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ABSTRACT OF THE DISSERTATION

Impaired gut microbial community development in undernourished children

by
Sathish Subramanian
Doctor of Philosophy in Biology and Biomedical Sciences
Computational and Systems Biology Program
Washington University in St. Louis, 2015
Professor Jeftrey I. Gordon, Chair

The healthy growth of children is typically considered from an anthropometric perspective: i.e.,
changes in height and weight over time. Another feature of postnatal development involves the
acquisition of our microbial communities, the largest of which resides in our gut. Malnutrition
(undernutrition) in children, and its severity, is defined by the degree to which their anthropometric
scores deviate from median values established by a World Health Organization reference cohort
of 8440 individuals living in six countries. Epidemiologic studies have shown that moderate to se-
vere forms of acute undernutrition are not due to food insecurity alone. The human gut microbiota
can be thought of as a microbial ‘organ’ that plays important roles in extracting and metabolizing
food ingredients, providing metabolites to the host and shaping development of the immune sys-
tem. The central hypotheses of my thesis are that this microbial organ undergoes definable stages
in its development following birth, that features of its developmental program are shared across
biologically unrelated individuals living in distinct geographic locales and representing distinctive
cultural traditions, that this developmental program is disrupted in undernourished children, and
that such disruption is not merely an effect of undernutrition but is causally related to it. My thesis

consists of three parts.



The first part is a ‘Perspective’ describing the hypotheses described above, and describing
approaches that might be useful for linking the identification of bacterial taxa that define normal
development of the gut microbiota during the first several years of postnatal life to (i) an analysis
of how this developmental program may be linked to the risk for, or the expression of the mani-
festations of undernutrition, and (ii) how knowledge of complementary feeding practices could be
applied to developing new ways to sponsor robust development of the microbiota in individuals

where this program has already been perturbed.

In the second part, I define normal gut microbiota development in unrelated children with
healthy growth phenotypes who live in an urban slum of Dhaka, Bangladesh. I did so by apply-
ing a machine-learning method (Random Forests) to bacterial 16S rRNA datasets generated from
fecal samples collected monthly from birth through 24 months of life. I identified a group of ‘age-
discriminatory’ bacterial strains whose changing representation in gut microbiota over time pro-
vide a signature of the developmental biology of the gut microbial community. I used this Random
Forests-derived model to create two metrics that define the state of maturation of a given child’s
microbiota relative his/her chronologic age; ‘relative microbiota maturity index” and ‘microbiota-
for-age Z score’. Using these metrics, I found that children with severe acute malnutrition (SAM)
have immature gut microbiota (i.e. the configuration of their gut communities is younger than
expected based on their chronologic age) and that this immaturity is incompletely and only tran-

siently improved by two commonly used therapeutic food interventions.

In the third part, I expand my Random Forests-based modeling of gut microbiota develop-
ment by studying members of birth cohorts living in India, South Africa, Peru, and Brazil; finding
that features of microbiota development (age-discriminatory strains) are shared across popula-
tions representing diverse geographic locations and cultural traditions. I also present a preclinical
model for identifying complementary foods that could be used to repair the persistent microbiota
immaturity present in children with SAM. This model was created by (i) culturing nine age-dis-
criminatory bacterial strains as well as seven SAM-associated strains from the fecal microbiota of

Bangladeshi children, (ii) introducing these strains into germ-free mice, (iii) feeding the animals

xi



different sequences of a prototypic Bangladeshi diet supplemented with different combinations of
commonly consumed complementary foods, and (iv) analyzing 16S rRNA datasets generated from
the recipient animal’s fecal microbiota in order to identify foods that promote the representation of
age-indicative but not SAM-associated strains. A follow-up study in gnotobiotic mice of one of the
lead complementary foods discovered from these analyses confirmed that it promotes microbiota
maturation, as well as sponsoring an increase in butyrate levels and the representation of colonic

regulatory T cells.
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Abstract

Microbiota assembly is perturbed in children with undernutrition, resulting in persistent micro-
biota immaturity that is not rescued by current nutritional interventions. Evidence is accumulat-
ing that this immaturity is causally related to the pathogenesis of undernutrition and its lingering
sequelae. Preclinical models in which human gut communities are replicated in gnotobiotic mice
have provided an opportunity to identify and predict the effects of different dietary ingredients on
microbiota structure, expressed functions, and host biology. This capacity sets the stage for proof-
of-concept tests designed to deliberately shape the developmental trajectory and configurations of
microbiota in children representing different geographies, cultural traditions, and states of health.
Developing these capabilities for microbial stewardship is timely given the global health burden of
childhood undernutrition, the effects of changing eating practices brought about by globalization,
and the realization that affordable nutritious foods need to be developed to enhance our capacity to

cultivate healthier microbiota in populations at risk for poor nutrition.

Introduction

Understanding the determinants of the nutritional value of different foods has never been more
important, with population stabilization being unlikely this century (Gerland et al., 2014) and
growing challenges related to sustainable agriculture. An integral part of understanding how best
to deliver nutritious food to a burgeoning population is understanding how the microbial commu-
nity in our gut (the microbiota) is shaped by what we eat and how that community in turn shapes
our development and health. Nowhere will this kind of insight be more crucial than in raising the

world’s children.

Current obstacles to achieving healthy and productive lives and societies are reflected in
the United Nations’ millennium development goals that include reductions in child mortality and
hunger and improvements in maternal health (http://www.un.org/millenniumgoals/). The scope of
the problem of childhood undernutrition is described by parameters such as the International Food

Policy Research Institute’s Global Hunger Index (http://www.ifpri.org/publication/2014-global-
3



hunger-index), which is an aggregate measure of calorie intake plus the rates of children being

underweight and childhood mortality within a given region or country.

Much has been said about how changing patterns of food preferences brought about by
economic development, globalization, and changes in food technology and food distribution sys-
tems are producing dramatic changes in how, what, and when we eat. These changes, combined
with rapid population expansion and issues related to sustainable agriculture, create the need and
the opportunity to drive innovation in the area of identifying new, affordable, and nutritious foods.
Here, we focus on the importance of understanding the postnatal developmental biology of our
gut microbial community—a highly adaptable microbial “organ” that is critically involved in the
biotransformation of foods to products that can shape many aspects of human biology. In our view,
studies of human gut microbial communities will markedly revise current thinking about many as-
pects of human nutrition. The knowledge gained could and should catalyze efforts to integrate ag-
ricultural policies, food production, and nutritional recommendations for consumers representing
different ages, cultural traditions, and geographies. Preclinical research platforms are now avail-
able to evaluate the effects of foods that we currently consume and those that we envision creating
in the future on the gut microbial community and host biology in ways that can inform clinical
studies. Furthermore, studies of children with undernutrition are highlighting the importance of
postnatal development of the gut microbiota for achieving healthy growth and providing us with a
new set of metrics to define the efficacy of nutritional recommendations and interventions directed
at infants, the maternal-infant dyad, and children. Finally, we emphasize the importance of ad-

dressing ethical, social, and regulatory issues related to research in this area now rather than later.

Defining Human Postnatal Development from a Microbial Perspective

The human gut microbiota is composed of all three domains of life; Bacteria, which predominate,
Archaea, and Eukarya, plus viruses. The gut microbiota is composed of relatively few bacterial
phyla compared to communities in other body habitats and is notable for its strain-level diversity.

Application of low-error sequencing methods to PCR amplicons generated from the bacterial phy-

4



logenetic marker gene encoding the principal RNA in the small subunit of ribosomes (16S rRNA)
has indicated that, once acquired, the majority of bacterial strains in a healthy adult are retained for
long periods of time (Faith et al., 2013). Thus, early colonizers, once established in the gut ecosys-
tem, have the potential to exert their effects on our biological features and health status for most
and perhaps all of our adult lives. This latter finding emphasizes the importance of understand-
ing whether there is a definable program of community assembly in healthy infants/children and
whether such a program is shared or varies considerably across populations with distinct dietary
habits and culinary traditions residing in different geographic locations. If such a developmental
program were definable and a significant contributor to healthy growth, fostering its proper and
full execution could represent the basis of an arm of preventive medicine designed to ensure long-

term health through informed microbial stewardship.

Food is a major factor that shapes the proportional representation of microorganisms pres-
ent in the gut microbiota and the relative abundance of its genes (the microbiome). Reciprocally,
the configuration of the microbiota/microbiome influences the nutritional value of food. One il-
lustration of this interrelationship comes from a culture-independent metagenomic analysis of the
gut microbiomes of infants, children, and adults belonging to 150 families living in three countries
located on three different continents (metropolitan areas of the USA plus rural villages in southern
Malawi and the Amazonas state of Venezuela). The results revealed that the relative abundances
of genes in the microbiome that are related to vitamin biosynthesis (e.g., folate, cobalamin, thia-
mine, and biotin), amino acid metabolism, and processing of complex polysaccharides change in
an identifiable sequence during the postnatal period (Yatsunenko et al., 2012). In addition, differ-
ences between Westernized (USA) and non-Westernized populations were evident, with breastfed
Malawian and Amerindian babies having higher relative abundances of microbial genes encoding
enzymes involved in carbohydrate metabolism, vitamin biosynthesis (e.g., components of the bio-
synthetic pathway for riboflavin, a component of breast milk, dairy products, and meat), and ure-
ase (Yatsunenko et al., 2012). Urea represents up to 15% of breast milk nitrogen; its degradation

to ammonia can be used for microbial biosynthesis of essential amino acids, potentially benefiting
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both the microbiota and host when diets are deficient in protein. Significant differences in microbi-
ome configuration were also observed between breast-fed and formula-fed infants, with the latter
showing increased representation of genes involved in various aspects of carbohydrate and amino
acid metabolism and cobalamin (vitamin B12) biosynthesis (Yatsunenko et al., 2012). Cobalamin
is not only important for the host; the ability to transport cobalamin and other substituted corrins is

an important determinant of survival for members of the microbiota (Degnan et al., 2014).

Together, these findings suggested that the gut community should be considered when
assessing the nutritional requirements at different stages of the human life cycle and in different
geographic/cultural settings. They also raised the question of whether perturbations in the func-
tional development of the microbiota/microbiome were related to childhood undernutrition, the
major cause of childhood deaths worldwide and a manifestation of a complex set of still poorly
understood intra- and intergenerational factors, rather than food insecurity alone (Lazzerini et al.,

2013, Caulfield et al., 2014 and Richard et al., 2014).

Undernutrition and Gut Microbiota Immaturity

The World Health Organization’s (WHO) Multi-Center Growth Reference Study (http://www.
who.int.beckerproxy.wustl.edu/childgrowth/mgrs/en/) defines three anthropometric (physical) pa-
rameters (weight-for-age, height-for-age, and weight-for-height Z scores) to describe normal early
childhood growth and nutritional status from its evaluation of 8,440 infants and children living
in six distinct sites around the world (USA, Oman, Norway, Brazil, Ghana, and India). A recent
study provided another definition of healthy growth but from a microbial perspective (Chapter 2,
Subramanian et al., 2014). It did so by examining gut microbiota assembly in 50 children resid-
ing in Dhaka, Bangladesh whose anthropometry during their first 2 years of life indicated healthy
growth. Fecal samples were collected monthly from birth through the end of the second postnatal
year, and the relative abundances of bacterial strains were analyzed by 16S rRNA amplicon se-
quencing. The results revealed that interpersonal variation in the bacterial component of their gut

communities was significantly smaller than the variation associated with age. Applying Random
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Forests, a machine-learning method, to regress relative abundances of bacterial taxa across these
children revealed age-discriminatory bacterial strains. Separating these 50 children into training
and validation cohorts, the regression was optimized to include the most informative taxa for ac-
curate prediction of microbiota “age.” The results were formally validated to prevent over-fitting
and over-estimation of generalizability and produced a sparse model composed of 24 strains that
could be used in aggregate as a microbial signature for describing a shared program of microbiota
development in healthy individuals and two derived metrics for defining deviations from that nor-

mal program: “relative microbiota maturity” and “microbiota-for-age” Z (MAZ) score (Figure 1).

Severe acute malnutrition (SAM) is defined by weight-for-height Z (WHZ) scores more
than 3 SDs below the median of children in the WHO reference cohort. Application of this sparse
model to 64 Bangladeshi children with SAM (WHZ —4.2 = 0.72 [SD]) revealed they had gut mi-
crobiota that appeared significantly “younger” than their chronological age (relative microbiota
maturity of —6 = 0.7 months and MAZ scores of —1.7 + 0.2). Moreover, this immaturity was in-
completely and only transiently rescued following a customary period of administration of either
one of two types of ready-to-use therapeutic foods (RUTFs; typically given for 2 weeks until a
15% increase in weight gain is achieved; http://www.ClinicalTrials.gov, number NCT01331044).
Bangladeshi children with moderate acute malnutrition (WHZ between —3 and —2) also exhibited
significant microbiota immaturity, although less severe than children with SAM (Chapter 2, Sub-
ramanian et al., 2014). These results indicate that children with SAM have a persistent develop-
mental abnormality affecting their gut microbial “organ” that is not durably repaired with existing

therapy.

These observations raise a critical question: is microbiota immaturity a cause or an effect of
childhood undernutrition? Many studies have shown that, although current protocols for treating
children with (acute) undernutrition reduce mortality, they do not rescue its long-term morbidi-
ties, including stunting, immune dysfunction, and neurodevelopmental abnormalities (Victora et
al., 2008, Gaayeb et al., 2014, Kosek et al., 2013 and Galler et al., 2012). For example, given the

remarkable metabolic requirements of the neonatal brain, alterations in the normal postnatal de-
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velopment of the gut microbiota may trigger marked impairments in brain development and lead

to persistent disorders of cognition.

Support for a causal role for the gut microbiota in SAM comes from studies of gnotobi-
otic mice. In recent years, methods have been developed for transplanting previously frozen fe-
cal samples from human donors into groups of germ-free mice at a selected stage of their lives
(e.g., young, rapidly growing animals that have been recently weaned or older animals) and with
a designated genetic background. If the human microbiota sample is frozen shortly after it is pro-
duced and maintained at —80°C, the bacterial strains represented in the donor’s community can be
transmitted efficiently and reproducibly to recipient mice (e.g., Turnbaugh et al., 2009a, Smith et
al., 2013, Ridaura et al., 2013, Palm et al., 2014 and Kau et al., 2015). The recipient mice can be
fed diets that contain ingredients used in foods consumed by the microbiota donor. Moreover, the
ingredients and methods for preparing (cooking) such diets can be varied systematically. This ap-
proach allows myriad types of models to be constructed for studying the interaction of foods and
the human gut microbiota in vivo. For example, diets can be given that are representative of those
consumed by populations other than those of the donor to anticipate the effects of changes in food
consumption patterns associated with Westernization or composed of ingredients that represent
new potential sources of affordable, nutritious foods such as landraces and waste streams from cur-
rent food manufacturing processes. Critically, these preclinical gnotobiotic animal models allow
proof-of-concept tests of whether a donor phenotype is transmissible via his/her gut microbiota,
the extent to which phenotypic transmission generalizes across different donor microbiota, and
the sensitivity or robustness of phenotypic transmission to diet type. These preclinical models also
permit simulations of existing or anticipated therapeutic interventions, including the opportunity
to “randomize” a given individual’s microbiota to not just one but multiple treatment arms in order
to directly compare the effect (and effect size) of the treatments on both the microbiota and host, to
characterize underlying mechanisms, and to identify surrogate- or mechanism-based biomarkers

that could be translatable to the microbiota donor or donor population (Figure 2).

Transplanting fecal microbiota from same-gender Malawian twins discordant for kwashior-

kor, a form of SAM, into separate groups of adult germ-free mice and feeding the recipient animals
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a representative micro- and macronutrient-deficient Malawian diet disclosed that the healthy and
kwashiorkor co-twins’ microbiota transmitted discordant weight loss and metabolic phenotypes
(as well as an enteropathy characterized by disruption of the small intestinal and colonic epithelial
barrier in animals harboring kwashiorkor but not healthy microbiota) (Smith et al., 2013 and Kau
et al., 2015). Unlike the transplanted healthy co-twins’ microbiota, the kwashiorkor microbiota
was structurally and metabolically labile, reconfiguring itself upon exposure to a peanut-based
RUTEF, but not in a sustained way when animals were returned to the Malawian diet. The combina-
tion of a nutrient-deficient Malawian diet and a kwashiorkor microbiota was required to produce
pathology in the recipient “humanized” mice, including inhibition of steps within the tricarboxylic
acid cycle in host cells (Smith et al., 2013). These findings not only provided evidence for a causal
relationship between the gut microbiota and SAM but also highlighted the importance of diet-by-

microbiota interactions in disease pathogenesis.

If we consider children with persistent microbiota immaturity from the perspective of de-
velopmental biology, we can pose a number of basic and applied scientific questions. One question
is whether the developmental program defined in Bangladeshi infants and children is generalizable
to other populations representing different geographic and cultural settings. If so, it would reveal
a fundamental shared aspect of postnatal human development and raise mechanistic questions
about the factors that specify a healthy microbial community “fate.” Initial support for generaliz-
ability comes from an analysis of concordant healthy Malawian twin pairs, which showed that a
number of the age-discriminatory bacterial strains with the highest feature importance scores in
the Bangladeshi Random Forests model are also represented in the Malawian population (Chapter
2, Subramanian et al., 2014 and Yatsunenko et al., 2012). The designation “same strain” was based
on the same 16S rRNA sequence; whole-genome sequencing of a given age-discriminatory strain
identified by its 16S rRNA sequence will be needed to determine its degree of gene conservation
across different Bangladeshi and Malawian hosts. Bacterial 16S rRNA analyses of fecal samples
obtained at monthly intervals from infants and children with healthy growth phenotypes enrolled

in birth cohorts living at multiple low-income countries allow country/community site-specific,
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Random-Forests-based models of microbiota maturation to be constructed, as well as an aggre-
gate model representing data pooled from all sites. “Generalizability” can be established through
reciprocal tests of the accuracy of the site-specific models (and aggregate model) for healthy indi-
viduals living at the different sites and whether these models reveal similar relationships between
anthropometry and relative microbiota maturity/MAZ scores for undernourished children living at

each of these sites.

A second question has to do with the relationship between microbiota development, en-
teropathogen load, and environmental enteric dysfunction (EED, also known as environmental en-
teropathy), an enigmatic and as-yet-incompletely defined disorder of gut barrier function (Keusch
et al., 2014 and Kosek et al., 2014). Does a primary failure to execute normal maturation of the
microbiota directly influence risk for enteropathogen invasion, perturbations in development of
mucosal immune system, and abnormalities in nutrient processing and absorption that ultimately
results in growth faltering? Alternatively, is a holistic view required that considers each of these
features of enteric biology as intimately and integrally related to one another? Large birth cohort
studies such as MAL-ED and GEMS have provided an opportunity to measure the contributions
of enteropathogen load/carriage and diarrheal incidence to growth faltering (MAL-ED Network
Investigators, 2014, Platts-Mills et al., 2014 and Kotloff et al., 2013). Evidence is emerging that
some of the age-discriminatory taxa that define normal microbiota maturation also protect the host
from enteropathogen infection. Intriguingly, studies of Bangladeshi adults with acute cholera have
shown that recovery from the diarrheal phase involves recapitulation of the sequence of appear-
ance of the same age-discriminatory bacterial strains that define the normal pattern of assembly
of the microbiota in healthy Bangladeshi infants/children, suggesting that an essential set of rules
governs this assembly (successional) process (Hsiao et al., 2014). For example, Ruminococcus
obeum, a bacterium that directly correlates with recovery from Vibrio cholerae infection in adult
Bangladeshi subjects and defines later stages of normal gut microbiota maturation in healthy Ban-
gladeshi children, restricts V. cholerae colonization of gnotobiotic mice harboring a representative

human gut microbiota. Its mechanism involves production of an autoinducer-2 (AlI-2) that causes
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quorum-sensing mediated repression of V. cholerae colonization and virulence factor expression

(Hsiao et al., 2014).

A third related question is the manner in which the mucosal immune system and the micro-
biota co-develop. How do these complex organs talk to and educate each other? The answers could
help identify factors that legislate a normal developmental trajectory for a gut community and how
developmental arrest of the microbiota could be become fixed and difficult to overcome/advance.
Immaturity of the microbiota may be associated with relative immaturity of mucosal immunity in
ways that impede responsiveness to vaccines or enteropathogens. If so, can we use members of the
microbiota as next-generation adjuvants to prime the immune system in the context of a defined
antigen (Yilmaz et al., 2014)? One way to characterize maturation of the mucosal immune system
is to use fluorescence-activated cell sorting (FACS) to identify microbial taxa targeted by its IgA re-
sponses as a function of chronologic age in hosts with healthy growth phenotypes and in those with
undernutrition (critically, IgA targeting is not simply a reflection of the abundances of organisms
in the gut community; Kau et al., 2015). This method, named BugFACS, has identified bacterial
targets of gut mucosal IgA responses using fecal samples from children with healthy growth phe-
notypes or those with varying degrees of undernutrition, as well as fecal samples harvested from
gnotobiotic mice harboring transplanted microbiota from healthy and undernourished donors fed
diets representative of those that these children consume. BugFACS-purified viable IgA-targeted
bacterial taxa were subsequently introduced into germ-free animals fed nutrient-deficient or -suf-
ficient diets to characterize their functional properties. The results disclosed that IgA responses to
members of the microbiota can be used as biomarkers of growth faltering, that they are influenced
by enteropathogen load, and that they mediate a diet-dependent enteropathy characterized by small
intestinal and colonic epithelial barrier disruption. Moreover, treatment with [gA-targeted bacterial
strains purified from healthy donor microbiota can prevent development of the enteropathy (Kau et
al., 2015), indicating that this approach may have utility that extends beyond diagnostics to thera-

peutic lead discovery and defining mechanisms underlying EED pathogenesis.

A fourth and critical question is whether age-discriminatory taxa are not only just bio-
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markers but also effectors of growth. If so, they become potential therapeutic agents and targets
for manipulation, including food-based manipulations that allow for their establishment in an in-
dividual or population at the time of presentation with manifest disease or prior to that time. One
way we are currently determining whether age-indicative taxa are also growth indicative is by
transplanting microbial communities from children exhibiting varying degrees of growth falter-
ing (defined by anthropometry), representing a particular geographic region, into young, actively
growing germ-free animals fed diets representative of the donor population and then defining the
effects of the different transplanted communities on the growth, metabolic and immunologic phe-
notypes of recipient gnotobiotic mice (Figure 2). 16S rRNA data sets generated from the animals’
fecal samples can be used to correlate strain abundances to these phenotypes. These strains can
then be cultured from the microbiota of different donor populations. Determining the effects of
subsequently introducing these strains—singly or as components of defined consortia—into young
gnotobiotic mice harboring microbiota from different undernourished donors represents a way to
address several challenges that would be faced when designing and interpreting a clinical study.
For example, these preclinical studies could help to (1) define criteria used to select strains beyond
their feature importance scores in the Random Forests models and cultivability (e.g., the extent
of representation of virulence determinants in their genomes); (2) assess how to encapsulate these
organisms, including anaerobes, in ways that permit their long-term storage and viability; (3) de-
termine the extent to which consortia can invade and establish themselves in different microbiota
representing individuals from a given population or different populations; (4) assess the nature of
their effects on growth (e.g., gain of lean body mass), metabolism, and gut barrier function as a
function of the degree of donor undernutrition and microbiota immaturity; and (5) ascertain the
degree to which invasion and establishment of these strains in the targeted microbiota and their
host effects are impacted by diet. Determining whether these strains are interchangeable between
countries will influence the generalizability of microbial interventions or whether there would
have to be local sourcing of these biological resources by or for the communities who are them-

selves afflicted by undernutrition.
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Establishing Microbiota and the Maternal Influence

The origins of the microbes that colonize an infant’s gastrointestinal tract are complex, given that
infants are exposed to different environmental sources. A major source is the mother and includes
microbes from her vagina, skin, gut, and as some have reported, breast milk and possibly the pla-
centa (Dominguez-Bello et al., 2010, Hunt et al., 2011, Gronlund et al., 2011, Cabrera-Rubio et al.,

2012 and Aagaard et al., 2014).

A key knowledge gap relates to the “anthropology of microbes”: knowing how practices
associated with pregnancy, including micronutrient supplementation, as well as traditional (and
changing) societal “prescriptions” for dietary practices, impact a mother’s microbial ecology prior
to and following parturition and how this may impact transmission of her microbes to her infant.
A study of 91 pregnant Finnish women showed that the maternal microbiota changes between the
first and third trimester (Koren et al., 2012) (Figure 3). Another analysis of Bangladeshi mothers
revealed marked changes in their gut microbiota in the first month post-partum, followed by less
substantial changes in the ensuing nine months (Chapter 2, Subramanian et al., 2014). One test-
able hypothesis is that the maternal microbiota, much like the infant microbiota, undergoes stereo-
typical alterations during normal pregnancy designed to enhance maternal health and to promote
transfer of strains to the infant. Testing this hypothesis will require detailed time series sampling
of maternal microbiota throughout pregnancy and of the maternal-infant dyad, plus other envi-
ronmental sources, including other family members and caregivers. If a program of pregnancy-
associated changes in the maternal gut microbiota can be identified using approaches analogous
to those described above to characterize maturation of the infant microbiota, it could provide an
opportunity to use the most indicative or transmissible taxa as biomarkers of nutritional status and
as reporters of the effects of different dietary practices or the efficacy of prescribed prenatal nutri-

tional interventions.

Pregnancy is also a time of increased susceptibility to infection. Rowe et al. (2011) demon-

strated that pregnant mice show increased bacterial burden in models of Listeria monocytogenes
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and Salmonella typhimurium infection, mediated via active immune suppression by a population
of FoxP3+ regulatory T cells (Tregs). Moreover, ablation of the Treg compartment resulted in
near-complete resorption of fetuses, indicating a delicate balance between immunological toler-
ance of the fetus and defense against enteropathogens (Rowe et al., 2011). It is not known how this
period of deliberate immune suppression impacts the maternal microbiota and, in turn, transfer of

pathogens (and other microbial community members) to the infant.

The Impact of First Foods

Breast Milk

The association between healthy postnatal growth and exclusive breastfeeding has led to the
WHO’s recommendation for a minimum of six months of exclusive breastfeeding (Kramer and
Kakuma, 2002). Human milk is composed of lipids (tri-, di-, and monoglycerides, phospholipids,
glycolipids, and free fatty acids), protein components (including immunoglobulins, lactoferrin,
lysozyme, and cytokines), and a large repertoire of human milk oligosaccharides (HMOs). Over
time, this composition changes from colostrum, which is HMO rich, to mature milk, which con-
tains fewer HMOs and protein while the fat content remains relatively stable (Coppa et al., 1993

and Lemons et al., 1982).

HMOs and other milk glycoconjugates pass undigested through the proximal gut (Eng-
fer et al., 2000) and serve as nutrient substrates for saccharolytic microbiota in the colon. The
microbiota of healthy exclusively breastfed infants is dominated by members of the genus Bifi-
dobacterium (Figure 1; Yatsunenko et al., 2012 and Chapter 2, Subramanian et al., 2014). These
infant-associated bifidobacteria, notably Bifidobacterium longum subsp. infantis, possess a suite
of genes involved in importing complex fucosylated and sialylated milk glycans, their further
degradation, and subsequent utilization (Sela et al., 2008). The functions encoded by this suite of
genes allow them to outcompete other saccharolytic taxa (Marcobal et al., 2010). Bifidobacteria

also actively reshape milk composition. For example, they release N-linked glycans conjugated to
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milk glycoproteins for use as a growth substrate. However, the effect of deglycosylation on milk

protein digestibility and function is as-yet unknown (Garrido et al., 2012 and Garrido et al., 2013).

Colonization by Bifidobacterium species during nursing is associated with a range of ben-
efits, including improved vaccine responses (Huda et al., 2014) and enhanced gut barrier function
(Ewaschuk et al., 2008 and Weng et al., 2014), including stabilized epithelial tight junctions noted
in both animal models (Bergmann et al., 2013) and human cell lines (Chichlowski et al., 2012).
Recent work has shown that infants with high Bifidobacterium population densities exhibit a cor-
responding decrease in fecal milk glycans (De Leoz et al., 2015 and Wang et al., 2015), a relation-
ship that could serve as the basis for developing inexpensive diagnostics to monitor development

of a healthy gut microbiota in nursing infants.

Development of a healthy infant gut microbiota can be threatened by maternal undernutri-
tion and premature birth. Maternal undernutrition during pregnancy increases risk for underweight
and preterm births (Kramer et al., 1992). Children of undernourished mothers receive substantially
less than the recommended intake of priority micronutrients during lactation (Allen, 2005). Forti-
fied milk obtained from donors who have had a full-term pregnancy likely does not provide suf-
ficient protein to preterm infants (Arslanoglu et al., 2009). Even when mothers of preterm infants
can produce sufficient milk, alterations in milk fat, protein, oligosaccharide content (Weber et al.,
2001 and De Leoz et al., 2012), and the repertoire of immunoactive components (Castellote et al.,
2011) are observed, leading to a call for identifying additional elements for nutritional support of

these infants (Gabrielli et al., 2011 and De Leoz et al., 2012).

