¼1

n

ψiRi≥ l2

ð1Þ

where l2 is the lowest acceptable expected return. This problem has a quadratic
objective function and linear constraints. Equation (1) can be solved using the
Lagrange method or by using quadratic programming with the algorithm suggested
by Goldfarb and Idnani (1983). The optimal weights of each asset can be obtained by
solving the problem in Eq. (2) using the Lagrange multiplier method. The Lagrangian is
provided for the case of n assets:

ð2Þ

where l2 is the minimum required return, Ri is the expected return of asset i, λ and ϕ are
Lagrange multipliers. The reason why one half is added in front of the portfolio variance
expression is that it makes the solution more tractable and easier to work with. By forming
the partial derivatives with respect to every asset weight ψi, n+2 equations have to be
solved for n+2 unknowns:ψi=1,…,n, λ and ϕ. Thus the solution to theMarkowitz problem
involves solving the system of linear equations and solving for every individual weight and
the Lagrange multipliers. I used numerical methods in Matlab to find the optimal combi-
nation of assets and weights.

Investors need plausible predictions of the future development of stock prices, their
correlations and variances. Stock returns are assumed to be random variables, varying
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over time. Then how can the terminal value of the investment be maximized if it is
stochastic? In order to partially resolve this problem I relied on the expected value of
investments. One formulation of the problem could be tomaximize the difference between
the current investment amountm and the future expected value of the portfolio. By doing
so, the investor only focuses on the return but neglects the associated risk. Uncertainty has
to be factored in the optimization process because the expected value may not be hit
exactly, meaning that the actual difference between the current and terminal investment
value may be smaller or greater than expected by the investor. This “error”may occur due
to the dispersion of all the possible future returns in our portfolio. The key task is to see
whether it is possible to “hit” the expected value with greater certainty e.g. reduce the
dispersion of possible outcomes. The essence of MV optimization theory is to find the
trade-off between risk and return that is optimal for an invetor.

Data

This paper uses in total 5,796 daily observations on 30 different traded securities and
the S&P 500 index for the period 4 March 1990 to 5 March 2013. This index is also
used as a benchmark, since it includes mostly large cap stocks which are comparable to
the 30 equities that I consider in the optimization. The stocks have been chosen based
on liquidity and trading activity. The daily closing prices are adjusted for splits and
dividends. Summary statistics and the list of equities are available in Table 4.

A quarter of the included large-cap companies were publicly offered after 1990. This
means that eight of the considered companies have missing data. Missing observations
for some variables may cause serious problems when estimating the expected returns
and variances and when backtesting the strategies. I dealt with this problem by using the
ECM (expected conditional maximization) algorithm with the maximum likelihood
estimation (Xiao-Li & Rubin, 1993). All the considered stocks are also grouped into
specific sectors. This classification enabled me to implement additional group con-
straints. The industrial groups are: technology, aviation & defense, consumer goods,
financial services, telecommunications, energy and pharmaceuticals.

Throughout the period the hard impact of the Dot-com bubble from the 2000s and
the global financial crisis from 2008 has had a very strong impact on the equity prices,
leading to a big decline in stock prices and indices.

Estimation of Returns and Covariances

Estimation of the expected returns and variance of assets are focal ingredients in the
optimization model. Variance estimation based on historical values yields tolerable
results that are close to reality. Nevertheless, proper return estimation based on histor-
ical samples is not accurate and is almost impossible due to estimation error. For that
reason, I contributed with an alternative estimation model. The approach takes a
combination of the CAPM prediction, historical means and investor’s personal confi-
dence in the future price movement of a particular stock.

