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This article proposes a bootstrap method for constructing two-sided confidence intervals for the mov-
ing average (MA) parameter in nearly noninvertible models. The confidence intervals are obtained by
inverting the acceptance region of the likelihood ratio (LR) test reflecting the asymmetry of the like-
lihood near the noninvertibility boundary. The limiting distribution of the LR statistic is nonpivotal
and its quantiles are parameterized as a function of the MA parameter and then approximated by grid
bootstrap. The proposed method is used to investigate the parameter instability in inflation and time

variability of risk premium in interest rates.
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1. INTRODUCTION

Many macroeconomic time series can be modeled parsimo-
niously as autoregressive moving average (ARMA) processes
(Schwert 1987). Time aggregation, measurement errors, errors
from rational forecasts, outliers, and feedback relationships
are among the reasons to justify the presence of a statistically
significant moving average (MA) component in the univari-
ate representation of the economic variables. Although these
models lead to some computational difficulties, it is possible
to conduct valid inference by using the standard statistical the-
ory, provided that the MA parameter is away from the bound-
ary of the noninvertibility region.

Some serious problems arise, however, when the time series
contains an MA root near or on the unit circle. This case is
of practical interest because an MA coefficient close to unity
may indicate overdifferencing of the series under consideration
since differencing of a trend stationary process induces nonin-
vertibility. Also, some economic models, such as the consump-
tion model with durable goods (Mankiw 1982) and the Cagan
model of hyperinflation with rational expectations (Christiano
1987), can produce a large MA component that requires an
appropriate framework for valid statistical inference. Testing
for MA unit roots generated a large body of research that has
led to the development of powerful tests for detecting nonin-
vertible MA processes (Tanaka 1990; Davis, Chen, and Dun-
smuir 1995). These tests, however, are concerned with the very
specialized case in which the MA root is exactly equal to 1,
and they do not provide information about the sampling uncer-
tainty. Some point and interval estimators, such as median
unbiased estimates and two-sided confidence intervals, might
prove to be more useful and informative in applied work. Fur-
thermore, a similar statistical apparatus is needed for evaluat-
ing the coefficient variability in time-varying parameter mod-
els (Stock and Watson 1998), which provide a flexible model-
ing framework for many economic and financial series.

Construction of interval estimators in models with a large
MA component turns out to be a particularly difficult and non-
standard problem. To introduce the main ideas, consider the
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stochastic process {y,}/_, generated from the MA(1) model

Yp=1€, = 9()61—1 , (l)

where |6,| < I and {e,}’_, is a martingale difference sequence
with respect to the past history of y,.

Let 6, be the parameter of interest and 7, denote a possibly
infinite dimensional nuisance parameter vector that completely
characterizes the distribution of e. If |6, is strictly less than 1,
the process y, is invertible and the maximum likelihood (ML)
estimator of 6, is asymptotically normally distributed with
mean 6, and variance (1 —62)/T. When 6, is close to the unit
circle, the Gaussian distribution provides a rather inaccurate
approximation to the limiting behavior of the ML estimator.
Moreover, in finite samples the estimator takes values exactly
on the boundary of the invertibility region with positive prob-
ability (pile-up effect) when the true MA parameter is in the
vicinity of 1. The observed point probability mass at unity
results from the symmetry of the likelihood function around 1
and the small sample deficiency to identify all critical points
near the unit circle.

The distribution of the ML estimator of # in the presence
of an MA unit root is nonstandard and was derived by Davis
and Dunsmuir (1996) (DD). Recasting the MA parameter into
a local-to-unity form, 6, =1 —¢/T for a finite constant ¢ > 0,
provides a useful framework for analyzing the limiting behav-
ior of the ML estimator and allows a smooth transition from
the normal approximation to the asymptotic distribution in the
noninvertible case. The DD asymptotic approximation can be
used for hypothesis testing of 6 = 1 against § < 1 as well as
construction of one-sided confidence intervals. In some cases,
it might be more useful to assess the sampling uncertainty
around the point estimate of the MA parameter in both direc-
tions. The inversion of the quantiles of the DD limiting dis-
tribution of the ML estimator is not appropriate for obtaining
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two-sided confidence intervals. The same caveat applies to the
construction of two-sided confidence intervals by inverting the
acceptance region of the likelihood ratio or score tests for an
MA unit root. Typically, the inversion of one-sided (upper tail)
tests produces one-sided (upper) confidence intervals.

An alternative to the construction of confidence intervals
based on asymptotic approximations is the conventional boot-
strap method, which is expected to provide a higher-order
accuracy than does the normal approximation for MA roots
away from the noninvertibility boundary. The validity of the
bootstrap approximation requires that the test statistic be
asymptotically pivotal. This condition, however, is not satis-
fied in the MA(1) model with a large MA root. As will be
shown later, the DD limiting representation for 6 near the
unit circle depends on the local-to-unity parameter ¢, which
is not consistently estimable. Therefore, as the MA parameter
approaches unity, the conventional bootstrap fails to provide
even first-order correct inference.

In this article, a new bootstrap-based procedure is proposed
for constructing two-sided confidence intervals in models with
a large MA component. The confidence bounds of these inter-
vals are obtained by inverting the acceptance region of a spe-
cific test statistic. Because the likelihood function of models
with an MA component is highly nonlinear, the likelihood
ratio appears to be the most appropriate statistic reflecting the
pronounced asymmetry of the likelihood in the neighborhood
of 1. The quantiles of the distribution of the test statistic are
approximated by the grid bootstrap method proposed indepen-
dently by Kabaila (1993), Hansen (1999), and Chuang and Lai
(2000) and designed to address the inconsistency of the naive
bootstrap for highly persistent autoregressive processes. The
grid bootstrap explicitly parameterizes the distribution quan-
tiles as a function of ¢ and does not require a consistent
estimate of this parameter. Although it is more computation-
ally expensive than the asymptotic and conventional bootstrap
methods, the simulations show that the grid bootstrap is char-
acterized by excellent coverage properties and flexibility to
handle a large class of nonstandard inference problems. Fur-
thermore, the grid bootstrap method works globally over the
whole parameter space whereas the asymptotic approxima-
tions are valid only in the vicinity of 1.

The idea to use a family of resampling distributions rather
than a single distribution can be traced to Sprott’s (1981) dis-
cussion of Efron’s seminal work on bootstrap (Efron 1981).
This family of distributions is indexed by ¢, and a single mem-
ber of the family is used for resampling by conditioning on
a particular value of ¢. Chuang and Lai (2000) called this
approach a “hybrid resampling method” because it hybridizes
exact methods and bootstrap methods for inference. The unit-
root bootstrap tests proposed by Basawa, Mallik, McCormick,
Reeves, and Taylor (1991) and Ferretti and Romo (1996) that
impose the null hypothesis of a unit root in resampling the data
can be regarded as a special case of the grid or hybrid boot-
strap method. Given the recent advances in the literature on
bootstrapping near-integrated autoregressive models and simi-
larity of the inference problems (in particular, the nonpivotal-
ness of the distribution of the largest root), it seems natural
to extend the bootstrap-based methods to models with a large
MA component. But, as pointed out earlier, the statistical anal-
ysis of nearly noninvertible MA models is further complicated
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by some nonstandard properties of the ML estimator and the
construction of confidence intervals with controlled coverage
appears to be more delicate.

This article is organized as follows. Section 2 introduces the
statistical methodology for construction of confidence inter-
vals by test inversion. Then, we develop asymptotic and boot-
strap approximations of the distribution of the likelihood ratio
test in MA(1) models that produce confidence intervals with
controlled coverage. The consistency and the accuracy of the
grid bootstrap method for interval estimation are discussed
in Section 3. Section 4 presents the results from a finite-
sample simulation study. The empirical part of the article
investigates the possible instability in the MA component of
U.S. inflation by constructing confidence intervals for the MA
parameter in five different monetary policy regimes. In the
second application, the risk premium is modeled as an unob-
served component that evolves as a random walk over time,
and interval estimates of the variability of the risk premium
are provided. The series used in both applications exhibit
strong conditional heteroscedasticity, which motivates the use
of a heteroscedasticity-robust resampling algorithm. Section 6
summarizes the results and outlines some extensions.

2. CONFIDENCE INTERVAL CONSTRUCTION
BY TEST INVERSION

In this section, we use the duality between hypothesis
testing and interval estimation and consider the construction
of confidence intervals by inverting a test statistic R. Let
Yis Va2, - - -, ¥y be a random sample with population distribu-
tion F,(y) =Pr{y, < y}. Suppose that under the null hypothe-
sis, Ry = Ry (¥, ¥, . .., yy) is a continuous random variable
with sampling distribution that may depend on an unknown
parameter c,

Gr(q|co) =Pr{R; < q| H,: c=c}.

For a fixed ¢ and confidence level a, there exists a unique
q,(c) such that

Pr{R; < q,(c) | Hy} > a,

where g, (c) is the ath quantile of the distribution of R, that
can be obtained by inverting G,. More precisely, g,(c) =
G7'(a| ) =inf{g(c) : Pr[Ry < q(c) | Hy] = a}.