A vicious cycle of maternal undernutrition and poor infant nutritional status can reflect
alterations in the immune, HMO, and/or other components of mother’s milk. This has critical
implications for infant health. Poor maternal health is associated with variations in breast milk im-
munoglobulins and glycoprotein structures during lactation (Smilowitz et al., 2013) and with de-
creased lactoferrin, a protein with antimicrobial activities (Hennart et al., 1991). Parasite-specific

breast milk IgA titers to Entamoeba histolytica and Cryptosporidium spp. correlate with nutritional
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status in a Bangladeshi infant population in which the burden of infection with these enteropatho-
gens is very high (Korpe et al., 2013). Preterm delivery is associated with atypical variations in
milk glycan structures (De Leoz et al., 2012), which poses additional risks. As HMOs have struc-
tural similarities to epithelial cell surface and mucus glycans, they can have anti-adhesive effects
on enteropathogens. Sialic acid or fucose moieties are key determinants of this activity. Thus,
variations in fucosylated HMOs associated with preterm birth may reduce the efficacy of milk
oligosaccharides as anti-adhesive decoy molecules for pathogens (Ruiz-Palacios et al., 2003 and

Jantscher-Krenn et al., 2012).

Understanding how breast milk glycan repertoires correlate with normal microbiota as-
sembly and with impaired microbiota maturation and undernutrition provides an opportunity to
identify new glycan streams that could be used to treat undernourished infants. Commercial pre-
biotics are commonly added to infant formula, where they increase bifidobacteria titers in infant
feces (Haarman and Knol, 2005, Knol et al., 2005 and Boehm et al., 2002) and lower the incidence
of pathogens (Knol et al., 2005). However, current prebiotics, namely fructooligosaccharides and
galactooligosaccharides, do not represent the constellation of complex glycan structures delivered
in human milk. Moreover, their consumption is not restricted to the population of microbes that
define normal gut microbiota maturation (Everard et al., 2014 and Dewulf et al., 2013). Numerous
efforts to recreate the glycan landscape present in human milk are underway. The technology for
chemical and chemoenzymatic construction of complex “milk™ oligosaccharides has advanced
tremendously, enabling wholesale construction of a limited number of HMO-like structures pres-
ent in milk (Muthana et al., 2009). Alternatively, purification from animal milks presents another
opportunity for rapid and large-scale acquisition of milk oligosaccharides and glycoconjugates. At
present, a number of enriched or purified bovine milk glycoproteins, including immunoglobins,
lactoferrin, and glycomacropeptide, and glycolipids are commercially available or could be readily
produced at scale for use in preclinical and clinical studies. Bovine milk contains a relatively low
concentration of free oligosaccharides, but the distribution of structures observed roughly matches

the most abundant species present in HMOs (Aldredge et al., 2013). Importantly, bovine milk
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oligosaccharides (BMOs) can be sourced from numerous points in dairy processing, including
cheese whey, suggesting an opportunity for large-scale production of fractions enriched for given

(or similar) structures (Zivkovic and Barile, 2011).

Serial Introduction of Complementary Foods in Ways that Promote Maturation of the Gut

Microbiota

A recent study compared the microbiota and immune system in bottle-fed versus breastfed ma-
caques. The results showed that breastfed infant macaques develop more robust T 17 cells in the
memory pool, suggesting that the timing and trajectory of dietary exposures during early life may
have lasting functional consequences beyond that period (Ardeshir et al., 2014). In breastfed hu-
mans, the transition to formula feeding and family foods (complementary feeding practices) varies
considerably in terms of which food types are consumed, the order of their presentation, and the
duration of their consumption. Documenting which foods growing infants consume and in what
quantities has required innovative approaches, particularly in low-income countries where under-
nutrition is prevalent (Caulfield et al., 2014) (Figure 3). For example, data collection protocols
across eight different countries have been harmonized to enable quantification of variations in

child feeding practices in the MAL-ED consortium (Caulfield et al., 2014).

The co-linearity between the introduction of various types of solid foods, reduction in
breast milk consumption, and maturation of the gut microbiota makes it challenging to identi-
fy causal relationships between specific ingredients and the representation of specific microbes
through human studies. However, studies in gnotobiotic mice colonized with defined collections
of cultured (and sequenced) human gut-derived bacteria have been successful in interrogating
specific food-microbe associations (Faith et. al., 2011). These relationships were identified us-
ing an experimental design in which a given gnotobiotic animal harboring a defined microbial
consortium received a sequence of diets, composed of several different combinations of foods,
whose concentrations are intentionally varied between diets. The order of presentation of the dif-

ferent diets was also varied between different mice in order to limit confounding from hysteresis
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effects. This approach has identified associations between various commercially available foods
given in the USA during the complementary feeding period and specific microbes independent of
their order of presentation, which would be virtually impossible to identify in clinical studies of
developing human infants (Faith et al., 2011). This approach can be applied to young mice colo-
nized with the age- and healthy growth-associated bacterial strains identified using the methods
described above to determine which complementary foods promote their representation and ex-
pressed functional features. The results could lead to a recommended sequence of complementary
feeding that reflects local food availability, affordability, and cultural practices and that sponsors
healthy microbiota maturation. This information would advance current recommendations, which

are not microbiota based and quite general (Kleinman, 2000).

Additional Considerations Regarding the Developmental Biology of the Gut Microbiota

Obesity

Although we have emphasized the global challenge of undernutrition in children, another vexing
global health problem is the growing burden of obesity and associated metabolic dysfunction in
children. Increasing attention is being paid to delineating differences in the gut microbiota of chil-
dren who become obese in the hopes that early recognition of perturbed microbiota development
may permit early interventions in at risk populations. For example, a recent culture-independent
study of a Singaporean birth cohort disclosed that precocious maturation of the microbiota dur-
ing the first 6 months of postnatal life was associated with significantly increased adiposity at 18
months (Dogra et al., 2015). Specifically, an unsupervised clustering approach based on bacterial
16S rRNA sequence data sets revealed three clusters of fecal microbiota configurations. The num-
ber of samples that binned into one of these clusters (cluster 3), which is characterized by high
levels of Bifidobacteria and Collinsella and low levels of Streptococcus and Enterobacteriaceae,
increased with age. A faster time to achieving a cluster 3 configuration was associated with signifi-
cantly greater adiposity measured at age 18 months. Given the rapid rate of change in eating prac-

tices and incidence of childhood obesity, longitudinal studies of this type are timely. They should
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be strategically applied to populations representing different manifestations of these economic,
anthropologic, and epidemiologic transitions and accompanied by comprehensive, quantitative as-

sessments of food consumption during the pre-weaning, weaning, and postweaning periods.

Obesity is associated with reduced organismal and genetic diversity in the gut microbiota/
microbiome of adults (Turnbaugh et al., 2009b and Le Chatelier et al., 2013). Transplantation of
intact fecal microbiota samples, or derived culture collections, from adult twins stably discordant
for obesity into germ-free mice transmitted the donors’ discordant adiposity phenotypes, as well
as obesity-associated metabolic dysfunction (Ridaura et al., 2013). Co-housing mice just after
they received the obese donor’s (Ob) microbiota with mice just after they received the lean co-
twin’s (Ln) microbiota, before their discordant adiposity/metabolic phenotypes became evident,
prevented development of obesity and metabolic abnormalities in the Ob cagemate. This preven-
tion was associated with unidirectional invasion of bacteria from the Ln cagemate’s gut commu-
nity to the Ob cagemate’s microbiota. Invasion was diet dependent, occurring in mice fed a human
diet formulated to reflect the lower third of saturated fat and upper third of fruit and vegetable
consumption in the USA, but not when animals received an unhealthy diet representing the upper
third of saturated fat and lower third of fruit and vegetable consumption (Ridaura et al., 2013).
These results illustrate how niches can be filled in the Ob microbiota by Ln-derived bacterial taxa
to prevent disease and how important diet is to the installation of these health-promoting strains.
The results raise important questions about the origins of the reduced bacterial diversity observed

in Ob microbiota.

Impact of Antibiotics

One active area of investigation is the role of frequent consumption of broad-spectrum antibiot-
ics in determining the diversity and functional features of the developing microbiota. Studies in
conventionally raised mice treated with low-dose penicillin from birth to 4, 8, or 28 weeks of age
revealed that early and brief exposure was sufficient to produce durable changes in body com-

position (Cox et al., 2014). Practical issues (in many parts of the world, antibiotic consumption
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in children is pervasive and poorly documented), ethical considerations, and the identification of
suitable controls all confound the design of human studies that would seek to determine the effects
of antibiotic administration on the developmental biology of the human infant gut microbiota and
growth. In principle, pre-clinical tests that administer various classes of antibiotics in varying dos-
es—together with representative human diets to gnotobiotic mice harboring transplanted micro-
biota from infants and children living in various parts of the world—followed by transplantation of
their antibiotic-treated microbiota to a next generation of (antibiotic-free) gnotobiotic recipients,

would provide one way to explore these questions.

Affordable Nutritious Foods: Societal Implications and Challenges

An imbalance of carbohydrate, fat, and protein consumption, food insecurity, and changing diets in
low-income countries brought about by globalization, increases in food prices at the point of retail,
and a global protein supply that needs to double by 2050 are some of the drivers for developing
new types of affordable nutritious foods that are culturally acceptable, suitable for storage, and
distributable given current and envisioned future infrastructure. A sustainable economic model in
which local economies benefit from producing and/or distributing foods is also required to ensure
long-term supplies. Moreover, there is a paucity of generally accepted metrics for defining foods
that provide optimal nutrition at affordable cost (e.g., see the “nutrient-rich foods index” devel-

oped based on FDA recommendations; Drewnowski, 2010).

We propose that the gut microbiota provides a parameter that needs to be considered when
developing nutrition options and that the type of preclinical gnotobiotic models described above
will be useful for testing and defining dietary parameters. Studies with mice and other species pro-
vide means for characterizing interactions between food ingredients (at different levels of ingredi-
ent resolution and including culturally relevant spices and sweeteners), their methods of prepara-

tion and preservation, the gut microbiota of various consumer populations, and human metabolic,
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immunologic, and other physiologic features. These research platforms offer the promise of yield-
ing next-generation foods designed to be satiating, delicious, nutritious, and able to manipulate
microbiota and host properties in ways that promote healthy growth and wellness. However, ful-
filling this promise demands a holistic view of the nexus of human gut microbial ecology research,
agricultural practices, food production, evolving consumer tastes in an era of rapid globalization,
envisioned commercialization strategies, current regulatory structures/practices, ethical issues,
and public education. For example, there is a need to more thoroughly and rapidly characterize,
through readily searchable, accessible, well-annotated databases, emerging food consumption pat-
terns in countries representing different cultural traditions, stages of economic development, and
land/water resources. At the commercial level, there is an opportunity to define and differentiate
foods based on their effects on different consumer populations with distinct biological phenotypes
and with different gut microbial community configurations. There is an accompanying need to
frame intellectual property laws in ways that provide appropriate incentives for private investment

while protecting the public good.

To effectively and responsibly apply this knowledge in ways that benefit society, there is
a need to work with government agencies to provide efficient and sensible regulatory schemes.
These regulatory frameworks vary between nations and are evolving. Currently, the US Food and
Drug Administration (FDA) defines “medical foods” as foods that make medical claims. A “di-
etary supplement” is a product intended for ingestion that contains a dietary ingredient designed
to add further nutritional value to a diet. Dietary supplements can only contain ingredients that are
“generally regarded as safe” (GRAS) or approved as food additives by the FDA after filing a “new
dietary ingredient” (NDI) notification with full description of the ingredient and product in which
it will be marketed, the basis for the manufacturer’s conclusion that it is an NDI, recommended use
and proposed labeling, plus a history of its use and evidence of its safety to support the proposed
use. Probiotics have been defined in various ways, including “live microorganisms that, when
administered in adequate amounts, confer a health benefit on the host” (Joint FAO/WHO Expert

Consultation on Evaluation of Health and Nutritional Properties of Probiotics, 2001), whereas pre-
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biotics have been considered to be “a selectively fermented ingredient that allows specific changes
both in the composition and/or activity of the gastrointestinal microbiota that confer benefits upon
host well-being and health” (Roberfroid, 2007). Synbiotics are combinations of prebiotics and pro-
biotics. Regulation of prebiotics, probiotics, and synbiotics remains a work in progress, although
any health claims they make will likely require a clinical development pathway that is the same as

that employed for biologics.

Opening the Public Discussion

For public acceptance and societal benefit, a thoughtful proactive, science-based, educational out-
reach is needed with an understandable vocabulary tailored to targeted consumer populations and
respectful of their cultural traditions. The goal would be to objectively describe the extent to which
the nutritional value of food is related to a consumer’s microbiota and how food ingredients, food

choices, and the microbiota are connected to health benefits.

We suggest that one way of framing a public discussion regarding the impact of human gut
microbiome research on the nexus of food, agriculture, and nutrition is to divide it into three “sec-

tors”: science and technology, ethics, and policy and governance.

Science and Technology

Ongoing and new studies will help to define (1) methods for selection and production of new food
sources, (2) design of new foods/diets, (3) definitions of nutritional value and benefit and metrics
for differentiation of foods, and (4) the role of the gut microbiota in determining nutritional status

in pregnant women, infants and children, and adults throughout the course of their lives.

Ethics

The impact of gut microbiota research extends beyond conceptions of health to human rights. Key
issues include (1) concepts of self and ownership of microbes and the shaping of these views by

cultural, religious, socio-economic, educational, and political factors; (2) use of a person’s mi-
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crobes to improve nutritional status within and beyond family, community, and country; (3) strate-
gies for responsible stewardship of our (human) microbial resources; and (4) personal, familial,
and societal impact (and shared benefit) of methods envisioned to promote intergenerational trans-
mission of beneficial microbes and to effect durable repair of defective gut microbial community

development early in life or functional restoration later in life.

Policy and Governance

Advances in gut microbiota research will have long-term impact on regulatory and other govern-
mental policies and agencies as they relate to agriculture, food, and nutritional health. These ef-
fects include (1) definitions of food safety, including the products of microbial biotransformation
of food ingredients; (2) definitions of nutritional benefit within and outside of the context of specif-
ic human health claims; (3) laws concerning ownership of microbial strains and their distribution
within and across national borders (for example, in October 2014, the Convention on Biological
Diversity/Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of
Benefits from their Utilization entered into international force “stringent requirements for prior
informed consent and benefit sharing for research and commercial activities involving genetic
resources from plants, animals, and microorganisms” [http://www.cbd.int/abs/]); (4) laws concern-
ing intellectual property related to microbes, microbial consortia, and the products of microbial
interactions with food ingredients, including diagnostics and therapeutics; (5) policies related to
standards of manufacture, purity, and composition of probiotics and synbiotics; and (6) incentives
for linking plans for food production and distribution with gut microbiota health. A key challenge

is how to construe (1)—(6) in the context of a reference set of “representative” countries.

Closing Thoughts

Given the intricate links between first foods and long-term human health, ensuring availability of
appropriate food sources is of high priority. Because undernutrition is such a widespread afflic-

tion, it is critical to consider how to categorize the targeted populations, the cost and economic
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sustainability, the efficacy (effect size and durability), and the cultural acceptability of various
therapeutic or preventative approaches, as well as the generalizability of both food-based and
microbial interventions to large populations within and across national/societal boundaries. One
way of conceptualizing this complex set of challenges for treatment and prevention is to place,
on one end of the spectrum of undernutrition, children with already manifest SAM and signifi-
cant microbiota immaturity who could be treated with locally produced, readily and reproducibly
manufactured, affordable and safe, culturally acceptable next-generation RUTFs, with or without
microbial interventions of the type described above. Moving along this continuum, another group
would consist of individuals who manifest growth faltering (stunting) in the first 1,000 days after
conception, where the envisioned targets for interventions are pregnant and lactating women and
their infants. At the other end of the continuum is a third group that are the targets of locally pro-
duced, consumer-focused, affordable nutrition products designed to improve dietary quality and

increase the diversity of food choices.

Looking back over 800 million years of metazoan evolution, we appreciate more now than
ever before the splendid innovation of having a gut that assembles microbial resources that enable
efficient utilization of available nutrients (McFall-Ngai et al., 2013). We, humans, are now in a
position to not only understand but to deliberately influence this process of microbial community
acquisition in order to ensure its optimal execution. The challenges we face in designing and im-
proving food systems and nutritional health are great and pressing. Hopefully, our gut instinct will
be to honor and harness the intimate interrelationship between foods and “our” microbes in an
attempt to address this challenge now and throughout the course of this defining century for our

species and planet.
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Figure Legends

Figure 1 — Developing metrics for describing gut microbial community development. (a) Bac-
terial taxa that discriminate different stages of development were identified by a machine learning-
based (Random Forests) regression of 16S rRNA datasets produced from monthly fecal samples
collected from anthropometrically healthy infants and children living in an urban slum in Dhaka,
Bangladesh during their first two years of postnatal life to their respective chronologic ages at the
time of sample collection (Subramanian et. al, 2014). Shown are depictions of the typical distri-
butions of these age-discriminatory taxa across the population. Taxa were selected based on their
relative importance to the accuracy of the Random Forests model using a permutation-based ‘fea-
ture importance’. (b) The most discriminatory taxa, as defined by their feature importance, were
used as inputs into a sparse 24-taxon model whose output (‘microbiota age’) is a microbiota-based
prediction of the chronologic age of a healthy child. The plot on the left of the panel shows mi-
crobiota age against chronologic age of healthy children used as a training set to fit the regression
(each dot is a fecal sample from an individual child). The plot on the right of the panel shows ap-
plication of the sparse model to a validation set composed of a different group of children living in
the same location that were not used to train the model. Applying the model to a separate validation
set controls for over-fitting of the model to the training set, and ensures its wider usability. (c) Two
metrics of microbiota maturation based on application of the model to two separate validation sets
of singletons and a separate study of Bangladeshi twins/triplets. ‘Relative microbiota maturity’ is
the deviation, in months, from a smooth-spline fit of microbiota age values with respect to chrono-
logic age, fitted using the validation datasets (see black dashed curve). The red dot represents a
fecal sample collected from a focus child that is 11 months below the spline fit, indicating negative
relative microbiota maturity (i.e., an immature microbiota). A microbiota-for-age Z score (MAZ)
is computed by dividing the difference between the focal child’s microbiota age and the median
microbiota age of healthy controls in the same monthly chronologic age bin over the standard
deviation within the same age bin. The median and standard deviation of each bin are computed

using the validation datasets. The distribution of microbiota maturity and MAZ scores in birth-co-
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hort studies have been studied using linear mixed models that take into account random variation
specific to each serially-sampled child and family while estimating the fixed variation attributable
to a factor observed across different children (e.g., diarrheal episodes) (Chapter 2, Subramanian et

al., 2014).

Note that using Random Forests to study microbiota maturation is advantageous because of its
non-parametric assumptions and utility in the context of high dimensional datasets (large num-
bers of predictors). Nonetheless, it is one of several methods that can be useful. For example, the
rank-order Spearman correlation metric has been applied to infant microbiome datasets to detect
monotonic relationships between microbiome-encoded functions/bacterial taxa and postnatal age

(Yatsunenko et. al, 2012).

Figure 2 — Integration of existing clinical observational and interventional studies into gnoto-
biotic mouse models to identify interactions between the gut microbiota, food, and host biol-
ogy. The discovery process depicted by the left circle illustrates how gnotobiotic animal models
colonized with human donor microbiota and fed human diets can lead to a greater understanding of
how diet-by-microbiota interactions are causally related to healthy growth and to phenotypes as-
sociated with undernutrition: e.g., immune system development, brain development and host and
microbial community metabolism. New surrogate- or mechanism-based biomarkers of nutritional
state emanating from these gnotobiotic models can be validated using biospecimens collected from
the donors used to construct these gnotobiotic models, as well as from other members of the study
population. The discovery/development process depicted on the right illustrates how dietary and
microbial ‘leads’ can be tested in the context of humanized gnotobiotic animals to assess how they
modulate biological processes already known, discovered or postulated to be involved in healthy
growth and/or the pathogenesis of undernutrition. The downward pointing arrow in the middle
of the figure points to next steps in clinical translation. See the main text for a discussion of the
regulatory, ethical, societal and commercial implications of these efforts. Abbreviation: IND, In-

vestigational New Drug.
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Figure 3 — Co-variation in gut microbiota assembly/maturation, dietary patterns and other
facets of human postnatal development. (a) [llustration of the rate of change occurring in gut mi-
crobiota structure of both mother and child. Note that infant variation curves are known from both
longitudinal and cross-sectional study designs (Yatsunenko et al., 2012, Chapter 2, Subramanian
et al., 2014). In the case of mothers, the curve is interpolated based on studies of pregnant Finn-
ish mothers prior to delivery (Koren et al., 2012) and Bangladeshi mothers following parturition
(Chapter 2, Subramanian et al., 2014). (b) The food consumption pattern shown is at a population
level and does not depict the great deal of temporal variation observed in food consumption pat-
terns within a given child. Depicting the fractional contribution of each food to the consumption
patterns of children in Bangladesh underscores how dietary changes occur simultaneously (lower-
ing of breast-milk and increase in legumes and cow’s milk) and not in an orderly fashion (small
fluctuations from month-to-month; re-entry and dropout of certain foods). It also underscores the
challenge encountered in ascertaining how food and the microbiota interact to effect maturation
of the community. (c) Major processes related to growth and how they vary in rate and magnitude
over time. Curves are adapted from Bogin (1999). Note that the newborn brain represents 12%
of body weight (a value six times greater than in adults). By the end of the first decade, the brain
represents 6% of body weight and consumes twice the amount of glucose and 1.5 times the amount
of oxygen as the adult brain. Approximately 30% of the glucose consumed by the infant brain
is accounted for by aerobic glycolysis (versus 12% in adults) (Goyal et al., 2014). The dramatic
changes in brain metabolism that occur over the first two decades of life coincide with the initial
proliferation and then pruning of synapses to adult levels. Central questions that need to be ad-
dressed in this area include the biological effects of the gut microbial community on neurogenesis,
synaptic connectivity, gliogenesis and glial-neuron interactions, neural circuit function and higher
cognitive processes in the context of healthy growth versus undernutrition, and whether/how the
gut-brain axis operates to influence/regulate other aspects of host physiology, metabolism and
immunity in the infant/child. Moreover, if persistent immaturity of the gut microbiota is causally

related to undernutrition and its long-term sequelae, including neurodevelopmental abnormalities,
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does durable repair of this immaturity require that nutritional interventions be administered earlier
before disease becomes fully manifest (and the microbial ecosystem is so perturbed that restora-
tion becomes very difficult)? Do nutritional interventions need to be applied for more sustained
periods of time? Do new types of therapeutic foods need to be developed or is a microbial inter-

vention also needed?
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Chapter 2

Persistent gut microbiota immaturity in malnourished Bangladeshi children
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Abstract

Therapeutic food interventions have reduced mortality in children with severe acute malnutrition
(SAM), but incomplete restoration of healthy growth remains a major problem'?. The relationships
between the type of nutritional intervention, the gut microbiota, and therapeutic responses are
unclear. In the current study, bacterial species whose proportional representation define a healthy
gut microbiota as it assembles during the first two postnatal years were identified by applying a
machine-learning-based approach to 16S ribosomal RNA data sets generated from monthly faecal
samples obtained from birth onwards in a cohort of children living in an urban slum of Dhaka,
Bangladesh, who exhibited consistently healthy growth. These age-discriminatory bacterial spe-
cies were incorporated into a model that computes a ‘relative microbiota maturity index’ and ‘mi-
crobiota-for-age Z-score’ that compare postnatal assembly (defined here as maturation) of a child’s
faecal microbiota relative to healthy children of similar chronologic age. The model was applied to
twins and triplets (to test for associations of these indices with genetic and environmental factors,
including diarrhoea), children with SAM enrolled in a randomized trial of two food interventions,
and children with moderate acute malnutrition. Our results indicate that SAM is associated with
significant relative microbiota immaturity that is only partially ameliorated following two widely
used nutritional interventions. Immaturity is also evident in less severe forms of malnutrition and
correlates with anthropometric measurements. Microbiota maturity indices provide a microbial
measure of human postnatal development, a way of classifying malnourished states, and a parame-
ter for judging therapeutic efficacy. More prolonged interventions with existing or new therapeutic
foods and/or addition of gut microbes may be needed to achieve enduring repair of gut microbiota

immaturity in childhood malnutrition and improve clinical outcomes.
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Introduction

Severe acute malnutrition and moderate acute malnutrition (MAM) are typically defined by an-
thropometric measurements: children are classified as having SAM if their weight-for-height Z-
scores (WHZ)? are below three standard deviations (=3 s.d.) from the median of the World Health
Organization (WHO) reference growth standards, whereas those with WHZ between —2 and —3
s.d. are categorized as having MAM. SAM and MAM typically develop between 3 and 24 months
after birth *. A standardized treatment protocol for SAM and its complications has been developed
in Bangladesh'. The result has been a reduction in mortality rate, although the extent to which this
protocol results in long-term restoration of normal growth and development needs to be ascer-
tained through longitudinal studies™°. There is similar lack of clarity about the long-term efficacy

of nutritional interventions for MAM?”- 8,

Food is a major factor that shapes the proportional representation of organisms present in
the gut microbial community (microbiota), and its gene content (microbiome). The microbiota and
microbiome in turn have an important role in extracting and metabolizing dietary ingredients’ >
11121314 To investigate the hypothesis that healthy postnatal development (maturation) of the gut
microbiota is perturbed in malnutrition'?, we monitored 50 healthy Bangladeshi children monthly
during the first 2 years after birth (25 singletons, 11 twin pairs, 1 set of triplets; 996 faecal samples
collected monthly; see Methods and Supplementary Tables 1-3). By identifying bacterial taxa that
discriminate the microbiota of healthy children at different chronologic ages, we were able to test
our hypothesis by studying 6- to 20-month-old children presenting with SAM, just before, during,
and after treatment with two very different types of food intervention, as well as children with
MAM. The results provide a different perspective about malnutrition; one involving disruption of

a microbial facet of our normal human postnatal development.
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Results

Bacterial taxonomic biomarkers for defining gut-microbiota maturation in healthy

Bangladeshi children during the first two years of life

To characterize gut microbiota maturation across unrelated healthy Bangladeshi children living in
separate households, faecal samples were collected at monthly intervals up to 23.4+0.5 months
of age in a training set of 12 children who exhibited consistently healthy anthropometric scores
(WHZ, —0.32+£0.98 (mean+s.d.) 22.7+1.5 faecal samples per child; Supplementary Table 4a).
The bacterial component of their faecal microbiota samples was characterized by V4-16S rRNA
sequencing (Supplementary Table 5) and assigning the resulting reads to operational taxonomic
units (OTUs) sharing>97% nucleotide sequence identity (see Methods; a 97%-identity OTU is
commonly construed as representing a species-level taxon). The relative abundances of 1,222
97%-identity OTUs that passed our filtering criterion'® were regressed against the chronologic age
of each child at the time of faecal sample collection using the Random Forests machine learning
algorithm'®. The regression explained 73% of the variance related to chronologic age. The signifi-
cance of the fit was established by comparing fitted to null models in which age labels of samples
were randomly permuted with respect to their 16S rRNA microbiota profiles (P = 0.0001, 9,999
permutations). Ranked lists of all bacterial taxa, in order of ‘age-discriminatory importance’, were
determined by considering those taxa, whose relative abundance values when permuted have a
larger marginal increase in mean squared error, to be more important (see Methods). Tenfold cross-
validation was used to estimate age-discriminatory performance as a function of the number of
top-ranking taxa according to their feature importance scores. Minimal improvement in predictive
performance was observed when including taxa beyond the top 24 (see Supplementary Table 6 for
the top 60). The 24 most age-discriminatory taxa identified by Random Forests are shown in Fig.
la in rank order of their contribution to the predictive accuracy of the model and were selected as

inputs to a sparse 24-taxon model.
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To test the extent to which this sparse model could be applied, we applied it, with no further
parameter optimization, to additional monthly faecal samples collected from two other healthy
groups of children: 13 singletons (WHZ, —0.44+0.8 (mean=+s.d.)) and 25 children from a birth-
cohort study of twins and triplets, (WHZ, —0.5+£0.7 (mean=+s.d.)), all born and raised in Mirpur,
Bangladesh (Supplementary Table 4b, c). We found that the model could be applied to both groups
(= 0.71 and 0.68, respectively), supporting the consistency of the observed taxonomic signature

of microbiota maturation across different healthy children living in this geographic locale (Fig. 1b,
c).

Two metrics of microbiota maturation were defined by applying the sparse model to the 13
healthy singletons and 25 members of twin pairs and triplets that had been used for model valida-
tion. The first metric, relative microbiota maturity, was calculated as follows:

relative microbiota maturity = microbiota age of child
— microbiota age of healthy children of similar chronologic age

where microbiota age values for healthy children were interpolated across the first two years of
life using a spline fit (Fig. 1b). The second metric, microbiota-for-age Z score, was calculated as

follows:

MAZ=
(microbiota age — median microbiota age of healthy children of same chronologic age)

(s.d. of microbiota age of healthy children of the same chronologic age)

where MAZ is the microbiota-for-age Z-score, and median and s.d. of microbiota age were com-
puted for each month up to 24 months. The MAZ accounts for the variance of predictions of
microbiota age as a function of different host age ranges (when considered in discrete monthly
bins) (see Extended Data Figure 1 for the calculation of each metric, and Supplementary Notes for
discussion of how this approach defines immaturity as a specific recognizable state rather than as

a lack of maturity).

