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CHAPTER 1 

INTRODUCTION 

Glaucoma is a group of diseases of the optic nerve of the eye. One of the main 

causes is increased pressure in the eye, related to insufficient drainage of intraocular 

aqueous fluid through the trabecular meshwork. Glaucoma results in damage to the optic 

nerve leading to visual field loss, and blindness if left untreated [1]. It is a disease that 

can affect any person, but high-risk categories do exist. In the United States, it is 

estimated that 2 million people have glaucoma, and this number is projected to increase 

by 2020 to more than 3 million [9]. 

Open-angle glaucoma (OAG) is a type of glaucoma where the aqueous humor 

from the eye does not drain normally and builds up. This fluid buildup exerts pressure on 

the optic nerve and over time causes loss of nerve fibers and eventually loss of vision. 

OAG is hard to detect because patients do not notice the early symptoms such as blank 

spots in the visual field and it becomes symptomatic only when the damage is extensive. 

Glaucoma damage is irreversible. 

One variant of OAG is pigmentary glaucoma. Pigmentary glaucoma is defined as 

a secondary open-angle glaucoma because it is the result of another medical condition: 

pigment dispersion syndrome. Pigment dispersion syndrome (PDS) occurs when unusual 

amounts of pigment are lost from the posterior surface of a patient’s iris. The pigment 

then gets deposited in the anterior and posterior chambers of the eye including the 

trabecular meshwork, where it reduces aqueous outflow [2]. An estimated 25% to 50% of 

patients with PDS develop pigmentary glaucoma [2] and PDS is one of the markers of the 

risk of developing pigmentary glaucoma.  

Approximately 0.9% to 2.5% of glaucoma cases in the United States are 

diagnosed as pigmentary glaucoma [6]. This constitutes a significant number of people 
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affected by this type of glaucoma. Importantly, while most forms of glaucoma affect the 

elderly, pigmentary glaucoma usually affects those in the third or fourth decades of life. 

This thesis examines a pixel classification technique to identify regions of 

pigment lost from the iris and distinguish them from unaffected iris tissue which has 

normal pigment variation. Several steps are involved in this process as follows: 

1. Segmentation of the iris region using the Hough transform, 

2. Feature calculation for pixel classification, 

3. Feature selection, 

4. Pixel classification using the K-nearest neighbors (kNN) classification 

algorithm.  

The final probability image generated using the output of the kNN algorithm will 

show the likelihood of pixels belonging either to defect or normal regions. The following 

chapter explains in detail how pigment dispersion syndrome develops, and the motivation 

behind using the kNN algorithm for pixel classification.  
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CHAPTER 2 

BACKGROUND AND SIGNIFICANCE 

2.1 Eye Anatomy Overview 

In order to understand the mechanism of pigment dispersion syndrome and 

pigmentary glaucoma, it is necessary to introduce the structure of the eye.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Diagram of eye anatomy (Figure from [15]). 

 

 

 

The eye has three layers and is filled with fluid that is present in two chambers. 

The white capsule around the eye is called the sclera, which is specialized at the anterior 

surface of the eye as the cornea. The cornea is composed of clear tissue. The darkly 

pigmented choroid layer absorbs light rays at the back of the eye. In the front of the eye, 
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it is specialized to form the iris, the ciliary muscles and zonular fibers. The pupil is an 

anterior opening in the iris that lets light enter the eye. The iris has circular and radial 

smooth muscles that control the pupil diameter. The crystalline lens is located just behind 

the iris whose shape is controlled by the ciliary muscle and zonular fibers. The retina 

lines the inner, posterior surface of the eye and it is an extension of the brain. The fovea 

centralis is a region that is specialized to deliver the highest visual acuity. The optic disc 

is where the nerve fibers that carry information from ganglion cells and photoreceptors 

located on the retina exit the eye as the optic nerve. The anterior chamber of the eye 

located between the iris and the cornea contains a clear fluid called aqueous humor. 

Aqueous humor flows in and out of the anterior chamber, and it flows out at the open 

angle where the iris and cornea meet, in the region called the trabecular meshwork [1]. 

The posterior chamber of the eye located between the lens and the retina is filled with 

vitreous, a viscous, jellylike substance [7]. 

2.2 Pigment Dispersion Mechanism 

When pigment is lost from the posterior surface of the iris, it is deposited in the 

anterior and posterior chambers of the eye. One theory of the mechanism of pigment loss 

states that backbowing of the iris causes the pigment epithelium to come in contact with 

packets of lens zonules [8]. The friction caused by this contact disrupts epithelial cells 

and causes melanosomes to be released into the aqueous humor. The melanosomes 

collect in the trabecular meshwork causing a rise in intraocular pressure (IOP). The 

endothelial cells of the trabecular meshwork act to phagocytize the melanosomes, and if 

regular pigment release from the iris occurs, then it leads to a chronic rise in IOP [2]. 

