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Integration for seasonal time series can take the form of seasonal periodic or non-
periodic integration+ When seasonal time series are periodically integrated, we
show that any cointegration is either full periodic cointegration or full nonperi-
odic cointegration, with no possibility of cointegration applying for only some
seasons+ In contrast, seasonally integrated series can be seasonally, periodically
or nonperiodically cointegrated, with the possibility of cointegration applying for
a subset of seasons+ Cointegration tests are analyzed for periodically integrated
series+A residual-based test is examined, and its asymptotic distribution is derived
under the null hypothesis of no cointegration+A Monte Carlo analysis shows good
performance in terms of size and power+ The role of deterministic terms in the
cointegrating test regression is also investigated+ Further, we show that the asymp-
totic distribution of the error-correction test for periodic cointegration derived by
Boswijk and Franses ~1995, Review of Economics and Statistics 77, 436– 454!
does not apply for periodically integrated processes+

1. INTRODUCTION

To date, cointegration analyses of long-run relationships in seasonal time series
have been conducted primarily in terms of the separate ~zero and seasonal fre-
quency! unit roots implied by the seasonal differencing filter, which leads to
the concept known as seasonal cointegration; see Hylleberg, Engle, Granger,
and Yoo ~1990!, Engle, Granger, Hylleberg, and Lee ~1993!, Lee ~1992!,
Johansen and Schaumburg ~1999!, and Cubadda ~2001!, among others+ How-
ever, cointegration may also be considered season by season, and this route
leads to so-called periodic cointegration, which is examined by Birchenhall,
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Bladen-Hovell, Chui, Osborn, and Smith ~1989!, Franses and Kloek ~1995!,
Boswijk and Franses ~1995!, and others+

Seasonal cointegration can apply only for seasonally integrated ~SI ! pro-
cesses, which are nonstationary processes that are made stationary by the appli-
cation of annual differencing+ In an analogous way, periodic cointegration can
apply for periodically integrated ~PI ! processes, which are nonstationary but
rendered stationary by application of a seasonally varying quasi-difference fil-
ter+ In an SI process, nonstationary unit root behavior exists not only at the
long-run ~or zero! frequency but also at all the seasonal frequencies+ Although
this is not always discussed, the implication of these seasonal unit roots is that
the seasons of the year are not cointegrated with each other and hence in prin-
ciple “summer may become winter”;1 see, for example, Osborn ~1991! and Ghy-
sels and Osborn ~2001!+ From an economic perspective, this implication may
be unattractive+ On the other hand, PI processes may be more plausible than SI
ones, because they allow for nonstationarity in conjunction with cointegration
applying between the separate seasons of the year ~Osborn, 1991; Franses, 1996!+

Although there has been little analysis of seasonal versus periodic cointegra-
tion, Franses ~1993, 1995! shows that these imply different parameter restric-
tions on the cointegrating relationships when SI processes are considered+2 In
other words, periodic cointegration can apply between SI, in addition to between
PI, processes+ Boswijk and Franses ~1995! propose a Wald test for periodic
cointegration in SI processes and derive its asymptotic distribution, which they
assert also applies when the individual series are PI+ However, the present paper
shows that this test has a different asymptotic distribution under the null hypoth-
esis when applied to PI, rather than SI, processes+ Indeed, because quarterly PI
and SI processes differ in that the former implies one underlying unit root pro-
cess across the four seasons whereas the latter implies four distinct unit root
processes, we might anticipate that these cases will give rise to different asymp-
totic distributions+

Despite the availability of some theoretical results, the distribution of test
statistics for periodic cointegration in PI processes is not fully resolved+ A full
dynamic system approach, in which equations are estimated jointly for obser-
vations relating to each season, can theoretically be applied ~see, e+g+, Ghysels
and Osborn, 2001, pp+ 171–176; Kleibergen and Franses, 1999!+ However, avail-
able sample sizes may make this feasible in practice only where data of a rel-
atively high frequency are available, as in the application of Haldrup, Hylleberg,
Pons, and Sansó ~2007!+ Although a two-step approach of the Engle and
Granger ~1987! type has been used ~e+g+, Birchenhall et al+, 1989; Franses and
Kloek, 1995!, the asymptotic distribution of the test statistic has not been de-
rived for the case where all seasons are considered simultaneously+ Franses ~1996,
p+ 182! proposes testing for periodic cointegration through the application of
the Boswijk and Franses ~1996! PI test to the first-stage residuals and specu-
lates as to its asymptotic distribution+ The present paper contributes to this strand
of literature by establishing that this test statistic follows the Phillips and
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Ouliaris ~1990! distribution, which enables asymptotically valid inference to be
undertaken+

Prior to deriving the distributions of the test statistics for PI processes, Sec-
tion 2 discusses the cointegration possibilities for these processes, which extends
the discussion in Ghysels and Osborn ~2001, pp+ 168–171! and Osborn ~2002!+
When the series are PI, we show that the only cointegration possibilities are
periodic cointegration or nonperiodic cointegration, with cointegration for any
one season implying cointegration for all seasons+ The section also compares
this to the wider set of possibilities for SI processes+ Section 3 then derives the
asymptotic distribution of the residual-based cointegration test for PI pro-
cesses, which is followed ~Section 4! by an analysis of the asymptotic distribu-
tion of the Boswijk and Franses ~1995! cointegration test when applied to
uncorrelated first-order PI processes+A Monte Carlo analysis in Section 5 exam-
ines the finite-sample distribution of the residual-based test, including an analy-
sis of the role of deterministic terms in the regression, with a concluding section
completing the paper+ Proofs of our results appear in the Appendix+

2. PERIODIC INTEGRATION AND COINTEGRATION

After outlining the properties of PI processes, we discuss cointegration for PI
and SI processes in Sections 2+2 and 2+3, respectively+

2.1. PI Processes

Consider a univariate time series xst, where the first subscript refers to the sea-
son ~s! and the second subscript to the year ~t!+ For simplicity of exposition,
we assume data are quarterly and that observations are available for precisely
N years, so that the total sample size is T � 4N, with initial values x10 � x20 �
x30 � x40 � 0+ The annual difference operator is D4 � 1 � L4, where L is the
usual lag operator that works on the seasons ~Lkxst� xs�k,t!+ Note that, through-
out the paper, it is understood that xs�k,t � x4�k�s,t�1 for s � k � 0+

Applications of periodic processes within economics have focused on auto-
regressive ~AR! processes, with the pth-order zero-mean periodic AR, or PAR~ p!,
process defined by3

xst � f1s xs�1,t� f2s xs�2,t� {{{� fps xs�p,t� est , s � 1,2,3,4, (1)

where est is white noise+ Notice that all coefficients in ~1! may vary with the
season s+ Although the conventional ~nonperiodic! AR~ p! process is a special
case where fis � fi ~s � 1, 2, 3, 4! for all i � 1,2, + + + , p, our interest is peri-
odic processes, that is, cases where at least some of these nonperiodic param-
eter restrictions do not hold+
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Under the assumption that xst is integrated of order one, and using a similar
notation to that of Boswijk and Franses ~1996!, ~1! can also be written as

~xst� ws xs�1,t ! � c1s~xs�1,t� ws�1 xs�2,t !� {{{

� cp�1, s~xs�p�1,t� ws�p�1 xs�p,t !� est (2)

with w1w2w3w4 � 1+ In the special case ws � 1 ~s � 1,2,3,4!, ~2! is a periodic
I ~1! process, so that the first difference is a stationary PAR~ p � 1! process+ On
the other hand, when w1w2w3w4 � 1 but not all ws � 1 ~s � 1,2,3,4!, ~2! is a
periodically integrated, or PI~1!, process with the quasi-difference xst� ws xs�1,t

being stationary; see Ghysels and Osborn ~2001, pp+ 153–155! for further dis-
cussion of these cases+ In the latter case xst� ws xs�1,t may have constant coef-
ficients over seasons, although for convenience we refer to it as a stationary
PAR process+

In both the I ~1! and PI~1! cases, nonstationarity arises from a single com-
mon trend shared by the four quarterly observations of the time series; equiv-
alently, there are three cointegration relationships between the quarters+ It is
convenient to explore this through the representation referred to as the vector
of quarters ~VQ! representation by Franses ~1994!, which is based on the vec-
tor Xt � ~x1t, x2t, x3t, x4t!

' and disturbance process Et � ~e1t, e2t, e3t, e4t!
' +

Corresponding to ~1!, the VQ representation has the form

F0 Xt � F1 Xt�1 �F2 Xt�2 � {{{�FP Xt�P � Et ,

where P � @~ p � 1!04# � 1 and @+# indicates the integer part of the expression
in brackets+ Corresponding to the factorization in ~2!, the VQ representation
can be written as

~ OF0 � OF1 L4 !Xt � C~L4 !�1Et� Ut , (3)

where

OF0 � �
1 0 0 0

�w2 1 0 0

0 �w3 1 0

0 0 �w4 1
� , OF1 � �

0 0 0 w1

0 0 0 0

0 0 0 0

0 0 0 0
� ,

and the determinant 6 OF0 � OF1 z 6� 0 has a single unit root, while the stationary
vector process C~L4!Ut � Et captures the stationary PAR~ p � 1! process in
ust � xst � ws xs�1,t embodied in ~2!+

From ~3!, the annual difference series D4 Xt � Xt � Xt�1 can be written as

D4 Xt � ~Q0 �Q1 L4 !Ut� C~L4 !C~L4 !�1Et , (4)
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where the vector process C~L4!Ut � ~Q0 � Q1 L4!Ut has three noninvertible
unit roots, which reflect the overdifferencing inherent in annual differencing
for a process with a single AR unit root+ Therefore, C~1! is of rank one, and it
is possible to write

C~1! � Q0 �Q1 � ab ', (5)

where a � ~1,w2,w2w3,w2w3w4!
', b � ~1,w1w3w4,w1w4,w1!

' +
An implication of ~4! and ~5! is that the four elements of Xt share a sin-

gle common stochastic trend, namely, b 'C~1!�1 �t�1
t Et � b ' �t�1

t Ut , to which
they adjust with periodic adjustment coefficients given by the elements of a+
Further details can be found in Boswijk and Franses ~1996!+

2.2. Cointegration for PI Processes

Now consider the m � 1 vector process xst � @xst
~1! , + + + , xst

~m! # ' in which each
element is either a PI~1! or an I ~1! process+ That is,

xst
~ j ! � ws

~ j ! xs�1,t
~ j ! � ust

~ j ! with �
s�1

4

ws
~ j !� 1, s � 1,2,3,4, j � 1, + + + ,m,

(6)

in which each ust
~ j ! is a stationary process ~which is, in general, periodic!

