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Cluster-Sample Methods in Applied Econometrics

By JEFFREY M. WOOLDRIDGE*

Inference methods that recognize the cluster-
ing of individual observations have been avail-
able for more than 25 years. Brent Moulton
(1990) caught the attention of economists when
he demonstrated the serious biases that can re-
sult in estimating the effects of aggregate
explanatory variables on individual-specific re-
sponse variables. The source of the downward
bias in the usual ordinary least-squares (OLS)
standard errors is the presence of an unob-
served, state-level effect in the error term. More
recently, John Pepper (2002) showed how ac-
counting for multi-level clustering can have
dramatic effects on ¢ statistics. While adjusting
for clustering is much more common than it was
10 years ago, inference methods robust to clus-
ter correlation are not used routinely across all
relevant settings. In this paper, I provide an
overview of applications of cluster-sample
methods, both to cluster samples and to panel
data sets.

Potential problems with inference in the pres-
ence of group effects when the number of
groups is small have been highlighted in a re-
cent paper by Stephen Donald and Kevin Lang
(2001). T review different ways of handling the
small number of groups case in Section IIL

I. The Model

The goal is to estimate the parameters in the
following linear model:

(D a+xpB+z,y+v

ygm =

gm

m=1,.,M, g=1,..,G

where g indexes the “group” or “cluster,” m

indexes observations within group, M, is the

group size, and G is the number of groups. The
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1 X K vector x,, contains explanatory variables
that vary only at the group level, and the 1 X L
vector z,, contains explanatory variables that
vary within group. The approach to estimation
and inference in equation (1) depends on several
factors, including whether one is interested in the
effects of aggregate variables (f3) or individual-
specific variables (y). Plus, it is nccessary to
make assumptions about the error terms. An
important issue is whether v, contains a com-
mon group effect, as in

8 + ué"”

2) vy, =c m=1,..,M,

where ¢, is an unobserved cluster effect and
Uy, is the idiosyncratic error. [In the statistics
literature, (1) and (2) are referred to as a “hier-
archical linear model.”] One important issue is
whether the explanatory variables in (1) can be
taken to be appropriately exogenous. Under (2),
exogeneity issues can be broken down by sep-
arately considering ¢, and u,,,.

I assume that the sampling scheme generates
observations that are independent across g. Ap-
propriate sampling assumptions within cluster
are more complicated. Theoretically, the sim-
plest case also allows the most flexibility for
robust inference: from a large population of
relatively small clusters, draw a large number of
clusters (G), of sizes M. This setup is appro-
priate in randomly sampling a large number of
families or classrooms. The key feature is that
the number of groups is large enough so that
one can allow general within-cluster correla-
tion. Randomly sampling a large number of
clusters also applies to many panel data sets,
where the cross-sectional population size is
large (say, individuals) and the number of time
periods is small. For panel data, G is the number
of cross-sectional units, and Mg is the number
of time periods for unit g.

Stratified sampling also results in data sets
that can be arranged by group, where the pop-
ulation is first stratified into G = 2 nonover-
lapping groups and then a random sample of
size M, is obtained from each group. Ideally,
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the strata sizes are large in the population, result-
ing in large M,,. I consider this sampling scheme in
Section III.

I1. The Number of Groups is “Large”

The asymptotic theory for G — o is well
developed; for a recent treatment, see Chapters
7, 10, and 11 in Wooldridge (2002). Suppose
that the covariates are exogenous in the sense
that

3) E( ,Z,)=0

‘gml

m=1,.,M, g=1,.,G
where Z, contains z,,,, m = 1, ..., M,. Then
a pooled ordinary least-squares (OLS) estima-
tor, where y,,, is regressed on 1, X, z,,, (m =
l,.., M, g = 1,.., G) is consistent for A
= (o, B', ") (as G — © with M, fixed) and

G-asymptotically normal. Without more as-
sumptions, a robust variance matrix is needed to
account for correlation within clusters or het-
eroscedasticity in Var(v,,,|x,, Z,). When v,,,
has the form in (2), the within- cluster correla-
tion can be substantial, which means the usual
OLS standard errors can be very misleading.
Section 7.8 in Wooldridge (2002) gives the for-
mula for a variance-matrix estimator that as-
sumes no particular kind of within-cluster
correlation nor a particular form of heterosce-
dasticity. These formulas apply without change
to panel data with a large number of cross-
sectional observations. Such variance matrices
are easy to compute now with existing software
packages.