This IOP rise can lead to pigmentary glaucoma.  
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2.3 Pigment Dispersion Syndrome 

Pigment dispersion syndrome (PDS) may be diagnosed in patients in the second 

decade of life, but is usually diagnosed by 30 years of age and later. It occurs equally in 

men and women, but men are more likely to develop pigmentary glaucoma [2]. Other 

genetic factors that predispose people to developing PDS are Caucasian race, myopia, 

and the presence of family members diagnosed with PDS [16].  

PDS usually produces no symptoms, although occasionally patients may 

experience blurred vision and halos with high impact activities which are caused by a rise 

in IOP.  

The physical signs of PDS can be seen in several structures of the eye: the cornea, 

iris, pupil, and the angle between the iris and cornea. This thesis deals with the effects of 

PDS on the iris, called transillumination defects. They are called so because the loss of 

pigment from the iris can be visualized through transillumination, which is the 

illumination of body tissue by transmitting light through it. Initially, transillumination 

defects are usually slit-like, and as pigment loss increases, the defects become irregularly 

shaped. 

2.4 Automated and Computer Assisted Detection of Eye Diseases 

Automated and computer assisted detection of eye diseases is meant to assist 

physicians in detecting, managing and treating eye diseases. One form of automated and 

computer assisted detection is Computer Aided Diagnosis or CAD.   

Xu et al. [19] and Abràmoff et al. [21] used pixel feature classification to detect 

structures in the eye like the optic disc which can prove useful for discovering the extent 

of primary glaucoma. Bock et al. [22] used a Support Vector Machine (SVM) classifier to 

automatically quantify the probability that a patient will suffer from glaucoma by 

analyzing color fundus images.  
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CAD has been used outside the eye to detect lung diseases like Chronic 

Obstructive Pulmonary Disease (COPD) [25] by identifying features on CT scans that are 

indicative of the presence of disease. CAD has also been used for the purpose of 

detecting breast cancer lesions from CT scans [26] and in the segmentation of heart 

vessels [27]. 

This thesis uses pixel feature classification to automatically detect regions of 

pigment dispersion in a patient’s iris. 

2.5 K-Nearest Neighbors Classification Overview 

Classification algorithms, such as the K-nearest neighbors (kNN) classification 

algorithm used in this thesis, are used to predict the class of an element under 

consideration, given a set of training examples. KNN is a nonparametric classification 

technique which requires no prior knowledge of the distribution of data to be classified 

and does not require elaborate training. Two stages are involved in the classification: a 

training stage and a deployment or testing stage. In the training stage, vectors of features 

along with their associated class labels are given as inputs to the classifier. When the 

classifier is given a test vector to classify, it traverses the training vectors and calculates 

the distance, for example Euclidean distance, to each training vector. After calculating 

the distance metric, the k nearest in distance neighbors are found for the vector to be 

classified. This is done by assigning to the element the class label of the majority of 

neighbors. The class label that is assigned is the label for that test vector. Examples of the 

use of kNN in disease diagnosis are for glaucoma detection [21] and the detection of 

retinal vessels [28]. 

2.6 Previous Work 

The amount of pigment lost from the surface of the iris is associated to the risk of 

developing or worsening pigmentary glaucoma. Thus, it is of interest to keep track of the 
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changes in the degree of pigment loss. Up until now, no method has been proposed for 

automated detection of pigment dispersion. Haynes et al. [3] used manual tracing of the 

regions of pigment loss in the iris to measure the amount of pigment lost from it. Roberts 

et al. [10] also employed manual tracing while examining the best technique for imaging 

the iris defects.  

Manual tracing of defect regions was first performed by Haynes et al. [3] by 

outlining desired regions using a pen and digitizer tablet. The entire iris region area was 

found by subtracting the area of the pupil from the area of the pupil plus the iris. Each 

transillumination defect area was also outlined. The percent transillumination was found 

by dividing the total area of defect regions by the total area of the iris. This process was 

carried out for each iris image from 13 patients. For a larger dataset of patients this would 

be quite tedious and time consuming, as well as being prone to errors if the measurements 

were taken by different observers for the same patient. This was observed by Haynes et 

al. [3] when the inter-observer coefficient of variation for three standard images was 

found to be quite high at 20.35, 6.55 and 8.01% respectively for mild, moderate, and 

marked transillumination. The intra-observer coefficient of variation was found to be 

lower at 4.11, 3.23 and 2.38% respectively for mild, moderate, and marked 

transillumination. However, it cannot always be expected that the same observer will be 

available to take manual measurements of the percent transillumination.  

Roberts et al. [10] also performed manual tracing of the transillumination defect 

regions using computer graphics software. However their aim was to find the best 

wavelength of light to visualize the transillumination defects and not to quantify the 

amount of transillumination. Their results agreed with the conclusion of Alward et al. [4] 

who also found that defect regions are best observed using a combination of infrared and 

visible light.  
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

Several pre-processing steps of an iris image are required before classification can 

be carried out. First, image segmentation is required to extract the iris region from the 

images so that classification is not thrown off by spurious pixels that appear as belonging 

to the iris.  

