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Abstract. We compare a number of models of post War US output growth in
terms of the degree and pattern of non-linearity they impart to the conditional
mean, where we condition on either the previous period’s growth rate, or the
previous two periods’ growth rates. The conditional means are estimated non-
parametrically using a nearest-neighbour technique on data simulated from the
models. In this way, we condense the complex, dynamic, responses that may be
present in to graphical displays of the implied conditional mean.
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1. Introduction

The last decade has seen the advent of a large number of non-linear time series
models to explain the business cycle characteristics of US GNP. These models
can generally be given a regime-switching interpretation. The simplest con-
ceptualisation is of an economy characterised by two regimes, say, expansion
and contraction, which are modelled as distinct linear autoregressive processes,
along with a mechanism governing the movement of the economy between the

* We are grateful to Dick van Dijk, Adrian Pagan and two anonymous referees for help-
ful comments. Financial support from the UK Economic and Social Research Council under
grant L116251015 is gratefully acknowledged by the first author, and from Capes-Brazil and
UNISINOS by the second author. The computations reported in this paper were performed using
code written in the Gauss Programming Language. We are grateful to Don Harding for providing
the code to simulate the Hamilton (1989) and Durland and McCurdy (1994) models.
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regimes. The models include the Markov-switching autoregressive model (MS-
AR) of Hamilton (1989) and various extensions (for example, to more states,
allowing duration dependence in the transition probabilities); threshold and
smooth transition autoregressive models, such as Tiao and Tsay (1994), Potter
(1995); and models with a continuum of ‘regimes’, such as the current depth
of recession (CDR) models (Beaudry and Koop, 1993) and ‘floor and ceiling’
models (Pesaran and Potter, 1997).

Whilst traditional econometric approaches to model evaluation emphasize
the fit of the model to the sample path of the actual data, foremost in the eval-
uation of the models just described has often been an assessment of their ability
to characterize certain features of the business cycle, such as their ability to re-
plicate the timings of turning points and the durations of expansions and con-
tractions observed in the data, based, for example, on the NBER business cycle
chronology of peaks and troughs.!

The non-linear time series models are of course subjected to testing, partic-
ularly against linearity, to see whether the non-linear structure is necessary, but
for certain of these models, this is complicated by the so-called ‘Davies prob-
lem’ (Davies, 1977, 1987), whereby nuisance parameters are unidentified under
the null hypothesis of linearity, and standard tests with conventional critical
values are invalid.? Moreover, as noted by Pagan (1999b), tests may sometimes
reject linearity in favour of the non-linear model because of a ‘few influential
points in the data’. The implication is that for the majority of the data points
the non-linear parts of the model are largely irrelevant and are picking up out-
liers. Testing of one non-linear model against another is rarely done, and such
comparisons as there are between non-linear models usually rest on out-of-
sample assessments of forecast performance. However, empirical evaluations
of the out-of-sample performance of one non-linear model against another are
often based on small numbers of forecasts and may be very dependent on the
forecast period used, just as the dependence of comparisons between non-
linear and linear models on the state of the economy has been documented by
a number of authors (e.g., Tiao and Tsay, 1994, Clements and Smith, 1999).

Impulse response analysis is often applied to multivariate linear auto-
regressive models, i.e., vector autoregressions (VARs), to summarise their often
complex dynamics. Thus, the impact of a shock through time can be traced out.
Similar types of analyses can be applied to non-linear models: e.g., Koop, Pe-
saran and Potter (1996) develop generalized non-linear impulse response func-
tions (GIs) (see also Gallant, Rossi and Tauchen, 1993) to analyse the response
of non-linear models to shocks. The application of impulse response analysis
to non-linear models is complicated by the fact that the impact of the shock is
dependent upon the sign and size of the shock, and the ‘state’ the process is

! Pagan (1999a) and Harding and Pagan (2001) have criticised the comparison of the properties
or features of the states calculated by models such as the MS-AR model, with the features of the
NBER-dated phases, on the grounds that the MS-AR model states are not in principle the same as
the NBER classical cycle phases. Nevertheless, comparisons of this sort are widespread in the lit-
erature.