Then, the 100a% confidence set for the MA parameter 6, =
1 —¢/T is given by the set of values of 6 satisfying R; <
q,(c), that is,

Cu() = {0€O: Ry < 4,(0))
or equivalently
C,(y)={0€®:yecA8)},

where O is the parameter space and A(#) is the acceptance
region of the test R; (Casella and Berger 1990; Lehmann
1986). Although 6 is real-valued, we define a confidence set
rather than a confidence interval because it is possible that in
some cases the inversion of the test statistic leads to disjoint
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intervals. The endpoints of the confidence set are the infimum
and the supremum over C,(y), respectively. In particular, the
two-sided, equal-tailed confidence interval of nominal cover-
age a is given by C,(y) = [6,,0,], where the confidence
limits are defined to satisfy 6, = inf{d € ® : Pr(R, < g,(c) |
H,) > a} and 8, =sup{f € O : Pr(R; < q,(c) | Hy) = a}.

The construction of confidence intervals by test inversion
depends on the formulation of both the null and the alterna-
tive hypothesis of R;. The first class of tests studied in this
article are two-sided tests with a null H, : 6 = 0,, evaluated
on a grid of points 6, € ®, against the alternative H, : 0 # 0,,
where 6 is the MA parameter. If R, is an asymptotically piv-
otal statistic, then the conventional asymptotic and bootstrap
methods, which treat the ath quantile function as constant over
all values of 6, are appropriate for constructing valid confi-
dence intervals. Otherwise, one must explicitly parameterize
the quantiles of G, as a function of the MA parameter 6.

The second class of tests includes one-sided upper-tail tests
with a null H;: 6 = 1 against H, : 6 < 1, which are concerned
with the local behavior of 6 in the neighborhood of 1. If the
quantiles of the distribution of these test statistics are mono-
tone increasing and continuous in 6, then they can be inverted
to produce median unbiased and confidence limit estimates.
The median unbiased estimate of 6 is

0yu = g5 (Ry) such that
Pr{f < q5'(Rp)} =Pr{0 > ¢5' (R} =

and the 100a% one-sided confidence interval for @ is given by

Cio(»)={0€0:0=<q;'(R;)} =10, 0,].

where 6, = ¢ '(R;) is the upper confidence limit and 6 = —1
in the MA(1) case. For completeness, the 100a% two-sided
confidence interval for 6, obtained by inverting the test statistic
of 8 =1, is given by

C.(y)={0cO: q{_ll—a),"Z(RT) Ss8s q(_]:»a)/'z(RT)}'

2.1 Asymptotic Confidence Intervals

To derive the limiting theory for constructing confidence
intervals for the MA parameter, we impose the following
restriction.

Assumption 1. In model (1), e, ~ iid(0, o) with E(¢}) <

00,

The Gaussian quasi log-likelihood of the MA(1) model con-
centrated with respect to o> (with all constant terms omitted)
is given by

1(0) = ——loglﬂ(ﬂ £ ~10gy0 '(0)y, (2
where () is the covariance matrix of the data vector y =
(¥ ¥2» - - - » ¥7). When the MA parameter is in interior of the
invertibility region, the ML estimate 6 is asymptotically nor-
mally distributed. However, as the MA parameter approaches

unity, the exact finite-sample distribution of the ML estima-
tor is more closely approximated by its limiting distribution
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at | rather than the Gaussian distribution. For this reason, we
adopt the local-to-unity representation of the MA parameter.
Let 6, =1—c¢/T be the true value of § =1— B/T, where
¢, 3 >0 are constants. This is the appropriate nesting (nor-
malization) because the ML estimator is T-consistent for the
MA parameter in the neighborhood of 1 (Sargan and Bhargava
1983).

This article is primarily concerned with the construction
of two-sided, equal-tailed confidence intervals for the MA
parameter 6. We argue that intervals with best coverage prop-
erties and precision are obtained from inverting the likeli-
hood ratio statistic LR(6,) = 2[/;(8) — 1;(6,)] that tests the
hypothesis H, : 6 = 6, versus H, : 6 # 6,. The LR statistic
captures the significant asymmetry of the likelihood in the
neighborhood of 1 and is well behaved even when the MA
root is on the unit circle. By contrast, the standard Lagrange
multiplier and Wald tests are symmetric by construction and
encounter some problems when the MA parameter is esti-
mated to lie exactly on the noninvertibility boundary. For small
values of 6, it is known that the LR(6,) statistic is approx-
imately x’-distributed, whereas for values of 6, close to 1,
the asymptotic approximation of the distribution of LR(6,)
is given by the following result, which is a restatement of
Theorem 2.1 in Davis et al. (1995) and Theorem 2.1 in Davis
and Dunsmuir (1996).

Lemma 1. For model (1) with y=1—c¢/T, 0=1-8/T
and under Assumption 1,

211(0) — 1:(8,)] > Z.(BY) — Z.(c), 3)
where
BTk +cA)XE = k>
240= % i st L o mrp) @
TR e k>
o= Ltru et ) e

> o % d
B¢! is the global maximizer of Z (), X; ~ nid(0, 1), and —
denotes weak convergence on the space of continuous func-
tions on [0, c0).

Proof. See Appendix A for the proof.

Some nonstandard features of the result in Lemma 1 require
further attention. First, the global maximizer B¢’ is a function
of the true local-to-unity parameter ¢ and hence the limiting
distribution of LR(6,) is nonpivotal. Moreover, c is not consis-
tently estimable and one cannot substitute a good estimate of
c in the limiting representations and obtain the corresponding
quantiles. Instead, one can construct a grid of points for the
local-to-unity parameter ¢ and evaluate the asymptotic repre-
sentation at each of these points. Then, the acceptance region
of the LR test can be inverted to obtain interval estimators for
¢ and 6.

Second, the asymptotic results in the literature for the
nearly noninvertible MA(1) model were derived largely for
the local maximizer of /;, and the limiting behavior of the
global maximizer is less known. The local maximizer of Z.

I ———
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is given by Ef_‘"‘“ =inf{B >0:BH.(B) =0 and BH (B) +
H.(B) < 0}, where H.(B) = L 4(7*k* + )X/ (mk* +
B — Y 4/(m*k*+ B*). Also, the computation of the local
maximizer is typically much less involved than the search for
a global maximum. For these reasons, we work with the local
maximizer for constructing asymptotic-based confidence inter-
vals. Davis et al. (1995) found that the limiting distributions
of the local and global maximizers of Z.(B) differ, but this
difference is not reflected in the asymptotic distribution of the
LR statistic.

In the notation of the previous section, the confidence set
constructed by inversion of the LR(#,) test is Ci*(y) = {6 €
0 : LR(f,) < gt*(c)}. It is worth pointing out that although
the LR test statistic seems to be the most appropriate and
informative statistic in this context, it is not clear if it still
possesses its optimality properties (Ploberger 1999). This is
because the second derivative of the likelihood function con-
verges in distribution to a random quantity rather than con-
verging in probability to a constant matrix as in the usual case.

In addition, we consider the ¢-statistic of Hy : 6 = 6, versus
H, : 0 # 6,, which in the MA(1) case is the square root of the
Wald statistic. Its corresponding 100a% confidence interval is
given by C.(y) ={0 € O : q(,_,,(c) = 1(60) < G(11a)2(}s
where ¢' denotes the corresponding quantile from the distri-
bution of the ¢-statistic. The problem with the f-statistic is that
if the estimated MA root is estimated to lie exactly on the
unit circle, which happens quite often when the parameter is
close to the noninvertibility boundary because of the pile-up
effect. the score of the likelihood function (2), evaluated at
1. is identically 0. Then, the use of the outer product method
results in a very large estimate of the sampling variance of the
parameter and the f-statistic collapses to 0. Therefore, tests
that use an estimate of the variance such as the r-statistic and
the Wald statistic are not appropriate for statistical inference in
the neighborhood of unity. Moreover, the two-sided Lagrange
multiplier test also does not appear to be a good candidate for
inversion in this region of the parameter space. The Lagrange
multiplier test behaves well for values of the MA root away
from unit circle but not for values very close to 1 because at
§ = 1 the likelihood function has a zero slope.

2.2 Bootstrap Confidence Intervals

Before the properties of the bootstrap-based confidence
intervals can be discussed, some notation is needed. Let
(V> Y25 - - - » ¥y) again be a random sample with population
distribution Fy(y) = Pr{y, < y}, which belongs to a family of
distribution functions = and is generally unknown. Also, let F,
and F, ; denote the population and empirical distribution func-
tion of the unobserved errors e, in (1). The bootstrap meth-
ods operate conditionally on the realized sample by replacing
the unknown distribution function with an estimator. An esti-
mator of F, is given by the empirical distribution function
af the ML sesiduals &, 85, .. 6r For=2 511{E, 5 e}
The corresponding empirical distribution function of the data
is denoted as 1?7. The bootstrap principle replaces the pair
(FO,FT) by the pair (fT,F;f), where F; is the distribution
function of a (bootstrap) sample Vi, V3, ..., V7 drawn from
fr. To see this, we can rewrite the sampling distribution of

M
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the test statistic RT((;. 6,) under the null as G;(q | Fy) =
Pr{R,[0(F;).0(F,)] < ¢ | Fy}. Then, the bootstrap analog
of this distribution is G7(g | Fy) = Pr{R,[0(F}). 0(F,)] <
q| F;} and the bootstrap confidence set for 6 is C;(y) = {6 €
O : R, < ()}, where g.(0) is the ath bootstrap quantile
function.