To study the influences of genetic and environmental factors on these microbiota matura-

tion indices, we examined their distribution in healthy Bangladeshi twins and triplets. Monozy-
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gotic twins were not significantly more correlated in their maturity profiles compared to dizy-
gotic twins, and within the set of triplets, the two monozygotic siblings were not more correlated
than their fraternal sibling (monozygotic pairs, 0.1+0.5 (Spearman’s Rho+s.d.); dizygotic pairs,
0.33+£0.3; in the e of the triplets, values for the monozygotic pair and fraternal sibling were 0.1;
and 0.24+0.3, respectively). Maturity was significantly decreased in faecal samples obtained dur-
ing and 1 month after diarrhoeal episodes (P<0.001 and P<0.01, respectively) but not beyond
that period (Extended Data Figure 2). There was no discernable effect of recent antibiotic usage
(1 week before sampling) on relative microbiota maturity, whereas intake of infant formula was
associated with significantly higher maturity values (Supplementary Table 7). Family membership
explained 29% of the total variance in relative microbiota maturity measurements (log-likelihood
ratio = 102.1, P<0.0001; linear mixed model) (see Supplementary Notes, Supplementary Tables
8 and 9, and Extended Data Figure 3 for analyses of faeccal microbiota variation in mother—infant

dyads and fathers).

Persistent immaturity of the gut microbiota in children with SAM

To investigate the effects of SAM on microbiota maturity, 64 children with SAM who had been
admitted to the Nutritional Rehabilitation Unit of the International Centre for Diarrhoeal Disease
Research, Bangladesh (ICDDR,B), Dhaka Hospital, were enrolled in a study to investigate the
configuration of their faecal microbiota before, during and after treatment with either an imported,
internationally used ready-to-use therapeutic food (RUTF; Plumpy’Nut) or a locally produced,
lower-cost nutritional food combination (Khichuri-Halwa). Children ranged in age from 6 to 20
months of age at the time of enrollment and were randomly assigned to either of the treatment
arms. At enrollment, WHZ averaged —4.2+0.7 (mean=s.d.) (see Supplementary Tables 1012 for
patient metadata and Fig. 2a for study design). In the initial ‘acute phase’ of treatment, infection
control was achieved with parenteral administration of ampicillin and gentamicin for 2 and 7 days,
respectively, and oral amoxicillin for 5 days (from days 3 to 7 of the antibiotic treatment protocol).

Children with SAM were initially stabilized by being fed the milk-based gruel, ‘suji’, followed
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by randomization to either an imported peanut-based RUTF intervention or an intervention with
locally produced, rice-and-lentil-based therapeutic foods (Khichuri and Halwa; see Methods and
Supplementary Table 13 for compositions of all foods used during nutritional rehabilitation). Dur-
ing this second ‘nutritional rehabilitation phase’ (1.3+0.7 weeks long) children received 150-250
kcal kg! body weight per day of RUTF or Khichuri-Halwa (3—5 g protein kg™! per day), plus
micronutrients including iron. Children were discharged from the hospital after the completion
of this second phase; during the ‘post-intervention phase’, periodic follow-up examinations were
performed to monitor health status. Faecal samples were obtained during the acute phase before
treatment with Khichuri—-Halwa or RUTF, then every 3 days during the nutritional rehabilitation

phase, and monthly thereafter during the post-intervention follow-up period.

There was no significant difference in the rate of weight gain between the RUTF and Khi-
churi-Halwa groups (10.9+4.6 versus 10.4+5.4 g kg™! body weight per day (mean=+s.d.); Stu-
dent’s ¢-test, P = 0.7). The mean WHZ at the completion of nutritional rehabilitation was signifi-
cantly improved in both treatment groups (—3.1+0.7 (mean+s.d.) RUTF, P<0.001; and -2.7+1.6
Khichuri-Halwa, P<0.0001), but not significantly different between groups (P = 0.15). During
follow-up, WHZ remained significantly lower compared to healthy children (—2.1+1.2, Khich-
uri-Halwa; —2.4+0.8 RUTF versus —0.5+ 1.1 for healthy, P<0.0001; Extended Data Figure 4a).
Children in both treatment arms also remained markedly below normal height and severely under-

weight throughout the follow-up period (Extended Data Figure 4b, c).

The Random Forests model derived from healthy children was used to define relative mi-
crobiota maturity for children with SAM at the time of enrollment, during treatment, at the end of
either nutritional intervention, and during the months of follow-up. The results revealed that com-
pared to healthy children, children with SAM had significant microbiota immaturity at the time
that nutritional rehabilitation was initiated and at cessation of treatment (Dunnett’s post-hoc test,
P<0.0001 for both groups; Fig. 2b). Within 1 month of follow-up, both groups had improved sig-
nificantly. However, improvement in this metric was short-lived for the RUTF and Khichuri—Hal-

wa groups, with regression to significant immaturity relative to healthy children beyond 4 months
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after treatment was stopped (Fig. 2b and Supplementary Table 14). MAZ, like relative microbiota
maturity, indicated a transient improvement after RUTF intervention that was not durable beyond
4 months. In the Khichuri—-Halwa group, relative microbiota maturity and MAZ improved follow-
ing treatment, but subsequently regressed, exhibiting significant differences relative to healthy
children at 2—3 months, and >4 months after cessation of treatment (Fig. 2b and Supplementary

Table 14).

Both food interventions had non-durable effects on other microbiota parameters. The re-
duced bacterial diversity associated with SAM persisted after Khichuri-Halwa and only transiently
improved with RUTF (Extended Data Figure 5 and Supplementary Table 14). We identified a total
of 220 bacterial taxa that were significantly different in their proportional representation in the fae-
cal microbiota of children with SAM compared to healthy children; 165 of these 220 97%-identity
OTUs were significantly diminished in the microbiota of children with SAM during the longer
term follow-up period in both treatment groups (Extended Data Figs 6 and 7, and Supplementary
Table 15).

Although the majority of children in both treatment arms of the SAM study were unable
to provide faecal samples before the initiation of antibiotic treatment due to the severity of their
illness, a subset of nine children each provided one or two faecal samples (n = 12) before admin-
istration of parenteral ampicillin and gentamicin, and oral amoxicillin. Microbiota immaturity was
manifest at this early time-point before antibiotics in these nine children (relative microbiota ma-
turity: —5.15+0.9 months versus —0.03 0.1 for the 38 reference healthy controls; Mann—Whitney,
P<0.0001). Sampling these nine children after treatment with parenteral and oral antibiotics but
before initiation of RUTF or Khichuri-Halwa (6 +£3.6 days after hospital admission) showed that
there was no significant effect on microbiota maturity (Wilcoxon matched-pairs rank test, P = 1).
When pre-antibiotic faecal samples from these nine children were compared to samples collected
at the end of all treatment interventions (dietary and antibiotic, 20+9 days after admission), no sig-
nificant differences in relative microbiota maturity (Wilcoxon, P = 0.7), MAZ, bacterial diversity

(or WHZ) were found (Extended Data Figure 8a—d). This is not to say that these interventions were
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without effects on overall community composition: opposing changes in the relative abundance
of Streptococcaceae and Enterobacteriaceae were readily apparent (Extended Data Figure 8e, f;
note that the Random Forests model classified both the microbiota of children with SAM sampled
before and at the conclusion of all treatment interventions as immature, indicating lack of a generic
immature state). Although these findings indicate that the relative microbiota immaturity associ-
ated with SAM was not solely attributable to the antibiotics used to treat these children, we could
not, in cases where children were unable to provide pre-intervention faecal samples, measure the
effects of other antibiotics, consumed singly or in various combinations during the acute infec-
tion control and nutritional rehabilitation phases, on their metrics of microbiota maturation (see
Supplementary Notes and Supplementary Table 16 for further evidence indicating antibiotic use
in the follow-up period did not correlate with the persistence of microbiota immaturity in children

with SAM).

SAM affects approximately 4% of children in developing countries. MAM is more preva-
lent, particularly in South Central Asia, where it affects approximately 19% (30 million children)’.
Epidemiological studies indicate that periods of MAM are associated with progression to SAM,
and with stunting which affects >40% of children under the age of five in Bangladesh'”. Therefore,
we extended our study to children from the singleton cohort at 18 months of age, when all had
transitioned to solid foods (n = 10 children with WHZ lower than —2 s.d., the threshold for MAM;
23 children with healthy WHZ; Supplementary Table 17). The relationship between relative mi-
crobiota maturity, MAZ and WHZ was significant (Spearman’s Rho = 0.62 and 0.63, P<0.001,
respectively; Extended Data Figure 9a, b). Comparing children with MAM to those defined as
healthy revealed significantly lower relative microbiota maturity, MAZ and differences in the rela-
tive abundances of age-discriminatory taxa in the malnourished group (Extended Data Figs 9d-1
and 10a, b). These results suggest that microbiota immaturity may be an additional pathophysi-

ological component of moderately malnourished states.
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Discussion

In conclusion, definition of microbiota maturity using bacterial taxonomic biomarkers that are
highly discriminatory for age in healthy children has provided a way to characterize malnourished
states, including whether responses to food interventions endure for prolonged periods of time
beyond the immediate period of treatment. RUTF and Khichuri-Halwa produced improvements in
microbiota maturity indices that were not sustained. Addressing the question of how to achieve du-
rable responses in children with varying degrees of malnutrition may involve extending the period
of administration of existing or new types of food interventions’. One testable hypothesis is that
a population’s microbiota conditioned for generations on a diet will respond more favourably to
nutrient supplementation based on food groups represented in that diet. Next-generation probiotics
using gut-derived taxa may also be required in addition to food-based interventions. The functional
roles (niches) of the age-discriminatory taxa identified by our Random Forests model need to be
clarified since they themselves may be therapeutic candidates and/or form the basis for low cost

field-based diagnostic assessments.

Systematic analyses of microbiota maturation in different healthy and malnourished popu-
lations living in different locales, representing different lifestyles and cultural traditions' '8, may
yield a taxonomy-based model that is generally applicable to many countries and types of diag-
nostic and therapeutic assessments. Alternatively, these analyses may demonstrate a need for geo-
graphic specificity when constructing such models (and diagnostic tests or therapeutic regimens).
Two observations are notable in this regard. First, expansion of our sparse model from 24 to 60 taxa
yielded similar results regarding the effects of diarrhoea in healthy individuals, MAM and SAM
(and its treatment with RUTF and Khichuri-Halwa) on microbiota maturity (see Supplementary
Notes). Second, we applied the model that we used for Bangladeshi children to healthy children in
another population at high risk for malnutrition. The results show that the model generalizes (* =
0.6) to a cohort of 47 Malawian twins and triplets, aged 0.4-25.1 months, who were concordant for
healthy status in a previous study'' (WHZ, —0.23+0.97 (mean+s.d.); Supplementary Table 18).

Age-discriminatory taxa identified in healthy Bangladeshi children show similar age-dependent
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changes in their representation in the microbiota of healthy Malawian children, as assessed by the

Spearman rank correlation metric (Extended Data Figure 10c, d).

The question of whether microbiota immaturity associated with SAM and MAM is main-
tained during and beyond childhood also underscores the need to determine the physiologic, meta-
bolic and immunologic consequences of this immaturity, and how they might contribute to the as-
sociated morbidities and sequelae of malnutrition, including increased risk for diarrhoeal disease,
stunting, impaired vaccine responses, and cognitive abnormalities® '°. Our study raises a testable
hypothesis: namely, that assessments of microbiota maturation, including in the context of the
maternal-infant dyad, will provide a more comprehensive view of normal human development
and of developmental disorders, and generate new directions for preventive medicine. Testing this
hypothesis will require many additional clinical studies but answers may also arise from analyses

of gut microbiota samples that have already been stored from previous studies.

Methods

Singleton birth cohort

Full details of the design of this now-complete birth cohort study have been described previously?'.
Faecal microbiota samples were profiled from 25 children who had consistently healthy anthropo-
metric measures based on quarterly (every three months) measurements (Supplementary Table 1).
The WHZ threshold used for ‘healthy’ (on average above —2 s.d.) was based on median weight and
height measurements obtained from age- and gender-matched infants and children by the Multi-
Centre Growth Reference study of the World Health Organization®. Clinical parameters, including
diarrhoeal episodes and antibiotic consumption associated with each of their faecal samples are

provided in Supplementary Table 2.

A second group studied from this singleton cohort consisted of 33 children sampled cross-
sectionally at 18 months, including those who were incorporated as healthy reference controls, and

those with a WHZ < —2 who were classified with MAM (Supplementary Table 17).
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Twins and triplets birth cohort

Mothers with multiple pregnancy, identified by routine clinical and sonographic assessment at the
Radda Maternal Child Health and Family Planning (MCH-FP) Clinic in Dhaka, were enrolled in
a prospective longitudinal study (» = 11 mothers with twins, 1 mother with triplets). The zygos-
ity of twin pairs and triplets was determined using plasma DNA and a panel of 96 polymorphic
single-nucleotide polymorphisms (SNPs) (Center for Inherited Disease Research, Johns Hopkins
University). Four twin pairs were monozygotic, six were dizygotic, and the set of triplets consisted
of a monozygotic pair plus one fraternal sibling (Supplementary Table 1; note that one of the 11
twin pairs could not be tested for zygosity because plasma samples were not available). Informa-
tion about samples from healthy twins, triplets and their parents, including clinical parameters

associated with each faecal sample, is provided in Supplementary Tables 2 and 3.

The three healthy Bangladeshi groups used for model training and validation had the follow-
ing WHZ scores: —0.32+1 (mean+s.d.; 12 singletons randomized to the training set), —0.44+0.8
(13 singletons randomized to one of the two validation sets), and —0.46+0.7 (twins and triplets in
the other validation set) (Supplementary Table 4). The average number of diarrhoeal episodes in
the singleton training set, the singleton validation set, and the twin and triplet validation set (4, 4.6
and 1.7, respectively) was comparable to values reported in previous surveys of another cohort of

0—2-year-old Bangladeshi children (4.25 per child per year)*.

There were no significant differences in the number of diarrheal episodes per year per child
and the number of diarrhoeal days per year per child between the singleton training and validation
sets (Student’s t-test, P = 0.5). Moreover, across all training and validation sets, neither of these
diarrheal parameters correlated with mean age-adjusted Shannon diversity indices (Spearman’s
Rho, —0.18 and —0.12, P = 0.22 and 0.4, respectively). The fraction of faecal samples collected
from each child where oral antibiotics had been consumed within the prior 7 days was not sig-
nificantly different between the training and two validation sets (one-way ANOVA, P = 0.14; see

Supplementary Table 4).
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Severe acute malnutrition study

Sixty-four children in the Nutritional Rehabilitation Unit of ICDDR,B, Dhaka Hospital suffering
from SAM (defined as having a WHZ less than —3 s.d. and/or bilateral pedal oedema) were enrolled
in a randomized interventional trial to compare an imported peanut-based RUTF, Plumpy’Nut
(Nutriset Plumpyfield, India) and locally produced Khichuri—-Halwa (clinical trial NCT01331044).
Initially, children were stabilized by rehydration and feeding ‘suji’, which contains whole bovine
milk powder, rice powder, sugar and soybean oil (approximately 100 kcal kg™ body weight per
day, including 1.5 g protein kg™' per day). Children were then randomized to the Khichuri—-Halwa
or RUTF groups. Khichuri consists of rice, lentils, green leafy vegetables and soybean oil; Halwa
consists of wheat flour (atta), lentils, molasses and soybean oil. Children randomized to the Khich-
uri—Halwa treatment arm also received milk suji ‘100’ during their nutritional rehabilitation phase
(a form of suji with a higher contribution of calories from milk powder compared to suji provided
during the acute phase). RUTF is a ready-to-use paste that does not need to be mixed with water;
it consists of peanut paste mixed with dried skimmed milk, vitamins and minerals (energy density,
5.4 kcal g™"). Khichuri and Halwa are less energy-dense than RUTF (1.45 kcal g™ and 2.4 kcal g/,
respectively, see Supplementary Table 13 for a list of ingredients for all foods used during nutri-

tional rehabilitation).

The primary outcome measurement, rate of weight gain (g kg™' per day), along with im-
provement in WHZ after nutritional rehabilitation are reported by child in Supplementary Table
10. Faecal samples were collected before randomization to the RUTF and Khichuri—-Halwa treat-
ment arms, every 3 days during nutritional rehabilitation and once a month during the follow-up

period (information associated with each faecal sample is provided in Supplementary Table 11).

Anthropologic study

To obtain additional information about household practices in the Mirpur slum of Dhaka, in-
depth semi-structured interviews and observations were conducted over the course of 1 month in

nine households (n = 30 individuals). This survey, approved by the Washington University and
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ICDDR,B IRBs, involved three ICDDR,B field research assistants, and three senior scientific staff
in the ICDDR,B Centre for Nutrition and Food Security, plus two anthropologists affiliated with
Washington University in St. Louis. Parameters that might affect interpretation of metagenomic
analyses of gut microbial-community structure were noted, including information about daily food

preparation, food storage, personal hygiene and childcare practices.

Characterization of the bacterial component of the gut microbiota by V4-16S rRNA

sequencing

Faecal samples were frozen at —20 °C within 30 min of their collection and subsequently stored at
—80 °C before extraction of DNA. DNA was isolated by bead-beating in phenol and chloroform,
purified further (QIAquick column), quantified (Qubit) and subjected to polymerase chain reac-
tion (PCR) using primers directed at variable region 4 (V4) of bacterial 16S rRNA genes. Bacte-
rial V4-16S rRNA data sets were generated by multiplex sequencing of amplicons prepared from
1,897 faecal DNA samples (26,580+26,312 (mean=s.d.) reads per sample, paired-end 162- or
250-nucleotide reads; Illumina MiSeq platform; Supplementary Table 5). Reads of 250 nucleo-
tides in length were trimmed to 162 nucleotides, then all reads were processed using previously
described custom scripts, and overlapped to 253-nucleotide fragments spanning the entire V4 am-
plicon®. ‘Mock’ communities, consisting of mixtures of DNAs isolated from 48 sequenced bac-
terial members of the human gut microbiota combined in one equivalent and two intentionally
varied combinations, were included as internal controls in the Illumina MiSeq runs. Data from the
mock communities were used for diversity and precision-sensitivity analyses employing methods

described previously'> 2.

Reads with>97% nucleotide sequence identity (97%-identity) across all studies were
binned into operational taxonomic units (OTUs) using QIIME (v 1.5.0), and matched to entries in
the Greengenes reference database (version 4feb2011)** %, Reads that did not map to the Green-
genes database were clustered de novo with UCLUST at 97%-1dentity and retained in further anal-

ysis. A total of 1,222 97%-identity OTUs were found to be present at or above a level of confident
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detection (0.1% relative abundance) in at least two faecal samples from all studies. Taxonomy was
assigned based on the naive Bayesian RDP classifier version 2.4 using 0.8 as the minimum confi-
dence threshold for assigning a level of taxonomic classification to each 97%-identity OTU. Raw
V4-16S rRNA data sets before trimming, processing and abundance-filtering steps are available at

http://www.ebi.ac.uk/ena/data/view/PRJEB5482.

Definition of gut-microbiota maturation in healthy children using Random Forests

Random Forests regression was used to regress relative abundances of OTUs in the time-series
profiling of the microbiota of healthy singletons against their chronologic age using default param-
eters of the R implementation of the algorithm (R package ‘randomForest’, ntree = 10,000, using
default mtry of p/3 where p is the number of input 97%-identity OTUs (features))*. The Random
Forests algorithm, due to its non-parametric assumptions, was applied and used to detect both lin-
ear and nonlinear relationships between OTUs and chronologic age, thereby identifying taxa that
discriminate different periods of postnatal life in healthy children. A rarefied OTU table at 2,000
sequences per sample served as input data. Ranked lists of taxa in order of Random Forests re-
ported ‘feature importance’ were determined over 100 iterations of the algorithm. To estimate the
minimal number of top ranking age-discriminatory taxa required for prediction, the rfcv function
implemented in the ‘randomForest’ package was applied over 100 iterations. A sparse model con-
sisting of the top 24 taxa was then trained on the training set of 12 healthy singletons (272 faecal
samples). Without any further parameter optimization, this model was validated in other healthy
children (13 singletons, 25 twins and triplets) and then applied to samples from children with SAM
and MAM. A smoothing spline function was fit between microbiota age and chronologic age of the
host (at the time of faecal sample collection) for healthy children in the validation sets to which the

sparse model was applied.
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Alpha diversity comparisons

Estimates of within-sample diversity were made at a rarefaction depth of 2,000 reads per sample.
A linear regression was fit between the Shannon diversity index (SDI) and postnatal age in the
50 healthy children using a mixed model (see the additional details regarding statistical methods,
below). An estimate of the coefficient for the slope of SDI with age and intercept was extracted,
residuals of this regression were defined as a ASDI metric, and associations of this metric with
clinical parameters were tested in the cohort of healthy twins and triplets. To test for differences in
SDI as a function of health status and chronologic age in malnourished children, we compared the

distribution of age-adjusted ASDIs in children with SAM between treatment phases.

Detection of associations of bacterial taxa with nutritional status and other parameters

Relative abundances of 97%-identity OTUs were used in linear mixed models as response vari-
ables to test for associations with clinical metadata as predictors. For each comparison, we re-
stricted our analysis to 97%-identity OTUs and bacterial families whose relative abundance values
reached a level of confident detection (0.1%) in a minimum of 1% of samples in each comparison.
Pseudocounts of 1 were added to 97%-identity OTUs to account for variable depth of sequencing
between samples, and relative abundances were arcsin-square-root-transformed to approximate
homoscedasticity when applying linear models. P values of associations of factors with the rela-
tive abundance of bacterial taxa were computed using ANOVA type III (tests of fixed effects),

subjected to Benjamini—Hochberg false discovery rate (FDR) correction.

Enteropathogen testing

Clinical microscopy was performed for all faecal samples collected at monthly intervals from
the singleton birth cohort and from healthy twins and triplets, and screened for Entamoeba histo-
Iytica, Entamoeba dispar, Escherichia coli, Blastocystis hominis, Trichomonas hominis, Blasto-
cystis hominis, Coccidian-like bodies, Giardia lamblia, Ascaris lumbricoides, Trichuris Tricuria,

Ancylostoma duodenale/Necator americanus, Hymenolepsis nana, Endolimax nana, lodamoeba
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butschlii and Chilomastix mesnili. The effects of enteropathogens, detected by microscopy on
relative microbiota maturity, MAZ and SDI were included in our analysis of multiple environ-
mental factors in Extended Data Figure 2 and Supplementary Table 7. In cases in which children
presented with SAM plus diarrhoea, faecal samples collected before nutritional rehabilitation were
cultured for Vibrio cholerae, Shigella flexneri, Shigella boydi, Shigella sonnei, Salmonella en-
terica, Aeromonas hydrophila and Hafnia alvae. See Supplementary Tables 10 and 19 for results

of enteropathogen testing.

Additional details regarding statistical methods

Linear mixed models were applied to test for associations of microbiota metrics (relative micro-
biota maturity, MAZ and SDI) with genetic and environmental factors in twins and triplets. Log-
likelihood ratio tests and F' tests were used to perform backward elimination of non-significant
random and fixed effects?’. Relative microbiota maturity, MAZ and SDI were defined at different
phases of treatment and at defined periods of follow-up (<1 month, 1-2, 3—4 and >4 months after
completion of the RUTF or Khichuri-Halwa nutritional intervention) in children with SAM rela-
tive to healthy children. ‘Treatment phase’ was specified as a categorical multi-level factor in a
univariate mixed model with random by-child intercepts. Dunnett’s post-hoc comparison proce-
dure was performed to compare each treatment phase relative to healthy controls and relative to

samples collected at enrollment in each food intervention group.
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Figure Legends

Figure 1: Bacterial taxonomic biomarkers for defining gut microbiota maturation in healthy
Bangladeshi children during the first two years of life. a, Twenty-four age-discriminatory bac-
terial taxa were identified by applying Random Forests regression of their relative abundances in
faecal samples against chronologic age in 12 healthy children (n =272 faecal samples). Shown are
97%-1dentity OTUs with their deepest level of confident taxonomic annotation (also see Supple-
mentary Table 6), ranked in descending order of their importance to the accuracy of the model.
Importance was determined based on the percentage increase in mean-squared error of microbiota
age prediction when the relative abundance values of each taxon were randomly permuted (mean
importance +s.d., n = 100 replicates). The insert shows tenfold cross-validation error as a function
of the number of input 97%-identity OTUs used to regress against the chronologic age of children
in the training set, in order of variable importance (blue line). b, Microbiota age predictions in
a birth cohort of healthy singletons used to train the 24 bacterial taxa model (brown, each circle
represents an individual faecal sample). The trained model was subsequently applied to two sets of
healthy children: 13 singletons set aside for model testing (green circles, n = 276 faecal samples)
and another birth cohort of 25 twins and triplets (blue circles, n = 448 faecal samples). The curve
is a smoothed spline fit between microbiota age and chronologic age in the validation sets (right
two panels of b), accounting for the observed sigmoidal relationship (see Methods). ¢, Heatmap
of mean relative abundances of the 24 age-predictive bacterial taxa plotted against the chronologic
age of healthy singletons used to train the Random Forests model, and correspondingly in the
healthy singletons, and twins and triplets used to validate the model (hierarchical clustering per-

formed using the Spearman rank correlation distance metric).
Figure 2: Persistent immaturity of the gut microbiota in children with SAM.

a, Design of the randomized interventional trial. b, Microbiota maturity defined during various
phases of treatment and follow-up in children with SAM. Relative microbiota maturity in the up-

per portion of the panel is based on the difference between calculated microbiota age (Random-
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Forests-based sparse 24-taxon model) and values calculated in healthy children of similar chrono-
logic age, as interpolated over the first 2 years of life using a spline curve. In the lower portion of
the panel, maturity is expressed as a microbiota-for-age Z-score (MAZ). Mean values+s.e.m. are
plotted. The significance of differences between microbiota indices at various stages of the clinical
trial is indicated relative to healthy controls (arrows above the bars) and versus samples collected
at enrollment for each intervention group (arrows below the bars) (post-hoc Dunnett’s multiple
comparison procedure of linear mixed models; *P<0.05, **P<0.01, ***P<0.001). Healthy chil-
dren not used to train the Random Forests model served as healthy controls (n = 38). c—f, Plot of
microbiota age for each child with SAM at enrollment (c), at the conclusion of the food interven-
tion phase (d), and within (e) and beyond (f) 3 months of follow-up. The curve shown in each
panel was fit using predictions in healthy children: this curve is the same as that replicated across

each plot in Fig. 1b.
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Figure 2.

Acute Phase of SAM
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Supplementary Materials

Supplementary Notes

Anthropologic assessment — The study population resided in the Mirpur slum of Dhaka, Ban-
gladesh (23.8042°N 90.3667°E) in a catchment area consisting of 9,250 households. Most of
the homes in this community consist of one main room (~220 square feet), composed of con-
crete floors and tin roofs with bamboo, metal, and in a few cases cement walls. The average
number of household members ranges from 4-10 people, and average monthly family income is
4,000-10,000 Bangladeshi Taka (50 to 130 USD). Infants do not wear diapers, nor do they typi-
cally wear any clothing on the bottom halves of their bodies. The importance of hand washing
before eating or child feeding is widely understood but rarely practiced due to lack of access to
clean water. Families prepare food either on the floor or on a ground-level cement slab located
at the entrance of the home; this slab typically straddles an open drain containing wastewater
running along the street. Since few families have refrigerators, most food is stored on shelves
or under the bed. Households may consist of more than one biological family: in these cases all
individuals in the household share a gas stove and cooking area immediately outside the main
room, although food, cooking pots and utensils are used separately by each biological family.
All individuals share a common ‘bathroom,” a small space containing a latrine, and sometimes
the water pump, located next to the main room. The common practice is to wash the perianal

area by hand with water contained in a small, special container called bodna in Bangla.

Fecal microbiota variation within and between family members during the first year
of postnatal life - There are few reports of time-series studies charting assembly of the gut
microbiota in healthy USA infants and even fewer studies in infants from non- Western popu-
lations. The results published to date have revealed pronounced intra- as well as interpersonal
variation during the first year of life11,29-31 In contrast, the gut microbiota of healthy USA
adults is quite stable over time, with signatures of within- individual and within-family similar-

ity evident throughout sampling periods15 . To obtain a view of gut microbiota development
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in Bangladeshi infants and children as a function of time after birth and family structure, we
collected monthly fecal samples from 11 twin pairs and 1 set of triplets and their parents. The
first fecal sample was obtained from infants at the time of their enrollment (443 days of age).
Monthly samples were subsequently obtained from each of these 25 infants and from their
mothers while samples were collected from their fathers every three months. Families were
followed for a total of 520159 days (mean+SD). The duration of exclusive breastfeeding
was 28+23 days (mean+SD). Diarrhoea occurred for 11+12 days (2+3 %of the total number
of days followed during the study). Distances (degree of similarity) between all pairs of fecal
microbiota samples in this birth cohort were computed using the Hellinger metric, an abun-
dance-based ecological metric, as well as the phylogeny-based unweighted UniFrac metric
where distance is calculated based on the degree to which any two communities share branch
length on a bacterial tree of life32. In the case of triplets, we performed all possible pairwise
comparisons (self-self; all three possible pairwise comparisons among siblings; each sibling
against unrelated age-matched individuals; each sibling against their mother or father). We had
previously noted that genetically unrelated co-habiting adults in the USA have more similar
overall bacterial phylogenetic configurations in their fecal microbiota than unrelated adults
living separatelyll. Comparing the difference (distance) of a Bangladeshi mother’s micro-
biota during her first month post-partum to her microbiota three months later revealed a larger
shift in overall structure compared to fathers sampled during the same three-month interval
[P=0.01 (Hellinger); P=0.04 (unweighted UniFrac); Extended Data Fig. 3b], thus obscuring
a microbial manifestation of their co-habitation. This signature of co-habitation emerged 10
months postpartum, at a time when the preceding marked temporal variation of the mother’s
microbiota had diminished (P=0.006 for difference between co-habiting spouses at 10 months
postpartum versus non-co-habiting adults in the cohort as measured by the abundance based
Hellinger metric; P=0.08 using the presence/absence unweighted UniFrac phylogenetic met-
ric; see Extended Data Fig. 3c¢). During the first postnatal month, the bacterial configuration

of the fecal microbiota of infants was more similar to mothers compared to fathers (P<0.001
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Hellinger metric; P=0.07 with unweighted UniFrac; Extended Data Fig. 3d). Co-twins were
more similar to one another than unrelated age-matched twins during the first postpartum year
(P<0.001 Kruskall-Wallis; Extended Data Fig. 3e). An analysis of sources of variation in the
microbiota of the twins and triplets over the course of the entire study revealed that age alone
captured 19% and 37.7% of variance (Hellinger and unweighted UniFrac metrics, respectively)
in contrast to dietary factors (presence/absence of ‘breast milk’, ‘formula’, ‘solid foods’)
which explained only 2.5% and 3.8%, respectively (see Supplementary Table 8 for partition-
ing of variance by metric and metadata; PERMANOVA as implemented with adonis function
in R package Vegan)33. We identified increases in the proportional representation of 97%-iden-
tity OTUs in the microbiota of mothers during the perinatal period, including a number of the
age- discriminatory taxonomic biomarkers, notably Bifidobacteria in Extended Data Fig. 3a
and Supplementary Table 9. This latter feature is not unique to Bangladesh: a recent study of
80 Finnish mother-infant pairs sampled at 1 and 6 months post-partum demonstrated that if a
mother was positive for B. bifidum 1 month following delivery, the likelihood of her child being

colonized was significantly higher34).