Under (2) one can use generalized least
squares (GLS) to exploit the presence of c,

vy, The standard assumptlom imply that the
M, X M, variance-covariance matrix of v, =
(VA], Vg2, o Vour, ) has the “random efl‘ects
form, Var(w, ) = CJM JM + o] IM , where
dm, is the M X 1 vector of 1’s and I,, is
the M, X M identity matrix. The qtandard as-
sumptlons also include the “system homosce-
dasticity” assumption, Var(vglx,, Z,) = Va(v,).
The resulting GLS estimator is the well-known
random-effects (RE) estimator (see Section 10.3
in Wooldridge [2002]).

The RE estimator is asymptotically more ef-
ficient than pooled OLS under the usual
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RE assumptions, and RE estimates and test
statistics are computed by popular software
packages. Something often overlooked in appli-
cations is that one can make inference completely
robust to an unknown form of Var(vglx,, Zg).
Equation 7.49 in Wooldridge (2002) gives the
robust formula. Even if Var(v,|x,, Z,) does not
have the RE form, the RE estimator is still
consistent and V' G-asymptotically normal, and
for interesting departures from the full RE as-
sumptions, the RE estimator is likely to be more
efficient than pooled OLS. Making inference
robust to serial correlation in the idiosyncratic
ervors for panel-data applications can be very
important. Within-group correlation in the u,,
can arise for cluster samples too. For example,
suppose that underlying (1) is a random coetfi-
cient model where z,,,y, replaces z,,v. By
estimating an RE model, one effectively puts
zg('yg ) in the idiosyncratic error, and this
induces correlation across u,,,. Under standard
exogeneity assumptions, the RE estimator still
consistently estimates the average effect, y =
E(7y,). For a large G one might estimate an
unrestricted version of Var(w,), but even in this
case one should use a variance matrix robust to
Var(v,,,iX,, Z,) # Var(v,).

In economlcs the prevailing view is that ro-
bust inference is not necessary when using
GLS, but the “generalized estimation equation”
literature (see Kung-Yee Liang and Scott Zeger,
1986) explicitly recognizes that a specified vari-
ance matrix in panel-data applications need not
be equal to the true conditional variance matrix.

If ¢, is correlated with (x,,, Z,), neither 3 nor
v is consistently estimated by RE. Nevertheless,
by using the “fixed-effects” (FE) or “within”
estimator, one can still estimate y. The within
transformation subtracts off group averages
from the dependent variable and explanatory
variables:

(4) ygm o _)_}g = (ng - ig)’y + ugm - ﬁg

m=1, .., M,

and this equation is estimated by pooled OLS.
Under a full set of “fixed-effects” assumptions
(which allows arbitrary correlation between c,,
and the z,,,), inference is straightforward using
standard software. Nevertheless, analogous to
the random-effects case, it is important to allow
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Var(u,
within-group correlation and heteroscedasticity.
Manuel Arellano (1987) proposed a fully robust
variance-matrix estimator for the fixed-effects
estimator, and it works with cluster samples or
panel data (see also equation 10.59 in Wool-
dridge [2002]). Reasons for wanting a fully
robust variance-matrix estimator for FE applied
to cluster samples are similar to the RE case.

III. The Number of Groups is “Small”

The procedures described in Section II are
easy to implement, so it is natural to ask: Even
though those procedures are theoretically justi-
fied for large G, might they work well for
moderate, or even small, G? Joshua D. Angrist
and Victor Lavy (2002) provide references that
show how cluster-robust estimators after pooled
OLS do not work very well, even when G is as
large as 40 or 50. Less is known about how well
the fully robust variance-matrix estimator and
the associated robust inference work after RE
estimation.

Recently, in the context of fixed-effects esti-
mation and panel data, Gabor Kézde (2001) and
Marianne Bertrand et al. (2002) study the finite-
sample properties of robust variance-matrix es-
timators that are theoretically justified only as
G — ., One common finding is that the fully
robust estimator works reasonably well even
when the cross-sectional sample size is not es-
pecially large relative to the time-series dimen-
sion. When Var(u,|Z,) does not depend on Z,,
a variance matrix that exploits system homosce—
dasticity can perform better than the fully robust
variance-matrix estimator.

Importantly, the encouraging findings of the
simulations for fixed effects with panel data are
not in conflict with findings that the robust
variance matrix for the pooled OLS estimator
with a small number of groups can behave
poorly. For FE estimation using panel data, the
issue is sertal correlation in {u,,,: m = 1, ..,
M}, which dies out as the time periods get far
apalt The pooled OLS estimator that keeps c,
in the error term suffers because of the constant
correlation across all observations within clus-
ter. Plus, FE estimates -y, while for pooled OLS
with clustering the focus is usually on f.