Since its introduction, the CAPM has been both highly admired and criticized. On
one hand, its fame stems from the easy to understand predictions about asset returns
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and also the simplifying assumptions. In the presence of a risk-free asset, the optimal
set becomes a straight line originating from the risk-free rate that intersects the efficient
frontier. The optimal portfolio can be seen as a combination of a riskless asset and risky
portfolio that is tangent to the efficient set. Such an efficient portfolio can also be
constructed by combining a risk-free asset and a mutual fund. The Sharpe-Lintner
CAPM takes the following form:

E Ri½ � ¼ Rf þ βi;m E Rm½ �−Rf

� �
; i ¼ 1;…; n; βi;m ¼ cov Ri;Rmð Þ

σ2 Rmð Þ
Assets that are uncorrelated with the market (βi,m=0) have an expected return of the

risk-free rate, Rf. For those that are correlated with the market, the risk premium is
determined by the market β. It measures the sensitivity of the asset return in relation to
the market. The expected return of a market portfolio has a β=1. The predictions of the
model are straightforward and the main insight is that the return of an individual asset is
only a function of the market and Rf. Other models have been developed to account for
additional factors that have an influence on the expected return of assets (see “Three-
factor” model by Fama and French (1996)).

In order to test the predictions of the CAPM, the model can be estimated either by
cross-section or time series regressions. I estimated the time-series version of the
model. This version of the CAPM includes an intercept α introduced by Jensen
(1968). The econometric model takes the following form:

Rit−Rft ¼ αi þ βi;m Rmt−Rft

� �þ εit; i ¼ 1;…; n; t ¼ 1;…; k ð3Þ

where εit is random noise with E[εi]=0, E[εiεj]=σij, i,j=1,…,n and σij is called non-
systematic variance (residuals). A brief glance at the original CAPM equation shows
that α should not be significantly different from zero. Any non-zero values are assumed
to be due to disequilibrium in the market which does not last for long. A lot of current
portfolio management is devoted to looking for exploitable positive alpha assets on the
market. If an asset has a positive alpha, this signals that there is an available excess
return, unrelated to the market. I estimated the parameters using Maximum-Likelihood
(ML). The estimation window is from 5March 2007 until 4 March 2013. For this period
there is no missing data for any of the stock returns. However, when performing the
backtesting of the considered strategies in the penultimate section, some of the stocks
were not available in the beginning of 1990. Thus when setting the rolling efficient
frontier some of the assets are excluded from the portfolio analysis since they were not
on the stock exchange. I used the ECM algorithm with the ML estimation to deal with
the missing data issue for some stocks. The approach does not discard stocks with
incomplete data but simply tries to estimate the moments conditional on the available
data. Most of the missing data is from the financial industry where most of firms became
public in the late nineties. The multivariate normal linear regression model takes the
form: Z∼N Xmw;Cð Þ , where Z is a vector of independent random variables,m=1,…,n
observations, is a Xm design matrix including the explanatory variables, C is the
covariance matrix and w is a p dimension vector of parameters. Furthermore the
regression residuals are assumed to be normally distributed with zero mean and a n×n
covariance matrix C for each observation fromm. The parameter values for C and w are
obtained by maximizing the log-likelihood function of the model.
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The estimated model in Eq. (3) is run separately for all 30 equities. The adjusted β in
Table 1 is calculated as: Adj.β=0.67×β+0.33×1. The adjusted β captures the effect of
mean reversion towards the market average where β=1. In this paper I took the average
annualized yield rate of the 5 year Treasury bill as the risk-free rate. For the considered
6 year estimation period, Rf=2.16%. To obtain the expected market return, I used the
Thomson-Reuters estimate of 7.6 % year-to-date growth prospect for 2013. This value
of the expected annual market return enters the CAPM estimation. For the fundamen-
tally predicted returns, Ref, I used the company reports and analyst predictions for the
considered equities throughout the period.

Table 1 β and Re estimation (2007–2013) based on Rm,t+1=7.6% and Rf=2.16%

α β Adj. β σε Re RC RH

Equity Coeff. T-stat. Coeff. T-stat. Coeff. Coeff. Std. error Value Value Value

IBM 0.0005 −2.0437 0.739 −44.9037 0.818 0.01 −0.0019 0.11 0.067 0.153

AAPL 0.001 −2.137 0.959 −32.1954 0.963 0.0182 −0.0035 0.214 0.075 0.271

MSFT 0 −0.0951 0.913 −42.8472 0.933 0.013 −0.0025 0.081 0.072 0.027

TXN 0.0001 −0.2123 0.9 −36.7672 0.924 0.0149 −0.0028 0.061 0.072 0.04

DELL −0.0004 −0.7263 0.973 −29.4197 0.972 0.0202 −0.0038 0.015 0.074 −0.076
INTC 0.0001 −0.3573 1.019 −45.54 1.003 0.0136 −0.0026 0.092 0.076 0.051