In MA(1) models, the conventional bootstrap method draws
a sequence of residuals {e;}/_, with replacement from I:':,_T
and generates bootstrap data using the ML estimate of . For
estimation, Bose (1990) showed that the conventional boot-
strap approximation of the distribution of the MA parameter
estimate increases the accuracy from O,(T~'/?) to 0,(T~'?)
almost surely for 8 strictly less than 1. The bootstrap-based
inference in the MA(1) model, however, has not been fully
investigated in the literature. It is known that for 6 away
from the noninvertibility boundary, the parameter estimate is
approximately normally distributed and an appropriate stu-
dentization would provide asymptotic pivotalness and render
a first-order asymptotic coverage. Furthermore, if the studen-
tized statistic admits an Edgeworth expansion, a higher-order
asymptotic coverage can be obtained.

When the MA parameter is close to 1, however, the asymp-
totic distribution of the ML estimator derived by Davis and
Dunsmuir (1996) depends on the local-to-unity parameter,
which is not consistently estimable. This implies that the con-
ventional bootstrap is not even first-order correct. For this
reason, we use the grid bootstrap method of Hansen (1999)
designed originally to deal with the nonpivotalness of the dis-
tribution of the AR parameter in near-integrated models. In
the present context, this method explicitly allows the quantile
functions of the distribution of the test statistic to vary with 6
and does not require a consistent estimate of the local-to-unity
parameter. The grid bootstrap partitions the relevant part of the
parameter space of 6 into n equally spaced points =10}

=1
and generates data under the null H, : 6 = 6, or, equivalently,
HyB=cj

It is widely documented that many economic time series
exhibit conditional heteroscedasticity. The standard bootstrap,
which resamples with replacement from F, ;, does not take
the heteroscedasticity into account and destroys potentially
important information in the structure of the residuals. For
this reason, we combine the grid bootstrap with a weighted
resampling scheme without replacement proposed by Wu
(1986) and known also as the wild bootstrap (Hirdle and
Mammen 1993). This method constructs bootstrap data by
setting e’ = v,é,, where v, is drawn from a distribution F),
that satisfy E(v,) =0, E(v}) = E(v}) = 1. In particular, we
set VI = (51 = = 901,1/\/5)(52 +<IDII/\/§) =3 5152~ where ‘Pl./ )
N(0, 1), 8, = (3/4++/17/12)"2 and 8, = (3/4—/17/12)'%.
Although the weighted resampling without replacement is
robust to heteroscedasticity of general form, it has been of
limited use in time series models because it holds all regres-
sors fixed across replications; this is very restrictive in the
presence of lagged dependent variables. Fortunately, the struc-
ture of the MA(1) model allows one to employ the weighted
resampling scheme in mimicking the dynamics of the series.
As an alternative, we can explicitly parameterize the form of
the conditional heteroscedasticity, for example, as a gener-
alized autoregressive conditionally heteroscedastic (GARCH)
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process, and then recursively generate bootstrap series from
the conditional mean and the conditional variance functions.
The validity of this approach, however, may depend on the
correct specification of the scedastic function.

The grid bootstrap procedure is valid under the condition
of functional independence between the parameter of interest
6, and the nuisance parameter vector 7),, which is satisfied
in the MA(1) model (Kabaila 1993). Then, by assuming that
My = 7, we draw a sequence of residuals {e}}’_, as described
in the previous paragraph, generate bootstrap samples y’ =
e; —6,e;_, at the grid point ¢, and calculate the statistic R?.
These steps are repeated B times, and the 100ath element of
the ordered statistic R} gives the critical value of the test at
6.. Applying this algorithm at each grid point and connecting
the respective critical values produces an approximation of the
ath quantile function of the finite-sample distribution of R;.
Finally, we can use the test-inversion method for constructing
interval estimators of the form C*(y) ={0 € ©®: R; < g’(c)},
which will be at least first-order asymptotically correct.

The construction of confidence intervals for the MA param-
eter by inverting the LR test for the sequence of hypotheses
0=0,,i=1,2,...,41, is illustrated in Figure 1. The data are
generated from a Gaussian MA(1) model with a true parameter
value 6 = .95 and sample size of 100. The ML estimate of 6
for this particular realization is .945. Along with the LR statis-
tic, Figure 1 plots the .9th quantile functions from the grid
and conventional bootstrap as well as the DD and y* asymp-
totics. The dependence of the grid bootstrap and DD quan-
tiles on the values of 6 and the asymmetry of the LR statistic
are apparent from the figure. Therefore, the lack of pivotal-
ness in the distribution of the LR test makes the assumption
of constant quantiles used in the conventional bootstrap and

LR statistic

grid bootstrap

DD osymptotics
standard bootstrap
chi—-square

6
T

.9th quantiles
o

4

3

LR statistic,
2

0.85 0.90 1.00

o
@
o

value of MA parameter

Figure 1. Confidence Intervals by LR Test Inversion. The data used
in the figure were generated from a standard normal MA(1) model with
6, = .95 and sample size of 100. The ML estimate is 6 = .945. The
solid line is the LR test statistic 2[l;(6) — I;(6,)], evaluated on a grid
of 40 equally spaced values of 6, from .80 to 1. The figure also plots
the y? asymptotic, Davis-Dunsmuir asymptotic, conventional bootstrap,
and grid bootstrap .9th quantile functions from the respective distribu-
tions. The grid bootstrap 90% two-sided confidence interval is obtained
by projecting the intersections of the LR statistic with the grid boot-
strap critical value function onto the horizontal axis, indicated by the
two spikes at .86 and .97.
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X’ approximations inappropriate when 6 is near the noninvert-
ibility boundary. Projecting the intersections of the LR statis-
tic with the corresponding quantile onto the horizontal axis
produces the lower and the upper endpoints of the confidence
interval for 6. Another conceptually similar approach involves
construction and inversion of the grid bootstrap p-value func-
tion p*(6,) =Pr{R} > R, | # = 6,} (Davidson and MacKinnon
1999).

3. CONSISTENCY AND ACCURACY OF
THE GRID BOOTSTRAP

The conditions for the consistency of the bootstrap distribu-
tion G (g | F;) as an estimator of the true distribution of the
statistic R were given by Bickel and Freedman (1981), Beran
and Ducharme (1991), and Horowitz (in press). Let d= be a
metric on the space = of distribution functions and F, € E.

The first condition states that for any & > 0,
lim;_, . Pr{d=(F;, F;) > 8} = 0; that is, the sampling distri-
bution of the data fr is a consistent estimator of the true
distribution F,. Second, the asymptotic distribution of the
statistic Ry, G (g | F), is continuous in g for any F € E.
This condition requires a continuity of the mapping from
the sampling distribution of the data to the limiting distribu-
tion of the test statistic. Finally, for any sequence {H;} € E
belonging to a neighborhood of the true distribution F, such
that lim,_, , d=(H;, F;) = 0, the distribution G} (g | H;) con-
verges weakly to its limiting distribution G (g | Fy).

Some of these conditions for consistency of the bootstrap
estimator are clearly violated in models with a large MA com-
ponent. For instance, when the MA parameter is exactly on
the unit circle, the asymptotic representation of the ML esti-
mator changes discontinuously from the Gaussian to the DD
distribution. Moreover, some inference problems arise from
imposing the invertibility restriction, in which case the MA
parameter lies exactly on the boundary of the parameter space
(Andrews 2000). The discontinuity problem can be circum-
vented by adopting the local-to-unity framework that allows a
smooth transition from the normal distribution to the limiting
representation at unity. Unfortunately, this introduces another
difficulty arising from the presence of a nuisance parameter
that is not consistently estimable. As a result, the conventional
bootstrap would not provide a consistent estimate of the true
distribution of the test statistic R;.

The grid bootstrap approximates the distribution G (g | F)
for a sequence of null hypotheses H, : 6 = 6, (or, in terms of
the local-to-unity parameters, 3 = ¢;) for ; € ¥ by generating
bootstrap data imposing the null. This method does not require
a consistent estimate of the parameter ¢ and is asymptotically
valid. Furthermore, it appears that imposing the null when the
parameter is exactly on the boundary of the parameter space
alleviates the problem pointed out by Andrews (2000). Also,
it is worth noting that when the MA parameter is exactly on
the invertibility boundary, the ML estimate is median unbiased
because the pile-up probability in this case is .6575 (Sargan
and Bhargava 1983).

As argued here, we prefer to work with the LR test of 6 = 6,
and invert its bootstrap acceptance region to obtain confidence
intervals. The main result that establishes the consistency of
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the grid bootstrap approximation when the limiting distribu-
tion of the LR statistic depends on an unknown parameter is
given in the following theorem.