Transient reduction of gut microbiota diversity in healthy twins and triplets associated
with diarrhoea - In addition to changes in the relative proportions of specific bacterial taxa
incorporated into our Random Forests model-derived MAZ and relative microbiota maturity
metrics, the developing gut microbiota of infants/children is also characterized by an increase
in total community bacterial diversity as judged by the Shannon Diversity Index (SDI). SDI is
an ecological measure of within-sample (alpha) diversity that incorporates both the concept of
total community size as well as the evenness of the abundance of its members. Across the 50
healthy Bangladeshi children sampled, SDI increased linearly with age (0.11 units per month of
life with an intercept of 1.6+£0.1 units at birth; mixed model; P<0.0001). In twins and triplets,
diarrhoea (n=36 episodes) was the only significant clinical parameter associated with a reduc-

tion in SDI (-0.44+0.1; P<0.01). This reduction showed a similar time course of recovery as

71



relative microbiota maturity, persisting for one month (-0.35+0.2 SDI; P<0.05) followed by

subsequent recovery (Extended Data Fig. 2; Supplementary Table 7c).

Persistent reductions in diversity associated with SAM - As with measurements of mi-
crobiota maturity, the RUTF group showed significant improvement in SDI values between
1-3 months following cessation of treatment, followed by regression to a persistent lower than
healthy SDI beyond 3 months. In the case of Khichuri-Halwa, improvement in SDI was only
significant at 3-4 months of follow-up. SAM children in both treatment groups exhibited sig-
nificant reductions in diversity compared to healthy Bangladeshi children at all phases of treat-
ment and recovery, except for 1-3 months post- RUTF and 3-4 months post-Khichuri-Halwa

(Extended Data Fig. 5; Supplementary Table 14).

Two hundred and twenty bacterial taxa that are significantly different in their propor-
tional representation in microbiota of children with SAM compared to healthy at multiple treat-
ment phases across both groups - During the acute phase, prior to nutritional rehabilitation,
116 97%-1dentity OTUs were significantly altered in SAM. The majority were lower in relative
abundance compared to healthy children. The four 97%-identity OTUs with the largest reduc-
tions in abundance during the acute phase included three classified as belonging to the genus
Bifidobacterium (B. longum, two unassigned to a species) and Faecalibacterium prausnitzii,
of which two are age-discriminatory taxa (FDR- corrected P<0.05). Taxa that were enriched
in children diagnosed with SAM compared to healthy children included those belonging to
the family Enterobacteriaceae (genera Escherichia and Klebsiella) as well as Enterococcus
faecalis (FDR-corrected P<<0.05). In children with SAM, taxa that remain depleted throughout
the follow-up period included members of the bacterial families Ruminococcaceae, Veillonel-
laceae and Prevotellaceae. Taxa enriched in the microbiota of children with SAM after the
therapeutic food interventions belonged predominantly to the genus Strepfococcus, including
97% ID OTUs identified as Streptococcus lutentiensis, Streptococcus thermophilus (also age-
discriminatory) and other as yet unknown Streptococcus species (FDR-corrected P<<0.01; see

Extended Data Fig. 6 and Extended Data Fig. 7 for a heatmap depiction of all 97% ID OTUs
72



whose representation in the fecal microbiota is significantly altered in SAM relative to healthy

before, during and after the nutritional rehabilitation period; also see Supplementary Table

15).

Assessing the effects of antibiotics on microbiota maturity during the follow-up period
in children with SAM — As noted in the main text, we compared antibiotic use during the post-
intervention periods for the two treatment arms. The results indicate that (i) the frequency of
antibiotic consumption during this period was comparable to that of healthy children in our
training and validation sets (P=0.5, one-way ANOVA); (i1) there was no significant difference
in antibiotic use between treatment arms (P=1; Fisher’s exact test; Supplementary Table 12);
(ii1) there was no significant association between recent antibiotic intake (defined as occurring
seven or fewer days before collection of a fecal sample) and relative microbiota maturity values
[difference in maturity values for samples with versus those without recent antibiotic intake:
-0.37£0.8 (mean £ SEM) P=0.6 (ANOVA of linear mixed model; n=100 samples for the 22
children in the post RUTF arm); +0.17+0.9; P=0.9 (n=103 samples, 25 children in the Khich-
uri- Halwa arm)]. Similarly, we found that diarrhoea was not significantly associated with dif-
ferences in maturity values in either arm during the post-intervention period (Supplementary

Table 16).

Expanding the sparse Random Forests-based model from 24 to 60 taxa - It is logical to
ask the following questions about our approach for defining microbiota maturity. First, are we
defining “immaturity” entirely as a lack of maturity, rather than a specific, recognizable state in
and of itself. Ours is a ‘positive’ composition-based classification. For example, the Bifidobac-
terium longum OTU in Fig. 1a ranks 5thin terms of its feature importance score in the 24-taxon
Random Forests model. In samples from healthy infants less than 6 months old, this OTU is
highly represented [relative abundance = 52.7+30% (mean£SD); >1% in 94% of samples from
the training and validation sets). The remaining seven 97%-identity OTUs that comprise the
cluster of early age- discriminatory taxa shown in Fig. 1¢ together represent 6.35+8% of the

microbiota and are present at >1% abundance in 84% of samples. Second, was there an outlet
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for samples containing very few or none the 24 taxa selected by the model? For example, were
they deemed unclassifiable, or classified as “other”, or were all samples “forced” onto the ma-
turity scale? How were samples with low feature signal having few to no age-discriminant taxa
classified? Only one of the 589 fecal samples in the SAM study had undetectable levels of the
24 age-discriminatory taxa. In the SAM cohort, only 10% of fecal samples (60/589) had an ag-
gregate relative abundance of the 24 age-discriminatory taxa that was less than 10%. In healthy
children, this was true for 36/960 samples. When we expanded our model to include the top 60
age-discriminatory taxa, we found that < 1% of SAM samples and none of the healthy samples
had an aggregate relative abundance of the 60 age-discriminatory taxa that was less than 10%.
Note that in expanding the model, we excluded OTUs that were deemed chimeric when using
default BLAST thresholds to the Greengenes reference as implemented in QIIME. The perfor-
mance of the 24 and 60 taxa models were similar. Predictions made by the two models when
they were applied to the healthy validation datasets (all 724 samples considered), and when
they were applied to the SAM datasets (all 589 samples considered), showed a strong correla-
tion (r2=0.98 and 0.93, respectively). Both yielded similar results for our analysis of (i) the ef-
fects of diarrhoea in healthy twins/triplets (microbiota immaturity was transient), (ii) the SAM
trial (the effects of RUTF and Khichuri-Halwa produced transient non-durable improvements
compared to healthy controls; antibiotics did not have a significant effect on microbiota matu-
rity measurements either during the acute phase or during the post-intervention; note that the
top 60 model includes Enterobacteriaceae and Streptococcaceae OTUs that are highly enriched
in children with SAM relative to healthy); and (iii) the MAM study (a significant difference was

observed between 18 month old healthy controls versus children with MAM) (data not shown).
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Extended Data Figure Legends

Extended Data Figure 1: Illustration of the equations used to calculate ‘relative microbiota
maturity’ and ‘microbiota-for-age Z-score’. a, b, The procedure to calculate both microbiota
maturation metrics are shown for a single faecal sample from a focal child (pink circle) relative to
microbiota age values calculated in healthy reference controls. These reference values are comput-
ed in samples collected from children used to validate the Random-Forests-based sparse 24-taxon
model and are shown in a, as a broken line of the interpolated spline fit and in b, as median+s.d.

values for each monthly chronologic age bin from months 1 to 24.

Extended Data Figure 2: Transient microbiota immaturity and reduction in diversity associ-
ated with diarrhoea in healthy twins and triplets. a, The transient effect of diarrhoea in healthy
children. Seventeen children from 10 families with healthy twins or triplets had a total of 36 diar-
rhoeal illnesses where faecal samples were collected. Faecal samples collected in the months im-
mediately before and following diarrhoea in these children were examined in an analysis that in-
cluded multiple environmental factors in the ‘healthy twins and triplets’ birth cohort. Linear mixed
models of these specified environmental factors indicated that ‘diarrhoea’, ‘month following diar-
rhoea’ and ‘presence of formula in diet’ have significant effects on relative microbiota maturity,
while accounting for random effects arising from within-family and within-child dependence in
measurements of this maturity metric. The factors ‘postnatal age’, ‘presence or absence of solid
foods’, ‘exclusive breastfeeding’, ‘enteropathogen detected by microscopy’, ‘antibiotics’ as well
as ‘other periods relative to diarrhoea’ had no significant effect. The numbers of faecal samples (7)
are shown in parenthesis. Mean values+s.e.m. are plotted. *P<0.05, ***P<0.001. See Supple-
mentary Table 7 for the effects of dietary and environmental covariates. b, Effect of diarrhoea and
recovery on age-adjusted Shannon diversity index (SDI). Mean values of effect on SDI+s.e.m. are

plotted. *P<0.05, **P<0.01.

Extended Data Figure 3: Gut microbiota variation in families with twins and triplets during

the first year of life. a, Maternal influence. Heatmap of the mean relative abundances of 13 bac-
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terial taxa (97%-identity OTUs) found to be statistically significantly enriched in the first month
post-partum in the faecal microbiota of mothers (see column labelled 1) compared to microbiota
sampled between the second and twelfth months post-partum (FDR-corrected P<0.05; ANOVA of
linear mixed-effects model with random by-mother intercepts). An analogous heatmap of the rela-
tive abundance of these taxa in their twin or triplet offspring is shown. Three of these 97%-identity
OTUs are members of the top 24 age-discriminatory taxa (blue) and belong to the genus Bifido-
bacterium. b—e, comparisons of maternal, paternal and infant microbiota. Mean values+s.e.m. of
Hellinger and unweighted UniFrac distances between the faecal microbiota of family members
sampled over time were computed. Samples obtained at postnatal months 1, 4, 10 and 12 from
twins and triplets, mothers and fathers were analysed (n = 12 fathers; 12 mothers; 25 children). b,
Intrapersonal variation in the bacterial component of the maternal microbiota is greater between
the first and fourth months after childbirth than variation in fathers. ¢, Distances between the fae-
cal microbiota of spouses (each mother—father pair) compared to distances between all unrelated
adults (male—female pairs). The microbial signature of co-habitation is only evident 10 months
following childbirth. d, e, The degree of similarity between mother and infant during the first post-
partum month is significantly greater than the similarity between microbiota of fathers and infants
(d) while the faecal microbiota of co-twins are significantly more similar to one another than to
age-matched unrelated children during the first year of life (e). For all distance analyses, Hellinger
and unweighted UniFrac distance matrices were permuted 1,000 times between the groups tested.
P values represent the fraction of times permuted differences between tested groups were greater

than real differences between groups. *P<0.05, **P<0.01, ***P<0.001.

Extended Data Figure 4: Anthropometric measures of nutritional status in children with
SAM before, during and after both food interventions. a—c, Weight-for-height Z-scores (WHZ)
(a) height-for-age Z-scores (HAZ) (b) and weight-for-age Z-scores (WAZ) (¢). Mean values+s.e.m.
are plotted and referenced to national average anthropometric values for children surveyed between

the ages of 6 and 24 months during the 2011 Bangladeshi Demographic Health Survey (BDHS)*.
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Extended Data Figure 5: Persistent reduction of diversity in the gut microbiota of children
with SAM. Age-adjusted Shannon diversity index for faecal microbiota samples collected from
healthy children (n = 50), and from children with SAM at various phases of the clinical trial (mean
values+s.e.m. are plotted). The significance of differences between SDI at various stages of the
clinical trial is indicated relative to healthy controls (above the bars) and versus the time of enroll-
ment before treatment (below the bars). *P<0.05, **P<0.01, ***P<0.001 (post-hoc Dunnett’s

multiple comparison procedure of linear mixed models). See Supplementary Table 14.

Extended Data Figure 6: Heatmap of bacterial taxa significantly altered during the acute
phase of treatment and nutritional rehabilitation in the microbiota of children with SAM
compared to similar-age healthy children. Bacterial taxa (97%-identity OTUs) significantly al-
tered (FDR-corrected P < 0.05) in children with SAM are shown (see Supplementary Table 15
for P values and effect size for individual taxa). Three groups of bacterial taxa are shown: those
enriched before the food intervention (a); those enriched during the follow-up phase compared to
healthy controls (b); and those that are initially depleted but return to healthy levels (¢). Members
of the top 24 age-discriminatory taxa are highlighted in blue. Note that there were no children
represented in the Khichuri-Halwa arm under the age of 12 months during the ‘follow-up after 3

months’ period.

Extended Data Figure 7: Heatmap of bacterial taxa altered during long-term follow-up in
the faecal microbiota of children with SAM compared to similar-age healthy children. a, b,
Bacterial taxa (97%-identity OTUs) significantly altered (FDR-corrected P < 0.05) in children
with SAM are shown (see Supplementary Table 15 for P values and effect sizes for individual
taxa). a, Taxa depleted across all phases of SAM relative to healthy. b, Those depleted during the
follow-up phase. Members of the top 24 age-discriminatory taxa are highlighted in blue. Note that
there were no children under the age of 12 months represented in the Khichuri-Halwa treatment

arm during the ‘follow-up after 3 months’ period.
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Extended Data Figure 8: Effects of antibiotics on the microbiota of children with SAM. Plots
of microbiota and anthropometric parameters in nine children sampled before antibiotics (abx),
after oral amoxicillin plus parenteral gentamicin and ampicillin, and at the end of the antibiotic and
dietary interventions administered over the course of nutritional rehabilitation in the hospital. All
comparisons were made relative to the pre-antibiotic sample using the non-parametric Wilcoxon
matched-pairs rank test, in which each child served as his or her own control. a—¢, Microbiota
parameters, plotted as mean values+s.e.m., include relative microbiota maturity, microbiota-for-
age Z-score (MAZ), and SDI. WHZ scores are provided in d. e, f, The two predominant bacterial
family-level taxa showing significant changes following antibiotic treatment. ns, not significant;

**P<0.01.

Extended Data Figure 9: Relative microbiota maturity and MAZ correlate with WHZ in
children with MAM. a—c, WHZ are significantly inversely correlated with relative microbiota
maturity (a) and MAZ (b) in a cross-sectional analysis of 33 children at 18 months of age who
were above and below the anthropometric threshold for MAM (Spearman’s Rho = 0.62 and 0.63,
respectively; ***P<0.001). In contrast, there is no significant correlation between WHZ and mi-
crobiota diversity (¢). d-1, Relative abundances of age-discriminatory 97%-identity OTUs that are
inputs to the Random Forests model that are significantly different in the faecal microbiota of chil-
dren with MAM compared to age-matched 18-month-old healthy controls (Mann—Whitney U-test,
P<0.05). Box plots represent the upper and lower quartiles (boxes), the median (middle horizontal
line), and measurements that are beyond 1.5 times the interquartile range (whiskers) and above
or below the 75th and 25th percentiles, respectively (points) (Tukey’s method, PRISM software
v6.0d). Taxa are presented in descending order of their importance to the Random Forests model.

See Extended Data Fig. 10a, b.

Extended Data Figure 10: Cross-sectional assessment of microbiota maturity at 18 months
of age in Bangladeshi children with and without MAM, plus extension of the Bangladeshi-
based model of microbiota maturity to Malawi. a, b, Children with MAM (WHZ lower than

—2 s.d.; grey) have significantly lower relative microbiota maturity (a) and MAZ (b) compared to
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healthy individuals (blue). Mean values+s.e.m. are plotted **P<0.01 (Mann—Whitney U-test).
See Extended Data Fig. 9 for correlations of metrics of microbiota maturation with WHZ and
box-plots of age-discriminatory taxa whose relative abundances are significantly different in chil-
dren with MAM relative to healthy reference controls. ¢, Microbiota age predictions resulting
from application of the Bangladeshi 24-taxon model to 47 faecal samples (brown circles) obtained
from concordant healthy Malawian twins and triplets are plotted versus the chronologic age of the
Malawian donor (collection occurred in individuals ranging from 0.4 to 25.1 months old). The
results show the Bangladeshi model generalizes to this population, which is also at high risk for
malnutrition (each circle represents an individual faecal sample collected during the course of a
previous study''). d, Spearman rho and significance of rank order correlations between the rela-
tive abundances of age-discriminatory taxa, and the chronologic age of all healthy Bangladeshi
children described in the present study as well as concordant healthy Malawian twins and triplets.

*P<0.05.
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Extended Data Figures
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Extended Data Figure 2
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Extended Data Figure 3
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Extended Data Figure 4
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Extended Data Figure 5
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Extended Data Figure 6
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Extended Data Figure 7
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Extended Data Figure 8
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Extended Data Figure 9
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Extended Data Figure 10
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An approach for identifying complementary foods that promote healthy gut microbiota
development in children with undernutrition
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Abstract

Culture-independent methods applied to fecal samples, collected monthly during the first two years
of postnatal life from members of a Bangladeshi birth cohort living in an urban slum, combined
with a machine learning method (Random Forests), have identified a set of bacterial strains whose
relative abundances together define a normal program of assembly of the gut microbiota in healthy,
biologically unrelated infants and children in this area. Applying this sparse Random Forests-de-
rived model to Bangladeshi children with severe acute malnutrition (SAM), revealed that that they
had perturbed microbiota development, with their gut communities appearing younger than those
of chronologically age-matched children with healthy growth. Moreover, this immaturity was not
repaired with existing therapeutic foods. These findings raise several questions. To what extent is
this identified program of gut community assembly generalizable to other children raised in dif-
ferent geographic locations and representing different cultural traditions? To what extent does the
gut microbiota continue to develop beyond the first two years of life and do the age-discriminatory
strains present in the existing Random Forests-derived model of gut microbiota maturation persist
beyond the first two years? What food or microbial interventions can be used to prevent or repair
this immaturity and improve clinical outcomes? Therefore, we applied our modeling approaches
to (1) bacterial 16S rRNA datasets generated from 50 healthy children, each sampled monthly from
birth through the end of postnatal year 2, who live in urban, peri-urban or rural areas of four other
countries (India, South Africa, Peru and Brazil) where the burden of childhood undernutrition is
great, and (ii) datasets obtained from 36 healthy children living in an urban slum in Bangladesh
who were each sampled monthly from 1-60 months. Single country Random Forests-derived mod-
els, as well as a model generated from 16S rRNA data aggregated from the four countries, were
applied reciprocally to the different populations; the results revealed bacterial strains that define
a program of gut microbiota development/maturation which is shared across children living very
distinct geographic and cultural settings; the extended time series analysis conducted in Bangla-
desh established that this developmental program is largely but not fully completed by year three

of postnatal life. We cultured and sequenced the genomes of nine age-discriminatory bacterial
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strains as well as seven SAM-associated taxa from Bangladeshi donors, and then presented differ-
ent sequences of different combinations of commonly consumed complementary foods, to gno-
tobiotic mice colonized with these cultured organisms. Analysis of 16S rRNA datasets generated
from the recipient animal’s fecal microbiota disclosed a number of complementary food ingredi-
ent—bacterial strain associations, with levels of chickpea positively correlating with the relative
abundances of the greatest number of age-discriminatory strains (and without untoward effects on
the representation of any of SAM-associated strains). Comparing gnotobiotic mice colonized with
the consortium of SAM-associated strains and treated with (i) Khichuri-Halwa, a locally produced
therapeutic food used for SAM or (ii) the chickpea-enriched microbiota-targeted complementary
food (MDCF) formulation, with or without subsequent administration of a ‘probiotic consortium’
of these 9 age-discriminatory strains, disclosed that only the combination of the MCDF and ‘pro-
biotic’ consortium produced a significant increase in microbial fermentation (notably levels of
butyrate) and colonic Foxp3* CD4'regulatory T cells. Together, these results illustrate a shared,
microbial, feature of human development and a way for identifying and characterizing microbiota-
directed interventions designed to support repair and/or prevent disruption of the normal program

of community assembly.
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Introduction

The transition in early postnatal life from breast-feeding to complementary foods coincides with
a dramatic period of child development, including development of the gut microbiota. There has
been a notable absence of detailed comparative time series studies of gut community assembly
in members of birth cohorts who live in disparate geographic settings and represent distinct and
diverse cultural and culinary traditions. As a consequence, we have insufficient knowledge of
whether a common program of gut microbial community development exists. A related problem
is that we lack understanding of how, and to what extent, complementary feeding practices during
the suckling-weaning transition impact the developmental biology of the microbiota. From a meta-
community perspective (i.e., local communities connected by dispersal), a better understanding of
the spatial and temporal scales that affect variations in species co-existence, and patterns of local
and regional microbial diversity within and between human guts is needed if we are to develop
nutritional recommendations for infants and children that help sponsor normal development of
their microbiota and healthy growth, as well as more effective food and/or microbial interventions
that repair and ultimately prevent disruptions in this developmental program as occurs in children

with SAM.

In the present report, we (i) identify shared features of gut microbiota development from a
culture-independent (metagenomic) study of gut microbial community development in five birth
cohorts living in five countries located on three continents, (ii) use the results as a guide to culture
bacterial strains that are components of an ensemble of organisms that define this program; (iii)
introduce these sequenced cultured strains into young gnotobiotic mice that were then subjected
to a combinatorial screen of complementary foods to identify ingredients that promote the rep-
resentation of these strains; and (iv) perform a preclinical proof of concept test of whether these
ingredients, combined with these strains, when applied to an artificial model of a SAM microbiota,

can impact features of microbial community function and host biology.
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Results

Identifying shared features of gut microbiota development

We previously described an analysis of gut microbiota development in 50 Bangladeshi children
who exhibited healthy growth, as defined by serial anthropometry, during their first two years of
postnatal life (Subramanian et. al, 2014). Applying a non-parametric machine learning approach
(Random Forests) to a dataset of bacterial 16S rRNA gene sequences generated from fecal samples
collected each month from each individual yielded ‘sparse’ model composed of 24 of the most
age-discriminatory strains whose relative abundances over this time period provided a ‘microbial

signature’ that described normal development (‘maturation’) of the microbiota.

This Random Forests model was trained on a subset of 25 of the Bangladeshi children, and
its performance subsequently evaluated on the remaining members of the healthy cohort. Using
the 16S rRNA dataset generated from the Bangladeshi birth cohort, we performed a simulation to
determine the minimum number of individuals (sample size) that would be required to construct a
Random Forests model with comparable performance to larger sample sizes. The results showed
that using >12 children who had been sampled monthly would produce a model with a comparable
correlation coefficient and mean-squared error rate to a model generated from 25 children (Ex-

tended Data Figure 1a,b).

To test the extent to which gut microbial community assembly is comparable across chil-
dren by sequencing the PCR products generated from variable region 4 of bacterial 16S rRNA
genes present in the fecal microbiota of 50 anthropometrically healthy children who were mem-
bers of birth cohorts from Loreto, Peru (peri-urban area; n=22 participants), Vellore, India (urban;
n=14), Fortaleza, Brazil (urban; n=7), and Venda, South Africa (rural n=7) (see Extended Data
Tables 1 and 2 for information associated with each child and associated fecal samples). As in
Bangladesh, fecal samples were collected monthly from each child from birth through 24 months

of age (n=23+3 samples/child; 41,134+18,702 V4-16S rRNA reads/sample, mean+SD). 16S rRNA
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reads were grouped based on a threshold nucleotide sequence identity of >97% into operational

taxonomic units (97%ID OTUs).

We first used the sparse 24-taxon, Random Forests-derived model trained on the Bangla-
deshi dataset to predict the microbiota age of samples collected from all 50 children. The results
indicated a significant correlation between the age of the child at the time of fecal sample collec-
tion and their predicted fecal microbiota age (r>=0.65 across all four sites, r>=0.75 for India and
0.72 for Peru; Figure 1a,b). Weaker correlations were found for datasets generated from smaller

numbers of children (r*=0.53 and 0.56 for Brazil and South Africa, respectively).

We next developed country-of-origin specific Random Forests models from the Peruvian
and Indian datasets where the number of sampled children was >12. Model building for each
country was initiated by regressing the relative abundance values of all identified OTUs in all fe-
cal samples against the chronologic age of each donor at the time each sample was procured. For
each country, OTUs were ranked based on their feature-importance scores (calculated from the
observed increases in mean-squared error rate of the regression when values for that OTU were
randomized). To determine, how many OTUs, ranked based on their feature importance scores, are
required to create a Random Forests model that was comparable in accuracy to a model comprised
of all OTUs, we performed an internal-cross-validation where models with sequentially fewer
input OTUs were compared to one another (Extended Data Figure 2). Using the top 60 ranked
OTUs for each country-specific model yielded error-rates that were indistinguishable from those
obtained using all OTUs, while limiting the country specific model to the top 30 ranked OTUs
had only minimal effects on accuracy (within 1% of mean-squared error obtained with all OTUs).
Therefore, our subsequent analyses used sparse country-specific models, each comprised of their
30 top-ranked OTUs. The sparse Peruvian and sparse Indian models shared 16 OTUs with one
another, and 14 with the sparse 24 OTU Bangladeshi model, noting that sharing here indicates

alignment to the exact same 97%ID OTU cluster (Extended Data Figure 2).
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Another test of degree to which features of normal microbiota development are shared
across sites (countries) involved a series of reciprocal tests where each country-specific model
(Bangladesh, India, Peru) was applied to datasets from the other two countries. In all six compari-
sons, the Pearson correlation values were remarkably similar (1> from 0.76 to 0.67; Extended Data

Figure 1c¢).

Using a different approach, we created an “aggregate” model from the 16S rRNA datasets
generated from all but the Bangladeshi birth cohort (n=50). To balance the representation of each
country’s contribution to the aggregate model, seven children from each of the four countries were
randomly sampled. This random sampling was performed with 100 iterations, each iteration con-
sisting of a different group of 28 children. Analogous to the procedure described above, for each
iteration all OTUs were ranked based on their feature importance, and the minimum number of top
ranked OTUs identified that yielded error-rates which were most similar to those obtained with all
OTUs (in this case, the top 36 OTUs yielded error rates that were within 1% of the error rate ob-
tained when all OTUs were used. 18 of the 36 OTUs in this sparse ‘aggregate model” were present
in the sparse Bangladeshi model, while 27 and 25 OTUs were present in the Indian and Peruvian
models (Figure 1c¢). Applying the aggregate model to the Bangladeshi 16S rRNA datasets from
50 children yielded a Pearson correlation value (r?) of 0.68. In addition, both the aggregate model
and the “local” Bangladeshi model gave similar results when applied to microbiota samples from

children with SAM (r? = 0.78; n=64 children).

Development of the gut microbiota during the first five postnatal years

These results provide a meta-community perspective about gut microbiota development; over the
spatial and temporal scales represented by members of these five birth cohorts, the shared features
of species co-existence in the gut provide evidence for habitat selection. Our findings, obtained
from individuals sampled during the first two years of postnatal life, raise the question of how per-
sistent these age-discriminatory strains are over a longer time scale. Therefore, we expanded our

monthly sampling of the fecal microbiota to the 60™ postnatal month for 36 Bangladeshi children
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(n=1961 samples; 55+4 samples collected/child, 26,813+13,914 V4-16S rRNA reads/sample, see
Extended Data Table 3 for information associated with fecal samples). The cessation of breast
milk, cow’s milk or powdered milk consumption occurred at 34+10 months (mean+SD) in this
cohort (see Extended Data Figure 3 for a visual representation of the diet history for each child).
Samples collected in a previous study from twelve unrelated Bangladeshi males living in the same

urban slum and ranging in age from 23 to 41 years were used as representative adult microbiota.