GOOG 0.0003 −0.8747 0.899 −35.3563 0.923 0.0155 −0.003 0.087 0.072 0.107

AMZN 0.0013 −2.056 1.084 −27.9053 1.045 0.0237 −0.0045 0.173 0.08 0.335

HPQ −0.0005 −1.0223 0.934 −33.0412 0.946 0.0172 −0.0033 0.004 0.073 −0.095
ORCL 0.0005 −1.3172 0.995 −44.6718 0.987 0.0136 −0.0026 0.093 0.076 0.135

SAP 0.0004 −1.0314 0.963 −41.2163 0.966 0.0143 −0.0027 0.097 0.075 0.114

LUV −0.0002 −0.4153 0.918 −28.1618 0.936 0.0199 −0.0038 0.038 0.072 −0.034
BA 0 −0.1177 0.973 −42.3386 0.972 0.014 −0.0027 0.06 0.074 0.008

LMT 0 −0.0288 0.674 −31.8144 0.775 0.0129 −0.0025 0.041 0.064 0.017

NOC 0 −0.1328 0.751 −36.8962 0.826 0.0124 −0.0024 0.067 0.067 0.03

GE −0.0002 −0.4422 1.168 −46.3676 1.101 0.0154 −0.0029 0.05 0.081 −0.026
PG 0.0002 −0.7563 0.552 −38.4217 0.694 0.0088 −0.0017 0.046 0.06 0.063

UL 0.0004 −1.1328 0.701 −33.7365 0.793 0.0127 −0.0024 0.089 0.065 0.113

KO 0.0004 −1.4426 0.552 −33.2109 0.694 0.0101 −0.0019 0.09 0.06 0.115

PEP 0.0002 −0.6907 0.509 −32.1713 0.666 0.0096 −0.0018 0.061 0.058 0.063

GS −0.0002 −0.3218 1.442 −42.7631 1.282 0.0206 −0.0039 0.082 0.091 −0.025
UBS −0.0009 −1.459 1.783 −45.2621 1.507 0.024 −0.0046 −0.057 0.103 −0.21
DB −0.0007 −1.1797 1.886 −51.9078 1.575 0.0222 −0.0042 0.043 0.107 −0.153
BLK 0.0003 −0.7114 1.392 −46.263 1.249 0.0184 −0.0035 0.105 0.09 0.103

T 0.0002 −0.5592 0.778 −44.9537 0.843 0.0106 −0.002 0.03 0.068 0.058

VZ 0.0003 −1.1085 0.707 −38.8463 0.797 0.0111 −0.0021 0.061 0.065 0.1

XOM 0.0002 −0.6618 0.95 −55.4329 0.957 0.0104 −0.002 0.081 0.074 0.064

ACT 0.0007 −2.0088 0.627 −27.2171 0.744 0.014 −0.0027 0.185 0.063 0.203

GSK 0 −0.0108 0.623 −31.5916 0.741 0.012 −0.0023 0.096 0.062 0.019

NVO 0.001 −2.219 0.681 −24.6917 0.779 0.0168 −0.0032 0.201 0.065 0.262
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In Table 1 most of the α estimates are near zero as expected, even though some of
the stocks display α values that are significantly different from zero. All t-statistics are
highly significant at the 1 % level. As expected the financial services firms are by far
the riskiest with β >1. This means that in good times these stocks shall outperform the
market and in bad times experience greater drawdowns than the market. Column five of
Table 1 includes the standard deviation of the residual. This is an estimate of non-
systematic risk.