Theorem 1. For any fixed ¢, 6 > 0, and F, € E, the grid
bootstrap provides a consistent estimator of the limiting dis-
tribution of the LR(6,) statistic:

Tlim Pr[supIG’}(q | F, c)—G_(q|F. (‘)l > 5] =0,
— 00 q

Proof. see Appendix A for the proof.

An important feature of the result in Theorem 1 is that the
grid bootstrap is a consistent estimator of the distribution of
LR(6,) over the whole parameter space @, not only in the
vicinity of 1. The result is valid for both restricted and esti-
mated residuals as long as the latter are consistently estimated.
Also, it immediately follows from Theorem 1 that the grid
bootstrap approximation is first-order accurate, whereas the
conventional bootstrap fails to achieve that.

Chandra and Ghosh (1979) showed that under normality of
the ML estimator and some smoothness and moment condi-
tions, the y* distribution approximates the finite sample dis-
tribution of the LR statistic up to order O(T "),

Pr(LR < x) = Gx*(x) + O(T ™),

where Gy?(x) is the x* distribution function. Although
Chandra and Ghosh (1979) established this result for iid data,
they argued that the iid structure can be relaxed and a sim-
ilar result can be derived for dependent data. Then, using
arguments similar to that of Hall (1992, chap. 3), it can be
shown that the bootstrap approximation provides an improve-
ment over the y* asymptotics,

Pr(LR < x)—Pr(LR* <x) = op(T")

and the coverage error of the 100a% two-sided intervals,
obtained by inverting the bootstrap LR(#,)) statistic, is of order
0,(T~") (Carpenter 1998).

When 6, = 1—c¢/T, the asymptotic normality of the ML
estimator of 6 is lost. To establish the possible higher accuracy
of the bootstrap confidence intervals, we need to show first
that the distribution function of the LR statistic, G(q | ¢, ),
admits an Edgeworth expansion. The technical conditions for
developing an Edgeworth expansion of the distribution of
LR(6,) when 6 is near or on the unit circle have not been
derived yet. For this reason, it can be claimed only that in
this region of the parameter space the bootstrap approximation
achieves the first-order asymptotic accuracy.

4. MONTE CARLO STUDY

4.1 Experimental Design

To evaluate the finite sample performance of the discussed
methods for constructing confidence intervals of the MA
parameter, we conducted a Monte Carlo simulation study. The
design of the experiment is as follows. The data are generated
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from an MA(1) model,
Y, =e —0ye,_, with T =100
and
#; =16, .8,.9,.95,.99;1,
where ¢, = 0,£,, £, ~nid(0, 1), 07 = (1—y, —,) + (v, €%, +

¥,)o’, with two specification for the scedastic function:
DGP1, vy, = v, =0 (iid errors), and DGP2, y, = .3,y, = .6
(GARCH(1, 1) errors). The simulation experiment examines
the coverage probabilities and the length of the confidence
intervals at nominal level a = .9. The number of Monte Carlo
replications is 2,000. Note that another set of simulations con-
firmed that the results reported in the following are robust to
different specifications of the error distribution, such as ¢ dis-
tribution with 5 degrees of freedom, ¢, ~ £5(0, 1), and a mix-
ture of normals, &, ~ [LON(—1,1)+.1N(9, 1)].

Confidence intervals are constructed by using six asymp-
totic approximations: three Gaussian approximations, the lim-
iting distribution of LR(6,) and LR(1) for 6 on or near the
unit circle, and the asymptotic representation of the score-type
test of 6 = 1 derived by Tanaka (1990).

As pointed out in the introduction, when the MA param-
eter is inside the invertibility region, the ML estimator of 6,
is asymptotically normally distributed with mean 6, and vari-
ance (1—63)/T. The first two Gaussian approximations are
based on the N(0, 1) quantities Z; = (6 9())/\/(1 62)/T
and Z, = (0 b)/s-e. (0) where s.e. (0) denotes the sampling
standard error of f. The lower and upper confidence limits,
0, and 6, for Z, and Z, are obtained analytically by solv-
ing equation Pr{Z =< Zusmph i = 1,2, for 8,, where z Z(1+a)2
is the (1+ a)/2th quantile of the standard normal distribu-
tion. The third approximation for constructing asymptotic con-
fidence intervals inverts the y? acceptance region of the LR
statistic, LR(6,) = 2[/,( (6)— 17(6,)]. The endpoints of the con-
fidence intervals are calculated numerically and are given by
6, = max[—1,inf{6 : LR(6,) < x2}] and 6, = min[sup{@ :
LR(6,) < x2). 1].

The fourth approximation is based on the limiting distribu-
tion of LR(6,) derived in Lemma 1. Because this asymptotic
representation cannot be computed exactly, the correspond-
ing quantiles are obtained by simulation. First, solve for the
local maximizer Bf‘"‘a" from the expression for H, (), follow-
ing the procedure proposed by Davis and Dunsmuir (1996).
The infinite series H,.(3) is truncated at k = 1, 000 and H_(0)
is computed. If H,(0) <0, then B/™* is set to 0; if H,(0) > 0,
then B’ ™ is the smallest nonnegative root of H (B) found by
grid search and linear interpolation between the grid points.
The number of replications is 10,000. The true local-to-unity
parameter ¢ takes on 51 integer values from 0 to 50, which for
sample size T = 100 corresponds to 8 = 1,0.99,0.98, ..., 0.5.
Then the local maximizer ﬁf_m“" is used to evaluate the asymp-
totic representations of the two-sided LR(6,) test of 6 = 6.
Finally, we invert the ath quantile of the limiting distributions
of LR(6,) to determine the upper and the lower interval end-
points. If there is no corresponding value in the table for the
lower quantile, then the lower limit is set to the leftmost point
on the grid for 6.
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In the Monte Carlo comparison, we also investigate the
properties of two popular one-sided tests for an MA unit
root with Hy: 0 =1 and H, : 6 < 1: the likelihood ratio test
LR(1) of Davis et al. (1995) and the score-type test devel-
oped by Tanaka (1990). It immediately follows from Lemma
1 that LR(1) = 2[/;(0) — [7(1)] converges in distribution to
the global maximizer of the expression given in (4), which is
again a function of c¢. Analogously to the LR(6,) test, we eval-
uate the limiting distribution using the local maximizer /™,
and the 100a% confidence interval contains all the values of
the parameter that satisfy the condition q(‘,'Am',z[LR( ]<6<
‘I(_ll+a)/2[LR(1)]o

The locally best invariant unbiased score-type test for 6 = 1
against 6 < 1 (Tanaka 1990) is based on the second derivative
of the log-likelihood evaluated at § = 1 and is given by S; =
[YQ2()y]/[TyQ'(1)y]. As T — o0 and 6 = 1 —¢/T,
S; converges in distribution to Y 7 (1/7%k* + ¢?/7*k*) X7,
where X, ~ nid(0, 1). This asymptotic representation of the
S test is simulated (10,000 Monte Carlo replications) on a
grid of integer values for the local-to-unity parameter ¢ from
0 to 50, and the corresponding quantiles are inverted to locate
the lower and the upper confidence limits.

In the conventional bootstrap, we use the other (or
Efron’s) percentile, Hall’s percentile, the percentile-r and
the percentile-LR methods for constructing confidence
intervals. The two-sided equal-tailed confidence intervals
e [6f1—a) /2> 0(1*3)/{] [ (0(l+a)/" 0) 6 - (071_a 2 9)]
[0 + #{,_q)28-€(0), 0 + t(,+a)/25.e.(0)], and [inf{f : LR <
g:}.sup{f : LR < g*}], respectively, where * indicates the
bootstrap analogs of the corresponding estimators and statis-
tics. The number of bootstrap repetitions is 499.

Finally, for the grid bootstrap we construct a grid of 20
evenly spaced points on [6—5 s.e.(6), min{6 —5 s.e.(6), 1}].
The number of bootstrap replications at each grid point
is 99. Because this number is relatively small, we smooth
the bootstrap quantile functions nonparametrically by kernel
regression. The kernel regression uses the Nadaraya-Watson
estimator with Epanechnikov kernel and bandwidth of 0.40,
where O = {6,,...,0,,} is the constructed sequence of grid
points for the MA parameter. The grid bootstrap confidence
intervals are obtained by five methods: Hall’s percentile,
percentile-7, inverting the S; test of 6 =1, LR test of 6 =1,
and LR test of 6 = 6,.

4.2 Simulation Results and Discussion

The results from the Monte Carlo simulation with iid errors
are presented in Tables 1, 2, and 3. Table | reports the cov-
erage rate and the precision, measured by the median length,
of the two-sided, equal-tailed confidence intervals constructed
using the different methods. For small values of the MA
parameter the normal distribution is expected to provide a rel-
atively accurate approximation of the distribution of the ML
estimator. The Gaussian approximations 1 and 2 have cover-
age rates close to the nominal level but still undercover by 3%
to 4% mainly as a result of underestimating the variance of the
ML estimator (up to 40% at 6, = .8). The conventional boot-
strap methods seem to provide a correction for the underesti-
mation of the parameter variance in the asymptotic Gaussian
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methods and produce wider intervals with better coverage. The
inversion of the (1) quantile of the LR statistic works bet-
ter than the other Gaussian methods, and bootstrapping the
test statistic (bootstrap percentile-LR) ensures a coverage rate
that is closer to the nominal level. The grid bootstrap meth-
ods have similar coverage rates as the conventional bootstrap
because in this region of the parameter space the quantiles of
the distribution of the different statistics are very close to con-
stant functions of 6.

