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ABSTRACT 

Systems biology studies complex biological systems. It is an interdisciplinary 

field, with biologists working with non-biologists such as computer scientists, engineers, 

chemists, and mathematicians to address research problems applying systems’ 

perspectives. How these different researchers and their disciplines differently contributed 

to the advancement of this field over time is a question worth examining. Did systems 

biology become a systems-oriented science or a biology-oriented science from 1992 to 

2013? 

This project utilized computational tools to analyze large data sets and interpreted 

the results from historical and philosophical perspectives. Tools deployed were derived 

from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS 

analysis to analyze more than 9000 articles (metadata and text) on systems biology. The 

application of these tools to a HPS project represents a novel approach. 

The dissertation shows that systems biology has transitioned from a more 

mathematical, computational, and engineering-oriented discipline focusing on modeling 

to a more biology-oriented discipline that uses modeling as a means to address real 

biological problems. Also, the results show that bioengineering and medical research has 

increased within systems biology. This is reflected in the increase of the centrality of 

biology-related concepts such as cancer, over time. The dissertation also compares the 

development of systems biology in China with some other parts of the world, and reveals 

regional differences, such as a unique trajectory of systems biology in China related to a 

focus on traditional Chinese medicine.  
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This dissertation adds to the historiography of modern biology where few studies 

have focused on systems biology compared with the history of molecular biology and 

evolutionary biology. 
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CHAPTER 1: INTRODUCTION 

1.1. Context/Motivation  

Systems biology is a new branch of biology. Leroy Hood (2003), the director and 

founder of the Institute for Systems Biology (ISB) in Seattle, Washington, for example, 

defined it as a field “studying the interrelationships of all of the elements in a system 

rather than studying them one at a time” (p. 9). Many scientists believe that systems 

biology has great potential for health care and could overcome the limitation of 

reductionism (Kitano, 2002; Hood, Heath, Phelps & Lin, 2004). It has experienced rapid 

growth because of the invention of high-throughput technologies and computational 

modeling. However, it is hard to define what exactly systems biology is, as one finds it 

hard to define molecular biology, because they represent two different ways to approach 

biology (Powell & Dupré, 2009) rather than well defined disciplines in the traditional 

sense. 

Systems biology is even harder to define precisely because it is even more 

interdisciplinary than molecular biology (Calvert & Fujimura, 2011). Scientists from 

different disciplines besides biology, computer science, engineering, physics, and 

mathematics, to name a few, have variously contributed to its methodology and 

epistemology. To give the readers an initial understanding of systems biology, I 

represented this scientific field through a word cloud, which is a graphical representation 

of word frequency. In a word cloud, the size of a word is proportional to its frequency in 

a text corpus, which can be used as a proxy for its importance. I used the Paper Machine 
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to generate a word cloud1 based on 100 randomly sampled systems biology articles from 

the Web of Science (WoS) database. Figure 1 shows the word cloud of systems biology, 

in which words like “data,” “model,” “network,” “metabolic,” “information,” and 

“genome” have a big font, because they appear more often. Many of these words are 

words that would appear in non-biology fields such as computer science or engineering. 

The goal of this study of the history of systems biology is to see how different disciplines 

helped shape its development. The motivation for this dissertation as a whole comes from 

the pilot research project detailed below. 

 

Figure 1. Word cloud of systems biology showing the frequently used words.  

1.1.1. Initial research in the Web of Science  

                                                   
1 For more information about Paper Machines, see http://papermachines.org. Paper 

Machines is a plug in for Zetero, a bibliographic tool. It is designed for humanities 

researchers to make use of computer science analysis.  
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To get a better understanding of systems biology, I collected a representative 

sample of the literature on the topic of “systems biology.” A search in the WoS database 

for articles published between 1900 and 2013 that contain the term “systems biology” in 

their “topics” (including “titles,” “abstracts,” and “keywords”) returned 9923 articles 

(The data was collected on February 3, 2014). The language was confined to English. 

Figure 2 illustrates this rapid development of the field. In the years before 2000, there 

were fewer than 10 articles listed in the WoS database. From 1997 to 2001, the numbers 

of articles were 1, 1, 1, 4, 7, but that is not shown in this figure. However, there were 

1480 articles published in the year 2012 alone. The number of papers on “systems 

biology” from 1992 to 2013 is increasing throughout the years. This initial finding is 

similar to other historians’ accounts that the rapid development of systems biology only 

happened after 2000, but that it is one of the fastest-growing areas of biology (Powell, 

O’Malley, Müller-Wille & Dupré, 2007).  

 

Figure 2. The growth of systems biology literature listed in the WoS. This figure shows 

the number of articles for each year for the 9923 articles. The x axis denotes the year, and 

the y axis denotes the number of articles.  
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Next, I used the bibliometric tool Citespace2 to analyze the citation data of the 

9923 articles downloaded from the WoS and generated a list (Table 1) of the most highly 

cited authors to see who have been influential in this field (In my next chapter, I will 

discuss in detail what Citespace is, and the different types of citation analysis it can carry 

out). The citation analysis with CiteSpace generates an excel sheet that shows for each 

author how many articles of my sample have cited his/her work. For example, for an 

author, if 3 articles out of 9923 articles cite that author’s works, the citation count for that 

author is 3. Table 1 lists the information of their rankings, citation counts calculated by 

Citespace, author names, affiliations and occupations.  

I then researched the most highly cited authors’ affiliations and educational 

background. This analysis led to an interesting observation. From Table 1 one can see 

that the top five most highly cited authors have a background in engineering, physics, 

mathematics, or computational science, or a combination of both engineering and biology 

backgrounds. For example, the first ranking author, Hiroaki Kitano, was an engineer at 

Sony before becoming a systems biologist. The second ranking author, Minoru Kanehisa 

holds a PhD in physics, but later became a bioinformatician specializing in building 

databases such as KEGG, an online database which stores information about genomes, 

pathways, and biological chemicals (Kanehisa & Goto, 2000). The third ranking author, 

Trey Ideker got a bachelor’s and master’s degree in engineering before studying 

                                                   

2 For more information of CiteSpace, please see the following link:  

http://cluster.cis.drexel.edu/~cchen/citespace/  
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biotechnology for his PhD. The fourth ranking author, Albert-Laszlo Barabási is a 

physicist best known for his work in network theory (Barabási & Oltvai, 2004). The fifth 

ranking author, Michael Hucka, is a mathematician and computational biologist who 

specializes in designing software infrastructure for systems biology (Hucka et al., 2003).  

Table 1 The most highly cited authors according to the data in WoS. 
 

Rank Cited 
times 

Author 
Name Affiliation Occupation  

1 1313 Kitano H The Systems Biology 
Institute, Japan Engineer 

2 765 Kanehisa M 
Institute for Chemical 

Research, Kyoto 
University, 

Physicist, 
bioinformatician 

3 730 Ideker T Chief of Genetics, UCSD Engineer, biologist 

4 651 Barabasi AL 
Center for Complex 
Network Research, 

Northeastern University 
Physicist 

5 560 Hucka M 

Department of 
computing and 

mathematical sciences, 
Caltech 

Mathematician, 
computer scientist 

6 492 
Ashburner 

M 
 

Department of Genetics 
at University of 

Cambridge 

Biologist, 
bioinformatician 

7 485 Nicholson 
JK 

Department of Surgery & 
Cancer, Imperial College 

London 
Biologist 

8 440 Shannn P Institute for Systems 
Biology, Seattle 

Mathematician/Com
puter scientist 

9 414 Alon U Weizmann Institute of 
Science Physicist 

10 380 Fiehn O 

Department of Molecular 
and Cellular Biology & 

Genome Center, UC 
Davis 

Biologist 

                                             

Based on this analysis I observed that among the most highly cited authors, 

engineers, mathematicians, computational biologists, and physicists have more citations 
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than biologists while overall traditional biologists seemed to have contributed less to 

systems biology. This phenomenon is probably not unusual for an interdisciplinary 

discipline such as systems biology. Nonetheless, I realized that I only selected the top 10 

authors instead of looking at a larger sample of authors, so this result just gave me a 

preliminary impression of the field. It could also be caused by the fact that these scientists 

invented software or algorithms that tend to get cited more often, but one may wonder 

why that did not happen to biologists who invented high-throughput biotechnologies.  

1.1.2. Further research on my initial findings   

The observation that non-biologists took a more leading role led me to read more 

literature on systems biology. I found that many widely used and influential textbooks of 

systems biology were written or edited by authors who have a background in engineering 

or physics, rather than in biology, for example Uri Alon’s An Introduction to Systems 

Biology: Design Principles of Biological Circuits (Alon, 2006). The first International 

Conference of Systems Biology held in Tokyo, Japan in 2000 also reveals the dominance 

of engineers. The conference was initiated by Kitano, an engineer, and based on 

proceedings of that conference, Kitano edited and published the first monograph on 

systems biology, Foundations of Systems Biology (Kitano, 2001).  

The great influence of non-biology disciplines is also reflected in the institutions 

of systems biology. Two institutions were particularly important for the promotion of 

systems biology in the world. The world’s first two institutes for systems biology were 

both set up in 2000. These are the Systems Biology Institute (SBI) in Tokyo, Japan, 

established by Kitano, and the Institute for Systems Biology (ISB) in Seattle, 

Washington, with Leroy Hood as the founding director. Having an engineer as a director 



!

 7 

or having a biologist as a director influences the atmosphere of the two institutions, 

which will be explained later. Beside those two institutes in Seattle and Tokyo, many 

other centers or departments for systems biology have been established since 2000, 

including the Department of Systems Biology and Bioinformatics at the University of 

Rostock in Rostock, Germany, the first such institute in Europe, and the Center for 

Integrative Systems Biology in Manchester, UK. The rapid institutionalization of systems 

biology is still happening, as an indication of an emerging field (Powell et al.,2007). I 

will focus on the first two institutions, and discuss how they differ in their research 

agendas.  

Kitano, a leading Japanese scientist in systems biology and President of SBI, and 

his U.S. counterpart Hood have different conceptions for systems biology. Kitano got his 

PhD degree in Mechanical Engineering in 1991 from Tokyo University. He edited the 

first ever monograph on systems biology in 2001, and published a 2002 Science article 

titled “Systems Biology: An Overview,” which is the most highly cited article in the field 

of systems biology (Kitano, 2001; Kitano, 2002). Partly because of Kitano’s background 

in engineering, his interpretation of systems biology is “a combination of computational 

biology and experimental biology,” while his own research focuses more on the 

computational aspects (Kitano, 2002, p. 206). Kitano’s study and works of other Japanese 

scientists in SBI focus mainly on computational systems biology, including developing 

Systems Biology Markup Language (SBML), a machine readable language based on 

XML to describe the models of biochemical interactions; the establishment of large-scale 

database such as KEGG (Kyoto Encyclopedia of Genes and Genomes); and the 

developing of a digital tool called CellDesigner, which enables scientists to easily create 
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network models for complex biological networks (Kanehisa & Goto, 2000; Hucka et al., 

2003; Funahashi et al., 2008), to name a few.  

On the other hand, Leroy Hood got his bachelor’s degree in biology from 

California Institute of Technology (Caltech) in 1960, a MD degree in 1964 from Johns 

Hopkins University, and then a PhD degree in biochemistry in 1968, again from Caltech. 

In the 1980s and 1990s, Hood and his colleagues at the Caltech were optimizing the 

sequencing and synthesizing method of DNAs and proteins (Hood et al., 2004). In 2001, 

Hood established the Institute of Systems Biology in Seattle. Staring in 2004 Hood 

proposed that systems biology would facilitate predictive, preventive, and personalized 

medicine (Hood et al., 2004). This is in line with his life-long commitment to advancing 

biomedicine. Similar to Kitano, Hood (2003) acknowledges that “computation” is an 

integral part of systems biology, but he seems to focus more on the other two 

components: “biology” and “technology,” and its medical applications. Besides being 

keen on developing new biotechnologies, the ISB puts more emphasis on experimental 

systems biology and solving real biological problems. The comparison between Hood 

and Kitano is an interesting example of how scientists coming from different 

backgrounds perceive systems biology differently. 

Some systems biologists as well as historians and philosophers of biology have 

noted the different epistemology and methodology between biologists and scientists from 

a non-biology background. For example, systems biologists Hans V. Westerhoff and 

Bernhard O. Palsson thought that there are two lines of research in molecular biology 

leading to systems biology analysis. The first line of research is about advancements that 

are more biological: for example, automatic sequencing, high-throughput sequencing 
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technology, and Human Genome Project; the second line is more systems-rooted, for 

example, the use of nonequilibrium thermodynamics theory, feedback controls and 

network studies in biology (Westerhoff & Palsson,2004). I adopted Westerhoff and 

Palsson’s wording and use the word “biology-oriented” to describe research and scholars 

related to biology, and “systems-oriented” to describe research and scholars related to 

physics, chemistry, computation, and other non-biology disciplines.   

All these observations raised the question: Was systems biology, as a subfield of 

biology, really influenced more by systems-oriented scientists? If so, has it always been 

like this from early 1990s to now or can we observe a shift in emphasis? And how could 

one measure such a shift quantitatively?   

1.2. Driving Question 

          The driving question for my dissertation thus is: How did systems biology change 

as a discipline from 1992 to 2013? Did it shift from a more “systems-oriented” to a 

more “biology-oriented” discipline? What methodology do I need to study such 

shifts in the history of (recent) science? 

 In the following sections, I explain what my driving question means, and then 

break it into three sets of subsidiary questions.  

1.2.1. What is the distinction between “systems-oriented” and “biology-oriented”?  

Before I go further, I want to be clear about what my understanding of “systems-

oriented” and “biology-oriented” is. The differences between systems-oriented and 

biology-oriented research are with regards to the following criteria: what tools 

researchers use, what form of data they deal with, the type of experiment they perform, 
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the explanations they propose, and their epistemic goals, which are summarized in Table 

2.  

Table 2: A comparison of systems-oriented and biology-oriented research. 

 

 
 

 

 

 

  

 

 

 

 

 

 

Systems-oriented researchers include mathematicians, physicists, computational 

biologists, engineers, etc. What they have in common is that they tend to think in an 

abstract and mathematical way about principles that can be applied to general systems. 

Systems-oriented thinking can be traced back to systems theories such as cybernetics in 

the middle of the twentieth century. Mathematician and philosopher Norbert Wiener 

(1948) defined cybernetics as “the scientific study of control and communication in the 

animal and the machine”. Systems-oriented researchers often study abstract properties 

 Systems-oriented research Biology-oriented research 

Tools 

Algorithms, mathematical 
modeling (e.g.: Boolean, 

Bayesian, and non-
differential equations) 

High-throughput 
technologies (e.g.: 

microarray, fNMR, four-
dimensional microscopic 

imaging) 

Data 
Often involving data 
standardization and 

modeling 

Often involving data 
generation using omics 

tools 

Experiment 
types 

Simulation and prediction 
(through iterative process); 

in silico 

Measuring, perturbation, 
manipulating and 

validating; 
in vivo or in vitro 

Explanations Mostly mathematical Mostly functional and 
mechanistic 

Epistemic 
Goals 

Developing generalized 
software, algorithms, and 
databases; understanding 
the abstract properties of 

systems or networks. 

Understanding and solving 
specific real-world 

functional problems; 
application in 

bioengineering and medical 
fields 
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that are common across a number of different systems, such as complexity, robustness 

and emergence. They rely heavily on mathematical modeling, a central theme of systems 

biology. For example, they model gene regulatory networks as Boolean or Bayesian 

networks based on gene expression data and their epistemic goal is to improve the 

efficiency of the modeling (Jong, 2002). They also aim to develop algorithms, database, 

and software for other scientists to use.  

“Biology-oriented” studies involve either one or more of the following levels of 

real biological information: the molecular, genomic, cellular, evolutionary, 

developmental, and phenotypic levels. Biology-oriented scientists include evolutionary 

biologists, developmental biologists, zoologists, etc. They study real biological systems 

such as gene regulatory networks, metabolic networks, and signal transduction networks 

of concrete model organisms instead of abstract networks. They offer explanations 

mostly in terms of mechanisms that explain specific biological phenomena. Biology-

oriented scientists may work on generating massive biological data through high-

throughput technologies, such as microarray analysis and fNMR, or mapping out all the 

genes and their interactions underlying a disease. Their goals are to understand complex 

phenotype and sometimes manipulate the functions of real biological systems to have 

applications in biomedical research, health care and drug development, or even synthetic 

biology (Kirschner, 2005). 

If I say a scientist is “systems-oriented,” it does not mean that everything they 

work on, every publication they have, and every topic they study have no biological 

component. It just means that they take a stance more of an engineer/ physicist/ 

mathematician/ computer scientist rather than a biologist, utilizing more of the 
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knowledge in their own disciplines to solve a problem. The same goes with an article: in 

a specific systems biology article, if I say it is “systems-oriented,” it does not imply that it 

only talks about mathematical models and algorithms; rather, it may also talk about some 

biological concepts, but the methodology relies more on systems thinking than biological 

thinking. 

When biology-oriented and systems-oriented scientists do not cooperate with each 

other and use their own methodologies to study biological systems, it is easy to determine 

whether a study is systems-oriented or biology-oriented. For example, some biologists 

only experiment on the upgrade of first-generation technology to second-generation 

technology, like what Leroy Hood did with his colleagues on second-generation 

sequencing technology, which can be easily deemed as biology-oriented. For another 

example, when one reads an article full of algorithms and modeling processes of an 

abstract biological system without any real biological data, one can easily identify it as 

systems-oriented. Yet, sometimes there is not a strict demarcation between the two. Some 

articles fall into a group that can’t be easily identified because they may be deemed as 

both systems-oriented and biology-oriented.  

1.2.2. Why did I choose the years 1992 to 2013 as the study frame?  

I chose to study the history of systems biology from 1992 to 2013 instead of 

studying from the 1950s, because I consider that the former period represents “new” 

systems biology as opposed to “old” systems biology. I will first explain what old and 

new systems biology mean, and why I am interested in new systems biology instead of 

old systems biology.  
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Some scholars argue that the earliest roots of systems biology can be traced back 

to the middle of the twentieth century, when mostly engineers tried to model biological 

systems (Krohs & Callebaut, 2007; Levesque, & Benfey, 2004). As mentioned earlier, in 

1948, mathematician Norbert Wiener proposed theories about cybernetics, using mostly 

organisms and device as examples (Kitano, 2001). Others included the modeling of 

physiological processes, such as research on action potentials, which gave rise to the 

Hodgkin-Huxley model of neuron activity in 1952, followed by Denis Noble’s heart 

model in 1960 (Hodgkin & Huxley, 1952; Noble 1960). The Hodgkin-Huxley model uses 

nonlinear differential equations to describe how action potentials in squid work, and the 

model can explain the experimental data very well. Notably, the model was named after 

Alan Lloyd Hodgkin and Andrew Huxley, who won the Nobel Prize in 1963. Similarly, 

Noble developed mathematical model for the pulse and heartbeat. Both models are 

considered precursors of systems biology (Boogerd, Bruggeman, Hofmeyr, & 

Westerhoff, 2007; Krohs & Callebaut, 2007). In the 1960s, biologist Ludwig von 

Bertalanffy and Anatol Rapoport edited a book about General Systems Theory, in which 

they attempted to develop general laws of biological systems and systems in other social 

sciences (Bertalanffy & Rapoport, 1963). The success of those scientists encouraged 

some engineers to get interested in biological systems at that time (Kitano, 2001).  

However, old systems biology failed to establish systems biology as a discipline 

(Powell et al.,2007; O’Malley & Dupré, 2005). Critics argue that some of those early 

engineers often just proposed models or equations that were often too vague to explain 

real biological problems, because they had insufficient knowledge or lacked an interest in 

real biological systems. As a result, the trend soon disappeared. It is hard to determine 
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whether modern physicists and engineers who currently apply what they learned in the 

physical and engineering system to biology are inspired by those physicists and engineers 

from the mid-twentieth century.  

Some historians have argued that new systems biology, which emerged in the last 

two decades, is different from the old systems biology, or simply “systems theory applied 

in biology” in mid-twentieth century (Wimsatt, 2007). Since the 1990s, new technologies 

have generated big data through the analysis of biological systems that were not available 

in the middle of the twentieth century, e.g., genomic and proteomic data. A culmination 

is the Human Genome Project, which elucidated that the human genome is more complex 

than we initially thought (Powell et al., 2007).  

So, why did I choose the year 1992 as a starting point of this new systems 

biology? Although according to my data, before 2000 there were less than 10 articles 

having the term “systems biology” in their topics, I argue that technologies that enabled 

the generation of big data such as the DNA or protein sequencing technologies and 

modeling techniques were being developed before 2000. Some scholars also argue that 

systems biology started in the mid-1990s, after the publication of microbial genomes, 

e.g., those of the Haemophilus influza, E. coli and yeast (Knuf & Nielsen, 2012).  

It was Hood who started to use the term “systems biology” in 1998 for the first 

time in a journal article. In that article, he suggests that new opportunities would arise 

from this new field that draws from -omics, or disciplines of biology ending in “omics”, 

such as genomics, proteomics or metabolomics and related high-throughput technologies 

(Hood, 1998). Historian Alexander Powell and his colleagues also note that Hood 

predicted in a 1992 book that “the future of biology will depend upon the analysis of 
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complex systems and networks” (Kevles & Hood, 1992; Powell et al., 2007). Powell and 

his colleagues think that Hood’s claim “clearly captures the spirit of systems biology”. 

Therefore, in the following dissertation, I consider the year 1992 as the beginning year of 

the new systems biology. In Chapter 2, I will explain in detail how I can overcome the 

difficulty of sparse publication between 1992 and 2000 using a bibliometric approach. I 

chose to end in 2013, because that’s the time when I finished retrieving my data from the 

WoS and started to the data analysis for this dissertation.  

1.2.3. How to achieve quantitative and objective results through computational 

analysis of large datasets?   

I used computational tools to analyze my data on systems biology. Traditional 

historical analysis often does not emphasize quantitative data, but instead relies on the 

expertise of a historian’s accumulated through many years of training and practice. The 

lab that I work in, the Computational History and Philosophy of Science Lab at Arizona 

State University takes a different approach to writing the history of science3. The 

principle investigator, Manfred Laubichler and his colleagues describe that 

“Computational history of science introduces big data–based approaches and 

computational analytical methods…enabling the pursuit of novel types of questions, 

dramatically expanding the scale of analysis, and offering novel forms of publication that 

greatly enhance access and transparency” (Laubichler, Maienschein, & Renn, 2013, p. 

120).  

                                                   
3 For more information about the lab, see http://devo-evo.lab.asu.edu/?q=computational-

hps 
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Online scholarly databases contain the metadata of thousands of articles on 

systems biology, and computer scientists have created many digital tools that can be used 

to analyze the data, which produces quantitative results. Because the results are based on 

big data instead of personal interpretation of a few selected publications, they tend to be 

more objective.  

In light of this orientation the research in this dissertation served two purposes: 

(1) to explore the historical trends in systems biology with an emphasis on the biology-

orientation and systems-orientation distinction, and (2) to experiment with a variety of 

computational approaches that can be utilized by historians and to evaluate their 

potential.  

1.2.4. The subsidiary questions 

I broke the driving question into a set of subsidiary questions, and the answers to 

these question will be explained step by step in the next three chapters of this dissertation. 

I proposed the subsidiary questions mainly according to two considerations: First, the 

subsidiary questions should involve different aspects of my driving question. Second, the 

way to answer these subsidiary questions should involve computational tools to ensure 

that the results are quantitative and objective. To this end I examined a variety of tools 

from the digital humanities, scientometrics, network analysis, and text-mining, before 

applying those to answer the research questions of this dissertation. These are: 

First, which and who are the most influential articles and authors in systems 

biology from 1992 to 2013? Did systems biology articles have a trend of citing 

increasingly more biology-oriented articles or a trend of citing more systems-oriented 

articles from 1992 to 2013? What were the institutional backgrounds of the authors 
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publishing systems biology articles? Did they come from a biology-oriented institution4 

or a systems-oriented one?  

Second, what concepts can best characterize systems biology? What are the 

relationships between those concepts? Is there a change of systems biologists’ use of 

biology-oriented concepts and systems-oriented concepts over time in their articles?  

Third, how did the development of systems biology vary between different 

countries, especially China and the West?  

Several of these questions could be addressed by analyzing citation data of 

systems biology articles (Garfield, Sher, & Torpie, 1964). To explore the relationship 

between concepts, I used a network approach that is becoming more and more popular in 

knowledge representation (Barabási, 2011) as knowledge of a scientific field can be 

represented as networks depicting the relationship between concepts (van Atteveldt, 

2008). And as it is impractical to explore the development of systems biology in all 

countries simultaneously, I analyzed China as a case study, and compared the 

development of systems biology in China with the development in other major countries. 

I will further explain the subsidiary questions in detail in the next three chapters, and each 

of the chapter addresses one set of subsidiary question.  

1.3. Methods 

Philosopher of biology Werner Callebaut (2012) calls systems biology, along with 

computational biology, bioinformatics, and synthetic biology, big data biology (BDB), in 

                                                   
4!By institution I mean an organization where the scientist work in, including the the 

department level information.  
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which a deluge of data is produced under the influence of information technology. 

Interestingly, similar to the way a big data approach is carried out in systems biology, I 

used the digital tools developed in the past decades to study the bibliographic information 

of 9923 articles on systems biology as mentioned in Section 1.1.1. Unlike a well-

established traditional discipline like evolutionary biology, in which one often needs to 

go back to classic books like Darwin’s The Origin of Species, systems biology is such a 

new discipline with most of its publication as journal articles deposited in online 

databases, so that looking at journal articles alone can give a good representation of its 

developments.  

Historians and philosophers of science often rely on qualitative descriptions and 

narratives. This approach can be augmented by employing digital tools to generate 

quantitative data. My project is an example of “digital history and philosophy of science 

(digital HPS).” Digital HPS is part of digital humanities, which happens when 

humanities, like social sciences and natural sciences, take a “computational turn” (Berry, 

2011). Digital humanities can be traced back to the 1940s to Father Robert Busa’s use of 

computation in linguistic analysis for his work Index Thomisticus (Schreibman, Siemens, 

& Unsworth, 2008). Because of the advancements in information technologies and 

especially the World Wide Web, digital humanities have broadened their scope and are 

widespread in, for example, archaeology, art, linguistics, and music. The data of digital 

humanities involve not only textual data, but also visual data such as paintings and audio 

data such as music. Because published knowledge is growing at an unprecedented speed, 

the analysis of the data needs assistance of computers (Schilling, 2013). According to a 

study in 2010, half of the tools in digital humanities are used for text analysis, which 
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suggests that text is a main object of study (Shreibman et al., 2010). In my study, 

metadata is also a specialized form of text.  

 Digital HPS is still a very young field. According to a study reviewing all 

projects listed in the website of the Digital HPS Consortium in 2013, more than half of 

the digital HPS projects examined concerned mainly digitalizing paper versions of data 

through scanning and Optical Character Recognition followed by close reading and 

manual annotation, instead of automatic and computational analysis (Damerow, 2014). 

These digitalizing efforts include for example, the Darwin Correspondence Project5, 

which has digitalized all of Charles Darwin’s works and letters (Van Wyhe, 2006), The 

Alfred Russel Wallace Correspondence Project6, etc.  

My project uses computation to analyze already digitalized metadata of 

publications because “computational methods allow for automated data extraction, data 

and text mining, network and other types of visualization, statistical analysis, and causal 

modeling (such as agent-based models)” (Laubichler et al., 2013). The interpretation of 

the results from the historical and philosophical perspectives is equally important as 

computation.  

The hypothesis of my dissertation is that systems biology was first systems-

oriented, but later became biology-oriented. My hypothesis is addressed by big-data 

analysis, similar to the way scientists test their hypotheses through experiments. My 

research is also data-driven and based on computational approaches that can get 
                                                   
5 See https://www.darwinproject.ac.uk for more information about the Darwin 

Correspondence Project. !

6!See!http://wallaceletters.info/content/homepage for more information about the Alfred 
Russel Wallace project. !
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meaningful information from big data. Some scholars have argued that hypothesis-driven 

research and data-driven research should not reject each other (O’Malley, Elliott, & 

Burian, 2010). My research confirmed this position as I continuously asked new 

questions and discussed unexpected outcomes resulting from the analysis of data.   

1.3.1. Selection criteria of the online database WoS 

My research uses the metadata and data of 9923 articles to represent the whole 

field of systems biology as described earlier. As Laubichler et al. have said: “As with 

similar transformations in the life sciences (another fundamentally historical field), the 

starting point of computational approaches is big data” (Laubichler et al., 2013, p. 121).  

In recent years, more and more articles on systems biology have been published 

and are indexed in a number of different places. Of course I cannot study all the literature 

on systems biology one by one in all databases. The first thing I needed to do was to 

select a reputable database. I chose Thomson Reuters’ WoS after comparing it with some 

other databases especially PubMed and Google Scholar.  

Compared to other well maintained databases such as PubMed, the WoS database 

contains more articles on “systems biology.” For example, when searching for articles 

that have “systems biology” in their “titles,” PubMed has 1995 articles, whereas the WoS 

has 3445 articles as of December 6th of 2013. In addition, for the hypothesis that systems 

biology is becoming more biology-oriented, I needed to choose a database that is not 

biased toward either systems-oriented articles or biology-oriented articles. The Pubmed 

database includes mostly articles related to medicine and biological sciences, so it is 

biased toward biology-oriented research and thus unsuitable for my research.  
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Google Scholar has more articles on systems biology than the WoS, but the 

quality of the articles of the two databases is different. The WoS only contains articles 

that are published by reputable journals, whereas Google Scholar uses its algorithm to 

maximize the quantity of articles contained and the results are sometimes inconsistent 

(Falagas, Pitsouni, Malietzis, & Pappas, 2008).  

Furthermore, compared with Google Scholar, WoS can export structured 

metadata files for further analysis. WoS is also famous for its citation indexing, so WoS 

can export titles, abstracts, publishing years, authors, references and other metadata of 

500 articles all at once. Many bibliographic tools can work directly on the metadata 

exported by WoS, such as the ones that I used for this project. Therefore, based on the 

above comparisons, I chose WoS.  

1.3.2. Computational workflow for my research  

This dissertation presents a computational workflow that combines three types of 

analysis: the first is the analysis of citation data; the second is network analysis and 

computational linguistic analysis; and the third is geographical analysis and comparative 

analysis (See Figure 3). Each of the approaches addresses one of the subsidiary questions 

and discussed in the chapters below.  

The analysis of citation data can give us information about the highly cited 

references, research topics and institutions, which are important in shaping the field. The 

network and linguistics analysis sheds lights on concepts, their use, and their importance 

in different times. Geographic analysis and comparative analysis illuminate how social 

factors such as city, country, and institution, can contribute to difference in quantity, 

quality, and varieties in research. The three types of analysis complement each other and 
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reveal a comprehensive picture of a scientific field. The computational flow combines 

some widely used tools popular in the digital humanities, scientometrics, network 

analysis, and data-mining communities, but also the Python codes that I wrote to retrieve 

and analyze data.  

 

Figure 3. The computational workflow of the dissertation. 

The digital tools used in this project include CiteSpace, Tethne, Cytoscape, 

Mallet, Wordsmith, and Google Fusion Tables, which will be explained in detail in my 

other chapters. Python was used extensively in my research, which is a programming 

language that works well with natural language, and is used in industry and research, not 

only in computer science, but also in the humanities such as linguistics, economics, and 

history (Bird, Klein, & Loper, 2009). In my research, I used Python to work with texts, 

which is a form of natural language. Python has modules, such as Xlrd, Xlwt, Scipy, 
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Numpy, that enables data extraction, data analysis, statistical analysis, data output, and 

graph design.  

