
7 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

efficiency, and greater customer satisfaction.
In pair programming, a key ingredient in agile
projects’ success, pairs of programmers work-
ing together handle all development tasks—
each pair sharing one terminal, keyboard, and
mouse.3–5 Researchers have since reported
that pair programmers produce higher-quality
code than do developers working alone.6–8

This finding is intuitively appealing; you’d ex-
pect collaborators who continuously review
each other’s work to find better design and

construction solutions than one programmer
working alone. More surprising is their find-
ing that pair programmers produce code with
little or no significant productivity loss.6–8

This research contrasts starkly with our
field study findings. We decided to reexamine
our earlier productivity data from teams of
two and ask: Would our previous findings of
concurrent-work productivity loss be reversed
if we look only at programming pairs rather
than teams of all sizes? If so, we could con-
clude that pairs are naturally more productive
than larger teams, regardless of the collabora-
tive process. If not, we could conclude that the
collaboration mechanisms prescribed in pair
programming might overcome a natural loss
of productivity from concurrent work. We of-
fer these findings and their implications as a
benchmark against which we might measure
the potential of pair programming practices.

feature
A Field Study of Developer
Pairs: Productivity Impacts
and Implications

I
n a previous industrial field study, we examined programmer produc-
tivity as team size varies. We showed that regardless of size or experi-
ence, the more time team members spend concurrently working on the
same code modules, the less productive they are.1,2 In other words,

teams are more productive when their members work independently.
As our research was underway, the phenomenon of agile software meth-

ods exploded, promising increased quality, shorter time to market, better

agile methodologies

Pair programming purportedly delivers quality code with little
productivity loss. The authors’ field study, outside the pair
programming environment, shows that two-person teams working
independently are more productive than those working concurrently.
Agile methods may overcome inherent productivity losses of
concurrent development.

Allen Parrish, Randy Smith, David Hale, and Joanne Hale, University of Alabama

The conundrum of pair
programming and productivity

Pair programming exemplifies the highest
level of collaborative effort, prescribing two
programmers to work side by side at one
computer, jointly responsible for producing
one artifact. One person is the driver, control-
ling the equipment and physically writing the
code; the other is the navigator, performing
ongoing peer reviews and acting as consultant
and advisor. Team members regularly swap
driver and navigator roles.3–5

In our earlier work, we examined how as-
signing development tasks to programmers af-
fects development effort.1,2 One result from
that work is a concurrency metric—the degree
to which different programmers report work-
ing on the same module during the same day.
Concurrency measures collaboration poten-
tial: in a high-concurrency situation, there is
the potential (and some likelihood) that the
team members are working together. On the
other hand, in a low-concurrency situation
(team members working on the same module
but not on the same day), this probability
obviously diminishes. Although concurrency
isn’t a perfect measure of collaboration, it’s a
necessary precursor, positively correlated with
collaboration, and relatively easy to noninva-
sively collect in many industrial situations.

Pair programmers exhibit very high con-
currency, working collaboratively at the same
time on the same task. But they also follow
the prescribed role-based protocol described
earlier. To understand pair programming’s im-
pact, one strategy is to establish certain base-
lines in the absence of those practices. Specif-
ically, what’s the impact of concurrency in a
situation where pair programming isn’t prac-
ticed? If concurrency has a positive effect on
productivity in this context, we can conclude
that working concurrently in teams of two of-
fers a natural productivity benefit. On the
other hand, if concurrency has a negative
effect in this context, the pair programming
protocol must counteract this loss. So, how
important is role-based collaboration in max-
imizing pair programming productivity?

To establish a baseline in this study, we sep-
arated the concurrency issue from the role-
based protocol. In particular, we examined
high-concurrency and low-concurrency pro-
gramming pairs in a situation where no role-
based protocol was prescribed. Our findings

show that the former (that is, potentially highly
collaborative pairs) are dramatically less pro-
ductive than the latter (pairs working on the
same task but not at the same time). Although
this certainly doesn’t imply a productivity loss
with pair programming, it does mean that any
productivity gains reported with pair program-
ming are likely due entirely to the role-based
protocol rather than to any inherent conse-
quences of working closely in pairs.

Reexamining our research results
We reexamined our previous data isolating

and analyzing the productivity of two-person
teams who were developing a statewide time-
accounting system. The analysis covered 48
modules developed by professional program-
mer pairs. For each such module, we examined
the effect of concurrency on pair productivity.

The contractor was rehosting a legacy system
to a distributed environment. The legacy system
had over 3,000 screens and approximately a
million lines of code.1,2 The new system sup-
ports over 400 distributed users and accommo-
dates departmental accounting and personnel
systems, inventory control, and a large-scale
bidding system for state infrastructure. The de-
velopers used a fourth-generation tool, a mod-
ern relational database, and a Microsoft Win-
dows-based development environment that
included report generators, COTS libraries,
database systems, and other new components.