2 Hansen (1996b) and Hansen (1992, 1996a) have proposed valid tests for threshold models and
MS-AR models respectively, and for models where the movement between regimes is ‘smooth’,
Taylor approximations can be used to generate test statistics with standard dstributions (see, e.g.,
Luukkonen, Saikkonen and Terésvirta, 1988).
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in when the shock hits — tracing out the effects through time of a single nor-
malised shock is inappropriate. Consequently, Koop et al. (1996) consider the
distribution of responses using Gls. A recent paper by van Dijk, Franses and
Boswijk (2000) extends the application of impulse response analysis to non-
linear models by considering ways of measuring the speeds of absorption of
shocks, rather than just their persistence or magnitude.

GIs and related approaches are a useful way of shedding some light on the
often complex dynamics inherent in non-linear models, a point stressed by van
Dijk et al. (2000). We adopt an alternative approach in this paper, which has
the same aim. We compare the models in terms of the degree and pattern of
non-linearity they impart to the conditional mean, E[y, | y;—1,...y,—,], Where
p = 1 or2, to allow plotting of the conditional mean function (or surface). Thus
we condense the complex, dynamic, non-linearities that may be present in the
model in to one or two plots of the implied conditional mean. These are esti-
mated non-parametrically (as explained in section 3), and show how the model
prediction depends on the present (and past) growth rate(s). This is a useful
summary measure, considered by Pagan (1999b) with p = 1, only, and applied
to the Pesaran and Potter (1997) “floor and ceiling’, the Beaudry and Koop
(1993) CDR, the Potter (1995) SETAR and a three-regime MS-AR model (as
given in Hess and Iwata, 1997), and applied by Harding and Pagan (2001) to
the Hamilton (1989) two-regime MS-AR and the Durland and McCurdy (1994)
MS-AR with duration dependence (again with p = 1 only).

So our method of comparing the models is to estimate conditional mean
functions on data simulated from the estimated models. We view this approach
as being complementary to the calculation of GIs, and to the more common
approach of examining whether certain business cycle features of the simulated
data from the estimated models matches up with the features we observe in the
actual data: see, e.g., King and Plosser (1994), Watson (1994), Hess and Iwata
(1997), Pagan (1997b, 1997a, 1999a), Harding and Pagan (2001), Clements and
Krolzig (1999) and Galvédo (2000). The conditional mean functions are more
of a ‘broad-brush’ approach, and do not allowed a detailed examination of
the models’ ability to reproduce specific features of the business cycle, but by
way of compensation, do not have the attendant difficulties of deciding how to
date turning points to define the expansion and contraction phases, or of how
to choose the features to match.

In section 2 the salient features of the models are described, to facilitate the
discussion in section 4 of how these give rise to the different types and degrees
of non-linearity in the conditional mean functions. Section 5 concludes.

2. Models

In line with the recent literature, the linear model is a first-order autoregression
in (100 times) the difference of the log of GNP, denoted y,, which estimated for
the period 1947:3 to 1997:1 yields:

y, = 0.5299 + 0.3428y,_1 + &

with the estimated standard error, o, = 1.007, and ¢, assumed to be iid. Then,
of course, E[y, | Y;—1 = yi—1] = ay,—1 where oo = 0.3428, and « does not depend
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on Y, ;. The conditional expectations for the non-linear models depend on the
past of the process.

2.1. Simple threshold models

Threshold autoregressive (TAR) models suppose the series can be modelled
as a number of distinct regimes, where the regimes are characterised by differ-
ent conditional distributions of the process, each parameterised by an auto-
regression. For the self-exciting TAR (SETAR model), the regimes depend
on observable lagged values of the process.

When there are two regimes, the process is in regime i = 1 at period ¢ when
Vi—a < r, and otherwise (y,_; > r) in regime i = 2:

yt:¢éi}+¢{i}y171+"'+¢1£i}ylfp+af:” 8i7f~|N(O’O-z'2)7 i= 172 (1)

where the parameters super-scripted by {i} may vary across regime. The orders
of the autoregressions may differ across regimes (so that p is the maximum lag

order and some of the ¢j{[} may be zero for some i).
The Potter (1995) model, as reported in Hess and Iwata (1997), is:

y, = —0.0071 + 0.302y,_; — 0.600y,_» + 0.028y,_5 + &1, if yr_2 <0

v =0.0039 + 0.326y,1 +0.195p,_5 — 0.060y,_s + &2, if y2 >0

where the regime 1 standard error, oy =0.0121 and o, = 0.0088, with E[¢;,&,] =
0. The estimation period was 1947:1 to 1994:2, and y, is the difference of the
log of GDP. The data simulated from this model is multiplied by 100.