When G is very small, relying on large G
asymptotics can be very misleading. Donald
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and Lang (2001; hereafter, DL) have recently
offered an alternative approach to inference,
particularly for hypothesis testing about 8. To
begm consider a special case of (1) where z,,,,
is not in the equation and x, is a scalar. The
equation is

(5) ng =a+ B-xg + Cg + ugm
m=1,.,M, g=1,...,G
where ¢, and {u,,: m = I,.., M.} arc

mdependent of x, and {ug,: m = 1, o M.}
is a mean-zero, mdepcndent 1dentically distrib-
uted sequence for each g. Even with small G,
the pooled OLS estimator is natural for estimat-
ing B. If the cluster effect c,, is absent from the
model and Var(u,,,) is conqtant across g, then
provided N = M, + -+ + M, is large enough
(whether or not G is not large), we can use the
usual ¢ statistics from the pooled OLS regres-
sion as having an approximate standard normal
distribution. Making inference robust to het-
eroscedasticity is straightforward for large N.

As pointed out by DL, the presence of c¢,
makes the usual pooled-OLS inference melhod
poorly behaved with small G. With a common
cluster effect, there is no averaging out within
cluster that allows application of the central-
limit theorem. One way to see the problem is to
note that the pooled-OLS estimator, {3, is iden-
tical to the “between” estimator obtained from
the regression of y, on 1, x, (g = 1, ..., G).
Given the x,, [3 1nher1ts its dlstnbutlon hom
{v,og = , G}, the within-group averages
of the ng The presence of c¢, means new
observations within group do not provide addi-
tional information for estimating 8 beyond af-
fecting the group average, y,.

If some assumptions are added, there is a solu-
tion to the inference problem. In particular, as-
sume ¢, ~ N(0, o72) is independent of Uy, =
N0, o2) and M, = M for all g where N
dcnotce a normal distribution. Then v v, ~ IN(O,
ol + oZ/M). Since independence acloss g is
assumed the equation
6) y,=a+Bx,+7v, ¢g=1,.,G
satisfies the classical linear-model assumptions.
Therefore, one can use inference based on the
t -, distribution to test hypotheses about S,
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provided G > 2. When G is small, the require-
ments for a significant ¢ statistic are much more
stringent then if one uses the £y, 4 a7 + .. a1, 2
distribution, which is what one would be
doing by using the usual pooled OLS statistics.
When X, is a 1 X K vector, one needs G >
K + 1 to use the t5_x_; distribution for
inference after estimating the aggregated equa-
tion (6) by OLS. If z,,,,, is in the model, then one
can add the group averages, Z,, to (6), provided
G > K+ L + 1, and use the f5_ gy
distribution for inference. (An alternative ap-
proach that conserves on degrees of freedom,
but is only approximately valid, is described
below.)

Importantly, performing the correct inference
in the presence of ¢, is not just a matter of
correcting the pooled-OLS standard errors for
cluster correlation, or using the RE estimator.
All three estimation methods lead to the same 3.
But using the between regression in (6) gives
the appropriate standard error and reports the
small degrees of freedom in the ¢ distribution.

If the common group size M is large, then u,,
will be approximately normal very generally, so
v, is approximately normal with constant vari-
ance. Even if the group sizes differ, for very
large group sizes i, will be a negligible part of
v,. Provided c, is normally distributed, classi-
cal linear model analysis on (6) should be
roughly valid.

For small G and large M, inference obtained
from analyzing (6) as a classical linear model
can be very conservative if there is no cluster
effect. Perhaps this is desirable, but it also ex-
cludes some staples of policy analysis. In the
simplest case, suppose there are two popula-
tions with means u, (¢ = 1, 2), and the
question is whether their difference is zero. Un-
der random sampling from each population, and
assuming normality and equal population vari-
ances, the usual comparison-of-means statistic
is distributed exactly as #y; , 5, under the
null hypothesis of equal means. With even
moderate-sized M, and M,, one can relax nor-
mality and adjust the statistic for different pop-
ulation variances. In the DL setup, the standard
comparison-of-means case cannot even be ana-
lyzed, because G = 2. DL criticize David Card
and Alan B. Krueger (1994) for comparing
mean wage changes of fast-food workers be-
cause Card and Krueger fail to account for ¢, in
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Ve but the criticism in the G = 2 case is
indistinguishable from a common criticism of
difference-in-differences (DID) analyses: How
can one be sure that any observed difference in
means is due entirely to the policy change?

More generally, in studies with G > 2 it
often makes sense to view the observations as
coming from standard stratified sampling. With
large group sample sizes one can get precise
estimates of the group population means, wu,.
For example, suppose that G = 4 and groups 1
and 2 are control groups, while groups 3 and 4
are treated groups. One might estimate the pol-
icy effect by 7= (g + wg)/2 — (1, + py)/2,
or different fixed weights could be used to allow
for different group population sizes. In any case,
one can get a good estimator of 7 by plugging in
the group means, and when properly standard-
ized, # will be approximately standard normal
even if the M, are as small as, say, 30. To obtain
a valid standard error, it is not necessary to
assume that the group means or variances
within, say, the treated group, are the same. In
the DL approach, the estimated treatment effect,
B, is obtained by pooling within the treated and
control groups, and then differencing the treat-
ment and control means. Their inference using
the ¢, distribution is a different way of account-
ing for w, # W, or uy # . It seems that more
work is needed to reconcile the two approaches
when G 1s small.