1.4. Layout of the Dissertation 

This dissertation consists of five chapters. Notably, Chapter One and Chapter Five 

are written in the form of dissertation chapters, whereas Chapter Two, Three, and Four 

are written in the form of individual articles aimed for publication. Chapter Two, Three, 

and Four are analyses based on the same initial dataset, i.e., the metadata of the 9923 

articles on systems biology, but each chapter describes different methods to analyze the 

metadata. Because they were written as individual articles, they all introduce what 

systems biology is and the dataset in order to be complete, so there might be some 

overlapping content.  

Chapter Two identifies the most highly cited 330 references and 330 authors from 

1992 to 2013 by using digital tools to analyze the metadata I downloaded in my pilot 

study to represent systems biology. I classified those 330 references into biology-oriented 

research and systems-oriented research. A close reading of those 330 references suggests 

that during the past few years, articles in -omics research, database research, and medical 

research increased tremendously. The institutional backgrounds of the most highly cited 

330 authors suggest that before 1996, systems-oriented scientists overshadowed biology-

oriented scientists. However, after 1996, most of the scientists who published on systems 

biology are biologists. This chapter explores several turning points in the history of 

systems biology, and divides systems biology from 1992 to 2013 into the “early roots,” 

“establishing,” and “subfield emerging” stages. Right now, more and more subfields are 

still emerging within systems biology. Topic modeling of the abstracts of articles 
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published after 2000 highlights the increasing trending of medical research, corroborating 

my close reading of the 330 most highly cited references.  

Chapter Three offers information gathered from a corpus of about 5 millions 

words built based on abstracts of 9876 articles published between 2003 and 2013 

retrieved from the metadata7. I used a multi-method analysis to map the co-word/concept 

networks to show how the networks changed over time. The co-word/concept networks 

consist of hundreds of words/concepts linked by co-occurrence relationship. I analyzed 

the network properties of biology-oriented and systems-oriented concepts over time. The 

network properties of biology-oriented and systems-oriented concepts show different 

trends over the years. More than half of biology-oriented concepts have increased 

centrality in co-word/concepts networks and the reverse is true for systems-oriented 

concepts. Network analysis also allows me to zoom in on one part of the co-

word/concepts network to look at a word to see its change over the years. For example, 

the words of “therapy” and “cancer” were used together with more types of words over 

time.   

Chapter Four describes a case study that explores regional differences. I used 

computational approach to study the development of systems biology in China. I wanted 

to know if the global trend of systems biology can also be seen in China. The case study 

is also a comparative study, comparing research in China with a few major countries, 

including the US, Germany, England, and Japan. The reason I chose to look at China is 

                                                   
7!!The number is 9876 instead of 9923 is because we look at the years between 2003 and 

2013, instead of between 1997 to 2013.!!
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that China ranked NO. 2 (The NO.1 is the US) in publishing the highest number of 

scholarly articles on systems biology by 2014, and it has had a strong increasing trend. 

There have been articles on the development of systems biology in the US, Japan, but 

less so for China. The approaches used include GIS (Geographical Information System), 

network analysis, and bibliographic analysis.  Chapter Four shows that although the 

quality of Chinese scholars’ work is slightly poorer than their counterparts in the US in 

terms of impact factor of the journals that Chinese scholars publish in, the topics of 

Chinese scholars were mostly similar to those of the US, Germany, and Japan, but with 

an exception of also focusing on traditional Chinese medicine. In addition to that, my 

research reveals the unequal distribution of research power in China.  

In the final chapter I first discuss the summary of my research findings and the 

reflections based on the findings. Systems biology represents a new turn in biology. My 

analysis of its applications in medicine and bioengineering, its interdisciplinary nature, 

and its relationship with systems science all offer new insights about this new discipline. 

Next I summarize the big data and computational approachs that were used in this 

research and how they enabled me to answer questions that were hard to answer using 

traditional methods of historiography, and offer my understanding of the digital HPS. 

Finally, I explain the future directions and the limitations of this kind of research.   
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CHAPTER 2: FROM SYSTEMS TO BIOLOGY: A BIBLIOGRAPHIC 

ANALYSIS OF THE RESEARCH ARTICLES ON SYSTEMS BIOLOGY FROM 1992 

TO 2013 

 

Summary: Systems biology is a discipline that studies biological systems from a holistic 

and interdisciplinary perspective. It brings together biologists, mathematicians, computer 

scientists, physicists, and engineers. We applied several computational tools to analyze 

the bibliographic information of published articles in systems biology to answer the 

question: Did the authors and research topics of systems biology become more biology-

oriented or more systems-oriented from 1992 to 2013? We analyzed the metadata of 9923 

articles on systems biology from the Web of Science database. First, we generated co-

citation networks for different time slices to visualize the development of systems 

biology. The co-citation networks reveal three different stages of systems biology and we 

divided the time between 1992 and 2013 into three stages, titled as “early roots,” 

“establishing,” and “subfield emerging” stages. Next, we identified the most highly cited 

330 references and through close reading we divided them into nine categories of 

research types in systems biology, and found that articles in one category, namely 

systems biology’s application in medical research, increased tremendously. Furthermore, 

we identified the most highly cited 330 authors over time. We found that before mid-

1990s, systems-oriented scientists have made the most referenced contributions, but in 

more recent years, biology-oriented researchers have made more and more of the most 

referenced contributions. This finding was corroborated by computational analysis of the 
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abstracts, which also suggests that the percentages of topics on vaccines, diseases, drugs 

and cancers increased over time. 

 

Keywords: Systems Biology; Bibliometrics; Application; CiteSpace; Tethne; MALLET; 

Topic Modeling  

 

The development of high-throughput technologies in the 1990s brought forth a 

deluge of data to biology. Without mathematical models and computational simulations, 

however, the data could not be understood at the time. Systems biology is an 

interdisciplinary field, where biologists, referred here as biology-oriented scientists, and 

engineers, computer scientists, and mathematicians, referred as systems-oriented 

scientists, both participate.  

Systems-oriented scientists have contributed greatly to the advancement of 

systems biology. For example, Hiroaki Kitano published the most highly cited article in 

systems biology, edited the first monograph on systems biology, founded the Systems 

Biology Institute in Tokyo, and organized the first International Conference of Systems 

Biology in Tokyo in 2000 (Kitano, 2001). Kitano was trained as an engineer and is the 

head of Sony Computer Science Laboratories. Another example is Albert-Laszlo 

Barabási, whose work on network theory has won him many awards for systems biology. 

He was trained as a physicist, yet he publishes widely in systems biology (e.g. Barabási et 

al., 2004).  

Because scientists from different backgrounds have different epistemologies and 

methodologies, one may wonder how biology-oriented disciplines and systems-oriented 
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disciplines have shaped the research topics within systems biology. This study examines 

the history of systems biology from 1992 to 2013, utilizing a set of computational tools to 

analyze the metadata of the systems biology literature. We answered the following 

questions: From 1992 to 2013, how can one visualize the evolution of systems biology? 

How did the topics of systems biology research change and did this change reflect a shift 

towards more biology-oriented topics? How did biology-oriented and systems-oriented 

scientists contribute to systems biology at different times?  

2.1. Methods  

This study is one of the first systematic analyses of the history of systems biology 

that is based on bibliographic information. The growing number of publications in a 

scientific field like systems biology makes it hard to identify trends and study frontiers 

simply by analyzing key papers. Bibliometrics can provide analysis tools to address these 

difficulties. The study of bibliographic data is called bibliometrics and when it concerns 

scientific information, it is called “scientometrics.” They are two closely linked areas 

(Sengupta, 1992).  

Scholars have applied bibliographic analysis to study the history of business, 

science, art, and engineering (Leonidou, Katsikeas, & Coudounaris, 2010). Bibliographic 

analysis is a good way to assess the influence and quality of literature by deciding which 

work gets cited most and which author has the most citations (Moed, 2006). Earlier 

attempts to analyze citation date form the Web of Science, such as those by STS scholar 

Susan Cozzens in the 1990s, were limited as many computational tools for the analysis of 

big data were not yet available (Cozzens, 1997). However, after more than a decade of 

development, information scientists have produced many tools and approaches for 
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citation analysis, which can overcome the difficulty faced by Cozzens. These include the 

ISI citation index, CiteSpace, HistCite, VOSViewer (De Bellis et al., 2009; van Eck & 

Waltman, 2010; Garfield, 2009). 

Because systems biology is a very new discipline, scientists have published their 

findings mostly in the form of peer-reviewed articles that are accessible online. In our 

study we used the citation data of 9923 articles in Thomson Reuters’s WoS. Based on 

these data, the study discussed in this chapter ran four kinds of computational analysis 

and interpreted the results from a historical perspective as shown in Figure 4.  
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Figure 4. The flowchart for Chapter 2. The figure on the top highlights parts carried out 

in this chapter, and the parts that are not highlighted are for Chapters Three and Four. The 

figure on the bottom shows the detailed steps in Chapter two. Explanations of these 

workflows can be found in the following sections. 

2.1.1. Data collection  

In the WoS database, we searched for documents containing the term “systems 

biology” in their topics (including titles, abstracts, and keywords) and published from 

1992 to 2013. Then by selecting those published in English, we narrowed the sample 

down to 9923 articles, which included research articles, reviews, editorial materials, 

proceeding papers, and meeting abstracts8. We downloaded the bibliographic information 

                                                   
8!In the WoS database, we set the search criteria for year to be from 1992 to 2013. 

However, we found that the first article that contains the term “systems biology” was 

published in 1997. Despite this limitation, we can use bibliographic analysis tool to get 

the relevant references before 1997 even when there are no publications using systems 

biology as a term at that time. !
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for these 9923 articles. If each article on average has 10 to 30 references, the total number 

of references for the 9923 articles should be between 100,000-300,000, which are 

analyzed using bibliographic tools.  

For every article, WoS can bulk export all the bibliographic information, such as 

authors, title, abstract, references, and publishing year. For more information of the types 

of bibliographic information that WoS can export, see Appendix A-1. Using 

computational tools, we followed the steps shown in the flowchart on the bottom in 

Figure 4. To answer our questions, a systematic analysis extracted four types of 

information from the bibliographic data. We first visualized the field of systems biology 

in different stages, and then studied the research categories of the most highly cited 330 

references by close (manual) reading. Next we analyzed the affiliations of authors, and 

finally used machine learning techniques to study the topics of systems biology 

embedded in the abstracts.  

2.1.2. The conceptual model of citation analysis  

There are many benefits of citation analysis. First, it can expand the scope of 

research from a group of articles to the references of these articles (Chen, 2006). Looking 

at references with the help of bibliometric tools enabled us to study the historical period 

before 1997, because these tools can use a computational method to analyze the 

references automatically, and overcome the time limitation that before 1997 no articles 

use the term “systems biology.” However, the foundations of systems biology have been 

laid in the context of the articles referenced by those early systems biology papers. 

Second, it can help us identify key papers, authors, etc., and facilitate information 

retrieval using computational method without being overwhelmed by the large number of 
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publications or having to spend tremendous time studying the literature (Dunne, 

Shneiderman, Gove, Klavans & Dorr, 2012). Third, many network visualizations can be 

generated by computational tools to map the knowledge structure and paint a “big 

picture” of a scientific field (Börner, Chen, & Boyack, 2003). The second and the third 

points are explained in other sections, and this section explains the conceptual model of 

citation analysis as shown in Figure 5, and why it can expand the scope of our research.  

 

Figure 5. Literature in three categories, Group 1, Group 2 and Group 3. Group 1 

literature refers to the 9923 articles, and Group 2 and Group 3 literature refers to 

references cited by Group 1 articles.  

We refer to those 9932 articles as group 1 (G1) literature. These articles were 

published between 1997 and 2013. However, we believe that some other references that 

are cited extensively by the G1 articles can also be considered as literature that 

contributed to systems biology, although they may not be included in the G1 because 

they do not use the term “systems biology” in their “topics” or they were not deposited in 
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the WoS database. Yet we were able to find these articles through citation analysis and 

could therefore expand the scope of our research to years before 1997 using 

computational tools. We could also find additional information such as who are the most 

highly cited authors or references.  

These cited references can be grouped into two categories: the first category of 

those published from 1992 to 1997 when the drivers for systems biology, such as various 

sequencing projects, started to emerge. Although these references may not directly have 

“systems biology” in their “topics”, they have in fact contributed to the G1 literature as 

they were highly referenced by those early articles. Therefore, we decided to include 

them in our research scope and call these article group two (G2) literature.  

The second category refers to references that were published after 1997, but also 

do not have the term “system biology” in their “topics”. We downloaded and read a 

sample of these references, and found that they often use the systems biology approach, 

or are under the guidance of systems thinking. While these did not fit our initial search 

criteria, they nonetheless contributed to systems biology. Similarly, we can find those 

references using citation analysis, and call these references group three (G3) literature.  

The aggregates of the G1, G2, and G3 literatures can be a good representative 

sample of the literature on systems biology9. From the metadata of G1 articles, we found 

                                                   
9!For G1 literature, we have the full metadata of them downloaded from the WoS. For G2 

and G3 literature, we have the most basic information that can identify them, including 

the author, the publishing year, the journal name, etc. This most basic information is 

retrieved from the metadata, for example “Ahuja I, 2010, TRENDS PLANT SCI, V15, 
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the information of G2 and G3 articles; therefore, this project examines an expanded scope 

as shown in Figure 6.  

 

 

Figure 6. The expanded literature scope. The x axis is the time, and y axis is the number 

of publications. The computational tools can add cited references in the research scope. 

The 9923 articles are the bars in the red color and the scale is matched with real data. The 

expanded scope is in yellow and orange color, and is not at scale as the numbers are 

much larger. We just indicated which type of literature was added to each year. The 

expansion of the literature collection was facilitated by the use of bibliographic tools 

looking into the metadata of the initial 9923 articles. 

2.1.2: Visualization of the evolution of systems biology using co-citation network 

analysis 

                                                                                                                                                       
P664, DOI 10.1016/j.tplants.2010.08.002.” Although the information of cited references 

is minimal, we can do analysis such as figuring out which reference gets cited most, 

which author gets cited most, etc., and downloading those articles for close reading.  

!
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We used CiteSpace to analyze the WoS bibliometric data to visualize the 

evolution of the field of systems10. The references of many articles in a scientific field, 

can shed light on the intellectual base for that field. Historians often want to look at the 

intellectual basis of a field to trace where and how knowledge grows (Chen, 2006; Chen, 

2009). This bibliometrics tool has been used for determining historical and emerging 

trends in many area of research, including regenerative medicine, neuroscience, and 

psychology, etc. (Chen, Hu, Liu, & Tseng, 2012; Wang, Zhang, & Qiu, 2012).  

CiteSpace generates co-citation networks by analyzing the bibliographic data of 

hundreds or thousands of papers automatically (Chen, 2006)11. If two references are cited 

together by another article, then these two references have the relationship of co-citation. 

The network created in such a way can visualize a scientific field. CiteSpace can also 

automatically calculate how many times a reference is cited. It can be assumed that the 

more citations a reference has with other articles, the more important that article is to a 

field, in our case, systems biology (Dunne et al., 2012). Thus, CiteSpace can be used not 

only as a visualization tool, but also as a selection tool.  

 Co-citation networks generated for different time slices can help visualize how a 

scientific field has evolved. We divided the time span from 1992 to 2013 into 11 time 

                                                   
10!The software can be accessed at http://cluster.cis.drexel.edu/~cchen/citespace/. There 

are many kinds of citation analysis that CiteSpace can carry out.  

11!Co-citation analysis is one kind of citation analysis that CiteSpace can carry out. Others 

include co-author analysis, author co-citation analysis, and hybrid network analysis, 

which given the space of this dissertation we will not discuss here. !
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slices: (1992 to 1993), (1994 to 1995), …., (2010 to 2011), (2012 to 2013), and generated 

co-citation networks for the 11 time slices. CiteSpace also has other functionalities. For 

example, we can use it to group co-citation networks into clusters and then label the 

clusters using terms extracted from the titles, keywords, or abstracts.  

2.1.3. Analysis of the most cited references for the types of research   

The built-in functions of CiteSpace can analyze the citation frequencies of each 

reference, and produced a list of the most highly cited references from the year 1992 to 

2013 (Chen, 2006). Selecting the top 30 references in each period brought a total of 330 

references for the 11 time slices. After CiteSpace picked out these 330 references, we 

manually downloaded them and then analyzed them to determine whether the articles 

were systems-oriented or biology-oriented.  

This requires certain criteria. Because systems biology is an interdisciplinary 

science, there is no 100 percent biology-oriented or systems-oriented research. However, 

because any research has to be focused on a certain area, it is possible to classify these 

articles into a few categories, and for each category, it is easier to say whether each is 

more systems-oriented or biology-oriented.  

Based on the close reading of these 330 articles, we divided them into nine 

categories of systems biology research to see how the number of articles in each category 

changed over time. For previous bibliographic analysis, researchers have categorized 

publications of a field in categories to show the “big picture” of that field (Braisford 

Braisford, Harper, Patel, &Pitt, 2009; Leonidou, Katsikeas, & Coudounaris, 2010). For 

our analysis we derived our categories from within the literature (based on close reading) 

and also from categories identified by other historians and philosophers of biology. We 
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have to admit that it is a formidable task to categorize publications of a scientific field as 

diverse as systems biology. However, these categories were based on both reading the 

articles and examining the work of other historians or biologists.  

The historians of science Ulrich Krohs and Werner Callebaut once argued that 

three roots of systems biology must be discerned to account properly for the structure of 

the field, namely, pathway modeling, biological cybernetics, and -omics (Ulrich & 

Callebaut, 2007). We agree that pathway modeling and -omics have fueled the 

advancements of systems biology during the past two decades. Cybernetics may be very 

important in the mid-twentieth century and contributed to systems biology’s theory as a 

root; however, in the literature on systems biology published over the last two decades, it 

is hard to see the influence of cybernetics as comparable to that of pathway modeling and 

-omics.  

We argue that Krohs and Callebaut’s categorization is simplistic. Systems biology 

is a very interdisciplinary field and has many diverse areas; therefore, we used more 

categories than just the three proposed by Krohs and Callebaut, and most of the articles in 

systems biology fall in a rather straightforward way into the nine categories we propose.  

First, we will introduce what each category means and why each is either 

systems-oriented or biology-oriented (See Table 3). Biology-oriented research includes 

the following four categories: -omics-related research, high-throughput technologies, 

applications in engineering and medicine, and biological mechanisms. Systems-oriented 

research includes network properties, software development, Metabolic Flux Analysis, 

database development, and algorithms, equations, and modeling. A more detailed 

description of these nine categories can be found in Appendix A-2.  
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Table 3: Nine categories and their descriptions. 

Categories Description Systems-
oriented or 
Biology-
oriented 

Metabolic Flux 
Analysis 

Measures the stoichiometric data of metabolites, 
and relies on modeling using non-differential 
equations and a few parameters. 

Systems-
oriented 

Development of 
high-throughput 
technologies 

These technologies include sequencing 
technologies, protein chips, DNA arrays, and 
mass spectrometry, etc. 

Biology-
oriented 

Algorithms, 
equations, and 
modeling 

This category includes development of 
algorithms, equations, modeling, and simulation 
techniques that relies heavily on mathematical 
knowledge. 

Systems-
oriented 

Omics research 
characterizing a 
real biological 
system 

Omics research relies on data produced by high-
throughput technologies and modeling; the 
ultimate  goal is offering a system-level 
characterization of a real biological system. 

Biology-
oriented 

Database 
development  

This category involves the launch of databases 
storing genes, pathways, proteins, etc. It also 
involves standardization of data and procedures, 
such as the Systems Biology Markup Language. 

Systems-
oriented 

Software 
development 

Software is developed to process, analyze, and 
visualize large data. 

Systems-
oriented 

Network 
properties 

These properties include robustness, dynamics, 
stochasticity, and emergent network properties 
that can be applied to every system, not just 
biological systems. The work is mostly 
mathematical and theoretical.  

Systems-
oriented 

The application 
of systems 
biology 
 

Systems biology is especially useful in tackling 
complex diseases like cancer, and has 
application in bioengineering and synthetic 
biology. 

Biology-
oriented 

Biological 
Mechanisms 

This category involves using systems approach 
to understand a specific biological mechanism. 

Biology-
oriented 

 
2.1.4. Analysis of authors’ affiliations to reveal the institutional context  

  We used Tethne to determine which authors were the most highly cited over the 

years (30 authors for each of the 11 time slices). Tethne is a Python package developed 

by Erick Peirson at the Digital Innovation Group at Arizona State University for 
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bibliographic and corpus analysis12. The tool was written in Python, and it is open source. 

It works with WoS, JSTOR, and Scopus data to visualize patterns and trends in the 

scientific literature.  

Using Tethne, we analyzed the references for all 9923 articles. Each reference 

includes the information of the first author’s name and the publishing year. For each time 

slice, we calculated the number of the references an author published in that time slice, 

and arranged the authors based on that number. Then we picked out the top 30 authors 

with the highest number of references in each time slice for the analysis in the next step.    

We were not only interested in the most highly cited 330 authors, but all the 

authors of those 9923 articles. Therefore, we retrieved each author’s affiliation at the time 

of publication from either WoS data or Google Scholar. We analyzed these affiliations to 

determine whether the author was affiliated with a biology-oriented or a systems-oriented 

institution. The reason we chose their affiliation instead of other information was a trade-

off between the content and the accessibility of that information. For example, a person’s 

description on one’s own website may be a more accurate assessment of what one is 

doing, but this information is hard to get for thousands of authors, and harder to compare 

in an objective way. Affiliations are easier to obtain and can accurately reveal the 

institutional backgrounds for researchers of systems biology. 

We built a word list by retrieving an identifying word from the affiliations of the 

most highly cited 330 authors. For example, if a department name has the word 

“anatomy,” it is likely to be a biology-oriented institution, and we used “anatomy” as an 

identifying word. Next, we developed a model written in Python code to study the 

                                                   
12!For more information about Tethne, see https://github.com/diging/tethne.  
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affiliations of the 9634 first authors of articles published from 2003 to 2013 in the WoS 

database13. Based on the word list generated by analyzing the 330 authors, we wrote a 

Python code to design a machine learning model that automatically labels the institutions 

of thousands authors.  

The model is described as follows: the automatic labeling of the institutions was 

based on the first word, usually the department name that matched the word list. For 

example, in the affiliation of “Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, 

Brandenburg, Germany”, the first word that matched the word list was “plant,” so it was 

labeled automatically as a “biology-oriented” institution. For institutions names that 

contained a word that indicated the institution’s orientation but is not on our list, we 

labeled them manually and added the identifying word to our word list. We then ran the 

process iteratively. However, some institutions were still hard to define because the 

affiliations retrieved from the WoS citation data did not have a department and only the 

university, so we labeled these manually as “unidentified”, for example, affiliation like 

“C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA” would be labeled as 

unidentified. Another situation where an institution was hard to identify was that it is a 

foreign institution with a name like “C1 Tech Univ Dresden, Inst Lebensmittel & 

                                                   
13!The reason for starting from 2003 was that in that year, 118 articles were published 

whereas in the previous year, only 30 articles were published. In statistics, 30 is usually 

considered the minimal sample size. Because we started with the year 2003, the articles 

we looked at was 9634 instead of 9932. !
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Bioverfahrenstech, D-01069 Dresden, Germany.” The word list that we used to identify 

institution categories contain 193 words and is shown in the Appendix B.   

2.1.5. Analysis of topics found in abstracts using topic modeling 

Through the previous step, we analyzed the categories of systems biology 

research through manual reading of 330 articles mentioned in section 2.1.3. However, we 

wanted to analyze the research categories in a larger sample size, say thousands of 

articles, and see if the results of the latter corroborated with our close reading. Because 

we could not have enough time to read all of them, we relied on a machine learning 

technique: topic modeling. A topic here can be broadly interpreted as a subfield, a 

category, or a research type. The best thing about topic modeling is that it can analyze 

millions of words quickly without human reading them (Newman & Block, 2006). Topic 

modeling has many applications in the humanities, social sciences, and bioinformatics, 

including the study of Twitter messages to identify trends and studying the corpus of 

thousands of research papers or newspaper articles to show how ideas in a specific field 

have changed over time (Hong & Davison, 2010; Hall, Jurafsky, & Manning, 2008; 

Newman & Block, 2006). We used topic modeling to analyze the 8809 abstracts of 

articles published from 2003 to 2013 that were retrieved from the WoS Citation data 

(8809 out of the total of 9634 articles had abstracts)14.  

                                                   
14!Before 2003, each year only had a few publications and the number of articles is 

positively related to the accuracy of the results of topic modeling. Out of the 9634 articles 

that were published from 2003 to 2013, 8809 articles have abstracts. !



!

 42 

Topic modeling uses probabilistic models to generate topics (each topic is 

represented by a cluster of words) through automatic reading of unstructured natural 

language (Blei, 2012). One of the most widely used topic model is the Latent Dirichlet 

Allocation (LDA) model (Blei, 2012).   

The main mechanism of topic modeling is as follows: First, the model sets a fixed 

number of topics and a fixed number of words in each topic. The basic idea is to view a 

document as a distribution of topics and a topic as a distribution of words. Second, the 

model randomly assigns the words in a document to a topic and calculates two 

probabilities: P (topic/document) and P (word/topic). Third, the LDA model utilizes 

Bayesian inference to adjust the word assignments iteratively until it reaches a relatively 

stable state. Each iteration involves assigning a word to a topic, and updating the P 

(word/document) and P (topic/document) to infer and update P (word/topic) (Blei, 2012). 

This is the simplest explanation of how LDA works. The actual modeling process utilizes 

more complicated algorithms. Furthermore, since the modeling is based on probability, 

topic modeling is a close inference of topics, but rather only a representation of the topics 

through machine learning.    

There are many tools that can implement topic modeling, for example the 

MALLET (Machine Learning for Language E Toolkit), the Stanford Topic Modeling 

Toolbox (McCallum, 2002; Ramage & Rosen, 2011)15,16. We used MALLET, a software 

                                                   
15 For more information about MALLET, see http://mallet.cs.umass.edu 

16!For more information about the Stanford Topic Modeling Toolbox, see 

http://nlp.stanford.edu/software.tmt.tmt-0.4/!!!
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developed by Andrew McCallum at the University of Massachusetts, and it is based on 

LDA model and a set of different algorithms. Words like “doi,” “paper,” “ab,” 

“research,” “results” and “elsevier” were compiled in an extra list of stopwords, which 

are words that MALLET ignores, in addition to the default one that MALLET includes. 

The number of topics was set at 20. 

We can also analyze how the topics change over time. For a historian, identifying 

topics in thousands of articles is an interesting task, but it is even more useful to see the 

topic trends over time (Newman & Block, 2006). MALLET also returned the 

composition of topics in all the documents over time. In our case, each document is an 

abstract of article. For example, for a document, MALLET returned the probabilities of 

each 20 topics. If every topic is equally represented in articles, then the probability of 

each topic should be 5%. If the probability of a topic is higher, that means that this 

document has a higher probability of containing that topic. For example, if an article has 

a topic whose probability is higher than 40%, then it suggests that this article is indeed 

related to that topic. Similarly, if an article has a topic whose probability is only 1%, then 

it is unlikely that this article contains that topic. In our study, we consider a probability of 

10% to be the threshold for considering that the topic is significant. A Python code was 

written to calculate the number of articles that contained a topic the probability of which 

was higher than 10% for a certain year. We then calculated the percentage of that number 

for all the articles published in that specific year.  

2.2. Results 

2.2.1. The evolution of the co-citation network of systems biology 
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We used CiteSpace to answer these questions: How did the field of systems 

biology evolve from 1992 to 2013 and what stages has the field of systems biology gone 

through from 1992 to 2013? We first discuss the evolution of co-citation networks, and 

then discuss three stages of systems biology, followed by the automatic labeling of 

clusters of co-citation network.  

CiteSpace can generate co-citation networks automatically, and the evolution of 

these networks can shed light on the evolution of the scientific domain of systems 

biology. By visually analyzing the co-citation networks, one can determine turning points 

(Chen, 2006). The co-citation networks based on our data over time exhibit three 

different stages as shown in Figures 7, 8, and 9.  

We call the first stage the “early roots” stage, as exemplified by the co-citation 

network in Figure 7. The characteristics of this network are, first, the nodes are small, 

meaning that the cited references have fewer citations compared to cited references after 

1993. Second, the most highly cited references were published before the 1980s. These 

most highly cited articles listed in descending order are Gillespie (1977), Kacser (1973), 

Kauffman (1969), Henrich (1974), and Hodgkin (1952).  
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Figure 7. The co-citation network from 1992 to 1993. This network depicts the 

intellectual base of systems biology up to 1993. Only a few nodes (highlighted ones) 

appear in the network. In this co-citation network, the size of the node is proportional to 

the citations that an individual article generates. The bigger a node is, the more citations 

it has. 

In these references, the Hodgkin-Huxley model is believed to be one of the 

earliest systems biology models. It is a mathematical model that describes the potential 

actions in squid (Hodgkin & Huxley, 1952). Another prominent article is the Kauffman 

(1969) paper, where Stuart Kauffman uses a theoretical network of genes to analyze 

complex network properties. Kauffman is believed by many to be an early pioneer of 

systems science, and he continues to work on complex systems to this day (Ramage & 

Shipp, 2009). These highlighted works were published before the 1980s, and no 

significant references published in 1980s and early 1990s are highlighted. In this stage, 
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the field of systems biology still mostly referenced certain classic papers published from 

the 1950s to the 1970s.    

 

Figure 8. The co-citation network from 1992 to 2001. This figure depicts the intellectual 

base of systems biology up to 2001. Much more nodes with higher citations appear in the 

network.  

We call the second stage the “establishing” stage, as exemplified by the co-

citation network in Figure 8. The key characteristic of this stage is that from 1994 to 

2001, more recent nodes emerge in the network. The increase of nodes is gradual and not 

exponential. By the year 2001, much bigger nodes have appeared compared to those in 

Figure 7, which means that the new references generated more citations than early 

classical papers between the 1950s and the 1970s. This suggests that the old systems 

biology has been replaced by the establishment of new systems biology by 2001.  
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However, these individual articles are not linked through the edges, suggesting 

that these articles do not yet form a cluster, which can be interpreted as a specialty, or a 

subfield (Chen, 2006). However, these individual articles point to the advent of a new 

discipline.  

 

Figure 9. The co-citation network from 1992 to 2013. Clusters of the nodes appear in the 

network.  

We call the third stage “subfields emerging” stage, as exemplified by co-citation 

network in Figure 9.  The key characteristic of this stage is that many clusters have 

already been formed. On one hand, from 2002 to 2003, the biggest nodes appeared, 

including Kitano (2002), which generated the highest number of citations within all 

articles, Fineo (2002), and Hucka (2003). One the other hand and more importantly, by 

2013, one sees that many nodes have formed clusters.  In a cluster, references are more 

strongly connected to each other than to references outside that cluster (Chen, Ibekwe-
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SanJuan, & Hou, 2010; He, 1999). The emergence of a cluster suggests that a sub-field of 

systems biology has appeared and the field of systems biology was consolidating around 

those clusters instead of being composed of loosely connected articles.  

CiteSpace enables the automatic clustering of nodes through its built-in clustering 

algorithm called spectral clustering, a generic clustering technique (Chen, Ibekwe-

SanJuan, & Hou, 2010). In addition, by cluster analysis in Citespace, clusters were 

arranged in ascending order according to the mean publication year (See Table 4). Mean 

(Year) or the mean publishing year indicates the average publishing year of the 

references in that cluster. The clusters are arranged in such a way to show which clusters 

appeared first and which appeared later.  