The Tiao and Tsay (1994) SETAR model has four regimes:

y[ - —0015 - 1.076}/[,1 + €1t lf y[71 < y172 < O
e =—0.006 +0.630y,—1 — 0.756y, > + & if yr—1 >y, 2 and y, 2 <0
e =0.006 +0.438y, | + &3 if y;1 <yroand y;» >0

Y =0.004 +0.443y, | + &4 if y 1 >y.2>0

and g1 = 0.0062, o, = 0.0132, g3 = 0.0094 and o4 = 0.0082, and the errors
are all independent and normally distributed. Regime 1 (y,—1 < y,—2 < 0) is
marked by negative growth two periods ago (¢ —2), worsening in period (¢ — 1),
and is characterised by an explosive root to bring the economy out of recession.
Regime 2 implies negative growth in # — 2, but improving in ¢ — 1. Regimes 3
and 4 are similar, and are operative when 7 — 2 growth was positive and either
slowed in ¢ — 1 or accelerated. The estimation period was 1947:1 to 1991:1, for
the difference of the log of GNP. (The data simulated from this model is mul-
tiplied by 100).

Van Dijk and Franses (1999) present a four-regime smooth TAR (STAR —
smooth transition autoregressive) model:
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yi = (0.394 + 0.460y, | +0.092y, 5)(1 — F(4y,_1))(1 — F(CDR,_5))
+ (=121 +0.442y, | +0.3462y, 2)F(Ay,_1)(1 — F(CDR,3))
+(0.360 — 0.530y,_1 — 0.963y,2)(1 — F(Ay,_1))F(CDR,_,)
+(=0.019 +0.744p, | — 0.235p, 2)F(Ay,_1)F(CDR, 5) + &

where:  F(Ay, 1) = (1 + exp[—500(4y,_1 — 0.250) /o4y, ,])"', F(CDR, 3) =
(1 +exp[—500(CDR,_> —0.064) /ocpr, ,]) ", & ~ IN(0,0.8672), the estimation
period is 1947:1 to 1995:2, and y, is the difference of the log of GDP multi-
plied by 100. With two transition functions (with transition variables 4y,
and CDR,_;), the model is viewed as distinguishing between four regimes,
generated by combinations of whether the level of output is above or below its
previous high (the CDR variable), and whether growth is increasing or
decreasing (the change in the growth rate, 4y,). The CDR variable is the
‘current depth of recession’ variable of Beaudry and Koop (1993), except that
CDR; = max{X,_;};>1 — X,, so the maximum is over past values only and not
the current: see the discussion in section 2.3.

2.2. Markov-switching models

The Markov-switching autoregressive (MS-AR) model of Hamilton (1989)
supposes contraction and expansionary regimes are different conditional distri-
butions of the growth rate of real GNP (as for the SETAR model), but where
the regime depends upon an unobserved state variable that follows a Markov
chain. The Hamilton (1989) model of the US business cycle fits a fourth-order
autoregression (p = 4) to the quarterly percentage change in US real GNP from
1953 to 1984:

Ve —u(s) = o (yim1 — p(si-1)) 4 - - - + o (yi—a — u(si-4)) + &, (2)

where ¢ ~ IN(0,0.768%), {o,...,04} = {0.014,—-0.058, —0.247, —-0.231} and
the conditional mean u(s;) switches between two states (although because of
the autoregressive structure, the intercept switches between 32 values):

() = W = —0.3577 if 5, = 0 (‘contraction’),
O =y = 1522 if s, = 1 (‘expansion’).

with transition probabilities poy = 0.7550, p;; = 0.9049 where:
2
pi=Pr(si=jlsi=10), Y py=1Vi,je{0,1}. (3)
=1