To determine the degree to which a child’s microbiota comes to resemble an adult micro-
biota during the first five years of postnatal life, we used the unweighted and weighted UniFrac
metric to conduct an unsupervised analysis comparing the phylogenetic distances between each
fecal sample collected from each child at each time point to the samples from each of the 12
unrelated adults. As a control, beta-diversity measurements were also computed using just adult
samples. The mean ‘child-to-adult’ distance decreased to ‘adult-to-adult’ levels by 3 years of age
(Figure 2a,b). This pattern of stabilization was also documented using the non-phylogenetic bi-
nary Jaccard and abundance-weighted Hellinger metrics (Extended Data Figure 4a,b). Shannon-
Diversity and Phylogenetic Diversity indices of alpha diversity continued to increase up to five

years (Extended Data Figure 4c¢,d).

We constructed a sparse Random Forests model using the 16S rRNA dataset generated
from this longer time series study in order to describe gut microbiota development during the first
five years of postnatal life. (Note that the dataset was first randomly split so that each child’s time-
series was allocated into either a training or validation set (see Extended Data Table 3 for sample
allocation and information). The 5-year model has a minimal error rate using the 36 OTUs with
highest ranked feature importance scores, with no further improve in error if the top 60 were in-
cluded) (Figure 2c,d). Like the 2-year model, it revealed significant microbiota immaturity when

applied to the children with SAM (Figure 2e).

Sixteen of the OTUs incorporated into the sparse 5-year model were also present in the

sparse two-year 24 OTU model. Of note, in both models the OTUs with the highest feature im-
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portance scores were assigned to F. prausnitzii, although they correspond to three distinct 97%ID
OTU clusters: all three are represented in the 5-year model; only one is in the 2-year model where
it is the top ranked OTU (326792); this same OTU is ranked 23 in the 5-year model. All three
strains are present beyond 3 years of age, with the one that is top ranked in the 2-year model ex-
hibiting a progressive reduction in its representation beyond two years as the other two emerge to

prominence (Extended Data Figure Sb).

Generating a gnotobiotic mouse model to identify complementary foods that promote

microbiota maturation

The identification of age-discriminatory OTUs that define a program of normal development of
the microbiota, as well as its impairment in children with SAM, provides an opportunity to de-
velop food-based interventions that promote the establishment/adequate representation of these
taxa in the gut. Given that current ready-to-use therapeutic foods used to treat SAM, or ready-
to-use supplementary foods (RUSFs) employed for the nutritional rehabilitation of children with
moderate acute malnutrition, have not been formulated to target these age-discriminatory taxa in
the developing gut microbial community, we reasoned that commonly consumed complementary
foods represent a culturally acceptable source of dietary ingredients that could be tested for their
ability to promote repair of microbiota immaturity in undernourished children or, ideally, prevent
impaired microbiota development from occurring in the first place. To be therapeutically useful, a
microbiota-directed complementary food (MDCF) should also not promote expansion of compo-
nents of the microbiota, nor induce expression of their functions that have deleterious effects on

healthy growth.

To identify microbiota-directed complementary foods (MDCFs), we constructed a gnoto-
biotic mouse model using a consortium of cultured, sequenced, age-discriminatory OTUs together
with a set of cultured, sequenced bacterial taxa enriched in the microbiota of children with SAM.
We were able to culture nine age-discriminatory bacterial, strains, under anaerobic culture con-

ditions, from four fecal samples collected from three different Bangladeshi children aged 6-23
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months who lived in Mirpur and had normal anthropometry (Faecalibacterium prausnitzii, Dorea
longicatena, Dorea formicigenerans, Ruminococcus obeum, Ruminococcus torques, Blautia luti,
Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium catenulatum). Sequencing
V4-16S rRNA amplicons generated from these strains confirmed that they represented 97%ID
OTU clusters in the sparse 2-year Bangladeshi, Indian, Peruvian and aggregate Random Forests
models, as well as the 5-year sparse Bangladeshi model (Table 1). These nine OTUs vary in their
pattern of change in relative abundance during the first two years of postnatal life: thus they em-

body different phases/features of gut community development.

We had previously compared the relative abundances of bacterial OTUs in the fecal mi-
crobiota of 64 Bangladeshi children with SAM relative to healthy controls, finding that OTUs
belonging to the genera Streptococcus, Enterococcus, Leuconostoc, and Bifidobacteria, and to
the families Enterobacteriaceae and Lactobacillaceae, were significantly enriched in those with
SAM (Subramanian et al., 2014). Using the same medium and anaerobic culture conditions used
to retrieve the age-discriminatory strains, we recovered seven bacterial strains from a fecal sample
collected prior to a therapeutic food intervention from a 24-month old Bangladeshi child with
SAM who lived in Mirpur: Escherichia fergusonii, Streptococcus pasteurianus, Streptococcus
constellatus, Streptococcus gordonii, Streptococcus salivarius, Enterococcus avium, Bifidobacte-
ria pseudocatenulatum. Three of these seven strains (E. fergusonii, S. salivarius and S. pasteuria-
nus,) have V4-16S rRNA sequences that are exact matches to OTUs significantly enriched in SAM
(Extended Data Figure 6i-1), while three of the remaining four strains belong to genera that are
enriched. Six of the nine cultured age-discriminatory strains exhibit significant deficiency in their
representation in the fecal microbiota of the 64 children with SAM compared to the 50 healthy
Bangladeshi controls used to construct the 2-year Random Forests model: the exceptions are R.
obeum, B. longum, B. catenulatum (Extended Data Figure 6a-h). Only two strains cultured from
the SAM donor’s microbiota share the same taxonomic annotation with a member of the set of
nine age-discriminatory strains cultured from the healthy donors: Bifidobacterium catenulatum or

pseudocatenulatum.
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Importantly, this 16-member culture collection represents a defined artificial human gut mi-
crobiota community whose 97%ID OTUs directly match to 59.1+25% (mean+SD) of the V4-16S
rRNA 97%ID sequences identified in 996 fecal samples collected from the 50 healthy Bangladeshi
children living in Mirpur and 59.2+£27% of the 97% ID OTUs identified in 589 fecal samples col-
lected from the 64 children who had developed SAM. The genomes of each of the 16 Bangladeshi
strains were sequenced (paired-end 150 nt reads with Illumina NextSeq; 32-138 fold coverage)
and each genome was aligned to the nearest reference strain’s genome using MIRA (see Methods
for details of genome assembly and annotation, Extended Data Table 4 for summaries of genome
features, Supplementary Results for metabolic reconstructions, plus Extended Data Table 5 and
Extended Data Figure 7 for genes with homology to entries in the Virulence Factors Database,
including the notably high representation of these genes in the SAM-associated Escherichia fergu-

sonii strain and three of the four SAM-associated Streptoococcus species).

Based on diet surveys conducted in the Mirpur population (see Methods), we chose twelve
locally available, commonly consumed, complementary food ingredients to screen in various com-
binations at various dose levels in gnotobiotic mice (Figure 3a). To do so in an efficient and eco-
nomical manner, we developed the diet-oscillation protocol shown in Figure 3b. The protocol was
designed to minimize a number of potential confounding factors: (i) the order in which diets are
presented to different treatment groups of animals would be sufficiently varied to find effects that
are robust to order of presentation (‘group’ could be a single or multiple animals); (ii) there would
be repetition built into the experiment with different ingredient-rich diets repeated over the course
of an experiment encompassing different treatment groups to add confidence to the observed as-
sociations; (iii) there would be limited collinearity among ingredients so that observed effects
can be clearly attributed to one ingredient over another; and (iv) there would be a broad range of

concentrations for each ingredient, as well as several diets in which each ingredient was absent.

Twenty-four unique diets were designed by random sampling (see Methods). These diets
and their sequence of administration satisfied the following four ‘rules’. First, every diet con-

tained six different ingredients at various dose levels. One of the ingredients was dominant in each
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diet (47% or 37% by weight). Each diet consisted of a base of milk powder and soybean oil. The
calculated energy, protein, fat, and micronutrient content for each diet was adequate for rodents
(see Table 2 plus Extended Data Tables 6-9 for the composition of each diet). Second, each
group of mice received a different sequence of diets. Diets were switched weekly and provided
ad libitum. Mice were monitored daily for feeding behavior and weight changes. Third, no single
mouse received a diet that was dominated by a particular food ingredient more than once during
the course of the experiment. Fourth, within the same week, no two groups of mice were fed diets
dominated by the same complementary food ingredient. If two explanatory variables (any two
complementary food ingredients in this case) are highly correlated with each other, their effects
cannot be disentangled from one another in a correlational analysis of resulting data. To verify
that the individual complementary food ingredients are minimally correlated with each other, we
selected a diet configuration where the Pearson correlation coefficient between any two ingredients
was minimized (see Table 3 for the results of a collinearity analysis). Each complementary food
combination was cooked, and processed as a homogeneous blend, extruded into pellets, and the
pellets sterilized by gamma irradiation. Culturing the pellets in rich medium revealed that 21 of the

24 diets were sterile; these 21 diets were advanced to oscillation screen.

Before the screen was initiated, a pilot experiment was performed to define conditions that
were most conducive for successful colonization of the nine age-discriminatory strains. Comple-
mentary food combinations 1, 3, 9 and 11 that are rich in spinach, peanuts, chickpeas and whole
wheat flour, respectively, were studied (47% by weight of each diet; see Table 2). In addition,
three other diets were tested: an embodiment of the diet consumed by 18-month old children liv-
ing in Mirpur (see Methods and Extended Data Table 9 for details of how this ‘Mirpur-18’ diet
was designed and its composition), plus two commercial low-fat, plant polysaccharide-rich mouse
chows. Groups of five-week-old male germ-free C57B1/6] mice were each started two days be-
fore gavage on one of these eight diets (2 mice, dually-caged/diet; total of 16 animals). The seven
SAM-associated strains were gavaged first on ‘day 0’ of the experiment, as a mixture composed of

equal numbers of each strain. Seven days later, the consortium of nine cultured age-discriminatory
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strains was administered via single oral gavage of a mixture containing equal numbers of each
component strain. Mice in each treatment group continued to receive their diet ad libitum for an
additional 10 days. Fecal samples were collected daily from each mouse throughout the experi-
ment. Based on the results of V4-16S rRNA sequencing of fecal DNA, successful colonization was
defined as a strain achieving a relative abundance of >0.1% in the day 15 samples. Whole wheat
flour rich and chickpea-rich complementary food combinations supported establishment and main-
tenance of the greatest number of age-discriminatory taxa (8); colonization with F. prausnitzii was
not achieved with any of the eight diets. However, increasing the dose of this organism by 100-
fold resulted in successful colonization when animals were given either the whole wheat flour- or

chickpea-rich diets.

Based on these results, we adopted the colonization protocol shown in Figure 3b for the
diet oscillation screen. The seven-member SAM-associated consortium was given first, by gavage,
to five-week-old germ-free male C57Bl/6J mice: all animals (n=12) had been switched to the Mir-
pur-18 diet two days earlier. After four days had elapsed, all mice were switched to the chickpea-
rich diet for three days. Three days later, the nine-member set of age-discriminatory strains was
introduced by gavage, followed two days later by the concentrated dose of F. prausnitzii. An eight-
week period of diet-oscillations followed (4 mice/diet oscillation sequence; two mice/cage) where
diets were switched weekly and fecal samples were taken on days 1, 3, 5, 6 and 7 of each one-week
diet ‘block’. Bedding was changed on day 1 of each diet block to minimize contamination with the
previous diet. Each fecal sample collected was profiled by V4-16S rRNA sequencing. Pearson’s
correlations were then computed between the relative abundances of the strains and the levels of
complementary food ingredients in a given MCDF candidate (see Figure 3¢ for results obtained

from this analysis of 21 different diets).

The chickpea ingredient provided the greatest number of positive correlations with age-
discriminatory taxa. Intriguingly, the level of chickpea in the diets was significantly inversely cor-
related with the relative abundances of Bifidobacterium longum and Bifidobacterium breve, which

dominate during the early phases of normal microbiota development, and positively associated

105



with the age-discriminatory OTUs that bloom later during the first two years of community matu-
ration (Figure 3c¢). Moreover, the chickpea ingredient did not significantly increase the abundance
of any of the SAM-associated strains while other ingredients, notably raw banana and peanuts,
were positively associated with the relative abundances of E. fergusonii and S. pasteurianus, re-

spectively (Figure 3c).

Comparing a microbiota-directed complementary food to an existing local therapeutic food

Given these results, we selected chickpea-rich complementary food combination 9 (Table 2) as
the lead candidate MDCF and compared it to Khichuri-Halwa, a rice- and lentil-based, locally
produced therapeutic food used to treat SAM. An experiment was designed to measure the effects
of each diet, the effects of the age-discriminatory strains, and the effects of interactions between
diet and the age-discriminatory strains, on features of the microbiota, gut immune function and
host immune function. The study design is shown in Figure 4a. Each experimental group of five-
week-old germ-free C57B1/6J mice (4 groups, n=6 animals/group; three cages of dually-housed
mice/group) was started on the Mirpur-18 diet two days before gavage of the 7-member SAM-
associated cultured consortium (defined as experimental day 0). After 4 days had elapsed, all mice
received Khichuri-Halwa or the chickpea MDCF candidate. Three days later, experimental day 7,
half of the mice in each of the two diet arms were gavaged with the 9-member consortium of age-
discriminatory strains, followed two days later by the concentrated dose of F. prausnitzii (groups
I and IIT in Figure 4a). Groups II and IV did not receive this consortium of age-discriminatory
strains. All mice were maintained on their designated diets for an additional 40 days. Fecal sam-
ples were collected from each animal on days 2, 7, 9, 15, 19, 21, 27, 33, 39, 45 and 49 for 16S
rRNA analyses, and at selected time points multiple samples were obtained so that targeted gas-
chromatography mass spectrometry (GC/MS) of short chain fatty acids and microbial RNA-Seq

could be performed.

The results revealed that compared to Khichuri Halwa, the chickpea-rich MDCF candidate

produced a significantly greater enrichment of F. prausnitzii, Ruminococcus torques, and Dorea
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longicatena (Figure 4c¢, p<0.0001, repeated measures 2-way ANOVA; interaction between type of
dietary intervention and time). The enrichment of F. prausnitzi peaked on experimental day 15, six
days after it was last gavaged, at which time it represented 37+7% (mean+SD) of the community
compared to 10+2% for Khichuri-Halwa treated fed animals (Figure 4¢). A similar time course
of enrichment was observed with Blautia luti, whose relative abundance also peaked 6 days after
its introduction into mice harboring the 7-member SAM-associated consortium (24+3% in the
chickpea-rich MDCF fed animals compared to 11+6% for Khichuri-Halwa treated fed animals;
p=0.0001, repeated measures 2-way ANOVA; interaction between type of dietary intervention and
time). All four age-discriminatory strains whose representation was significantly enhanced by the
chickpea-rich MDCEF relative to Khichuri-Halwa in this experiment had exhibited significant posi-
tive correlations with chickpea levels in the previous diet-oscillation screen (Figure 3c¢), providing
confirmation of the findings in the screen (see Extended Data Table 11 for the results of statistical
tests of the significance of observed differences between experimental groups). Intriguingly, the
combination of the chickpea-rich MDCF and age-discriminatory bacterial strain (‘probiotic’) in-
tervention resulted in significant depletion of the SAM-associated taxa Streptococcus pasteurianus
and Enterococcus avium. In the case of E. fergusonii, both dietary interventions, when combined
with the age-discriminatory intervention produced comparable results, with significant depletion

occurring relative to the diet intervention-only groups (Figure 4d).

The most abundant strain in the fecal microbiota of mice receiving the chickpea-rich
MDCEF intervention was F prausnitzii, a known butyrate producer. The genome assemblies of the
age-discriminatory and SAM-associated strains had on average 97.7+1.3% identity alignments to
the genomes of the taxonomically closest sequenced reference type strain genome. The F. praus-
nitzii genome cultured from the Bangladeshi donor shares 96.3% identity with the genome of
the Fprausnitzii A2-165 type strain. (Note that this type strain was re-sequenced as a control for
differences related to the sequencing platform or alignment procedures used; the resequenced ge-
nome had 99.9% identity with the publicly available genome sequence). The Bangladeshi strain

we isolated, like the type strain contained a gene encoding butyryl-CoA:acetate CoA transferase
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(EC:2.8.3.8) the enzymes which catalyzes the final step in butyrate synthesis. The other age-dis-
criminatory strains whose abundances were significantly increased by the chickpea-rich MDCEF,
Ruminococcus torques, Blautia luti and Dorea longicatena, are related to strains that are known

producers of short chain fatty acids, including butyrate.

GC/MS of fecal samples collected on experimental day 40 revealed that butyrate levels
were significantly greater in the group of animals receiving the chickpea-rich diet plus age-dis-
criminatory taxa compared to all other experimental groups (Figure 5a, p<0.0001; ANOVA fol-
lowed by post-hoc Tukey’s test). At the time of sacrifice on day 49, cecal levels of butyrate were
significantly higher in both groups of mice that had been treated with the age-discriminatory strains
(Extended Data Figure 8a), with a trend for higher levels in those that received the chickpea-rich
MDCEF (p=0.1). There was a highly significant correlation across both treatment groups between
the relative abundance of Fprausnitzii and levels of cecal butyrate (r>=0.73, p<0.001, Pearson’s
correlation, Extended Data Figure 8b). This association was not observed with any of the other
age-discriminatory strains enriched in the fecal microbiota of mice fed the chickpea-rich MDCF
compared to Khichuri-Halwa, including D. longicatena, R. torques and B. luti (insignificant Pear-
son’s correlations, r’=-0.07,p=0.4; r>=-0.03, p=0.6; r>=0.1, p=0.3). This finding was also consistent
with the distribution of genes encoding butyryl-CoA:acetate CoA transferase, among these age-

discriminatory strains.

Butyrate is a known mediator of regulatory T cell homeostasis, hence we used FACS to de-
fine compare the representation of Foxp3* CD4" T cells in the colons, mesenteric lymph nodes and
spleens of all animals belonging to each of the four treatment groups. The percentage of colonic
Foxp3* CD4" T cells was significantly greater in the group receiving the chickpea-rich MDCF diet
plus age-discriminatory taxa, compared to all other groups (Figure 5b, all comparisons p<0.01,
ANOVA followed by post-hoc Tukey’s test). This induction of Tregs was specific for the colon and
this treatment group; no significant differences in Tregs were observed in mesenteric lymph nodes

or spleens harvested from any mice in any of the four experimental groups (data not shown).
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A significant correlation was observed between fecal levels of Fprausnitzii and the per-
centage of colonic regulatory T cells (r*=0.43, p<0.05; Pearson’s correlation). In parallel with the
observed patterns of colonic regulatory T cells representation, animals subjected to the chickpea-
rich MDCF plus age-discriminatory strain intervention exhibited significant elevation in cecal
levels of acetate and succinate compared to all other groups (p<0.0001, ANOVA followed by
post-hoc Tukey’s test). The extent to which this complementary food-by-microbiota interaction
impacts other features of host metabolism is being assayed in serum, liver, gastrocnemius muscle,

and brain.

Prospectus

The current study illustrates a way of applying machine learning methods to bacterial 16S rRNA
datasets generated from fecal samples, collected monthly through the first several years of life
from a modest number of children with healthy growth phenotypes enrolled in birth cohort stud-
ies, in order to identify age-discriminatory bacterial strains that define a program of gut microbial
development which is shared across children representing geographically dispersed populations
and embodying distinctive cultural traditions and culinary traditions. Knowledge of these strains
and their temporal patterns of representation in a healthy gut community are useful for a number of
reasons. First, they can serve as a guide for quantifying the effects of various factors, including di-
etary history, antibiotic usage, enteropathogen load, frequency and duration of diarrheal diseases,
and biomarkers of environmental enteric dysfunction, on the development/maturation of the gut
microbiota in healthy versus undernourished children, and by extension whether various combina-
tions of these factors and the representation of these age-discriminatory taxa significantly correlate
with, and are predictive of, anthropometric measures of growth phenotypes within and across dif-
ferent populations of children. Second, these age-discriminatory strains provide the starting point
for identifying microbiota-directed complementary foods (MDCF) designed to produce durable
repair of defects in community assembly or to prevent such defects from developing. This ap-

proach differs from current efforts to design more effective food-based interventions for children
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with impaired linear and ponderal growth. Developing MDCFs that produce sustained repair of
microbiota immaturity in undernourished children would enable follow-on proof-of-concept stud-
ies that test whether such repair produces better clinical outcomes compared to current therapy. If
successful, the ability to use locally produced complementary foods for such interventions could
yield products that are culturally acceptable, have desirable organoleptic properties, and whose

manufacture and distribution promotes local economic development.

Gnotobiotic mouse models of the type described in this report are made possible by cultur-
ing strains that have been identified as high feature-importance age-discriminatory taxa in Ran-
dom Forests models, by constructing diets combining various complementary foods represented
at different levels, and by screening these candidate MDCFs using oscillation protocols that (i)
minimize the numbers of animals that need to be used without precluding adequate replication
across animals, (i1) account for potentially problematic hysteresis effects, and (iii) overcome the
confounding problem of collinearity when trying to identify specific ingredient-microbe relation-
ships by avoiding creation of multiple diet formulations where particular sets of ingredients inevi-
tably co-occur. By including disease-associated taxa in the defined culture consortia introduced
into these animals, the specificity of targeting of age-discriminatory taxa by candidate MDCFs can
be ascertained. These models also allow the effects of a given MDCF on taxa that represent dif-
ferent stages of microbiota development to be determined; this capability provides an opportunity
to design developmental stage/state-specific MDCFs and/or for identifying different MDCFs that
might have to be sequentially applied in order sponsor full and sustained repair of a microbiota that
takes several years to normally develop. Because a number of age-discriminatory OTUs appear to
be shared across different populations of children the robustness of a given MDCF can be modeled
in gnotobiotic animals harboring cultured consortia composed of sequenced age-discriminatory
OTUs representing different donor origins or mixtures of OTUs from different donor countries.
Additionally, the effectiveness of an MDCF in repairing microbiota function and associated host
pathology can be tested in these models as a function of a given enteropathogen load, antibiotic
treatment and/or synbiotic intervention involving a MDCF together with various combinations of
age-discriminatory strains.
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The current study also illustrates how these gnotobiotic models can be used to define the ef-
fects of MDCFs on features of host biology that are perturbed in undernourished children. Regula-
tory T cells affect gut barrier function and responses to vaccination, both of which are impaired in
these children. For example, Tregs are the major helper cells for IgA responses to bacterial specific
antigens derived from the microbiota (Cong et al., 2010). The effect size produced by the chick-
pea-rich MDCEF on the proportion of colonic Tregs has been previously associated with improved
rescue from ovalbumin-induced allergic diarrhea (Atarashi et al., 2013). The extent to which gut
barrier function and vaccine responses are affected by interactions between a given MDCF and
given member or members of the gut community can be modeled by including and excluding the
taxon or taxa from a defined community that is introduced into gnotobiotic animals. An example
of one attractive target that emerged from this report is F. prausnitzii, the butyrate-producing, age-
discriminatory species with high feature importance score strain representatives across different
country-specific Random Forests models, whose relative abundance positively correlates with the

chickpea-rich MDCF-mediated increase in butyrate levels and colonic Treg representation.

Methods

Human studies

Human fecal samples were obtained from biospecimen collections assembled during the course of
previous studies; these studies enrolled subjects and collected samples in accordance with proce-

dures approved by local IRBs and the Washington University Human Studies Committee.

Animal Studies

All experiments involving mice were performed using protocols approved by the Washington
University Animal Studies Committee. Mice belonging to the C57BL/6]J inbred strain were main-

tained in plastic flexible film gnotobiotic isolators under a strict 12h light cycle (lights on at 0600).
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Methods used for (i) collection of fecal samples and isolation of human fecal DNA, (ii)
generation and sequencing of V4-16S rRNA amplicons and analysis of the resulting datasets (in-
cluding generation of sparse Random Forests models), (iii) culturing age-discriminatory and SAM-
associated bacterial strains from fecal samples obtained from Bangladeshi donors, (iv) sequencing,
assembling and annotating the genomes of these cultured strains and performing metabolic recon-
structions, (v) formulation of diets for gnotobiotic mouse experiments, (vi) colonization of mice
with these strains and implementation of the diet oscillation experimental design, (vii) character-
ization of fecal and cecal samples obtained from these animals by V4-16S rRNA sequencing and
by COmmunity PROfiling by short read shotgun DNA sequencing (COPRO-Seq), GC/MS and
microbial RNA-Seq, and (viii) fluorescence activated cell sorting-based analysis of the representa-
tion of Foxp3* CD4" T cells in the colon, mesenteric lymph nodes and spleens of gnotobiotic mice,

are described in Supplementary Information.
Accession Numbers

16S rRNA datasets, COPRO-Seq datasets, microbial RNA-Seq and draft genome sequences have

been deposited in European Nucleotide Archive.
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Figure Legends

Figure 1. Generalizability of Bangladeshi Random Forests model of gut microbiota matura-
tion model to children raised in other geographies. (a,b) The sparse 24-taxon Bangladeshi Ran-
dom Forests model was applied to bacterial V4-16S rRNA datasets generated from monthly fecal
samples collected from children with healthy growth phenotypes (as defined by anthropometry)
who were enrolled in two birth cohorts, one from an urban area of India (Vellore; n=14 children,
349 fecal samples) and the other from a peri-urban area of Peru (Loreto, n=22 children, 505 fecal
samples). Each point represents a fecal sample. The x-axis indicates the chronologic age of each
child at the time of fecal sample collection; the y-axis is the prediction of microbiota age at the
time of collection as defined using the sparse 24-taxon Forests model generated from Bangladeshi
children living in the Mirpur urban slum in Dhaka Bangladesh. The correlation coefficients are
shown in the bottom right of each panel. (¢) An aggregate Random Forests-based model of gut mi-
crobiota maturation was developed by combining V4-16S rRNA datasets generated from monthly
fecal sampled from children in birth cohorts from India, Peru, plus Fortaleza, Brazil (urban; n=7),
and Venda, South Africa (rural n=7). To balance the representation of each country’s contribution
to the aggregate model, seven children from each of the four countries were randomly sampled

(100 iterations, each iteration consisting of a different group of 28 children).

The increase in mean-squared error of the aggregate Random Forests model in plotted in ascend-
ing order of age-discriminatory importance for the top 30 OTUs. The OTUs are colored based on
their overlap with OTUs in the Bangladeshi model (gold= one of the top 24 OTUs ranked in terms
of their feature importance scores, green= one of the top 24 to 60 OTUs, black=absent from the
top 60 OTUs). The inset shows the results of cross-validation, which indicates that beyond the top
60 taxa there is no improvement compared to all 1128 OTUs detected in all of the V4-16S rRNA
datasets. The taxa cultured from the fecal microbiota of Bangladeshi children and incorporated
into the artificial, defined, community used for studies in gnotobiotic mice are indicated by a blue
asterisk. Two asterisks indicate that multiple isolates were obtained that correspond to the same

V4-16S rRNA OTU.
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Figure 2. Maturation of the gut microbiota in members of Bangladeshi birth cohort is largely
executed by, but nonetheless continues beyond, the first three postnatal years. (a,b) UniFrac a
beta-diversity metric that measures the degree to which any two communities share branch length
on a bacterial phylogenetic tree, was used to calculate the distances (degree of dissimilarity) be-
tween each sampled child’s microbiota at each time point of fecal collection (n=36 children, 1961
samples) relative to samples profiled from unrelated adults who also lived in the Mirpur slum
(n=12 males, 49 samples). Panels a and b show unweighted and weighted UniFrac distances, re-
spectively, plotted as mean and standard deviation values for each month up to 60 months. The
lower the mean distance in a given monthly bin, the more similar the overall bacterial phylogenetic
configuration is between samples collected from children at that time point and adults. As a con-
trol comparison, the distance between adult samples relative to one another are plotted on the far
right of each panel. See Extended Data Figure 4 for analyses of other metrics of alpha and beta
diversity. (¢,d) In addition to the unsupervised techniques applied in panels a and b, the training
and validation of the supervised approach of Random Forests is shown for the 5-year Bangladeshi
model. Each point represents a fecal sample collected from a child randomized to the training set
(brown points in panel c) and validation set (blue points in panel d). In the validation set, a LOW-
ESS curve has been fit to the dataset to account for the non-linearity observed at older ages. ()
The 5-year model was applied to samples obtained from the 64 children from Mirpur that were
diagnosed with SAM. Correlation coefficients are shown in each panel of the validation set and

the SAM dataset.

Figure 3. A diet oscillation screen to identify complementary food ingredients that boost the
relative abundance of age-discriminatory strains in an artificial defined human gut micro-
biota assembled in gnotobiotic mice. (a,b) Experimental design for delineating the interrelation-
ships between diet components and members of the 16-member defined community. Twenty-four
unique diets, each composed of 6 ingredients in various combinations, each with one dominant
ingredient, were designed by random sampling of 12 commonly consumed, locally available Ban-

gladeshi foods and the application of the rules outlined at the bottom of panel b. An optimal diet
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configuration is one in which the individual ingredients are minimally correlated with each other.
Panel b shows the time course for colonization with the 7-member consortium of cultured bacte-
rial taxa enriched in SAM followed by colonization with the 9-member cultured consortium of
age-indicative strains. (c¢) Pearson’s coefficient of correlation between the relative abundance of
each bacterial strain in the fecal microbiota of recipient mice, and the levels of the food ingredient.
The variation in the coefficients is indicated using a three-color scheme. The orange colored boxes
indicate coefficients that are statistically significant, p<0.05, after applying a false-discovery rate
correction. The green colored boxes indicate a positive correlation, white indicates no correlation
and yellow indicates a negative correlation between the levels of ingredients and the relative abun-

dances of the indicated strains.