~1 � c1s
~ j !L � {{{� cp�1, s

~ j ! L p�1 !ust
~ j ! � est

~ j !

with Est� ~est
~1! , + + + , est

~m! !' vector white noise and E @EstEst
' #� S positive def-

inite+4 Therefore, we can define the VQ representation as in ~3! for each Xt
~ j !�

~x1t
~ j ! , x2t

~ j ! , x3t
~ j ! , x4t

~ j ! !', j � 1, + + + ,m+
Cointegration can then be defined as follows+

DEFINITION 1+ The m � 1 vector xst � @xst
~1! , + + + , xst

~m! # ' of periodic pro-
cesses satisfying (6) is periodically cointegrated if there exist m � r matrices
as of rank r such that the linear combinations as

' xst are (periodically) station-
ary for each s � 1, + + + ,4.

Although it was not formally defined in this way, the idea of periodic cointe-
gration appears to have been applied first by Birchenhall et al+ ~1989!+ Notice
that nonperiodic cointegration, with as � a for s � 1, 2, 3, 4, is permitted here
as a special case of periodic cointegration+

In their discussion of periodic cointegration, Boswijk and Franses ~1995! dis-
tinguish full and partial periodic cointegration, where the former corresponds
to Definition 1 and the latter to the situation where stationary linear combina-
tions as

' xst exist for only some s � 1, + + + ,4+ However, Ghysels and Osborn
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~2001! show that partial periodic cointegration cannot apply between two PI~1!
processes; such processes are either ~fully! periodically cointegrated or no cointe-
grating relationship exists for any s � 1, + + + ,4+ This result is generalized in
Lemma 1 for the case of m PI~1! processes+

LEMMA 1+ Consider the m � 1 vector xst � @xst
~1! , + + + , xst

~m! # ' of periodic
processes in (6), such that the m � r matrix as of rank r defines all linearly
independent stationary linear combinations as

' xst for some s � 1, + + + ,4. Then

(i) as, together with the coefficients ws
~ j !~s � 1,2,3,4; j � 1, + + + ,m! of (6),

determine the m � r matrix aq of rank r, which must exist for each q �
1,2,3,4, q � s such that aq

' xqt is stationary;
(ii) nonperiodic cointegration with as � a ~s � 1,2,3,4! applies if and only

if ws
~ j ! � ws, j � 1, + + + ,m in (6).

The first part of Lemma 1 implies that there must be the same number of
cointegrating relationships between PI~1! processes for all seasons s � 1, 2,
3, 4+ Thus, as in the bivariate case considered by Ghysels and Osborn ~2001!
and Osborn ~2002!, partial periodic cointegration cannot apply between PI~1!
processes+ Further, given the cointegrating vectors that apply for one season
and the univariate PI coefficients of ~1!, then all four sets of cointegrating rela-
tions can be determined+ It is worth noting that part ~i! of Lemma 1 is implicit
in the results of Kleibergen and Franses ~1999!, but they do not draw it out
from their analysis+

Part ~ii! of the lemma further establishes that the same ~nonperiodic! cointe-
grating relations can apply over seasons if and only if all processes have iden-
tical univariate PI coefficients+ The proof of this lemma rests on the fact that
the VQ process corresponding to a PI~1! variable is driven by a single unit root
process+ The stationary relationships between observations for the seasons that
exist for each Xt

~ j ! � @x1t
~ j ! , x2t

~ j ! , x3t
~ j ! , x4t

~ j ! # ' then imply that cointegrating rela-
tions for the vector xst can be mapped from season to season+

Conventional cointegration between I ~1! processes ~which may be periodic!
provides a special case of Lemma 1, where the same cointegrating relations
apply for all seasons ~quarters! of the year and all ws

~ j ! of ~6! are unity+

2.3. Cointegration for SI Processes

Unlike the quasi-differencing xst � ws xs�1,t of ~2! with w1w2w3w4 � 1 that
renders the PI~1! process stationary, SI~1! processes ~that contain a unit root at
the zero and each seasonal frequency! are made stationary and invertible by
annual differencing+ Such processes contain four unit roots, implying that the
quarters of the year are not cointegrated with each other; Osborn ~1991! and
Franses ~1994! provide discussions of some of the implications+ In the context
of cointegration between elements of an m � 1 vector xst, if each element is
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SI~1! then the lack of cointegration across the seasons implies that distinct cointe-
grating relations can apply for each of the vectors xst for s � 1,2,3,4+ This is
the essence of Lemma 2+

LEMMA 2+ Consider the m � 1 vector xst � @xst
~1! , + + + , xst

~m! # ' of SI ~1! pro-
cesses. Then the existence of an m � r matrix as of rank r such that as

' xst is
stationary for some s � 1, + + + ,4 has no implications for the existence or nature
of cointegration across the elements of xqt for q � s.

An immediate consequence of Lemma 2 is that full and partial periodic cointe-
gration are possibilities for SI~1! processes+

So-called seasonal cointegration, which corresponds to cointegration at the
distinct seasonal spectral frequencies, is another possibility for SI processes and
is analyzed by Engle et al+ ~1993!, Cubadda ~2001!, Johansen and Schaumburg
~1999!, and Lee ~1992!+ However, our analysis focuses on testing for periodic
cointegration+ More specifically, we are particularly interested in testing for
cointegration for PI processes+ However, the case of SI processes is relevant,
because Boswijk and Franses ~1995! claim that the same asymptotic distribu-
tion results when their test is applied to both SI and PI processes+

3. RESIDUAL-BASED TEST FOR PERIODIC COINTEGRATION

This section analyzes the periodic analogue of the Engle and Granger ~1987!
test, which applies a test for periodic integration to the residuals from a
first-stage regression involving nonstationary PI ~1! variables+ We first set
out the test regression, and then, before obtaining the distribution of the test
statistic in Section 3+3, Section 3+2 examines the properties of the vector xst�
@xst
~1! , + + + , xst

~m! # ' in the absence of cointegration+

3.1. The Test Regression

As usual, a residual-based test requires that the potential cointegrating relation-
ship being examined is unique+ That is, either there exists at most one cointe-
grating vector or, if there potentially exist 1 , r � m cointegrating vectors
between the separate series, then ~exclusion! restrictions are imposed to ensure
uniqueness+ From the analysis of the previous section, we know that cointegra-
tion applying for one season between PI processes implies cointegration for all
seasons+ Therefore, it is anticipated that efficiency gains will result by consid-
ering all seasons jointly+

To keep notation simple, we assume that only one cointegrating relationship
may exist across the m variables+ Arbitrarily normalizing on the first element
of x, we propose fitting the periodic regression
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xst
~1! � �

i�2

m

bis xst
~i !� vst , s � 1,2,3,4 (7)

and then applying the periodic integration test of Boswijk and Franses ~1996!
to the residuals [nst� xst

~1!� �i�2
m Zbis xst

~i !+ The intuition is that, in the absence of
cointegration, the residuals [vst follow a nonstationary PI process ~see Franses,
1996, pp+ 181–182!+

Now, partition xst as

xst � ~xst
~1! , zst

' !', zst
' � ~xst

~2! , + + + , xst
~m! !' (8)

so that zst comprises the vector of right-hand-side variables in ~7!+ We assume
that all j � 1, + + + ,m variables are PI~1! processes, as in ~6!, with the variance-
covariance disturbance matrix corresponding to the system being

E @EstEst
' # � S��s11 s1z

'

s1z Szz
� , (9)

where S in ~9! is partitioned conformably with xst in ~8!+

3.2. Properties of the PI System

As discussed in Section 2+1, the matrix C ~ j !~L4! in the representation of ~4! for
an annually differenced PI process has three unit roots, and hence

C ~ j ! ~1! � ~Q0
~ j !�Q1

~ j ! !� a ~ j !b ~ j !', j � 1, + + + ,m, (10)

where a ~ j ! � @1, w2
~ j ! , w2

~ j !w3
~ j ! , w2

~ j !w3
~ j !w4

~ j ! # ', b ~ j ! � @1, w1
~ j ! w3

~ j ! w4
~ j ! ,

w1
~ j ! w4

~ j ! , w1
~ j ! # ' +

Stacking the processes, and using the annual difference representation of ~4!,
yields

D4 Xt � Q0
x Ut

x �Q1
x Ut�1

x � ~Q0
x �Q1

x L4 !Cx~L4 !�1Et
x , (11)

where D4 Xt � ~D4 Xt
~1!' ,D4 Xt

~2!' , + + + ,D4 Xt
~m!'!', D4 Xt

~ j ! � ~D4 x1t
~ j ! ,D4 x2t

~ j ! ,
D4 x3t

~ j ! ,D4 x4t
~ j ! !' , with corresponding definitions for Et

x and Ut
x , while Cx~L4!

is a block diagonal matrix with j th block equal to C~ j !~L4! containing the sta-
tionary ~periodic! AR coefficients for series j+ Similarly, the moving average
~MA! coefficient matrices in ~11! are block diagonal, of the form

Qi
x � �

Qi
~1! 0 J 0

0 Qi
~2! J 0

I I L I

0 0 J Qi
~m!
� , i � 0,1,
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and

E @Et
x Et

x '# � S� I4 +

The long-run covariance matrix between the m � 4 processes in Xt is then
given by ~see also Boswijk and Franses, 1995, p+ 440!

V � �
i��`

`

E @D4 Xt D4 Xt�i
' #

� �
i��`

`

E @Q0
x Ut

x �Q1
x Ut�1

x # @Q0
x Ut�i

x �Q1
x Ut�i�1

x # '

� @Q0
x �Q1

x #Cx~1!�1~S� I4 !C
x~1!'�1 @Q0

x �Q1
x # '+ (12)

In the absence of cointegration between the xst
~ j !~ j � 1,2, + + + ,m!, cointegra-

tion applies only across the seasons within each xst
~ j ! , and we have

C x~1! � Q0
x �Q1

x � axbx', (13)

where the 4m � m matrices ax, bx are defined by ~in an obvious notation!

ax � �
a ~1! 0 J 0

0 a ~2! J 0

I I L I

0 0 J a ~m!
� , bx � �

b ~1! 0 J 0

0 b ~2! J 0

I I L I

0 0 J b ~m!
� (14)

and all submatrices in ~14! are 4 � 1+ Thus, C x~1! is of rank m+
However, if cointegration exists across processes, then C x~1! is of rank

k � m, and hence ax and bx do not have the block diagonal form of ~14!+ Spe-
cifically, ax and bx are then matrices of rank k, with dimension 4m � k+

Returning to the case of no cointegration, Lemma 3, which follows, estab-
lishes the asymptotic distribution of the scaled vector Xt� @Xt

~1!' , Zt
' # ' relevant

for the regression ~7!+ The result is obtained by accounting for the contempo-
raneous correlation between the disturbances through the decomposition S �
PP ' where P is upper triangular+

LEMMA 3+ Consider the vector of m PI ~1! processes defined in (6), (8),
(9), and (11), with no cointegration applying across the m processes. Also define
the 4m � 1 vector Brownian motion W x~r! with covariance matrix I4m, where
W x~r! � @W ~1!~r!',W z~r!'# ' in which W ~1!~r! is 4 � 1, W z~r! is 4n � 1, and
n � m � 1. Then, as N � T04 r `,
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1

MN
X@rN # �

1

MN
�X@rN #

~1!