In the intermediate case 6, = .8, the coverage properties of
the normal approximations, except the one based on the inver-
sion of the LR statistic, start to deteriorate. The coverage rate
of the conventional bootstrap methods also decreases. At this
value of the MA parameter the advantages of the grid boot-
strap methods become more evident. As 6, approaches 1, the
Gaussian approximation 1 performs poorly and provides rather
misleading information. The second Gaussian approximation,
which uses sampling information, has better coverage but the
length of the interval becomes prohibitively large for 6, = .99
and 6, =1 and the confidence intervals are completely unin-
formative. Therefore, none of these normal approximations
provides a useful guide for obtaining reliable interval estima-
tors for the MA parameter.

The asymptotic approximation based on inversion of the LR
statistic using the x*(1) critical value has good coverage and
precision although it overcovers in the neighborhood of 1. As
predicted by the theoretical discussion in the previous section,
the conventional bootstrap fails to provide even first-order
accuracy and in some cases is characterized with extremely
bad coverage properties. Because the S; and LR tests of the
hypothesis 8 = 1 against § < | are one-sided, upper-tail tests,
they are not suitable for constructing two-sided confidence
intervals, and their coverage probabilities tend to be closer to
.95 rather than the nominal level of .9. In fact, the lower point
of the interval obtained from these methods is almost always
to the left of the true value and causes the observed overcover-
age. The grid percentile and grid percentile-r methods are per-
forming well but not as well as the grid bootstrap for the LR
test of 6 = 6, and they also overcover by several percentage
points. It is worth pointing out that the median length from all
methods, except those using an estimate of the sampling vari-
ance, is decreasing as 6, approaches the unit circle because the
MA parameter is more precisely estimated (7 rather than /T
consistent) when it is close to the noninvertibility boundary.

The only two methods that perform consistently well for
all values of 6, for both coverage and precision are the DD
asymptotic and the grid bootstrap approximations of the dis-
tribution of the LR test of # = §,. In all cases, the coverage
rate is very close to the nominal level and the lengths of the
confidence intervals are smaller than the lengths from the con-
fidence intervals with compatible coverage.

The case when the true MA parameter is exactly equal to
1 deserves more attention. It was shown in Section 3 that
the grid bootstrap eliminates the discontinuity of the mapping
from the sampling distribution of the data to the asymptotic
distribution of the test statistic. However, the construction of
two-sided confidence intervals when the parameter is exactly
on the upper boundary of the parameter space suffers from
the generic problem that the confidence interval never misses
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Table 1. 90% Two-Sided, Equal-Tailed Confidence Intervals (iid errors)

Coverage Median Coverage Median Coverage Median

Methods rate length rate length rate length
i, =60 g, =.80 6, = .90
ASYMPTOTIC
Gaussian 1 .8665 .2603 .8385 .1956 .7660 1421
Gaussian 2 .8645 2672 .8585 .2042 .9255 1611
Xx°-LR test of 6 =6, .8870 .2635 .8795 .2046 .8740 .1584
S; test of 6 =1 9225 .3993 9530 4024 9530 3574
DD-LR test of § =1 .9485 3472 .9770 .3382 .9690 .2554
DD-LR test of 6 = 6, .9000 .2187 .9090 2118 .8880 .1588
BOOTSTRAP
Other percentile .8570 .2730 .8335 .2260 .7845 1612
Percentile .8765 .2730 .8710 .2260 .7320 1611
Percentile-t .9070 .2884 .8305 .2343 .6350 .1236
Percentile-LR .8830 2615 .8735 .2085 .7700 .1563
GRID BOOTSTRAP
Percentile 9045 .2845 9075 2315 .8665 2034
Percentile-t .9050 .2858 .9050 .2320 .8950 .1966
S; test of 6 =1 .9060 .6403 .9090 .3874 .9150 .2652
LR test of 6 =1 .9025 5122 .9050 .3310 .9020 .2857
LR test of 8 =6, .8900 .2676 .8930 .2081 .8850 .1566
0, =395 4, =99 6,=1.00

ASYMPTOTIC
Gaussian 1 .9265 .0988 .7970 .0527 .6220 .0527
Gaussian 2 .9820 .1481 .9670 2.0000 .9560 2.0000
X*-LR test of § = 6, 9675 1214 .9750 .0930 9745 .0933
S; testof 0 =1 .9400 .2181 .9455 1425 .9490 1425
DD-LR test of 8 =1 .9595 .2279 .9460 5100 .9590 5100
DD-LR test of 6 = 6, .9025 1241 .8920 .0970 .8930 .0966
BOOTSTRAP
Other percentile .9945 .0943 .9920 .0718 .9905 .0716
Percentile .5500 .0694 .3295 .0000 .5585 .0000
Percentile-t 4455 .0464 .2790 .0000 4495 .0000
Percentile-LR 7190 .0886 .9605 .0494 .9565 .0493
GRID BOOTSTRAP
Percentile .9405 1718 .9585 .1105 .9655 ;=105
Percentile-t .9190 .1870 .9545 .3000 .9440 .3000
S; test of 6 =1 .9290 2145 .9440 .1504 .9450 .1500
LRtestof 6 =1 9375 1843 .9480 1263 9430 .1263
LR test of 8 = 6, .9010 1228 .9050 .0957 .9005 .0953

NOTE: Gaussian 1 and 2 = Gaussian approximations based on (- 60)/V/’(1 Jﬂg)/T and (0 — 6g)/s.e.(f).

Table 2. 90% One-Sided, Upper-Tailed Confidence Intervals (iid errors)

Coverage rate

Methods 9p=60 0,=.80 6,=.90 6,=95 6,=.99 0,=1.00
ASYMPTOTIC

Gaussian 1 9080 9035 8910 8840 7575 6220
Gaussian 2 9270 9350 9415 9550 9300 9120
X?-LR test of 6 = 6, 9145 9035 9195 9345 9430 9455
S; test of f=1 1.0000 1.0000 9520 9140 8950 9005
DD-LR test of 6 =1 1.0000 9775 9215 .9080 8950 9160
DD-LR test of = 6, 9285 9185 9355 9275 7920 7910
BOOTSTRAP

Other percentile 9305 9510 9680 9830 9800 9800
Percentile 9150 9185 9240 9425 9060 8720
Percentile-t 9450 9720 9835 9810 6455 5065
Percentile-LR .9040 9040 9270 9435 9405 9290
GRID BOOTSTRAP

Percentile 9090 9040 8975 9155 9245 9220
Percentile-t 9090 9060 9015 9150 9050 8865
S, test of 6= 1 9235 8990 9050 9015 9035 8935
LR test of 6 = 1 8980 8970 8995 9065 8990 8885
LR test of 8 = 6, 9095 9095 9260 9185 8350 8140

NOTE: Gaussian 1 and 2 = Gaussian approximations based on (6 — 60)/\/’(1 - 95)/‘T and (6 - fp)/s.e.(6).

4—
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Table 3. Median Unbiased Estimates (iid Errors)

Median Median
Methods bias RMSE MAE bias RMSE MAE
6, = .60 6, = .80
ML estimate .0055 .0881 .0690 .0088 .0720 .0553
ASYMPTOTIC
S; test of 6 =1 .1505 1781 1519 .0228 .0937 .0802
DD-LR test of § =1 .0757 .1158 .0933 .0045 .0810 .0656
GRID BOOTSTRAP
Percentile —.0012 .0870 .0682 .0000 .0708 .0543
Percentile-t —.0010 .0873 .0684 .0023 .0726 .0562
S; test of 6 =1 .2642 .3046 2776 .0756 .1543 1291
LR test of 6 =1 .0149 1793 .1396 .0046 1072 .0838
0, = .90 g;=.95
ML estimate .0112 .0573 .0455 .0153 .0414 .0345
ASYMPTOTIC
S; test of 6 =1 .0026 0711 .0579 —.0004 .0485 .0390
DD-LR test of 6 =1 —.0013 .0621 .0496 —.0008 .0439 .0369
GRID BOOTSTRAP
Percentile .0009 .0575 .0448 .0017 .0439 .0364
Percentile-t .0075 .0628 .0485 .0072 .0657 .0443
S; test of 6 =1 .0067 .0956 0721 .0016 .0537 .0417
LR test of 6 =1 .0014 .0653 .0514 .0031 .0429 .0362
f, =.99 6, =1.00
ML estimate .0100 .0302 .0191 .0000 .0332 .0154
ASYMPTOTIC
S; test of 6 =1 .0011 .0323 .0234 —.0111 .0357 .0225
DD-LR test of 6 =1 .0100 .0303 .0227 .0000 .0334 .0196
GRID BOOTSTRAP
Percentile .0100 .0356 .0193 .0000 .0389 .0197
Percentile-t .0100 .0882 .0446 .0000 .0936 .0439
S; test of 6 =1 .0078 .0325 .0144 —.0054 .0357 .0217
LR test of 6 =1 .0040 .0288 .0209 —.0014 .0323 .0197

NOTE: RMSE = root mean square error; MAE = mean absolute error.

to the left. The simulation results in Table 1 indicate that the
coverage rate of the confidence intervals obtained from the
grid bootstrap LR method is not significantly different from
the nominal level, and hence we somewhat circumvent this
problem in the MA(1) model. This is because, as mentioned
earlier, although the lower confidence limit is always to the
left of the true value, the LR statistic reflects the asymmetry
of the likelihood function in this region and allows the upper
endpoint to undercover.