After the segmentation stage, converting the images to the polar domain is 

performed to make the random selection of pixels for training the classifier less complex 

because of the resulting rectangular image shape. A diverse set of features was then 

calculated from the image in the polar domain.  

Given a set of images for which the features had thus been calculated, feature 

selection was performed to optimize the size of the feature set and remove any redundant 

features.   

To evaluate the performance, a reference standard is needed. An expert manually 

marked the transillumination pixels on each test image, and these markings were then 

verified by a glaucoma expert. Given this reference standard, training and evaluation of 

the kNN classifier was carried out. The result of kNN classification is a probability image 

with k gray levels showing the probability of each pixel belonging to a defect region. This 

probability image was then converted back to the Cartesian domain. The entire process is 

shown in Figure 3.1. 

 

 

 

 



9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Block diagram of methodology 
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3.2 Image Acquisition 

Since the cause of PDS and subsequently pigmentary glaucoma is the loss of 

pigment from the posterior surface of the iris, the conditions are characterized by radially 

oriented, slit-like transillumination defects in the mid-peripheral iris. In this study, the 

images were obtained through infrared transillumination by Alward et al. [4]. Infrared 

transillumination of the iris is used by ophthalmologists to detect iris pigment defects that 

could indicate disease [29 – 31]. 

Patients with pigmentary glaucoma or pigment dispersion syndrome were selected 

from the Glaucoma Service at the University of Iowa, Iowa City. The setup to capture the 

images is shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Examination of a patient’s eyes using a combination of near infrared and 

visible light (Figure from [4]). 
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Each patient's head was positioned in a headrest mounted in front of a black and 

white video camera sensitive to light in the near infrared range. The camera (RCA 

TC77011/U RCA Inc., Lancaster, PA) was equipped with a macro/zoom lens (Javelin 

99035 J, 18-108 mm, f2.5, Javelin Electronics Inc., Torrance, CA). A halogen fiber optic 

transilluminator was used as a cool light source producing a mixture of visible and 

infrared light [4]. Either the visible or infrared light could be filtered out at the source or 

at the camera.  

As a result of using visible light, the pupil dilation of patients’ eyes was 

minimized and resulted in an enhanced picture of the transillumination defects. The use 

of near infrared light helped to clearly visualize transillumination defects. Videos of 

patients’ eyes were recorded by a 0.75-inch videocassette machine (Sony V05600 “u-

matic,” Sony Corp of America, Teaneck, NJ) [4]. The videos were digitized and frames 

were extracted to be used for analysis.  

An example case of pigment dispersion syndrome is shown in Figure 3.3:  

 

 

 

 

 

 

 

 

 

 

Figure 3.3: An eye affected by pigment dispersion syndrome. The iris areas where 

pigment has been lost have a brighter intensity than the surrounding regions. 
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 A list of the iris images of subjects used in this study along with their 

corresponding data is given in the appendix Table A.1. The data of 38 out of 50 subjects 

showed that they were diagnosed with either pigment dispersion syndrome or pigmentary 

glaucoma. Information about the remaining subjects could not be retrieved.  

3.3 Image Segmentation 

The raw images of the patients’ eyes which were obtained using a combination of 

infrared and visible light contain other features of the eye, which are not of interest in 

determining the amount of iris transillumination. If these features are not removed, it 

would result in the kNN classifier giving false positive results. The Hough transform was 

used to detect the pupil and iris boundaries, and extract the iris regions from the images. 

The segmented images now contained only iris tissue and were suitable for further 

processing steps. To train the kNN classifier, a random number of pixels had to be 

selected from the segmented images and it was determined that the process of random 

selection would be less complex if the images were converted to the polar coordinate 

system. The circular iris region was thus transformed into a rectangular region.  

3.4 Reference Standard Images 

The kNN classifier training stage requires a reference standard image for each 

pixel in order to know which combinations of features amount to an iris transillumination 

defect (ITD) region and which ones do not. Reference standard images were generated 

using the ‘Truthmarker’ app [14] created in our group on an iPad and they were verified 

by Dr. Wallace L.M. Alward. Fifty segmented images were used and the defect regions 

were outlined. The annotated images were then converted to binary with the defect 

regions colored white and all other regions colored black. As was done with the original 

iris images, the reference standard images were also converted to polar coordinates. 
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3.5 Feature Calculation 

Classification of defect and normal iris regions requires a set of features to be 

calculated and given as input to the kNN classifier.  

A detailed description of the features is as follows: 

1. Standard Deviation: The standard deviation of a pixel with a specified 

neighborhood provides a texture descriptor [33].  