Some authors have relaxed the assumption of fixed transition proba-
bilities p;, and models with time-varying and duration-dependent transi-
tion probabilities have been considered (see, for example, Diebold, Rudebusch
and Sichel, 1993, Diebold, Lee and Weinbach, 1994, Filardo, 1994, Lahiri and
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Wang, 1994, and Durland and McCurdy, 1994). The former are modelled as
logistic functions (to bound the probabilities between 0 and 1) of economic
variables. When applied to modelling US GNP, the latter indicate that the
probability of transition out of recession is increasing in the duration of the
recession (see Durland and McCurdy, 1994, Filardo, 1994). The model we
include in our study is that of Durland and McCurdy (19942, which is as the
Hamilton (1989) model given above, but with g, ~ IN(0,0.761), {o, ..., 04} =
{-0.017,-0.092, —0.255, —0.246},

H = —-0.448 if Sy = O,
uis) = _ . _
U, =159 ifs,=1.

and:

exp(6.516 — 1.348d
Prsi =051 =0 AND Dy = d] = 1 eip(6.516 - 1.348)d)

exp(4.305 — 0.243d
Prlsi =151 = TAND Doy =d] =37 eyfp(4.305 - 0.243)d)

Here, D, is the number of periods the system has been in the current state (up
to some maximum, set to 9). The coefficient of d in p;; is much smaller (robust
standard error of 0.282, thus insignificant) than that on d in pg, implying du-
ration dependence in state 0 (such that pgy = 0.0036 for d > 9, compared to
0.994 for d = 1) but not state 1. The estimation period is identical to that of
Hamilton (1989).

McCulloch and Tsay (1994) estimate a two-regime model in which the in-
tercepts and autoregressive parameters are allowed to vary across regimes:

—0.420 4+ 0.316y,_1 + 0.628y,_» — 0.073y,_3 — 0.097y,_4 + &
if 5, = 0 (‘contraction’),

0.909 + 0.265y,—; + 0.029y,_» — 0.126y,_3 — 0.110y,_4 + &y,
if 5, = 1 (‘expansion’).

Y=

where pgy = 0.714, p;; = 0.882, and gy = 1.017, g; = 0.816. The model is es-
timated for 1947:2 to 1991:1, and by the Gibbs sampler because the authors
wish to conduct a Bayesian analysis of the model. The coefficients given above
are the posterior means, taken from McCulloch and Tsay (1994, Table 1, p534,
Model (7)). This model is a univariate special case of the switching regression
model of Lindgren (1978): see Tyssedal and Tjestheim (1988) for an applica-
tion.

Finally, we include the three-regime MS model of Clements and Krolzig
(1998) (Boldin (1996) also estimates a three-regime model). This has a shifting
intercept term and a heteroskedastic error term (and is denoted by the label
MS3).

4
Vo= pu(s) + Z Y-k + &, 4)
k=1
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Table 1. Model labels and sources

Label Source Description
SET2 Potter (1995) 2-regime SETAR model
SET4 Tiao and Tsay (1994) 4-regime SETAR model

STAR Van Dijk and Franses (1999) 4-regime STAR with output growth and CDR
transition variables

MS2 Hamilton (1989) 2-regime MS-in-mean, homoscedastic model
MS2dd | Durland and McCurdy (1994) | 2-regime MS-in-mean with duration dependence
MSA2 McCulloch and Tsay (1994) 2-regime MS model, with slopes and means

changing
MS3 Clements and Krolzig (1998) 3-regime MS-in-intercept, heteroscedastic model
CDR Beaudry and Koop (1993) Current depth of recession model
F&C Pesaran and Potter (1997) Floor and ceiling model

where ¢ ~ IN(a2(s,)) and s, € {1,2,3} is generated by a Markov chain. The
intercepts are {u, 1y, i3} = {—0.063,0.866, 1.444}, the slopes {ai,...,as} =
{0.013,-0.023, —0.128, —0.056}, and {02, 62,62} = {0.772,0.118,0.405}. The
transition matrix is:

0.848 0.022 0.130
P=10.075 0925 0
0 0.090 0.910

The three-state model captures Sichel’s depiction of post-War US busi-
ness cycles as consisting of three phases: contraction, followed by high-growth
recovery, and then a period of moderate growth: see Sichel (1994). This is con-
sistent with p;; ~ 0 (and p,3 = 0), so that the economy moves directly from re-
cession to high growth, and from high growth to moderate growth (p3; = 0). The
estimation period is 1959:2 to 1996:2.