This section of the paper shows how estimates could be obtained for a one-period
decision. This is done p times depending on how often the investor wants to rebalance.
My approach involves a novel combination of several inputs for the final expected
return estimation. I devised a methodology where the expected return for a given stock,
Ri
e, is determined by the weighted average of the historical average return, the expected

return obtained from the CAPM and finally a confidence weighted prediction based on
fundamentally predicted return of the equity. The model is:

Re
i ¼

RH ;i
RH ;i

�� ��
RH ;i

�� ��þ RC;i

�� ��
" #

þ RC;i
RC;i

�� ��
RH ;i

�� ��þ RC;i

�� ��
" #

1þ γ
þ Ref

i γ
2

ð4Þ

where RH,i is the average historical return for a given range of past values, RC,i is the
CAPM estimated return, Ri

ef is the expected return based on fundamentals, γ=0,…,1 is
a variable that indicates confidence/agreement with the fundamentally predicted return,
Ri
e is the estimated return that enters the MV optimization and the terms in the

square brackets are the relative weights. The absolute values are taken so that
the weights have meaningful signs and are always positive. Estimates for the
fundamentally predicted return could come from various information sources,
analyst reports, etc. When γ=0 (disagreement with the analyst outlook), Eq. (4) reduces

to RH ;i
RH ;ij j

RH ;ij jþ RC;ij j
� �

þ RC;i
RC;ij j

RH ;ij jþ RC;ij j
� �

. However if γ≠0, then Ri
ef gets weight in the

final expected return value that is to be used in the mean-variance optimization. As the
investor becomes more confident (γ increases) about the fundamentally predicted return
(Ri

ef), the more Ri
e approaches Ri

ef. In the case where γ=1, the equation becomes an
average of the two right-hand side fractions in Eq. (4). This property is formidable as it
never ignores the historical average and the CAPM prediction but could potentially
discard Ri

ef if such estimates are not available or the investor does not share the same
view on future stock returns.

Portfolio Analysis and Backtesting

I initially assumed that the representative investor holds an equally-weighted
portfolio, consisting of all 30 assets. This means that the weight in every asset
is ψi ¼ 0:033 for i=1,…,30. The task is to find a more profitable strategy than
the equal weight portfolio. For example, an investor could hold an index such as
the S&P 500. These options are tested and compared to the proposed strategies.
The first one is to always hold the portfolio that maximizes the Sharpe ratio
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(Sharpe, 1964). This is used when the purpose is to maximize the gross portfolio
return. Alternatively, the objective could be to maximize the excess return over a
benchmark index or portfolio, which is the Max I proposition. Both of these
performance metrics are widely used and thus provide a good benchmark statistic
(Bacon, 2012). Both are defined as:

Sπ ¼ E Rπ;t−Rf ;t

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Rπ;t−Rf ;t

� �q Iπ ¼ E Rπ;t−Rb;t

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Rπ;t−Rb;t

� �q
where Rπ is the portfolio return, Rf is the risk-free rate, the nominator is the
expected excess return and Rb is the return of a selected benchmark portfolio.
Both criterions are similar but S measures the excess return over Rf, whereas I
takes the excess return over a benchmark which in this case is the market (S&P
500). The nominator is also called “active return” and the standard deviation of
the active return - “tracking error”. A potential caveat is the hard comparison
between two ratios. For example there is no indication how much better is S=
1.2 vs. S=0.8.

The strategy considered in this paper is that the investor re-optimizes the portfolio
quarterly and estimates the expected returns and covariance matrix repetitively. Having
these inputs, the next step is to choose the optimal portfolio according to a criterion. I
incorporated several constraints which limit excessive investment exposure in specific
groups of assets:

1. Upper bound group constraints: Up to 60 % of the investment budget can be
invested in Technology (Gtech) stocks; up to 20 % can be invested in Aviation &
Defense (Gad) equity and up to 15 % in stocks of Financial services (Gfs) firms.

2. Lower bound group constraints: At least 10 % of the investment budget is to be
invested in each of the following groups: Technology (Gtech), Aviation & Defense
(Gad) and Financial services (Gfs).

3. Limits: Up to 30 % of the entire budget can be invested in a single equity and no
negative weights are allowed.

4. Transaction costs are modeled linearly as a function of the current equity price, τ=
f(Pi,t). Buying and selling costs are assumed to be the same and are set to 12 basis
points. These are often seen costs that are equal to the commission over the stock
price that the investor buys/sells.