Z@rN #
�n B~r!��B ~1! ~r!

Bz~r! �
� �s11

102 a ~1!b ~1!'C~1! ~1!�1~M1 � r1z
' r1zW

~1! ~r!� ~r1z
' � I4 !W

z~r!!

azbz'C z~1!�1~Pzz � I4 !W
z~r!

� ,

(15)

where @rN # is the integer part of rN, r1z � s11
�102 Pzz

�1s1z , the upper triangular
matrix Pzz satisfies Pzz Pzz

' � Szz, and az, bz are the lower right-hand 4n � n
blocks of ax, bx, respectively, in (14).

Here and throughout the papern indicates convergence in distribution+ Note
that we can define standard Brownian motions underlying ~15! as

Kw ~1! ~z! � ~b ~1!'C~1! ~1!�1C~1! ~1!'�1b ~1! !�102b ~1!'C~1! ~1!�1

� ~M1 � r1z
' r1zW

~1! ~r!� ~r1z
' � I4 !W

z~r!!

Kw ~ j ! ~r! � ~b ~ j !'C~ j ! ~1!�1C~ j ! ~1!'�1b ~ j !p ~ j !p ~ j !' !�102b ~ j !'C~ j ! ~1!�1

� ~ p ~ j ! � I4 !W
z~r!, j � 2,3, + + + ,m,

(16)

where p ~ j ! is the ~ j � 1!th row of Pzz+ Then, from ~16!, we can write

Bs
~1!~r! � v1 as

~1! Kw ~1! ~r!,

Bs
~ j !~r! � wj as

~ j ! Kw ~ j ! ~r!, j � 2,3, + + + ,m,
(17)

in which

v1 � s11
0+5~b ~1!'C~1! ~1!�1C~1! ~1!'�1b ~1! !0+5,

vj � ~ p ~ j !p ~ j !'b ~ j !'C~ j ! ~1!�1C~ j ! ~1!'�1b ~ j ! !0+5, j � 2,3, + + + ,m+

Therefore, the scalar standard Brownian motions Kw ~ j !~r! in ~16! can be thought
of as the stochastic trends underlying the m individual PI processes, which in
turn derive from the elements of the standard vector Brownian motion W x~r!+

It is clear from ~15! or ~16! that, in general, Brownian motions processes
relating to x ~1! and z are correlated+ That is, when the contemporaneous covari-
ance s1z in ~9! is nonzero, W z~r! influences Kw ~1!~r!+ This effect disappears in
the special case of s1z � 0, because r1z � 0 when x ~1! is uncorrelated with
x ~2!, + + + , x ~m! +

3.3. Asymptotic Distribution of the Test Statistic

We now turn to the properties of the residuals resulting from ordinary least
squares ~OLS! estimation of ~7!, which are summarized in Lemma 4+
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LEMMA 4+ Consider the vector of PI ~1! processes defined in (6), (8), (9),
and (11), with no cointegration applying across the m processes. The 4 � 1
vector ZVt � @ [n1t, [n2t, [n3t, [n4t#

' of residuals from (7) for year t then satisfies,
as N � T04 r `,

1

MN
ZV@rN #n l11s11

102va ~1!wm~r! , (18)

where @rN # is the integer part of rN, l11 is a scalar, v � ~b ~1! 'C~1!~1!�1

C~1!~1!'�1b ~1! !0+5, a ~1! � @1,w2
~1! ,w2

~1! w3
~1! ,w2

~1! w3
~1! w4

~1! # ', b ~1! � @1,w1
~1! w3

~1! w4
~1! ,

w1
~1! w4

~1! ,w1
~1! # ', and the univariate Brownian motion wm~r! is defined by

wm~r! � w ~1!~r!��w ~1!~r!W z~r!' dr��W z~r!W z~r!' dr��1

W z~r! ,

� k ' RW x~r! , (19)

in which W x~r! � @w ~1!~r!,W z~r!' # ' is m � 1 standard Brownian motion with
covariance matrix Im and k ' � @1,�	w ~1!~r!W z~r!' dr~	W z~r!W z~r!' dr!�1 # .

Lemma 4 implies that the residuals from ~7! asymptotically retain the same
nonstationary periodic coefficients as the univariate process for xst

~1! in ~6!+ This
is easily seen by comparing ~18! with the first equation of ~17!+

Building on the implication of Lemma 4 that the residuals of ~7! retain the
PI properties of xst

~1! in ~6!, the strategy of testing for periodic integration in the
residuals of ~7! is clear+ More specifically, following Franses ~1996, pp+ 181–
182!, we propose testing the periodic integration null hypothesis w1w2w3w4 � 1
against the alternative w1w2w3w4 � 1+5 The unrestricted model is the PAR~ p!
regression

[nst � �
j�1

p

fjs [ns�j,t� «st , s � 1,2,3,4+ (20)

Under the alternative hypothesis, the residuals of ~20! are stationary, implying
that either periodic cointegration or nonperiodic cointegration exists between
the processes for all seasons s � 1, 2, 3, 4+ Under the null hypothesis the resid-
uals [nst ; PI ~1!, so that there is no cointegration between the PI processes+ In
this case, based on ~6! and following Boswijk and Franses ~1996!, ~20! can be
reparameterized as

[vst � ws [vs�1,t� �
j�1

p�1

cjs~ [vs�j,t� ws�j [vs�j�1,t !� «st , s � 1,2,3,4 (21)

with the restriction w1w2w3w4 � 1 imposed, but cjs unrestricted, with estima-
tion achieved using nonlinear least squares+
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We employ the test of periodic integration proposed by Boswijk and Franses
~1996!, which uses the likelihood ratio ~LR! statistic

LR � N ln~ Is0
20 Is 2 !, (22)

where Is 2 is the unrestricted maximum likelihood estimator of Var ~«st! in
~20! and Is0

2 is the corresponding estimator from ~21! when the restriction
w1w2w3w4 � 1 is imposed+

Theorem 1 establishes the asymptotic distribution of this periodic cointegra-
tion test statistic+

THEOREM 1+ Under the null hypothesis of no cointegration between the
PI processes of (6), (8), (9), and (11), the LR test statistic of (22) applied to
the residuals from (7) using the PAR~ p! regression (20)–(21) has asymptotic
distribution

LRn ~k 'k!�1 ��wm~r!
2 dr��1 ��wm~r!dwm~r!�2

, (23)

where wm~r! is defined in (19) and k in Lemma 4.

The distribution of the test statistic in ~23! is the square of the Dickey–Fuller
test for cointegration using the residuals of a ~nonperiodic! regression, as derived
by Phillips and Ouliaris ~1990!+ It is clear from ~19! that this asymptotic distri-
bution depends on the number of regressors in ~7!, namely, n � m � 1+ Conse-
quently, the distribution of the LR test statistic in ~23! also depends on m+
However, the distribution is invariant to the values of the PI coefficients for
the processes in ~6! and the disturbance covariances of ~9!+

Also in common with Phillips and Ouliaris ~1990!, the presence of station-
ary autocorrelation plays no role in the asymptotic distribution+ However, in
this periodic case, the augmentation in the test regression of ~20!–~21! is peri-
odic in form, because the possibility of stationary PAR dynamics is permitted
under the null hypothesis+

4. THE BOSWIJK AND FRANSES TEST

Boswijk and Franses ~1995! propose Wald tests for periodic cointegration relat-
ing to a specific season s and over all seasons with an error-correction mecha-
nism ~ECM! framework+ This test is built on the cointegration test of Boswijk
~1994!, which was developed in a nonperiodic context+ To avoid issues Boswijk
and Franses encounter concerned with the possible dependence of some asymp-
totic distributions on correlation between the disturbances of the processes con-
sidered, we confine our attention to the “spurious regression” case where the
variables are mutually uncorrelated+ Also for simplicity, we continue to assume
that all variables have zero means, with no deterministic terms included in the
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estimated ECM model, and here consider only PAR~1! processes+Although this
is a special case, it is sufficient to establish that, contrary to the statement of
Boswijk and Franses ~1995!, the asymptotic distribution of their test applied to
PI processes differs from the result they obtain for SI processes+

Using the notation of the previous section, and arbitrarily assuming that the
first variable of xst is the dependent variable, the periodic ECM model is

D4 xst
~1! � gs~xs,t�1

~1! � ks
' zs,t�1!� ust , s � 1,2,3,4,

where ks is an n � 1 vector+ This can also be written as

D4 xst
~1! � d0s xs,t�1

~1! � d1s
' zs,t�1 � ust , s � 1,2,3,4, (24)

where d0s � gs and d1s � �gsks+ With the assumption of uncorrelated PAR~1!
processes, ust

~ j ! � est
~ j ! in ~6!, and s1z � 0 with Szz being a diagonal matrix in

~9!+ In comparison with Boswijk and Franses ~1995!, no conditioning is required
in ~24!, because of our simplifying assumption that the variables are uncorre-
lated PAR~1! processes+

Using a similar notation to Boswijk and Franses ~1995!, the Wald statistic to
test the null of no cointegration in season s, or equivalently to test d0s � 0,
d1s � 0 in ~24!, is

Walds � Zds
'~Vâr @ Zds # !

�1 Zds , (25)

where Zds � ~ Zd0s , Zd1s
' !' is the OLS estimator of the relevant coefficients and

Vâr @ Zds# is the corresponding estimated OLS covariance matrix+ When all sea-
sons are considered, the joint cointegration test statistic for the null hypothesis
d � 0, where d � @d1

' ,d2
' ,d3
' ,d4
' # ' , is given by ~in an obvious notation!

Wald � Zd '~Vâr @ Zd#!�1 Zd� �
s�1

4

Zds
'~Vâr @ Zds # !