2.3. Endogenous threshold models

The ‘current depth of recession’ (CDR) model of Beaudry and Koop (1993),
as given by Hess and Iwata (1997), is of the form:

v =0.0016 4+ 0.447y,_1 +0.199y,_» + 0.351CDR,_ + &
where the CDR variable is defined as:

CDR; = max{X,_;};>0 — X,
X, is the log of (the level of ) output, & ~ N(0,0.0093%). CDR is either zero,
when the current level of output is a historical maximum, or is the (positive)

gap between the current level of output and the historical maximum. So, the
deeper the current ‘recession’, the greater the impetus to growth. This model is
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sometimes interpreted as saying that positive shocks are more persistent than
negative ones. Pesaran and Potter (1997) show that this model can be inter-
preted as a TAR model with a large number of regimes: the CDR variable of-
fers a parsimonious way of allowing for such a model. Jansen and Oh (1999)
compare the CDR model to a two-regime STAR. The estimation period for the
model reported above is 1949:1 to 1992:4. Because y; = 4X;, the data simulated
from this model is multiplied by 100.

The ‘floor and ceiling’ (F&C) model of Pesaran and Potter (1997) can be
given a similar interpretation, and consists of:

Ay, = —0.4624y, y — 0.862CDR,_| — 0.1610H,_| + h&, (5)
and the recursions:

F— l(y[<rf) ifF[71:0
" L I(CDRy 4+, <0) if Foy=1

(yt*}’f)F, lf Ft*l :O
DR; =
CDR, {(CDR,_l +y)F if Fo =1

C=1F=0)1(y,>rc)l(y_1>r)
OH,; = Cz(OHt—l + = Vc)

& Is standard normal, &, = (0.918 COR,_; + 1.173F,_; + 0.685C,_1). 1(4) is
an indicator function taking the value unity when the statement in brackets is
true and zero otherwise, {r., r/} are the ceiling and floor threshold values, with
values {—0.876,0.539}. The two non-linear terms in (5), CDR, and OH,, are
the ‘current depth of recession’ and an ‘overheating variable’. Intuitively, the
measure of the depth of the recession has the effect that as output falls below
the floor threshold, pressure starts to build up (CDR, becomes increasingly
negative) for output to return to its previous levels. During these times F, = 1,
denoting that the floor regime is in operation. In addition, OH, is an estimate
of cumulated output growth above some ceiling, and is non-zero when C; = 1.
The corridor regime is in operation (COR, = 1) when F, = C; = 0. Thus this
construction allows different dynamics depending on which regime the econ-
omy is in.

The model is estimated over the period 1954:1 to 1992:4, on y,, given by 100
times the difference of the log of GNP.

3. Conditional mean functions

Pagan and Ullah (1999, ch. 3) provide an excellent exposition of conditional
moment estimation. We use a Nearest Neighbour (NN) estimator with uniform
weights (see, e.g., Pagan and Ullah (1999, p. 89)), so that the conditional mean
for p=1is:
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EY, | Yot = ) =i () =& S Tyl (6)
i=1

where I;(y) = 1 if y;_; is one of the k-nearest neighbours to y, and zero other-
wise. n is the number of observations. We evaluate (6) at a grid of values y, as
described below. When p = 2, this method entails calculating:

E[Y,| Y1 =y1, Yia = ya] = mp(p1,32) =k > La(y1,2)yi (7)
i=1

where now Ii;(y1,y2) =1 if {y;i—1,yi-2} is the k-th NN to {yi,)»}, using
the Euclidean distance metric, and zero otherwise. (7) is evaluated at a two-
dimensional grid of values, and the results plotted. In fact, for p = 2 instead of
using the NN method we used LOESS local linear regression, since this may
give more reliable estimates at points near the boundary of the parameter
space. For p = 1, there was little difference between the NN and LOESS re-
sults, and we report the former. LOESS local linear regression is equivalent to
weighted least squares estimation with the weights depending on the kernel
function and on a nearest neighbour bandwidth (see, e.g., Cleveland, Grosse
and Shyu (1993), Simonoff (1996)). We make use of the LOESS routine in S-
PLUS 2000 (MathSoft, Inc). The algorithm is robust to outliers — using an
iterative routine, less weight is given to observations with relatively large re-
siduals. A tricube kernel is used to define the weights, and the neighbourhood
size is set to 30%.