Gtech=(Asset1,…,Asset11), Gad=(Asset12,…,Asset16) and Gfs=(Asset21,…,Asset24)
are the respective groups that include assets from the same industry. The assets can be
seen in Table 4. The mathematical formulation of the investment rules are: Gtech·v ′≤
0.5;Gad·b′≤0.3 and Gfs·v′≤0.2, where v={ψ1,…,ψ11}, b={ψ12,…,ψ16} and c={ψ21,
…,ψ24} are vectors with the respective weights for each group. The limits constraint is
0≤ψ1,…,30≤0.30. Transaction costs are an important ingredient that can heavily influ-
ence the asset allocation solution. A possible extension of my framework could be to
incorporate non-linear transaction costs.

For the estimation of the covariance matrix of stock returns, I adopted an improved
covariance matrix estimator. This paper builds upon the framework of Ledoit and Wolf
(2003) and uses their improved shrinkage estimator. Their estimate is a weighted
average of two alternative covariance estimators: the sample covariance matrix and a
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single-index matrix1. This approach is known as shrinking. The general form of the

shrinkage covariance estimator is bS ¼ k
T I þ 1− k

T

� �
S , where bS , the improved covari-

ance matrix, is applied in the paper, S is the sample covariance estimate, I is the
covariance matrix derived from a single-index model of stock returns, and k

T ∈ 0; 1½ � is
the shrinkage intensity (see Ledoit and Wolf (2003)). I took the square root of the
diagonal entries, σii from the covariance matrix as the estimated standard deviations of
the returns. The shrinkage covariance estimator in this paper has shown to always
produce an invertible and well-specified covariance matrix, which is of big practical
importance. The only component that is crucial in practice is the estimation of the
shrinkage intensity. Ledoit and Wolf (2003) obtain an estimate of around 0.75, which is
also the value I used. This would indicate that there is roughly three times more
estimation error in the sample covariance matrix than bias in the single-index model
covariance matrix. The proposed estimation approach also permits to account for extra
market covariance without the need of introducing a new factor into an index model.

Constrained Optimization

Next, I studied the impact of the four constraint rules on the asset allocation problem in
the MV framework. In Fig. 1 the efficient frontier with a risk-free asset does not extend
until the vertical axis. The reason is that the investor imposes the limit constraint that at
least 10 % shall be invested in each of the three groups of stocks. The minimum risk
portfolio on the dotted efficient frontier includes 70 % investment in a risk-free asset
and 30 % invested in risky assets. The “upper/lower bound group” constraint is
binding.

The efficient frontier on the left side of Fig. 1 incorporates transaction costs. The
global minimum variance portfolio in the presence of a risk-free asset has a return, Rπ=
0.55% and standard deviation, σπ=7.83%. When an investment in a riskless asset is not
possible then the lowest possible standard deviation that could be attained is σπ=
18.01% and Rπ=3.50% as can be seen in the left panel of Fig. 1.

I proceeded with the analysis of the proposed strategies when transaction costs are
considered. The Sharpe portfolio offers a return of 14.45 % and risk of 23.34 %,
indicated by the point on the left panel of Fig. 1. By imposing the constraints, the
expected return falls by 6.99 % points and risk decreases by only 0.02 % compared to
the right side of Fig. 1.

Table 2 outlines the initial equal-weighted portfolio and presents the characteristics
of the maximized portfolios. The initial portfolio is dominated by Max S. First, the
maximized Sharpe portfolio offers a much greater return for a lower level of volatility.
Second, theMax I portfolio has the lowest risk compared to the equal weights andMax
S and offers almost twice as small volatility. Risk-averse investors would find the
strategy of following the Max I portfolio more attractive.

1 Their shrinkage estimator aims at attaining an optimal trade-off between an unbiased and a biased estimator.
One way this could be done is by appropriately weighing (shrinking) both estimators. This idea is in the base
of Ledoit and Wolf (2003). This procedure is better known as shrinking the unbiased estimator towards a fixed
target that is in fact represented by the biased estimator.
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In contrast to the case, where no constraints are implemented the Sharpe ratio
fell from almost 0.9 down to around 0.6 after imposing the constraints. The same
can be said for the information ratio portfolio. The maximum is around one versus
0.6. This hit is primarily due to the lower and upper bounds on stock holdings and
the transaction costs. These rules limit the weights distribution but do not alter
significantly the risk profile. In comparison to the equal weight portfolio there is
room for improvement. Even with investment constraints the proposed strategies
are superior.