�1 Zds + (26)

Note that the Wald statistic in ~26! is the sum of the individual Walds of ~25!
because of the block orthogonality of the regressors when ~24! is estimated
using seasonal dummy variables+

As noted by Ghysels and Osborn ~2001, pp+ 176–179!, the null distribution
obtained by Boswijk and Franses ~1995! assumes that xst is a vector of SI pro-
cesses+ More specifically, Assumption 1 of Boswijk and Franses ~1995, p+ 440!
does not require the long-run variance-covariance matrix V of the vector Brown-
ian motion process corresponding to ~x1t, x2t, x3t, x4t!

' to be positive definite,
which allows the possibility of one or more components being PI processes+
However, the proof of their Theorem 2 assumes that DCs

'V DCs is strictly posi-
tive+6 Consequently, the asymptotic distributions derived by Boswijk and Franses
require V to have full rank, ruling out the possibility that any element of xst is
periodically integrated+
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Under the null hypothesis of no periodic cointegration, and assuming SI pro-
cesses, Boswijk and Franses ~1995! establish that the distribution of the Walds

statistic used to test for cointegration relating to an individual season s is iden-
tical to that obtained by Boswijk ~1994! for the nonperiodic case+ Theorem 2,
which follows, shows that this result does not carry over to the case of PI~1!
processes+ Indeed, for such processes, the theorem shows that the distribution
of Boswijk ~1994! emerges in relation to the test statistic for full periodic
cointegration+

THEOREM 2+ Assuming that the PI processes of (6), (8), (9), and (11) are
uncorrelated PAR~1! processes, the asymptotic distributions of the Wald test
statistics proposed by Boswijk and Franses under the null hypothesis of no
cointegration are given by

(i) for the Walds test of d0s � d1s � 0 for an individual s

Waldsn 4
~as
~1! !2

a ~1!'a ~1!
��W x~r! dw ~1!~r!	'��W x~r!W x~r!' dr	�1

� ��W x~r! dw ~1!~r!	 ; (27)

(ii) for the joint Wald test of d0s � d1s � 0, s � 1,2,3,4,

Waldn 4��W x~r! dw ~1!~r!	'��W x~r!W x~r!' dr	�1

� ��W x~r! dw ~1!~r!	 , (28)

where W x~r!' � @w ~1!~r!,W z~r!' # ' is m-vector standard Brownian
motion and a ~1! � @1,w2

~1! ,w2
~1! w3

~1! ,w2
~1! w3

~1! w4
~1! # ', which has sth ele-

ment as
~1!.

There are two important differences between the distributional results given
in ~27! and ~28! and those of Boswijk and Franses ~1995! for SI processes+
First, the statistic in ~27! does not follow the distribution of Boswijk ~1994!,
because of the multiplicative factor ls � 4~as

~1! !20a ~1!'a ~1! + Because these ls

average unity over s � 1, 2, 3, 4, the scaling will inflate or deflate values rela-
tive to the Boswijk ~1994! distribution, depending on the specific PI coeffi-
cients and the season s+

Second, the distribution defined by ~28! is four times the distribution obtained
by Boswijk ~1994!+ Intuitively, this arises because there is only one underlying
stochastic trend for each vector process Xt

~ j ! and hence, as discussed in Sec-
tion 2, there can be only one linearly independent cointegrating relationship
over the four quarters of the year+ Consequently, when the Wald test is applied
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to the PI~1! variables, effectively a single cointegration relationship is being
tested four times ~once for each quarter!+

The asymptotic distribution of ~28! is not that derived by Boswijk and Franses
~1995! for SI processes+ To be specific, because an SI process for a quarterly
series involves four distinct unit root processes, these are reflected in the asymp-
totic distribution+ For uncorrelated SI processes, the asymptotic Boswijk–Franses
distribution is ~Ghysels and Osborn, 2001, p+ 178!

Waldn �
s�1

4 ��Ws
x~r! dws

~1! ~r!	'��Ws
x~r!Ws

x~r!'	�1��Ws
x~r! dws

~1!~r!	,
(29)

where Ws
x~r! � @ws

~1!~r!,Ws
z~r!' # ' is formed by selecting elements of the

4m � 1 vector standard Brownian motion W x~r! corresponding to season s+ It
is obvious that ~28! and ~29! differ, with the former being four times the Boswijk
~1994! distribution whereas the latter is the sum of four independent distribu-
tions of this type+ Indeed, this comparison also clarifies the role played by the
four distinct unit roots underlying an SI process and that therefore appear in
~29! as against the single unit root underlying a PI process+

5. MONTE CARLO ANALYSIS

In this section we present a selection of Monte Carlo results relating to the
empirical size and power of the residual-based test for periodic cointegration
analyzed in Section 3+ Section 5+1 considers zero-mean processes, with the analy-
sis of Section 5+2 allowing the possibility of nonzero trends+

5.1. Zero-Mean Processes

We investigate empirical size7 for zero-mean processes generated through the
bivariate model, where xst � ~ yst , zst!

', such that

yst � ws
y ys�1,t� ust

y , �
s�1

4

ws
y � 1,

zst � ws
z zs�1,t� ust

z , �
s�1

4

ws
z � 1,

(30)

where the periodic components satisfy the univariate AR processes

ust
~ j ! � c1 us�1,t

~ j ! � c2 us�2,t
~ j ! � c3 us�3,t

~ j ! � est
~ j ! , j � y, z (31)
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and

E��est
y

est
z �@est

y est
z #� � � 1 syz

syz 1
� , syz � $0+0, 0+4, 0+8%+ (32)

The case of nonperiodic stationary components ~31! is sufficient to illustrate
the size and power properties of the test, with the processes being periodic
through the PI coefficients in ~30!+ Although results are presented only for sta-
tionary AR coefficients in ~31! being common across the two processes, simi-
lar results have been obtained from simulations where these processes are
distinct+ Finally, it can be seen that ~32! permits three levels of contemporane-
ous correlation between the innovations est

y and est
z +

As shown in Lemma 4, the data generating process ~DGP! of ~30! implies
that the residuals follow a PI process when the regression of ~7! is estimated+

Empirical power is obtained from the DGP

yst � bs zs,t� ust , ~1 � cL!~1 � c1
*L � c2

*L2 � c3
*L3 !ust� est

y ,

zst � ws
z zs�1,t� est

z , �
s�1

4

ws
z � 1,

(33)

focusing particularly on the case c � 0+8+ The sets of coefficients used in the
factor ~1 � c1

*L � c2
*L2 � c3

*L3 ! in ~33! are identical to those employed in the
stationary component of ~31! for computing size+ The periodic cointegrating
relationship in ~33! has coefficients b4 � 0+4, bs�1 � 0+4ws

z0ws
y for s � 3,2,1,

with ws
y~s � 1,2,3,4! being the PI coefficients for yst+ The innovation covari-

ance matrix is again given by ~32!+
Table 1 shows the combinations of coefficients used in ~30!–~33! to compute

the empirical size and power+ The size and power results are collected in Tables 2
and 3, respectively, for a sample size of 50 years ~200 observations! and based
on 5,000 replications+

Table 1. Periodic integration coefficients used for size and power calculations

DGP w1
y w2

y w3
y w4

y w1
z w2

z w3
z w4

z

1 1+200 0+700 1+000 1+190 0+800 0+900 1+200 1+157
2 1+200 1+000 0+800 1+042 0+800 1+000 1+200 1+042
3 0+800 0+800 1+200 1+302 1+200 0+700 1+000 1+190
4 1+200 0+700 1+000 1+190 1+200 0+700 1+000 1+190
5 0+800 1+000 1+200 1+042 0+800 1+000 1+200 1+042
6 0+800 0+900 1+200 1+157 0+800 0+900 1+200 1+157

Note: The table shows the periodic integration coefficients used for computing empirical size and power in Tables 1
and 2; see ~30! and ~33!, respectively+
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Table 2. Size of residual-based test for periodic cointegration

c1 � c2 � c3 � 0 c1 � 0+5, c2 � c3 � 0 c1 � �0+3, c2 � 0+4, c3 � 0 c1 � �0+8, c2 � �0+6, c3 � �0+4

syz DGP PAR~1! PAR~1! PAR~2! PAR~1! PAR~2! PAR~3! PAR~1! PAR~2! PAR~3! PAR~4!

0 1 0+047 0+006 0+050 0+097 0+003 0+045 0+857 0+420 0+141 0+031
0 2 0+040 0+003 0+041 0+104 0+004 0+046 0+887 0+474 0+176 0+033
0 3 0+046 0+005 0+045 0+103 0+003 0+045 0+862 0+452 0+167 0+036
0 4 0+044 0+005 0+051 0+099 0+003 0+049 0+855 0+427 0+153 0+040
0 5 0+049 0+005 0+052 0+102 0+005 0+045 0+887 0+490 0+188 0+043
0 6 0+036 0+006 0+051 0+110 0+004 0+052 0+881 0+464 0+173 0+044
0+4 1 0+041 0+006 0+051 0+109 0+003 0+048 0+846 0+398 0+133 0+033
0+4 2 0+042 0+006 0+047 0+094 0+005 0+041 0+878 0+464 0+164 0+033
0+4 3 0+047 0+006 0+041 0+106 0+002 0+047 0+856 0+437 0+167 0+042
0+4 4 0+048 0+005 0+048 0+107 0+003 0+048 0+852 0+415 0+140 0+041
0+4 5 0+042 0+006 0+053 0+104 0+004 0+051 0+892 0+492 0+180 0+034
0+4 6 0+049 0+006 0+047 0+107 0+004 0+051 0+871 0+471 0+174 0+043
0+8 1 0+042 0+005 0+049 0+095 0+003 0+041 0+819 0+364 0+108 0+029
0+8 2 0+043 0+005 0+049 0+110 0+005 0+048 0+842 0+423 0+150 0+028
0+8 3 0+038 0+004 0+045 0+101 0+003 0+044 0+833 0+399 0+143 0+032
0+8 4 0+040 0+005 0+049 0+113 0+003 0+050 0+851 0+413 0+140 0+039
0+8 5 0+047 0+005 0+048 0+107 0+004 0+048 0+891 0+499 0+187 0+042
0+8 6 0+045 0+007 0+051 0+114 0+005 0+048 0+880 0+464 0+174 0+041

Note: The residual-based test is applied to ~7!+ Results are obtained using 5,000 replications, for a sample of 200 observations ~N � 50!+ The DGP is given in ~30!–~32!, using the PI
coefficients of Table 1 in combination with the ~nonperiodic! stationary AR ci coefficients common to both y and z given in the column headings+ PAR~1!, PAR~2!, PAR~3!, and
PAR~4! indicate that periodic autoregressive models of order 1, 2, 3, or 4, respectively, are fitted to the residuals to obtain the LR statistic used to test periodic cointegration at a
nominal significance level of 5%+ The critical value used is 7+3, which has been obtained from a Monte Carlo analysis based on 15,000 replications of two uncorrelated PI~1!
processes with a sample size of 200 observations ~N � 50!+
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Table 3. Power of residual-based test for periodic cointegration

c� 0
c1
*� c2

*� c3
*� 0

c� 0+8
c1
*� c2

*� c3
*� 0

c� 0+8
c1
*� 0+5, c2

*� c3
*� 0

c� 0+8
c1
*� �0+3, c2

*� 0+4, c3
*� 0

c� 0+8
c1
*� �0+8, c2

*� �0+6, c3
*� �0+4

syz DGP PAR~1! PAR~1! PAR~1! PAR~2! PAR~1! PAR~2! PAR~3! PAR~1! PAR~2! PAR~3! PAR~4!