(6) estimates, for a given value of Y, | = y, the integral [y, fy,y, , (u|y) du,
where fy,y,, is of course [fy,y, , v,,(uly1,y2)dys, and fy,y,, v, is the
density underlying (7). Conditional moment estimates of the form (6) are com-
putationally less demanding and easier to compare across models, but whether
interesting features are lost in the marginalization will depend on the nature of
the data generating process. It seems sensible to regard this as an open ques-
tion, rather than to only consider p = 1.

The data consist of realizations of n = 25000 observations generated from
the nine non-linear and one linear models described in section 2. Data are gen-
erated for an additional ‘burn-in’ period, which is then discarded, as well as
drawing the initial states of the Markov models from their unconditional dis-
tributions. The models’ parameter values are taken to be the estimates pro-
vided in the literature, so these are based on different vintages of data and time
periods, albeit that they are all on post War US GNP/GDP data. There is a
case for estimating all the models on the same data, though we have chosen not
to do so. This is because non-linear models are often sensitive to the precise es-
timation period,® and it would be unclear how to handle models whose pa-
rameter estimates altered to a ‘large’ extent relative to their original values.
Taking the models as they are is reasonable if our interest is in the properties
of the models themselves. However, a possibly more important point is that
by effectively assuming that the models’ parameter estimates are the population

3 As an example, Boldin (1996) and Clements and Krolzig (1998, Section 4.3) find the original
Hamilton (1989) two-regime MS-AR model is not robust to changes in the sample period, and
propose three-regime models instead.
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Fig. 1. US output growth 1947:2 to 1997:1 and data simulated from an AR(1) model of output
growth.

values of the parameters we are neglecting parameter estimation uncertainty.
Similarly, we are ignoring model specification uncertainty. These are important
issues, but are beyond the scope of the study.

Actual data is used in our study in two ways. Firstly, the linear AR is esti-
mated on data for the period 1947.1 to 1997.1. Since it is a low order auto-
regression (an AR(1) in the first difference) we would expect this to be quite
robust to changes in the estimation period, so the issue of the precise estimation
period does not arise. Secondly, the sample growth rates over this period are
used to determine the grid of values at which the conditional mean functions
will be estimated. Here again, the range of growth rates is unlikely to be exces-
sively sensitive to the precise sample period.*

Figure 1 plots the actual growth rates, the estimated density for the data,
and the estimated density of the data simulated from the AR model.’ For the
last two, the scale of the horizontal axis is the same to aid comparison. It is clear
that the symmetric AR model density is at odds with the skewness in the actual
data. Non-parametric tests for business cycle asymmetries based on the coeffi-
cient of skewness for the detrended series (and the difference of the detrended
series) have been applied by a number of authors, see, e.g., Sichel (1993, p. 227
8), and Clements and Krolzig (2000) develop parametric tests for asymmetries
based on the MS-AR model. Figure 2 and table 2 summarise some properties
of the simulated and actual quarterly changes series (more precisely, one hun-
dred times the first difference of the natural logarithm of constant price GNP).
Table 1 collects together the model labels and descriptions for ease of reference.

4 What we would expect to turn on the precise sample period would be, say, transition proba-
bilities between regimes, which will depend on whether particular recessions are included or not.
5 The data were plotted in GiveWin using the default options for the densities: see Doornik and
Hendry (1996).
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Fig. 2. Densities of data simulated from non-linear models of output growth.

Table 2. Actual and simulated data characteristics

SET2 SET4 STAR MS2 MS2dd MSA2 MS3 CDR F&C AR Data
mean 0.50 0.79 0.88 1.0 1.0 0.63 0.70 0.79 0.64 0.51| 0.81

STD 1.2 1.1 1.0 1.2 1.2 1.2 0.80 1.0 1.1 1.1 1.1
min —-49 —-44 -33 31 =37 —-60 -37 -33 —-46 —-40 [-29
max 4.7 6.0 4.9 5.0 4.9 4.7 3.7 4.8 6.1 4.7 4.2
%< =21 3.0 1.2 024 065 094 3.2 038 030 1.1 098
% >3 1.2 2.1 1.7 2.5 3.1 1.1 0.11 2.0 1.4 091

Notes: The rows are the means, standard deviations, and minimum and maximum observations.
The row % < —2 denotes the % of observations less than —2, and % > 3 the % of observations
greater than 3. The interval (—2,3) contains approximately 95% of the actual data.