 

 

 

 

 

 

 

 

Figure 3.4: A Gaussian kernel with mean = 0 and standard deviation = √  

 

 

 

Since the iris defects have a higher intensity compared to normal iris 

tissue, standard deviation provides a useful texture feature for 

classification. In order to remove noise, the image was first convolved 

with a Gaussian kernel. A Gaussian kernel is a bell shaped curve as shown 

in Figure 3.4, with a specified standard deviation: σ. It is given by the 

equation:  

  (   )  
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The image was convolved with a Gaussian kernel with σ=2. Next, the 

standard deviation was calculated at three different neighborhoods: 3x3, 

5x5 and a rectangular neighborhood 3x9. The standard deviation of a 

pixel’s intensity in a specific neighborhood is given by the equation: 

  √ ( (   )   (̅   ))
 

   
 

  is the number of pixels in the neighborhood,  (   ) is the intensity of the 

pixel under consideration, and  (̅   ) is the mean of all the pixels in that 

neighborhood. A large standard deviation value indicated a large variation 

in intensity in that neighborhood which occurs around the ITD regions. 

For example consider a pixel with intensity value 123 and its 3x3 

neighborhood: 

161 134 133 

148 123 120 

137 132 109 

The standard deviation of the center pixel will be equal to 16 according to 

the given equation.  

 

2. Difference of Gaussians: This feature emphasizes edges in the image [32] 

by subtracting the convolution results of the image   with two Gaussian 

kernels    and    by the equation:  

          

Two feature images were obtained: one by using the value of standard 

deviation σ=1 for    and σ=2 for   , and the other by using σ=2 for    

and σ=4 for   . 

One of the kernels used is shown in Figure 3.5: 
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Figure 3.5: A difference of Gaussians kernel with σ1 = 2 and σ2 = 4 used for edge 

detection.   

 

 

 

3. Gradient Magnitude: The gradient magnitude operator detects intensity 

discontinuities by calculating the magnitude of the gradient vector [32]. 

Thus it detects edges in an image. First, the image is convolved with a 

Gaussian kernel with σ=2 as shown in Figure 3.4 in order to remove noise 

from the image because this operator is very sensitive to noise. Next, the 

gradient magnitude of the image was calculated. The gradient magnitude 

is found by using the equation: 

|  |  √(
  

  
)
 

 (
  

  
)
 

 

 

4. Average Intensity: An intensity feature is very useful for detecting iris 

defects [33] because the iris transillumination defect regions have a higher 

intensity compared to normal iris tissue. The average intensity of a pixel in 

a 3x3 neighborhood was found and used as a feature for classification as 

shown in the equation below: 
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∑
 (   ) 

 

 

   

 

where   is the number of pixels in the neighborhood. 

 

5. Gaussian Derivative: The Gaussian derivative is used to detect edges in 

the image, separating out different homogeneous regions in the iris images 

[33]. The Gaussian derivative kernel is as shown in Figure 3.6: 

 

 

 

 

 

 

 

 

Figure 3.6: A Gaussian derivative kernel with σ=2 used for edge detection. 

 

The Gaussian derivative in the horizontal as well as the vertical direction 

with σ = 2 was calculated. The equation for calculating the Gaussian 

derivative is:  

 

  
  (   )   

 

  
(

 

    
  

  
     

   ) 

 

6.  Laplacian of Gaussian: The Laplacian of Gaussian is a derivative filter 

that can detect intensity changes in an image, thus emphasizing edges 

[34].  
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Figure 3.7: An example Laplacian of Gaussian kernel used for edge detection. 

 

 

 

A Laplacian kernel is shown in Figure 3.7. It calculates the second 

derivative of the image given by the equation: 

    
  

   
  (   )   

  

   
  (   ) 

 

 

 

 

 

 

 

 

(a)                                                                         (b) 

Figure 3.8: Mirroring of iris region boundaries: (a) A segmented iris image converted to 

the Polar domain. (b) The standard deviation calculated using a 3x3 neighborhood 

showing a bright upper and lower boundary. (c) Segmented iris image with mirrored 

boundaries. (d) Corresponding feature image with standard deviation calculated using a 

3x3 neighborhood. 
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Figure 3.8 continued - 

 

 

 

 

 

 

(c)                                                                          (d) 

 

 

 

During the initial stages of testing the kNN classifier, it was found that the feature 

calculation process was producing a bright boundary between the iris region and the 

black background in the polar domain images as shown in Figure 3.8 (b). 

These bright boundaries resulted in the kNN classifier producing false positives. 

In order to prevent this misclassification, the original segmented iris image boundaries 

were mirrored by 10 rows. After mirroring the boundaries, the features were re-

calculated, as seen in Figure 3.8 (d). Following this process, feature selection performed. 

3.6 Feature Selection 

 Ten feature images each of fifty segmented iris images were obtained following 

the feature calculation stage. The set of feature images of twenty segmented images was 

used for optimal feature selection, and the remaining set of thirty segmented images was 

used for training and testing the kNN classifier.  