0 1 1+000 0+986 0+324 0+997 0+986 0+781 0+997 1+000 1+000 1+000 0+991
0 2 1+000 0+980 0+309 0+997 0+972 0+786 0+996 1+000 1+000 1+000 0+993
0 3 1+000 0+985 0+301 0+997 0+991 0+756 0+997 1+000 1+000 1+000 0+992
0 4 1+000 0+987 0+306 0+998 0+987 0+771 0+995 1+000 1+000 1+000 0+992
0 5 1+000 0+983 0+299 0+998 0+986 0+749 0+997 1+000 1+000 1+000 0+993
0 6 1+000 0+980 0+297 0+999 0+987 0+765 0+996 1+000 1+000 1+000 0+993
0+4 1 1+000 0+978 0+319 0+998 0+975 0+758 0+996 1+000 1+000 1+000 0+991
0+4 2 1+000 0+969 0+323 0+996 0+969 0+784 0+997 1+000 1+000 1+000 0+989
0+4 3 1+000 0+982 0+295 0+998 0+985 0+738 0+997 1+000 1+000 1+000 0+987
0+4 4 1+000 0+976 0+295 0+997 0+982 0+746 0+997 1+000 1+000 1+000 0+987
0+4 5 1+000 0+978 0+286 0+998 0+988 0+739 0+996 1+000 1+000 1+000 0+987
0+4 6 1+000 0+978 0+297 0+998 0+985 0+741 0+996 1+000 1+000 1+000 0+989
0+8 1 1+000 0+966 0+283 0+998 0+973 0+703 0+993 1+000 1+000 1+000 0+986
0+8 2 1+000 0+960 0+297 0+997 0+955 0+728 0+994 1+000 1+000 0+999 0+983
0+8 3 1+000 0+978 0+271 0+998 0+984 0+704 0+992 1+000 1+000 1+000 0+987
0+8 4 1+000 0+972 0+283 0+997 0+976 0+692 0+994 1+000 1+000 1+000 0+980
0+8 5 1+000 0+967 0+268 0+998 0+979 0+684 0+995 1+000 1+000 1+000 0+984
0+8 6 1+000 0+973 0+260 0+999 0+972 0+693 0+994 1+000 1+000 1+000 0+981

Note: The residual-based test is applied to ~7!+ Results are obtained using 5,000 replications, for a sample of 200 observations ~N � 50!+ The DGP is given in ~33!, using the PI
coefficients of Table 1 together with b4 � 0+4, bs�1 � 0+4ws

z0ws
y for s � 3, 2, 1, in combination with the ~nonperiodic! stationary AR coefficients for y given in the column headings

and with the innovation covariance defined in ~32!+ PAR~1!, PAR~2!, PAR~3!, and PAR~4! indicate that periodic autoregressive models of order 1, 2, 3, or 4, respectively, are fitted to
the residuals to obtain the LR statistic used to test periodic cointegration at a nominal significance level of 5%+ The critical value used is 7+3, which has been obtained from a Monte
Carlo analysis based on 15,000 replications of two uncorrelated PI~1! processes with a sample size of 200 observations ~N � 50!+
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The results of Table 2 verify that, even in finite samples, the residual-based
test for periodic cointegration has reasonably good size properties, provided
that the appropriate order of PAR model is selected+ In particular, the order p
required in ~20! is one greater than the order of the stationary AR component in
~31!+ When a model of too low order is used, the test can be undersized or
oversized, depending on the parameters of the process+ In general, the satisfac-
tory size ~for appropriate p! applies across all sets of PI coefficients considered
and irrespective of the extent of correlation between the disturbances+ How-
ever, the final column suggests that, even for the correct p, the test tends to be
undersized with increasing PAR order in the DGP+

Turning to the power results of Table 3, and again provided that an appropri-
ate order of periodic process is fitted, the test has power approaching unity for
all cases considered+ It is unsurprising that unit power is obtained when the
disturbances for yst in ~33! are white noise, compared to around 0+98 when
these disturbances are a stationary AR~1! with coefficient 0+8+ However, power
does not diminish substantially when the process contains the root ~0+8!�1 �
1+25 together with additional stationary autocorrelation+ For example, with sta-
tionary AR~4! autocorrelation in a cointegrating PI regression, the test applied
to a fitted PAR~4! process has power of at least 0+98 in Table 3+ On the other
hand, relatively low power is obtained when a PAR~1! is fitted in the context
of the stationary AR~2! disturbance process, and to a lesser extent when a PAR~2!
is fitted to an AR~3! disturbance DGP+ This relatively low power is a conse-
quence of estimating a model of too low order and reflects the undersizing evi-
dent in Table 2 for the corresponding cases, which have a ~periodic! unit root
in place of the stationary root of 1+25+

5.2. Deterministic Terms

To facilitate the preceding theoretical analysis, we omitted deterministic terms
and assumed zero initial values, thereby implying E @xst# � 0+ Here we relax
these restrictions by considering the addition of deterministic terms to the cointe-
grating test regression+

In the case of standard ~nonperiodic! cointegration, the appropriate form of
the cointegration test regression depends on the properties of the time series
under study; see Phillips and Ouliaris ~1990! and Hansen ~1992!+ The inclusion
of an intercept allows for possibly nonzero starting values, with means con-
stant over time, by demeaning the variables used in the long-run regression+
The null distribution of the LR test for ~nonperiodic! cointegration then satis-
fies ~23!, with wm~r! as defined in ~19!, where it is understood that W x~r! �
@w ~1!~r!,W z~r!' # ' is a vector of demeaned standard Brownian motions+The addi-
tion of a trend allows for a nonzero drift, and the vector of Brownian motions
is then demeaned and detrended+

Turning to the case of PI processes, a nonzero starting value in ~1! and no
deterministic terms imply a seasonally varying mean E @xst# that is constant
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over years t � 1,2, + + + + However, as shown by Paap and Franses ~1999!, the
addition of an intercept to ~1! leads to a seasonally varying trend in E @xst# and
hence an annual growth rate D4 xst that varies over s � 1,2,3,4+ Further, exclud-
ing the special case of an I ~1! process, they show that a PI process with an
intercept cannot have a trend that is common over s � 1,2,3,4, irrespective of
whether the intercept is constant over seasons or is seasonally varying+ On the
other hand, and using a first-order process for ease of exposition, the process

xst � ms �qst� fs xs�1,t� est , �
i�1

s

fs � 1 (34)

with est white noise and trend coefficients satisfying

qs � ~1 � fs !@m4 � f4m3 � f3f4m2 � f2f3f4m1# , s � 1,2,3,4 (35)

has a common linear trend shared by all quarters ~Paap and Franses, 1999!+
However, with unrestricted trend coefficients, ~34! implies seasonally varying
quadratic trends in E @xst# +

In the context of testing for periodic cointegration, the preceding discussion
implies that the relevant cointegrating regressions that may be considered in
place of ~7! are

xst
~1! � b0s � �

i�2

m

bis xst
~i !� vst (36)

and

xst
~1! � b0s � b1st� �

i�2

m

bis xst
~i !� vst + (37)

More specifically, ~36! is appropriate when the variables in the regression are
known to have constant ~possibly periodically varying! mean over time, and
the use of ~37! permits the possibility that the variables may trend linearly over
time+8

In addition to the case with unrestricted trends in ~37!, we also investigate
cointegrating regressions using restricted trend coefficients such that b11 � b12 �
b13 � b14+ This last case is considered when qs satisfies the restrictions of ~35!
and hence the linear trend in each PI~1! process is constant over seasons+ All
DGPs used in this analysis are uncorrelated PI PAR~1! processes+

The results of Table 4A verify that, for the three bivariate PI~1! DGPs con-
sidered there, the inclusion of deterministic terms has the anticipated effect on
the residual-based test for periodic cointegration+ That is, for zero-mean pro-
cesses, the inclusion of periodically varying intercepts or periodically varying
intercepts and trends, as in ~36! and ~37!, respectively, causes the distribution
of the LR test for periodic cointegration to shift, with the percentiles of the test
statistic under the null hypothesis being effectively the same as the correspond-
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Table 4. Effect of deterministic terms on the empirical distribution of the
residual-based periodic cointegration test

Percentile

DGP
Deterministic

terms in regression 0+85 0+875 0+9 0+925 0+95 0+975 0+99

A+ Zero-mean DGPs
1 None 5+024 5+447 5+958 6+626 7+503 8+994 10+922

Intercepts 8+062 8+565 9+154 9+943 10+981 12+709 14+970
Intercepts and trends 10+824 11+386 12+113 12+992 14+149 16+047 18+484

2 None 5+001 5+402 5+904 6+572 7+438 8+908 10+748
Intercepts 7+939 8+443 9+066 9+840 10+825 12+635 14+934
Intercepts and trends 10+768 11+361 12+036 12+882 14+080 15+990 18+524

3 None 5+036 5+456 5+980 6+658 7+517 9+037 11+042
Intercepts 8+034 8+553 9+158 9+884 10+949 12+767 15+014
Intercepts and trends 10+840 11+382 12+067 12+910 14+110 16+026 18+492

B+ Periodic-trend DGPs
1 Intercepts and trends 10+844 11+421 12+108 12+948 14+158 16+062 18+505
2 Intercepts and trends 10+828 11+417 12+097 12+968 14+139 16+091 18+428
3 Intercepts and trends 10+789 11+389 12+073 12+930 14+089 16+023 18+488

C+ Nonperiodic-trend DGPs
1 Intercepts and trends 10+724 11+292 11+996 12+838 13+962 16+015 18+635

Intercepts and restricted trend 26+281 28+984 32+485 37+367 44+460 56+823 75+590
2 Intercepts and trends 10+826 11+404 12+087 12+938 14+133 16+123 18+638