Strategy Backtesting

This last section of the paper presents the historical performance of the strategies
when applied continuously through the sample period from March 1990 to March
2013. It is important to note that in order to implement the novel return estimation
model in Eq. (4) the investor has to specify Ri

ef and the confidence level γ for
each security at every re-balancing point. Not all estimates are available because
not all equities were listed on the stock exchanges since the beginning. For that
reason, the algorithm that I applied uses 504 days (equivalent to two trading years)
of historical stock data for the estimation of expected returns in the rolling
window. Each efficient frontier is formed by estimating 300 optimal portfolios.
In 1992 the allocation problem combined only 23 equities since seven from the
asset universe were not available. By 2013 all the assets enter the optimization. In
Fig. 2 the performance of the Sharpe strategy outperforms the market in cumulative
terms and only displays slightly suboptimal performance around 2001.

Figure 2 shows that before the dot-com bubble burst, efficient portfolios at the high
end of the curve offered very high return for a given level of risk as displayed by the
upper area of the surface. The cumulative value of a dollar invested in the beginning of
the period is shown on the right. The financial performance of the market and the
chosen portfolio has not been smooth but nevertheless significantly outweighs the
risk-free holdings yield. By investing a single dollar in a portfolio that follows the
Max S strategy, an investor would have earned today around eight dollars. The
efficient frontier varies considerably in shape across time, so when using the Max
S portfolio the investor would have to heavily rebalance and be exposed to
different levels of risk. The Sharpe ratio is a more aggressive strategy that would
appeal more to risk-lovers.

Finally, I assess the performance of the information ratio portfolio. The main
difference between S and I is that the optimal region is much more stable in the
latter case. Figure 3 displays the “calm” dark region in the lower part of the
efficient frontier. It is evident that the Max I portfolio has the same risk level

Table 2 Portfolio characteristics for different targets with all constraints

Portfolio strategy Max S Max I ψi ¼ 0:033

Return, Rπ 14.45 % 6.67 % 8.69 %

Std. deviation, σπ 23.34 % 11.23 % 24.13 %
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across time and the returns follow closely the market performance. If the return
of the portfolio is zero it means that it is equivalent to holding the market. By
investing a single dollar in the beginning of the period an investor could have
made 5.4 dollars.

Table 3 reports the arithmetic mean and standard deviation of returns per
year in columns one and two. The final column indicates the maximum
drawdown of the strategy – the maximum value loss that has been incurred
over the entire period. The offered strategies have shown formidable results and
even by incorporating constraints, the performance is superior to the market and
the risk-free investment. The Sharpe ratio strategy entails greater risk by having
higher standard deviation than the Info ratio strategy, the market and the risk-
free asset. The Max S portfolio dominates the other investment options by also
offering the highest average expected return. Tables 5 and 6 contain the exact
weights on the selected equities in constrained and unconstrained portfolios for
both Max S and Max I portfolios.

Conclusion

This research paper considers the problem of optimal asset allocation faced by a
representative investor. The key question is whether an investor can do better than
simply holding an equal weight or a market portfolio. I provided an affirmative answer
to this question by proposing two separate strategies. These are the maximized Sharpe
and information ratio portfolios.

In portfolio analysis one of the main problems is to obtain sound predictions
of expected future returns and covariance among the assets. I contributed by
proposing an alternative model for the estimation of expected returns. The
approach takes weighted averages of the historical return, the CAPM predicted
return and investor specified return outlook. I estimated the covariance matrix
by using an improved shrinkage estimator that performs better than the sample
covariance matrix. I incorporated four sets of constraints and study their impact
on the final performance of the strategies. As a result, both suggested portfolios
(Maximized Sharpe and information ratio) yield positive results and provide
evidence for superior returns, compared to other alternative investment options
such as holding a market index or investing in a risk-free asset. The final
choice between the two strategies depends on the risk preferences of the
investor.