Before performing kNN classification it is useful to carry out optimal feature 

selection. Feature selection helps to reduce the number of irrelevant features which in 

turn will reduce the running time of the classification, as well as increase its accuracy 
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[17]. There are two types of feature selection algorithms: feature subset selection and 

dimensionality reduction. In this research, a type of feature subset selection algorithm 

was used called linear forward selection.  

 Linear forward selection is derived from another technique of feature selection 

called sequential forward selection. Sequential forward selection works by starting with 

the empty subset of selected features. It then evaluates all possibilities of expanding the 

subset by a single attribute. If an attribute leads to the best score, it is permanently added 

to the subset. The search for attributes ends when no attribute can be found that improves 

the current best score.  

 

 

 

  

 

 

 

 

 

 

 

 

     (a)       (b) 

Figure 3.9: Linear forward selection: (a) The fixed set technique. (b) The fixed width 

technique. (Figure from [18]) 
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Linear forward selection improves upon the run time of sequential forward 

selection. There are two types of linear forward selection: fixed width and fixed set 

technique which can limit the number of attributes.  

In the fixed set technique shown in Figure 3.9 (a), all the attributes are ranked and 

the top k ranked attributes are selected as input to the linear forward selection. The initial 

ranking of attributes is done by evaluating each one individually and ranking them 

according to their scores. 

The second column in Figure 3.9 (a) shows the ranking of attributes. The 

attributes that are not selected are discarded. The process of subset selection is shown on 

the right of Figure 3.9 (a). The number of subset extensions decreases while the currently 

selected subset increases in number. It is called the fixed set technique because it results 

in a set of selected attributes of size k. 

 In the fixed width technique shown in Figure 3.9 (b), the attributes are also ranked 

and the top k attributes are the input to the linear forward selection. As the forward 

selection proceeds, the attributes added to the subset are selected from the next best 

attribute in the ranking. As a result, it is ensured that the set of candidate expansions 

consists of the individually best k attributes that have not been selected so far during the 

search. The technique is called fixed width technique because it keeps the number of 

extensions in each forward selection step constant at a fixed width k.  

Training data was collected from the images and given as input to WEKA [24], a 

collection of machine learning algorithms. The feature selection algorithm was selected 

as linear forward selection along with cross validation for the attribute selection mode.  

3.7 Training Sample Selection 

A fixed number of random pixels were selected from the training feature images 

to be given as input to the pixel classifier. A random selection of image pixels was taken 

because variability in the training data is required. Since the images that were converted 
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to Polar space have a black background left over from the segmentation stage, it was 

ensured that no training pixels were selected from the background. This would have 

resulted in training data of no significance.  

3.8 KNN Classification 

The kNN classification process is carried out by training the classifier using the 

feature images and testing it on a dataset that is unknown to it. An example vector for 

training would have values such as:  

                                   

with each vector element representing a feature for the pixel. The label is 0 or 1 

depending on whether that combination of features corresponds to a normal or defect 

region respectively in the corresponding reference standard image.  

 

 

 

 

 

 

 

 

 

 

Figure 3.10: An example of kNN classification in a 2-dimensional feature space with 

features f1 and f2 with k=5. Circles and squares represent members of the two classes. A 

prediction is calculated for the element under consideration. 
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An example of kNN classification is shown in Figure 3.10. The value of k was 

chosen to be an odd number to avoid the possibility of ties. After experimenting with 

various odd values for k, the value 21 was selected because it gave better results 

compared to k = 3, 9, or 11. The two possible class labels are normal and defect pixel. In 

order to improve the prediction of class labels, a weight may be applied to the calculation 

of distance values. The neighbors of the test element vote for the predicted class with 

votes weighted by the reciprocal of their distance to the test element.  

 In this research the Approximate Nearest Neighbors (ANN) library created by 

Mount and Arya [14] was used for classification purposes. The distances from a pixel to 

its neighbors are measured using the squared distance and not the true Euclidean distance.  

The equation for true Euclidean distance is:  

    (   )  ( ∑ (     )
 

     

)

   

 

Using squared distances helps to represent distances as integers when integer type 

elements are used as well as saves on computation time. The distance metric can be 

changed according to the user’s preferences.  

The ANN program can be given an error bound ϵ ≥ 0 which is used for 

approximate nearest neighbor searching. If this is specified, then the i
th

 nearest neighbor 

of a query point is a (1 + ϵ) approximation to the true i
th

 neighbor. This means that the 

true Euclidean distance to a point from the query point may exceed the distance to the 

real i
th

 nearest neighbor by a factor of (1 + ϵ). Employing an approximate k nearest 

neighbor search will significantly improve the running time. However, the pre-processing 

time depends on the number of points in the training set and the dimension of the feature 

space, and is independent of the error bound ϵ.   

The process of leave-one-out cross validation was used for thirty patient images. 

Twenty nine images were used as training images, and one image was the test image. 
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This process was repeated thirty times, each time rotating among the dataset, so that no 

image was picked as the test image twice. Cross validation provides a good idea of how 

the classifier is performing by reducing the variance of estimation, and also needs to be 

used because of the small data set of images. 