Tables 2 and 3 summarize some additional information
about the properties of the different interval estimators con-
cerning the coverage probabilities of the 90% one-sided confi-
dence intervals, the bias and variability of the median unbiased
estimates. As expected, the inversion of the DD-LR test of
6 =1 and the S; test of # =1 gives one-sided, upper-tail con-
fidence intervals with coverage rates very close to the nominal
level of .9 when 6, is near the unit circle. We also experi-
mented with inverting the DD limiting distribution of the ML
estimator of #, which is given in parts (i) and (ii) of the pre-
liminary lemma in Appendix A. It is interesting to note that
the one-sided intervals obtained from this method have a very
good coverage even for values of the MA parameter as low
as .6 and .8. Table 2 shows that this property is not shared by
the DD-LR test of 6 = 1.

The confidence intervals based on inversion of the LR test
of 6 =6,,C, ,(y)={6€0O:LR(c) < ¢,,_,(0)}, have good
coverage but undercover for 6, close to one. This would imply
that the two-sided LR intervals, obtained as an intersection

of two one-sided intervals, undercover the upper confidence
limit and overcover the lower confidence limit. Again, this is
because the LR test adjusts the right confidence endpoint to
ensure better coverage for the two-sided interval.

Finally, the best median unbiased estimates of 6 presented
in Table 3 are obtained by inverting the grid bootstrap LR
test of # = 1. The DD limiting distribution of the LR(1) test
produces small median bias for 6, = .9, .95, and 1, but it
does not work well for 6, = .6 and .99. Similarly, the inver-
sion of the S, test gives reasonable median unbiased estimates
for 6, > .95 but its performance deteriorates significantly for
By< 9.

In summary, based on the results from the finite-sample
experiment with iid errors, we recommend the grid bootstrap
LR test of 8 = 6, for constructing two-sided intervals and
the grid bootstrap LR test of §# = 1 for obtaining one-sided
intervals and median unbiased estimates.

Table 4 examines the robustness of the bootstrap algorithm
to presence of conditional heteroscedasticity. Table 4 reports
the coverage rate and median length of two-sided confidence
intervals for the MA(1) model with 6, = .95..99,1.00, and
GARCH(1,1) errors. Because the limiting distribution of the
LR test is derived under the assumption of iid errors, it is
not surprising to see that the coverage of the DD asymp-
totic approximation deteriorates compared to the homoscedas-
tic case. The invalidity of the y* asymptotic theory and the
naive bootstrap when the MA parameter is near or on the unit
circle is confirmed by their poor coverage rates. By contrast,
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Table 4. 90% Two-Sided, Equal-Tailed Confidence Intervals (GARCH(1,1) Errors)

Coverage Median Coverage Median Coverage Median

Methods rate length rate length rate length
By = .90 0, = .95 6, =1.00

ASYMPTOTIC
X°-LR test of 6 =6, 9415 1198 .9520 .0918 .9530 .0899
DD-LR test of 8 = 6, .8475 1226 .8785 .0948 .8810 .0927
BOOTSTRAP
Percentile-LR .7310 .0921 .9535 .0535 .9525 .0529
GRID BOOTSTRAP
LR test of 6 =6, .9000 .1388 .9030 1094 .9055 .1080

the grid bootstrap that employs a weighted resampling scheme
exhibits excellent coverage and precision properties.

5. APPLICATIONS
5.1 Parameter Instability in U.S. Inflation

This application investigates the effects of the different
monetary policy operating procedures of the Federal Reserve
on monthly U.S. inflation for the period January 1959 to
December 1998. It is widely documented that the U.S. infla-
tion rate contains a large MA component that might lead to
significant size distortions of the standard unit root tests and
overrejections of the null hypothesis for presence of a unit root
in the level of inflation. The results from some studies (for
example, Ng and Perron 1997) suggest that the inflation rate
can be better characterized as a nonstationary process but with
a strong tendency for mean reversion. The observed nonsta-
tionary behavior of inflation may well result from parameter
shifts over time rather than a presence of unit root. To inves-
tigate if the instability of inflation can be caused by shifts in
the MA parameter, we work with the first differences of infla-
tion. By adopting this approach, we practically wash out the
potential mean shifts in inflation and keep the autoregressive
parameter fixed at 1 by imposing a unit root in the autoregres-
sive polynomial. All the remaining instability should result
from instabilities in the MA part.

First, we use the procedure proposed by Bai and Perron
(1998) to determine endogenously the break dates for the
mean of inflation. To do this, we leave all the autocorrelation
in the residuals and estimate the dates of structural shifts in
the mean. This procedure allows us to obtain consistent esti-
mates of the break dates although it is not valid for testing the
number of breaks. Setting the number of break dates to four,
the dates of mean shifts were estimated as 1967:05, 1973:01,
1978:12, and 1981:09. The identified break dates split the sam-
ple into five subperiods roughly corresponding to five mone-
tary regimes in which the Federal Reserve followed different
operating procedures (Strongin 1995), namely,

1959-1966: free reserves targeting before the modern
Federal funds market

1967-1972: free reserves and bank credit growth targeting

1973-1978: money growth and Federal funds targeting

1979-1981: nonborrowed reserves targeting

1982-1998: borrowed reserves and Federal
targeting.

funds

The dynamics of the monthly inflation rate and the sample
mean for each of the five subperiods are plotted in Figure 2.
After identifying the break dates, we take the first differences
of the inflation series. The Bayesian information criterion
selects the MA(1) model as the optimal parsimonious repre-
sentation of changes in inflation. The estimated MA parameter
for the whole sample is .755 with a standard error of .030.
The 90% confidence interval obtained from the grid bootstrap
with LR test inversion is [.674, .812]. Note that the other grid
bootstrap methods as well as the conventional bootstrap pro-
duce very similar values of the lower and upper confidence
limits. Because the U.S. inflation data admit a number of out-
liers, it is interesting to check the robustness of the estimation
results with respect to these outliers. The biggest outliers in the
change of inflation series are in August and September 1973,
when the changes in monthly inflation are 1.79% and —1.35%,
which appear to be rather large compared to the standard devi-
ation of .25% for the series. By removing these two observa-
tions and reestimating the model, we obtain an estimate for
the MA parameter of .743 (standard error .031), which is an
indication that the results from the fitted model are not sensi-
tive to the presence of these outliers.

As a next step, we estimate an MA(1) model for each sub-
sample and construct confidence intervals for the MA param-
eter by bootstrapping the LR test of 8 = 6, on a grid of 20
points. If the confidence intervals across different subsample

percent
0.6
=
s

-0.6

1960 1965 1970 1975 1980 1985 1990 1995 2000

year

Figure 2. Monthly U.S. Inflation and Subsample Means. The four
break dates are determined using the Bai-Perron (1998) procedure.
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Table 5. ML Estimates and Grid Bootstrap Confidence Intervals for MA Parameter of Inflation Changes

Sample period Coefficient Std. error 90% CI 80% Cl
1959:03—-1998: 12 (0D .030 [.674,.812] [.697,.801]
1959:03 - 1967 : 04 .958 .037 [.880,.991] [.901,.981]
1967 :05—1972:12 .851 .068 [.718,.923] [.756, .915]
1973:01-1978: 11 797 .074 [.591,.900] [.648, .889]
1959:03 —1978: 11 797 .040 [-715;.852] [.738, .842]
1978:12—-1981:08 .330 169 [-.002,.737] [.073, .634]
1981:09-1998:12 857 .038 [.631, .944] [.642, .936]
NOTE: Cl = confidence interval.

pairs do not overlap, this is evidence that the parameter insta-
bility in inflation is caused by changes in the MA component.
The ML estimates, their standard errors, and the grid bootstrap
confidence intervals based on inversion of the LR statistic for
the MA parameter of inflation in each period are presented in
Table 5.

The results from Table 5 show that in four of the five sub-
samples, except for the 1978:12-81:08 period, the estimates of
the MA parameter are close to each other and range between
797 and .958. The constructed confidence intervals clearly
suggest that there is no evidence of structural instability in
the MA parameter in these regimes. This finding would imply
that the identified breaks in the inflation dynamics must result
either from mean shifts due to some large disturbances such
as the oil shock or from changes in the persistence of infla-
tion in its autoregressive part. Because there is no significant
change in the MA estimates in the first three subsamples, the
results for the combined period 1959:03-78:11 are reported.