Figure 4. The effects of the chickpea enriched microbiota-directed food formulation versus a
locally produced therapeutic food on members of the defined artificial human gut microbio-
ta. (a) The experimental design comparing the effects of chickpea-rich microbiota-directed com-
plementary food combination 9, enriched in chickpea and secondarily in raw banana compared
to the standard locally available ready-to-use therapeutic food, Khichuri-Halwa. Four groups of
six 5-week-old mice were colonized by oral gavage with the SAM-associated strains while being
fed Mirpur-18, the prototypic Bangladeshi diet. Four days later mice were switched to either the
chickpea-rich MDCF or Khichuri-Halwa. For each diet treatment group, half of the mice were ga-
vaged with a consortium of nine cultured, age-discriminatory strains on day 7 and to ensure colo-
nization with Faecalibacterium prausnitzii, the taxon with the highest feature importance score
in the 2-year Bangladeshi and Peruvian Random Forests models and among the top three in the
aggregate and Indian models, a high-dose gavage 1.5 x 108 CFUs was delivered two days later (day
9). The other half of each dietary group did not receive the age-discriminatory strains. Mice from
all groups were maintained on diets without oscillation for six more weeks. (b) The composition
of both diets (see Extended Data Table 9 for further details about nutritional analysis of these
diets). (¢) Comparing the abundance of age-discriminatory strains in the groups of mice that were

gavaged with the age-discriminatory strains fed either chickpea-rich diet or a Khichuri-Halwa
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therapeutic food reveals the OTUs that are significantly enriched over time in the chickpea-rich
MDCEF group. Blautia luti also showed a similar pattern but has lower relative abundance than the
taxa displayed (for further details of responses of all strains to both diets see Extended Data Table
11). **** p<(0.0001 (repeated measures 2-way ANOVA, interaction between type of dietary in-
tervention and time). (d) SAM-associated strains whose abundances are significantly different in
the fecal microbiota of mice treated with the chickpea-rich MDCEF. *** p<0.001; **** p<0.0001

(repeated measures ANOVA with post-hoc Tukey’s comparisons to group A shown in panel a)

Figure 5. An interaction between the chickpea-enriched MDCF diet and members of the
consortium of age-discriminatory strains increases butyrate production by the model human
gut microbiota and increases regulatory T-cells in the colons of gnotobiotic mice. The design
of this experiment is shown in Figure 4a. (a) Fecal butyrate levels were elevated significantly
in mice receiving the combination of the chickpea-enriched MDCF and the consortium of age-
discriminatory taxa group compared to all other experimental groups (analysis of samples obtained
on experimental day 40; **** p<0.0001; ANOVA followed by post-hoc Tukey’s comparisons).
(b) At the time of sacrifice on experimental day 49, after 46 days of consumption of the chickpea
MDCEF and 40 days after administration of the consortium of nine age-discriminatory strains, the
percentage of Foxp3* among colonic CD4" T cells was significantly elevated in compared to all
other treatment groups (**, p<0.01; *** p<0.001; **** p<0.0001; ANOVA followed by post-hoc

Tukey’s comparisons).
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Figure 3.
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Figure 5.
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Table Legends

Table 1 — Age-discriminatory and SAM-associated strains cultured from Bangladeshi

donors.

Table 2 — Composition of complementary food diets. The red asterisk denotes irradiated

diets that did not pass sterility testing and were excluded from further analysis in gnotobiotic mice.

Table 3 — Testing for collinearity among ingredients in the diet oscillation experiment
in gnotobiotic mice colonized with age-discriminatory and SAM-associated strains. The Pear-
son’s correlation matrix between each ingredient’s levels with the levels of all other ingredients
during each diet oscillation week is shown. The maximum collinearity observed was 0.63 between

levels of milk-powder and red lentils.
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Extended Data Figure Legends

Extended Data Figure 1 — Sample size estimation for Random Forests model training and the
reciprocal application of sufficiently powered sparse country-specific models from Bangla-
desh, India and Peru. To determine the adequate sample size needed for our studies of gut micro-
biota assembly in children raised in different countries, a subsampling of the training set of healthy
Bangladeshi children (n=25) was performed and validated on a separate set of 25 children in this
two year birth cohort study. (a,b) As the number of children incorporated into a model reduces
there is a reduction in the correlation coefficients (panel a) and an increase in the mean-squared er-
ror rate (panel b). These effects plateau after above 12 children are included in the model training.
(c) Based on the sample-size estimation, two country-specific datasets in India (n=14 participants)
and Peru (n=22) have sufficient replication to warrant construction of country-specific Random
Forests models of gut microbiota development. A given country-specific model was reciprocally
applied to datasets generated from members of the birth cohorts studied in the other two countries.
Each plot details the country in which the model was generated, the country the 16S rRNA dataset
originates from and the correlation coefficient observed between the chronologic age of the child

when a sample was obtained and the predicted age of his/her fecal microbiota.

Extended Data Figure 2 — Age-discriminatory taxa in India and Peru ranked by their feature
importance scores. (a,b) The most discriminatory taxa in the Random Forests models constructed
in India and Peru respectively are shown. The x-axis plots the increase in mean-squared error when
values from each OUT are randomly permuted. The inset shows the cross-validation curves that

result from reducing the number of 97% ID OTUs used for model training.

Extended Data Figure 3 — Daily dietary data collected from 36 Bangladeshi children sampled
monthly during the first 60 months of postnatal life. Diet profiles are sorted in ascending order
of the fraction of time each child was fed exclusively with family foods. The legend indicates the
types of food and the associated abbreviations. Abbreviations: BM, breast milk; CM, liquid cows

milk, PM, powdered milk; Ata, Bangla term synonymous with whole wheat.
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Extended Data Figure 4 — Beta and alpha diversity measurement of fecal microbiota sampled
monthly during the first S postnatal years in a Bangladeshi birth cohort living in Mirpur.
(a,b) Non-phylogenetic metrics of beta-diversity were calculated for each sampled child (n=36
children, 1961 samples) relative to samples profiled from unrelated adults (n=12 adult Bangladeshi
males, 49 samples) using Binary-Jaccard and Hellinger distances. Mean values + SD are plotted
for each monthly bin up to 60 months. As a reference control, the distances between adult samples
relative to one another are plotted on the far right of each plot. (¢,d) The metrics of alpha-diversity
(Shannon Diversity Index and Phylogenetic Distance) are also plotted for each monthly bin and for

adult samples. Mean values + SD are plotted.

Extended Data Figure 5 — Ranking of feature importance scores in the 5-year Bangladeshi
Random Forests model, and their relative abundances in the fecal microbiota of the study
population. (a) The top ranked 36 most age-discriminatory taxa in the 5-year model are shown
here in order of decreasing feature importance. The x-axis shows mean-squared error for each of
OTU and the inset of a shows the results of cross-validation, i.c., the error-rate as a function of the
number of 97% OTU ID predictors used. (b) Heatmap showing the monthly distribution of relative
abundances of the top 60 most age-discriminatory taxa in the 5-year model. Note that a subset of
the age-discriminatory discriminatory strains in the sparse 2-year Random Forests model remain
at 5 years, included the same strains of Faecalibacterium prausnitzii, Ruminococcus obeum and
Bifidobacterium longum. Of note, taxa with the same taxonomic annotation but different temporal
patterns of relative abundances are observed with Faecalibacterium prausnitzii and Ruminococcus

obeum. The significance of this strain-level and temporal variation is unknown.

Extended Data Figure 6 — Relative abundances of cultured age-discriminatory and SAM-
associated strains in the fecal microbiota of Bangladeshi children with SAM compared to the
cohort of healthy subjects. (a-h) Relative abundances of nine of the age-discriminatory strains
in fecal samples collected monthly from healthy subjects (n=50) samples from SAM subjects
prior to nutritional rehabilitation (n=75). Note that Bifidobacterium breve and longum cannot be

distinguished based on their V4-16S rRNA sequences. (i-1) Relative abundances of four of the
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SAM-associated strains in these two groups. Data for the healthy reference cohort is plotted as the
mean+SD for each monthly bin. Each red dot represents a fecal sample collected from a child with

SAM prior to nutritional rehabilitation.

Extended Data Figure 7 —Genes in the Virulence Factor Database with homologs in the ge-
nomes of age-discriminatory and SAM-associated strains. Virulence factors were screened
using BLAST (e-value cutoff, 10-*) against the virulence factor database (VFDB). The number
of unique virulence factors found in each genome is plotted. The age-discriminatory strains and

SAM-associated strains are sorted in ascending order of number of genes detected.

Extended Data Figure 8 — Cecal short-chain fatty acid levels in gnotobiotic mice treated with
the chickpea-enriched MDCF with or without the 9-member consortium of cultured age-
discirminatory strains, and correlations between levels of different short chain fatty acids
and relative abundance of F. prausnitzii in the fecal microbiota of these mice. The experi-
mental design is shown in Figure 4a. (a) Butyrate, measured in cecal contents, is plotted for each
experimental group. Cecal butyrate levels are significantly greater when the age-discriminatory
taxa are introduced in both dietary contexts (****, p<0.0001; ANOVA followed by post-hoc Bon-
feronni adjustment). (b) Correlation between the relative abundance of F. prausnitzii in cecal con-
tents and levels of butyrate (Pearson’s 1=0.73, p<0.001). (¢) Correlation between fecal levels of
F.prausnitzii and colonic levels of Foxp3™ CD4* T cells (Pearson’s r, p<0.01). (d,e) Levels of ac-
etate and succinate in cecal contents show a similar pattern to the colonic regulatory T cell patterns
observed in panel b. Cecal acetate and succinate levels are significantly elevated in the group of
animals treated with the chickpea-rich MDCEF plus age-discriminatory strain consortium compared
to all other experimental groups (**, p<0.01; *** p<0.001;**** p<0.0001; ANOVA followed by

post-hoc Tukey’s comparisons).
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Extended Data Figures

Extended Data Figure 1
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Extended Data Figure 2.
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Extended Data Figure 3
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Extended Data Figure 4
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Extended Data Figure 5
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Extended Data Figure 6

Age-discriminatory strains
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Extended Data Figure 7
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Extended Data Figure 8
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Extended Data Table Legends

Extended Data Table 1 - Metadata for healthy children sampled monthly during the first

two years of life from four different MAL-ED sites

Extended Data Table 2 — Information associated with individual fecal samples collected

from consistently healthy children followed from birth from four different MAL-ED sites

Extended Data Table 3 - Information associated with fecal samples collected from Bangla-

deshi children sampled monthly from birth through 60 months of age.

Extended Data Table 4 — Cultured age-discriminatory and SAM-associated bacterial

strains.

Extended Data Table S — Analysis of virulence factor gene content and the representation of
metabolic pathways involved in short chain fatty acid production in cultured age-discrimi-

natory bacterial strains.

Extended Data Table 6 - Composition and nutritional analysis of diets used in the diet-oscil-

lation experiments.
Extended Data Table 7 - Pairwise testing for collinearity between food ingredients.

Extended Data Table 8 - Sequence of diets administered during diet-oscillation experiment

shown in Figure 3.
Extended Data Table 9 - Diets administered to mice in the experiment shown in Figure 4.

Extended Data Table 10 - Information associated with fecal samples obtained from the diet

oscillation experiment shown in Figure 3.

Extended Data Table 11 - Associations between relative abundances of bacterial strains
in the fecal microbiota of gnotobiotic mice treated with the chickpea-enriched MDCF or

Khichuri-Halwa, with or without addition of the nine age-discriminatory taxa.
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Supplementary Information

Supplementary Methods
Metabolic reconstructions of cultured age-discriminatory bacterial strains
Analysis of virulence factors present in cultured SAM-enriched taxa

Microbial RNA-Seq analysis of community and individual strain responses to the chickpea-en-

riched MDCEF.
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Chapter 4

Future Directions

142



Introduction

This chapter focuses on ways for testing the generalizability by which a complementary food
could promote maturation of the gut microbiota, and how these lines of inquiry may extend to

future field-based research.

Generalizability of chickpea-associated effects on age-discriminatory taxa isolated from

different donors and ‘background’ recipient donors

The discovery that a chickpea-based diet supplement can increase the relative abundances of sev-
eral age-discriminatory taxa, increase butyrate production by the artificial, defined, human gut
microbiota installed in gnotobiotic mice and increase the regulatory T cell population in the colon
serves as a starting point for a systematic evaluation of two factors: ‘effector-strain’ variation in
relation to phenotypes and secondly, the effect of background-community variation to an estab-
lished effector strain-mediated phenotype. As an example, assuming that the phenotypes observed
are shown to be dependent on a single member of the 9-member consortium of age-discriminatory
strains, (e.g., Faecalibacterium prausnitzii), the following systematic matrix of experimental ma-

nipulations could be highly informative.

Firstly, multiple OTUs with a taxonomic annotation of Faecalibacterium prausnitzii were
identified in each of the Random Forests models constructed from Bangladesh, Peru, India, as
well as the extended five year Bangladeshi model. Several of these are exact matches in terms of
their V4 16S rRNA gene sequence, while others are distinct sequences. Isolation and comparative
genomic analyses of these strains would enable an understanding of the extent to which their gene
content is conserved. It is notable that the OTU variants (strains) of Faecalibacterium prausnitzii
that were cultured have distinct sequences from the strain with the highest feature importance
score in the five year Bangladeshi Random Forests model of microbiota maturation. One hypoth-
esis is that different strains of F. prausnitzii have somewhat different niches at different stages of
gut microbial community development: e.g., at earlier ages, breast milk is a prominent component

of the diet whereas a child is completely weaned by their fifth postnatal year.
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Isolating multiple strains of F. prausnitzii would allow a series of precise substitution exper-
iments to be performed. The Bangladeshi strain of F.prausnitzii within the 16-member community
described in Chapter 3, could be systematically substituted with other Bangladeshi Fprausnitzii
strains that have been cultured from donors having similar chronologic ages, with several different
age bins represented in the culture collection. Similarly, the Bangladeshi strain could be removed
from the artificial, defined, human gut microbiota that was used to colonized gnotobiotic mice and
strains from other donors representing other geographic sites (e.g. Malawi, Peru) but comparable
ages at the Bangladeshi donors introduced instead. Once these manipulated communities are trans-
planted into gnotobiotic mice, animals could be divided into chickpea-supplemented and control
diets to determine the extent to which strain-level variation can influence butyrate production,

colonic regulatory T cell homeostasis and other phenotypes that might be identified in the future.

Another equally interesting approach to exploring the robustness of chickpea-based ef-
fects observed in Chapter 3 would be to repeat the food intervention on a number of different mi-
crobiota, ideally obtained from children who following SAM and therapeutic food-interventions
continue to harbor a persistently immature gut microbiota relative to healthy reference controls.
Here, the chickpea-based intervention could be applied to gnotobiotic animals with transplanted
intact uncultured donor microbiota to see if the food intervention can promote age-discriminatory
strains that are already resident in the input fecal sample. One advantage to this approach is that an
uncultured intact microbiota sample encompasses more diversity than a derived culture collection
and multiple samples from multiple donors (each transplanted into a separate group of germ-free
mice) captures interpersonal variations in community structure that are present in a human popula-
tion. However, this is also a major caveat compared to the defined community approach used in
Chapter 3: the defined community approach enables a consistent community to be installed across
many different mice so that the effects of a given or different complementary foods on members
of that cultured consortia can be analyzed within members of a given treatment group and across
experiments. In contrast, depending upon the speed in which a donor’s fecal sample is frozen at

-80°C, microbial viability is affected resulting in varying colonization efficiencies and variations
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in the representation of age-discriminatory taxa in recipient animals. An alternative is to introduce
a consortium of age-discriminatory effector strains together with an intact uncultured fecal sample
so that these strains can be reliably represented in recipient mice: the effects of a chickpea supple-

mented diet can then be tested in different community contexts.

Impact of complementary foods on host metabolism, immunity and other phenotypes

The effects of a microbiota-directed complementary food (MDCF) on host metabolism can be
evaluated in gnotobiotic mice using an approach similar to that described in Chapter 3 where chick-
pea MDCEF versus the Khichuri-Halwa therapeutic food administered to animal with the 9-mem-
ber consortium of age-discriminatory strains plus the 7 SAM-associated strains and targeted and
non-targeted mass spectroscopy performed on serum, liver, skeletal muscle and brain samples. A
recent study of children with severe undernutrition in Uganda prior to, during and after dietary re-
habilitation, showed that as children gained weight, there were dramatic changes in serum levels of
fatty acids, amino acids and hormones including leptin and insulin (Bartz et al., 2014). Leptin was
found to be a predictor of mortality in this study. However it is still unclear as to how these meta-
bolic profiles compare to healthy reference age-matched controls. To clarify this question, further
assays of metabolites and hormones using serum samples from the same children at the MAL-ED
sites that were used for our analyses of gut microbiota maturation could be compared to children
with SAM in an ongoing clinical trial in Bangladesh. Moreover, such a study would provide a
point of comparison for our gnotobiotic mouse models and help us in our efforts to identify robust
and potentially translatable metabolic biomarkers of responses to lead MDCFs. Food ingredient/
bacterial strain combinations can be tested in our preclinical gnotobiotic models for their ability to
modulate metabolic phenotypes identified as being transmitted by immature microbiota obtained
from children with SAM, or those who having been treated for SAM still manifest severe stunting

and are underweight [i.e. those with post-SAM moderate acute malnutrition (MAM))].

In addition to perturbations in metabolism, another important feature of undernutrition is

immune dysfunction, whether manifested by frequent pulmonary infections, recurrent diarrhea or
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impaired vaccine responses. Children with SAM and MAM are particularly vulnerable to enteric
pathogens in part due to poor sanitation. The role of microbiota immaturity in susceptibility to en-
teropathogen invasion and on the maturation of the gut mucosal immune system, and reciprocally
the effects of a large enteropathogen burden on microbiota maturation and gut barrier function are
not known. In Chapter 1, I speculate that these factors are interrelated and contribute to the still
ill-defined entity known as environmental enteric dysfunction (EED; also see Kosek et al., 2014).
Intriguingly, the benefits of promoting Treg representation in the gut have been explored primarily
in preclinical models of colitis and food-allergen sensitization (Stefka et al., 2014; Atarashi et al.,
2013; Faith, Ahern et al., 2014). Characterizing the effects of an MCDF intervention in mice with
an immature donor microbiota on (i) Treg induction, (ii) maturation of the mucosal immune sys-
tem (e.g., by monitoring IgA responses to members of the microbiota), gut barrier integrity (char-
acterized by histochemical and immunocytochemical assays of the epithelium and/or by functional
genomics-based studies of laser capture microdissected epithelium), (iii) resistance to invasion by
enteropathogens, and (iv) growth (as judged by gain of lean body mass as assayed by quantitative
magnetic resonance or by micro-CT assays of bone phenotypes) could help inform the design of

clinical studies in children with undernutrition (Kau et al., 2015).

Development of new approaches with improved efficacy for treating impaired linear
growth (stunting) rather than just improved ponderal growth represents a major aspirational goal
of the field. Stunting is associated with a variety of co-morbidities including impaired cognitive
development. Studies in the Lancet series using pooled data from five different countries showed
an association between height at 2 years of age and number of years of schooling completed, after
adjusting for household wealth and maternal education (Bhutta, 2013, Adair et al., 2013). The
observations that gut bacterial strains can increase butyrate levels in the context of a specific diet
in our studies are intriguing in the context of another study, which reported that propionate and
butyrate promote intestinal gluconeogenesis via a gut-brain circuit (De Vadder et al., 2014). The
investigators were able to test their hypothesis by administration of short-chain fatty acids directly

to control mice and mice deficient in the intestine glucose-6 phosphatase catalytic unit. Moreover
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gene expression analyses of different regions of the brain and radioactive tracers implicated spe-
cific brain signaling pathways, which should be explored in analogous mouse models of undernu-

trition.

Point of care diagnostics and the capacity building for microbiota research in low-income

countries

An exciting aspect related to the development of metrics for defining microbiota maturation that
generalize to populations of children representing different geographic locations and cultural tra-
ditions, is that these assays could be conducted at the sites where the burden of undernutrition is
great. The goal would be to apply these measurements to patient populations so that their micro-
biota could be phenotyped, the children better stratified and efficacy better defined in clinical trials
of MDCF or other interventions. This would be the first step in a journey ultimately designed to
develop new ways for prevention. Another effect would be to develop a new cadre of researchers
from these countries who themselves could lead clinical and basic science studies in the area of

human microbial ecology.

Much, if not all, of the work presented in my thesis was made possible by large-scale re-
search collaborations involving basic and clinical scientists from several countries. Several ethical
issues have been discussed regarding large-scale research collaborations and the importance of
openness in the process and challenges with informed consent (Chokshi et. al, 2006). Another re-
lated challenge for the future is the ability to prosecute ‘personalized medicine’ in a cost-effective
manner to reach members of society that have low income and limited access to healthcare (Alyass

etal., 2015).

In a parallel universe, students at the Center for Genome Sciences and Systems Biology
at Washington University in St. Louis have had unrestricted floor-level access to state of the art,
next-generation sequencing instruments for many years. A striking observation during my studies,
has been the ability for students to make unprecedented connections in all aspects of their projects

by virtue of their direct access to biospecimens (including their role in the design and execution of
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plans for proper collection, storage and archiving these specimens and related de-identified meta-
data), submitting DNA from those samples directly to sequencing instruments, and working on
the high-performance cluster computing required for downstream analyses (including the design
of new algorithms for data-mining). The interconnections between people representing different
disciplinary perspectives and skill sets (‘inter-connected neurons’) and these materials and tech-
nology, allow dramatic moments of discovery (‘synaptogenesis’), and new understanding of host
biology. One could imagine that the specific technologies involved in this pipeline could in future
extend to the developing world with potentially far-reaching consequences. The decreasing cost
of sequencing, including the release of newer long-read, portable technology (e.g. MinION nano-
pore), plus the advances in cloud computing that facilitate easy installation of microbiota analysis
software and publically available microbiota datasets on Amazon Web Services, hint at new and
exciting possibilities (Jain et al., 2015). Looking back in time, the experimental medicine research
conducted by Dr. Norbert Hirschorn and colleagues at the International Centre for Diarrhoeal
Disease Research, Bangladesh (icddr,b) in 1968 that resulted in the development of oral rehydra-
tion solution has saved millions of lives and remains truly inspirational (Hirschhorn et al., 1968).
The solutions to undernutrition and other vexing global health problems may very well originate
in the blend of these two worlds, in societies afflicted by the condition with access to the technol-
ogy to engage in further research. I am confident that the factors/forces and personal commitments

needed to enable these discoveries are going to become even more permissive in the years to come.
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Quality-filtering vastly
improves diversity
estimates from Illumina
amplicon sequencing

Nicholas A Bokulich!-3, Sathish Subramanian?,
Jeremiah ] Faith?, Dirk Gevers’, Jeffrey I Gordon?,
Rob Knight®7, David A Mills!-* & ] Gregory Caporaso®?

High-throughput sequencing has revolutionized microbial
ecology, but read quality remains a considerable barrier to
accurate taxonomy assignment and a-diversity assessment for
microbial communities. We demonstrate that high-quality read
length and abundance are the primary factors differentiating
correct from erroneous reads produced by Illumina GAIIx, HiSeq
and MiSeq instruments. We present guidelines for user-defined
quality-filtering strategies, enabling efficient extraction of
high-quality data and facilitating interpretation of Illumina
sequencing results.

Recent advances in high-throughput, short-amplicon sequenc-
ing are revolutionizing efforts to describe microbial diversity
within and across complex biomes, including the human body!
and Earth’s biosphere?. The greater sequence coverage and lower
per-base cost of the Illumina GAIlx, HiSeq and MiSeq instru-
ments relative to the more expensive, lower-coverage platforms
aids this progress. Given unknown sequencing error rates for
amplicon data generated by these rapidly evolving instruments
and changing chemistries, and the potential for PCR error intro-
duced during short-amplicon sample preparation, quality filtering
is integral to the analysis of high-throughput sequencing data
because it removes erroneous reads that otherwise overestimate
microbial diversity. ‘Denoising™>?*, an approach developed for
quality-filtering amplicons sequenced on the Roche 454 Life
Sciences pyrosequencer, does not scale to Illumina instruments,
which generate tens (MiSeq) to hundreds (GAIIx) to thousands
(HiSeq2000) of times more data per run.

Illumina systems provide Phred quality scores for every
nucleotide, which represent the probability that a given base
call is erroneous. How best to incorporate these scores in

BRIEF COMMUNICATIONS |

marker-gene-based microbial ecology studies has not been thor-
oughly investigated, and stringent filtration that discards many
reads has been recommended to avoid exaggerated diversity esti-
mates”. Our strategy works on a per-nucleotide basis, truncating
reads at the position where their quality begins to drop. It there-
fore differs from Illumina’s quality-filtering software CASAVA,
which filters on a per-read basis. Previous investigation into
quality filtering of Illumina data® focused on whole-genome
sequencing applications, where error profiles are expected to
differ from those in amplicon-sequencing runs.

We tested the effects of different quality-filtering parameters
on taxonomic classification, ¢t-diversity (within-sample diversity)
and B-diversity (between-sample diversity comparison) estimates,
using the ‘quantitative insights into microbial ecology’ (QIIME)”
pipeline (Fig. 1 and Supplementary Table 1). We tested four dif-
ferent ‘mock’ communities sequenced on the GAIIx (1 sequenc-
ing run), HiSeq (2 sequencing runs) and MiSeq (3 sequencing
runs) (Supplementary Table 2). These comprised deliberately
combined collections of 12-67 bacterial or fungal species whose
genomes had been previously sequenced (Supplementary
Tables 3-6). We also compared free-living and host-associated
communities®8, which were samples with high B diversity, and
wine? and spontaneous beer fermentation-associated communi-
ties!?, which were samples with lower [ diversity, to evaluate the
effects of filtering settings on B-diversity comparisons of different
community types. Raw read counts and sample counts for all data
sets are presented in Supplementary Table 7.

We evaluated how primary quality-filtering parameters
(p, minimal high-quality read length, g Phred score, r maximum
of consecutive low-quality calls and » maximum of ambiguous
calls allowed) and secondary (¢, operational taxonomic unit
(OTU) threshold) quality-filtering parameters affect analyses
using the following five separate evaluations. Evaluation 1 was
an analysis of o diversity and qualitative taxonomic composi-
tion, using mock communities, to test which settings best measure
true community composition, minimizing spurious additional
OTUs (Fig. 2 and Supplementary Figs. 1-7). Evaluation 2 was
an analysis of quantitative taxonomic composition, using defined
mock communities, to test whether different settings introduce
biases in specific taxa (Supplementary Figs. 8-10). Evaluation 3
was an analysis of [ diversity, using mock communities,
to determine whether different settings cause significant (P < 0.05)
differences in phylogenetic composition between identical com-
munities (Supplementary Table 8). Evaluation 4 was an analysis
of B diversity, using real communities, to test whether different

'Department of Viticulture and Enology, University of California, Davis, Davis, California, USA. *Department of Food Science and Technology, University of California,
Davis, Davis, California, USA. *Foods for Health Institute, University of California, Davis, Davis, California, USA. *Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, Missouri, USA. “Microbial Systems & Communities, Genome Sequencing and Analysis Program, Broad

Institute of MIT and Harvard, Cambridge, Massachusetts, USA. ®Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA.
"Howard Hughes Medical Institute, Boulder, Colorado, USA. SInstitute for Genomics and Systems Biology, Argonne National Laboratory, Argonne, llinois, USA.
“Department of Computer Science, Northern Arizona University, Flagstaff, Arizona, USA. Correspondence should be addressed 1o ].G.C. (gregcaporaso@gmail.com).

RECEIVED 15 AUGUST; ACCEPTED 20 OCTOBER; PUBLISHED ONLINE 2 DECEMBER 2012; D0I:10.1038/NMETH.2276

NATURE METHODS | VOL.10 NO.1 | JANUARY 2013 | 57



© 2013 Nature America, Inc. All rights reserved.

hpg)

[ BRIEF COMMUNICATIONS

Primary filtration: raw read filtration Secondary filtration: OTU threshold

Input OTU and its
observation count

Input sequence
and per-base eror
probability

Are the next {r) error
probabilities higher than guality score
uality threshold (g2 and position

-

Trim sequence to last high-
guality score position
defined by (g}

Select next

Exclude OTU ﬁ Accep! OTU

(p) min_per_read_length: minimum number of
consecutive high-quality
base calls to retain read
(as percentage of total

No read length)

seguence at least
as long as fhe minimum
acceplable read
length (27

maximum number of
consecutive low-quality
base calls allowed before
truncating a read

Are there
fewer than {n} N
characters in the
sequence?

Accept
sequence

Figure 1 | Quality-filtration process flow in QIIME v1.5.0.
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settings affect our ability to differentiate sample types in princi-
pal coordinates analysis (PCoA) plots (Fig. 2, Supplementary
Table 9 and Supplementary Figs. 11-16). Evaluation 5 was an
analysis of B diversity, using real communities, to test whether
differences detected between communities on different sequenc-
ing platforms are consistent.