3.9 Implementation 

The code for all the steps involved in the methodology was written using the 

Insight Toolkit (ITK) version 3.20.0. For the manual segmentation of images using the 

Hough transform, the code was adapted from Mosaliganti et al. [12] who implemented a 

faster version of the transform which also gives more accurate results than the built-in 

ITK version. The different features were calculated using built-in ITK filters as well as 

by modifying some of the filters to obtain desired results. Feature selection was 

performed using WEKA [24] as explained in Section 3.6. The kNN classification process 

was performed using the ANN library created by Mount and Arya [14]. This library has 

customizable features such as supporting both exact and approximate nearest neighbor 

searching and supporting the use of any Minkowski distance metric including Manhattan, 

Euclidean and Max metrics. The ROC curve shown in chapter 4 was plotted using the 

online calculator created by Eng [23].  
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CHAPTER 4 

RESULTS 

4.1 Image Segmentation Results 

Image segmentation using the Hough transform was performed by manually 

entering a separate radius search range for each of the fifty images. This was done 

because if a common radius search range was given for all the images, the transform 

tended to segment circles of larger radii among images with smaller pupil sizes. As a 

result, false pupil boundaries were being detected which was undesirable.  

While carrying out manual input of radius search range to the Hough transform, 

the pupil boundary was detected without much difficulty. A few images had pupil 

distortion due to large amounts of pigment being lost from the iris [5], causing the pupil 

to not be perfectly circular. In these cases, a segmentation that left out as much of the 

distorted region as possible was selected. The outer iris boundary in some images was not 

clearly visible and appeared diffused into the sclera region. It was then decided that 

including extra pixels in the segmentation would be better than discarding useful pixels, 

that is, the iris transillumination defect regions.  

 A list of the parameter values for each subject’s eye image showing the inputs to 

the Hough transform in order to segment out the iris regions is given in appendix Table 

A.2. The pupil boundaries and centers were detected first using the minimum and 

maximum radius search range, and using these center coordinates, the outer iris 

boundaries were detected. In all cases, the search was limited to one circle. Each image 

took approximately ten minutes to segment correctly. 

At the end of the segmentation stage, fifty iris images were created with all pixels 

not belonging to the iris region replaced by black pixels as seen in Figure 4.1 (b). Mild 
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distortion of the pupil can be seen in Figure 4.1 (a). The segmented iris images were then 

converted to polar coordinates and an example is shown in Figure 4.1 (c).  

 

 

 

  

 

 

 

 

             (a)               (b) 

 

                              

 

 

      (c) 

Figure 4.1: Image segmentation result example: (a) The original eye image for subject 

number 14. (b) The iris extracted by the Hough transform with pupil radius 72 pixels and 

outer iris radius 255 pixels. (c) The extracted iris region converted to polar coordinates. 

 

 

 

4.2 Feature Calculation Results 

The feature calculation stage was implemented using the Insight Toolkit (ITK). 

Before calculation of features, the polar image boundaries against a black background 

had to be mirrored to prevent the kNN classifier from falsely classifying image 
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boundaries as defect regions. After mirroring 10 rows of the image above and below the 

boundaries, feature calculation was carried out. Following calculation of features, random 

selection of training pixels was performed as described in Section 3.4. These pixel values 

were then written into a text file to be given as input for the training stage of the 

classifier. For the testing data, pixels from the test feature images were selected and 

stored in text files. The feature calculation results took ten minutes to obtain per feature 

image. 

The calculated features are shown in Figure 4.2: 

 

 

 

 

 

 

 

 

                              (a)        (b) 

Figure 4.2: Feature calculation results examples: (a) Standard deviation with a 

neighborhood of 3x3. (b) Standard deviation with a neighborhood of 5x5. (c) Standard 

deviation with a neighborhood of 3x9. (d) Difference of Gaussians with    = 1 and  

   = 2. (e) Difference of Gaussians with    = 2 and    = 4. (f) Gradient Magnitude 

image. (g) Average intensity image. (h) Gaussian derivative of image along the X-axis. 

(i) Gaussian derivative of image along the Y-axis. (j) Laplacian of image. 
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Figure 4.2 continued - 

 

 

 

 

 

                  (c)        (d) 
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4.3 Feature Selection Results 

After the feature calculation process, feature selection was carried out using 

WEKA. The algorithm used was linear forward selection with cross validation. The 

output of feature selection showed that the difference of Gaussians applied to an image 

with    = 1 and    = 2, the Gaussian Derivative of an image in the vertical direction and 

the Laplacian of an image were not optimal features. Seven features remained to perform 

kNN classification. Feature selection in WEKA was a quick process of a few minutes. 

4.4 KNN Classification Results 

Following the testing of the kNN classifier, using   = 21, a probability image was 

obtained for each of thirty test images, with 21 gray levels ranging from 0 to 255.  