Of all the clusters, the second biggest cluster (ID number 4) contains 202 papers 

in it, and has systems-oriented labels, such as “parameters” and “stochastic”. These labels 

suggest that the articles in this cluster are related to the general properties of complex 

systems. One detail to note is that the cluster was formed around 2003, relatively early 

stage. From 2007 on, more clusters have labels relate to empirical application of biology, 

such as “stem,” and “pluripotent” for cluster 10, “vaccines” for cluster 8, and “cancer” 

for cluster 11, and the years in which these clusters emerged are more recent. This 

phenomenon suggests that recent trends in systems biology are approaching empirical 

biological problems.   
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Table 4: The Clusters arranged according to the mean (year) in descending order.  

 
ClusterID Sizea mean(Year) Label (LLR) 

13 39 2002 pulmonary (28.66, 1.0E-4)b; 
pharmacogenetics (21.49, 1.0E-4); pathogen 

(21.49, 1.0E-4); 
4 202 2003 stochastic (283.42, 1.0E-4); death (179.88, 

1.0E-4); parameter (179.88, 1.0E-4); 
5 390 2004 network (682.13, 1.0E-4); networks (401.17, 

1.0E-4); gene (388.84, 1.0E-4); 
7 41 2004 proteomic (147.39, 1.0E-4); proteomics 

(130.59, 1.0E-4); proteome (112.63, 1.0E-4); 
3 126 2005 metabolomics (896.03, 1.0E-4); metabolome 

(248.31, 1.0E-4); metabonomics (195.96, 
1.0E-4); 

6 101 2005 metabolic (524.36, 1.0E-4); genome-scale 
(425.1, 1.0E-4); production (246.8, 1.0E-4); 

10 7 2007 stem (73.73, 1.0E-4); pluripotent (50.98, 
1.0E-4); unique (40.76, 1.0E-4); 

9 6 2007 sequencing (37.46, 1.0E-4); pitfalls (27.46, 
1.0E-4); possible (27.46, 1.0E-4); 

12 3 2007 microrna (89.16, 1.0E-4); genomes (34.89, 
1.0E-4); targeting (34.89, 1.0E-4); 

8 19 2008 vaccine (110.81, 1.0E-4); vaccinology 
(102.26, 1.0E-4); immune (70.18, 1.0E-4); 

11 23 2009 laparoscopic (313.93, 1.0E-4); cancer 
(257.46, 1.0E-4); surgery (216.36, 1.0E-4); 

0 2 2010 granularities (11.85, 0.001); answer (11.85, 
0.001); description (11.85, 0.001); 

 

Notes: a The size of a cluster indicates the number of references in that cluster. This could 

be translated into the importance of a cluster, as for example, Cluster 4 is much more 

important than Cluster 1. b Each cluster was labeled with information retrieved from the 

references using the Log Likelihood Ratio (LLR) algorithm, a statistic test algorithm that 

picks the terms that best represent a specific cluster (Chen, 2009). The first number in the 



!

 50 

parenthesis after each label indicates the LLR score (the higher the better), and the 

second number is the p-value (the lower the better).  

2.2.2. Research types of the most highly cited references 

CiteSpace automatically generated a list of the most highly cited references, and 

the top five most highly cited references are shown in Table 5 below. We use the top five 

most highly cited articles to avoid overlap and get a clearer signal. The table lists the 

authors, publishing years, titles, journal names and categories of the references. We will 

first discuss the results of the top-five most highly cited references from the year 1992 to 

2013 as an example. Later, we discuss the 330 articles and the changes of number in each 

category over time.    

Table 5: The top five most highly cited references. 

Ran
k 

Citations First 
Author  

Year  Title  Category Systems-
oriented 

or 
Biology-
oriented  

1  737 Kitano H  2002  System Biology: A Brief 
Overview  

Hard to tell  

2  510 Hucka M  2003  The Systems Biology Markup 
Language (SBML): A 

Medium for Representation 
and Exchange of Biochemical 

Network Models  

Software 
development 

Systems-
oriented  

3 465 Ashburne
r M  

2000  Gene Ontology: Tool for the 
Unification of Biology  

Database 
development 

Systems-
oriented  

4  456 Barabasi 
AL  

2004  Network Biology: 
Understanding the Cell's 
Functional Organization  

Network 
Properties 

Systems-
oriented  

5  439 Shannon 
P  

2003  Cytoscape: A Software 
Environment for Integrated 
Models of  Biomolecular 

Interation Networks  

Software 
Developmen

t 

Systems-
oriented  
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An interesting observation here is that the top five most highly cited references 

are more systems-oriented as judged by reading the paper carefully. For example, from 

Table 5, it was found that the engineer Kitano, published the most cited article in 2002. In 

that article, Kitano offers an overview of what he thinks is systems biology is, focusing 

on the computational perspective (Kitano, 2002)17. The second article is a description of 

the Systems Biology Markup Language, an XML-based language used to describe 

models so they can be used in a common software platform (Hucka et al., 2003). The 

third article is about Gene Ontology, a database storing genes and the attributes of genes 

through a unified representation (Ashburner et al., 2004). The fourth article was written 

by the physicist Barabási to introduce network theory and try to apply that to biological 

networks (Barabási & Oltvai, 2004; Barabási, 2014). All of his discussion about 

biological networks is theoretical, and therefore, systems-oriented. The fifth article 

introduces a digital tool for the visualization of biological networks, Cytoscape (Shannon 

et al., 2003).  

The above table shows the result of the top five most highly cited references for 

the entire field of systems biology in the entire time period. With the same method we 

analyzed the category of all 330 most highly references from 1992 to 2013, as we want to 

explore patterns of temporal change.  

                                                   
17 Except Kitano’s article is identified as hard to tell, other four articles can be easily put 

in a category.  
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CiteSpace also picked out 18 books out of the most highly cited references. Those 

books were mainly published in the early years. Especially between the year 1992 and 

1993, 8 out of the 30 most highly cited references are books, for example, Stuart 

Kauffman (1993)’s The Origin of Orders: Self Organization and Selection in Evolution. 

This book incorporates the findings in physics, chemistry, and mathematics to study the 

origin of organism as a complex adaptive system, in which computer simulations are used 

to model how self-organization occurs. The number of books among most highly cited 

references decreased after 2000, with only two books have high citations that ranked 

among top 30. Those two books are Erberhard Voit (2000)’s Computational analysis of 

biochemical systems: a practical guide for biochemists and molecular biologists and 

Bernhard Palsson (2006)’s Systems biology: properties of reconstructed networks. 

Excluding books and references that are hard to label18, the results of these 330 

references that fall into biology-oriented and systems oriented categories are 

demonstrated in Figures 10 and 11, respectively. Each line represents a category.  

Figure 10 show the number of references in four biology-oriented categories: 

omics research, development of high-throughput technologies, the application of systems 

biology, and biological mechanisms. The development of high-throughput technologies is 

the category that has the highest number of articles in early stages, but this category 

                                                   
18 Out of the 330 articles, CiteSpace picked out 14 references that could not be placed 

into these nine categories. They either focus only on topics tangentially related to systems 

biology, or are hard to put into any category, so they were not included in the nine 

categories.  

!
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decreased afterwards. This suggests that early biologists involved in systems biology by 

developing new technologies.  

 

 

Figure 10. The number of most highly cited articles in biology-oriented research 

categories. The x axis stands for the 11 time slices and the y axis stands for the number of 

articles among 30 most highly cited articles for a category.  

Omics research (blue line) began to emerge in the late 1990s and peaked around 

2002. Omics research has changed from simply getting the sequence of a genome in the 

1990s to actually mapping the interactions of biological molecule, be it proteins, or 

genes, or metabolites after 2000. An example of an article in this category is the 

comprehensive study of protein-protein interactions in yeast. Peter Uets and his 

colleagues discovered 957 possible interactions of more than 1000 proteins (Uetz et al. 

2000). After that omics research decreased while the application of systems biology (the 

purple line) began to increase in early 2000s, and reached a plateau from 2006 to 2010.  
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Then in the last four years, the rise of systems biology’s application in medical 

fields and engineering became very significant. For example, one such most highly cited 

reference in 2010 is on systems vaccinology, describing how systems approach has 

changed the way scientists develop vaccines (Pulendran, Li, & Nakaya, 2010). Despite 

the fact that vaccines work well in preventing diseases, the mechanism for how they work 

remained largely unknown before application of a systems approach. Scientists are now 

starting to use systems approaches to identify the gene regulatory network after the 

injection of vaccines, and predict the later responses. It can help identify high-risk 

individuals and prevent potential harmful consequences of vaccine to those individuals 

(Pulendran, Li, & Nakaya, 2010).  

 

Figure 11. The number of most highly cited articles in systems-oriented research 

categories. The x axis stands for the 11 time slices and the y axis stands for the number of 

articles among 30 most highly cited articles for each time slice. 
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Figure 11 shows the number of references in five systems-oriented categories. 

From 1992 to 1995, two categories, namely, metabolic flux analysis (purple line), 

algorithms equations and models (light blue line), are the top two categories. However, 

only the category of algorithms, equations and models maintains the same importance, 

and metabolic flux analysis decrease over time. This suggests that algorithms, equations 

and models are still very central to systems biology research, which is claimed by other 

scholars (Machado et al., 2011).  

Database management (Dark blue line) emerged around 2000 and continue to be a 

strong presence in later years, including the Gene Ontology and KEGG database 

discussed earlier, but also BioGRID, Reactome, BiGG, IntAct, to name a few, which are 

more recent databases (Stark et al., 2006; Matthews, 2009). A database is not a place 

where biologists dump their data, because scientists need to figure out how to store the 

data, how to search for data quickly, how to manage database structure, and how to 

develop a standard of data format that is compatible to more databases (Leonelli, & 

Ankeny, 2012). This knowledge can be classified as data science in general, which 

requires the input of systems-oriented scientists.  

The overall trend of biology-oriented research was proceeding strongly as 

systems-oriented research was becoming weaker. In Figure 12, two lines represent 

system-oriented and biology-oriented research respectively. From 1992 to 1995, systems 

biology was more systems-oriented than biology-oriented. After that time, systems 

biology became more biology-oriented. Figure 12 suggests that two special turning points 

were the years 1996, when systems-oriented research was superseded by biology-oriented 

research and 2012, when the gap between systems oriented and biology-oriented research 
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became bigger than ever. Especially from 2012 to 2013, the articles became 

predominantly biology-oriented. For the exact number of 330 most highly cited 

references in different categories over time, see Appendix A-3. 

 

 

Figure 12. The trend of biology-oriented (red line) and systems-oriented (blue line) 

articles. The x axis stands for the 11 time slices and the y axis stands for the number of 

references among 30 most highly cited articles for each time slice. 

2.2.3. The institutional contexts for systems biologists 

Table 6 lists the affiliations of the first most highly cited authors in each time 

slice. The affiliations show the department, the university or institution, and geographical 

information such as city and country. The table shows that the most highly cited authors 

in each time slice changed quickly throughout the years, suggesting that systems biology 

was evolving quickly. The institutions they are affiliated are very diverse and 

interdisciplinary. We classified the institutions of the top 30 authors from 11 time slices 
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into four categories: biology-oriented, systems-oriented, interdisciplinary and systems 

biology institutions. 

Table 6: The most highly cited authors. 

Time 
Slice 

The most cited 
author in each 

time slice 
Authors’ Institutes Category 

1992-
1993 KAUFFMAN S 

Department of Biochemistry and 
Biophysics, School of Medicine, 

University of Pennsylvania and Sante 
Fe Institute, Sante Fe, New Mexico, 

U.S.A. 

Interdisciplinary/Systems 
Biology 

1994-
1995 BENJAMINI Y 

Department of Statistics, School of 
Mechanical Studies, Tel Aviv 
University, Tel Aviv, Israel 

Systems-oriented 

1996-
1997 HEINRICH R 

Theoretical Biophysics Group, 
Institute for Biology, Humboldt 
University Berlin, 10115 Berlin, 

Germany 

Interdisciplinary 

1998-
1999 HARTWELL LH Fred Hutchinson Cancer Center, 

Seattle, Washington 98109, USA. Biology-oriented 

2000-
2001 IDEKER T Inst Syst Biol, Seattle, WA 98105 

USA. Systems biology 

2002-
2003 KITANO H Sony Comp Sci Labs Inc, Tokyo 

1410022, Japan. Systems-oriented 

2004-
2005 BARABASI AL 

Department of Physics, University of 
Notre Dame, Notre Dame, Indiana 

46556, USA 
Systems-oriented 

2006-
2007 ALON U 

Department of Molecular Cell 
Biology, Weizmann Institute of 
Science, Rehovot 76100, Israel. 

Biology-oriented 

2008-
2009 FEIST AM 

Department of Bioengineering, 
University of California, San Diego, 

La Jolla, California 92093, USA. 
Interdisciplinary 

2010-
2011 ROUKOS DH 

Univ Ioannina, Biosyst & Synthet 
Genom Network Med Ctr 

BioSynGen, Ioannina, Greece. 
Systems biology 

2012-
2013 ZHANG AH 

Heilongjiang Univ Chinese Med, Natl 
TCM Key Lab Serum Pharmacochem, 
Key Lab Chinmed, Dept Pharmaceut 

Anal, Harbin 150040, China 

Biology-oriented 
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Biology-oriented institutions have words like “cancer”, or “genetics” that are 

related to the life sciences. We noticed that many authors are from a medical institution, 

and even pharmaceutical companies, like Glaxosmithkline and Syngenta. 

Systems-oriented institutions include those related to “statistics,” “mathematics,” 

“physics,” “chemistry,” and other non-biology disciplines. We also found that some 

researchers are from the industry, such as Microsoft, Siemens, and Sony.  

“Interdisciplinary institutions” refer to those that related to interdisciplinary field 

such as “biochemistry,” “biophysics,” “bioengineering,” “biotechnology,” and 

“bioinformatics.”  

Systems biology institutes include those that specifically use the words like 

“systems biology,” or “biosystem,” or “biosyst.” For some institutions that are hard to tell 

which category they belong to, we did not label them and include them in the calculation. 

The results of the categorization of the affiliations of 330 highly cited authors are 

shown in Figure 13. In each time slice, the top 30 authors’ institutions were plotted in 

four color-coded bars to represent the four categories.  

The figure shows that the number of authors from systems-oriented institutions 

(red bar) was first almost the same as biology-oriented institutions, but their number 

diminished over the years. For example, in the time frame of 1992 and 1993, one of the 

most cited authors is Daniel T. Gillespie, a physicist working at the Research Department 

of Naval Weapons Center at the time. His work on stochastic simulation in chemical 

kinetics contributed to the simulation method adopted by later systems biologists 

(Gillespie 1992). He contributed to the foundation of systems biology while this 

discipline was still in its “early roots” stage, and naturally he did mention systems 
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biology in his work and probably did not know the term. However, he published an 

article in 2008 on simulation methods in systems biology.  

 

Figure 13. The most highly cited authors’ institutions. The x axis stands for the year and 

the y axis stands for the number of authors in a category among the top most highly cited 

30 authors.  

Scientists from interdisciplinary institutions (green bar) have fueled the 

advancement of systems biology not only in the early days of systems biology, but also in 

more recent years. These institutions have provided a place for early systems biologists to 

stay. While in the 1990s, there were no systems biology institutions (purple bar), which 

only emerged within the slice from 2000 to 2001. In each time slice after 2001, there 

were a few authors coming from systems biology institutions. The number of the most 

cited authors from a biology-oriented institution (blue) tends to fluctuate over the years, 

but they have the highest numbers compared to other categories in every slice except in 

the time slice from 1992 to 2013.  



!

 60 

             Figure 14 shows the result of all the first authors who published between 2003 

and 2013 retrieved from WoS citation data19. After taking out the unidentifiable authors’ 

affiliations, it shows that the percentage of each category has remained quite constant, 

which means that from 2003 to 2013, the institutional context for systems biologists did 

not change much.  

 

Figure 14. All authors’ institutions from 2003 to 2013. The number in each category 

changed little from 2003 to 2013 as shown in four color-coded bars representing the four 

categories. The x axis stands for the year, and the y axis stands for the percentage of each 

type of institution.  

Between the years 2003 and 2013, on average 60.85% of authors came from a 

biology-oriented institution; 21.16% came from a systems-oriented institution; 13.75 % 

were from an interdisciplinary institution; and 4.23% were from a systems biology 

institution. These statistics suggest that the institutional context for all authors publishing 

on systems biology is different than that for the people who published the most highly 

cited articles on systems biology. Notably, the latter had a larger percentage of authors 

                                                   
19!!Out of all 9876 authors who published between the years 2003 and 2013, a total of 779 
(7.89%) were unidentifiable. We excluded those articles when calculating the percentage 
of four categories. !
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who were affiliated with interdisciplinary and systems-oriented institutions. This is an 

interesting observation that the people who were cited most and the people who 

published in a field have different patterns in terms of their affiliation, and we will 

discuss that in our conclusion. 

2.2.4. Topics found in the abstracts  

We were not only interested in the research types of the most highly cited 

references, but also in general systems biology articles. The result of topic modeling 

based on thousands of articles is similar to my manual reading of the most highly cited 

articles. Appendix C-1 shows the machine learning results of topics using MALLET and 

the labels that we assigned by reading the words in topics. The machine learning model 

returns the following 20 topics: biology, models, metabolomics, diseases, proteomics, 

synthetic biology, database and software, cell biology, systems theory, algorithms, 

immune system, network properties, network, genomics, technologies and tools, drug and 

cancer, regulation, pathway.  

We were more interested in the temporal change of topics. Figures 15 and 16 

show the topics that have significant patterns of increasing or decreasing. Figure 15 

shows that the percentage of articles that contain Topics 11, 14 and 17 increased over 

time. Topic 11 is about the research related to immune systems and vaccines, Topic 14 is 

about disease, and Topic 17 is about drugs and cancer. There are related to the 

application of systems biology, which is similar to my finding about the articles in this 

category among the most highly cited articles in section 2.2.2, which showed that they 

are more biology-oriented.  
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Figure 15. The trends of Topics 11, 14, 17. The x axis of the graph represents the year, 

and the y axis represents the percentage of articles published in that year that contain a 

topic with a probability higher than ten percent. 

Figure 16 shows how the percentage of articles that contained topics 9, and 16 

decreases. Topic 9 includes some general terms about systems biology, and Topic 16 is 

about high-throughput technologies, which includes words like “high,” “throughput,” 

“technologies,” and “techniques.” The result is similar to my findings about the 

percentage of articles in the category of high-throughput technologies among the most 

highly cited articles, which is decreasing over the years. The percentage for articles that 

contained each of the 20 topics is shown in Appendix C-2.  
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Figure 16. The trends of Topics 9 and 16. The x axis of the graph represents the year, and 

the y axis represents the percentage of articles published in that year that contain a topic 

with a probability higher than ten percent. 

2.3. Conclusions and Discussion 

Systems biology is a new discipline, and this study offers a bibliographic analysis 

of its history from 1992 to 2013. We examined the research categories as well as the 

institutional contexts of researchers in the field of systems biology. Bibliographic 

analysis allowed us to pick the most highly cited authors and references, because it can be 

assumed that they have bigger contributions to the field than the less well cited authors or 

articles. We carefully categorized those authors and articles through close reading, but 

also applied machine learning technique to analyze a much larger number of articles and 

authors to overcome the limitation that we could not read them all.  

The main conclusion is that systems biology has become more biology-oriented in 

research categories and the most cited authors. Our findings are echoed in some other 

scholars’ observations about systems biology. Alan Aderem, who works at the ISB, 

argues that “biology dictates what new technology and computational tools should be 

developed, and once developed, these tools open new frontiers in biology for exploration. 

Thus, biology drives technology and computation, and in turn, technology and 

computation revolutionize biology” (Aderem, 2005). Some of them suggest that biology 

needs to be more important in systems biology in two aspects. First is the claim that more 

biologists should be involved in systems biology, and second that more empirical 

biological problems need to be addressed (Calvert & Fujimura, 2011). Jane Calvert and 

Joan H. Fujimura carried out interviews with many researchers in systems biology, 
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including biologists, mathematicians, physicists, and computer scientists. One of the 

biologists said: “I think biologists need to drive systems biology, because if it’s driven by 

computation or engineers, without a depth of training in biology, they lose that sense, 

they tend to treat molecules as nodes and edges without a sense of how they’re 

performing their functions” (Calvert & Fujimura, 2011, p. 161). Physicists and computer 

scientists might also agree with that, because often those who want to model a biological 

system cannot find a biological expert to help link the model to specific biological 

problems (Hlavacek, 2011).  

Along with the finding of the interviews, a systems biologist at the ISI, Sui 

Huang, claims that biologists have become active players in systems biology because 

what they need to understand now is not a single gene or a protein, but networks of genes 

or proteins, and systems biology approach can help address their needs (Huang, 2007). 

Huang’s article claims that systems biologists should divert their research “back to 

biology in systems biology.” Systems biology has captured more biological phenomena, 

properties, objects such as various regulatory pathways, data, theories, and methods than 

its precursor did in the middle of twentieth century. Biologists have seen the utility of 

applying a systems biology approach to understand the evolution and function of 

biological networks. 

Another interesting finding for biologists is the upward trend toward application 

in systems biology. The application has been centered around understanding cancer 

better, transforming drug discovery, and making preventative vaccines. Previous studies 

might have mentioned the potential of systems biology in application based on a few 

articles about this field, but this study was able to quantitatively and qualitatively provide 
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data for this intuition through the percentage of articles in this category, the trends of 

topic based on topic modeling, and the result of cluster labeling. In choosing their future 

topics, biologists should be thinking about picking an application-oriented research.  

Our result about the institutional context of scholars who published in this field 

also has implication for policy makers or funding agencies. The result shows that scholars 

from an interdisciplinary field or a field outside of biology have contributed greatly to 

systems biology, in terms of first, the contrasting percentage of those scholars in the most 

highly cited authors compared to percentage of them in all authors, and second, the big 

influence of systems oriented research types in the early stages when systems biology 

started to emerge. The institutional contexts of the most cited authors and general authors 

in this study suggest that the scholars who lead a field are sometimes different from those 

who publish in that same field. It has been suggested by previous scholars that we should 

create interdisciplinary environment on purpose, and our results agree with that 

suggestion (Lattuca, 2001). That result that the percentage of scholars from an 

interdisciplinary field or a field outside of biology could be translated into a message that 

the funding agencies should prioritize the funding of interdisciplinary projects and 

institutions, because they may better lead to the starting of a new discipline, or making a 

higher impact. 

Equally important is the methodology presented in this paper. First, utilizing 

computational tools allowed us to expand our research years to the period when the term 

“systems biology” was not yet invented. Although the first article that has the term 

“systems biology” was not published until 1997, we can find the references that 
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contributed to systems biology through bibliographic analysis tools, and also identify 

individuals who are the most highly cited.   

Second, this methodology is an example of combination of close-reading and 

distant reading, as exemplified in other computational history of science projects 

(Laubichler, Peirson, & Damerow, 2013). The use of CiteSpace and Tethne allowed us to 

select the most highly cited references and authors to represent the field using 

computational approaches and build-in functions, and apply close reading on a selected 

few, so we don’t need to read all the articles. Later, the automatic labeling of clusters 

Citespace based on LLR algorithm, and topic modeling employ statistical models to 

understand the topics within the literature, which is a form of distant reading. Close-

reading and distant reading can benefit from each other. For example, the result of close 

reading of most highly cited authors allows us to retrieve the identifying word for 

designing the model that studies all the authors. The results of machine learning 

technique can be viewed in parallel with the results from manual reading; the results of 

manual reading or close reading can either support or refute the results of machine 

reading.  

Third, computational history of science blurs the line between natural sciences 

and humanities. Natural sciences often involve a hypothesis that is testable by 

experiments, having quantitative, precise, and objective results that are repeatable, 

whereas humanities are perceived by some in an opposite way, for example relying more 

on narrative style and speculative method (Gardiner & Musto, 2015). Our research is on 

history of science; however, the result in this research is quantitative, and most of these 

results are repeatable using the same WoS data and same parameters.  
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For historians, the approach used in this chapter can also be used to provide a 

historical perspective for literature in other fields of research. For historians who don’t 

know how to use programming language, the easier parts would be downloading the 

metadata from the WoS database, and learning how to use CiteSpace to perform citation 

analysis, or MALLET to perform topic modeling. For historians with programming skills, 

they can find the online tutorial for Tethne and the codes used in this research are shared 

online. This approach is not merely a combination of tools that are developed by other 

researchers, but the mastery of Python allows us to design our own flowchart to perform 

tasks tailored to our own needs, and connect the WoS data with tools.  
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CHAPTER 3: UNDERSTANDING SYSTEMS BIOLOGY’S CONCEPTUAL 

HISTORY USING CO-WORD NETWORKS  

 

Abstract: Systems biology studies complex biological systems such as gene regulatory 

networks. This chapter utilizes computational approaches to understand how knowledge 

of the field of systems biology changed from 2003 to 2013 through co-word/concept 

analysis, with “co-word” meaning words occurring in close proximity in the same 

sentence. Our research provides an example of how big data science can be used to study 

the change of concepts. We retrieved the available abstracts of a total of 9876 systems 

biology articles published between 2003 and 2013 from Web of Science and build a 

corpus of over 5 million words. We used co-word networks of 300 keywords identified 

by corpus linguistics techniques to represent the knowledge of systems biology. We 

discovered that the majority of biology-oriented words have increased in centrality in the 

co-word/concept network over time. We visualize the sub-network of “cancer” as an 

example to show that the words that co-occur with a word can visualize the conceptual 

change of that word. 

Keywords: Systems biology; Co-word analysis; Network Text Analysis; Corpus 

Linguistics; History of Science; Text-mining.  

 

3.1. Introduction  

In systems biology, scientists from different backgrounds have different epistemic 

goals. For example, engineers might be more interested in generating rules that apply to 

all systems, whereas biologists care more about specific biological problems (Calvert & 
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Fujimura, 2011). Scientists from a field other than biology often focus on concepts such 

as “feedback loops” and “circuit,” which we call “systems-oriented” concepts, as 

opposed to concepts like “evolution” and “development,” which we call “biology-

oriented” concepts. Concepts are abstract entities that are central to the epistemology of 

science, and philosophers have traditionally used technical ways to analyze the 

conceptual structure of science, such as the semantic method of analyzing the predicates 

and propositions in a sentence structure (Carnap, 1991).  

More recently, scientists have argued that knowledge structures can be modeled 

as networks (Sowa, 1984). According to Popping (2000), “When concepts are depicted as 

networks, one is afforded more information than the frequency at which specific concepts 

are linked in each block of text; one is also able to characterize concepts and/or linkages 

according to their position within the network” (p. 30). Our assumption that observing 

how a word links to other words that co-occur with it in texts over time can reveal the 

conceptual change of that word is based on such a network view. Collectively, such 

relational information of many words in a large network can give a general picture of the 

entire scientific field, and adding a temporal dimension to the networks can reveal the 

historical change of that knowledge field.  

Here we aim to answer the following questions: How did scientists use biology-

oriented words and systems-oriented words differently between 2003 and 2013 in the 

systems biology literature and how can we visualize and quantify these changes? To 

answer this question, we analyzed the abstracts of 9876 systems biology research articles 

retrieved from the Web of Science (WoS) database, and generated networks to visualize 

the knowledge embedded in those abstracts. One innovation of the research in this 
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chapter is combining two computational approaches, a corpus linguistic approach and a 

network approach. This research serves two purposes: We are not only interested in the 

historical change of concepts in systems biology, but also have the historiographical 

motivation to explore how computational methods can transform the way we represent 

change of concepts.  

3.2. Methodology 

We first describe what we mean by a co-word/concept network in detail and then 

introduce the steps that we took to generate co-word networks: a) building a corpus, b) 

generating a codebook, c) text-mining the corpus using the codebook, and d) visualizing, 

analyzing, and comparing the networks. The four processes are shown in the flowchart in 

Figure 17, and we introduce the steps in detail in the following sections.  
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Figure 17. The flowchart for Chapter 3. The figure on the top highlights parts carried out 

in this chapter. The figure on the bottom shows the detailed steps in Chapter three. 

3.2.1. What is a co-word/concept network?  

A co-word/concept network is a network composed of words that co-occur in 

either titles, abstracts, or main texts (He 1999; Callon, Courtial, Turner, & Bauin, 1983). 

In our case, we examined words that co-occur in abstracts of research articles because 

research articles are a genre that plays a pivotal role in scientific discourse (Tessuto, 

2015). Scientists have not reached a consensus on the naming of such a network. Some 

might also call it a lexical co-occurrence network (Edmonds, 1997), or a word co-

occurrence network (Veling & Van Der Weerd, 1999), or a collocation network (Lahiri, 

Choudhury, & Caragea, 2014). A co-word network built based on the literature from a 

scientific field can shed light on the knowledge structure of that field (Ferrer & Solé, 

2001). While we focus on words that represent concepts meaningful for systems biology, 

we could call our network a co-concept network, but for simplicity we will refer to it as 

co-word network from now on.  
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Co-word network analysis has been used by researchers from a great variety of 

disciplines, including health care research (Jang, Lee, & An, 2012), nanotechnology 

development (Darvish & Tonta, 2016), and strategy management (Ronda-Pupo & 

Guerras-Martin, 2012), to name a few. Previous research shows that co-word analysis has 

been used by humanists to represent the field they study as well. For example, researchers 

use keywords that co-occur in an article to build networks in order to map the knowledge 

structure of “technology foresight” (Su & Lee, 2010). In another example, researchers 

looked into how the adjectives that co-occur with “old,” “young,” “female,” and “male” 

in fairy tales reveal the societal values that shape the gender identity in kids (Weingart & 

Jorgensen, 2012). They discovered that the young males have the fewest adjectives that 

are used to describe them, which suggests that young males are less described and 

assumed a universal position. As far as we know, our research is the first co-word 

network research on systems biology literature.  

Co-word network analysis, along with co-citation analysis, co-author analysis, 

and co-journal analysis are the most widely used techniques in scientometrics and 

bibliometrics (Scharnhorst & Garfield, 2010; He 1999). In our previous study (see 

Chapter 2), we did co-citation analysis. Here we want to point out that one advantage of 

co-word network analysis over co-citation analysis or co-author analysis is that the nodes 

of a co-word network are words that won’t change and we can easily label the node with 

the word itself, whereas the nodes of a co-citation network or a co-author network are a 

paper or a scientist (He, 1999). If we want to know who the scientist is, that requires 

close-reading, for example looking up their information in Google. Second, co-word 

analysis enables one to look closely at one part of a network as well as looking at a 



!

 73 

network at a whole, thus combining macro-level and micro-level of examination of the 

knowledge structure of a field (He, 1999). Third, a word itself does not change, and only 

the meaning changes over time. Therefore, we can compare a word in different times, 

with its meaning represented as the co-words of the word.   

Our analysis can also be categorized under Network Text Analysis (NTA). NTA 

is “a semi-automated knowledge discovery technique in which entities and their relations 

are extracted from unstructured texts (e.g., newspaper articles, interview transcripts)” 

(Martin, Pfeffer, & Carley, 2013, p. 1166). NTA is a type of computer-assisted graph-

based knowledge representation that has been deemed central for artificial intelligence 

(Chein & Mugnier, 2008). Our approach also can be categorized under data-mining 

techniques, because Ian H. Witten and Eibe Frank (2005) define data-mining as using 

computer-assisted methods to retrieve information that has a clear structure and 

predictive value from unstructured data and in our research it is clearly the case. In our 

research, we used a way to generate networks through readily available software, which 

can be mastered without extensive technical skills; thus, our approach is especially useful 

for humanists.   