From preliminary design information, we
measured unadjusted function points (UFPs)
for each module, then recorded actual devel-
opment effort using the development team’s
time-accounting system. The system records each
developer using a unique identifier, a module
identifier, time spent (in 15-minute incre-
ments) on the module, and the date the work
was done.1,2 Although the recording process
might be inaccurate, using a noninvasive con-
tractor accounting system let us collect a much
more extensive set of productivity data than
otherwise would have been possible.

We isolated three factors for this study:

■ Team size: modules with development
teams of size two (n = 48)

■ Concurrency: the degree to which pro-
grammers reported working on the same
module during the same day1,2

■ Productivity: the average number of UFPs
completed per unit of time

S e p t e m b e r / O c t o b e r 2 0 0 4 I E E E S O F T W A R E 7 7

Although
concurrency
isn’t a perfect

measure of
collaboration,

it’s a necessary
precursor,
positively

correlated, and
relatively easy

to collect.

7 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

We measured concurrency by the average
number of programmers reporting work on a
module over all days that the module was un-
der development (see elsewhere for additional
details1). Although the data analyzed doesn’t
provide posterior measures of quality at the
module level, we tested all the modules using
standard criteria prior to completion. So, from
a functional perspective, all modules met a
minimum quality standard.1,2

Concurrency and productivity
We measured productivity by the number of

UFPs developed per hour of programmer ef-
fort. We classified teams reporting concurrency
levels below the median as low-concurrency
and those reporting levels above the median as
high-concurrency.

We ran a simple t-test to determine if a sig-
nificant difference exists in these two groups’
average productivity. This statistical proce-
dure tests the validity of the hypothesis that
two samples (in this case, a low-concurrency
sample and a high-concurrency sample) are
drawn from populations with the same mean
(in this case, with the same average productiv-
ity). Rejecting this hypothesis is equivalent to
concluding that the probability (denoted by
the p-value) is very low that any observed dif-
ferences in average productivity between low-
and high-concurrency groups is due to chance.

As Table 1 shows, the t-test results are com-
pelling. Low-concurrency pairs (those work-
ing most independently) developed an average
of 4.7 UFPs per hour, while high-concurrency
pairs (those potentially working most closely
together) developed an average of 1.1 UFPs
per hour. So, the more independent pairs were
over four times more productive than the
more concurrent ones, with a near-zero prob-
ability that such a wide difference could have
occurred by chance alone. This is in stark con-
trast with the reported productivity effects of
the role-based pair programming protocol. In

these studies, the productivity loss was either
moderate or statistically insignificant.6–8

Implications for programming
practice

Outside of a prescribed pair programming
protocol environment, we could make intu-
itively appealing arguments for the productiv-
ity of highly collaborative programming pairs
on the basis of two claims:

■ A pair of experienced, methodology-
trained professional developers shouldn’t
need a prescribed collaboration protocol
to effectively and productively plan, com-
municate, execute, and review tasks.

■ Programming pairs can learn over time to
work more productively together by de-
vising their own productive collaboration
process.

The data from our field study indicates that nei-
ther argument holds true. Refuting the first ar-
gument is our finding that the high-concurrency
pairs were significantly less productive despite
the fact that they were experienced, methodol-
ogy-trained programmers. On average, these
professional programmers had 10 years of work
experience. Our assessment of pair productiv-
ity over time refutes the second argument. We
found that pairs were no more productive on
later modules than on earlier modules.

There are at least two intuitively appealing
explanations:

■ Pairs working together aren’t naturally
productive—they need the collaborative
role-based protocol that pair programming
provides to combat this productivity loss.

■ Pairs working concurrently on the same
task might be unproductive because of du-
plicate work—simultaneously working on
the same problem or making conflicting
changes that must be reconciled later.

Our field study supports the first rather than
second explanation. Although we recognize the
potential for the second cause of lost produc-
tivity, it doesn’t appear to be a strong factor in
this case. The team of 16 developers worked at
the same location and used a version control
system with source code tracking and check-in
and check-out file locking. Although this doesn’t
preclude the possibility of duplicate effort, it

Table 1
T-test* results: Productivity versus concurrency level

No. of developed Mean Standard
Concurrency level modules productivity deviation

Low 23 4.709 3.973
High 25 1.125 0.726

∗ µ: population mean; 95% confidence interval for µlow – µhigh = (1.844, 5.323)
T-test of hypothesis, µlow = µhigh: t-value = –4.26; p-value = 0.000

S e p t e m b e r / O c t o b e r 2 0 0 4 I E E E S O F T W A R E 7 9

significantly reduces its potential. So, we con-
clude that the role-based protocol prescribed in
pair programming overcomes a natural produc-
tivity loss from working in pairs.

S ome prior empirical evidence is avail-
able regarding the productivity effects
of pair programming. However, these

studies involved student programmer pairs6,8

or professional programmers working on
short, 45-minute tasks.7 Particularly given the
increased use of pair programming—in a re-
cent worldwide survey,9 35 percent of 104 de-
velopment projects said they incorporate pair
programming—more empirical evidence from
real industry projects is needed.