Table 3 Performance of strategies

Investment Average return Std. deviation Geometric return Max. Drawdown

Max S 12.26 % 21.75 % 10.21 % 58.54 %

Max I 9.83 % 18.37 % 8.36 % 58.40 %

Rf 4.30 % 0.92 % 4.37 % 0.00 %

S&P 500 5.99 % 16.89 % 4.58 % 62.17 %
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Appendix

Table 4 List of equities, Yearly historical average returns, std. deviations and data range

Ticker Stock Classification Mean ret. Std. dev. Data range

1 IBM IBM Corp. Technology 0.107 0.291 2013–1990

2 AAPL Apple Inc. Technology 0.174 0.494 2013–1990

3 MSFT Microsoft Inc. Technology 0.171 0.338 2013–1990

4 TXN Texas Instruments Inc. Technology 0.136 0.445 2013–1990

5 DELL Dell Inc. Technology 0.237 0.509 2013–1990

6 INTC Intel Corp. Technology 0.135 0.408 2013–1990

7 GOOG Google Inc. Technology 0.249 0.342 2013–2004

8 AMZN Amazon.com Inc. Technology 0.322 0.674 2013–1997

9 HPQ Hewlett-Packard Co. Technology 0.081 0.396 2013–1990

10 ORCL Oracle Corp. Technology 0.18 0.52 2013–1990

11 SAP SAP AG Technology 0.032 0.457 2013–1998

12 LUV Southwest Airlines Co. Aviation & Defense 0.108 0.384 2013–1990

13 BA Boeing Co. Aviation & Defense 0.075 0.312 2013–1990

14 LMT Lockheed Martin Corp. Aviation & Defense 0.116 0.276 2013–1995

15 NOC Northrop Grumman Corp. Aviation & Defense 0.143 0.282 2013–1990

16 GE General Electric Co. Aviation & Defense 0.094 0.294 2013–1990

17 PG Procter & Gamble Co. Consumer goods 0.121 0.239 2013–1990

18 UL Unilever PLC Consumer goods 0.115 0.245 2013–1990

19 KO The Coca-Cola Co. Consumer goods 0.114 0.238 2013–1990

20 PEP Pepsico Inc. Consumer goods 0.114 0.249 2013–1990

21 GS The Goldman Sachs Group Inc. Financial services 0.066 0.42 2013–1997

22 UBS UBS AG Financial services −0.03 0.445 2013–1998

23 DB Deutsche Bank AG Financial services 0.007 0.453 2013–1998

24 BLK BlackRock Inc. Financial services 0.228 0.391 2013–1999

25 T AT&T Inc. Telecommunications 0.083 0.271 2013–1990

26 VZ Verizon Communications Inc. Telecommunications 0.078 0.263 2013–1990

27 XOM Exxon Mobil Corp. Energy 0.118 0.241 2013–1990

28 ACT Actavis Inc. Pharmaceuticals 0.125 0.401 2013–1993

29 GSK GlaxoSmithKline PLC Pharmaceuticals 0.097 0.274 2013–1991

30 NVO Novo Nordisk A/S Pharmaceuticals 0.205 0.291 2013–1990

31 ^FVX 5 Year Treasury yield Risk-free rate 0.045 0.001 2013–1990

32 ^IXIC NASDAQ Index 0.087 0.244 2013–1990

33 GSPC S&P 500 index Index 0.067 0.185 2013–1990
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Table 5 Composition of unconstrained Maximum Sharpe and information ratio portfolios

Ticker AAPL KO ACT NVO AMZN GS BLK XOM GE IBM Total:

Max S, ψ in % 19.13 0.78 37.99 42.1 0 0 0 0 0 0 100

Max I, ψ in % 18.51 0.7 17.81 20.04 4.49 2.52 8.38 13.67 1.72 12.17 100

Table 6 Composition of constrained Maximum Sharpe and information ratio portfolios

Ticker AAPL KO ACT NVO AMZN GS BLK BA NOC LMT IBM Total:

Max S, ψ in % 15.13 3.33 24.88 30 3.33 3.33 6.67 3.33 3.34 3.33 3.33 100

Max I, ψ in % 20.96 3.33 12.97 23.65 3.33 3.33 6.67 3.33 3.34 2.11 3.33 100 %

MSFT INTC SAP ORCL LUV GE VZ XOM

2.23 1.00 1.28 1.28 1.22 0.56 2.72 3.33
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