3.2.2. Steps taken to generate co-word/concept networks 

We built a corpus consisting of the available abstracts of 9876 systems biology 

research articles published from 2003 to 2013 from the WoS database, which will be 

explained later. We then generated a machine identified keywords list using a corpus 

linguistics tool and manually analyzed which keywords are biology-oriented keywords 

and which are systems-oriented keywords. Next we generated co-word networks of the 

above keywords over time, and examined the changes of the centrality of 300 keywords 
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over time using Python code. As an example to show how a co-word network can 

visualize the conception of a word on a finer scale, we look at the sub-network centered 

around the keyword “cancer.” 

3.2.2.1:  Building a Corpus Representing the Field of Systems Biology  

The research in this chapter is a corpus-based analysis. A corpus is a collection of 

textual data. More and more corpora have been created for certain languages and for 

specialized scientific domains. For example, the Genia Project has built a corpus 

containing 2000 annotated Medline abstracts of research articles on molecular biology 

(Ohta, Tateisi, & Kim, 2002). For another example, Telecommunication Engineering 

Corpus contains 5.5 million words of the professional and academic written English on 

Telecommunication Engineering (Rea, 2010). A corpus usually contains millions of 

words so that one can derive quantitative and statistical results from it, instead of relying 

on just a few selected texts.  

An important question to ask before building a corpus is how we can ensure that a 

corpus is representative (Hettel, 2013). It is impossible to download all the research 

articles on systems biology, and as Douglas Biber (1993) points out, one must balance 

efficiency and cost effectiveness against higher level of representativeness. We consider 

our sampling frame to be representative because it includes all the research articles on 

systems biology in a well-curated and large database, which is explained in the next 

paragraph.  

We chose Thomson Reuters’ WoS database because it is a well-curated database 

with credible journals, and contains structured data for each research article (Falagas et 

al., 2008). A search in the WoS database for articles published between the years 2003 to 
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2013 that included the term “systems biology” in their topics (including titles, abstracts, 

and keywords) returned 9876 articles. We downloaded the full bibliographic records of 

all 9876 articles in text files, and then used a Python code to extract the abstracts of all 

the articles to build a corpus. We chose to analyze the abstracts because the access of 

full-texts is time-consuming in many databases currently and requires more 

computational power to analyze them, and many corpus-based analyses choose abstracts 

to analyze (He, 1999). We then divided the corpus into 11 sub-corpora according to the 

publication year. The corpus size is 11, 821,632 words, and the sizes for the sub-corpora 

are listed in Table 7.  

Table 7: Corpus sizes for each sub-corpus. 

Year   Number of Abstracts          Corpus size 
2003 93 104538 
2004 219 254765 
2005 369 430705 
2006 533 665418 
2007 606 773700 
2008 800 1033792 
2009 995 1338717 
2010 1225 1685112 
2011 1286 1774022 
2012 1369 1907143 
2013 1314 1853720 

 

Because the corpus size for each sub-corpus differs significantly, we randomly 

picked 90 abstracts for each year and created 11 new sample sub-corpora, with each 

corresponding to a year. This is called stratified random sampling of sub-corpora, 

because the population of sampling units are divided on the basis of time (Hettel, 2013). 
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Compared with simple random sampling, stratified random sampling ensured that each 

year the co-word networks generated based on them could be compared on the same 

basis. 

3.2.2.2: Lexical Profile Analysis to Generate a Codebook.   

Detecting co-word relationships between words of an existing word list is a 

common way to generate a co-word network (Bullinaria & Levy, 2007). The word list, 

often referred to as a codebook, can be a dictionary, an ontology, a thesaurus, or a 

keyword list (Bullinaria & Levy, 2007). The choosing of the word list is critical to the 

results of co-word analysis and one wants to make sure that the word list contains the 

most important words that characterize a scientific field (He 1999). Previous studies have 

used many different approaches to building a word list: manual picking a word list, tf-

idf20, using MeSH21 terms, etc. The innovation of our research is that we used corpus 

linguistic approach to ensure that our word list is not randomly picked and can indeed 

represent the field of systems biology. The tool that we employed is a widely used tool of 

corpus linguistics: WordSmith (Scot, 1996).  

 Corpus linguistics is a branch of linguistics that studies linguistic features such as 

collocates, word list, and keywords “based on examples of real life language use” 

                                                   
20!Tf-idf stands for term frequency–inverse document frequency, which is a text-mining 

approach to determine how important or unique a word is to a document compared with 

to other documents in a collection of documents.  

21!MeSh stands for Medical Subject Headings, a thesaurus that facilitates indexing and 

search of vocabulary in the life sciences.!!
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(McEnery & Wilson, 2001). Collocates are the words that are habitually juxtaposed. A 

word list is a list of words arranged according to the frequency of their occurrences in 

texts. For example, researchers analyzed the frequency of the word “experiment” in early 

literature to reveal that experiment was used more frequently in English religious 

literature than in scientific literature before the 1800s and the meaning before 1800 were 

different from its current meaning (Pumfrey, Rayson, & Mariani, 2012). Currently, 

experiment denotes an activity in science, whereas in 1700s, it refers to an activity in 

religion. According to Scot (1997), a keyword is “a word which occurs with unusual 

frequency in a given text” when compared to another corpus. 

WordSmith has a tool called Keywords, which compares the word lists of a corpus 

and a reference corpus and picks out the unusual words of that corpus. A reference corpus 

represents the general use of a language (Leech, 2002). An unusual word has a high 

keyness, which stands for the quality a word has of being key in its context (Scot, 1996). 

The keyness can be determined based on the Chi-square or the log likelihood statistical 

tests. In this study, we used the log likelihood tests. To calculate the keyness of a word, 

suppose that this word occurs a times in a corpus of c words, and occurs b times in the 

reference corpus of d words. First the expected normalized frequencies of this word 

occurs in the first corpus (E1) and that value for the reference corpus (E2) are calculated 

as: 

E1# = #c ∗ (a + b)#/#(c + d) 

E2# = #d ∗ (a + b)#/#(c + d) 

Later, the log-likehood value (LL) is calculated as: 

LL = 2 ∗ ((a ∗ ln#(a/E1)) #+#(b ∗ ln#(b/E2))) 
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The higher the LL value is, the more significant the difference is, which means 

that the word has a high keyness. This keyword list generated by WordSmith is different 

from the keywords of a research article because the former is identified using the above 

statistic measure whereas the latter is self-identified by the author(s) of a paper. 

Using this tool, we generated a keyword list based on the corpus of systems 

biology compared to a reference corpus. In this research, we considered several widely 

used reference corpora: Brown corpus, British National Corpus (BNC), Corpus of 

Contemporary American English (COCA), and American National Corpus (ANC)). The 

Brown corpus was compiled by researchers from the Brown University in the 1960s and 

is the first computer corpus (Francis & Kucera, 1979). The BNC was compiled in the 

1990s and contains more than 1000 million words to represent British English (British 

National Corpus Consortium, 2007). ANC is a corpus compiled since the 1990s 

containing about 22 million words of written and spoken American English (Ide, & 

Macleod, 2001). COCA contains more than 500 million words to represent American 

English and is still growing (Davies, 2008).  

We ultimately picked the BNC for several reasons. First, it is freely downloadable 

in the XML format, whereas COCA is not. Second, it is a more recent corpus compared 

to the Brown corpus. Third, it is a corpus of more than 90 million words, which has more 

words than ANC.  

The use of a “stop list” can significantly influence the final result of keywords 

(Bullinaria & Levy, 2007). By implementing the stop list in WordSmith, the digital tool 

ignored the words in the stop list and did not count their frequencies. Our stop words 

included 524 common English stop words and 137 words that are specific to common 
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research articles. For example, we are not interested in certain words because they are not 

related to systems biology, such as “and” and “is,” or words such as “figure” and 

“argued,” despite the fact that their keyness can be very high. For a full list of stop words, 

see Appendix D. We also filter out a list of words that we determined would not be 

significant in systems biology. 

The last step is normalizing the remaining interesting keywords. We eliminated 

all the verbs and adverbs, retaining only nouns and adjectives and picking only the 

singular form of the nouns. For example, we only picked “model” instead of “models,” so 

that we were able to examine more types of words. We picked 300 keywords for our 

codebook.  

3.2.2.3: Text-mining Using ConText.  

We built a co-word network based on the codebook using open access software 

called ConText, one of a few tools currently available for co-word network generation. 

Others include Linguistic Networks Systems (LNS) (Mehler & Gleim, 2016) and 

GraphColl (Brezina, McEnery, & Wattam, 2015) for example. We picked ConText 

because it is a network and text analysis tool designed especially for scholars in the 

digital humanities and social sciences and is easy to use22 (Diesner, 2014).  

We used ConText to determine how many times two keywords in the codebook 

co-occur in a set distance for each sample sub-corpus. In this study, the distance was set 

as left 5 and right 5, which is the most commonly used window size (Bullinaria & Levy, 

2007). The two keywords must appear in the same sentence. Using the same codebook, 

                                                   
22!For more information about ConText, see!!http://context.lis.illinois.edu !
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we generated co-word networks for each of the 11 sub-corpora. ConText returned 11 data 

tables, which were then visualized in the next step.  

3.2.2.4: Analyzing and Comparing the Co-Word Networks in Cytoscape.  

For the data tables (containing the co-word frequencies of pairs of keywords 

found in the sample sub-corpora), we imported them in Cytoscape to generate network 

visualization. Cytoscape was initially developed to visualize mostly biochemical 

networks, but could be used for network visualization of other fields (Shannon et al., 

2003). If two keywords, such as “computational” and “modeling” co-occur, Cytoscape 

would link the two words with an edge, resulting in “computational” and “modeling” as 

two vertices with a link. Cytoscape also enables the automatic calculations of network 

parameters and exported the results in spreadsheets. In this article, we focus on one 

network parameter—namely, SDC, a centrality measure.  

Centrality is a widely used measure that that can help us identify the importance 

of keywords in a network (Davish & Tonta, 2016). There are three basic types of network 

centrality: betweenness centrality, closeness centrality, and degree centrality (Borgatti, 

1995). Degree centrality measures the number of links to a node. Betweenness centrality 

measures the percentage of the number of shortest paths that pass through a node (Girvan 

& Newman, 2002). Closeness centrality is the sum of the length of their shortest paths.   

Because we wanted to compare networks with different numbers of nodes, we 

used standardized degree centrality (SDC), which is explained below, instead of degree 

centrality to offset the influence of varying network size (Faust, 2006). Previous studies 

also compare SDC of a node across networks with different numbers of nodes to evaluate 

the importance of an individual node in health care literature and business literature 
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(Jiang el al., 2012; Cobbs, 2001). In our case, a node is a word. The comparison of the 

SDC of the same word over time can shed light on the importance of that word. SDC of a 

node v is calculated as the degree centrality deg(4) normalized over the number of nodes 

in a network minus one (5 − 1) as show in the following equation: 

789 4 = deg(4)
5 − 1  

One assumption of this research is that, if a word has more conceptual 

connections with other words in the literature, the words that co-occur with it will 

increase; hence, its centrality in the co-word network will show an upward trend. To 

assess whether a node has increased SDC or not, we needed to analyze its centralities in 

the networks between 2003 and 2013. If it is just for one word, we can add a trend line in 

Excel and observe whether the slope of the line is upward or downward. However, to do 

this for all 300 nodes manually is time-consuming. Therefore, we used a Python code to 

implement linear regression to automatically do this. One application of linear regression 

is trend estimation (Bianchi, Boyle, & Hollingsworth, 1999). In our study, the predictive 

variable is time and the dependent variable is SDC values. We computed the slope, the R-

squared, and the p-value for the regression line for all 300 nodes. If the slope is positive, 

it means that the trend of the centrality of a node is upward and vice versa. The R-squared 

(ranging between 0 and 1), also called the correlation coefficient, measures the degree of 

linear dependence between the x variable and y variable (in our case, time and SDC 

values). If the R-squared value is 1, that means that the regression line fits the real data; if 

the R-squared value is 0, that means that there is no dependence between the x and the y 
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variable. We do not claim a causal relationship between time and SDC values; what we 

are interested in is the trend. 

3.3. Results 

3.3.1. Keyword list of systems biology research articles.  

Table 8 lists the top 20 keywords with the highest keyness. The frequency 

indicates how many times a word appears in our corpus. The percentage stands for the 

percentage of articles that contain the word. For example, the word “model” appears in 

our abstracts 5362 times, and appears in 31% of texts. The software picked some 

keywords that are keywords for almost all branches of biology like “biology,” “gene,” 

“cell,” and “protein,” but also picked out keywords that are more unique to systems 

biology like “data,” “network,” “pathway,” and “computational.” 

 Table 8: Keyword list generated by WordSmith.  

Rank Keyword Frequency Percentage Keyness 
1 Biology 8335 0.49 61205.57 
2 Systems 10445 0.61 49064.73 
3 Gene 5372 0.31 34567.33 
4 Data 7977 0.47 33467.55 
5 Biological 4867 0.28 31459.65 
6 Protein 5095 0.30 31102.29 
7 Cell 5272 0.31 28220.92 
8 Metabolic 3752 0.22 28147.20 
9 Network 5246 0.31 26004.05 
10 Molecular 3775 0.22 24884.41 
11 Model 5362 0.31 21781.84 
12 Expression 4041 0.24 18439.70 
13 Signaling 2082 0.12 16897.99 
14 Cellular 2486 0.15 16835.05 
15 Genome 2048 0.12 15319.07 
16 Pathway 2152 0.13 15100.70 
17 Computational 1908 0.11 13685.21 
18 Regulatory 2177 0.13 13360.91 
19 Modeling 1633 0.10 13167.17 
20 Experimental 2131 0.12 11239.31 
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The final list of keywords after filtering out unwanted words that are not related to 

systems biology contains 300 words, including 203 nouns and 97 adjectives. We 

categorized the words as biology-oriented words and systems-oriented words as well as 

words that are neutral based on our extensive reading on systems biology literature. 

According to our categorization, 180 words were biology-oriented words while 47 words 

were systems-oriented words, and 73 words were neutral. For a full list of the 300 

keywords with their categorization, frequency, and keyness, see Appendix E.  

3.3.2. Visualizing the co-word networks and computing SDC values 

Figure 18 shows the co-word network for the year 2013. This network has 262 

nodes and 2973 edges. The size and the label of the node are scaled according to the SDC 

so that one can determine which nodes are more central in the network by simply looking 

at it.  

The left figure offers a whole view of the network but one could not see the label 

of the node. Therefore, we zoomed into on the center part of the network as shown in the 

figure on the right. The two biggest nodes are “systems” and “biology,” not surprisingly. 

The next tier of biggest nodes includes “data,” “metabolic,” “network,” “expression,” and 

“cell.” The third tier of nodes include “drug,” “development,” and many others. Given 

the space limit, we did not show the co-word networks for other years here.   
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Figure 18. Co-word network in 2013. Nodes are scaled according to their SDC values. 

The layout is a force directed layout. The links are not scaled so they have similar width. 

3.3.3. Change of SDC of 300 keywords over time 

To answer the driving question proposed earlier, we wanted to know which 

keywords are central to the networks at different times, and whether biology-oriented or 

systems-oriented keywords became more central in the network. Figure 19 shows an 

example: how the SDCs of the word “therapy” changed from 2003 to 2013. The trend 

line has a positive slope of 0.0067, and the R-squared value is 0.589, which is quite high, 

suggesting that the SCD for the word “therapy” is indeed increasing and the word is 

becoming more central in the co-word network. For a full list of the SDC in all years for 

all 300 words, see Appendix F. 
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Figure 19. SDC for the word “therapy” over time. The x axis shows the years, and the y 

axis shows the SDC values. In 2003, the word has zero centrality, meaning that it does 

not exist in the network, and then afterwards, its centrality gradually increased over time.   

Later we computed the slope and R-squared for all 300 nodes. We plotted the 

slope and R-squared for all the biology-oriented words, systems-oriented words, and 

neutral words separately in Figure 20, 21, and 22. For 180 biology-oriented words, 112 

words have increased SDC over the years and 67 have decreased SDC over the years, and 

one has a slope of 0 (Figure 20). From the figure we can discover many interesting 

words. In the right side of the figure, words like “treatment,” “synthetic,” “therapy,” 

“infection,” “evolutionary,” “phenotype,” “clinical,” “omics,” and “epigenetic” have a 

positive slope and high R-squared value, meaning that their centrality indeed increased 

over the years.  
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Figure 20. The slope and R-squared of biology-oriented words. The x axis stands for the 

slope of fitted linear line by which a word’s SDC over the years is modeled. The y axis 

stands for the R-quared value. 

For example, the SCD of the word “synthetic” has increased over the years. This 

result is interesting because of two reasons. First, synthetic biology depends on systems 

biology for understanding and reconstructing the regulatory systems (O’Malley & Soyer, 

2012). Second, synthetic biology has the potential in changing human lives, for example 

building re-engineered organisms that can produce green energy such as alcohol, or 

attacking “superbugs” that are a threat to the environment (Khalil & Collins, 2010). 
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Many of these interesting words are related to medicine, like “therapy,” “infection,” and 

“clinical.”  

 

Figure 21. The slope and R-squared of systems-oriented words. The x axis stands for the 

slope of fitted linear line by which a word’s SDC over the years is modeled. The y axis 

stands for the R-squared value. 

For 47 systems-oriented words, 20 words have increased SDC and 27 have 

decreased SDC (Figure 21). Some interesting words include “design” and “engineering.” 

These two words have the largest slope values, meaning that their SDC values has 

increased significantly.    
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For 73 neutral words, 37 of them have increased SDC and 36 have decreased 

SDC (Figure 22). The neutral words fit binomial distribution very well (p value is 0). If 

there is not a trend for biology-oriented words and systems-oriented words, we should 

observe a binomial distribution just like for neutral words.   

 

 

Figure 22. The slope and R-squared of neutral words. The x axis stands for the slope of 

fitted linear line by which a word’s SDC over the years is modeled. The y axis stands for 

the R-squared value. 

We used a binomial test for the significance of the deviation for biology-oriented 

words and systems-oriented words. The null hypothesis is that biology-oriented words 

and the systems-oriented words would be equally distributed in the left side and the right 
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side. The p-value for the null hypothesis that biology-oriented words does not have an 

increasing trend is 0.001, and for systems-oriented words that value is 0.381. Therefore, 

we can say statistically that biology-oriented words have become more dominant in 

systems biologists’ discourse. 

3.3.4. The finer-scale look at the sub-network 

The result in the previous section offers a macroscopic view of all the 300 words, 

and identified some interesting words. But if we want to examine the trend of each 

individual word, we need a microscopic view. One advantage of co-word network 

analysis is its flexibility, namely, one can zoom in on a word to generate a sub-network to 

see one word and the connections that word has (He, 1999). Given the space of this 

dissertation, we could not show the co-word network of all the words that are interesting, 

but will pick a word to show how sub-networks can be a visualization of change in the 

use of a word23.  

To see how the use of each individual word has changed over time, we generated 

a sub-network for an important concept in systems biology--namely, cancer. The word 

cancer is important because firstly one of promising applications of systems biology is 

treating cancer (Kreeger & Lauffenburger, 2010). Systems biology aims to reveal the 

interactions of genes and cancer is a complex disease that has many genes involved 

                                                   
23 For more co-word networks in different years and sub-networks for more keywords in 

different years, as well as all the Python codes and other data, please see our open-access 

online repository developed by the Digital Innovation Group (DigInG) at Arizona State 

University.  

!
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instead of one single gene, and cancer systems biology has emerged as an important 

branch of systems biology (Kreeger & Lauffenburger, 2010). Secondly, the co-word 

networks centered on cancer in different years show great change in network structure 

and the number of co-words. Given the space of the dissertation, we only listed the 

comparison of the sub-network of cancer in the years 2003 and 2013 instead of in all 

years as shown in Figure 23.  
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Figure 23. The co-word networks of “cancer” in 2003 and 2013. The top figure shows 

the network in 2003 and the bottom figure shows the network in 2013. A link indicates a 

co-occurrence relationship. The size of a node is proportional to its centrality in the sub-

network24.  

The sub-network of cancer shows that the co-words of the word “cancer” has 

changed significantly over time with only a few nodes and linkages in 2003 and many 

more nodes in 2013. According to Courtial (1998), a word in a network cannot convey 

the exact meaning of that word, but the changing linkages of that word can be an 

indicator that the word probably has changed meanings. This might be an indication that 

systems biologists have deepened its understanding of cancer. In the literature, they did 

not talk about cancer very much in 2003, but in 2013 they did talk about cancer, and used 

it around many words.  

To know how exactly the meaning of cancer changed over time, it is necessary to 

go back to original documents to find out (He, 1999). This inference can be further 

supported by reading the original articles. In our sample of 90 systems biology research 

articles from 2003, “cancer” only appears in the abstract of one article and co-occurs with 

3 out of other 299 keywords as shown in Figure 23 (top). In that article, cancer was only 

                                                   
24!The centrality in the sub-network for a node, which is also called local centrality, is 

different from the centrality of a node in the whole network, which is called global 

centrality. For example, words like “systems” and “biology” have higher global centrality 

than the word “cancer,” but in the sub-network centered on cancer, cancer has the highest 

centrality and is bigger than the words systems and biology. !
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treated as a type of disease, and listed along with other diseases such as diabetes and 

cardiovascular disease, not having a special status in systems biology literature 

(Fairweather-Tait, 2003). In contrast, among the abstracts of 90 sample articles in 2013 

“cancer” co-occurs with 49 out of 299 keywords as shown in Figure 23 (bottom), 

suggesting that systems biologists have linked cancer to so many different concepts. For 

example, “cancer” co-occurs with “networks” 19 times, and our result concurs with the 

claim of other researchers that cancer is a disease of complex networks, instead of a 

single-cause disease, that involves multiple genetic and environmental causes (Harrold, 

Ramanathan, & Mager, 2013).  

3.4. Conclusions and Discussion 

Systems biology is an interdisciplinary research area in which biologists and non-

biologists bring in new concepts that they are familiar with, and their understanding and 

use of concepts change over time. The computational approach employed in this paper 

demonstrates that the knowledge of systems biology can be visualized and analyzed in 

the form of network of words, and by analyzing the networks over time we can shed light 

on the changing use of those words.  

Our analysis shows that more than half of the biology-oriented keywords have 

increased SDC and more than half of systems-oriented keywords have decreased SDC. 

This implies that within systems biology a biology-oriented focus associated with these 

concepts has become more dominant. That confirms our initial hypothesis that systems 

biology has become a more biology-oriented science.  To illustrate this trend at a more 

fine-grained scale we also picked an interesting concept, cancer. Here the change in the 

conceptual networks related to cancer illustrates (1) how cancer became a more dominant 
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focus of systems biology and (2) how the number of concepts linked with cancer 

increased dramatically, which implies an increased systems biology focus within cancer 

research.   

This study also demonstrated the usefulness of combining corpus linguistics and 

network approaches for analyzing conceptual change in scientific fields. The corpus 

linguistic analysis enabled us to understand which keywords can actually characterize 

systems biology. Co-word networks over time enable visualizations of the conceptual 

history of systems biology on a macroscopic perspective and the conceptual history of an 

individual keyword on a microscopic perspective.  

Quantitative results based on statistics are important not only in the natural 

sciences but also in the social sciences, for example when psychologists need to use 

SPSS to process the interview data of subjects (Stevens, 2012). In corpus linguistics as 

well as in network approaches, statistics is also important in generating the keyword list 

based on log-likelihood statistics, or determining the trends of hundreds of words without 

manually examining each word. So far in history and philosophy of science, quantitative 

reasoning is used less frequently.  

Our approach thus offers historians and philosophers of science new perspectives 

that are based on quantitative and other technical approaches like semantic analysis and 

corpus linguistics. Historians and philosophers of science can apply our approach to 

study the historical and epistemological change in other disciplines or represent the 

knowledge domain that they study.  

We hope that our methodology will also be interesting to humanists more broadly. 

Our approach used a simple coding scheme, and integrated several easy-to-use digital 
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tools. Humanists, like historians and philosophers, are interested in concepts and their 

uses. However, it is estimated that the information stored in various databases doubles 

every 20 months, and humanists will encounter the problem of tackling big data and need 

to master various data-mining techniques (Witten & Frank, 2005). We hope our 

methodology can be adopted by more humanists without requiring extensive 

computational knowledge.  
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CHAPTER 4: MEASURING THE CONTRIBUTIONS OF CHINESE 

SCHOLARS TO THE RESEARCH FIELD OF SYSTEMS BIOLOGY FROM 2005 TO 

2013 

Abstract: Systems biology is a new field of biology that has great implications for 

agriculture, medicine, and sustainability. In this chapter we explore the contributions of 

Chinese authors to systems biology through analyzing the metadata of more than 9000 

articles on systems biology. Our big-data approach includes scientometric analysis, GIS 

analysis, co-word network analysis, and comparative analysis. By 2013 China is second 

in the number of publication on systems biology. Similar to previous studies on Chinese 

science, we find an unequal distribution of research power in China, favoring big cities 

and coastal cities. Overall, 75% of the articles in systems biology were published by 

scholars from universities, 15% by scholars from the Chinese of Academy of Sciences 

institutions, and 9% from other institutions. Many Chinese scholars’ research topics are 

similar to those in the US, Japan, and Germany, but one salient difference is that 

traditional Chinese medicine is an important topic among Chinese systems biologists. 

25% of Chinese systems biologists cooperate with scholars abroad, suggesting that they 

could take advantage of the opening-up policy. From the year 2011 to 2013, the average 

impact factor of the journals that Chinese scholars publish in is generally lower than that 

of their counterparts in the US, but the trend points to a gradual increase in impact.  

 

Keywords: Systems biology; Chinese Scholars; Scientometrics; Network analysis; GIS 

analysis; Comparative analysis; Traditional Chinese Medicine.  
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Along with the economic liberalization of China, the scientific impact of the 

country is also increasing. According to a report by the Nature Publishing Group, China’s 

expenditure on research and development in 2014 was 207 billion US dollars, second 

only to the US. In 2014 there are 213,000 scientific papers in Thomson Reuters’ SCI 

database, which represents 15% of the world’s total (Nature Publishing Group, 2015). 

However, it is often criticized that the average quality of Chinese scholars’ work is not as 

compelling as the quantity of their work. According to the SCImago Journal & Country 

Rank, which uses data from the Scopus database, the overall citations of citable 

documents by Chinese authors from 1996 to 2014 is 19,110,353, ranking No. 6 in the 

world; the citations per citable document is 7.44, below the world average.25 This means 

that the quality of Chinese scholars’ work is generally lower than the world average. 

However, some scholars also point out the unequal research strength among different 

disciplines in China, using scientometric methods to show that China is stronger in areas 

related to physics, engineering, and chemistry than in other disciplines (Zhou & 

Leydesdorff, 2006).  

In this article, we focus on the development of systems biology and explore the 

contribution of Chinese authors to this area. Systems biology is a burgeoning discipline 

of biology that involves studying biological systems at a holistic level, combining big 

data generated from high-through technologies and mathematical modeling. The director 

of the Institute of Systems Biology at Seattle, Leroy Hood, remarked that biology in the 

21st century will be dominated by systems biology (Hood, 2003). Systems biology has 

                                                   
25 For the rankings of more countries, see http://www.scimagojr.com/countryrank.php  
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great potential in health care, synthetic biology, and agriculture (Hood et al., 2004; 

Church 2005; Gutiérrez, 2012).  

Systems biology, along with genomics, bioinformatics, computational biology, is 

what philosopher of biology Werner Callebaut called big data biology (BDB), which 

benefits greatly from genome sequencing and post-genome analysis (Callebaut, 2012). 

China is one of the countries that participated in the Human Genome Project 

(International Human Genome Sequencing Consortium, 2001). Since then, the Ministry 

of Science and Technology in China has been investing heavily in establishing 

institutions that are dedicated to post-genomics studies, such as the Beijing Genomics 

Institute and the Chinese National Human Genome Center, to name a few (Wu, Xiao, 

Zhang, & Yu, 2011). These infrastructure investments pave the way for advancement of 

genomics, informatics, and systems biology in China. Also, according to the National 

Guidelines on the Planning of Midterm and Long Term Development of Science and 

Technology (2006 to 2020), one of the most high-profile documents that influence policy 

making in science, systems biology is listed as one of the research fronts in the basic 

research, which means that systems biology research is put on the priority list of the 

Chinese State Council (State Council of China, 2006).  

Previously there have been studies on various disciplines of biology in China; for 

example, bibliographic analysis of biochemistry and molecular biology, and surveys 

about the plant biotechnology in China (He, Zhang, & Teng, 2005; Huang, Rozelle, Pray, 

& Wang, 2002). However, since systems biology is relatively new, there has not yet been 

any historical research on systems biology in China as far as we know. We intend to fill 

this gap for systems biology in China. We asked the following questions: 
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1.! What percentage of systems biologists are from China over time?  

2.!  Where do Chinese authors come from in terms of their geographical locations 

and institutional affiliations?  

3.! Do Chinese systems biologists share the same research topics as authors from 

other countries?  

4.! Do Chinese systems biologists work in a closed environment or an open 

environment where international cooperation is abundant? 

5.! How high is the quality of Chinese systems biologists’ work in contrast with the 

quantity of their work?  

4.1. Methods 

Our research utilized a variety of computational methods to analyze the metadata 

of systems biology articles, including scientometric analysis, geographic information 

system (GIS) analysis, and network analysis. Our metadata is the bibliographic data of 

9923 articles published between 1997 and 2013. Our research is also a comparative study 

to reveal the differences in terms of country, region, institution type, and research topic, 

and research quality.  
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Figure 24. The computational workflow for Chapter 4. 

4.1.1. Data collection 

In January 2014, we searched for articles that have the term “systems biology” in 

the “topics,” which include “titles,” “abstracts,” and “keywords,” and published from 

1900 to 2013 in the Web of Science (WoS) database. Systems biology is highly 

interdisciplinary, with scientists from a broad range of disciplines publishing on it: 

molecular biologists, evolutionary biologists, physicists, engineers, and computer 

scientists, to name a few. Our definition of systems biologists is in a broad sense: authors 

who publish the articles that fit our search criteria. The search returned 9923 articles. We 

then downloaded the metadata of those articles. From our data, we discovered that 2005 

is the first year when Chinese authors started to publish the articles. Therefore, this study 

examines the contribution of Chinese scholars to systems biology from 2005 to 2013.  

The WoS database is developed by the Institute of Scientific Information (ISI) of 

Thomson Reuters. ISI is famous for its publication of Journal Citation Report (JCR) and 

the analysis of journal impact factor (IF), which evaluates the influence of publications 

through citation counts (Russ+Eft, 2008). Its science citation index (SCI), social sciences 
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citation index (SSCI), and other indexes are widely used to assess the quality of journals 

and the articles in them, especially in China (Xue, 2008). We chose the WoS database for 

the following reasons: first, the WoS database is a successful commercial database, well 

maintained and updated, and with higher accuracy than the Google Scholar database 

(Falagas et al., 2008). Second, for each article that is included in the Web of Science 

database, it exports the title, keywords, author, publication name, publishing year, author 

address, and other useful metadata using different field tags. The output file itself is a big 

data file that can be analyzed using computational approach to get meaningful results.  

4.1.2. The percentage of articles published by Chinese authors 

How did we determine whether a paper was published by a Chinese author? We 

used the straightforward criterion that the paper must have a Chinese address as the 

reprint address. That precludes two situations: first, many Chinese scholars go abroad to 

study and do not use a Chinese address, or a Chinese author participates in the research 

for a paper but is not its reprint author (also known as corresponding author). In those 

two scenarios, we do not consider that the credit of those publications should be given to 

China. In the following sections, when we say Chinese scholars, we refer only to authors 

who have a Chinese address as a reprint author. We used Python code to get the 

addresses of reprint authors of the articles, and we broke down each address into 

institution, city, and country. We then analyzed the country of all the reprint authors and 

compared the percentage of articles written by reprint authors coming from different 

countries.  