Intercepts and restricted trend 16+689 18+021 19+562 21+827 25+219 31+502 40+791
3 Intercepts and trends 10+796 11+400 12+106 12+955 14+095 16+012 18+508

Intercepts and restricted trend 17+053 18+498 20+272 22+663 26+285 32+921 43+194

D+ Identical PI processes with nonperiodic trends
1* Intercepts and trends 10+854 11+419 12+187 13+014 14+132 16+061 18+761

Intercepts and restricted trend 10+887 11+470 12+230 13+058 14+205 16+095 18+833
2* Intercepts and trends 10+900 11+466 12+167 13+052 14+262 16+261 18+477

Intercepts and restricted trend 10+937 11+505 12+223 13+110 14+285 16+351 18+613
3* Intercepts and trends 10+787 11+440 12+163 13+051 14+230 16+020 18+523

Intercepts and restricted trend 10+882 11+515 12+238 13+128 14+342 16+077 18+668

Phillips–Ouliaris critical values
None 5+100 5+538 6+005 6+668 7+628 9+331 11+468
Intercept 8+202 8+744 9+399 10+228 11+326 13+264 15+696
Intercept and trend 11+078 11+701 12+379 13+298 14+440 16+583 19+034

Note: The residual-based test is applied to ~7! when no deterministic terms are included and to ~36! or ~37! as
appropriate when intercepts or intercepts and trends are included in the regression+ Intercepts and relevant trend
coefficients are unrestricted, unless otherwise stated; restricted trends impose b11 � b12 � b13 � b14+ All DGPs
are uncorrelated ~both serially and contemporaneously! PI bivariate PAR~1! processes+ Using superscripts y and
z to indicate the left- and right-hand-side variables, respectively, in ~7!, ~36!, or ~37!, the coefficients for the
processes of A, B, and C are as follows: ~1! f1

y � 0+8, f2
y � 0+9, f3

y � 1+2, f4
y � 1+157; f1

z � 1+2, f2
z � 0+7,

f3
z � 1, f4

z � 1+190; ~2! f1
y � 1+25, f2

y � 0+8, f3
y � 0+9, f4

y � 1+111; f1
z � 1, f2

z � 0+8, f3
z � 1+2, f4

z � 1+042;
~3! f1

y � 1+2, f2
y � 0+7, f3

y � 1, f4
y � 1+190; f1

z � 0+8, f2
z � 0+8, f3

z � 1+2, f4
z � 1+302+ The PI DGPs 1*, 2*, and

3* of D have periodic integration coefficients for both processes that are identical to the coefficients fs
y , s �

1,2,3,4, for DGPs 1, 2, and 3, respectively+ The DGPs of B, C, and D use m1
y � 1, m2

y � 1+2, m3
y � 0+5, m4

y � 0+2;
m1

z � 0+2, m2
z � 0+5, m3

z � 1+2, m4
z � 1 in a notation analogous to ~34!+ These intercept values are also used in the

nonperiodic-trend DGPs of C and D, with the trend coefficients restricted through ~35!+ Results are based on
25,000 replications for a sample of size 2,000 observations ~N � 500 years!+ The Phillips and Ouliaris ~1990!
percentiles are the squares of critical values given in their Tables IIa, IIb, and IIc corresponding to no determin-
istic terms, intercept, and intercept and trend, respectively, for n � 1 explanatory variable+
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ing values obtained by Phillips and Ouliaris ~1990! for the nonperiodic case
~with the latter values squared!+

Because the inclusion of unrestricted intercepts leads to seasonally varying
trends in a PI~1! process, a cointegrating test regression of the form of ~37!,
with unrestricted intercepts and trends, takes account of these deterministic
effects+ Table 4B verifies that, in this case, the ~squared! Phillips and Ouliaris
~1990! critical values for nonperiodic random walks with drifts continue to apply
in this periodic case+ As seen in Table 4C, these critical values also apply if the
individual processes within the DGP have trends restricted to be identical across
seasons, provided that no restrictions are imposed when ~37! is estimated+ How-
ever, imposition of the restriction of nonperiodic trends in the cointegrating
test regression of ~37! causes the Phillips–Ouliaris critical values to be inap-
propriate for these DGPs+

In contrast to the effects of restricted trends in Table 4C, Table 4D shows
that, whether the trend coefficients of the cointegrating test regression are
restricted to be identical over seasons or not, the Phillips and Ouliaris ~1990!
critical values can be used when testing cointegration between two PI~1! pro-
cesses that have identical periodic coefficients, fs

~ j ! � fs, j � y, z+ However,
the case of identical coefficients across PI separate processes is a special one,
for which Lemma 1 shows that any cointegration must be nonperiodic+

To investigate this further, consider the PI~1! vector xst, where all elements
have constant trends over seasons+ Separating the deterministic and stochastic
components of each element, we can write

xst
~i ! � c0s

~i !� c1
~i ! t� jst

~i ! , s � 1,2,3,4; i � 1,2, + + + ,m, (38)

where jst
~i ! is a zero-mean PI~1! process and E @xst

~i ! #� c0s
~i !� c1

~i ! t, which has a
periodically varying intercept but nonperiodic trend+ The regression relevant
for testing periodic cointegration between the zero-mean stochastic unit root
processes jst

~i ! is

~xst
~1!� c0s

~1!� c1
~1! t! � �

i�2

m

bis~xst
~i !� c0s

~i !� c1
~i ! t!� ust ,

that is,

xst
~i ! � �c0s

~1!� �
i�2

m

bis c0s
~i !	� �c1

~1!� �
i�2

m

bis c1
~i !	t� �

i�2

m

bis xst
~i !� ust

� b0s � b1st� �
i�2

m

bis xst
~i !� ust , (39)

which is identical in form to ~37!+ Notice, however, that although ~39! has peri-
odically varying intercepts and periodic trend coefficients, the trend coeffi-
cients in the latter satisfy
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b1s � c1
~1!� �

i�2

m

bis c1
~i ! , s � 1,2,3,4+ (40)

If the PI~1! coefficients are identical across processes, and hence any cointe-
grating relationship is nonperiodic, then bi1 � bi2 � bi3 � bi4 ~i � 2, + + + ,m!,
and ~40! implies nonperiodic trends in the cointegrating regression of ~37!
or ~39!+

The Monte Carlo results of Table 4C and 4D support this analysis+ In partic-
ular, the PI~1! processes in Table 4D with identical coefficients and individual
nonperiodic trends imply that any trend in ~37! is also nonperiodic+ Therefore,
the restriction of identical trends derives from the nonperiodic nature of any
cointegration in this case, with the imposition of this restriction effectively hav-
ing no impact on the distribution of the residual-based test statistic+

On the other hand, when the PI~1! coefficients differ over processes, ~40!
implies that the imposition of the nonperiodic trend restriction is inappropriate
when the bis are not correspondingly restricted+ However, from Lemma 1, non-
periodic cointegration can apply only when the separate processes have identi-
cal PI coefficients+ Therefore, the trend coefficients in ~37! should not be
restricted to be nonperiodic when testing for cointegration between periodic
processes, except for the special case analyzed in Table 4D+

6. CONCLUDING REMARKS

This paper has provided an analysis of cointegration for periodically integrated
processes+We first establish that the only cointegration possibilities are so-called
full periodic or full nonperiodic cointegration+ Because of the cointegration
between seasons that exists for a univariate PI variable, if no cointegration
between variables applies for a specific individual season, then no cointegra-
tion applies at all+ Further, if the PI processes have identical coefficients over
processes, then any cointegration that exists is nonperiodic, with identical cointe-
grating relationships over seasons+

This paper is the first to obtain analytical results for the distribution of two
test statistics for cointegration, proposed as appropriate in previous literature
for PI processes+

The available analytical results for cointegration related to seasonal pro-
cesses have focused on the case of seasonally integrated processes, including
Boswijk and Franses ~1995!, Hylleberg et al+ ~1990!, and Johansen and Schaum-
burg ~1999!+ However, the greater economic plausibility of periodic processes
in some contexts suggests that attention should also be devoted to this case+
The present paper provides results that contribute to our understanding of cointe-
gration for seasonal processes, while also emphasizing that periodic and sea-
sonal integration have distinct long-run implications+ In particular, although the
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Boswijk and Franses ~1995! periodic cointegration test can be applied for both
types of seasonal nonstationarity, the test statistic follows different distribu-
tions in the two cases+ Therefore, a careful prior univariate analysis should be
undertaken before considering cointegration for seasonal processes+

Our analysis also formally establishes the asymptotic distribution of a residual-
based test of cointegration for PI processes, showing this distribution to be the
same as for the nonperiodic case+ Moreover, our Monte Carlo analysis verifies
that the critical values of Phillips and Ouliaris ~1990! can be used in the con-
text of periodic processes, provided that potentially relevant trend terms included
in the cointegration test regression are not restricted to be constant over the
quarters of the year when the potential cointegration is periodic+ Therefore, the
test can be employed by applied workers in realistic contexts where the peri-
odic series under analysis exhibit nonzero means and possible trends+

As in the case of univariate PI processes analyzed by Paap and Franses ~1999!,
the use of trend terms in testing for periodic cointegration requires some care+
Specifically, when testing for cointegration in periodic processes that contain
nonperiodic trends, we show that the trend coefficients in the cointegration test
regression should be restricted to be identical over seasons only when the indi-
vidual processes have identical periodic coefficients+ Because the situation where
identical coefficients apply over the different univariate processes may not occur
widely in practice, we recommend that the trend ~and also the intercept! coef-
ficients should be unrestricted over seasons when using the residual-based test
for cointegration between PI processes+

NOTES

1+ However, the starting conditions for the SI process may make this arbitrarily unlikely in
finite samples+

2+ Löf and Franses ~2001! compare the forecast accuracy of periodic and seasonal cointegration
models in a bivariate context+

3+ Our focus is periodic cointegration, the analysis of which is facilitated by the assumption
that the process in ~1! has zero mean+ However, we relax this assumption in the Monte Carlo analy-
sis of Section 5+

4+ Although periodic variation in S can be permitted, the purpose of our analysis is to examine
the implications of periodically varying coefficients, and hence we assume constant disturbance
covariances over seasons+

5+ Note that, although ~18! implies that the PI coefficients for the residuals are identical to
those of the univariate process for xst

~1! in ~6!, we do not propose that equality between these should
be imposed+

6+ See the paragraph between expressions ~A+11! and ~A+12! of Boswijk and Franses ~1995,
p+ 451!+

7+ All results presented are based on the 5% critical value of 7+3 obtained through a Monte
Carlo simulation for T � 200 observations+ However, use of the asymptotic critical value of ~�2+76!2

from Phillips and Ouliaris ~1990, Table IIa! does not alter the substantive conclusions+
8+ In common with much of the unit root literature, the possibility of quadratic trends over time

is excluded on a priori grounds+
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APPENDIX: Proofs