Our results revealed general patterns. First, parameters p,
q and ¢ had a marked effect on o diversity and estimates of
taxonomic composition, whereas n and r did not (Fig. 2a,b and
Supplementary Figs. 1-7). The effects of p and q were varia-
ble across runs in an apparently platform-independent fashion
(Supplementary Figs. 4-5). All settings except high g values
required secondary filtration with ¢ to reach expected taxon
counts, but the required level varied between 0.01% to 0.0001%
of total sequences, depending on g and p settings. Increasing
p also decreased abundance of unassigned sequences and sequences
given shallow taxonomic assignment. In all mock data sets
studied, extreme settings of g and p, but not rand n, had a marked
impact on taxonomic distribution (Supplementary Figs. 8-10
and Supplementary Note). Second, weighted UniFrac!! distances
between mock communities (Supplementary Note) were more
robust to changes in parameter settings than unweighted UniFrac

Figure 2 | The o and P diversity comparisons of mock community reads
filtered using select phred_quality_score (g) settings (data set 1).

(a,b) Family-level (a) and genus-level (b) taxon counts for mock
communities filtered with variable (g) values at multiple OTU minimum
abundance thresholds (c) (as percentages). Arrowheads below color key
indicate expected genus-level (blue) and family-level (red) taxon counts.
NA, no c filtering applied. (c-e) Procrustes PCoA biplot of GAIIx weighted
UniFrac distance comparing variation in g. Comparison of g setting listed in
bottom right corner to g = 3. Top right corner indicates Bonferroni-corrected
P value for Procrustes goodness of fit. Red, human feces; magenta, mock
community; cyan, human skin; dark cyan, human tongue; blue, freshwater;
orange, freshwater creek; purple, ocean; yellow, estuary sediment; pink, soil.
All other settings represent defaults in both o~ and B-diversity comparisons.
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distances at low ¢; however, these differences disappeared at high c.
Thus, as expected, differences in low-abundance OTUs have a
larger impact on the unweighted metric. We note that any filtering
strategies that remove low-abundance reads make it impossible
to apply richness estimation metrics such as abundance-based
coverage estimator (ACE) and Chaol, which incorporate
low-abundance read counts in their calculations. These metrics
are unlikely to be accurate, however, if many of these reads
actually represent sequencing errors.

Because observations in microbial ecology are often based on
PCoA of samples, we applied Procrustes analysis to compare
PCoA plots from different parameter settings on both biological
and mock communities. We found that conclusions derived from
PCoA plots were also robust to differences in parameter settings:
the only notable differences occurred at stringent ¢, p and ¢, which
resulted in extreme levels of read filtration that blurred the known
major distinction between host-associated and free-living com-
munities (Fig. 2c—e and Supplementary Figs. 11, 12), and closely
related wine and beer fermentation-associated communities
(Supplementary Figs. 13-16 and Supplementary Note).

Finally, these observations generalized from the GAIllx
to the HiSeq2000 and MiSeq platforms. We observed the same
B-diversity trends (such as separation in host-associated and free-
living communities) on all three platforms, and heavily decreased
p (p =0.25) and increased g (g = 20) were the only factors that
caused these sample types to erroneously cluster together in the
HiSeq data (Supplementary Note).

To calibrate optimal filtering settings, we highly recommend
including a standardized mock community in each individual
sequencing run. We believe this will be necessary for confident
comparison of samples from multiple sequencing runs to normal-
ize run-to-run PCR and sequencing error, but additional work is

Observed families

Observed genera
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needed to evaluate which factors (such as community composi-
tion and complexity) define optimal mock communities for filter
calibration under different experimental conditions. For data sets
where a mock community is not included for calibration, we rec-
ommend a conservative OTU threshold of ¢ = 0.005%. Additional
work is also required to address the impact of filtering strategies
on the analysis of paired-end reads.

Users can process sequencing data under specific filtering con-
ditions to support different downstream analyses. For example,
users with a majority of high-quality, full-length sequences may
wish to increase Phred score (g) and minimum of high-quality
calls (p) in lieu of limiting OTU abundance (¢), thereby retriev-
ing only full-length sequences with low error rates, potentially
increasing the discovery rate of rare OTUs (as sequence selection
will be based on length and quality, not count). Users with shorter
reads or reads truncated by early low-quality base calls may wish
to increase the maximum number of consecutive low-quality
calls (r), lower minimum of high-quality calls (p) and use a higher
OTU threshold. In this way, lower-quality but taxonomically
useful reads will be retained, and reliable sequences will be
selected based on abundance rather than error probability. Other
users may be more interested in maximizing read count for imple-
mentation of machine-learning tools, identifying OTUs with
different abundances across metadata categories or treatment
regimes, or jackknifing or permutational tests for B diversity,
all of which benefit from increased sample sizes. In this scenario,
reads should be filtered using primary filters of Phred score and
minimum high-quality calls instead of OTU abundance, which
greatly erUCCS l'(‘ﬂ.d count.

With these guidelines, users can confidently extract more,
higher-quality sequences and decrease OTU filtration thresholds,
increasing acuity for rare OTU discrimination and B-diversity
comparisons. The Earth Microbiome Project (EMP)?is adopting
these guidelines for routine analysis of all small-subunit rRNA
gene sequencing on the [llumina HiSeq and MiSeq systems, facili-
tating deeper, more efficient insight into how microbial diver-
sity varies over spatial and temporal scales across our planet.
The conclusions drawn from this study are conserved for data
from HiSeq2000, MiSeq and GAIlx systems, supporting confi-
dent cross-platform data handling. In addition, we recommend
new default settings for Illumina processing in QIIME (r = 3;
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p=0.75total read length; q = 3; n = 0; c = 0.005%; Supplementary
Note), incorporated in the recent release of QIIME 1.5.0. Finally,
although quality parameters tested here were evaluated using
QIIME, these conclusions are relevant to Illumina amplicon
quality filtering across all bioinformatics pipelines for improved
diversity estimates in all taxa and environments.

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Supplementary information is available in the online version of the paper
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ONLINE METHODS

Data availability. Raw data can be found in the QIIME database
(http://microbio.me/qgiime/) under the following study identifiers,
where data set number can be found in Supplementary Table 7:
data set 1, 719; data set 2, 1685; data set 3, 1686; data set 4, 1626;
data set 5, 1687; data set 6, 1688; dataset 7, 1683; data set 8, 1684;
data set 9, 1689; and data set 10, 1690.

Sample data. Data analyzed in this study were generated in ten
separate sequencing runs on the Illumina GAIlx (3 sequencing
runs), HiSeq2000 (3 sequencing runs) and MiSeq (4 sequencing
runs) (Supplementary Table 7). In the first phase of this study,
this consisted of six different sequencing runs analyzing four dif-
ferent bacterial and fungal mock communities (Supplementary
Table 2); of these, only data set 1 comprised previously published
data and contained biological samples in addition to mock com-
munity samples®. In the second phase of this study, B-diversity
comparisons were made between biological samples analyzed in
four different, previously published studies using I[llumina GAIIx
system®%10 (data sets 1, 9, 10; Supplementary Table 7), and
HiSeq2000 system® (data set 7) and MiSeq system?® (data set 8).
DNA extraction, PCR and sequencing for all sequencing runs
were performed described previously>$-1%. Mock community
data sets 2 and 3 (Supplementary Table 2) were acquired using a
protocol described previously® except that singleton PCRs were
performed, the PCRs contained only 25 cycles and the extension
step was extended by 5 min. Additionally, data set 2 was prepared
using the Illumina TruSeq v2 paired-end library preparation
kit, and data set 3 was prepared with the TruSeq v1 paired-end
library kit. Mock communities analyzed in this study were derived
from six total sequencing runs on the GAIlx, HiSeq and MiSeq
with reads between 90 nt and 250 nt (Supplementary Table 2).
The taxonomic compositions of the four mock communities
analyzed by these runs are presented in Supplementary
Tables 3-6. These sequencing runs were performed on differ-
ent instruments at different sites with the goal of assessing the
impact of filtering parameters across a broad set of sequenc-
ing conditions: [llumina Cambridge (data sets 1, 3, 7 and 8),

NATURE METHODS

Broad Institute (data sets 2 and 4), Washington University School
of Medicine (data sets 5 and 6) and University of California DNA
Technologies Core (data sets 9 and 10). Although all sequencing
runs in this study were paired-end runs, only the forward reads
were analyzed for the purposes of this study, as QIIME’s filtering
pipeline currently handles each read independently and does not
use a scheme for aligning or concatenating paired-end reads.

Sequence analysis. Raw [llumina fastq files were de-multiplexed,
quality filtered and analyzed using QIIME (v. 1.4.0-dev)”. Reads
were filtered using variable manual settings, as modulated by the
parameters p, q, r and n (Supplementary Table 1). OTUs were
assigned using the QIIME UCLUST!2 wrapper, with a threshold
of 97% pair-wise nucleotide sequence identity, and the cluster
centroid for each OTU was chosen as the OTU representative
sequence. OTU representative sequences were then classified
taxonomically using the QIIME-based wrapper of the Ribosomal
Database Project (RDP) naive Bayesian classifier!? retrained on
the Greengenes 16S rRNA gene database! prefiltered at 97% iden-
tity, using a 0.80 confidence threshold for taxonomic assignment.
After taxonomic assignment, variable OTU minimum abundance
thresholds (¢) were applied to remove any OTU representing fewer
sequences than the defined threshold. Representative sequences
were aligned using PyNAST!? against a template alignment of the
Greengenes database, filtered at 97% identity, and phylogenetic
trees were constructed using FastTree. B-diversity estimates were
calculated within QIIME using UniFrac!! distances between
samples, with even subsampling at 2,000 sequences per sample
with 1,000 Monte Carlo iterations. Procrustes analysis was per-
formed on UniFrac distance matrices with 1,000 Monte Carlo
randomizations to compute goodness of fit (M?) and visualized
using PCoA.

12. Edgar, R.C. Bioinformatics 26, 2460-2461 (2010).

13. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Appl. Environ. Microbiol. 73,
5261-5267 (2007).

14. DeSantis, T.2. et al. Appl. Environ. Microbiol, 72, 5069-5072 (2006).

15. Caporaso, J.G. et al. Bioinformatics 26, 266-267 (2010).

doi:10.1038/nmeth.2276



Appendix B

Hsiao, A., Ahmed, A.M.S., Subramanian, S., Griffin, N.W., Drewry, L.L., Petri, W.A., Haque, R.,
Ahmed, T., and Gordon, J.I. (2014). Members of the human gut microbiota involved in recov-

ery from Vibrio cholerae infection. Nature 575, 423-426.

156



LETTER

doi:10.1038/nature13738

Members of the human gut microbiota involved in
recovery from Vibrio cholerae infection

Ansel Hsiao', A. M. Shamsir Ahmed?®?3, Sathish Subramanian', Nicholas W. Griffin', Lisa L. Drewryl, William A. Petri Jr*>°,

Rashidul Haque®, Tahmeed Ahmed? & Jeffrey I. Gordon'

Given the global burden of diarrhoeal diseases’, it is important to
understand how members of the gut microbiota affect the risk for,
course of, and recovery from disease in children and adults. The acute,
voluminous diarrhoea caused by Vibrio cholerae represents a dra-
matic example of enteropathogen invasion and gut microbial commu-
nity disruption. Here we conduct a detailed time-series metagenomic
study of faecal microbiota collected during the acute diarrhoeal and
recovery phases of cholera in a cohort of Bangladeshi adults living in
an area with a high burden of disease®. We find that recovery is char-
acterized by a pattern of accumulation of bacterial taxa that shows
similarities to the pattern of assembly/maturation of the gut microbi-
ota in healthy Bangladeshi children®. To define the underlying mech-
anisms, we introduce into gnotobiotic mice an artificial community
composed of human gut bacterial species that directly correlate with
recovery from cholera in adults and are indicative of normal micro-
biota maturation in healthy Bangladeshi children®. One of the spe-
cies, Ruminococcus obeum, exhibits consistent increases in its relative
abundance upon V. choleraeinfection of the mice. Follow-up analyses,
including mono- and co-colonization studies, establish that R. obeum
restricts V. cholerae colonization, that R. obeum luxS (autoinducer-2
(AI-2) synthase) expression and AI-2 production increase significantly
with V. cholerae invasion, and that R. obeum AI-2 causes quorum-
sensing-mediated repression of several V. cholerae colonization fac-
tors. Co-colonization with V. choleraemutants discloses that R. obeum
Al-2 reduces Vibrio colonization/pathogenicity through a novel path-
way that does not depend on the V. cholerae AI-2 sensor, LuxP. The
approach described can be used to mine the gut microbiota of Ban-
gladeshi or other populations for members that use autoinducers
and/or other mechanisms to limit colonization with V. cholerae, or
conceivably other enteropathogens.

We used an approved protocol for recruiting Bangladeshi adults liv-
ing in Dhaka Municipal Corporation area for this study. Of the 1,153
patients with acute diarrhoea who were screened, seven passed all entry
criteria (Methods) and were enrolled (Supplementary Tables 1 and 2).
Faecal samples collected at monthly intervals during the first 2 post-
natal years from 50 healthy children living in the Mirpur area of Dhaka
city, plus samples obtained at approximately 3-month intervals over a
1-year period from 12 healthy adult males also living Mirpur, allowed
us to compare recovery of the microbiota from cholera with the nor-
mal process of assembly of the gut community in infants and children,
and with unperturbed communities from healthy adult controls.

Using the standard treatment protocol of the International Centre for
Diarrhoeal Disease Research, Bangladesh, study participants with acute
cholera received a single oral dose of azithromycin and were given oral
rehydration therapy for the duration of their hospital stay. Patients were
discharged after their first solid stool. We divided the diarrhoeal period
(from the first diarrhoeal stool after admission to the first solid stool)
into four proportionately equal time bins: diarrhoeal phase 1 (D-Ph1)

to D-Ph4. Every diarrhoeal stool was collected from every participant.
Faecal samples were also collected every day for the first week after dis-
charge (recovery phase 1, R-Ph1), weekly during the next 3 weeks (R-
Ph2), and monthly for the next 2 months (R-Ph3). For each individual,
we selected a subset of samples from D-Ph1 to D-Ph3 (Methods), plus
all samples from D-Ph4 to R-Ph3, for analysis of bacterial composition
by sequencing PCR amplicons generated from variable region 4 (V4)
of the 16S ribosomal RNA (rRNA) gene (Supplementary Information,
Extended Data Fig. 1a and Supplementary Table 3). Reads sharing 97%
nucleotide sequence identity were grouped into operational taxonomic
units (97%-identity OTUs; Methods).

Weidentified a total of 1,733 97%-identity OTUs assigned to 343 dif-
ferent species after filtering and rarefaction (Methods). V. cholerae dom-
inated the microbiota of the seven patients with cholera during D-Phl
(mean maximum relative abundance 55.6%), declining markedly within
hours after initiation of oral rehydration therapy. The microbiota then
became dominated by either an unidentified Streptococcus species (maxi-
mum relative abundance 56.2-98.6%) or by Fusobacterium species (19.4-
65.1% in patients B-E). In patient G, dominance of the community passed
froma Campylobacter species (58.6% maximum) to a Streptococcus spe-
cies (98.6% maximum) (Supplementary Table 4). Of the 343 species,
47.9 * 6.6% (mean =* s.d.) were observed throughout both the diarrhoeal
and recovery phases, suggesting that microbiota composition during the
recovery phase may reflect an outgrowth from reservoirs of bacteria re-
tained during disruption by diarrhoea (Extended Data Fig. 2a—d and Sup-
plementary Information).

Indicator species analysis* (Methods) was used to identify 260 bacte-
rial species consistently associated with the diarrhoeal or recovery phases
across members of the study group, and in a separate analysis for each
subject (Supplementary Table 5). The relative abundance of each of the
discriminatory species in each faecal sample was compared with the
mean weighted phylogenetic (UniFrac®) distance between that micro-
biota sample and all microbiota samples collected from the reference
cohort of healthy Bangladeshi adults. The results revealed 219 species
with significant indicator value assignments to diarrhoeal or recovery
phases, and relative abundances with statistically significant Spearman’s
rank correlation values to community UniFrac distance to healthy con-
trol microbiota (Supplementary Table 6 and Extended Data Fig. 2d).
Not surprisingly, the abundance of V. cholerae directly correlated with
increased distance to a healthy microbiota. Streptococcus and Fusobac-
terium species, which bloomed during the early phases of diarrhoea,
were also significantly and positively correlated with distance from a
healthy adult microbiota. Increases in the relative abundances of spe-
cies in the genera Bacteroides, Prevotella, Ruminococcus/Blautia, and
Faecalibacterium (for example, Bacteroides vulgatus, Prevotella copri,
R obeum, and Faecalibacterium prausnitzii) were strongly correlated with
a shift in community structure towards a healthy adult configuration
(Extended Data Fig. 2d and Supplementary Table 6).
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Queensland 4006, Australia. *Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh. “Department of Medicine, University of Virginia School
of Medicine, Charlottesville, Virginia 22908, USA. >Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA. ®Department of Pathology, University of
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Previously we used Random Forests, a machine-learning algorithm,
toidentify a collection of age-discriminatory bacterial taxa that together
define different stages in the postnatal assembly/maturation of the gut
microbiota in healthy Bangladeshi children living in the same area as
the adult patients with cholera®. Of those 60 most age-discriminatory
97%-identity OTUs representing 40 different species, 31 species were
present in adult patients with cholera. Intriguingly, they followed a sim-
ilar progression of changing representation during diarrhoea to recovery
as they do during normal maturation of the healthy infant gut micro-
biota (Extended Data Fig. 2d). Twenty-seven of the 31 species were sig-
nificantly associated with recovery from diarrhoea by indicator species
analysis (see Supplementary Information and Extended Data Figs 3-5
for OTU-level and community-wide analyses). These 27 species, which
serve as indicators and are potential mediators of restoration of the gut
microbiota after cholera, guided construction of a gnotobiotic mouse
model that examined the molecular mechanisms by which some of these
taxa might affect V. cholerae infection and promote restoration.

We assembled an artificial community of 14 sequenced human gut
bacterial species (Supplementary Table 7) that included (1) five species
that directly correlated with gut microbiota recovery from cholera and
with normal maturation of the infant gut microbiota (R. obeum, Rum-
inococcus torques, F. prausnitzii, Dorea longicatena, Collinsella aerofa-
ciens), (2) six species significantly associated with recovery from cholera
by indicator species analysis (Bacteroides ovatus, Bacteroides vulgatus,
Bacteroides caccae, Bacteroides uniformis, Parabacteroides distasonis,
Eubacterium rectale), and (3) three prominent members of the adult
human gut microbiota that have known capacity to process dietary and
host glycans (Bacteroides cellulosilyticus, Bacteroides thetaiotaomicron,
Clostridium scindens®®; as noted in Extended Data Fig. 6 and Supplemen-
tary Table 8, shotgun sequencing of diarrhoeal- and recovery-phase human
faecal DNA samples revealed that genes encoding enzymes involved in
carbohydrate metabolism were the largest category of identified genes
specifying known enzymes that changed in relative abundance within
the faecal microbiome during the course of cholera). One group of mice
was directly inoculated with approximately 10° colony-forming units
(c.fu.) of V. cholerae at the same time they received the 14-member
community to simulate the rapidly expanding V. cholerae population
during diarrhoea (‘Dlinvasion’ group). A separate group was gavaged
with the community alone and then invaded 14 days later with V. chol-
erae (‘D14invasion’ group) (Extended Data Fig. 1c).

V. cholerae levels remained at a high level in the D1invasion group
over the first week (maximum 46.3% relative abundance), and then de-
clined rapidly to low levels (<1%). Introduction of V. cholerae into the
established 14-member community produced much lower levels of
V. cholerae infection (range of mean abundances measured daily over
the 3 days after gavage of the enteropathogen, 1.2-2.7%; Supplemen-
tary Table 9). Control experiments demonstrated that V. cholerae was
able to colonize at high levels for at least 7 days when it was introduced
alone into germ-free recipients (10°~10"" c.fu. per milligram wet weight
of faeces; Fig. 1a). Together, these data suggest that a member or mem-
bers of the artificial human gut microbiota had the ability to restrict
V. cholerae colonization.

Changes in relative abundances of the 14 community members in fae-
cal samples in response to V. cholerae were consistent for most species
across the D1linvasion and D14invasion mice (Supplementary Table 9).
We focused on one member, R. obeum, because its relative abundance
increased significantly after introduction of V. cholerae in both the
Dlinvasion and D14invasion groups (Extended Data Fig. 7a and Sup-
plementary Table 9) and because it is a prominent age-discriminatory
taxon in the Random Forests model of gut microbiota maturation in
healthy Bangladeshi children® (Extended Data Fig. 4b). Mice were mono-
colonized with either R. obeum or V. cholerae for 7 days and then the
other species was introduced (Extended Data Fig. 1d). When R. obeum
was present, V. cholerae levels declined by 1-3 logs (Fig. 1a). Germ-free
mice were also colonized with the defined 14-member community or the
same community without R. obeum for 2 weeks, and V. cholerae was
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Figure 1 | R. obeum restricts V. cholerae colonization in adult gnotobiotic
mice. a, V. cholerae levels in the faeces of mice colonized with the indicated
human gut bacterial species (1 = 4-6 mice per group). b, Expression of
R. obeum luxS AI-2 synthase in the 14-member community 4 days after
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Note that D. longicatena levels fall precipitously after V. cholerae invasion
(Supplementary Table 9). Mean values = s.e.m. are shown. ND, not detected.
*P < 0.05, **P < 0.01 (unpaired Mann-Whitney U-test).

then introduced by gavage (Extended Data Fig. le). V. cholerae levels
1 day after gavage were 100-fold higher in the community that lacked
R. obeum; these differences were sustained over time (50-fold higher
after 7 days; P < 0.01, unpaired Mann-Whitney U-test; Fig. 1a).

Having established that R. obeum restricts V. cholerae colonization,
we used microbial RNA sequencing (RNA-seq) of faecal RNAs to deter-
mine the effect of R. obeum on expression of known V. cholerae viru-
lence factors in mono- and co-colonized mice. Co-colonization led to
reduced expression of fcpA (a primary colonization factor in humans®'°),
rtxA and hlyA (encode accessory toxins'"'?), and VC1447-VC1448 (RtxA
transporters) (threefold to fivefold changes; P < 0.05 compared with
V. cholerae mono-colonized controls, Mann—-Whitney U-test; see Sup-
plementary Information and Supplementary Table 10 for other regu-
lated genes that could impact colonization, plus Extended Data Fig. 8
for an ultra-performance liquid chromatography mass spectrometry
(UPLC-MS) analysis of bile acids reported to effect V. cholerae gene
regulation').

Two quorum-sensing pathways are known to regulate V. cholerae
colonization/virulence'*": an intra-species mechanism involving cholera
autoinducer-1, and an inter-species mechanism involving autoinducer-2
(refs 18, 19). Quorum sensing disrupts expression of V. cholerae viru-
lence determinants through a signalling pathway that culminates in
production of the LuxR-family regulator HapR'>'®. Repression of quo-
rum sensing in V. cholerae is important for virulence factor expression
and infection®***. The luxS gene encodes the S-ribosylhomocysteine
lyase responsible for AI-2 synthesis. Homologues of [uxS are widely dis-
tributed among bacteria'®", including 8 of the 14 species in the artificial
human gut community (Supplementary Table 11 and Extended Data
Fig. 9). RNA-seq of the faecal meta-transcriptomes of D1linvasion mice
colonized with the 14-member artificial community plus V. cholerae,
and mice harbouring the 14-member consortium without V. cholerae,
revealed that of predicted [uxS homologues in the community, only ex-
pression of R. obeum luxS (RUMOBE02774) increased significantly in
response to V. cholerae (P < 0.05, Mann—Whitney U-test; Fig. 1b). More-
over, R. obeum luxS transcript levels directly correlated with V. cholerae
levels (Extended Data Fig. 7c).

In addition to luxS, the R. obeum strain represented in the artificial
community contains homologues of IsrABCK that are responsible for
import and phosphorylation of AI-2 in Gram-negative bacteria®, as well
ashomologues of two genes, luxR and luxQ, that play a role in AI-2 sens-
ing and downstream signalling in other organisms*. Expression of all
these R. obeum genes was detected in vivo, consistent with R. obeum
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having a functional AI-2 signalling system (Extended Data Fig. 7b). (See
Supplementary Information for results showing that R. obeum AI-2
production is stimulated by V. cholerae in vitro and in co-colonized
animals (Extended Fig. 7d-f), plus (1) a genome-wide analysis of the
effects of V. cholerae on R. obeum transcription in co-colonized mice
(Supplementary Table 10c) and (2) a community-wide view of the tran-
scriptional responses of the 14-member consortium to V. cholerae (Sup-
plementary Table 12).)

Quorum sensing downregulates the V. cholerae tcp operon that en-
codes components of the toxin co-regulated pilus (TCP) biosynthesis
pathway required for infection of humans®'°. To confirm that R. obeum
LuxS could signal through AI-2 pathways, we cloned R. obeum and V.
cholerae luxS downstream of the arabinose-inducible P4, promoter
in plasmids that were maintained in an Escherichia coli strain unable
to produce its own AI-2 (DH5a)*. High tcp expression can be induced
in V. cholerae after slow growth in AKI medium without agitation fol-
lowed by rapid growth under aerobic conditions®. Addition of culture
supernatants harvested from the E. coli strains expressing R. obeum or
V. cholerae luxS caused a two- to threefold reduction in fcp induction
in V. cholerae (P < 0.05, unpaired Student’s t-test; replicated in four
independent experiments). Supernatants from a control E. coli strain
with the plasmid vector lacking luxShad no effect (Fig. 2a). These find-
ings are consistent with our in vivo RNA-seq results and provide direct
evidence that R. obeum AI-2 regulates expression of V. cholerae viru-
lence factor.

Germ-free mice were then colonized with V. cholerae and E. coli bear-
ing either the Pg4p-R. obeum luxS plasmid or the vector control. Mice
that received E. coli expressing R. obeum IuxS showed a significantly
lower level of V. cholerae colonization 8 h after gavage than mice that
received E. coli with vector alone (Fig. 2b; there was no statistically sig-
nificant difference in levels of E. coli between the two groups (data not
shown)). Together, these results establish a direct causal relationship
between R. obeum-mediated restriction of V. cholerae colonization and
R. obeum AI-2 synthesis.

Several V. cholerae mutants were used to determine whether known
V. cholerae AlI-2 signalling pathways are required for the observed ef-
fects of R. obeurn on V. cholerae colonization. LuxP is critical for sens-
ing AI-2 in V. cholerae. Co-colonization experiments in gnotobiotic mice
revealed that levels of isogenic AluxP or wild-type luxP™ V. cholerae
strains were not significantly different as a function of the presence of
R. obeum (Extended Data Fig. 10a), suggesting that R. obeum modu-
lates V. choleraelevels through other quorum-sensing regulatory genes.
The luxO and hapR genes encode central regulators linking known V.
cholerae quorum-signalling and virulence regulatory pathways. Dele-
tion of luxO typically results in increased hapR expression'®. However,
our RNA-seq analysis had shown that both luxO and hapR are repressed
in the presence of R. obeum (six- to sevenfold, P < 0.0001; Mann-
Whitney U-test), as are two important downstream activators of viru-
lence repressed by HapR'¢, encoded by aphA and aphB. These findings
provide additional evidence that R. obeum operates to regulate viru-
lence through a novel regulatory pathway.

The quorum-sensing transcriptional regulator VqgmA was upregulated
more than 25-fold when V. cholerae was introduced into mice mono-
colonized with R. obeum (Fig. 2c and Supplementary Table 10). When
germ-free mice were gavaged with R. obeum and a mixture of AvgmA
(AlacZ)* and wild-type V. cholerae (lacZ") strains, the AvgmA mutant
exhibited an early competitive advantage (Fig. 2d), suggesting that R.
obeum may be able to affect early colonization of V. cholerae through
VgmA. VgmaA is able to bind to and activate the hapR promoter directly™.
Since RNA-seq showed that hapR activation did not occur in gnoto-
biotic mice despite high levels of vgmA expression (Extended Data Fig.
10b and Supplementary Table 10), we postulate that the role played by
VqmA in R. obeum modulation of Vibrio virulence genes involves an
uncharacterized mechanism rather than the known pathway passing
through HapR.
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We have identified a set of bacterial species that strongly correlate
with a process in which the perturbed gut bacterial community in adult
patients with cholera is restored to a configuration found in healthy Ban-
gladeshiadults. Several of these species are also associated with the nor-
mal assembly/maturation of the gut microbiota in Bangladeshi infants
and children, raising the possibility that some of these taxa may be use-
ful for ‘repair’ of the gut microbiota in individuals whose gut communities
have been ‘wounded’ through a variety of insults, including enteropatho-
gen infections. Translating these observations to a gnotobiotic mouse
model containing an artificial human gut microbiota composed of
recovery- and age-indicative taxa established that one of these species,
R. obeum, reduces V. cholerae colonization. As an entrenched member
of the gut microbiota in Bangladeshi individuals, R. obeum could func-
tion to increase median infectious dose (IDs) for V. cholerae in humans
and thus help to determine whether exposure to a given dose of this en-
teropathogen results in diarrhoeal illness. The modest effects of R. obeum
Al-2 on V. cholerae virulence gene expression in our adult gnotobiotic
mouse model may reflect the possibility that we have only identified a
small fraction of the microbiota’s full repertoire of virulence-suppressing
mechanisms. Culture collections generated from the faecal microbiota
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of Bangladeshi subjects are a logical starting point for ‘second-generation’
artificial communities containing R. obeum isolates that have evolved
in this population, and for testing whether the observed effects of R.
obeum generalize across many different strains from different popula-
tions. Moreover, the strategy described in this report could be used to
mine the gut microbiota of Bangladeshi or other populations where di-
arrhoeal disease is endemic for additional species that use quorum-
related and/or other mechanisms to limit colonization by V. cholerae
and potentially other enteropathogens.