4.1.3. Geographical and institutional analysis of Chinese authors 
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For Chinese authors we analyzed the provinces that they come from, and the 

institutions with which they are affiliated. We aimed to shed light on the distribution of 

research power among different provinces through analysis of the number of 

publications. We used Google Fusion Table, a widely used GIS tool developed by 

Google, to geocode the addresses of Chinese authors and visualize their locations on 

maps. By geocode, we mean that Google Fusion Table uses its state-of-the-art cloud-

computing service to transform physical locations into KML format, which enables 

mapping a location on maps (Google, 2016). Google Fusion Table also allowed us to 

visualize the numbers of papers published by authors coming from each province using 

the heatmap function. 

We classified three types of institutions in China: universities, Chinese Academy 

of Sciences (CAS) institutions, and other institutions such as institutions of the Chinese 

Academy of Medical Sciences or hospitals. As of 2010, CAS governed 97 research 

institutions in over 20 provinces around the country and has top-tier researchers across all 

of China, many of whom are recruited from abroad (Liu & Zhi, 2010). CAS is the fourth 

largest funding agency in the country, second only to the National Natural Science 

Foundation of China, which is an equivalent of National Science Foundation of the US, 

the Ministry of Science and Technology, and the Ministry of Education (NPG, 2015). We 

examined the percentage of Chinese authors from those three types of institutions.  

4.1.4. Comparing the keywords of Chinese authors and authors from other 

countries  

Because different countries have different research strategies and traditions, we 

wanted to know whether Chinese authors have the same research topics, whether they lag 
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behind, or whether they have totally different topics than their western counterparts. 

Keywords, which are identified by authors, are indications of the research topics, and 

many previous bibliometric studies have examined the keywords of literature to 

understand the topics of different disciplines (Su & Lee, 2010). We retrieved the 

keywords as formally defined in the literature, and ranked them according to how many 

times they appear in the publications for each country. We then compared the keywords 

of Chinese authors with those of publications from the US, Japanese, and German 

authors.  

By comparing the ranks of the top 30 keywords for the four countries, we aimed 

to investigate the difference in the research interests of each country. We also used a 

network approach to visualize the connections between keywords. If two keywords co-

occur in the Keywords section of a paper, it indicates a relationship between those two 

keywords. We visualized the co-word network of keywords in Cytoscape (Shannon et al., 

2003). The reason that we look at the co-word network because network can highlight 

words with high betweenness centrality, which will be explained later when discussing 

results.  

4.1.5. Analyzing the cooperation of Chinese institutions with foreign institutions 

For more than 30 years, China has adopted a policy of opening up and learning 

from the West after Mao Zedong’s reign, in which international cooperation was not 

encouraged (Zhou & Glänzel, 2010). Chinese authors not only needed to overcome the 

difficulties of using English as a second language, but also needed to keep up with the 

latest trends in areas of study in the English-speaking community. The best way to learn 

from the West is cooperating with the West. According to a report by the British Royal 
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Society, over 35% of papers that were published in international journals in the year 2008 

for the whole world were a result of international cooperation; that number was just 25% 

in 1996 (The Royal Society, 2011). Another study examines the percentage of 

internationally co-authored publications among all international publications in several 

countries between 1997 and 2007 (Zhou & Glänzel, 2010). From 1997 to 2007, the 

percentage of internationally co-authored papers in the US increased from 18% to 28.9%; 

for the UK, the number increased from 27.7% to 45.5%; China’s number decreased from 

24.4% to 21.9%. According to the authors of that study, it was because the denominator, 

the number of international publications increased. Therefore, it is interesting to see 

whether for systems biologists in China international cooperation increased or decreased. 

Coauthoring a paper is an indication of cooperation. Although analyzing coauthor 

information is not a comprehensive indication of all types of cooperation happening 

between scholars—others include email exchanges, communicating through conferences, 

or inviting foreign scholars to give guest lectures—it is used as a proxy for evaluating 

cooperation in many previous studies and coauthor information can be easily retrieved 

compared with documenting other forms of cooperation (Wang, Wu, Pan, Ma, & 

Rousseau, 2005). We retrieved the information of coauthors with Chinese authors and 

identified the nationality of their coauthors. Next we identified the highest-ranking 

international countries in terms of the number of co-authored papers.  

4.1.6. Analyzing the quality of journals of Chinese authors 

This study explores the quality of journals that Chinese researchers publish in 

compared with their US counterparts. Evaluating the quality of research is a difficult task 

and we chose to use IF to do so. Eugene Garfield (1995) first proposed the use of IF. A 
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journal’s IF for a specific year is the average number of citations of all articles published 

in that journal in a certain period, usually two years before that year (Garfield, 2006). 

Impact factors from Thomson Reuters’ Journal of Citation Report (JCR) and SCImago 

Journal Ranking are the most widely used ones; the former is based on the WoS database, 

and the latter based on Scopus database.  

There are some debates about using IF to assess the quality of a research study 

(Saha, Saint, & Christakis, 2003). For example, some argue that the IF of a journal is not 

representative of an individual article because when authors choose a journal for 

submitting their work, they do not just consider the IF of that journal alone, but also other 

factors (Seglen, 1997). On the other hand, some claim that citation count and IF are the 

most commonly used approach to measure the quality of papers (Wang, 2016).   

We concede that the IF of a journal is not a predictor of the actual citations for a 

paper in that journal, but our research does not aim to examine the quality of one article 

or one author, but rather to examine many papers altogether. Therefore, we think that the 

average IF can be used to assess the quality of many publications for a country. Another 

reason is that IF are conveniently obtained compared to other factors such as the H index 

for all authors, which would require enormous amount of work. Actually, funding 

agencies in China often use IF to assess the quality of Chinese scientists’ work for 

promotion, for instance, using the number of articles published in journals included in the 

JCR with a cut-off IF as a method of evaluation (Xue, 2008). This is not unique to China; 

the evaluation scheme was reported to be used in Italy and some Nordic countries as well 

(Seglen, 1997).  



!

 105 

We obtained the IFs of more than 10,000 journals from JCR for the years 2011, 

2012, and 2013. We analyzed the IF of a journal that an article was published in, which is 

the IF of the journal for the publication year of the article. We then compared the average 

IF of journals in which Chinese scholars published with that of their US counterparts. We 

also counted the number of articles that were published in journals with IF higher than 8 

and journals with IF smaller than 8. What is considered a high-impact journal depends on 

the field (Leydesdorff, 2007). In some fields, for example, in medical field, impact factor 

of 10 might not be a high impact journal. However, in other fields, 5 could be considered 

a high impact factor. In our case, we picked the impact factor of 8 as a threshold because 

that way around 20% of article authored by the US authors are high-impact articles. 

4.2. Results 

The results are organized into five sub-sections, each of which corresponds to our 

five driving questions and methods. 

4.2.1. The numbers of publications for various countries  

We compared China to four countries: the US, England, Germany, and Japan. We 

selected these countries because they are among the top ten countries with the highest 

scientific impacts according to Scimago Country Rank, which includes the USA, China, 

Japan, Germany, South Korea, India, France, England, Russia, and Canada.  

Figure 25 shows pie charts listing the total percentages of research papers that 

have reprint authors from the four countries as well as all other other countries grouped 

together in 2005 and 2013, respectively. For the exact numbers for each country, see 

Appendix G. Because in different years, the number of publications is different, what we 
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compared here is the percentage. It suggests that China contributed only a small fraction 

of the pie chart in 2005, but contributed a significant portion in 2013. 

 

Figure 25. The comparison of the percentage of papers for each country.  

 

Figure 26. The number of the papers from the US, China, Germany, England and Japan 

from 2000 to 2013. The x axis stands for the year and the y axis stands for the number of 

articles published in that year for a country.  

Figure 26 shows that the red line representing China has a steep slope and has 

exceeded that of Japan, England, and Germany in 2013. In 2005, only 1.54% of papers (7 

papers) have reprint authors from China; in 2013, this number has jumped to 9.03% (129 

papers), showing steady growth (The annual growth rate from 2005 to 2013 is 43.94%). 
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For the US, in 2005, it has 189 articles and that number for 2013 is 445, and the annual 

growth rate is 11.30%.  

4.2.2. The geographical and institutional analysis of Chinese authors  

To give an example of the distribution of research power across different regions 

of China, we mapped the number of papers published in 2013 onto a map of China. 

Figure 27 shows that Shanghai (33 papers), Beijing (23 papers), and Heilongjiang 

province (12 papers) have the darkest colors because highest numbers of publications 

were from these three places. It is not surprising that Beijing and Shanghai are two hot 

spots because they are the most developed regions in China, but Heilongjiang province 

caught our attention because it was not an economically prosperous area. We discovered 

that many papers were published by scholars from the Heilongjiang University of 

Chinese Medicine and some of those articles argue that traditional Chinese medicine is, 

in essence, systems medicine. For example, there is a review article in Complementary 

Therapies in Medicine arguing that traditional Chinese medicine values a holistic 

approach, just like systems medicine. One essence of traditional Chinese medicine is 

treating the body as a whole, instead of just treating a body part. That article also 

discusses how traditional medicine incorporated modern systems biology platforms to 

reform itself (Zhang, Sun, Wang, Han, & Wang, 2012).   
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Figure 27. The numbers of papers produced by each province in 2013. As shown in the 

legend, the darker the red color is, the more publications a province has. Grey color 

means no publication at all.  

We noticed the unequal distribution of publications: in many provinces, not a 

single paper was produced, especially cities in the northern and western regions, where 

the economy is not as advanced as other parts of China. It could be that systems biology 

is still a new discipline, so no paper was published. However, it might be more likely due 

to the unequal distribution of research resources. We explored the research resource 

distribution in China. A research paper in 2015 reports that in the life sciences sectors, 

resources are distributed unevenly in China, mainly favoring the eastern coastal areas and 

big cities like Beijing and Shanghai (Zhi & Meng, 2015). The areas with zero 

publications are areas that are economically less developed regions in China. We 

reproduced a figure from that article, as shown in Figure 28, and we found that the 

unequal distribution of resources matches the unequal distribution of publications on 

systems biology. 
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Figure 28. National Natural Science Foundation of China funding allocation in the life 

sciences at the city level (2006–2010). Reproduced from Zhi & Meng (2015). The legend 

shows the number of projects supported by the foundation. The darker the blue color is 

for a city, the more projects that city has.  

The analysis of the types of Chinese institutions shows that from 2005 to 2013, 

most papers on systems biology were produced by universities (75.30%), followed by 

CAS institutions (15.26%), and then by other institutions (9.44%) (See Table 9).  

According to the China National Bureau of Statistics, in 2013, the national 

spending in R&D was 1184.66 billion Chinese Yuan (roughly 189.54 billion US dollars), 

and CAS institutions got 43.80 billion Yuan from the government (roughly 7 billion US 

dollars), which accounted for 3.69 % of the government’s total funding (Ministry of 



!

 110 

Science and Technology of People’s Republic of China, 2014; Chinese Academy of 

Science, 2014). In the field of systems biology, CAS institutions produced on average 

15% of the papers published from 2005 to 2013, which exceeds the expectations if we 

assume that the amount of overall funding is proportional to the amount of funding for 

systems biology alone. One of the reasons might be the human resources reform of the 

CAS, which gives it an advantage in terms of recruiting researchers from abroad over 

other universities through its “One Hundred Talents Program” that offers more 

competitive salaries than universities and other institutions (Liu, & Zhi, 2010). 

Table 9: The number of articles produced by three types of institutions. 

 
!! CAS 

Institutions 
Other 
Research 
Institutions 

Universities 

2005 1 0 6 
2006 2 1 13 
2007 3 3 12 
2008 9 5 21 
2009 8 6 18 
2010 11 0 58 
2011 14 0 66 
2012 19 14 79 
2013 9 18 102 

Total 76 46 375 
Percentage 15.26% 9.44% 75.30% 

 

Although CAS institutes have been outperforming average universities and other 

institutes in China, its input-output efficiency still lags behind many of its counterparts in 

the developed countries, for example the Max Planck Society. According to its official 
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website, the Max Planck Society has 83 research institutions and 17,284 employees as of 

January 2015, and the annual spending of the society is 1.7 billion euros26. The society 

has fewer researchers than the CAS, and less R&D spending, but produced nearly twice 

the numbers of publications than CAS in the period from 2005 to 2013 (153 for Max 

Planck Society versus 76 for CAS).  

4.2.3. Keywords differences between countries 

We compared the keywords ranked according to their frequencies in articles for 

four countries, China, the US, Japan, and Germany, from 2005 to 2013. The top 30 

keywords in Table 10 shows that all four countries share many similar words with 

slightly different rankings: bioinformatics, proteomics, metabolomics, genomics, which 

are the foundational disciplines for systems biology; cancer, which is one of the most 

important application of systems biology to medical research; network and systems, 

which are key concepts of systems biology.  

However, keywords like traditional Chinese medicine, herbal medicine, review, 

liver regeneration, rat genome 230 2.0 array, tuberculosis, chemometrics, and gc-ms are 

unique keywords of China or have higher rankings in Chinese publications than in 

publications from other countries. Keywords like modeling, drug discovery, synthetic 

biology, and inflammation have better rankings in US publications than in Chinese 

publications.  

 

                                                   
26 For more information about the personnel and finances of the Max Planck Institute, see  

https://www.mpg.de/facts-and-figures  
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Table 10: Comparing the keywords of four countries. 

US China Japan Germany 
systems biology systems biology systems biology systems biology 
proteomics metabolomics metabolomics metabolomics 
biology metabonomics database proteomics 

genomics 
traditional chinese 
medicine a  bioinformatics biology 

systems network microarray systems 
bioinformatics proteomics transcriptome bioinformatics 

metabolomics biomarkers simulation 
mathematical 
modeling 

microarray biology analysis apoptosis 
mass 
spectrometry bioinformatics metabolome transcriptomics 
modeling metabolic network omics cancer 
computational 
biology systems systems transcriptome 

gene expression mass spectrometry 
arabidopsis 
thaliana modeling 

networks genomics feedback loop analysis 
biomarkers networks gastric cancer mass spectrometry 
cancer review synthetic biology signal transduction 
synthetic biology omics biology gene expression 
metabolism cancer cell cycle protein 
inflammation proteome notch parameter estimation 
genetics nmr toxicogenomics mathematical model 
mathematical 
modeling liver regeneration cancer genomics 
signal 
transduction system biology escherichia coli network 
protein stability stochasticity metabolic networks 
metabolic 
engineering 

rat genome 230 
2.0 array 

computer 
simulation arabidopsis thaliana 

transcriptomics time delay 
metabolic 
engineering metabolism 

evolution metabolites 
personalized 
medicine 

mathematical 
modelling 

biomarker 
regulatory 
network reaction gene regulation 

drug discovery gc-ms biomarker arabidopsis 
gene regulation tuberculosis network simulation 
simulation chemometrics drug discovery computational biology 
regulation herbal medicine wnt microarray 
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Note: a The words in red are words that are unique to systems biology in China.  
 

For example, traditional Chinese medicine ranks third in Chinese publications, but 

is not mentioned by authors from USA, Japan and Germany at all. It is not surprising that 

Chinese herbal medicine does not show up in the research keywords of other countries, 

but it is surprising that it shows up in the keywords of systems biology literature by 

Chinese authors. Traditional Chinese medicine was sometimes criticized by some as 

pseudoscience in China, and systems biology, as a sub-branch of biology, is usually 

believed to be hard science (Qiu, 2007). Our research shows that the two have 

intersection. Traditional Chinese doctors treat patients mostly through herbal medicine, 

which was built on more than two thousand years’ history of Chinese doctors using a 

trial-and-error method to test a wide range of herbals. The toxicology study of herbal 

medicine is modernizing through metabolomic techniques (Lao, Jiang, & Yan, 2009). 

Another interesting thing we noticed is that technologies are high-ranking 

keywords for Chinese authors. To give two another examples, rat genome 230 2.0 array 

is a microarray tool for analyzing many transcripts at a time, widely used for toxicology, 

neurobiology, and other applications using the rat as a model organism27. GC-MS stands 

for gas chromatography-mass spectrometry, which can detect trace elements. In recent 

years, a majority of the funding in China has gone toward the purchase of the latest 

equipment, research materials, and kits from bio-companies, so Chinese authors are now 

equipped with the latest technologies (NPG, 2015).  

                                                   
27 For more information about this tool, see 

http://www.affymetrix.com/catalog/131492/AFFY/Rat+Genome+230+2.0+Array#1_1 



!

 114 

We compared the keyword co-word networks of systems biology in China and the 

US using the year 2013 as an example, as shown in Figure 29. Co-word network shows 

how words are connected instead of the rankings of words. We found that for the US, the 

network has more nodes than China; the network for the US has 895 keywords, and 

China has only 347 keywords. This can be explained by the higher number of 

publications by the US authors than that of Chinese authors. The US network has more 

clusters (51 clusters) compared with that number in China (34 clusters). A cluster consists 

of nodes that are closely connected with other nodes in the cluster and have loose or no 

connection with nodes outside of the cluster. A cluster contains keywords that usually are 

related to a sub-area of a discipline, so a cluster can be interpreted as a sub-area of 

research (He, 1999). The results suggest that research in the US is more mature and 

diversified.  
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Figure 29. The keyword co-word network of the US (top figure) and China (bottom 

figure) in 2013. The highlighted red words are words with high betweeness centrality, 

meaning that they connect two clusters.  

We highlighted keywords that connect different sub-areas of research by 

measuring their betweenness centrality, which is the number of shortest paths from all 

nodes to all others that pass through that node (Leydesdorff, 2007). Nodes with high 

betweenness centrality serves as “bridges” that connect different clusters together, and 

the implication is that those keywords connects different research topics or sub-area 

together. According to Chen (2006), nodes with high betweenness centrality can also be 

used to predict emerging trends in scientific literature. Figure 29 and Table 10 show two 

different aspects of keywords analysis, one focusing on the keywords that have higher 

frequency and the other focusing on keywords with higher betweeness centrality. 
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Comparing the nodes with high betweenness centrality, we found that some of 

such keywords are unique to the US or China. In the network for the US, we can see 

keywords like “obesity,” “ovary,” “inflammation,” and “calcium” highlighted. In the 

network for China, we can see keywords like “gut microbiota,” “tuberculosis,” and 

“breast cancer” highlighted. For example, the keyword “obesity” is unique to the network 

of the US, and “tuberculosis” is unique to the network of China. This is interesting 

because obesity is a big issue in the US, and although China’s rate of obesity is 

increasing, but it does not show up in the co-word network of China (Levine, 2011). As 

for tuberculosis, it is a major public health problem in China but not so much in the US 

because drug-resistant tuberculosis has led to increasing number of cases in China (Hu & 

Sun, 2013). It has been argued that a systems biology approach is better than the 

traditional antibiotic prescriptions in treating drug-resistant forms of TB (Young, Stark, 

& Kirschner, 2008). 

4.2.4. The international cooperation of Chinese systems biologists with other 

countries  

Among articles published from 2005 to 2013, on average, 25.70% of papers arose 

from international cooperation, and 74.30% are independent Chinese studies, as shown in 

Table 11. By independent, we mean that the publication has only Chinese authors, 

without authors from another country. The sheer number of internationally co-authored 

papers has increased over time, but there was not a clear trend of increase or decrease for 

the percentage of internationally co-authored papers.  

 

 



!

 117 

Table 11: The number of papers produced by independent study and international 

cooperation 

Year Total Independent 
study 

International 
cooperation 

Percentage of 
cooperation 

2005 7 5 2 28.57% 
2006 16 11 5 31.25% 
2007 18 13 5 27.78% 
2008 35 24 11 31.43% 
2009 32 26 6 18.75% 
2010 69 41 28 40.58% 
2011 80 63 17 21.25% 
2012 112 92 20 17.86% 
2013 129 95 34 26.36% 
total 498 370 128 25.70% 

 

Chinese systems biologists have developed cooperation with authors from a total 

of 19 countries from 2005 to 2013. Chinese authors did not only cooperate with authors 

from developed countries in the North America and Europe, but also with scholars from 

developing countries in Asia and Africa. Table 12 shows that from 2005 to 2013, not 

surprisingly, the US is the biggest country where Chinese scientists’ collaborators come 

from, followed by Japan and England. Note that Germany authors ranked second in 

producing the publications of systems biology until 2012, but in terms of cooperation 

with Chinese authors, it fell behind Japan, England, and Canada. We infer that Japan is 

second because it is a country that is near China geographically, and England and Canada 

have a language advantage over Germany because English is a universal language that 

many Chinese scholars speak compared with German, which makes these countries more 

attractive destinations for Chinese scientists. Other countries include Netherlands, Italy, 

Thailand, South Korea, Finland, Saudi Arabia, Ireland, South Africa, Philippines, 

Sweden, France, and Scotland. 
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Table 12: The top countries of cooperation with China  

 
Ranking Countries Number of Coauthored Papers 

1 USA 63 
2 Japan 23 
3 England 14 
4 Canada 6 
5 Australia 6 
6 Germany 5 
7 Singapore 5 

 

4.2.5. The quality of journals in which Chinese authors published 

 Table 13 shows that the average IFs of the journals that Chinese authors 

publishing in is lower compared with US authors in three consecutive years, and not 

stable. The IFs for articles by US authors over the three years are relatively stable. It 

should be noted that the number of publications from China increased over time while the 

US did not. 

Table 13: The comparison of IFs of journals between China and the US. 

China 

 
Average IF Total 

Journal 
with 

IF>=8 Ratio of high IF journals 
2011 3.303 80 6 0.075 
2012 2.784 112 1 0.009 
2013 3.342 129 6 0.047 

US 

 
Average IF Total 

Journal 
with 

IF>=8 Ratio of high IF journals 
2011 5.935 458 97 0.212 
2012 5.701 464 102 0.220 
2013 5.876 445 102 0.229 
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We also compared the situation for high impact journals. The percentage of 

articles published in high-impact journals (with IF>=8) for China is quite low and not 

stable, whereas that percentage for the USA stayed stable. Our data shows that it is 

difficult for Chinese authors to publish in high-impact journals like Cell, Nature, or 

Lancet.  

 
4.3. Conclusions and Discussion 

This study is a comparative study focusing on the publications on systems biology 

for Chinese authors. In this section, we discuss many suggestions that are helpful for the 

science policy-making in China because China is transforming from a manufacturing 

power into an innovation power, and from a labor-based economy into a knowledge-

based economy (Dahlman & Aubert, 2001; Zhou & Leydesdorff, 2006).  

Our research shows that although Chinese scholars did not have publications on 

systems biology in our metadata until 2005, Chinese scholars have taken up about 10 

percent of all articles by 2013, and that number has grown rapidly. China has become the 

second-largest publisher of scientific articles on systems biology after the US by 2013. If 

China continues to put systems biology on its priority list as laid out in the National 

Guidelines mentioned earlier, this increase in output is likely to continue.  

There has been an inequality in China’s research strength, and Chinese funding 

agencies should pay attention not just to its coastal cities and big cities, but also to other 

inner provinces. Given enough resources, a province usually considered not as affluent as 

costal cities such as Heilongjiang was able to produce good publications. Also, the type 

of institutions in China can influence the input-output efficiency, with CAS being more 
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efficient than the average. Nonetheless, CAS institutes still lag behind its counterparts in 

developed worlds like the Max Planck Society.  

In terms of research types, this study suggests that Chinese systems biologists 

share many of the same interests with Western systems biologists, but they have their 

unique type of study, for example research related to traditional Chinese medicine. Our 

study suggests that traditional Chinese medicine may not be as “traditional” as we used to 

think because of its incorporation of latest technologies used by systems biologists. Also, 

our research shows that systems biology has potential for the treating of complex diseases 

such as drug resistant tuberculosis, and for doctors and researchers in China, it might 

make sense to incorporate more systems biology approach in their research.  

Over the years that we examined, around 25% of papers that had a Chinese 

corresponding author were a result of international cooperation, still lower than the world 

average. The Chinese government should continue to support the collaboration of 

researchers, either by sending out more visiting scholars, or allocating funding to inviting 

more foreign scholars to come to China to work or study. Previous literature suggests that 

China spent a small percentage of human resource expenditures (less than 15%) 

compared with those of developed countries (usually 40%) (NPG, 2015). This research 

suggests that the Chinese institutions should increase its dedication to recruiting and 

retaining researchers, as shown in the case of CAS because, as mentioned earlier, CAS is 

famous for its recruiting scholars from abroad.  

At the same time, we show that from 2011 to 2013, despite the increase of 

numbers of publications, Chinese authors generally published in journals that have lower 

average IFs than their US counterparts. However, the Chinese government should 
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increase the incentives for Chinese scientists to publish in high-impact journals, because 

articles published in those journals often receive more scrutiny throughout the publishing 

process, and can raise the profile of an author and the country that author belongs to.  

Our research examines publications in the WoS database, and only those 

published in English. It does not examine the publications in journals published in 

Chinese, so this research is mainly about systems biology in China perceived from 

abroad. In the future, we would like to examine a Chinese database such as the China 

Scientific and Technical Papers and Citation Database to see if there is a similar pattern.  
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CHAPTER 5: CONCLUSIONS 

In March 2016, the ending stage of writing this dissertation, a Go game caught 

international attention of the whole world. The game is between AlphaGo developed by 

Google DeepMind Lab and South Korean professional Go player Lee Sedol, ranked No.4 

in the world at the time. AlphaGo won four out of five games, and amazed the whole 

world with its power of computation. In an article titled “What AlphaGo’s Win Means 

for Your Job,” the author, a professor of strategic management and innovation, comments 

that “In the direction the world is headed, everyone will need to rethink their professional 

existence to ensure they have a broad prospective of where they could integrate different 

domain knowledge in their career track in a creative way” (Yu, 2016, para. 12) 

AlphaGo’s victory confirms my belief that historians might want to master more 

computational skills to answer historical questions.  

In this dissertation, I examine the development of systems biology from 1992 to 

2013, and explore how biology-oriented and more systems-oriented contributions shaped 

its history. I studied systems biology’s institutional context, research topics, knowledge 

structure, and regional differences using various computational tools to analyze the 

metadata and data of 9923 publications. I demonstrated that the computational analysis of 

big data embedded in the metadata of scientific literature can shed light on the historical 

trends of a scientific field in both qualitative and quantitative ways. My research has lead 

to a better understanding of systems biology’s scope, institutions, epistemology, 

methodology, and goals using vivid representations of networks, tables, and graphs.  

Equally important, other historians can use the methodology developed in my 

dissertation to trace the history of other disciplines especially those that have their 
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publications curated in online databases. Today this includes most scientific and many 

humanities disciplines. My computational workflow includes steps for the extraction of 

the metadata, analyzing the units of metadata using citation analysis, corpus linguistics 

analysis, co-word network analysis, GIS analysis and comparative analysis, and finally 

interpreting the results from historical and philosophical perspectives.  

In the following sections, I will discuss a summary of my results, followed by 

reflections on what these results mean, both for our understanding of the history of 

systems biology and for the future development of computational HPS. Finally, I explain 

the future directions of this research and its limitations.  

5.1.  Summary of my Research Findings  

My hypothesis was that systems biology was a discipline dominated by engineers 

in early 1990s, but has become more focused on empirical biological problems and 

biologists have become more dominant in more recent years. I used bibliographic 

analytical methods to pick out important authors and papers. From there, I explored the 

research topics and institutional backgrounds of authors through both close and distant 

reading. The findings of this dissertation support my hypothesis. Among the most highly 

cited authors, in the early 1990s most of them were from systems-oriented institutions, 

but in more recent years those authors came from more biology-oriented. Among the 

most highly cited publications, one category increased most significantly, namely, 

systems biology’s application in medicine and bioengineering. The result of topic 

modeling echoed this observation.  

I combined computational linguistic analysis and co-word network analysis to 

explore the evolution of concepts in systems biology. I examined the relationship 
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between different concepts and visualized those in the form of networks over time. I 

assessed the centrality of concepts using the SDC values. I discovered that more than half 

of biological concepts have increased SDC, and more than half of systems-oriented 

concepts have decreased SDC. My research showed how we can zoom into a big 

conceptual network and focus on the use of a single concept by using “cancer” as an 

example. Systems biologists have expanded the understanding of “cancer” as 

demonstrated by the increasing number of connections of this concept over time.  

To explore the development of systems biology in different countries, I focused 

on the development in China as a case study to show that the development of systems 

biology varies by country, region, and different types of institutions. Through 

comparative study, I explored the difference in topics and publication quality between 

countries. For example, I found that traditional Chinese medicine, which modernizes 

itself through a systems biology approach and this highlights the broader appeal of a 

systems biology approach, is a unique topic in China.  

5.2. Reflections on Trends in Systems Biology 

5.2.1. A new turn in biology toward complexity 

 Chapter 2 shows that in systems biology, there has been a shift from focusing on 

abstract systems to focusing more on real biological systems and empirical problems. For 

example, among the most highly cited references, the category related to the -omics 

studies, which are about real biological systems, increased significantly after the mid-

1990s. Another example, discussed at the end of Chapter two, the result of topic 

modeling suggests that topics related to drug, cancer, and immune system have been 

appearing in increasing numbers of abstracts.   
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This suggests that systems biology is part of a new turn in biology that focuses on 

complexity. First, real biological systems are inherently complex. Second, the empirical 

research on vaccines, complex diseases, or -omics research all need to deal with the 

problem of complexity at multiple scales from the network structures governing 

biological systems to the integrated biological, social, and economical networks that 

make up our healthcare system (Csete & Doyle, 2002). This focus on complexity 

represents a new turn in biology. 

5.2.2. Systems biology’s application in medicine and bioengineering 

In the Chapter 2, I divided the 330 most-cited references into nine categories, and 

found that the applications in medicine and bioengineering have been increasing over 

time. My research in Chapter 3 highlights the increasing centrality of many biology-

oriented concepts that are related to the application of systems biology in the medicine, 

like “cancer,” “therapy,” and “clinical.” 

My analysis of the literature suggests that systems biology has expanded our 

understanding of cancer and other complex diseases, and has potentials in the process of 

drug discovery or clinical use (Aderem, 2005; Hood et al., 2004). This application of 

systems biology approach in medicine triggered the invention of a new term called 

“systems medicine,” as opposed to “spirit medicine,” “herbal medicine,” “modern 

medicine,” and “biomedicine” (Bynum & Porter, 2013; Wood, 1997). Spirit medicine 

was used mostly in prehistory eras and has came from pseudoscience. Except for spirit 

medicine, each of the above medicine types mirrors the advancements of one or several 

biological disciplines. Herbal medicine originated from naturalists’ understanding of the 

natural world, mostly plants, and it is still practiced in many parts of the world as an 
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alternate medicine. Since the nineteenth century, modern medicine has benefited from 

biochemistry, virology, microbiology, etc., and is still dominant in today’s medicine. The 

modern medicine that is influenced by biological sciences is also called biomedicine. 

From these different names of medicine, we can find that the emergence of new 

biological disciplines is often associated with new forms of medicine. Systems biology is 

likely to bring a paradigm change in the history of medicine.  

5.2.3. The interdisciplinarity of systems biology 

My dissertation also sheds light on the relationship of systems biology with other 

math-heavy disciplines such as physics, math, and computer science. My research shows 

that among the most highly cited authors, systems-oriented scientists were more 

dominant than the biologists in the early days. Scientists from non-biology disciplines 

contributed to the foundation of systems biology by bringing new methodologies such as 

simulation algorithms and new statistical measurements that helped to understand big 

data in biology. However, among all the authors, after 2000, around 80% of scientists are 

from a biological institution and 20% from either a systems-oriented institute, an 

interdisciplinary institution or a systems biology institution. This suggests that when 

biologists realized the power of the systems biology approach, biologists began to take 

over systems biology by being the majority of systems biologists.   