Proof of Lemma 1. To prove ~i!, and without loss of generality, assume that the
linear combination a1

' x1t is stationary, with a1 of rank r+ Also, for ease of exposition,
assume two seasons per year t, so that s � 1, 2+

The PI process of ~6! then implies

x1t � F1
� x2,t�1 � U1t , (A.1)

where F1
� is a diagonal m � m matrix with j th diagonal element w1

~ j ! and the stationary
m � 1 vector Ust has j th element ust

~ j !+ Premultiplying ~A+1! by a1
' yields

a1
' x1t � a1

'F1
� x2,t�1 � a1

'U1t� a2
' x2,t�1 � a1

'U1t , (A.2)

where the m � r matrix a2 � F1
�a1 defined by ~A+2! has rank r, because F1

� is nonsin-
gular and a1 is of rank r+ Further, the columns of a2 must contain r cointegrating vec-
tors for x2,t�1, as otherwise the right-hand side of ~A+2! would be nonstationary+

However, we need to establish that there are no additional linearly independent cointe-
grating vectors for x2t, beyond those in the columns of a2+ Say one such cointegrating
vector exists and append this as an additional column of a2 to form the m � ~r � 1!
matrix a2

* of rank r � 1+ Then, analogously to ~A+2!, and where F2
� is a diagonal m � m

matrix with j th diagonal element w2
~ j ! , we have

a2
*' x2t � a2

*'F2
� x1t� a2

*'U2t� a1
*' x1t� a2

*'U2t +

By the same argument as before, a1
* � F2

�a2
* must be a matrix of r � 1 cointegrating

vectors for x2t+ This, however, contradicts the assumption that there are exactly r cointe-
grating vectors for x1t+ Consequently, there can be only r linearly independent cointe-
grating vectors for x2t+

Recognizing that a2 on the right-hand side of ~A+2! relates to season s � 1 for s � 1,
the generalization to four seasons, s � 1, 2, 3, 4, is straightforward, with the r cointe-
grating vectors for each quarter satisfying

as�1 � Fs
�as , s � 1,2,3,4+ (A.3)

Note that for s � 4, it is understood that s � 1 � 1+ By repeated substitution in ~A+3!, it
is clear that given any as and the periodic coefficients, the cointegrating vectors for all
other quarters can be determined+ Also note that the PI property of ~6! implies that

F1
�F2

�F3
�F4

� � I4 +

To establish ~ii!, first note that each of the m processes having identical PI coeffi-
cients implies Fs

� � ws Im, for s � 1,2,3,4+ Therefore, from ~A+3!, as�1 � wsas, and
because the scaling is irrelevant, the cointegrating relationships are identical over s � 1,
2, 3, 4+ Conversely, because Fs

� is nonsingular, as � csas�1 for some scalar constant cs

only if Fs
� � cs Im, s � 1,2,3,4+ In turn, Fs

� � cs Im implies that the m PI~1! processes
have identical periodic coefficients+ �
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Proof of Lemma 2. Define the vector of observations for process j of xst in year t
as Xt

~ j ! � @x1t
~ j ! , x2t

~ j ! , x3t
~ j ! , x4t

~ j ! # ' + As all elements of xst are SI, then the series for the
quarters of the year are not cointegrated, so that no 4 � r matrix of cointegrating vec-
tors bj exists such that bj

'Xt
~ j ! is stationary for any j � 1, + + + ,m+ Because no cointegra-

tion connects the integrated processes xst and xqt ~q � s!, the existence of cointegration
between the elements of xst has no implications for cointegration between the elements
of xqt+ �

Proof of Lemma 3. For the process of ~6!, ~8!, and ~9!, and as in Boswijk ~1994!
and Phillips and Ouliaris ~1990!, we use the decomposition S � PP ' where the upper
triangular matrix P is

P � �s11
102M1 � r1z

' r1z s11
102 r1z

'

0 Pzz
� , (A.4)

in which the n � 1 ~with n � m � 1! vector r1z is defined from the elements of S
in ~9! as

r1z � s11
�102 Pzz

�1s1z + (A.5)

For a 4m � 1 vector white noise sequence $Et% with mean zero and variance matrix
I4m, the multivariate invariance principle ~see Phillips and Durlauf, 1986! implies that

1

MN
�
j�1

@rN #

Ejn W~r!, (A.6)

where W~r! is a 4m � 1 vector standard Brownian motion process+ For later use, define

W~r! � @W 1~r!',W 2~r!', + + + ,W m~r!' # ' � @W 1~r!',W z~r!' # ',

where W j~r!, j � 1, + + + ,m, are 4 � 1 vectors whose elements we associate with the
seasons, while W z~r! is 4n � 1+ From these, define the 4m � 1 vector Brownian motion
with covariance matrix S � I4 as

E x~r! � ~P � I4 !W~r!��s11
102 $M1 � r1z

' r1zW
~1! ~r!� ~r1z

' � I4 !W
z~r!%

~Pzz � I4 !W
z~r!

� + (A.7)

As in Lemma 1 of Boswijk and Franses ~1996!,

1

MN
X@rN # � ~Q0

x �Q1
x !

1

MN
�
j�1

@rN #

Uj
x � op~1!

� ~Q0
x �Q1

x !
1

MN
Cx~1!�1 �

j�1

@rN #

Ej
x � op~1!

n Bx~r!� ~Q0
x �Q1

x !Cx~1!�1E x~r!� axbx'Cx~1!�1E x~r!+ (A.8)
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Now, it is easy to see that

Cx~1!�1~P � I4 ! � �C~1! ~1!�1~s11
102M1 � r1z

' r1z !I4 C~1! ~1!�1s11
102~r1z

' � I4 !

0 C z~1!�1~Pzz � I4 !
� +

Therefore, from ~A+7! and ~A+8!, we have

B ~1! ~r! � s11
102 a ~1!b ~1!'C~1! ~1!�1~M1 � r1z

' r1zW
~1! ~r!� ~r1z

' � I4 !W
z~r!!,

Bz~r! � azbz'C z~1!�1~Pzz � I4 !W
z~r!,

(A.9)

as in ~15! of the text, where az and bz are defined as the lower right-hand 4n � n blocks
of ax and bx in ~14!+ �

Proof of Lemma 4. Consider first the OLS estimates of the coefficients of ~7! for
each season, denoted ZBs � @ Zb2s, Zb3s, + + + , Zbms#

' , where

ZBs � �N�2 �
t�1

N

zst zst
' ��1�N�2 �

t�1

N

xst
~1! zst� +

Then

ZBsn ��Bs
z~r!Bs

z~r!' dr��1�Bs
z~r!Bs

~1!~r! dr, (A.10)

where Bs~r! � @Bs
~1!~r!,Bs

z~r!' # ' is m � 1 vector Brownian motion, with n � 1 Bs
z~r! �

@Bs
~2!~r!, + + + ,Bs

~m!~r!# ' +
From ~17! and defining the n � 1 vector GW z~r!� @ Kw ~2!~r!, Kw ~3!~r!, + + + , Kw ~m!~r!# ' , we

have

�Bs
z~r!Bs

z~r!' dr � As�� GW z~r! GW z~r!' dr�As ,

�Bs
z~r!Bs

~1!~r! dr � As�� GW z~r! Kw ~1! ~r! dr�v1 as
~1! ,

(A.11)

where As is an n � n diagonal matrix such that As � diag$w2 as
~2! ,v3 as

~3! , + + + ,vm as
~m! % +

Then, from ~A+10! and ~A+11! it is easy to see that

ZBsn v1 as
~1!As

�1 @ GW z~r! GW z~r!' #�1� GW z~r! Kw ~1! ~r! dr+ (A.12)

The appropriately scaled residuals from ~7! can be expressed as

1

MN
[vs @rN # �

1

MN
xs @rN #
~1! � ZBs

'
1

MN
zs @rN # , (A.13)
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where zs @rN # � @xs @rN #
~2! , xs @rN #

~3! , + + + , xs @rN #
~m! # ' and, from ~17!,

1

MN
zs @rN #n Bs

z~r!� As GW z~r!,

1

MN
xs @rN #
~1!
n Bs

~1!~r!� v1 as
~1! Kw ~1! ~r!+

(A.14)

Hence, from ~A+12!–~A+14!,

1

MN
[vs @rN #n v1 as

~1!� Kw ~1! ~r!�� Kw ~1! ~r! GW z~r!' dr�� GW z~r! GW z~r!' dr��1

GW z~r!�
� v1 as

~1! h ' GW x~r!, (A.15)

where h ' � @1,�	 Kw ~1!~r! GW z~r!' dr @	 GW z~r! GW z~r!' dr#�1# + Each element of the m � 1
vector of Brownian motions GW x~r!� @ Kw ~1!~r!, GW z~r!'# ' has unit variance, and the m �
m long-run covariance matrix P of GW x~r! can be expressed as

P � � 1 Ã1z
'

Ã1z Pzz
�

with elements on the principal diagonal of Pzz equal to one+
Defining the m � m matrix L such that P � LL' , and where the first column of L is

given by ~l11, 0n!, then, using part ~a! of Lemma 2+2 of Phillips and Ouliaris ~1990!, we
have that

GW x~r! � LW x~r!,

where W x~r! � @w ~1!~r!,w ~2!~r!, + + + ,w ~m!~r!# ' � @w ~1!~r!,W z~r!' # ' is an m � 1 vector
of standard Brownian motions with covariance matrix Im+ Finally from part ~b! of Lemma
2+2 of Phillips and Ouliaris ~1990!, it is possible to write

h ' GW x~r! � l11 k 'W x~r!,

k ' � �1,��w ~1!~r!W z~r!' dr��W z~r!W z~r!' dr	�1� +
Recalling that v1 � s11

0+5~b ~1!'C~1! ~1!�1C~1! ~1!'�1b ~1! !0+5 , the result in ~18!–~19! is
obtained by substituting these last two expressions into ~A+15! and stacking the residu-
als for s � 1,2,3,4 to define the vector ZV@rN # � @ [v1@rN #, [v2@rN #, [v3@rN #, [v4@rN ##

' + �

Proof of Theorem 1. It follows from Lemma 4 that, in the absence of cointegration,
we can write

[nst � ws
~1! [ns�1,t� ust

m , �
s�1

4

ws
~1!� 1+ (A.16)
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Now define Ut
m � @u1t

m ,u2t
m ,u3t

m ,u4t
m # ' � C~1! ~L4 !�1Et

m and Et
m � @«1t

m ,«2t
m ,«3t

m ,«4t
m # ' +

As in Lemma 1 of Boswijk and Franses ~1996! and Lemma 3 of the text, we have that