 

 

 

 

 

 

 

 

                   (a)         (b) 

Figure 4.3: KNN classification results example: (a) The segmented iris region in the polar 

domain for participant number 14. (b) The probability image with 21 gray levels showing 

the likelihood of each pixel belonging to a defect region. (c) The probability image 

converted back to the Cartesian domain. (d) The reference standard image with defect 

regions manually outlined.  
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Figure 4.3 continued – 

 

 

 

                   

 

         (c)         (d) 

 

 

 

A pixel with a higher gray level has a higher probability of belonging to a defect 

region. The images were then converted back to the Cartesian domain. As seen in Figure 

4.3 (b) and (c), the iris transillumination defect regions have been identified by the kNN 

classifier with some false positives present as well.  

 

 

 

 

 

 

 

 

         (a)            (b)         (c) 

Figure 4.4: Some results of the kNN classification: (a) This column of images is the iris 

regions that were manually segmented out for subject numbers 9, 16, 40 and 43. (b) The 

reference standard images showing the defect regions manually outlined. (c) The 

probability images with a threshold of 3/21 applied. 
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Figure 4.4 continued - 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     (a)             (b)          (c) 

 

 

 

Some more classification results have been shown along with their corresponding 

reference standard images in Figure 4.4 above.  
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The area under the curve (AUC) is a measure of the performance of a diagnostic 

test that plots sensitivity (true positive rate) versus 1-specificity (false positive rate). An 

AUC of 0.5 indicates a test that is equivalent to tossing a coin while an AUC of 1 

indicates a test that has 100% sensitivity with no false negatives and 100% specificity 

with no false positives.  

An AUC of 0.901 was obtained for the fitted ROC curve for a data set of thirty 

images using k = 21 as shown in Figure 4.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: The ROC curve for the kNN classification output. 

 

 

 

The kNN classification process was executed using a higher value of k = 101 and 
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values of k would produce a higher value of the AUC. The result of the AUC of the fitted 

ROC curve was equal to 0.907 which was similar to the result of using k = 21. Thus, the 

results showed no sensitivity to the use of a higher value of k. 

The ROC curve can be used to select the best operating point. This point can be 

chosen such as to give the best tradeoff between the costs of failing to detect positives 

against the cost of raising false alarms.  
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CHAPTER 5 

DISCUSSION 

 The method described in this thesis for using pixel classification to quantify the 

amount of transillumination in an eye has not been attempted before and it improves upon 

the bias of a human observer manually marking defects, as well as resulting in saved 

time. This test serves as a measure of automatically finding regions of pigment dispersion 

without having to take into consideration inter-observer variability.  

 The large AUC value of 0.901 using k = 21 indicates that pixel classification of 

iris transillumination defects is an accurate technique which has the potential to be used 

for CAD of the Pigment Dispersion Syndrome.  

 Reducing the number of false positives in the output would result in a higher 

value of the AUC. This could be done by adding features to the classifier training set that 

are not solely dependent on intensity changes.    
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CHAPTER 6 

CONCLUSION 

Iris transillumination defects caused by pigment dispersion syndrome can be 

successfully detected by using pixel classification with the kNN algorithm. Future work 

could include adding more useful features to improve the AUC by reducing the number 

of false positives. Different classifiers could be used to determine if the classification of 

defects can be improved. The manual segmentation of the iris regions could be fully 

automated by modifying the Hough transform algorithm so that it does not show a bias 

for detecting circles with a larger radius. Testing the method described in this thesis on a 

larger dataset could show whether the algorithm can consistently maintain its accuracy. 

The percent transillumination of the iris can be calculated, and a correlation between this 

value and the age of the subject can be investigated. Also, the changes in 

transillumination defects’ sizes and the pupil size can be tracked over time. 
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APPENDIX 

Table A.1: The data of 38 out of 50 subjects included in this research with their diagnoses 

as follows - PG: Pigment Dispersion Syndrome with elevated pressures and 

glaucomatous nerves, PDS: Pigment Dispersion Syndrome with normal pressure and 

nerves, PDS w/ OHT: Pigment Dispersion Syndrome with elevated pressures but normal 

nerves. 