It is interesting to observe the relationship between non-biology disciplines and 

biology at the beginning of a discipline as compared to the time when a discipline has 

fully developed. One can find a similar case in molecular biology. Francis Crick, who 

contributed to the beginning of molecular biology, was a physicist when he started to 

work on the DNA structure with James Watson. Another important figure is Rosalind 
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Franklin, a chemist and crystallographer who contributed to the discovery of the double-

helix structure of DNA (Elkin, 2003). The discovery of the DNA as the basis of heredity 

marks the beginning of molecular biology. According to Keller (1990), other 

contributions of non-biologists to molecular biology include those of Warren Weaver, H. 

J. Muller, and Erwin Schrodinger, who were all physicists. The article argues that the 

contribution of them was not merely technical and cognitive, but also the political 

resources and authority of physics. Similarly, I argue that the contribution of non-biology 

disciplines to systems biology is not merely methodological, technical, or political, but 

also in terms of resources. For example, I discovered that many researchers who were 

from non-biology institutions in early days migrated to biology-oriented, 

interdisciplinary, or systems biology institutions. Non-biology institutions provided a 

space for them to carry out research on systems biology while systems biology has not 

established itself as a legitimate discipline.  

One clarification that I want to emphasize is that my research does not reject the 

idea that integration happens in systems biology; in any interdisciplinary field of study 

integration happens. However, the word ‘integration’ itself does not indicate the direction 

of the flow of information. I prefer to use the word ‘incorporate’ to indicate the direction 

of information flow is mainly from non-biology side to biology’s side.  

5.2.4. The relationship between systems biology and systems science 

Systems science, physics, chemistry, and computational science are what I called 

systems-oriented science, but they are different. Physics, chemistry, and computational 

science are all well-established disciplines; almost every university has such departments 

and many practitioners in those departments. Therefore, these disciplines can contribute 
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to systems biology by contributing their researchers and methodologies. However, 

systems science itself is newer, and does not have a clear discipline boundary (Flood & 

Carson, 2013). After decades of development, systems science has become a discipline 

that has encompassed many areas of research in science, engineering, and social sciences, 

united under the epistemology of “systems thinking.” One might ask what the 

contribution of systems science is?  

In my results about the institutional background of the most cited authors and all 

authors in Chapter Two, very few researchers were from an institution that is related to 

systems science. Systems science per se contributes less direct than systems-oriented 

sciences like physics, engineering, which has technological and methodological 

contributions. This suggests that systems science’s contribution may be more 

epistemological, meaning that it contributes mostly general ideas and concepts, instead of 

tools and methods. The fundamental concepts of systems science include “complexity,” 

“robustness,” “negative feedback,” and “positive feedback” (Flood & Carson, 2013). 

These concepts also appear in keywords identified in Chapter 3.  

5.3. Computational History of Science 

 How will the history of science be told differently in the future? There is clearly a 

trend that history is going digital. In 2006, Daniel J. Cohen and Roy Rosenzweig 

published a book on digital history, surveying a wide range of websites that tell digital 

history. They found that Yahoo’s web directory listed 32,959 history websites by 2006 

(Cohen & Rosenzweig, 2006). Not just history, but other disciplines in the humanities are 

experiencing a digital turn, with funding poured into this field and new centers of digital 

humanities being established.  
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Georg G. Iggers wrote that there were two very different orientations of 

historiography in the twentieth century: one is the traditional narrative, event-oriented 

history, and the other is social science-oriented history; for example, the quantitative 

sociological approach, economic approach, or Marxist class analysis (Iggers, 2005). If 

Iggers were writing now, he might argue that there is a third type of orientation for 

history based on big data and computation.  

 The history of science as a discipline studies the development of science and 

knowledge, and the intended readers are scientists and historians of science. The way 

scientists think is typically different from historians, in that scientists tend to emphasize 

quantitative results that are statistically significant, insights from a large sample size, and 

repeatability of the result. Digital history of science depends on the assembly of big data, 

and offers a new way to represent knowledge in science and new tools to study the big 

data. Thus, digital history of science can blur the distinctive line between the way 

scientists and historians work.    

That is why scientometrics, which emerged in the 1920s, is instrumental for 

writing the history of science (Garfield, 2009). Historians have been enjoying the 

convenience brought by using computers, the Internet, etc., to do research, and I predict 

that more and more historians will benefit from techniques of scientometrics. There are 

many similarities between the history of science and scientometrics; for example, one 

common goal is to shed light on the policy-making process. Scientometric analysis often 

can help policy makers, stakeholders, and funding agencies to make decisions about 

where their funding should go, which priority should they give to, etc (Garousi, 2015). In 

this dissertation I offered some suggestions for science policy in China.  
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With that being said, the digital history of science should not be scientometrics 

alone. Nor do I mean that a historian only needs to master the technical side. Of equal 

importance are the hypotheses and questions behind the historical research, and the 

interpretation of the quantitative results from historical or philosophical perspectives.  

The computational workflow presented in Chapter One and explained in detail in 

Chapter Two, Three, and Four is an innovative, and easy-to-replicate methodology for 

computational history of science. Many similar studies often focus on one type of 

analysis, for example co-word network study alone, or use one computational tool in their 

analysis. However, as interdisciplinary research is increasing, I argue that multiple 

approaches can give a more comprehensive picture of a scientific field. Also, the 

computational workflow presented here is not just about selecting tools that are available 

online, but also includes dozens of self-developed Python codes to facilitate the 

extraction and analysis of results, for example code that extracts abstracts from metadata 

of WoS that are later analyzed by MALLET.  

5.3.1. A new form of data to examine  

In my study, I extracted big data from metadata of publications downloaded from 

online scholarly database. As early as 1955, Eugene Garfield, suggested that citation data 

can be used for historical research (Garfield, 1955). Garfield and his colleagues asked the 

question in 1964, “Can a computer write the history of science?” (Garfield et al., 1964) 

He argued that the citation network might significantly alter future historiography. No 

scientist can carry out research on their own. Science progresses with the publications of 

new research based on existing publications of previous research. History involves the 

chronology and relationship of events and people, and metadata records people as the 
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authors of articles, events as the publication of a paper, and the relationship of 

publications as citing and being cited. Also, the importance of a scholar and a paper may 

be inferred from the analysis of the metadata because they tend to have a higher number 

of citations, which can be calculated by analyzing metadata, instead of basing on the 

evaluation of historians, which is inevitably subjective (Börner, Chen, & Boyack, 2003).  

Computational history of science is suitable to reveal the history of recent 

scientific developments (Hessenbruch, 2006). In the case of systems biology, most of its 

publications are stored in online databases. This gives me the advantage of being able to 

trace things from the beginning. I examined the metadata from the WoS database because 

of the easy access to a computer-generated large data file. The WoS database dedicated 

many years of research to building the metadata database, but that does not mean that to 

write digital history of a field, that field must have its research output stored in such a 

database and having abundant citation data. Even when studying poetry for example, 

which does not have abundant metadata, the historian can still use some computational 

methods. Some of the methods showcased in this dissertation can be applied to study 

other types of big data, like Twitter message, or poetry, using methods like topic 

modeling or co-word analysis. For example, Twitter has APIs that enable researchers to 

download Twitter messages as big data for research purpose.  

5.3.2. A new way of representing the evolution of knowledge  

The evolution of knowledge can be represented in different ways, such as through 

narrative, rhetoric, and reasoning. One way to represent the knowledge of a scientific 

domain is to visualize it, and this field is called “scientography” (Börner, Chen, & 
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Boyack, 2003).  In my research, I visualized knowledge with all sorts of networks and 

maps, etc.  

I used network analysis extensively in my research. For example, I used co-

citation network analysis in Chapter 2 and co-word network analysis in Chapter 3. 

Networks are powerful visualizations in both systems biology and my research, because 

in essence biological systems, as well as knowledge or scientific discourse are all 

complex adaptive systems. A network not only shows the vertices, whether it is a person, 

an article, or a concept, but also the relationships between them. Networks offers a 

perspective from a bird’s eye view and show the whole picture of a knowledge domain. 

We can also zoom into networks to focus on a sub-network. A network can also be 

analyzed using clustering techniques, which identifies a closely connected group of 

vertices using algorithms (Börner, et al., 2003). A cluster could be interpreted as a 

research sub-field or a research group depending on the type of networks.  

I used the geographical map in Chapter 4 to represent where systems biologists in 

China came from. Without GIS tools such as Google Fusion Table, it would take many 

more hours to finish it. Google Fusion Table enabled me to visualize the unequal research 

power of China, to question the funding imbalance, and to shed light on the research 

policy of China. It is a new way of story telling.  

5.3.3. New tools to analyze the history 

This project is also an exploration of the new computational tools that can be used 

by historians of science to look at the development of a scientific discipline. Many digital 

humanities projects utilize not just a single tool, but combine many tools to suit the 

purposes of the humanists (Gardiner & Musto, 2015).   
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When the first historical research based on citation data was done in the early 

1960s, the citation data of DNA research was analyzed manually, which made the 

research time-consuming and difficult (Garfield et al., 1964). Computer scientists have 

developed many software packages by cooperating with humanists over the years. Take 

the tools used in my dissertation, for example. Some are easy to use, like Citespace, 

ConText, Wordsmith, and Google Fusion Table, some require the use of command line 

like MALLET, and some require one to master programming skills like Tethne. These 

are tools that work great with texts. Another important skill that facilitated my research is 

Python programming; for example, it was used to retrieve information from the metadata 

like abstracts or author information to be used by another tool like MALLET or Google 

Fusion Table, or to be analyzed statistically.   

These tools involve computation, mathematical algorithms, and statistics, which 

allow us to implement visualizing, text-mining, and machine learning. These would be 

difficult if humanities scholars have to learn them from scratch, but are much easier when 

they were implemented as computational tools. For example, in Chapter 2, I used topic 

modeling to study the topics in the abstracts, which is essentially a machine learning 

approach that teaches computers to study the topics instead of having humans do it. The 

automatic labeling of clusters relies on LLR algorithm, and the determination of the 

keywords in Chapter 3 also use log likelihood test to calculate keyness.  

These tools offer an opportunity and a challenge to historians. The opportunity is 

that these tools, given the availability of metadata, can enhance the ability of historians to 

examine a large research area and work in an interdisciplinary environment. The 

challenge lies in navigating a plethora of tools with different functions. For example, a 
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primer book on digital humanities lists 35 pages of websites for digital tools, which fall 

into 29 areas including data analysis, database management systems, data collection, data 

management, data visualization, etc. (Gardiner & Musto, 2015).  

There are many online resources that help historians to learn these tools. For 

example, there is a website teaching historians to learn programming28. To learn how to 

use specific tools, the tutorial of a tool’s website and videos on YouTube can also be 

helpful. I also attended a conference in the digital humanities and found that currently 

many digital humanists are doing the same things as I am such as programming, 

extracting information from metadata, etc. From the perspective of pedagogy, there is a 

need to systematically teach historians how to use computational tools and include such 

courses in the curriculum for historians. 

5.4. Directions of Future Research and Limitations of This Research  

The research reported in this dissertation points towards some promising lines of 

inquiry for further research. First of all, more work can be done to investigate systems 

medicine because my research indicates that it is a very promising direction of systems 

biology. That involves downloading big data specifically about systems medicine and 

analyze its the research topics, major contributors, key concepts, etc.  

Another opportunity for future research is to expand our initial dataset to include 

metadata from other databases, such as metadata from Scopus, to see if there are similar 

patterns to observe. Although WoS has been the No. 1 database for citation analysis from 

                                                   
28 To know more programming skills that historians can benefit from, see 

http://programminghistorian.org 
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the 1960s to the early 2000s, other citation databases have been developed and contain 

articles that WoS does not have (Meho & Yang, 2007).  

A limitation of this research is that the accuracy of some current machine learning 

techniques can still be improved. For example, despite its fast speed to analyze millions 

of words, the LDA model for topic modeling is based on the assumption that a topic is a 

distribution of a set of words, which is a simplistic assumption and we know that a topic 

is far more advanced than that. That is why computer scientists are still trying to develop 

many other different models for topic modeling (Nallapati & Cohen, 2008).  

Another limitation of this research is that there are many dynamic processes, for 

example a video showing the evolution of networks, that could not be shown in a paper-

version of a dissertation. In many cases in my dissertation, the evolution of knowledge is 

shown only with a figure for the beginning year and for the ending year. The results of 

computational tools thus challenge the traditional way of publication on paper.  

This also brings up another a new line of research: mastering the skill of building 

an online website that showcases the research for this dissertation and to tell an online 

history, as many have already done. The benefit of an online website is its wider 

accessibility with no fees, compared with dissertation databases such as ProQuest, which 

are not open to all citizens. Many scholars in the digital humanities have thus advocated 

for the open access movement (Suber, 2005). 

To sum up, this study contributes to the scholarship on history of systems biology. 

My findings are illuminating for biologists, especially systems biologists, for scholars 

who work in an interdisciplinary field, and for historians. But more importantly, the 

results from this study demonstrate the power of computational tools. There are many 
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other questions related to systems biology that worth exploring, and the methodology laid 

out in this dissertation can be useful in studying those questions and questions in other 

disciplines. Jane Maienschein and her colleagues asked the question of how history of 

science can have a bigger impact on scientists, and they noted the examples of historians 

working with scientists in the same lab, historians reproducing the scientific findings, and 

a former scientist turning into a historian of science (Maienschein, Laubichler, & 

Loettgers, 2008). The computational approach presented in this dissertation can add to 

historian’s repertoire to make their findings directly appealing for scientists because 

scientists will be interested to see the “big picture” of their scientific fields through a 

combination of quantitative and quantitative results.   
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In this appendix, I first introduce the types of bibliographic information that WoS 

can export. Then, I introduce the nine categories of systems biology research, and then 

show the number of articles in each category over time.  

A-1 WoS Bibliographic Data Format 

This appendix shows the bibliographic data format that WoS can export in bulk. 

A field tag is a two-character code that appears in the data. The computational programs 

and Python code can retrieve information according to the field tag for its corresponding 

information.  

Field Tag Corresponding bibliometric information  
FN File Name 
VR Version Number 
PT Publication Type (J=Journal; B=Book; S=Series) 
AU Authors 
AF Author Full Name 
BA Book Authors 
CA Group Authors 
GP Book Group Authors 
TI Document Title 
ED Editors 
SO Publication Name 
SE Book Series Title 
BS Book Series Subtitle 
LA Language 
DT Document Type 
CT Conference Title 
CY Conference Date 
HO Conference Host 
CL Conference Location 
SP Conference Sponsors 
DE Author Keywords 
ID Keywords Plus 
AB Abstract 
C1 Author Address 
RP Reprint Address 
EM E-mail Address 
CR Cited References 
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NR Cited Reference Count 
TC Times Cited 
PU Publisher 
PI Publisher City 
PA Publisher Address 
SN ISSN 
BN ISBN 
J9 29-Character Source Abbreviation 
JI ISO Source Abbreviation 
PD Publication Date 
PY Year Published 
VL Volume 
IS Issue 
PN Part Number 
SU Supplement 
SI Special Issue 
BP Beginning Page 
EP Ending Page 
AR Article Number 
PG Page Count 
DI Digital Object Identifier (DOI) 
SC Subject Category 
GA Document Delivery Number 
UT Unique Article Identifier 
ER End of Record 
EF End of File 

 

A-2 Description of nine categories of systems biology research 

1): Metabolic Flux Analysis 

Metabolic Flux Analysis measures the stoichiometric data of metabolites, and it 

relies on modeling using non-differential equations and a few parameters (Fell, 1992). 

Therefore, I classify these articles as systems-oriented. If one searches the term “systems 

biology” in these articles, one will not find any matching, but many historians have 

remarked that Metabolic Flux Analysis is the early precursors of systems biology (need a 

citation).  
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In early 1990s, many articles fall into this category. However, metabolic flux 

analysis become part of metabolomics which is classified into the category of “omics” 

research, and the name Metabolic Flux Analysis is less frequently mentioned, so a 

decline of the slope for metabolic flux analysis is observed.    

2): Development of high-throughput technologies 

The technologies include but are not limited to sequencing technologies, protein 

chips, DNA arrays, and biological measurements using Mass Spectrometry (Hood 2003). 

The focus of these articles is on technologies per se. The preparation of technologies 

contributed greatly to the emergence of systems biology. 

Most articles about the development of high-throughput technologies were 

published in early 1990s. Such study declines in the latter half of the slope, mainly 

because the main technologies had been developed before 2005.  

3): Algorithms, equations, modeling and simulation.  

Without mathematical modeling, the data produced by high-throughput 

technologies would be meaningless. Mostly, it is mathematicians and engineers 

developing algorithms, equations, and modeling and simulation to infer, or reconstruct 

metabolic pathways, signal transduction pathways, or gene regulatory networks 

(Brigandt, 2013). Articles which fall into this category are those focused solely on 

algorithms and modeling per se.  

4): Omics research characterizing a real biological system. 

Omics research relies on the data produced by high-throughput technologies and 

modeling, but the ultimate goal is offering a system-level characterization of a model 

organism (Joyce & Palsson, 2006). Metabolomics is part of omics that has its precursor 



!

 155 

as Metabolic Flux Analysis. However, metabolomics measures the metabolites using 

Mass Spectrometry and other more advanced equipment; therefore, its goal is to 

systematically study all the metabolites and how they interact. This type of research 

began to emerge with the sequencing of several important genomes of model organisms; 

for example, the flu genome and the yeast genome were sequenced in 1995 and1996 

respectively. Omics research gradually takes up a large percentage in early 2000s. 

5): Database building and curation. 

This category of research involves the launch of databases storing genes, 

pathways, proteins, etc. It also involves the standardization of data and procedures, such 

as the SBML (Systems Biology Markup Language) and KEGG, which were introduced 

earlier. Since then, more and more other databases were developed, such as MINT 

(Molecular Interaction Database).  

6): Software development. 

Software is developed to process, analyze and visualize large data and this 

category is straightforward. For example, Cytoscape is especially useful for mapping 

various biochemical networks and was released in 2002 (Shannon et al., 2002). The 

developers of Cytoscape include a group of computer scientists in the Institute of 

Systems Biology in Seattle and engineers in the Department of Bioengineering at UCSD, 

and biologists from Whitehead Institute for Biomedical Research. Cytoscape can be used 

to visualize according to different algorithms, and analyze the network, for example, 

giving measurements about the centrality of the nodes.  Other software includes the 

OpenCOBRA project and COPASI (Hoops et al., 2006). 

7): Theoretical and mathematical work on network properties  
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These properties include robustness, dynamics, stochasticity, and emergent 

properties of networks. These properties can be applied to every system, not just 

biological systems. These studies usually deploy mathematical models to study the 

network properties; therefore, they are mostly systems-oriented. The study of these 

network properties is not a recent thing. For example, in 1997, Barkai and Leiber had 

already studied the robustness of simple biochemical networks (Barkal & Leiber, 1997).  

8): The application of systems biology in the medical field. 

Systems biology is especially useful in tackling cancer, because scientists have 

realized that cancer has multiple causes and involves multiple players. In the last ten 

years, cancer systems biology has made much progress such as in building cancer 

genome databases and uncovering the regulatory networks underlining cancer. Another 

example is that in 2004, Leroy Hood proposed that systems biology will lead to the 3P 

medicine, predictive, preventive and personalized medicine, which is different from 

traditional medicine in that it will be produced with a systems understanding of the 

causes of disease (Weston & Hood, 2004). The application of systems biology is the most 

prominent feature of the advancements of the field in the last several years. 

9): Biological Mechanisms 

This category deals with using systems approach to understand a specific 

biological mechanism, for example, how FAR1 functions in the signal transduction 

pathway to link to the cell cycle machinery in yeast. The main focus is on a biological 

mechanism (Peter, Gartner, Horecka, Ammerer, & Herskowitz, 1993).  
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A-3 The number of 330 most highly cited references in different categories over time 
 

 

 

 

 

 

 

 

 

 

Note: Nine systems biology research categories include: 1: Database development; 2: Omics research; 3: Network properties; 

4: Development of high-throughput technologies; 5: Software development; 6: The application of systems biology; 7: Algorithms, 

equations, modeling and simulation; 8: Biological Mechanisms; 9: Metabolic Flux Analysis. Other two categories are 10: hard to tell; 

11: a book.  

 

Categories 1 2 3 4 5 6 7 8 9 10 11 

1992-1993 1 0 0 0 1 0 9 4 6 1 8 
1994-1995 1 1 2 6 1 0 10 2 4 1 2 
1996-1997 0 6 1 5 2 0 4 3 4 1 4 
1998-1999 1 9 5 4 1 1 4 2 1 0 2 
2000-2001 3 13 3 1 0 2 6 0 0 1 1 
2002-2003 1 14 2 2 1 0 8 0 0 2 0 
2004-2005 2 9 4 2 3 4 5 0 0 1 0 
2006-2007 5 6 0 0 4 8 5 0 0 1 1 
2008-2009 8 6 0 1 0 8 5 0 0 2 0 
2010-2011 9 6 0 1 1 6 2 0 1 4 0 
2012-2013 7 4 0 1 0 13 5 0 0 0 0 
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APPENDIX B 

THE WORDS TO LABEL FOUR CATEGORIES OF INSTITUTIONS 
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Appendix B includes four categories of words that are used to automatically 

match the addresses of authors to identify four types of institutions: biology-oriented, 

systems-oriented, interdisciplinary, and systems biology institutes.  

Four Categories  Words 

Words for 

biology-oriented 

institutions (119 

words) 

allergy, anim, animal, anat, anatomy, anesthesiology, 

anesthesiol, arteriosclerosis, bioanalyt, biometry, biosci, 

brain, bacteriol, conservat, cattle,  cardiol, canc, cancer, 

cardiac, cardiovasc, cell, clin, clinical,  cytology, cytol, 

dermatol, dermatology, developmental,  diseases, dna,  

drug, ecol,  ecology, entomol, entomology,  

epidemiology,  evolutionary, food,  genet, genetics,  

genom,  genome, genomics, glaxosmithkline, health, 

heart, hlth, hosp, hospital, Hepatol, Hepatology, human, 

immunology, immunol, Immunotechnol, immun, infect, 

insect, life, liver, livestock, lung, marine,  med, medical, 

medicine,  merck, microbiol, microbial, microbiology, 

mol, molecular, neurosci, nih, neurology, neurol, nutrit, 

nutrition, nutr, oncology, oncol, oral, organ, pfizer, 

pediat, pediatric,  pathol, pathology,  padiat, pediatrics, 

plant, pharm, pharma, pharmacol, pharmacology, 

pharmaceut, physiol, physiology, plant, proteomics, 

psychiat, reprod, reproduce,  structrual,  surgery, surg, 

syngenta, therapeut, therapeutical, toxicol, toxicology, 

vaccine,  vaccines, vet, virol, virus, virology,  zoology, 

zool 

Words for 

systems-oriented 

institutions (47 

artificial,  artificial, astrophysics, aerosp, aerospace, 

automat,              chem, chem,  chemical, chemical, 

chemistry, commun, communication, comp, computat, 

computer, cs, control, data, database , dynam, dynamics, 
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words) elect, elec, ee, energy, electrical, infocomm, informat, 

information, mat, math, mathematics, mech, 

mechanical,  microsoft, modeling, phys, physics, 

sensors, siemens, signals, simulat,  sony,  statistics, stat, 

weapons 

Words for 

Interdisciplinary 

institutions (24 

words) 

biochem, biochemistry, biocomputing,  biodynamics, 

biodesign,            bioenergy, bioenerget, bioenergetics, 

bioengn, bioengineering,            bioinformat, 

bioinformatics, biomech, biomechanics, biomodeling, 

biophysics, biophys, biostatistics, biostat, biotech, 

biotechnol,  biotechnology, ebi, interdisciplinary 

Systems biology 

institutions (3 

words) 

systems biology, biosystems, biosyst 
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APPENDIX C 

THE TOPICS AND THEIR TRENDS OVER TIME 
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The first part of appendix shows the words in the 20 topic bins that are based on 

the machine learning of the topics in abstracts of 8809 articles on systems biology. The 

second part shows the percentage of articles containing a topic for each topic over time.   

C-1: Most likely words found in the 20 topics of systems biology. 

Index Most likely words in topic 

(Machine Assigned) 

Description of the topic 

(Manually assigned) 

0 plant species molecular biology systems 
development processes plants physiological 
environment developmental life physiology 
major importance arabidopsis organisms 
environmental increasing  

Biology  

1 model models modeling computational 
experimental mathematical process simulation 
systems modelling system quantitative 
biological biochemical framework processes 
complex dynamic hypotheses  

models 

2 metabolites mass metabolomics ms samples 
spectrometry metabolite profiling metabolic 
high sample quantitative nmr analytical 
identification profiles metabolomic detection 
quantification  

metabolic studies 

3 metabolic metabolism growth conditions flux 
enzymes acid enzyme energy glucose yeast 
production rate mitochondrial strains coli 
pathway carbon strain  

metabolic studies 

4 human medicine health effects environmental 
individual impact toxicity risk personalized 
potential major current assessment exposure 
development disease chemical animal  

disease 

5 protein proteins interactions interaction 
molecular functional function structural 
complex proteome specific human functions 
complexes cellular proteomic molecules 
proteomics large  

proteomics 

6 systems biology design engineering metabolic 
scale genome production synthetic microbial 
process natural strategies products applications 
potential efficient development interest  

synthetic biology 

7 data information pathway tools integration 
database biological databases pathways 

database/software 
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software developed literature tool web large 
integrated resources facilitate open  

8 cell cells single cellular high vivo quantitative 
individual molecules imaging time tissue 
spatial low intracellular small patterns tissues 
surface  

Cell/tissue 

9 systems biology biological complex molecular 
level system processes complexity view 
components context fundamental principles 
living concepts general theory perspective  

systems theory 

10 data parameters number experiments 
experimental set parameter time large 
algorithm sets statistical sensitivity applied 
algorithms prediction values inference predict  

algorithms 

11 response responses host immune mechanisms 
stress specific systems infection pathways 
biology cellular cells bacterial virus vaccine 
pathogen background understood  

Immune systems 

12 dynamics system control state time model 
reaction behavior stochastic differential 
reserved biochemical dynamic rate conditions 
cycle feedback kinetic reactions  

dynamics and stochasticity 

13 network networks regulatory biological 
interactions structure cellular complex scale 
components modules functions properties 
features robustness relationships multiple 
functional information  

network 

14 disease diseases tissue liver blood patients 
brain mice mechanisms disorders aging role 
heart human chronic normal induced increased 
tissues  

disease 

15 gene genes expression genetic genome 
functional identified microarray analyses data 
identify phenotypes genomic phenotype 
pathways expressed wide common specific  

genomics 

16 recent high technologies throughput field 
advances techniques biology proteomics omics 
genomics tools development years current 
future technology challenges applications  

technologies and tools 

17 drug cancer clinical targets discovery disease 
target treatment potential drugs molecular 
therapeutic development biomarkers tumor 
therapy diseases patients multiple  

drug 

18 regulation dna transcription regulatory gene 
transcriptional binding rna factors sequence 

regulation 
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expression mrna evolution genome msb 
specific sequences factor sites  

 19 cell signaling cells pathways pathway signal 
activation receptor signalling kinase growth 
beta transduction stem factor phosphorylation 
activity differentiation alpha  

pathway 
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C-2: the percentage of articles containing each topic over time. 
 

   2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Topic 0 0.118 0.082 0.092 0.045 0.063 0.049 0.069 0.069 0.078 0.068 0.072 

Topic 1 0.140 0.137 0.125 0.141 0.104 0.125 0.119 0.107 0.102 0.103 0.096 

Topic 2 0.075 0.073 0.111 0.107 0.129 0.114 0.092 0.072 0.094 0.090 0.080 

Topic 3 0.097 0.087 0.073 0.073 0.092 0.094 0.099 0.110 0.115 0.096 0.112 

Topic 4 0.151 0.078 0.095 0.068 0.054 0.080 0.066 0.080 0.073 0.096 0.078 

Topic 5 0.043 0.082 0.098 0.086 0.101 0.080 0.101 0.089 0.088 0.078 0.070 

Topic 6 0.075 0.078 0.060 0.064 0.053 0.058 0.067 0.068 0.069 0.072 0.074 

Topic 7 0.086 0.142 0.114 0.133 0.132 0.103 0.102 0.087 0.090 0.087 0.088 

Topic 8 0.043 0.050 0.060 0.103 0.061 0.071 0.066 0.067 0.075 0.072 0.076 

Topic 9 0.140 0.160 0.133 0.109 0.104 0.123 0.109 0.090 0.108 0.077 0.069 

Topic 10 0.086 0.073 0.079 0.111 0.101 0.100 0.107 0.100 0.088 0.107 0.104 

Topic 11 0.032 0.027 0.035 0.041 0.045 0.046 0.056 0.071 0.092 0.093 0.108 
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Topic 12 0.118 0.132 0.119 0.116 0.107 0.099 0.104 0.106 0.103 0.091 0.088 

Topic 13 0.129 0.100 0.100 0.105 0.106 0.100 0.096 0.095 0.084 0.090 0.082 

Topic 14 0.086 0.059 0.046 0.068 0.094 0.113 0.093 0.121 0.121 0.132 0.145 

Topic 15 0.075 0.096 0.111 0.083 0.099 0.095 0.105 0.114 0.093 0.106 0.101 

Topic 16 0.161 0.169 0.173 0.182 0.145 0.155 0.142 0.111 0.116 0.118 0.116 

Topic 17 0.011 0.068 0.098 0.101 0.097 0.094 0.091 0.110 0.120 0.145 0.141 

Topic 18 0.054 0.050 0.060 0.083 0.092 0.063 0.093 0.093 0.083 0.087 0.072 

Topic 19 0.065 0.073 0.087 0.077 0.099 0.101 0.113 0.104 0.114 0.110 0.111 



!

167!
!

APPENDIX D 

THE STOPWORDS USED IN WORDSMITH 
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This appendix shows the stop words that WordSmith tool ignores.  