From the figure, it is apparent that some of the marginal densities are left
skewed, and there is some variation in the left tails.

We chose to evaluate (6) at a grid of 100 equidistant values ranging from
—2 to 3: this interval contains approximately 95% of the actual values of
the quarterly growth rate change over the period 1947.1 to 1997.1. We set & to
5% of the observations, i.e., 1250. Too large a choice will ‘over-smooth’, too
small will fail to bring out salient features. From table 2 it is apparent that the
estimates at the lower end point may be unreliable for some of the models (e.g.,
the STAR, MS3 and CDR) where less than 1% of the simulated observations
are smaller. Where there are few observations, the conditional means will be
flat at these points (because such points will tend to share the same nearest
neighbours), and this has to be borne in mind when interpreting the conditional
mean estimates.

(7) is evaluated at a two dimensional grid of values with the same range.
The problem of few simulated observations near some points at which we wish
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Fig. 3. Threshold models’ conditional means. The ordinate is the estimate of E[Y,| Y,—; = y] and

the abscissa is Y,_i.
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Fig. 4. Markov models’ conditional means. The ordinate is the estimate of E[Y,|Y,—; = y] and
the abscissa is Y,_i.

to evaluate the conditional expectation is exacerbated relative to p = 1. For ex-
ample, two consecutive quarters of declines in output of 2% points are histor-
ically infrequent in the post War US economy, and are unlikely to be generated
very often by our models. We use LOESS, as explained above.

4. Results

The estimated conditional mean functions (6) are displayed in four figures, figs.
3 to 6, where the grouping is chosen to highlight the impact on the mean func-
tions of particular features of the models. Consider firstly the threshold models
in fig. 3 — the two and four regime models (SET2 and SET4) and the 4-regime
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Fig. 6. Endogenous threshold models’ conditional means. The ordinate is the estimate of
E[Y,| Y,-; = y] and the abscissa is Y;_;.

STAR model. The AR is included for comparison. The SET?2 conditional mean
is more negative than that of the AR model for negative ¢ — 1 output growth,
while the STAR model is similar to the AR for y,_; < 0 but considerably
steeper for y,_; > 0. The STAR model would predict growth of nearly 11 in
response to growth in the previous period of 2%, approximately %" » more than
the AR model, and 0.3% more than SET2. SET4 also suggests strong growth,
and a positive response to increasingly negative rates.

Many business cycle analysts use simple sequencing rules, such as the oc-
currence of two periods of negative growth, followed by two periods of posi-
tive growth, to date a trough, because rules of this sort approximately corre-
spond to the Bry and Boschan (1971) algorithm for dating cycles (without any
censoring to rule out short cycles or phases), and thus to the NBER dating
chronology more generally — see, e.g., Harding and Pagan (2001). Thus, the
SET4 model is less likely to predict recessions than the other models. Despite
the graph never going negative, recessions are not ruled out. The graph depicts
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the conditional mean while the ocurrence of a recession depends on the actual
observations (which include the disturbances).

Figure 4 depicts the MS2 and MS3 models, with the AR as a reference.
The MS models are similar for y, | < 0, and flat at 0.1 for y, | < —%, so that
neither model indicates that two consecutive declines in output are likely. But
the MS models differ considerably for y,_; > 0: the MS2 line rises much more
sharply, and for y,_; = 1 the MS2 model predicts a response %% higher. Figure
5 considers two other extensions to the basic MS model. These are duration de-
pendence of recessions, MS2dd, and allowing the AR parameters to depend on
the regime, MSA2. The MS2 and AR models are plotted as well for conve-
nience. Firstly, notice that the MSA2 model is similar to the SET2 model in
fig. 3. This is perhaps unsurprising, because both are two regime models that
allow all the parameters to change, and differ only as to the way in which re-
gime switches are generated. So relative to the MS2 model, allowing the AR
coefficients to change (the MSA?2), increases the likelihood of two consecutive
falls in output. Allowing for duration dependence in recessions has little impact
for y,_; > 0 (the MS2 and MS2dd lines are close together), but increases the
likelihood of two consecutive falls, because the conditional mean is negative for
Y1 ={-2, —%} This is at first sight paradoxical, but note that with duration
dependence, the probability of moving out of recession the period after
entering it is less than when duration dependence is absent.