Online Content Methods, along with any additional Extended Data display items
and Source Data, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS

Human studies. Subject recruitment. Protocols for recruitment, enrollment, and
consent, procedures for sampling the faecal microbiota of healthy Bangladeshi adults
and children, and the faecal microbiota of adults during and after cholera infection,
plus the subsequent de-identification of these samples, were approved by the Human
Studies Committees of the International Centre for Diarrhoeal Disease Research,
Bangladesh, and Washington University School of Medicine in St. Louis.

Enrollment into the adult cholera study was based on the following criteria: res-
idency in the Dhaka Municipal Corporation area, a positive stool test for V. chol-
erae as judged by dark-field microscopy, diarrhoea for no more than 24 h before
enrollment, and a permanent address that allowed follow-up faecal sampling after
discharge from Dhaka Hospital (International Centre for Diarrhoeal Disease Research,
Bangladesh). Non-prescription antibiotic usage is prevalent in Bangladesh®**. Since
a history of previous antibiotic consumption could be a confounder when interpret-
ing the effects of cholera on the gut microbiota, we excluded individuals if they had
received antibiotics in the 7 days preceding admission to the hospital. Since this was
an observational study with no experimental treatment arm, blinding for study in-
clusion was not necessary. See Supplementary Table 1 for the number of indivi-
duals screened for inclusion in the study, the number of potential subjects excluded
from the study and the reasons for their exclusion, and the number of subjects en-
rolled who satisfied all criteria for inclusion.

The healthy adults were fathers in a cohort of healthy twins, triplets, and their
parents living in Mirpur that is described in ref. 3. Fathers were sampled every
3 months during the first 2 years of their offspring’s postnatal life. Histories of diar-
rhoea and antibiotic use were not available for these fathers. However, histories of
diarrhoea and antibiotic use in their healthy children were known: 46 of the 49 pa-
ternal faecal samples used were obtained during periods when none of their chil-
dren had diarrhoea; 36 of these 49 samples were collected at a time when there had
been no antibiotic use by their children in the preceding 7 days.

DNA extraction from human faecal samples, sequencing, and analysis. All diar-
rhoeal stools were collected from each participant (one sterilized bowl per sample),
frozen immediately at —80 °C, then subjected to the same bead beating and phenol
chloroform extraction procedure for DNA purification that was applied to the formed
frozen faecal samples collected from these individuals during the recovery phases
(and previously to a wide range of samples collected from individuals representing
different ages, cultural traditions, geographical locations, and physiological and
disease states®*°).

DNA was isolated from all frozen faecal samples from D-Ph1 to D-Ph4, from the
period of frequent sampling during the first week following discharge (recovery
phase 1; R-Ph1), the period of less frequent sampling during weeks 2-3 (R-Ph2),
and from weeks 4 to 12 of recovery (R-Ph3) (n = 1,053 samples in total). For ana-
lyses involving healthy adult and child control groups, samples were excluded from
our analysis where antibiotic use or diarrhoea was known to have occurred in the
7 days before sample collection.

For each participant in the cholera study, we selected one sample with high DNA
yield (=2 pg) from each 2-hour period during D-Ph1 to D-Ph3. An additional 7 = 2
samples (mean * s.d.) that had been collected during the approximately 5-h period
before the rate of diarrhoea began to decrease at the beginning of D-Ph3 were in-
cluded. All faecal samples collected after this time point (that is, from the remain-
der of D-Ph3 to R-Ph3), were also included in our analysis (n = 19.7 £ 7.4 total
samples (mean * s.d.) per individual in the diarrhoeal phase, and 14 * 3.3 total
samples per individual in the recovery phase). Two patients (Cand E) were chosen
for additional sequencing of all their diarrhoeal samples (n = 100 and 50, respect-
ively; see Supplementary Table 3b).

The V4 region of bacterial 16S rRNA genes represented in each selected faecal
microbiota sample was amplified by PCR using primers containing sample-specific
barcode identifiers. Amplicons were purified, pooled, and paired-end sequenced with
an Illumina MiSeq instrument (250 nucleotide paired-end reads; 86,315 * 2,043
(mean = s.e.m.) assembled reads per sample; see Supplementary Table 3). Healthy
control samples were analysed using the same sequencing platform and chemistry
(n = 293 total samples).

Sequences were assembled, then de-multiplexed and analysed using the QIIME
software package® and custom Perl scripts. For analysis of diarrhoeal and recovery
phase samples, rarefaction was performed to 49,000 reads per sample. For analyses
including samples from healthy adults and children, samples were rarefied to 7,900
reads per sample. Reads sharing 97% nucleotide sequence identity were grouped
into operational taxonomic units (97%-identity OTUs). To ensure that we retained
less abundant bacterial taxa in our analysis of the faecal samples of patients with
cholera, a 97%-identity OTU was called ‘distinct and reliable’ if it appeared at 0.1%
relative abundance in at least one faecal sample. Taxonomic assignments of OTUs to
species level were made using the Ribosomal Database Project version 2.4 classifier*
and a manually curated Greengenes database™.
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Indicator species analysis* was used to classify bacterial species as highly asso-
ciated with either diarrhoeal phases or recovery. This approach is used in studies of
macroecosystems to identify species that associate with different environmental
groupings; it assigns for each species an indicator value that is a product of two com-
ponents: (1) the species’ specificity, which is the probability that a sample in which
the species is found came from a given group; and (2) the species’ fidelity, which is
the proportion of samples from a given group that contains the species. We per-
formed indicator species analysis in the set of 236 faecal specimens, selected from
the seven patients according to the subsampling scheme described above, to iden-
tify bacterial species consistently associated with the diarrhoeal or recovery phases
across members of the study group; statistical significance was defined using per-
mutation tests in which permutations were constrained within subjects. We also con-
ducted a separate indicator species analysis for each subject, using each individual’s
replicate diarrhoeal and recovery phase samples as the groupings.

For analyses of variation across communities, we used UniFrac’, a metric that
measures the overall degree of phylogenetic similarity of any two communities based
on the degree to which they share branch length on a bacterial tree of life; low pair-
wise UniFrac distance values indicate that communities are more similar to one
another. Unifrac distances were calculated using the QIIME software package®'.

The gut microbiomes of study participants were characterized by paired-end

2 X 250 nucleotide shotgun sequencing of faecal DNA using an Illumina MiSeq in-
strument (mean 216,698 reads per sample; Supplementary Table 3). Paired sequences
were assembled into single reads using the SHERA software package*, and annotated
by mapping to version 58 of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database® using UBLAST?.
Gnotobiotic mouse experiments. All experiments involving animals used proto-
cols approved by the Washington University Animal Studies Committee. Germ-free
male C57BL/6] mice were maintained in flexible plastic film gnotobiotic isolators
and fed an autoclaved, low-fat, plant polysaccharide-rich mouse chow (B&K, cata-
logue number 7378000, Zeigler Bros) ad libitum. Mice were 5-8 weeks old at time of
gavage. The number of mice used in each experiment is reported in the text, relevant
figure legends, and summarized in Extended Data Fig. 1.

Bacterial strains and plasmids. Supplementary Table 7 lists the sequenced human
gut-derived bacterial strains used to generate the artificial communities and their
sources. Since all Bangladeshi faecal samples were devoted to DNA extraction, we
were unable to utilize strains that originated from culture collections generated from
study participants’ faecal biospecimens. Thus, the strains incorporated into the ar-
tificial community were from public repositories, represented multiple individuals,
and were typically not accompanied by information about donor health status or
living conditions.

A Py p-lux reporter strain was constructed by introducing Py,-lux (pJZ376) into
V. cholerae C6706 via conjugation from SM10Apir. Pg4p-luxS expression vectors
were produced by first amplifying the luxS sequences of V. cholerae C6706 and R.
obeum ATCC2917 using PCR and the primers described in Supplementary Table 13.
Amplicons were then cloned into pBAD202 (TOPO TA Expression Kit; Life Tech-
nologies), and introduced into E. coli DH50. by electroporation.

All cultures of V. cholerae C6706, the isogenic AluxS mutant (MM883), and E.
coli strains containing luxS expression vectors were grown aerobically in Luria Broth
(LB) medium with appropriate antibiotics (Supplementary Table 13). All members
of the 14-member artificial human gut microbiota, including R. obeum ATCC29174,
were propagated anaerobically in MegaMedium®.

Colonization of gnotobiotic mice. All animal experiments involved administra-
tion of known consortia of bacterial species; as such, no blinding to group allocation
was performed. The order of administration of microbial species to given groups of
recipient mice was intentionally varied, as described in Extended Data Fig. 1c-e.

Mono-colonized animals received either 200 pl of overnight cultures of R. obeum
strain ATCC29174 or V. cholerae strain C6706. All V. cholerae colonization studies
in mice used the current pandemic El Tor biotype (strain C6706). Mice receiving the
defined 13- or 14-member communities of sequenced human bacterial symbionts
were gavaged with 200 pl of an equivalent mixture of bacteria assembled from over-
night monocultures of each strain (Dggg nm = 0.4 per strain; grown in MegaMedium).
In the case of mice that received mixtures of V. cholerae and E. coli strains with R.
obeum luxS-expressing plasmids (or vector controls), the E. coli strains were first
grown overnight in LB medium containing 50 jig ml ™' kanamycin. Two millilitres
of the culture were removed and cell pellets were obtained by centrifugation, washed
three times with 2 ml LB medium to remove antibiotics, and re-suspended in 6 ml
LB medium containing 0.1% arabinose. The suspension of E. coli cells was then
incubated at 37 °C for 90 min, and mixed with V. cholerae C6706 such that each
mouse was gavaged with ~50 pland ~2.5 pl of overnight cultures of each organism,
respectively. All gavages involving V. cholerae were preceded by a gavage of 100 pl
sterile 1 M sodium bicarbonate to neutralize gastric pH. Colonization levels of
V. cholerae were determined by serial dilution plating of faecal homogenates on
selective medium.
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Competitive index assays were performed with mice gavaged with 50 pl aliquots
of cultures of mutant and wild-type V. cholerae C6706 strains that had been grown to
Dgoonm = 0.3. For experiments involving competitive index calculations as a func-
tion of the presence of R. obeum, 100 pl of an overnight R. obeum culture was co-
inoculated with the mixture of V. cholerae strains. Faecal samples from recipient
gnotobiotic mice were subjected to dilution plating and aerobic growth on LB agar
with the LacZ substrate Xgal; blue-white screening was used to determine colo-
nization levels of the individual V. cholerae strains.

Community profiling by shotgun sequencing (COPRO-seq). Shotgun sequen-
cing of faecal community DNA was used to define the relative abundance of species
in the artificial communities; experimental and computational tools for COPRO-
seq have been described previously®.

Microbial RNA-seq analysis of faecal samples collected from mice colonized with
the 14-member artificial community with and without V. cholerae. Faecal samples
were collected from colonized gnotobiotic mice and immediately snap-frozen in lig-
uid nitrogen. RN A was extracted using bead-beating in phenol/chloroform/isoamyl
alcohol followed by further purification using MEGAClIear (Life Technologies).
Purified RNA was depleted of 16SrRNA, 5S rRNA, and transfer RNA as previously
described® or by using a RiboZero kit (Epicentre). Complementary DNA (cDNA)
libraries were generated and sequenced (50 nucleotide unidirectional reads; Illu-
mina GA-IIx, HiSeq 2000 or MiSeq instruments; see Supplementary Table 3). Reads
were mapped to the genomes of members of the artificial community using Bowtie®.

To profile transcriptional responses to V. cholerae, all cDNA reads that mapped
to the genomes of the 14 consortium members were binned based on enzyme clas-
sification level annotations from KEGG. ShotgunFunctionalizeR* was then used
compare the faecal meta-transcriptomes of ‘D14invasion” animals sampled 4 days
after gavage of the 14-member community to the faecal meta-transcriptomes of
Dlinvasion mice sampled 4 days after gavage of the 14-member community plus
V. cholerae. A mean twofold or greater difference in expression between the con-
ditions, with an adjusted P value less than 0.0001 (ShotgunFunctionalizeR) was con-
sidered significant. This approach of binning to enzyme classifications mitigates
issues with low-abundance transcripts being insufficiently profiled owing to lim-
itations in sequencing depth®.

Owing to the higher sequencing depth achieved for R. obeum and V. cholerae in
mono- and co-colonization experiments, reads were mapped to reference genomes
using Bowtie, and changes at the single transcript level were analysed using DESeq*’
(Supplementary Table 11). Transcripts that satisfied the criteria of (1) having greater
than twofold differential expression after DESeq normalization, (2) an adjusted
P value less than 0.05, and (3) a minimum mean count value more than 10 were
retained.

AI-2 assays. Previously frozen faecal pellets from gnotobiotic mice were re-
suspended in AB medium* by agitation with a rotary bead-beater (25 mg faecal

pellet per millilitre of medium). AI-2 assays were performed using the V. harveyi
BB170 bioassay strain*, with reported results representative of at least two inde-
pendent experiments, each with five technical repeats. V. harveyi BB170 cultures
were grown aerobically overnight in AB medium, and diluted 1:500 in this medium
for use in the AI-2 bioassay**. Luminescence was measured using a BioTek Synergy
2 instrument after 4 h of growth at 30 °C with agitation (300 r.p.m. using a rotatory
incubator).

For in vitro measurements of R. obeum AI-2 production, a 100 pl aliquot from
an overnight monoculture of the bacterium grown in MegaMedium without glucose
was diluted 1:20 in fresh MegaMedium without glucose. In addition, cells pelleted
from 100 pl of an overnight culture of V. cholerae AluxS (MM883 (ref. 14)) grown
in LB medium were added to R. obeum that had also been diluted 1:20 in Mega-
Medium without glucose. The resulting mono- and co-cultures were incubated an-
aerobically at 37 °C for 16 h. Cells were pelleted by centrifugation, and supernatants
were harvested and then added to V. harveyi BB170 cultures for AI-2 bioassay.

UPLC-MS. Procedures for UPLC-MS of bile acids have been described in ref. 37.
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Extended Data Figure 1 | Experimental designs for clinical study and
gnotobiotic mouse experiments. a, Sampling schedule for human cholera
study. b, Frequency of diarrhoeal episodes over time for a representative
participant (patient A). Initial time (black circle) represents beginning of
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diarrhoea. The long vertical line marks enrollment into the study. Colours
and short vertical lines denote boundaries of study phases defined in a.

c—e, Gnotobiotic mouse experimental design. The number (#) of animals in
each treatment group is shown.
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Extended Data Figure 2 | Bacterial taxa associated with diarrhoeal and
recovery phase. a, Proportion of bacterial species-level taxa that were observed
in both diarrhoeal and recovery phases, in D-Ph1 to D-Ph4 only, and in R-Ph1
to R-Ph3 only. Mean values * s.e.m. are plotted. *P < 0.05, ***P < 0.001
(unpaired Mann-Whitney U-test). b, Phylum-level analysis. Mean values are
plotted. ¢, Proportion of study participants having bacterial taxa associated by
indicator species analysis with the diarrhoeal or recovery phase. The x axis
shows species associated with each phase, ranked by proportion of subjects
harbouring that species. For each species, ‘representation in study participants’
is the average presence/absence of all 97%-identity OTUs with that species
taxonomic assignment. The OTU table was rarefied to 49,000 reads per sample.
d, Bacterial species identified by indicator analysis as indicative of diarrhoea
or recovery phases in adult patients with cholera, and species identified by
Random Forests analysis as discriminatory for different stages in the
maturation of the gut microbiota of healthy Bangladeshi infants/children aged
1-24 months (denoted by the symbol 7). The heat map in the left-hand portion
of the panel shows mean relative abundances of species across all individuals
during D-Ph1 to D-Ph4, with each phase subdivided into four equal time bins.
For recovery time points, columns represent the mean relative abundances
for each sampling time point during R-Ph1 to R-Ph3. Mean relative abundance
values are also presented for these same species in the faecal microbiota of
50 healthy Bangladeshi children sampled from 1 to 2 years of age at monthly

Spearman r (species relative

L":l':m' R mc:‘m abundance vs community distance
recovery diarrhea to healthy adult microbiota)
A 1 (|
(Diarrhea) (Recavery) g5 0 05

intervals. Unsupervised hierarchical clustering used relative abundances of
species in the faecal microbiota of the patients with cholera. The green portion
of the tree encompasses species that are more abundant during recovery
whereas the red portion encompasses species that are more abundant during
diarrhoea. Indicator scores are presented in the right-hand portion of the
panel, with ‘score’ for a given taxon defined as its indicator value for recovery
minus its indicator value for diarrhoea (—1, highly diarrhoea-associated; +1,
highly recovery-associated). Spearman’s rank correlation coefficients of mean
relative abundances of species by sample in the cholera study versus the mean
sample-weighted UniFrac distance to healthy adult faecal microbiota are shown
at the extreme right together with the statistical significance of correlations
after Benjamini-Hochberg false discovery rate correction for multiple
hypothesis testing (NS, not significant; *P < 0.05; **P < 0.01; ***P < 0.001).
Higher coefficients indicate increasing divergence from a healthy configuration
with higher relative abundance of a given species. Species shown satisfied two or
more of the following criteria: (1) presence among the list of the top 40
age-discriminatory species in the Random-Forests-based model of gut
microbiota maturation in healthy infants and children; (2) indicator value score
greater than 0.7; (3) significant correlation (Spearman’s r) between relative
abundance in the faecal microbiota of patients with cholera and UniFrac
distance to healthy adult faecal microbiota; and (4) inclusion in the artificial
14-member human gut community (species name highlighted in blue).
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given species-level taxonomic assignment that were present in both diarrhoeal ~ microbiota maturity and microbiota-for-age z-scores’ in healthy Bangladeshi
and recovery phases is shown for each individual in the study. The number infants and children are marked with a ‘+” symbol. The 97%-identity

of 97%-identity OTUs with a given species assignment is shown in parentheses. ~ OTUs were derived from data sets generated from all samples from adult
Species are ordered based on their ‘indicator scores’ (defined as indicator patents with cholera; the OTU table was rarefied to 49,000 reads per sample.
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Extended Data Figure 4 | Pattern of appearance of age-discriminatory
97%-identity OTUs in the faecal microbiota of patients with cholera mirrors
the normal age-dependent pattern in the faecal microbiota of healthy
Bangladeshi infants and children. a, Left portion of the panel shows
hierarchical clustering of relative abundance values for each of the top 60 most
age-discriminatory 97%-identity OTUs in a Random-Forests-based model

of normal maturation of the microbiota in healthy Bangladeshi infants/children
(importance scores for the age-discriminatory taxa defined by Random
Forests analysis are reported in ref. 3; these 60 97%-identity OTUs can be

36

grouped into 40 species-level taxa). Right portion of the panel presents the
mean relative abundances of these OTUs in samples obtained from patients
with cholera during D-Ph1 to D-Ph4, and R-Ph1 to R-Ph3. The 97%-identity
OTUs corresponding to species included in the artificial community that
was introduced into gnotobiotic mice are highlighted in blue. b, Relative
abundance of R. obeum strains in the faecal microbiota of healthy Bangladeshi
children sampled monthly through the first 3 years of life. Mean values = s.e.m.
are plotted.
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Extended Data Figure 5 | Pattern of recovery of the gut microbiota in
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distances to healthy adult controls at each of the defined phases of diarrhoea
and recovery. ¢, d, Principal coordinates analysis of UniFrac distances between
gut microbiota samples. Location along the principal axis of variation (PC1)
shows how acute diarrhoeal communities first resemble those of healthy
Bangladeshi children sampled during the first 2 years of life, then evolve their
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phylogenetic configurations during the recovery phase towards those of healthy
Bangladeshi adults. PC1 accounts for 34.3% variation for weighted and 17.7%
variation for unweighted UniFrac values. e, Alpha diversity (whole-tree
phylogenetic diversity) measurements of faecal microbial communities
through all study phases. Mean values * s.e.m. are plotted. *P < 0.05,

**P < 0.01, ¥***P < 0.0001 (Kruskal-Wallis analysis of variance followed
by multiple comparisons test).
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Extended Data Figure 6 | Proportional representation of genes encoding
enzymes (classified according to Enzyme Commission number identifiers)
in faecal microbiomes sampled during the diarrhoeal and recovery phases of
cholera. Shotgun sequencing of faecal community DNA was performed
(MiSeq 2000 instrument; 2 X 250bp paired-end reads; 341,701 * 145,681 reads
(mean * s.d. per sample)). Read pairs were assembled (SHERA software
package®*). Read counts were collapsed based on their assignment to Enzyme
Commission (EC) number identifiers. The significance of differences in EC
abundances compared with faecal microbiomes in healthy adult Bangladeshi
controls was defined using ShotgunFunctionalizeR*. Unsupervised
hierarchical clustering identifies groups of ECs that characterize the faecal
microbiomes of patients with cholera at varying diarrhoeal and recovery
phases. The heat map on the left shows the results of EC-based clustering

by phase (diarrhoea/recovery). An asterisk on the extreme right of the

figure indicates that differences in EC abundance observed across the
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ShotgunFunctionalizeR). The heat map on the right presents the results of a
global clustering of all time-points and study phases. Genes encoding 102 ECs
were identified with (1) at least 0.1% average relative abundance across the
study and (2) significant differences in their representation relative to healthy
microbiomes in at least one comparison (adjusted P < 0.00001 based on
ShotgunFunctionalizeR). In each of the heat maps, z-scores for each EC across
all samples are plotted. ECs are grouped by KEGG level 1 assignment and
further annotated based on their KEGG Pathway assignments. A ‘+’

symbol indicates that the EC has additional KEGG level 2 annotations

(see Supplementary Table 8 for a list of all assignable functional annotations).
Note that the majority of the 46 ECs that were more prominently represented
in faecal microbiomes during diarrhoeal phases in study participants are
related to carbohydrate metabolism. The faecal microbiomes of patients
during recovery are enriched for genes involved in vitamin and cofactor
metabolism (Supplementary Table 8).
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Extended Data Figure 7 | R. obeum encodes a functional AI-2 system, and
R. obeum AI-2 production is stimulated by the presence of V. cholerae.

a, Relative abundances of R. obeum and V. cholerae in the faecal microbiota
after introduction of V. cholerae into mice harbouring the artificial 14-member
human gut community (D14invasion group, see Extended Data Figure 1c).
‘Days post V. cholerae gavage’ refers to the second of two daily gavages of
10° cfu. V. cholerae into animals that had been colonized 14 days earlier with
the 14-member community. Mean values = s.e.m. are shown (n = 4 or 5 mice,
*P < 0.05, unpaired Student’s t-test). b, Left panel shows AI-2 signalling
pathway components represented in the R. obeum genome. Right panel plots
changes in expression of these components as defined by microbial RNA-seq of
faecal samples obtained (1) 4 days after colonization of mice with the 14-
member community and (2) 4 days after gavage of mice with the 14-member
community together with 10° c.fu. of V. cholerae (n = 4-6 animals per group;
one faecal sample analysed per animal). Mean values = s.e.m. are shown.

*P <0.05 (Mann-Whitney U-test). ¢, RNA-seq of faecal samples collected at
the time points and treatment groups indicated reveals that R. obeum luxS
transcription is directly correlated to V. cholerae abundance in the context of
the 14-member community. **P < 0.01 (F test). d, R. obeum luxS expression.
Mice were colonized first with R. obeum for 7 day. Faecal samples were collected
for microbial RNA-seq analysis 1 day before gavage of 10° c.fu. of a V. cholerae

AluxS mutant, and then 2 days post-gavage (d2pg). Mean values for relative
R. obeum luxS transcript levels ( = s.e.m.) are shown (n =5 or 6 animals per
group per experiment, # = 3 independent experiments; **P < 0.01 unpaired
Mann-Whitney U-test). e, AI-2 levels in faecal samples, taken 1 day before
and 3 days after gavage of the V. cholerae AluxS strain, from the same mice as
those analysed in a. AI-2 levels were measured based on induction of
bioluminescence in V. harveyi BB170 using the same mass of input faecal
sample for all assays. Mean values * s.e.m. are shown; ****P < 0.0001
(unpaired Mann-Whitney U-test). f, R. obeum produces AI-2 when
co-cultured with V. cholerae in vitro. Aliquots of the supernatant from
cultures containing R. obeum alone, or R. obeum plus the V. cholerae AluxS
mutant, were assayed for their ability to induce V. harveyi bioluminescence.
Mean values = s.e.m. are presented (n = 4 independent experiments).

LU, light units; RPKM, reads per kilobase per million reads. ****P < 0.0001
(unpaired Mann-Whitney U-test). Note that (1) the number of R. obeum c.fu.
present in the samples obtained from mono-cultures of the organism was
similar to the number in co-culture, as measured by selective plating,

and (2) the V. cholerae AluxS mutant cultured alone produced levels of AI-2
signal that were not significantly different from that of R. obeum in mono-
culture (data not shown).
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Extended Data Figure 8 | UPLC-MS analysis of faecal bile acid profiles in
gnotobiotic mice. Targeted UPLC-MS used methanol extracts of faecal pellets
obtained from age- and gender-matched germ-free C57BL/6] mice and
gnotobiotic mice colonized for 3 days with R. obeum alone, for 7 days with
the 14-member community (‘Dlinvasion group’), and for 3 days with the
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13-member community that lacked R. obeum (n = 4-6 mice per treatment
group; one faecal sample analysed per animal). a, Faecal levels of taurocholic
acid. Mean values * s.e.m. are plotted. *P < 0.05, **P < 0.01, Mann-Whitney
U-test. b, Mean relative abundance of ten bile acid species in faecal samples
obtained from the mice shown in a.
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-- b2687 Escherichia coli

-- EFER0382 Escherichia fergusonii
B -- CIT29204164 Citrobacter youngae

------- CLOHIR02203 Clostridium hiranonhis
| _l—: ------- CAJ70505 Clostridium difficile 630
limg0273 Lacotococcus lactis subsp. cremoris

BIFADOO0O782 Bifidobacterium adolescentis

I HPAG10105 Helicobacter pylori
CLOSCI01289 Clostridium scindens
BLAHANOG6665 Blautia hansenii
STRINF00238 Streptococcus infantarius subsp. infantarius
CLOBOL01686 Clostridium boltae
BIFFSEUDO02401 Bifidobacterium pseudocatenulatum
Csym3553 Clostridium symbiosum
_|'I str0394 Streptococcus thermophilus

BLD0910 Bifidobacterium longum

Ecan3915 Enterobacter cancerogenus
EUBIFOR01547 Eubacterium biforme
- CLOSPI00062 Clostridium spiroforme
CLORAMO1104 Clostridium ramosum
— FAEPRAA216500968 Faecalibacterium prausnitzii
EUBREC2602 Eubacterium rectale
|_| CLOLEP00S535 Clostridium leptum

ANACOL02343 Anaerotruncus colihominis
— EUBDOL00979 Eubacterium dolichum
----- SUBVAR05453 Subdilogranulum variabile
e COLAER02370 Colinsella aerofaciencs
e COLSTE00164 Colinsella stercoris
RUMLACO00324 Ruminococcus lactaris
EUBELIO1836 Eubacterium eligens
----- BACCOPRO02220 Bacteroides coprophilus
BACPLE00176 Bacteroides plebeius
BACDORO01672 Bacteroides dorei
BVU0895 Bacteroides vulgatus
[ ------- BACEGG03133 Bacteroides eggerthif

BACSTED2245 Bacteroides stercoris
BACUNI04047 Bacteroides uniformis

----- CATMITO0375 Catenibacterium mitsuokai
n! EUBHAL02742 Eubacterium hallii
DORLONO02820 Dorea longicatena
DORFORO01708 Dorea formicigenerans
RUMGNAQ1726 Ruminococcus gnavus
COPCOMO03043 Coprococcus comes
CIME2020100018667 Clostridium sp. M62/1
--------------- CLOHYLEMO04285 Clostridium hylemonae
RUMOBEQ2774 Ruminococcus obeum

1 | : RUMHYDOO773 Blautia hydrogenotrophica

BRYFORO7092 Bryantella formatexigens
CLOSTASFPAR0E483 Clostridium asparagiforme
ROSINTL18207858 Roseburia intestinalis
RUMTORO00749 Ruminococcus torques
----------------- CLONEX03062 Clostridium nexile

Extended Data Figure 9 | Phylogenetic tree of IuxS genes present in human  homologue is represented in the genomes of members of the 14-member
gut bacterial symbionts and enteropathogens. The tree was constructed from  artificial human gut bacterial community.
amino-acid sequence alignments using Clustal X. Red type indicates that the
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Extended Data Figure 10 | In vivo tests of the effects of known quorum-
sensing components on R. obeum-mediated reductions in V. cholerae
colonization. a, Competitive index of AluxP versus wild-type C6706

V. cholerae when colonized with or without R. obeum (n = 4-6 animals per
group). Horizontal bars, mean values. Data from individual animals are shown
using the indicated symbols. b, Transcript abundance (reads per kilobase per
million reads) for selected quorum-sensing and virulence gene regulators in
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e d2 V. cholerae monocolonization
m d2 V. cholerae + R. obeum

V. cholerae. Microbial RNA-seq was performed on faecal samples collected

2 days after mono-colonization of germ-free mice with V. cholerae (circles),
or 2 days after V. cholerae was introduced into mice that had been
mono-colonized for 7 days with R. obeum (squares) (n = 5 animals per group;
NS, not significant (P =0.05); **P < 0.01, ***P < 0.001, ****P < 0.0001
(unpaired two-tailed Student’s ¢-test)).
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