524 Common English Stop words.  

a, able, about, above, according, accordingly, across, actually, after, afterwards, again, 

against, all, allow, allows, almost, alone, along, already, also, although, always, am, 

among, amongst, an, and, another, any, anybody, anyhow, anyone, anything, anyway, 

anyways, anywhere, apart, appear, appreciate, appropriate, are, around, as, aside, ask, 

asking, associated, at, available, away, awfully, b, be, became, because, become, 

becomes, becoming, been, before, beforehand, behind, being, believe, below, beside, 

besides, best, better, between, beyond, both, brief, but, by, c, came, can, cannot, cant, 

cause, causes, certain, certainly, changes, clearly, co, com, come, comes, concerning, 

consequently, consider, considering, contain, containing, contains, corresponding, could, 

course, currently, d, definitely, described, despite, did, different, do, does, doing, done, 

down, downwards, during, e, each, edu, eg, eight, either, else, elsewhere, enough, 

entirely, especially, et, etc, even, ever, every, everybody, everyone, everything, 

everywhere, ex, exactly, example, except, f, far, few, fifth, first, five, followed, 

following, follows, for, former, formerly, forth, four, from, further, furthermore, g, get, 

gets, getting, given, gives, go, goes, going, gone, got, gotten, greetings, h, had, happens, 

hardly, has, have, having, he, hello, help, hence, her, here, hereafter, hereby, herein, 

hereupon, hers, herself, hi, him, himself, his, hither, hopefully, how, howbeit, however, i, 

ie, if, ignored, immediate, in, inasmuch, inc, indeed, indicate, indicated, indicates, inner, 

insofar, instead, into, inward, is, it, its, itself, j, just, k, keep, keeps, kept, know, knows, 

known, l, last, lately, later, latter, latterly, least, less, lest, let, like, liked, likely, little, 

look, looking, looks, ltd, m, mainly, many, may, maybe, me, mean, meanwhile, merely, 
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might, more, moreover, most, mostly, much, must, my, myself, n, name, namely, nd, 

near, nearly, necessary, need, needs, neither, never, nevertheless, new, next, nine, no, 

nobody, non, none, noone, nor, normally, not, nothing, novel, now, nowhere, o, 

obviously, of, off, often, oh, ok, okay, old, on, once, one, ones, only, onto, or, other, 

others, otherwise, ought, our, ours, ourselves, out, outside, over, overall, own, p, 

particular, particularly, per, perhaps, placed, please, plus, possible, presumably, probably, 

provides, q, que, quite, qv, r, rather, rd, re, really, reasonably, regarding, regardless, 

regards, relatively, respectively, right, s, said, same, saw, say, saying, says, second, 

secondly, see, seeing, seem, seemed, seeming, seems, seen, self, selves, sensible, sent, 

serious, seriously, seven, several, shall, she, should, since, six, so, some, somebody, 

somehow, someone, something, sometime, sometimes, somewhat, somewhere, soon, 

sorry, specified, specify, specifying, still, sub, such, sup, sure, t, take, taken, tell, tends, 

th, than, thank, thanks, thanx, that, thats, the, their, theirs, them, themselves, then, thence, 

there, thereafter, thereby, therefore, therein, theres, thereupon, these, they, think, third, 

this, thorough, thoroughly, those, though, three, through, throughout, thru, thus, to, 

together, too, took, toward, towards, tried, tries, truly, try, trying, twice, two, u, un, under, 

unfortunately, unless, unlikely, until, unto, up, upon, us, use, used, useful, uses, using, 

usually, uucp, v, value, various, very, via, viz, vs, w, want, wants, was, way, we, 

welcome, well, went, were, what, whatever, when, whence, whenever, where, whereafter, 

whereas, whereby, wherein, whereupon, wherever, whether, which, while, whither, who, 

whoever, whole, whom, whose, why, will, willing, wish, with, within, without, wonder, 

would, would, x, y, yes, yet, you, your, yours, yourself, yourselves, z, zero 

137 research article stop words 



!

170!
!

abstract, advances, analyses, analysis, analyze, analyzed, analyzes, analyzing, approach, 

approaches, argue, argued, argues, article, articles, assume, assumed, assumes, 

background, based, biol, characterization, characterize, characterize, compared, 

conclusions, conclusions, content, context, current, demonstrate, demonstrated, describe, 

described, describes, dev, developed, different, discuss, discussed, discusses, discussing, 

doi, elsevier, elucidate, elucidating, exam, explain, explore, find, finding, findings, finds, 

focus, found, generated, good, highlight, http, hypotheses, identified, identify, identifying, 

ii, implied, implies, imply, important, including, infer, insight, insights, investigated, 

knowledge, large, levels, method, methodologies, methodology, methods, mol, number, 

observe, observed, observes, obtained, online, overview, paper, present, problem, 

problems, process, processes, propose, proposed, proposes, provide, provided, provides, 

published, question, questions, recent, related, relevant, res, research, reserved, result, 

resulting, results, revealed, review, reviewed, rights, science, show, showed, shows, 

significant, small, strategies, strategy, studies, study, technique, techniques, tool, tools, 

underlying, understand, understanding, view, viewed, views, wiley,  
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APPENDIX E 

A FULL LIST OF THE 300 KEYWORDS WITH THEIR KEYNESS AND 

CATEGORIZATION 
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This appendix shows the key words that are identified by WordSmith, their 

frequency and keyness, and orientation that are determined manually.  

  Keywords Orientation Frequency Keyness 

1 biology biology-oriented 8335 61205.56641 

2 systems systems-oriented 10445 49064.72656 

3 gene biology-oriented 5372 34567.33203 

4 data neutral 7977 33467.54688 

5 biological biology-oriented 4867 31459.65039 

6 protein biology-oriented 5095 31102.29297 

7 cell biology-oriented 5272 28220.91992 

8 metabolic biology-oriented 3752 28147.19727 

9 network neutral 5246 26004.04688 

10 molecular biology-oriented 3775 24884.41016 

11 model systems-oriented 5362 21781.83984 

12 expression biology-oriented 4041 18439.69922 

13 signaling systems-oriented 2082 16897.99219 

14 cellular biology-oriented 2486 16835.04688 

15 genome biology-oriented 2048 15319.06543 

16 pathway biology-oriented 2152 15100.7041 

17 computational systems-oriented 1908 13685.21094 

18 regulatory biology-oriented 2177 13360.91113 

19 modeling systems-oriented 1633 13167.17285 
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20 experimental neutral 2131 11239.30859 

21 genetic biology-oriented 1966 10814.58105 

22 metabolism biology-oriented 1606 10803.46289 

23 functional neutral 1987 10745.54785 

24 complex neutral 2911 10554.54297 

25 disease biology-oriented 2715 9787.826172 

26 proteomics biology-oriented 1161 9447.509766 

27 drug biology-oriented 2109 8685.150391 

28 throughput neutral 1141 8459.279297 

29 cancer biology-oriented 1968 8429.107422 

30 quantitative neutral 1400 8308.087891 

31 metabolomics biology-oriented 1001 8145.436035 

32 regulation neutral 1691 8141.724121 

33 biochemical biology-oriented 1206 8016.379883 

34 interaction neutral 1584 7733.947266 

35 genomics biology-oriented 919 7478.134277 

36 dynamics systems-oriented 1175 7281.458496 

37 genomic biology-oriented 975 7051.517578 

38 multiple neutral 1408 6476.132813 

39 transcriptional biology-oriented 895 6475.324219 

40 mathematical systems-oriented 1165 6187.255859 

41 transcription biology-oriented 1047 6103.785645 
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42 microarray biology-oriented 720 5858.73877 

43 response biology-oriented 2138 5842.679688 

44 omics biology-oriented 709 5769.226074 

45 behavior biology-oriented 740 5513.919922 

46 metabolite biology-oriented 711 5492.158691 

47 dynamic systems-oriented 1137 5457.967773 

48 profiling biology-oriented 717 5403.707031 

49 human biology-oriented 2432 5226.474121 

50 yeast biology-oriented 819 5157.376465 

51 bioinformatics biology-oriented 626 5078.968262 

52 simulation systems-oriented 822 5007.046875 

53 clinical biology-oriented 1220 4960.95752 

54 function neutral 1692 4866.922363 

55 identification neutral 1104 4850.516113 

56 proteomic biology-oriented 594 4833.416504 

57 spectrometry biology-oriented 627 4701.719238 

58 tumor biology-oriented 594 4651.02832 

59 discovery neutral 1126 4567.30957 

60 proteome biology-oriented 559 4548.60791 

61 immune biology-oriented 836 4344.881348 

62 phenotype biology-oriented 619 4254.375977 

63 activation biology-oriented 728 4192.699219 
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64 tissue biology-oriented 961 4124.571289 

65 stochastic systems-oriented 551 4010.531982 

66 parameter systems-oriented 709 3993.535889 

67 integrated neutral 1008 3992.280762 

68 physiological biology-oriented 711 3967.955078 

69 complexity biology-oriented 891 3944.255859 

70 ms biology-oriented 899 3924.736816 

71 development biology-oriented 2640 3921.371094 

72 silico systems-oriented 480 3905.759766 

73 therapeutic biology-oriented 703 3836.727539 

74 integration neutral 953 3826.568604 

75 intracellular biology-oriented 576 3808.160889 

76 kinetic systems-oriented 582 3793.374512 

77 algorithm systems-oriented 666 3755.89624 

78 vivo biology-oriented 628 3727.744385 

79 receptor biology-oriented 648 3649.760742 

80 transduction biology-oriented 481 3633.080078 

81 dna biology-oriented 998 3543.198975 

82 modelling systems-oriented 732 3534.00415 

83 microbial biology-oriented 493 3524.203125 

84 system systems-oriented 2951 3466.7854 

85 flux biology-oriented 592 3331.375977 
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86 kinase biology-oriented 520 3328.661377 

87 global neutral 967 3310.481689 

88 signalling systems-oriented 598 3294.043945 

89 binding biology-oriented 863 3245.120117 

90 differential systems-oriented 651 3237.42627 

91 regulated neutral 638 3212.411377 

92 robustness systems-oriented 442 3206.404297 

93 multi neutral 498 3167.998535 

94 integrative neutral 448 3162.60 

95 information systems-oriented 2597 3108.911865 

96 transcriptome biology-oriented 380 3092.038086 

97 medicine biology-oriented 851 3085.066406 

98 predictive neutral 486 3059.057373 

99 cerevisiae biology-oriented 399 3051.877686 

100 prediction neutral 601 3051.863525 

101 signal systems-oriented 873 3012.80127 

102 apoptosis biology-oriented 416 2998.35083 

103 mechanistic neutral 437 2994.864258 

104 framework neutral 933 2989.05249 

105 coli biology-oriented 492 2898.485352 

106 mrna biology-oriented 471 2891.92749 

107 synthetic biology-oriented 563 2811.379883 
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108 growth biology-oriented 1427 2785.716064 

109 phosphorylation biology-oriented 431 2772.445557 

110 msb biology-oriented 343 2747.444092 

111 chemical systems-oriented 910 2674.066406 

112 tcm biology-oriented 327 2660.770264 

113 vitro biology-oriented 498 2641.252686 

114 optimization systems-oriented 359 2631.76001 

115 rna biology-oriented 563 2616.562012 

116 robust systems-oriented 523 2615.502686 

117 host biology-oriented 792 2609.386963 

118 arabidopsis biology-oriented 324 2602.342041 

119 engineering systems-oriented 929 2596.895996 

120 sequencing biology-oriented 417 2532.962158 

121 target neutral 1025 2522.986084 

122 metabolomic biology-oriented 306 2489.891357 

123 biomarker biology-oriented 306 2465.825684 

124 enzyme biology-oriented 506 2458.734619 

125 comprehensive neutral 797 2453.54248 

126 mass biology-oriented 1026 2408.724854 

127 translational neutral 320 2404.999512 

128 organism biology-oriented 501 2399.558838 

129 annotation biology-oriented 327 2392.108887 
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130 toxicity biology-oriented 378 2391.470215 

131 stress biology-oriented 872 2386.202393 

132 personalized neutral 335 2376.688232 

133 phenotypic biology-oriented 339 2342.850098 

134 cycle biology-oriented 749 2341.596191 

135 mitochondrial biology-oriented 349 2338.059326 

136 web systems-oriented 455 2312.831543 

137 visualization systems-oriented 335 2296.304932 

138 sbml biology-oriented 283 2289.479004 

139 database systems-oriented 739 2281.32251 

140 transcriptomics biology-oriented 279 2270.190674 

141 sensitivity neutral 579 2261.710938 

142 analytical neutral 480 2232.541504 

143 saccharomyces biology-oriented 287 2228.697754 

144 validation neutral 441 2227.490967 

145 nmr biology-oriented 339 2224.616211 

146 metabolome biology-oriented 273 2221.368408 

147 mechanism neutral 690 2194.114014 

148 kinetics biology-oriented 312 2184.016846 

149 evolution biology-oriented 650 2181.921631 

150 biosynthesis biology-oriented 288 2150.449463 

151 physiology biology-oriented 380 2122.677979 
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152 glucose biology-oriented 429 2111.425781 

153 homeostasis biology-oriented 280 2111.231689 

154 biomedical biology-oriented 306 2089.451904 

155 escherichia biology-oriented 287 2073.372559 

156 plant biology-oriented 988 2065.236816 

157 structural neutral 640 2031.841309 

158 aging biology-oriented 299 2003.765259 

159 dimensional neutral 330 2003.117432 

160 lipid biology-oriented 348 1992.485962 

161 species biology-oriented 1035 1970.590332 

162 statistical systems-oriented 575 1969.111816 

163 reaction neutral 811 1964.19397 

164 feedback systems-oriented 494 1961.496582 

165 inference neutral 386 1947.89978 

166 pathogen biology-oriented 270 1936.298218 

167 transcriptomic biology-oriented 237 1928.435913 

168 evolutionary biology-oriented 463 1923.471436 

169 progression neutral 416 1904.287354 

170 factor neutral 840 1893.415894 

171 emerging neutral 511 1889.112793 

172 dynamical systems-oriented 284 1887.355103 

173 mammalian biology-oriented 337 1883.458252 
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174 ontology systems-oriented 265 1875.108765 

175 inflammatory biology-oriented 403 1874.7323 

176 application neutral 1019 1853.779907 

177 temporal neutral 378 1841.334106 

178 design systems-oriented 1147 1837.918335 

179 differentiation biology-oriented 426 1837.61792 

180 role neutral 1354 1825.267944 

181 nonlinear systems-oriented 270 1820.528687 

182 bacterial biology-oriented 375 1813.317993 

183 oxidative biology-oriented 251 1799.133179 

184 environmental biology-oriented 927 1791.842407 

185 bayesian systems-oriented 223 1759.180176 

186 liver biology-oriented 491 1753.308594 

187 dependent neutral 655 1748.217407 

188 developmental biology-oriented 372 1724.11853 

189 mirna biology-oriented 210 1686.171631 

190 imaging systems-oriented 331 1654.041016 

191 diverse neutral 439 1645.897705 

192 circadian biology-oriented 224 1614.773438 

193 systematic systems-oriented 468 1613.158081 

194 ppi biology-oriented 203 1612.423096 

195 stem biology-oriented 426 1605.444824 



!

181!
!

196 epigenetic biology-oriented 215 1599.022095 

197 interactome biology-oriented 195 1586.683105 

198 chromatography biology-oriented 271 1585.139038 

199 inflammation biology-oriented 322 1580.475098 

200 synthesis neutral 415 1578.711792 

201 amino biology-oriented 344 1572.781128 

202 detection neutral 378 1567.493286 

203 systemic systems-oriented 293 1563.251343 

204 acid biology-oriented 676 1529.149048 

205 quantification neutral 263 1523.612793 

206 pathogenesis biology-oriented 276 1503.769897 

207 topology systems-oriented 223 1503.326172 

208 variability neutral 302 1503.035034 

209 atp biology-oriented 256 1492.965088 

210 optimal systems-oriented 347 1486.030151 

211 therapy biology-oriented 459 1476.247803 

212 genetics biology-oriented 279 1476.083862 

213 membrane biology-oriented 363 1474.13623 

214 vaccine biology-oriented 291 1469.239502 

215 extracellular biology-oriented 239 1458.199341 

216 infection biology-oriented 515 1454.011475 

217 clustering neutral 258 1445.763794 
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218 thaliana biology-oriented 178 1426.447144 

219 platform neutral 492 1420.926758 

220 perturbation systems-oriented 204 1416.167725 

221 plasma biology-oriented 360 1407.12146 

222 linear systems-oriented 395 1402.744629 

223 mice biology-oriented 360 1380.913208 

224 sequence biology-oriented 592 1375.648315 

225 multivariate neutral 213 1367.607666 

226 dataset neutral 199 1364.912354 

227 correlation neutral 387 1339.389038 

228 egfr biology-oriented 162 1318.164429 

229 screening neutral 371 1315.606445 

230 estimation neutral 260 1302.946533 

231 paradigm neutral 290 1300.897217 

232 ligand biology-oriented 208 1281.961914 

233 control systems-oriented 1502 1266.481934 

234 redox biology-oriented 169 1261.966553 

235 mapping systems-oriented 297 1258.210938 

236 metabonomics biology-oriented 154 1253.069214 

237 vegf biology-oriented 153 1244.932251 

238 reconstruction neutral 342 1244.490967 

239 structure neutral 977 1239.567017 
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240 topological systems-oriented 170 1215.211182 

241 hypothesis neutral 383 1212.452026 

242 substrate biology-oriented 240 1195.788208 

243 boolean systems-oriented 190 1188.632813 

244 multiscale neutral 146 1187.973999 

245 adaptive biology-oriented 238 1182.934448 

246 viral biology-oriented 247 1180.207642 

247 activity neutral 867 1179.803833 

248 efficacy neutral 265 1175.087158 

249 subcellular biology-oriented 152 1167.703369 

250 inhibition biology-oriented 298 1167.310425 

251 treatment biology-oriented 888 1162.755981 

252 component neutral 441 1153.129395 

253 qualitative neutral 268 1132.602783 

254 genotype biology-oriented 178 1129.328613 

255 kegg neutral 140 1127.296753 

256 diabetes biology-oriented 269 1099.407593 

257 fluorescence biology-oriented 189 1085.655273 

258 proliferation biology-oriented 276 1085.204468 

259 eukaryotic biology-oriented 169 1074.305786 

260 heterogeneity neutral 189 1071.25354 

261 biomolecular biology-oriented 133 1070.440796 
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262 tf biology-oriented 141 1068.713379 

263 exposure neutral 398 1063.145264 

264 innate biology-oriented 232 1057.610596 

265 production neutral 971 1056.266479 

266 cardiovascular biology-oriented 203 1053.821045 

267 heterogeneous neutral 210 1051.323853 

268 drosophila biology-oriented 172 1047.172852 

269 molecule biology-oriented 271 1046.451172 

270 mouse biology-oriented 365 1046.100342 

271 variation neutral 419 1043.874146 

272 mapk biology-oriented 127 1033.373291 

273 omic biology-oriented 126 1025.236328 

274 inhibitor biology-oriented 186 1019.371582 

275 toxicology biology-oriented 149 1018.670776 

276 connectivity neutral 175 1012.273621 

277 therapeutics biology-oriented 142 1011.547546 

278 bioinformatic biology-oriented 124 1008.962646 

279 automated systems-oriented 221 1002.647034 

280 lc biology-oriented 188 1001.705505 

281 specificity biology-oriented 233 998.7128906 

282 challenge neutral 610 993.2953491 

283 adaptation biology-oriented 263 990.6032104 
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284 transcript biology-oriented 204 986.9748535 

285 assay biology-oriented 229 978.2520142 

286 holistic neutral 195 976.3835449 

287 neuronal biology-oriented 158 967.8212891 

288 pharmacology biology-oriented 156 967.7330933 

289 peptide biology-oriented 205 962.6178589 

290 chromatin biology-oriented 145 962.25 

291 microbiome biology-oriented 118 960.1414795 

292 erk biology-oriented 129 958.4816895 

293 replication biology-oriented 195 958.2965698 

294 bacteria biology-oriented 299 949.5690918 

295 mutant biology-oriented 227 945.4503784 

296 endogenous biology-oriented 176 940.8521729 

297 glycolysis biology-oriented 123 935.4240112 

298 angiogenesis biology-oriented 128 933.0911865 

299 comparative neutral 300 906.3901367 

300 microscopy biology-oriented 170 900.6907959 
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APPENDIX F 

THE STANDARDIZED DEGREE CENTRALITY FOR ALL 300 KEYWORDS 
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              This appendix shows the standardized degree centrality of 300 key words in co-word networks between 2003 and 2013. 

 2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  

biology 0.4412 0.4000 0.4863 0.4047 0.4219 0.4078 0.4163 0.4719 0.3931 0.3727 0.4133 

systems 0.5588 0.4960 0.5216 0.5175 0.4297 0.4980 0.4436 0.4869 0.4618 0.4760 0.4834 

gene 0.3782 0.2600 0.3059 0.2179 0.3438 0.2745 0.2840 0.3446 0.1718 0.2952 0.2546 

data 0.3361 0.4160 0.3216 0.4241 0.4297 0.4196 0.4125 0.3483 0.3664 0.3764 0.4576 

Keywords 0.4160 0.3240 0.3412 0.2802 0.3242 0.2510 0.3152 0.2921 0.3473 0.2399 0.3063 

protein 0.2479 0.3040 0.3059 0.3268 0.3438 0.3725 0.3113 0.3521 0.3626 0.3137 0.2768 

cell 0.3403 0.3200 0.2549 0.2802 0.3203 0.4314 0.2918 0.3670 0.2786 0.3432 0.3579 

metabolic 0.2899 0.2920 0.2275 0.2646 0.2109 0.2000 0.3658 0.3146 0.3053 0.2362 0.3727 

network 0.2983 0.2960 0.2706 0.2296 0.3867 0.2627 0.3074 0.3783 0.2519 0.2546 0.3210 

molecular 0.1597 0.3200 0.3255 0.2412 0.2617 0.2510 0.2101 0.2996 0.2748 0.2804 0.2657 

model 0.2857 0.3120 0.3216 0.2607 0.2617 0.2863 0.2451 0.4120 0.3588 0.3284 0.2878 

expression 0.3235 0.3000 0.2549 0.1595 0.3398 0.2549 0.2490 0.2622 0.1908 0.2546 0.2841 

signaling 0.1807 0.1440 0.2000 0.1595 0.1758 0.1608 0.2451 0.2285 0.1756 0.1513 0.2214 
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cellular 0.2017 0.2040 0.2078 0.0973 0.1953 0.2314 0.2568 0.2022 0.2366 0.1882 0.2325 

genome 0.2353 0.2400 0.2000 0.1712 0.2266 0.0863 0.1323 0.2060 0.2023 0.2251 0.1993 

pathway 0.1555 0.0920 0.2627 0.0973 0.1445 0.0431 0.1673 0.1348 0.0916 0.1882 0.1808 

computational 0.1849 0.2120 0.1647 0.1634 0.1406 0.1137 0.1634 0.1423 0.1756 0.2362 0.1993 

regulatory 0.2395 0.1840 0.1843 0.2374 0.1406 0.1176 0.1323 0.1610 0.1565 0.1808 0.1107 

modeling 0.1849 0.1880 0.2353 0.1245 0.0977 0.1451 0.1790 0.1423 0.0802 0.1218 0.1328 

experimental 0.1807 0.2440 0.1412 0.1556 0.2617 0.1490 0.1868 0.2060 0.1031 0.2066 0.1181 

genetic 0.2437 0.1600 0.1647 0.3230 0.1641 0.1725 0.2101 0.1873 0.1908 0.2509 0.1218 

metabolism 0.1471 0.1120 0.0863 0.0350 0.1523 0.1098 0.1401 0.2135 0.1832 0.0480 0.1993 

functional 0.2941 0.2000 0.2745 0.1012 0.2109 0.2196 0.2101 0.1948 0.1832 0.1292 0.1550 

complex 0.2143 0.2720 0.2706 0.2802 0.2930 0.2392 0.2335 0.2060 0.2328 0.2214 0.2620 

disease 0.2059 0.2160 0.1922 0.1790 0.1641 0.2157 0.1634 0.2509 0.2634 0.2066 0.2030 

proteomics 0.1639 0.1640 0.0941 0.1128 0.1875 0.1412 0.1284 0.0524 0.1183 0.0775 0.0701 

drug 0.1134 0.2080 0.1255 0.1479 0.2617 0.1020 0.1479 0.2509 0.2061 0.0959 0.2066 

throughput 0.1008 0.1000 0.1216 0.1128 0.1484 0.1412 0.0739 0.1648 0.1336 0.0738 0.1070 
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cancer 0.0126 0.1200 0.0863 0.1245 0.1875 0.0392 0.1673 0.1461 0.0840 0.1292 0.1808 

quantitative 0.1933 0.1480 0.1373 0.1323 0.1875 0.2314 0.2257 0.0861 0.1069 0.1476 0.1439 

metabolomics 0.0756 0.0800 0.0471 0.1284 0.1211 0.0863 0.0467 0.0861 0.0992 0.0701 0.1476 

regulation 0.1176 0.1600 0.1216 0.0973 0.1484 0.1333 0.1595 0.1985 0.1985 0.1144 0.1587 

biochemical 0.1345 0.1640 0.1725 0.1012 0.1172 0.1098 0.0700 0.0787 0.1412 0.1181 0.1550 

interaction 0.0294 0.1800 0.1020 0.0973 0.1484 0.0667 0.0895 0.1273 0.1221 0.0701 0.1328 

genomics 0.1765 0.1240 0.1176 0.1012 0.1719 0.1176 0.1012 0.0749 0.0763 0.0517 0.0886 

dynamics 0.1345 0.1400 0.0902 0.0817 0.1133 0.0980 0.1634 0.0524 0.0878 0.0886 0.1107 

genomic 0.1849 0.2160 0.1294 0.1518 0.0820 0.0353 0.1206 0.1386 0.0305 0.0812 0.1033 

multiple 0.1597 0.1120 0.1647 0.0428 0.0742 0.0902 0.1128 0.1161 0.0916 0.1550 0.1771 

transcriptional 0.0882 0.0680 0.0902 0.0350 0.0703 0.0863 0.0700 0.1461 0.0649 0.0738 0.1365 

mathematical 0.1387 0.1360 0.1216 0.1012 0.1016 0.1216 0.1595 0.1124 0.1031 0.0996 0.1218 

transcription 0.0924 0.0600 0.0431 0.1167 0.0391 0.0941 0.0973 0.1273 0.0992 0.0886 0.1181 

microarray 0.1176 0.1320 0.1059 0.0661 0.0859 0.0667 0.0661 0.1049 0.0573 0.0664 0.0258 

response 0.2605 0.3040 0.1608 0.2140 0.2344 0.1529 0.1401 0.2584 0.1336 0.1734 0.1771 
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omics 0.0000 0.0640 0.0118 0.0506 0.0664 0.0588 0.0311 0.1049 0.0611 0.0554 0.1328 

behavior 0.1555 0.1200 0.0667 0.0817 0.0352 0.0235 0.1167 0.0637 0.0763 0.0812 0.0406 

metabolite 0.0798 0.0560 0.0275 0.0584 0.1055 0.1059 0.0506 0.0899 0.1718 0.0738 0.1107 

dynamic 0.0840 0.1640 0.1333 0.1479 0.1445 0.1569 0.0895 0.1124 0.1794 0.0996 0.0406 

profiling 0.0882 0.1280 0.0510 0.0778 0.1172 0.1294 0.1167 0.2285 0.1221 0.1070 0.0590 

human 0.2395 0.2240 0.1843 0.1245 0.2148 0.1882 0.1751 0.1723 0.2519 0.2509 0.1734 

yeast 0.0798 0.0440 0.0353 0.0389 0.0898 0.0902 0.0700 0.1124 0.0191 0.0849 0.0738 

bioinformatics 0.1050 0.0880 0.0588 0.0506 0.0859 0.0314 0.0817 0.0674 0.0420 0.0738 0.0590 

simulation 0.0966 0.0760 0.0392 0.0817 0.1406 0.0000 0.0934 0.0412 0.0115 0.0996 0.0996 

clinical 0.0252 0.1320 0.0549 0.1284 0.0859 0.0863 0.0895 0.1199 0.0725 0.1882 0.1292 

function 0.2227 0.1280 0.1490 0.0973 0.1445 0.1373 0.1634 0.1461 0.1221 0.0886 0.1218 

identification 0.0714 0.0680 0.0824 0.1323 0.1953 0.0941 0.1245 0.1348 0.0916 0.1476 0.1328 

proteomic 0.1218 0.0880 0.1255 0.1051 0.0977 0.0980 0.1401 0.0300 0.1031 0.0148 0.0480 

spectrometry 0.0378 0.0560 0.0353 0.0661 0.1367 0.1529 0.0895 0.0449 0.0649 0.0664 0.0554 

tumor 0.0210 0.0200 0.0510 0.0856 0.0508 0.0196 0.0934 0.0599 0.0000 0.0627 0.1144 
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discovery 0.1387 0.1040 0.0667 0.1128 0.1523 0.1020 0.1362 0.1086 0.0573 0.0295 0.0959 

proteome 0.0504 0.0200 0.1059 0.1440 0.1445 0.0588 0.0817 0.1124 0.0611 0.0738 0.0332 

immune 0.0126 0.0880 0.0510 0.0545 0.0664 0.0510 0.0856 0.0000 0.0344 0.1181 0.0627 

phenotype 0.0336 0.0520 0.0549 0.0661 0.0234 0.0353 0.0623 0.1199 0.0534 0.0664 0.0886 

activation 0.0294 0.0760 0.0314 0.0428 0.1445 0.0902 0.1245 0.0936 0.0153 0.0849 0.0295 

tissue 0.0882 0.0360 0.0510 0.0545 0.0586 0.0824 0.1206 0.1199 0.0763 0.0664 0.0554 

stochastic 0.0504 0.0120 0.0667 0.0739 0.0117 0.0706 0.0700 0.0262 0.0229 0.0480 0.0000 

parameter 0.0546 0.0000 0.0745 0.0545 0.0078 0.0667 0.0700 0.0150 0.0687 0.0406 0.0480 

integrated 0.1639 0.0960 0.2157 0.0973 0.0820 0.1333 0.1479 0.0899 0.0992 0.1144 0.1993 

physiological 0.1218 0.1600 0.0941 0.0389 0.0313 0.0902 0.0195 0.0861 0.0725 0.0701 0.0369 

complexity 0.0966 0.0960 0.0902 0.0973 0.0820 0.1569 0.0623 0.1536 0.0611 0.0701 0.1144 

ms 0.0252 0.0200 0.0275 0.0778 0.0508 0.0745 0.0506 0.0337 0.0763 0.0849 0.1033 

development 0.2185 0.2400 0.1922 0.1829 0.1484 0.1804 0.2257 0.2247 0.2786 0.2362 0.2583 

silico 0.0924 0.0560 0.0353 0.0817 0.0938 0.0431 0.0389 0.0637 0.0763 0.0554 0.0738 

therapeutic 0.0588 0.0640 0.0078 0.0623 0.0703 0.0392 0.0545 0.0075 0.0344 0.0554 0.0517 
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integration 0.1050 0.1440 0.1098 0.1051 0.1289 0.0784 0.1051 0.1423 0.1183 0.0369 0.1328 

intracellular 0.0462 0.0600 0.0549 0.0078 0.0586 0.0667 0.0817 0.0187 0.0382 0.0406 0.0590 

kinetic 0.0798 0.0040 0.0353 0.0661 0.0508 0.0431 0.0156 0.0449 0.0344 0.0923 0.0554 

algorithm 0.0672 0.0280 0.0275 0.0506 0.0273 0.0196 0.0000 0.0974 0.0229 0.0443 0.0258 

vivo 0.0630 0.0000 0.0431 0.0817 0.0117 0.0510 0.0156 0.0037 0.1489 0.0480 0.0627 

receptor 0.0630 0.0400 0.0627 0.0661 0.0703 0.0902 0.1206 0.1124 0.0802 0.0590 0.0738 

transduction 0.1555 0.0280 0.1333 0.0895 0.0781 0.1176 0.0117 0.0225 0.0000 0.0221 0.0000 

dna 0.1176 0.0520 0.1059 0.1051 0.0938 0.1412 0.1440 0.1386 0.0534 0.1292 0.0443 

modelling 0.0966 0.0840 0.0588 0.1362 0.1094 0.1373 0.0739 0.0899 0.0344 0.0664 0.1070 

microbial 0.0504 0.0800 0.0118 0.0389 0.0000 0.0353 0.0856 0.0412 0.0267 0.0738 0.0480 

system 0.2227 0.2200 0.3373 0.2451 0.2422 0.3020 0.2646 0.2622 0.2557 0.3137 0.1882 

flux 0.0084 0.0360 0.0078 0.0661 0.0313 0.0118 0.0311 0.0225 0.0305 0.0111 0.0443 

kinase 0.0252 0.0560 0.0392 0.1051 0.0742 0.0314 0.0195 0.0637 0.0038 0.0332 0.0923 

global 0.1597 0.1400 0.0824 0.1051 0.0938 0.1020 0.1284 0.1536 0.0344 0.1107 0.1476 

signalling 0.0000 0.0120 0.1020 0.0311 0.0234 0.0549 0.0156 0.0487 0.0649 0.0627 0.0590 
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binding 0.0126 0.0360 0.0431 0.0934 0.0352 0.0314 0.0156 0.0749 0.1603 0.0406 0.0221 