 

Participant 

Number 
Year of Birth Year of Diagnosis 

Age when 

Diagnosed 
Diagnosis 

1 1973 1991 18 PDS 

2 1955 1999 44 PDS w/ OHT 

3 1962 1993 31 PG 

4 - - - - 

5 - - - - 

6 - - - - 

7 - - - - 

8 1928 1990 62 PG 

9 - - - - 

10 1946 1990 44 PG 

11 1962 1993 31 PG 

12 1924 1988 64 PG 

13 1937 1974 37 PG 

14 1929 1979 50 PG 

15 1958 1996 38 PDS 

16 1956 1992 36 PDS 

17 1931 1996 65 PG 

18 1955 1999 44 PDS w/OHT 

19 1949 1999 50 PDS w/OHT 

20 1946 1980 34 PDS 

21 1953 1992 39 PDS 

22 - - - - 

23 1973 1991 18 PDS 

24 1962 1993 31 PG 

25 1928 1980 52 PG 

26 1951 1993 42 PDS 
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1
Table A.1 continued: 

 

    

Participant 

Number 
Year of Birth Year of Diagnosis 

Age when 

Diagnosed 
Diagnosis 

27 1941 1995 54 PDS 

28 1923 1992 69 PDS 

29 1938 1986 48 PG 

30 1952 1992 40 PG 

31 1924 1987 63 PG 

32 1959 1988 29 PG 

33 1951 1989 38 PDS w/OHT 

34 1957 1985 28 PDS 

35 - - - - 

36 1927 1992 65 PG 

37 1951 1994 43 PDS 

38 1967 1995 28 PDS 

39 1961 1991 30 PG 

40 1952 1992 40 PDS 

41 1953 1995 42 PG 

42 - - - - 

43 1962 1992 40 PDS 

44 - - - - 

45     

46 1967 1995 28 PG 

47 - - - - 

48 1946 1998 52 PG 

49 1962 1998 36 PDS 

50 1964 1988 24 PG 

 

 

 

 

 

 

1
The data of each subject included in this research with their diagnoses. 
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Table A.2: A list of the parameter values for each subject’s eye image showing the inputs 

to the Hough transform in order to segment out the iris regions, with each value 

representing the number of pixels. 

 

Participant 

Number 

Pupil Iris 

Min 

Radius 

Max 

Radius 

Radius 

Detected 

Min 

Radius 

Max 

Radius 

Center  

(x, y) 

Radius 

Detected 

1 30 120 92 150 290 (366, 258) 227 

2 10 50 31 120 200 (503, 210) 170 

3 25 90 57 100 220 (448, 225) 172 

4 15 75 41 140 290 (330, 225) 206 

5 35 100 63 140 290 (370, 233) 199 

6 40 100 70 140 290 (359, 205) 198 

7 35 100 61 150 290 (411, 203) 217 

8 30 80 53 100 210 (321, 308) 169 

9 35 100 66 150 290 (346, 262) 215 

10 25 105 73 140 290 (393, 238 ) 188 

11 56 120 84 100 230 (374, 224) 163 

12 50 110 80 150 290 (356, 226) 221 

13 25 105 75 180 320 (337, 250) 244 

14 25 105 70 150 350 (419, 248) 256 

15 30 90 58 150 290 (326, 282) 219 

16 25 105 74 140 290 (439, 204) 197 

17 35 100 65 150 280 (408, 238) 220 

18 30 80 58 100 240 (365, 191) 176 

19 35 100 64 100 230 (408, 289) 166 

20 65 125 95 140 260 (320, 294) 205 

21 50 110 77 140 290 (413, 279) 194 

22 30 90 57 150 340 (317, 239) 239 

23 25 105 74 100 180 (503, 191) 148 

24 30 80 56 100 200 (258, 222) 155 

25 40 100 71 120 270 (407, 212) 195 

26 15 75 45 100 200 (287, 242) 164 

27 56 116 86 180 300 (420, 245) 245 

28 30 75 50 100 240 (310, 154) 168 
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2
Table A.2 continued: 

 

Participant 

Number 

Pupil Iris 

Min 

Radius 

Max 

Radius 

Radius 

Detected 

Min 

Radius 

Max 

Radius 

Center  

(x, y) 

Radius 

Detected 

29 30 80 52 100 180 (351, 167) 141 

30 30 80 55 140 290 (304, 278) 207 

31 40 100 65 150 280 (404, 245) 214 

32 10 75 47 150 280 (368, 283) 225 

33 20 80 50 100 180 (412, 269) 149 

34 50 110 83 100 230 (334, 293) 168 

35 50 110 77 140 290 (370, 183) 193 

36 15 75 47 140 290 (336, 206) 185 

37 50 110 81 150 290 (386, 233) 217 

38 40 100 71 150 340 (395, 233) 244 

39 50 110 78 150 320 (400, 242) 228 

40 30 75 51 140 290 (402, 258) 189 

41 40 100 69 150 290 (337, 214) 228 

42 30 75 50 140 290 (332, 221) 185 

43 35 100 60 140 290 (411, 275) 194 

44 30 90 57 140 290 (350, 194) 205 

45 40 100 68 150 280 (407, 240) 211 

46 20 80 49 80 180 (414, 228) 138 

47 50 110 83 140 290 (297, 247) 199 

48 75 140 104 180 370 (337, 229) 256 

49 5 70 37 80 150 (431, 275) 118 

50 65 125 93 140 290 (348, 265) 183 

 

 
 

 

 

 

2
A list of the parameter values for each subject’s eye image showing the inputs to the Hough transform in 

order to segment out the iris regions, with each value representing the number of pixels. 
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