The results for the 1979-1981 (Volcker) regime support the
hypothesis of a change in the monetary policy operating pro-
cedures. In this period, the MA parameter is closer to 0 and
the inflation series can be better modeled as a random walk
process. The 80% confidence intervals of ¢ in this subsam-
ple do not overlap with the confidence intervals for the 1959-
1978 period. This provides some evidence that the differences
in the MA parameter and hence the effects of the monetary
policy rules on the price dynamics are statistically significant
at 20% significance level.

The dynamic behavior of the inflation changes in the period
after 1981 also appears to be statistically different from the
new operating procedures regime at 20% significance level.
By contrast, the 90% confidence intervals do not provide any
statistical evidence for a change in the MA parameter before
and after the Volker period. Note, however, that the inversion
of the LR statistic tends to produce considerably wider con-
fidence intervals for the last two subsamples compared to the
grid percentile and the grid percentile-r methods. This may
reflect some additional uncertainty (for instance, model mis-
specification) and asymmetry in the likelihood function that is
not captured by the nonlikelihood statistics.

5.2 Time-Varying Risk Premium in Term
Structure of Interest Rates

The term structure of interest rates relates the equilibrium
yields on bonds of different maturities (for an introduction
to term structure models, see Campbell, Lo, and MacKinlay
1997). The relationship between the yields to maturity on

X
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a two-period discount bond, r, ,, and a one-period discount
bond, r, ,, is given by

(6)

where f, , =2r, ,—r,, is the one-period forward rate and v,
denotes a possibly time-varying risk premium.

If we assume that the risk premium is constant over time
and the expectation errors are nonsystematic, we can test
if the forward rate is an unbiased predictor of the future
spot rate. In a regression framework, this is equivalent to
a test of the restriction @, = 1 in the levels regression
N =0y+a f ,+€,, or B; =1 in the differences equa-
tion Ar, .y = Bo+B1(f1..—r..)+ £, (Zivot 2000). In both
cases, there is ample empirical evidence for rejection of the
forward unbiasedness hypothesis. Two possible explanations,
suggested in the literature, are a time-varying term premium
and a peso effect. The peso problem may arise, for example,
from the anticipation of investors of a change in the monetary
regime that does not occur. As a result of this, it may appear
that the agents behave irrationally by making systematic mis-
takes. This possibility is not explored further here. Instead, we
focus on the properties and the dynamic behavior of the term
premium.

A time-varying risk premium leads to misspecification and
omitted variable bias in the levels and differences equations.
Typically, the time-varying risk premium is assumed to be
stationary. A stationary risk premium, however, cannot explain
the rejection of H,: a; =1 in the levels equation because the
omitted variable bias has only a second-order effect in a model
with (near-) integrated regressors. For this reason, we adopt
an unobserved component framework in which the latent risk
premium follows a random walk. Evans and Lewis (1994)
suggested that if the term premium contains a small random
walk component, one may be able to reconcile the empirical
rejections of the unbiasedness hypothesis with the economic
theory.

The analysis in this section builds on the work by Stock
and Watson (1998), who considered point and interval esti-
mation of the coefficient variance in a time-varying parameter
model and used it to investigate a possible decline of the U.S.
gross domestic product growth rate due to productivity slow-
down. The present approach differs from the one proposed by
Stock and Watson (1998) in two respects. First, we use a boot-
strap rather than an asymptotic approximation to obtain inter-
val estimators. The interval estimators obtained by the grid
bootstrap are expected to possess better properties in small
samples than the asymptotic approximation. The applicabil-
ity of the grid bootstrap procedure described in Section 2.2

T 141 =f|.r R i (rl.r-l 7 E/rl.1+l)~
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is validated by the equivalent representation of the local level
model as a restricted MA(1) model. Second, because we are
also interested in the upper confidence limit of the coefficient
variance, the method of inverting a two-sided LR test would
provide shorter intervals (that is, less trend variability) and
coverage closer to the nominal level. This claim is supported
by the simulation results presented in Table 1.

By rearranging equation (6), we decompose the observed
forward errors f, ,—r, .., = x, into a risk premium f, , —
E.n . = 9, and expeciationierrors E.ry .0 — 1 = U,
Then, we can use the local level model, which is a very flex-
ible reparameterization of the MA(1) model of the form

X, = +u,
Y =Y + 76

where v, is an unobserved, time-varying parameter, u, and &,
are mutually uncorrelated white noise disturbances, and 7 is
the signal-to-noise ratio.

Taking differences and defining Ax, = y,, we obtain y, =
7€, + Au,. It is straightforward to show that this model pos-
sesses the same autocorrelation structure as the restricted
MA(1) model Ax, = e, — fe,_, with the constraint that 0 <
0 < 1. In fact, there exists a one-to-one mapping between
the parameters of the two representations 7 and 6, namely,
T=./(1—0)2/6 and 0 = (7% +2 — /1% +472)/2, which are
monotonic in € and 7, respectively. This implies that testing
for an MA unit root # = 1 is equivalent to testing for constancy
of v, that is, H, : 7 =0 against H, : 7 > 0. The local-to-unity
parameterization of the MA parameter 6, = 1 — ¢/7 in the
restricted MA(1) model corresponds to a local-to-zero parame-
terization of the signal-to-noise ratio 7 = A/T in the local level
model. Stock and Watson (1998) used this nesting and sev-
eral tests for parameter constancy to obtain median unbiased
estimates of A and 7. In this application, we use the Nyblom
test for parameter constancy (Nyblom 1989) with H,: A = 0.
The Nyblom statistic has the form L, = Y., {?/6?, where
X, = x, — X is the demeaned process, {, =Y ;_, %; is a partial
sum, and 6> = T~' YT ¥2. This test is asymptotically equiv-
alent to Tanaka’s §; test for an MA unit root discussed in
Section 4.1.

For the likelihood-based interval estimates, we work with
the MA(1) model and then obtain the corresponding values
for 7 using the monotonic relationship 7 = \/ (1—0)%/6. This
transformation procedure is valid only if the method for inter-
val estimation of  is transformation respecting. (For a defi-
nition of a transformation respecting method, see Hall 1992,
p. 128.) In the MA(1) model with § < 1, the proposed test-
inversion methods are transformation respecting because the
likelihood-based test statistics are independent of the nuisance
parameter vector 7.

Monthly data for one-month spot and forward rates on U.S.
government securities for the period January 1965 to February
1991 were taken from McCulloch and Kwon (1993). Figure 3
plots the dynamics of the forward errors f, ,—r, ,.,. The
series exhibits very little serial correlation that can be ignored
in the subsequent analysis but strong conditional heteroscedas-
ticity. A local level model with a time-varying conditional
variance still has white noise disturbances, and its reduced
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Figure 3. Forward Errors in One-Month T-Bill Rates. The forward
errors are computed as a difference between the one-month-ahead for-
ward rate in period t and the one-month spot rate at time t + 1.

form can be approximated reasonably well by an MA(1)
model with conditionally heteroscedastic errors (Harvey, Ruiz,
and Sentana 1992). The possible conditional heteroscedastic-
ity, however, needs to be taken into account in mimicking the
dynamics of the model for the bootstrap approximation.

The results from constructing median unbiased estimates
and 90% two-sided, equal-tailed confidence intervals for the
local-to-zero parameter A = 77 and the signal-to-noise ratio
are summarized in Table 6. The ML estimate of A is 4.231
with sample size 7 = 312. The grid bootstrap method uses
20 grid points with 999 bootstrap replications at each point.

The median unbiased estimates of A produced by the inver-
sion of the asymptotic and bootstrap one-sided L, tests are
6.91 and 5.60, respectively. These values imply a small but
nonzero variance estimate for the latent risk premium. It is evi-
dent also that the median unbiased estimates take into account
the pile-up effect and shift the initial ML estimate of A further
away from 0. The two-sided confidence intervals, except the
one based on the bootstrap L, test, include 0 and we cannot
reject the null that the risk premium does not contain a random
walk component or, equivalently, that the forward errors are
a stationary process (# = 1). This follows immediately from
the result that if a stationary series is modeled as x, = y +u,,
where u, is a stationary invertible ARMA(p, q) process, then
Ax, = u, — u,_, possesses a unit root in the MA polynomial.