differential 0.0672 0.0480 0.0588 0.0778 0.0664 0.0902 0.0195 0.0449 0.0000 0.0664 0.1144 

regulated 0.0462 0.0840 0.1137 0.1051 0.0664 0.0784 0.0467 0.0524 0.0954 0.0590 0.0369 

robustness 0.0420 0.0600 0.0627 0.0039 0.0000 0.0314 0.1012 0.0412 0.0611 0.0258 0.0443 

multi 0.0462 0.0360 0.0627 0.0272 0.0664 0.0588 0.0661 0.0300 0.0115 0.0738 0.1697 

integrative 0.0546 0.0680 0.0902 0.0272 0.0313 0.0431 0.0428 0.0487 0.0916 0.0221 0.0738 

information 0.2815 0.2200 0.2157 0.1829 0.2734 0.1843 0.1440 0.1723 0.1908 0.1661 0.1587 

transcriptome 0.0714 0.0480 0.0235 0.0233 0.0586 0.0275 0.0156 0.0375 0.0458 0.0554 0.0775 

medicine 0.0294 0.0640 0.0706 0.0156 0.1445 0.0157 0.0817 0.0637 0.1412 0.1181 0.0554 

predictive 0.0294 0.0880 0.0471 0.0350 0.1328 0.0431 0.0584 0.0337 0.0878 0.0332 0.0443 

cerevisiae 0.0462 0.0640 0.0118 0.0428 0.0352 0.0235 0.0778 0.0300 0.0000 0.0664 0.0701 

prediction 0.0336 0.0440 0.0078 0.0272 0.0469 0.0588 0.0389 0.0749 0.0382 0.0000 0.0443 

signal 0.1681 0.0560 0.1686 0.1245 0.1133 0.1137 0.0389 0.0674 0.0496 0.0480 0.0000 

apoptosis 0.0294 0.0000 0.0510 0.0000 0.0820 0.0275 0.0156 0.0337 0.0000 0.0406 0.1070 

mechanistic 0.0840 0.0000 0.0667 0.0545 0.0859 0.0471 0.0389 0.0936 0.0763 0.0369 0.0886 
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framework 0.0924 0.0920 0.1451 0.0856 0.0781 0.0588 0.0467 0.0824 0.1183 0.0812 0.0701 

coli 0.1218 0.1400 0.1294 0.0545 0.0547 0.0314 0.0817 0.0225 0.0000 0.0000 0.0000 

mrna 0.0546 0.0400 0.0510 0.0156 0.0898 0.0275 0.0973 0.0412 0.0382 0.0590 0.0332 

synthetic 0.0168 0.0080 0.0275 0.0272 0.0781 0.0706 0.0895 0.0749 0.0611 0.0480 0.0775 

growth 0.1513 0.1240 0.1020 0.0739 0.0625 0.0980 0.2101 0.2060 0.1107 0.1292 0.1033 

phosphorylation 0.0210 0.0120 0.0902 0.0117 0.0313 0.1294 0.0078 0.0674 0.0344 0.0221 0.1218 

msb 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

chemical 0.1429 0.0560 0.1529 0.1440 0.1055 0.0706 0.0506 0.1199 0.0878 0.0627 0.1033 

tcm 0.0000 0.0000 0.0235 0.0000 0.0000 0.0000 0.0895 0.0000 0.0305 0.0369 0.0074 

vitro 0.0000 0.0240 0.0392 0.0389 0.0469 0.0431 0.0350 0.0899 0.0687 0.0185 0.0295 

optimization 0.0210 0.0200 0.0039 0.0389 0.0625 0.0471 0.0233 0.0262 0.0534 0.0406 0.0590 

rna 0.0168 0.1000 0.0667 0.0661 0.0273 0.0353 0.0195 0.0599 0.1069 0.0886 0.0627 

robust 0.0126 0.0000 0.0157 0.0506 0.0664 0.0392 0.0428 0.0449 0.0611 0.0849 0.0148 

host 0.0294 0.0440 0.0275 0.0661 0.0469 0.0118 0.1051 0.0899 0.0840 0.0517 0.0369 

arabidopsis 0.0294 0.0720 0.0078 0.0156 0.0234 0.0549 0.0272 0.0487 0.0573 0.0590 0.0148 
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engineering 0.0756 0.0240 0.0235 0.0350 0.1094 0.1098 0.0661 0.1348 0.0305 0.1328 0.1218 

sequencing 0.0252 0.0640 0.0902 0.0467 0.0000 0.0471 0.0000 0.0599 0.0420 0.0369 0.0517 

target 0.0798 0.1040 0.0863 0.0700 0.1406 0.0353 0.0311 0.1423 0.1756 0.0812 0.1292 

metabolomic 0.0168 0.0680 0.0196 0.0195 0.0000 0.0235 0.1167 0.0262 0.0153 0.0258 0.0111 

biomarker 0.0000 0.0000 0.0000 0.0428 0.0781 0.0118 0.0545 0.0337 0.0229 0.0258 0.0517 

enzyme 0.0336 0.0640 0.1020 0.0000 0.0469 0.0196 0.0078 0.0037 0.0458 0.0258 0.0664 

comprehensive 0.0756 0.1240 0.1294 0.1401 0.1797 0.0980 0.0545 0.1423 0.1031 0.1328 0.1070 

mass 0.0462 0.1000 0.0549 0.1128 0.1445 0.1490 0.1401 0.0749 0.0802 0.0664 0.0812 

translational 0.0210 0.0000 0.0784 0.0467 0.0195 0.0392 0.0661 0.0899 0.0458 0.0258 0.0480 

organism 0.0588 0.1680 0.1216 0.0778 0.0391 0.0902 0.0311 0.0599 0.0992 0.0627 0.0221 

annotation 0.0378 0.0000 0.0667 0.0000 0.0391 0.0039 0.0117 0.0487 0.0382 0.0000 0.0000 

toxicity 0.1008 0.0560 0.0353 0.0778 0.0313 0.0000 0.1012 0.0337 0.0000 0.0000 0.0295 

stress 0.0336 0.0360 0.0745 0.0039 0.0547 0.0667 0.1595 0.0749 0.0573 0.0849 0.0554 

personalized 0.0210 0.0200 0.0000 0.0117 0.0313 0.0118 0.0389 0.0225 0.0458 0.0443 0.0332 

phenotypic 0.0714 0.0240 0.0549 0.0623 0.0469 0.0000 0.0078 0.0150 0.0649 0.0148 0.0295 



! ! ! !

!

196!

cycle 0.0924 0.1280 0.0745 0.0156 0.0938 0.0353 0.1089 0.1086 0.0153 0.0664 0.0000 

mitochondrial 0.0000 0.0200 0.0118 0.0000 0.1016 0.0471 0.0467 0.0974 0.0458 0.0000 0.0886 

web 0.0210 0.0120 0.0549 0.0233 0.1016 0.0431 0.0156 0.0000 0.0458 0.0221 0.0221 

visualization 0.0210 0.0200 0.0471 0.0272 0.0234 0.0157 0.0311 0.0449 0.0305 0.0000 0.0000 

sbml 0.0378 0.0120 0.0157 0.0506 0.0000 0.0118 0.0156 0.0000 0.0000 0.0221 0.0000 

database 0.0546 0.0920 0.0196 0.1089 0.1602 0.0392 0.0584 0.0375 0.0076 0.0185 0.0221 

transcriptomics 0.0462 0.0600 0.0314 0.0389 0.0508 0.0392 0.0000 0.0375 0.0458 0.0664 0.0000 

sensitivity 0.0630 0.0040 0.0157 0.0195 0.0625 0.0157 0.0739 0.0262 0.0267 0.0443 0.0332 

analytical 0.0588 0.0840 0.0706 0.1712 0.0195 0.0471 0.0623 0.0674 0.0267 0.0590 0.0369 

saccharomyces 0.0336 0.0720 0.0118 0.0389 0.0391 0.0235 0.0778 0.0375 0.0000 0.0590 0.0664 

validation 0.0546 0.1000 0.0471 0.0389 0.1055 0.0549 0.0156 0.0637 0.0458 0.0775 0.0111 

nmr 0.0504 0.0000 0.0235 0.0895 0.0273 0.0275 0.0856 0.0412 0.1031 0.0443 0.0332 

metabolome 0.0126 0.0560 0.0392 0.0661 0.0313 0.0118 0.0039 0.0749 0.0153 0.0111 0.0886 

mechanism 0.0504 0.0200 0.0510 0.0233 0.0313 0.0196 0.0778 0.0412 0.0267 0.0701 0.0849 

kinetics 0.0336 0.0560 0.0667 0.0195 0.0234 0.0157 0.0000 0.0000 0.0267 0.0221 0.0148 



! ! ! !

!

197!

evolution 0.0798 0.0560 0.0471 0.1051 0.0938 0.0471 0.0895 0.0412 0.0344 0.0406 0.0923 

biosynthesis 0.0084 0.0120 0.0314 0.0000 0.0195 0.0627 0.0000 0.0150 0.0382 0.0000 0.0590 

physiology 0.0420 0.0600 0.0784 0.0233 0.0469 0.1020 0.0078 0.0674 0.0153 0.0258 0.0590 

glucose 0.0000 0.0240 0.0431 0.0545 0.0352 0.0039 0.0545 0.0375 0.0687 0.0000 0.0664 

homeostasis 0.0294 0.0120 0.0157 0.0156 0.0078 0.0431 0.0233 0.0262 0.0344 0.0406 0.0000 

biomedical 0.0000 0.0200 0.0196 0.0233 0.0000 0.0157 0.0078 0.0187 0.0153 0.0037 0.0000 

escherichia 0.0840 0.1040 0.1059 0.0389 0.0469 0.0353 0.0623 0.0262 0.0000 0.0000 0.0074 

plant 0.0336 0.0600 0.0549 0.0817 0.0938 0.0431 0.0623 0.0449 0.0344 0.0775 0.0332 

structural 0.0840 0.0000 0.0510 0.0584 0.0430 0.0627 0.0856 0.1199 0.0420 0.0295 0.0221 

aging 0.0000 0.0000 0.0235 0.0000 0.0078 0.0118 0.0623 0.0375 0.1374 0.0000 0.0111 

dimensional 0.0420 0.0760 0.0431 0.0389 0.0703 0.0471 0.0272 0.0375 0.0649 0.0554 0.0554 

lipid 0.0000 0.0240 0.0549 0.0000 0.0195 0.0000 0.0739 0.0674 0.0153 0.0148 0.0886 

species 0.1387 0.0360 0.0588 0.0817 0.0898 0.1294 0.0895 0.1199 0.0687 0.1402 0.0295 

statistical 0.0630 0.0800 0.0980 0.0934 0.0547 0.0353 0.0584 0.0674 0.0344 0.0185 0.1439 

reaction 0.0588 0.1000 0.0588 0.1206 0.0977 0.0510 0.1206 0.0861 0.0496 0.0849 0.1144 



! ! ! !

!

198!

feedback 0.0546 0.1120 0.0588 0.0272 0.0234 0.0157 0.0350 0.0225 0.0763 0.0185 0.0221 

inference 0.0042 0.0000 0.0000 0.0156 0.0195 0.0314 0.0000 0.0412 0.0153 0.0295 0.0295 

pathogen 0.0000 0.0280 0.0000 0.0350 0.0469 0.0392 0.0195 0.0262 0.0382 0.0258 0.0185 

transcriptomic 0.0336 0.0200 0.0784 0.0778 0.0000 0.0000 0.0428 0.0262 0.0687 0.0627 0.0295 

evolutionary 0.0294 0.0280 0.0118 0.0000 0.0664 0.0196 0.0545 0.0112 0.0763 0.0664 0.0701 

progression 0.0252 0.0200 0.0314 0.0272 0.0000 0.0235 0.1206 0.0562 0.0802 0.1033 0.0590 

factor 0.0756 0.0560 0.0980 0.1206 0.0703 0.1020 0.0584 0.1236 0.0496 0.0480 0.1328 

emerging 0.1387 0.0760 0.1373 0.0895 0.0938 0.0588 0.0350 0.0899 0.0840 0.0000 0.0443 

dynamical 0.0378 0.0440 0.0392 0.0545 0.0352 0.0392 0.0039 0.0300 0.0420 0.0074 0.0701 

mammalian 0.0924 0.0320 0.0353 0.0467 0.0391 0.0196 0.0428 0.0787 0.0229 0.0738 0.0111 

ontology 0.0000 0.0000 0.0157 0.0078 0.0430 0.0314 0.0195 0.0337 0.0000 0.0074 0.0000 

inflammatory 0.0546 0.0680 0.0431 0.0156 0.0195 0.0157 0.0428 0.0112 0.0076 0.0111 0.0664 

application 0.0840 0.0600 0.1059 0.1518 0.1328 0.1176 0.1206 0.0712 0.1183 0.0185 0.1292 

temporal 0.0714 0.0000 0.0471 0.0311 0.0547 0.0392 0.0000 0.0000 0.0878 0.0295 0.0221 

design 0.1134 0.0840 0.0745 0.0739 0.0664 0.1686 0.1012 0.1124 0.1565 0.1697 0.1476 



! ! ! !

!

199!

differentiation 0.0546 0.0160 0.0510 0.0778 0.0000 0.0667 0.0000 0.0936 0.1031 0.0369 0.0775 

role 0.1092 0.0760 0.1608 0.0895 0.1055 0.1412 0.0467 0.1236 0.1221 0.1550 0.1476 

nonlinear 0.0588 0.0320 0.0196 0.0428 0.0000 0.0314 0.0000 0.0412 0.0267 0.0111 0.0185 

bacterial 0.0672 0.0240 0.0118 0.0117 0.0234 0.0784 0.0000 0.0300 0.0611 0.1144 0.0111 

oxidative 0.0000 0.0160 0.0000 0.0156 0.0508 0.0118 0.0545 0.0112 0.0687 0.0517 0.1218 

environmental 0.1681 0.1040 0.0314 0.1089 0.0234 0.1373 0.0311 0.0824 0.1107 0.0590 0.0849 

bayesian 0.0126 0.0000 0.0000 0.0156 0.0078 0.0118 0.0117 0.0187 0.0000 0.0221 0.0369 

liver 0.0000 0.0360 0.0157 0.0272 0.0234 0.0000 0.0817 0.0225 0.0038 0.1255 0.0480 

dependent 0.0294 0.0200 0.0353 0.0117 0.0000 0.0706 0.1089 0.0674 0.0687 0.0701 0.0443 

developmental 0.0924 0.0240 0.0902 0.0350 0.0078 0.0784 0.0117 0.0449 0.0840 0.0664 0.0221 

mirna 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0406 0.0000 

imaging 0.0000 0.0000 0.0235 0.0117 0.0273 0.0039 0.0233 0.0000 0.0115 0.0258 0.0000 

diverse 0.1092 0.0720 0.0510 0.0428 0.0547 0.0392 0.0545 0.0150 0.0344 0.0480 0.0480 

circadian 0.0378 0.0000 0.0196 0.0311 0.0000 0.0000 0.0000 0.0487 0.0382 0.0332 0.0000 

systematic 0.0714 0.0920 0.0824 0.0584 0.0586 0.0627 0.0934 0.0562 0.0954 0.0738 0.0480 



! ! ! !

!

200!

ppi 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0262 0.0191 0.0000 0.0074 

stem 0.0000 0.0520 0.0000 0.0156 0.0234 0.1098 0.0000 0.0712 0.0191 0.0554 0.0554 

epigenetic 0.0000 0.0000 0.0000 0.0000 0.0078 0.0235 0.0000 0.0187 0.0229 0.0590 0.0111 

interactome 0.0000 0.0240 0.0392 0.0000 0.0000 0.0235 0.0233 0.0150 0.0191 0.0148 0.0332 

chromatography 0.0000 0.0520 0.0157 0.0350 0.0508 0.0627 0.0545 0.0300 0.0573 0.0517 0.0258 

inflammation 0.0546 0.0120 0.0000 0.0000 0.0195 0.0549 0.0000 0.0300 0.0344 0.0258 0.0369 

synthesis 0.0504 0.0440 0.0549 0.0233 0.1133 0.0627 0.1128 0.0637 0.0344 0.0443 0.0369 

amino 0.0168 0.0200 0.0549 0.0195 0.0234 0.0392 0.0545 0.0187 0.0153 0.0148 0.0406 

detection 0.0546 0.0480 0.0000 0.0739 0.0781 0.0549 0.0311 0.0225 0.0076 0.0111 0.0111 

systemic 0.0588 0.0520 0.0392 0.0117 0.0156 0.0549 0.0311 0.0787 0.0573 0.0295 0.0258 

acid 0.0084 0.0320 0.0431 0.0233 0.0234 0.0314 0.0700 0.0562 0.0305 0.0185 0.0517 

quantification 0.0000 0.0200 0.0000 0.0467 0.0664 0.0157 0.0311 0.0000 0.0458 0.0148 0.0000 

pathogenesis 0.0000 0.0360 0.0000 0.0000 0.0000 0.0000 0.0311 0.0337 0.0305 0.0185 0.0221 

topology 0.0168 0.0120 0.0510 0.0000 0.0156 0.0000 0.0000 0.0524 0.0229 0.0037 0.0185 

variability 0.0000 0.0160 0.0118 0.0195 0.0195 0.0000 0.0467 0.0112 0.0305 0.0295 0.0185 



! ! ! !

!

201!

atp 0.0294 0.0000 0.0000 0.0000 0.0313 0.0196 0.0039 0.0000 0.0344 0.0037 0.0037 

optimal 0.0336 0.0280 0.0431 0.0700 0.0000 0.0471 0.0350 0.0337 0.0076 0.0923 0.0074 

therapy 0.0000 0.0360 0.0157 0.0389 0.0508 0.0667 0.0467 0.0861 0.0344 0.0590 0.0996 

genetics 0.0000 0.0400 0.0353 0.0506 0.0469 0.0275 0.0506 0.0300 0.0649 0.0258 0.0406 

membrane 0.0000 0.0160 0.0275 0.0467 0.0156 0.0588 0.0428 0.0112 0.0305 0.0000 0.0443 

vaccine 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0078 0.0075 0.0000 0.0148 0.0332 

extracellular 0.0000 0.0440 0.0196 0.0389 0.0469 0.0314 0.0428 0.0637 0.0382 0.0185 0.0221 

infection 0.0000 0.0000 0.0118 0.0000 0.0547 0.0000 0.0233 0.0375 0.0611 0.0996 0.0443 

clustering 0.0336 0.0280 0.0118 0.0233 0.0000 0.0118 0.0467 0.0000 0.0076 0.0221 0.0000 

thaliana 0.0252 0.0440 0.0078 0.0117 0.0000 0.0353 0.0000 0.0375 0.0420 0.0295 0.0148 

platform 0.0294 0.0640 0.0000 0.0467 0.0586 0.0627 0.0700 0.0449 0.0763 0.0627 0.0923 

perturbation 0.0378 0.0640 0.0118 0.0000 0.0352 0.0000 0.0117 0.0112 0.0153 0.0221 0.0185 

plasma 0.0000 0.0360 0.0275 0.0545 0.0313 0.0627 0.0389 0.0599 0.0382 0.0074 0.0480 

linear 0.0210 0.0160 0.0275 0.0700 0.0352 0.0235 0.0078 0.0449 0.0611 0.0664 0.0664 

mice 0.0546 0.0240 0.0000 0.0506 0.0117 0.0314 0.0623 0.0075 0.0191 0.0258 0.0074 



! ! ! !

!

202!

sequence 0.0672 0.0560 0.0392 0.0428 0.0898 0.0353 0.0428 0.0150 0.0611 0.0443 0.0443 

multivariate 0.0168 0.0480 0.0235 0.0156 0.0547 0.0196 0.0623 0.0787 0.0115 0.0295 0.0185 

dataset 0.0000 0.0080 0.0000 0.0195 0.0273 0.0000 0.0156 0.0000 0.0000 0.0000 0.0406 

correlation 0.0084 0.0280 0.0196 0.0117 0.0273 0.0157 0.0039 0.0337 0.0382 0.0443 0.0664 

egfr 0.0588 0.0320 0.0353 0.0584 0.0000 0.0314 0.0117 0.0337 0.0191 0.0258 0.0627 

screening 0.0168 0.0000 0.0431 0.0856 0.0859 0.0392 0.0272 0.0637 0.1221 0.0221 0.0148 

estimation 0.0252 0.0000 0.0353 0.0661 0.0156 0.0000 0.0000 0.0000 0.0763 0.0111 0.0517 

paradigm 0.0546 0.0920 0.0392 0.0545 0.0000 0.0353 0.0545 0.0562 0.0458 0.0258 0.0000 

ligand 0.0000 0.0240 0.0275 0.0039 0.0508 0.0000 0.0195 0.0787 0.0496 0.0000 0.0258 

control 0.1555 0.1840 0.0863 0.1829 0.0859 0.1137 0.2218 0.1573 0.1718 0.1181 0.1365 

redox 0.0168 0.0000 0.0000 0.0000 0.0195 0.0431 0.0195 0.0000 0.0000 0.0000 0.0812 

mapping 0.0336 0.0320 0.0667 0.0856 0.0469 0.0863 0.0233 0.0000 0.0305 0.0148 0.0812 

metabonomics 0.0588 0.0360 0.0431 0.0739 0.0273 0.0078 0.0506 0.0000 0.0000 0.0258 0.0000 

vegf 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0117 0.0712 0.0000 0.0000 0.0590 

reconstruction 0.0336 0.0480 0.0314 0.0117 0.1055 0.0275 0.0272 0.0225 0.0000 0.0295 0.0111 



! ! ! !

!

203!

structure 0.1765 0.0840 0.1098 0.0506 0.1133 0.0392 0.0428 0.1011 0.1221 0.1107 0.0554 

topological 0.0000 0.0000 0.0000 0.0117 0.0078 0.0039 0.0000 0.0225 0.0000 0.0369 0.0074 

hypothesis 0.0504 0.0400 0.0392 0.0272 0.0820 0.0275 0.0272 0.0000 0.0229 0.0627 0.0295 

substrate 0.0336 0.0440 0.0588 0.0000 0.0352 0.0118 0.0117 0.0075 0.0000 0.0111 0.0295 

boolean 0.0084 0.0000 0.0000 0.0233 0.0039 0.0000 0.0000 0.0075 0.0191 0.0258 0.0369 

multiscale 0.0000 0.0000 0.0157 0.0000 0.0000 0.0824 0.0000 0.0075 0.0000 0.0185 0.0000 

adaptive 0.0336 0.0000 0.0392 0.0000 0.0078 0.0000 0.0000 0.0075 0.0115 0.1328 0.0701 

viral 0.0000 0.0360 0.0863 0.0233 0.0195 0.0000 0.0195 0.0000 0.0000 0.0664 0.0664 

activity 0.0924 0.0800 0.0627 0.0389 0.0898 0.0196 0.1167 0.0974 0.0649 0.0111 0.0812 

efficacy 0.0168 0.0480 0.0000 0.0350 0.0000 0.0039 0.0584 0.0150 0.0573 0.0738 0.0443 

subcellular 0.0168 0.0240 0.0078 0.0117 0.0000 0.0000 0.0195 0.0150 0.0191 0.0074 0.0000 

inhibition 0.0126 0.0680 0.0549 0.0117 0.0078 0.0196 0.0039 0.0449 0.0763 0.0332 0.0369 

treatment 0.0378 0.0640 0.0196 0.0195 0.0508 0.1255 0.0856 0.1423 0.0802 0.0627 0.1292 

component 0.0420 0.0200 0.1020 0.0623 0.0547 0.0157 0.0311 0.0861 0.0763 0.0517 0.0775 

qualitative 0.0756 0.0480 0.0000 0.0233 0.0078 0.0314 0.0623 0.0187 0.0344 0.0221 0.0221 



! ! ! !

!

204!

genotype 0.0042 0.0240 0.0275 0.0272 0.0430 0.0000 0.0311 0.0487 0.0000 0.0185 0.0369 

kegg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0389 0.0000 0.0000 0.0111 0.0037 

diabetes 0.0126 0.0200 0.0314 0.0000 0.0000 0.0157 0.0000 0.0075 0.0267 0.0000 0.0406 

fluorescence 0.0000 0.0000 0.0000 0.0233 0.0000 0.0000 0.0078 0.0000 0.0153 0.0295 0.0221 

proliferation 0.0294 0.0080 0.0392 0.0156 0.0000 0.0392 0.0272 0.0112 0.0267 0.0332 0.0701 

eukaryotic 0.0294 0.0120 0.0000 0.0000 0.0273 0.0000 0.0156 0.0262 0.0000 0.0221 0.0185 

heterogeneity 0.0000 0.0000 0.0000 0.0156 0.0156 0.0118 0.0233 0.0375 0.0191 0.0627 0.0000 

biomolecular 0.0000 0.0000 0.0745 0.0039 0.0117 0.0000 0.0000 0.0487 0.0153 0.0148 0.0000 

tf 0.0000 0.0000 0.0549 0.0000 0.0000 0.0000 0.0000 0.0787 0.0267 0.0000 0.0332 

exposure 0.0714 0.0520 0.0078 0.0545 0.0234 0.0078 0.0117 0.0712 0.0344 0.0554 0.0111 

innate 0.0000 0.0920 0.0431 0.0117 0.0000 0.0000 0.0195 0.0000 0.0115 0.0517 0.0590 

production 0.0000 0.0240 0.0275 0.0195 0.0273 0.0275 0.0428 0.0861 0.0305 0.0923 0.1255 

cardiovascular 0.0630 0.0120 0.0000 0.0000 0.0000 0.0157 0.0467 0.0861 0.0305 0.0074 0.0037 

heterogeneous 0.0294 0.0320 0.0353 0.0545 0.0195 0.0157 0.0000 0.0375 0.0000 0.0000 0.0554 

drosophila 0.0252 0.0160 0.0157 0.0272 0.0313 0.0000 0.0311 0.0000 0.0038 0.0000 0.0185 



! ! ! !

!

205!

molecule 0.0672 0.0280 0.0157 0.0117 0.0352 0.0588 0.0000 0.0375 0.0687 0.0000 0.0406 

mouse 0.0378 0.0240 0.0627 0.0506 0.0430 0.0118 0.0272 0.0974 0.0305 0.0000 0.0775 

variation 0.0672 0.0240 0.0275 0.0311 0.0586 0.0235 0.0506 0.0300 0.0649 0.0443 0.0332 

mapk 0.0000 0.0480 0.0353 0.0000 0.0195 0.0000 0.0117 0.0262 0.0115 0.0221 0.0000 

omic 0.0504 0.0000 0.0549 0.0156 0.0000 0.0000 0.0389 0.0000 0.0573 0.0111 0.0000 

inhibitor 0.0252 0.0000 0.0196 0.0389 0.0000 0.0000 0.0311 0.0637 0.0191 0.0221 0.0590 

toxicology 0.1176 0.0160 0.0431 0.0117 0.0391 0.0000 0.0000 0.0637 0.0076 0.0148 0.0000 

connectivity 0.0588 0.0000 0.0863 0.0195 0.0195 0.0235 0.0156 0.0487 0.0115 0.0185 0.0000 

therapeutics 0.0000 0.0160 0.0000 0.0000 0.0117 0.0039 0.0000 0.0225 0.0000 0.0258 0.0000 

bioinformatic 0.0000 0.0320 0.0235 0.0156 0.0078 0.0471 0.0000 0.0300 0.0382 0.0221 0.0074 

automated 0.0000 0.0480 0.0000 0.0195 0.0156 0.0275 0.0117 0.0300 0.0916 0.0258 0.0148 

lc 0.0000 0.0000 0.0000 0.0389 0.0625 0.0235 0.0117 0.0262 0.0382 0.0258 0.0517 

specificity 0.0000 0.0200 0.0314 0.0156 0.0234 0.0000 0.0545 0.0037 0.0191 0.0221 0.0000 

challenge 0.0252 0.0400 0.0588 0.0311 0.0938 0.0431 0.0000 0.0562 0.0725 0.0554 0.1033 

adaptation 0.0420 0.0120 0.0235 0.0000 0.0156 0.0235 0.0000 0.0187 0.0000 0.0775 0.0221 



! ! ! !

!

206!

transcript 0.0210 0.0400 0.0000 0.0311 0.0000 0.0471 0.0000 0.0112 0.0153 0.0369 0.0258 

assay 0.0168 0.0680 0.0000 0.0117 0.0078 0.0000 0.0000 0.0037 0.0000 0.0000 0.0369 

holistic 0.0000 0.0640 0.0000 0.0428 0.0078 0.0157 0.0233 0.0112 0.0305 0.0886 0.0000 

neuronal 0.0000 0.0000 0.0000 0.0000 0.0039 0.0235 0.0000 0.0000 0.0038 0.0664 0.0000 

pharmacology 0.0126 0.0000 0.0275 0.0350 0.0156 0.0000 0.0000 0.0187 0.0000 0.0627 0.0000 

peptide 0.0000 0.0000 0.0000 0.0156 0.0664 0.0118 0.0117 0.0000 0.0000 0.0369 0.0369 

chromatin 0.0000 0.0000 0.0000 0.0272 0.0000 0.0000 0.0000 0.0000 0.0076 0.0074 0.0000 

microbiome 0.0000 0.0000 0.0000 0.0000 0.0039 0.0157 0.0545 0.0000 0.0954 0.0148 0.0000 

erk 0.0000 0.0400 0.0157 0.0311 0.0000 0.0000 0.0233 0.0000 0.0000 0.0000 0.0000 

replication 0.0000 0.0680 0.0392 0.0000 0.0078 0.0471 0.0661 0.0112 0.0000 0.0369 0.0000 

bacteria 0.0252 0.0520 0.0588 0.0000 0.0195 0.0471 0.0233 0.0000 0.0191 0.0221 0.0369 

mutant 0.0210 0.0320 0.0000 0.0000 0.0000 0.0118 0.0117 0.0337 0.0115 0.0000 0.0664 

endogenous 0.0756 0.0080 0.0196 0.0117 0.0195 0.0235 0.0000 0.0262 0.0000 0.0258 0.0664 

glycolysis 0.0000 0.0000 0.0196 0.0000 0.0156 0.0000 0.0117 0.0000 0.0267 0.0000 0.0443 

angiogenesis 0.0000 0.0200 0.0471 0.0000 0.0000 0.0000 0.0000 0.0375 0.0000 0.0185 0.0369 
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comparative 0.0714 0.0080 0.0000 0.0584 0.0430 0.0431 0.0117 0.0300 0.0076 0.0258 0.0443 

microscopy 0.0000 0.0000 0.0000 0.0000 0.0000 0.0157 0.0000 0.0000 0.0344 0.0148 0.0369 
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APPENDIX G 

 THE COUNTRY ORIGIN OF CORRESPONDING AUTHORS FROM 2005 TO 2013 
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This appendix shows the number of articles that have corresponding authors in five major 
countries and other countries.  

 

 
US China Germany England Japan 

 Other 
countries Total  

2000 1 0 0 0 1 0 2 
2001 5 0 0 0 0 0 5 
2002 8 0 3 1 4 9 25 
2003 63 0 12 10 1 22 108 
2004 116 0 30 25 6 64 241 
2005 189 7 42 31 15 117 401 
2006 249 16 59 50 15 183 572 
2007 258 18 88 60 15 216 655 
2008 305 35 91 83 18 311 843 
2009 404 32 89 99 29 387 1040 
2010 483 69 119 105 38 455 1269 
2011 458 80 146 121 31 513 1349 
2012 464 112 147 120 34 541 1418 
2013 445 129 119 109 32 529 1363 
Growth 
rate 0.1129 0.4394 0.1390 0.1701 0.0993 0.2076 0.1652 

 

 

 