A key to establishing realistic expectations
will be industry participation in data collec-
tion and experimentation. This requires signif-
icant effort and might involve releasing valu-
able proprietary data. In the interim, our
study provides an industry baseline: Pair col-
laboration requires significant resources, and
a prescribed pair programming protocol
shows promise for reducing this cost and, bet-
ter still, improving productivity.

The concurrency metric provides a valuable
framework for future work in this area. In par-
ticular, we can control for it. Thus, among high-
concurrency pairs, we could compare pairs em-
ploying the role-based pair programming
protocol (side by side on a single machine) with
other interaction models and thus evaluate the
typical process model that agile methodologies
employ. Future work must also explore other
factors that might alter the effectiveness of pair
programming practices, including programmer
expertise, problem complexity, problem do-
main, and development environment. This
work is an important next step in the quest to
quantify the overall utility of agile methods.

Setting aside any productivity impacts in an
industrial setting, pair programming’s other
valuable benefits are already well established.
Pair programming teams not only create higher-
quality code but also find greater enjoyment in
their jobs and more confidence in their work.7,10

Robert Glass lauds agile methodologies for
their emphasis on constant unit testing, contin-
uous integration, customer participation, and
programmer-friendly workload expectations.11

This study certainly doesn’t try to refute these
claims. We expect to see mounting evidence
that these benefits are real and significant.

References
1. R. Smith, J. Hale, and A. Parrish, “An Empirical Study

Using Task Assignment Patterns to Improve the Accu-
racy of Software Effort Estimation,” IEEE Trans. Soft-
ware Eng., vol. 27, no. 3, 2001, pp. 264–271.

2. J. Hale et al., “Enhancing the COCOMO Estimation
Models,” IEEE Software, vol. 17, no. 6, 2000, pp. 45–49.

3. K. Beck, “Embracing Change with Extreme Program-
ming,” Computer, vol. 32, no. 10, 1999, pp. 70–77.

4. K. Beck, Extreme Programming Explained: Embracing
Change, Addison-Wesley, 2000.

5. L. Williams and R. Kessler, Pair Programming Illumi-
nated, Addison-Wesley, 2003.

6. L. Constantine, Constantine on Peopleware, Yourdon
Press, 1995.

7. J. Nosek, “The Case for Collaborative Programming,”
Comm. ACM, vol. 41, no. 3, 1998, pp. 105–108.

8. L. Williams et al., “Building Pair Programming Knowledge
through a Family of Experiments,” Proc. 2003 Int’l Symp.
Empirical Software Eng., IEEE CS Press, 2003, pp. 143–152.

9. M. Cusumano et al., “Software Development World-
wide: The State of the Practice,” IEEE Software, vol.
20, no. 6, 2003, pp. 28–34.

10. L. Williams and R. Kessler, “All I Really Need To Know
about Pair Programming I Learned in Kindergarten,”
Comm. ACM, vol. 43, no. 5, 2000, pp. 108–114.

11. R. Glass, “Extreme Programming: The Good, the Bad,
and the Bottom Line,” IEEE Software, vol. 18, no. 6,
2001, pp. 112–111.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

About the Authors

Allen Parrish is an associate professor in the Department of Computer Science and direc-
tor of the CARE Research and Development Laboratory at the University of Alabama. His re-
search interests are in software testing, software deployment, data analysis and visualization,
and highway safety information systems. He received his PhD in computer and information sci-
ence from Ohio State University. Contact him at the Dept. of Computer Science, Box 870290,
Univ. of Alabama, Tuscaloosa, AL 35487-0290; parrish@cs.ua.edu.

Randy Smith is an assistant professor in the Department of Computer Science at the Uni-
versity of Alabama. His research interests are in software effort estimation, software process,
and data analysis. He received his PhD in computer science from the University of Alabama.
Contact him at the Dept. of Computer Science, Box 870290, Univ. of Alabama, Tuscaloosa, AL
35487-0290; rsmith@cs.ua.edu.

David Hale is the director of Management Information Systems programs in the Manufac-
turing Information Technology Center at the University of Alabama, and in the Information
Technology-Workforce Resource Center of Alabama. His research interests include aging infra-
structure, enterprise integration and modeling, component-based software development, and
software maintenance. He received his PhD in MIS from the University of Wisconsin, Milwau-
kee. Contact him at the Dept. of Information Systems, Statistics, and Management Science, Box
870226, Univ. of Alabama, Tuscaloosa, AL 35487-0226; dhale@cba.ua.edu.

Joanne Hale is an associate professor of management information systems at the Univer-
sity of Alabama. Her research interests include software development metrics, software main-
tenance, software cost estimation, and component based development and reuse. She received
her PhD in MIS from Texas Tech University. She is a member of the IEEE and ACM. Contact her
at the Dept. of Information Systems, Statistics, and Management Science, Box 870226, Univ.
of Alabama, Tuscaloosa, AL 35487-0226; jhale@cba.ua.edu.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003100200046006500620072007500610072007900200032003000300034002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