As expected from the theoretical discussion and the simu-
lation results, the inversion of the LR test of A = A, produces
shorter intervals than those based on inversion of one-sided
tests of A =0, which implies a smaller upper bound of the
variability of the risk premium. The confidence intervals for
the signal-to-noise ratio from all estimators include .05. Based
on the simulation results of Evans and Lewis (1994), a time-
varying risk premium that evolves as a random walk over time
with small variability (5% of the total variance) can explain
the puzzling behavior of the excess returns. Finally, the median
unbiased estimate from the bootstrap L, test of A =0 and the
upper confidence limit of A from the LR test of A = A, were
used to derive a smoothed estimate (using the Kalman filter)
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Table 6. Median Unbiased Estimates and 90% Two-Sided Confidence Intervals for A

Methods MUE of A Implied STNR Cl of A Cl of STNR
Asymptotic L, test of A =0 6.911 0222 [0,27.732] [0,.0889]
Grid bootstrap L, test of A =0 5.594 .0179 [.362,28.190] [0,.0904]
Grid bootstrap LR test of A = A, [0,25.391] [0,.0814]

NOTE: MUE = median unbiased estimate; Cl = confidence interval; STNR = signal-to-noise ratio.

of the risk premium based on the information contained in the
whole sample, that is, v, . The extracted level of the risk
premium and the two smoothed series are plotted in Figure 4.
The smoothed series based on the median unbiased estimate
indicates an upward shift in the mean of the risk premium in
the late 1970s and slow increase throughout the 1980s. The
smoothed estimate obtained from the upper limit of the 90%
confidence interval shows much steeper increase of the risk
premium in the period 1979-1982 with a peak in October
1981. Figure 4 suggests that the nonstationary behavior of the
risk premium may have been driven by a one-time mean shift
rather than a slowly evolving random walk component.

6. CONCLUDING REMARKS

In this article, a method was proposed for obtaining inter-
val estimators for the MA component in near-noninvertible
models. It was shown by simulations that inverting the accep-
tance region of the likelihood ratio statistic is the most appro-
priate Gaussian approximation for interval construction when
the MA parameter is well into the interior of the invertibil-
ity region. As the MA parameter approaches unity, the lack
of asymptotic pivotalness of the standard test statistics ren-
ders conventional bootstrap methods inappropriate and first-
order incorrect. For this reason, a modified bootstrap-based
method was suggested for constructing confidence intervals
when the MA root is near or on the unit circle. An advantage
of this method over the asymptotic approximations is that it
works globally over the entire parameter space. The obtained
two-sided confidence sets for the MA parameter in (nearly)

percent
(

0.2

0.0

Figure 4. Trend Estimates of the Risk Premium (RP) in One-Month T
Bill Rates. The figure plots the Kalman filter estimate of the risk premium
and two smoothed estimates based on the median unbiased estimate
(MUE) and the upper 90% confidence limit of the signal-to-naise ratio.

—

noninvertible models are characterized by excellent coverage
and precision. The construction and the properties of one-
sided (upper-tail) confidence intervals and median unbiased
estimates also were investigated. This statistical procedure was
applied to study the possible instability in the MA component
of U.S. inflation that may reflect some changes in conducting
the monetary policy over the 1959-1998 period. Also, inter-
val estimators were constructed for the variability of the risk
premium in interest rates that may help explain the empirical
rejection of the unbiasedness of the forward rate as a predictor
of the future spot rate.

An interesting finding of this study is that the Davis-
Dunsmuir asymptotics provide a very reliable guide to con-
duct inference in MA(1) models with a large MA root and iid
errors. Unfortunately, the Davis-Dunsmuir asymptotic repre-
sentation cannot be readily extended to more general models
and the appropriate distribution theory has not been devel-
oped. This puts significant limitations to the use of this asymp-
totic approximation for econometric analysis because most
of the economic time series possess richer dynamic behavior
than the one imposed by the MA(1) model. Therefore, it will
prove useful if we could generalize the proposed grid boot-
strap method to ARMA(p. 1) models or stochastic component
models with autocorrelated errors. In principle, we can do this
by constructing a grid only for the parameter of interest and
replacing the nuisance parameters by their ML estimates. This
flexibility of the grid bootstrap is one of its major advantages,
and its extension to a broader class of economic processes
appears to be a promising direction for future research.
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APPENDIX A: MATHEMATICAL PROOFS
Preliminary Lemma
For model (1) with 6, =1—¢/T and 6 =1— B/T, and
under Assumption 1, we have that
O [L®.5e)>

B B, 1
[ZH‘('B)”ZH‘(B)+1H"(’B)]. (A.1)
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where H_(f3) is defined in the text,
(11) Blmax _‘,) é{.max’

where B’"‘“ =inf{B>0:1;(B) =0 and I7(B) < 0} is the local
maximum of IT( ) closest to 0 and B'™ is the local maximizer

of Z(B)= fo (6/4)H., (5)d6
(iii) ( d o —Bflv

where B¢ is the global maximizer of Z (),

Proof. See the proof of Theorem 2.1 by Davis and
Dunsmuir (1996) for (i) and (ii) and the proof of Theorem 2.1
by Davis et al. (1995) for (iii).

(A2)

(A.3)

Proof of Lemma 1
From (A.1), (A.3), and the continuous mapping theorem, it
follows that =l
A Gid Be r
1 (6) > f .
Also, for a fixed c, %
dVLESSS
1:(8,) > /0 JH(s) ds.

Substituting for H,.(.) and evaluating the integral expres-
sions deliver the desired result.

H.(r)dr.

Proof of Theorem 1

To prove the consistency of the bootstrap estimator of the
distribution of LR(6,), we need to verify each of the three
conditions stated in Section 3. ¥

For part (i), we need to establish that lim,_, . Pr{dz(Fr,
) =01 —=0 for any & > 0 and F, € E. Define d,(F,H) =
inf(E|X — Y|? ) ? over all joint distributions for the random
variables X and Y whose marginal distributions are F and
H, respectively. This is the Mallows metric of degree 2 (see
Bickel and Friedman 1981, sec. 8). Let {e,}_, and {¢,}_,
denote the original (unobserved) errors and the estlmated
residuals that are iid sequences with population distribution
F, and sampling distributions F, ; and F . respectively. The
sequence of residuals {¢,}_, is calculated as the difference
between y, and its optimal linear projection E(y,|y, ;,...,¥)
conditional on the past values. It can be shown that this pro-
jection error converges in mean square to the true innova-
tions even for # = 1 (Hamilton 1994, p. 97). Then, Kreiss and
Franke (1992) showed that for ARMA models

d,(F, 1, F,) — 0 almost surely as T — oo,

dz(f?e_r, F,) — 0 in probability as T — oo.  (A.4)

Next, let y, = e, — (1 — £)e,_; and y; = ¢; — (1 — e},
be the data-generating and the bootstrap processes where
e’ =v,é, and {»,} is an independent sequence from a common
dlS[I’lbUthI\ F, that satisfies E(v,) =0, E(v}) = E(¥]) = 1.
By applying Lemmas 8.6 and 8.3 from Bickel and Friedman
(1981) and using (A.4), it follows that for a fixed ¢

dy(Fy, Fy)? = inf(E|y* —y*) < Ely; =y’

= Ele, =e,) ~ ‘1 —C|E(er —e)?
i
< E(é,—e,)* —E(é,_, —e,_,) +0,(1)
— 0 in probability as T — oo. (A.5)
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This shows that the first condition for consistency of the
bootstrap is satisfied. Note that the main result is driven by
the fact that the bootstrap data are generated under the null
hypothesis H, : B = c. The conventional bootstrap fails to pro-
vide a consistent estimator of F, because (B—c) = 0,(1)
from (A.3).

For part (ii), the continuity of the asymptotic distribution of
the LR statistic is ensured by the local-to-unity framework.

Finally, for part (iii), to show the weak convergence of
G7(q | Fy) to its limiting distribution G (¢ | F,), we rewrite
the concentrated log-likelihood in the following canonical
form (Anderson and Takemura 1986):

T T g
M(p(0))=—-Y log(14+2pd,)—T1 [ s ] A6
p(8)) =~ log(1+2pd,)—Tlog §]+2de (A.6)

t=1

where p(B) = =2 is the correlation coefficient, d, = cos( 7).

6
Lol — T+l Z =1Ys gln(;‘::) .,_T~n1d (0
o} (1+2pd,)).

"The likelihood function depends on the data only through
the term z, in (A.6). Then the bootstrap counterpart z; ,, gen-

erated under the null hypothesis H, : B = ¢, has the form

e s )

Using the same arguments as those in the proof of
Proposition A.2 by Davis and Dunsmuir (1996), we can show
that for any positive integer m

1
0').*\/1 +2pd,

WHETE X o L . are nid(0,1) variables.

The convergence result given in (iii) follows from (A.5),
the continuous mapping theorem and the proofs of Theorem
2.1 by Davis and Dunsmuir (1996) and Theorem 2.1 by Davis
et al. (1995).

d
§ o NE PSR (1 B T SRR T A

APPENDIX B: DATA DESCRIPTION

The inflation rate series in Section 5.1 is constructed
from the U.S. consumer price index for all urban con-
sumers: all items, 1982-1984 = 100, seasonally adjusted. The
data source is the U.S. Department of Labor, Bureau of
Labor Statistics. The data were downloaded from the Federal
Reserve Bank of St. Louis database at http://www.stls.frb.org/
fred/data/cpi/cpiaucsl.

The data series for one-month spot and forward rates
on U.S. government securities in Section 5.2 were taken
from McCulloch and Kwon (1993). They consist of annu-
alized, continuously compounded, tax-adjusted zero-coupon
yield rates derived using a cubic spline discount function.

[Received December 1999. Revised April 2001.]
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