1

MN
ZV@rN #n s~Q0

~1!�Q1
~1! !U m~r!� sa ~1!b ~1!'C~1! ~1!�1E m~r! (A.17)

with 1

MN �j�1
@rN # Ej

m n sE m~r! and E m~r! is 4 � 1 vector standard Brownian motion
that is a function of the elements of W~r!+ Comparing ~18! with ~A+17!, it follows that

sa ~1!b ~1!'C~1! ~1!�1E m~r! � s11
102 l11va ~1!wm~r!,

where v � ~b ~1!'C~1!~1!�1C~1!~1!'�1b ~1! !0+5 , and hence

wm~r! �
s

l11s11
102v

b ~1!'C~1! ~1!�1E m~r! (A.18)

provides an alternative definition of wm~r!+ Also note that from Lemma 4 we know that
wm~r!� k 'W x~r!, and hence it is easy to see that the variance of wm~r! is equal to k 'k+
Hence, from ~A+18!, s � l11s11

102~k 'k!102 + For notational convenience in what follows,
we omit the superscripts when referring to the periodic integration coefficients relating
to process xst

~1! and hence simply refer to a and b+
The theorem can then be established in a similar way to Theorem 1 in Boswijk and

Franses ~1996!+ It is convenient to write ~20!–~21! using conventional time subscripts
and seasonal dummy variable notation ~Dst taking the value unity when observation t
falls in season s and zero otherwise!+ Employing this notation yields the following rep-
resentation ~see Boswijk and Franses, 1996, p+ 238!:

[vt � p1 D1t [vt�1 � �
s�1

4

ws Dst [vt�1 � �
s�1

4

�
j�1

p�1

cjs~Dst [vt�j � ws�j Dst [vt�j�1!� «t , (A.19)

where the restriction w1w2w3w4 � 1 is imposed+ Let u � @u1,u2
' ,u3
' # ' denote the full

parameter vector with u1 � p1, u2
' � @w2,w3,w4#, and u3

' � @c11, + + + ,c1, p�1, + + + ,
c41, + + + ,c4, p�1# + Under the null hypothesis p1 � 0, this parameter is associated with the
unit root while w2, w3, and w4 are cointegration parameters ~with w1 defined from the
periodic unit root restriction as w1 � ~w2w3w4!

�1!, and u3 collects the parameters asso-
ciated with the stationary regressors in ~A+19!+

Let zt � @zt
1 , zt

2' , zt
3'# ' be defined conformably with u as zt � ] [vt 0]u, and hence

zt
1 � D1t [nt�1, zt

2 � H ' [ut , [ut � @ [u1t , [u4t , [u3t , [u4t #
',

where

[ust � Dst [nt�1 � �
i�1

p�1

ci, s�i Ds�i, t [vt�i�1, s � 1,2,3,4
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and

H ' �





�
w1

w2

1 0 0

�
w1

w3

0 1 0

w1

w4

0 0 1





+

From Lemma 3 and ~A+17!, zt
1 and zt

2 satisfy

N�1 �
t�1

T

zt
1«t n l11s11

102vsa4�wm~r! dE1
m~r!,

N�2 �
t�1

T

~zt
1!2 n l11

2 s11v
2a4

2�wm~r!
2 dr,

N�2 �
t�1

T

zt
2 zt

2'n l11
2 s11v

2H 'A*C~1! ~1!'C~1! ~1!A*H�wm~r!
2 dr,

N�2 �
t�1

T

z1
2 zt

1n l11
2 s11v

2H 'A*C~1! ~1!'A1
*�wm~r!

2 dr,

N�1 �
t�1

T

zt
2«t n l11s11

102vsH 'A*C~1! ~1!'�wm~r! dE m~r!,

(A.20)

where v � ~b 'C~1!~1!�1C~1!~1!'�1b!0+5, A* � diag~a4,a1,a2,a3! � diag~w2w3w4, 1,
w2,w2w3!, A1

* � ~a4, 0, 0, 0!' + Note that in our case the processes Es
m~r! for s � 1, 2,

3, 4 have unit variance+
Under the periodic unit root null hypothesis, the PAR~ p � 1! regressors Dst [vt�j �

ws Dst [vt�j�1 collected in the vector zt
3 are stationary, with

N�102s�2 �
t�1

T

zt
3«t n N~0,V3 !,

N�1s�2 �
t�1

T

zt
3 zt

3'r V3 +

(A.21)

Finally, reflecting the different rates of convergence for the parameter estimates corre-
sponding to the nonstationary PI regressors and those for the stationary PAR~ p � 1!
component in the augmented regression ~20! or ~21!, we have that

N�1 �
t�1

T

zt
3 zt

2' � Op~1!,

N�1 �
t�1

T

zt
3 zt

1 � Op~1!+
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The distribution of the LR test is established by Boswijk and Franses ~1996! using

LR �
~N Zu1!2

~YN
�1 QuYN

�1!11
� op~1!, (A.22)

where YN � diag~N � I4,N 102 � I4~ p�1!!, ~YN
�1 QuYN

�1!11 is the first element of
the principal diagonal of the inverse matrix ~YN

�1 QuYN
�1!�1, N Zu1 is the first element of

~YN
�1 QuYN

�1!�1YN
�1 qu , and qu and Qu are the score vector and negative of the Hessian

matrix, respectively, formulated in terms of u+
Note that, as in Boswijk and Franses ~1996!,

~YN
�1 QuYN

�1!�1YN
�1 qu � � 1

s 2
YN

�1 � zt zt
'YN

�1	�1 1

s 2
YN

�1 � zt «t

and hence, from ~A+20! and ~A+21!, it is easy to see that

YN
�1 QuYN

�1n �
l11

2 s11v
2

s 2
K 'K�wm~r!

2 dr 0

0 V3

� ,
(A.23)

YN
�1 qun �

l11s11
102v

s
K '�wm~r! dE m~r!

N~0,V3 !
� ,

where we define K � @A1
*IC~1! ~1!A*H # + Therefore,

~YN
�1 QuYN

�1!�1YN
�1 qun �

s

l11s11
102v

��wm~r!
2 dr��1�wm~r! d~K

'K !�1K 'E m~r!

N~0,V3
�1!

� +
(A.24)

Now, partitioning K � @K1IK2# to focus on the first element of ~YN
�1 QuYN

�1!�1YN
�1 qu ,

namely, N Zu1, then ~A+24! implies

N Zu1n ��wm~r!
2 dr��1�wm~r! dS1~r!, (A.25)

where

S1~r! �
s

l11s11
102v

~K1
'M2 K1!

�1K1
'M2 E m~r! (A.26)

and M2 � I � K2~K2
'K2 !

�1K2
'+

As in Boswijk and Franses ~1996!, the covariances between S1~r! and K2
'E m~r! and

between wm~r! and K2
'E m~r! are easily seen to be zero+ Thus both S1~r! and wm~r! are

independent of the 3 � 1 vector Brownian motion K2
'E m~r!, and, because these are all
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defined from the same 4 � 1 vector Brownian motion E m~r!, it follows that S1~r! and
wm~r! must be the same up to a scale factor+ From ~A+26!, noting that K1

'M2 K1 is scalar,
the variance of S1~r! is seen to be s 2l11

�2s11
�1v�2~K1

'M2 K1!
�1 , and ~A+18! implies that

the variance of wm~r! is given by s 2l11
�2s11

�1+ Consequently,

S1~r! � v
�1~K1

'M2 K1!
�102 wm~r!+ (A.27)

Substituting for S1~r! from ~A+27! into ~A+25! yields

N Zu1n v�1~K1
'M2 K1!

�102 ��wm~r!
2 dr��1�wm~r! dwm~r!+ (A.28)

From ~A+23!,

~YN
�1 QuYN

�1!11 n
s 2

l11
2 s11v

2
~K 'K !11��wm~r!

2 dr	�1

�
s 2

l11
2 s11v

2
~K1
'M2 K1!

�1��wm~r!
2 dr	�1

+ (A.29)

The result in ~23! is easily obtained by substituting ~A+28! and ~A+29! into ~A+22! and
using s � l11s11 102~k 'k!102 + �

Proof of Theorem 2. For ~i!, note, first, that the Wald statistic ~25! to test the null
for no cointegration in season s is

Walds � Zd '~Vâr @ds #
�1 ! Zds

� [su
�2��

t�1

N

D4 xst
~1! xs,t�1

' 	��
t�1

N

xs,t�1 xs,t�1
' 	�1��

t�1

N

D4 xst
~1! xs,t�1	+ (A.30)

Then, from Lemma 3,

N�1 �
t�1

N

D4 xst
~1! xs,t�1 ��Bs

x~r! dBs
~1!~r!,

N�2 �
t�1

N

xs,t�1
' xs,t�1n �Bs

x~r!Bs
x~r!' dr,

where Bs
x~r! � @Bs

~1! ,Bs
~2! , + + + ,Bs

~m! # ' + Using ~17! with C~1!~1! � 1, and the fact that in
the spurious regression case S � diag$s11,s22, + + + ,smm% , it is possible to see that

Bs
~ j !~r! � sjj

102 as
~ j !~b ~ j !'b ~ j ! !102 w ~ j !~r!, j � 1,2, + + + ,m+
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Substituting into ~A+30! it then follows that

Walds � Zds
'~Vâr @ds #

�1 ! Zds

n su
�2��Bs

x~r! dBs
~1!~r!	'��Bs

x~r!Bs
x~r!' dr	�1��Bs

x~r! dBs
~1!~r!	

� su
�2s11~as

~1! !2b ~1!'b ~1!��W x~r! dw ~1!~r!	'��W x~r!W x~r!' dr	�1

� ��W x~r! dw ~1!~r!	, (A.31)

where, as in Boswijk and Franses ~1996!,

[su
2r su

2 �
1

4 �
s�1

4

Var~xst
~1! !�

1

4
s11 b ~1!'b ~1!a ~1!'a ~1!+ (A.32)

Substituting ~A+32! in ~A+31! yields the result in ~27!+
For the joint test statistic, because of the seasonal dummy variables,

Wald � �
s�1

4

Walds

� 4
�
s�1

4

~as
~1! !2

a ~1!'a ~1!
��W x~r! dw ~1!~r!	'��W x~r!W x~r!' dr	�1��W x~r! dw ~1!~r!	

� 4��W x~r! dw x~r!	'��W x~r!W x~r!' dr	�1��W x~r! dw ~1!~r!	
as given in ~28!+ �
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