With large group sizes, a minimum distance
(MD) approach to estimating 8 sheds additional
insight. For each group g, write a linear model
with individual-specific covariates as

m=1,..,M,

8

(7) ygm = Sg + ngyg + ugm

assuming random sampling within groups.
Also, make the assumptions for OLS to be
consistent (as M, — ) and VM -asymptotically
normal (see Wooldridge, 2002 Ch. 4). The presence
of group-level variables x, in (1) can be viewed
as putting restrictions on the intercepts, 8,. In
particular,

8) 6, =a+x,p g=1,..,G

where we now think of x, as fixed observed
attributes of the different groups. Given that one
can estimate the 8, precisely, a simple two-step

estimation strategy suggests itself. First, obtain
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the Sg (along with ¥,) from an OLS regression
within each group. Alternatively, to impose
v, = v for all g, then pool across groups and
include group dummy variables to get the Sg.
If G = K + 1 then one can solve for 0 = (&,
B')’ uniquely in terms of the G X 1 vector &: § =
X !5, where X is the (K + 1) X (K + 1)
matrix with gth row (1, xg). IfG>K + 1,
then in a second step, one can use an MD
approach, as described in Section 14.6 of Wool-
dridge (2002). If the G X G identity matrix is
the weighting matrix, the MD estimator can be
computed from the OLS regression of

9) 5, on 1, x, or= [ G

KM, = p,Mwhere 0 < p, =1 and M — o,
the MD estimator @ is consistent and /M-
asymptotically normal. However, this MD esti-
mator is asymptotically inefficient except under
strong assumptions. It is not difficult to obtain
the efficient MD estimator—also called the
“minimum chi-square” estimator. The simplest
case is when z,,, does not appear in the first-
stage estimation, so that the Sg are sample
means. Let é§ denote the usual sample variance
for group g. The minimum chi-square estimator
can be computed by using the weighted-least-
squares (WLS) version of (9), where group g is
weighted by M/ (Arz. Conveniently, the reported
¢ statistics from the WLS regression are asymp-
totically standard normal as the group sizes M,
get large. An example of this kind of procedure
is given by Susanna Loeb and John Bound
(1996).

A by-product of the WLS regression is a
minimum chi-square statistic that can be used to
test the G — K — 1 overidentifying restrictions.
The statistic is easily obtained as the weighted
sum of squared residuals (SSR): under the null
hypothesis in (8), SSR,, 2 x&_x_,. If the null
hypothesis H,, is rejected at a small significance
level, the X, are not sufficient for characterizing
the changing intercepts across groups. If one
fails to reject Hy, one can have some confidence
in the specification and perform inference using
the standard normal distribution for ¢ statistics.

If z,,, appears in the first stage, one can use
as weights the asymptotic variances of the G
intercepts. These might be made fully robust to
heteroscedasticity in E(u§m|zgm), or at least al-
low different oﬁ. In any case, the weights are
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given by 1/[SE(6,)]> (g = 1, ..., G), where
SE(SH) are the asymptotic standard errors.

For example, suppose x,, is a binary treatment
indicator. Then (3 is an estimate of an average
treatment effect. If G = 2 there are no restric-
tions to test. With G > 2 one can test the
overidentifying restrictions. Rejection implies
that there are missing group-level characteris-
tics, and one might re-specify the model by
adding elements to x,, even if the new elements
are not thought to be systematically related to
the original elements (as when treatment is ran-
domly assigned at the group level).

Alternatively, if the restrictions in (8) are
rejected, one concludes that 6, = a + x, 8 +
cg» Where ¢, is the error made in imposing the
restrictions. This leads to the DL approach,
which is to analyze the OLS regression in (9)
where inference is based on the ¢, distri-
bution. Why is this approach justified? Since
8, = 8, + 0,(M,""?), for large M, one might
ignore the estimation error in 8,. Then, it is
as if the equation 8, = a + x,B + ¢, (g =
1, ..., G) is being estimated by OLS. Classical
analysis is applicable when ¢, ~ IN(0, o?) and
¢, is independent of x,. The latter assumption
means that differences in the intercepts 8, not
due to x, must be unrelated to x,, which seems

g g
reasonable if G is not too small and x, is a
randomly assigned treatment variable assigned
at the group level, as in Angrist and Lavy

(2002).
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