Finally, consider fig. 6 that depicts the CDR and F&C models. The models
are similar for y,_; > 0 and indicate a response a little higher than for SET2.
But the CDR model appears to pivot at zero and declines only a little there-
after, to predict growth of a ﬁ% at y,_; = —2. By contrast, the F&C model
continues to decline until y, | = —%, where it is just negative, and then turns
up.

How much information is lost in considering (6) rather than (7)? The con-
ditional mean functions for p = 2 estimated by LOESS are given in figs. 7 and
8. For the linear AR model the surface does not vary in the Y;_, direction, be-
cause the correlation between Y; and Y, | does not depend upon the value of
Y, ». More unexpectedly, the same appears to be true of the STAR model: we
suspect the smooth transition between regimes, that weights the regimes to-
gether, accounts for this. For the SET2 model, however, there is a trough in the
surface at around Y, , = 0, so that for values of Y,_; between +1 and —1, say,
the expected value of output growth in period ¢ is increasing as Y, , moves be-
low, or above, zero. The importance of the 1 — 2 level of output growth is due
to the two-period delay in determining the regime in this model, and the large
negative autoregressive term in the ‘recession’ regime at lag 2, which explains
why the more negative the output growth in # — 2, the greater the fillip to pe-
riod ¢. The SETAR model with a finer division of regimes, SET4, indicates
that the increase in the conditional mean as Y, ; increases from, say —1, is
much faster than for SET2, and is less dependent on Y, ».

Consider now the four MS models (MS2, MS2dd, MSA2, and MS3). There
are a number of interesting points to note. Firstly, we remarked upon the simi-
larity of the p = 1 conditional mean plots for SET2 and MSA2. Comparing the
figures for p = 2, it is evident that this is due to averaging over Y, ;: the plots
for p =2 are quite different. The surface for the MSA2 model increases ap-
proximately linearly in both directions, though at a faster rate in Y, ;. Sec-
ondly, allowing for changing AR parameters appears to remove the concavity
in the MS2 and MS2dd models, where the conditional mean is relatively flat
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Fig. 7. Conditional mean functions of p = 2 estimated by LOESS
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MS3 CDR

F&C AR

Fig. 8. Conditional mean functions for p = 2 estimated by LOESS

for high and low pairs of {Y,_1, Y,—»}, compared to a steep gradient around
{0,0}. The effect of allowing for duration dependence is not easy to discern
(MS2dd), while the third regime (MS3) causes a slight hollow at high values of
{Y1, Y2}

The CDR model suggests that output growth rises more quickly as Y, in-
creases at high levels of Y, ;. The F&C model surface is broadly similar, al-
though there is some evidence of a valley running in the direction of growth of
around 2% in Y,_; and high growth in ¥,_,, down to low (or negatlve) growth
in Y,_; and Y,_,. In general, the models with three or more regimes (such as
the SET4, MS3, CDR and F&C) have richer dynamics, as one would expect.

5. Conclusions

We have shown that the rival non-linear models of US output growth can imply
quite different behaviour for the conditional mean given the previous growth
rate, and that this would not necessarily be apparent from a cursory examina-
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tion of the models themselves. In particular, the models would appear to dif-
fer in terms of the likelihood of two consecutive declines of output occurring,
because in some cases the conditional means, evaluated at all data-supported
values of the previous growth rate are everywhere positive, while for other other
models negative conditional means arise. Still others suggest a stronger fillip to
output growth the greater the fall last period. The projection on to the pre-
vious two periods’ output growth rates suggests that in some cases the expec-
tation conditional on only the last period may obscure interesting differences
in the models’ predictions of output growth rates.

A natural question which we have so far avoided is which of the models
is the best? As we note in the introduction, this partly depends on how ‘best’ is
defined. A sceptical view might be that on fifty years of quarterly data, of which
only around 20% of the observations record declines in output (where we see
some of the largest differences in model behaviour), and given that the evidence
for non-linearity is relatively weak (e.g., Hansen, 1992, 1996a), it would be very
optimistic to expect formal testing to be able to discriminate between the subtle
differences in specification, that nevertheless contribute to appreciable differ-
ences in the conditional mean estimates across models.
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