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ABSTRACT

Analysis of surface models reconstructed from human MR images gives re-

searchers the ability to quantify the shape and size of the cerebral cortex. Increas-

ing the reliability of automatic reconstructions would increase the precision and,

therefore, power of studies utilizing cortical surface models. We looked at four

different workflows for reconstructing cortical surfaces: 1) BAW + LOGIMSOS-

B; 2) FreeSurfer + LOGISMOS-B; 3) BAW + FreeSurfer + Machine Learning +

LOGISMOS-B; 4) Standard FreeSurfer[4]. Workflows 1-3 were developed in this

project. Workflow 1 utilized both BRAINSAutoWorkup(BAW)[16][17][18] and a sur-

face reconstruction tool called LOGISMOS-B[26]. Workflow 2 added LOGISMOS-B

to a custom built FreeSurfer workflow that was highly optimized for parallel process-

ing. Workflow 3 combined workflows 1 and 2 and added random forest classifiers

for predicting the edges of the cerebral cortex. These predictions were then fed into

LOGISMOS-B as the cost function for graph segmentation. To compare these work-

flows, a dataset of 578 simulated cortical volume changes was created from 20 different

sets of MR scans. The workflow utilizing machine learning (workflow 3) produced cor-

tical volume changes with the least amount of error when compared to the known

volume changes from the simulations. Machine learning can be effectively used to

help reconstruct cortical surfaces that more precisely track changes in the cerebral

cortex. This research could be used to increase the power of future projects studying

correlations between cortical morphometrics and neurological health.
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PUBLIC ABSTRACT

For decades, evaluation of quantified metrics derived from human magnetic

resonance imaging (MRI) studies have allowed researchers to advance the under-

standing of the brain. Software innovation has allowed researchers to reconstruct

three dimensional models of the surfaces that separate different types of tissue in the

brain. Analysis of these models provides quantifiable features describing the shape

and size of the brain. The reliability of these features is crucial for many research

studies involving MRI scans of the brain.

The commonly used software for creating the three dimensional models rep-

resenting the inner and outer edges of the cerebral cortex is FreeSurfer[4]. Although

FreeSurfer is state-of-the-art, its reliability leaves much room for improvement. Fur-

thermore, few, if any, alternatives to FreeSurfer exist.

Three methods for reconstructing the surfaces representing the edges of the

cerebral cortex were created in this thesis. The methods were tested against FreeSurfer

using a set of scans with simulated changes. The method that utilized machine learn-

ing to predict the locations of the edges of the cerebral cortex from the MRI scans

proved to best detect the simulated changes.

Therefore, the machine learning method detailed in this work proved to be

a promising alternative to FreeSurfer for reconstructing the surfaces of the cerebral

cortex. Future research involving surface models of the cerebral cortex could be

enhanced by using the machine learning method outlined in this thesis.
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CHAPTER 1
BACKGROUND AND SIGNIFICANCE

1.1 Introduction

For decades, evaluation of quantified metrics derived from human magnetic res-

onance imaging (MRI) studies have allowed researchers to advance the understanding

of the brain by establishing relationships between brain structure and neurological

health. Furthermore, surface-based modeling has offered new possibilities to study

distinct features that describe the shape and size of the cerebral cortex. Software

innovation has allowed these features to be quantified by analyzing reconstructed

surface meshes representing the inner and outer edges of the cerebral cortex. Us-

ing software processing tools, researchers are able to segment the MR images and

reconstruct surfaces that represent the inner and outer boundaries of the cerebral

cortex.

Metrics describing form, also known as morphometrics, give researchers pow-

erful tools to quantify differences and changes in the cortex and find correlations to

differences and changes in neurological health. For example, one such morphometric,

cortical thickness, has been linked to disease progression in many high profile diseases

such as Alzheimers disease[21], Parkinsons disease[42], and Huntingtons disease[30].

Related morphometrics, cortical surface area and cortical folding, have been shown

to decrease with age in specific regions of adult brains[10]. Furthermore, in older

adults, decreased cortical surface area in specific brain regions correlated to poor per-
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formance on tasks designed to assess working memory[24]. A combination of cortical

morphometrics and other data in infants between 6 and 12 months of age was used

to accurately predict the diagnosis of autism in those high-risk infants at 24 months

of age[9].

Many, if not most, researchers analyzing cortical morphometrics rely on auto-

mated surface reconstructions from the publicly available tool, FreeSurfer[4][5]. How-

ever, authors of a recent validation study examining FreeSurfer’s automated corti-

cal thickness measures strongly suggested that the automated results be used with

caution[12]. This study acquired two T1-weighted (T1w) structural MRIs from 40

healthy controls[12]. The T1w scans were acquired one week apart[12]. This allowed

the researchers to compare the automated FreeSurfer’s cortical thickness and volume

measurements between the subject’s first and second scan[12]. While the correlation

of automatic measurements between the two scans was reasonable, 15 out of 40 of

the sets of automated cortical surface reconstructions failed visual inspection due

to inaccuracies. When the failed sets of scans were excluded from the analysis, the

correlation of the test-retest measurements significantly improved[12]. The authors

concluded, “FreeSurfer performs well for cortical thickness...but its performance is

significantly improved by the addition of visual screening approval, which enhances

precision and therefore power.”[12] The researchers also mention in this study that,

“significant differences observed across imaging sites, between visually approved/dis-

approved subjects, and across regions with different sizes suggest that these measures

should be used with caution.”[12]



3

Therefore, while the state of the art software for automated cortical recon-

structions, FreeSurfer, is reasonably accurate, it still requires manual intervention to

achieve sufficiently precise measurements[12]. If the reliability of the automatic cor-

tical surface segmentation could be enhanced, this would increase the precision and,

therefore, power of studies without the need for manual correction.

Machine learning may present a way to increase the reliability of automatic

cortical surface reconstructions. Generally speaking, machine learning is a method

for teaching a computer to perform a specific task without explicitly programming

how it should accomplish said task. Machine learning has been used in many dif-

ferent applications for automatic medical image segmentation including brain tumor

segmentation from MR scans[23]. By feeding into an algorithm a set of brain MR

images and the corresponding manual tumor segmentations, a computer algorithm

can learn how to reproduce the manual segmentations on its own. This algorithm,

known as a classifier, can then be used to identify tumors in new MR images that

have no manual segmentations.

In this thesis, machine learning will be utilized to automatically predict loca-

tions in a MR image that have a high probability of being located on either the inner

or outer edge of the cerebral cortex. A novel cortical surface segmentation algorithm,

LOGISMOS-B, will be implemented with and without the use of machine learn-

ing. These experimental image processing methods containing LOGISMOS-B will be

tested, and the results will be compared against each other and against FreeSurfer.

Furthermore, a custom implementation of FreeSurfer will be developed that is well
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suited for parallel processing in high performance computing environments.

1.2 Cortical Surfaces and Morphometrics

The two primary surfaces on the cerebral cortex are the surface separating the

cerebral cortex from the subcortical tissue and the surface on the outermost edge of

cerebral cortex. The surface separating the subcortical tissue and the cerebral cortex

is often referred to as the white matter surface. The outer most surface of the cortex

corresponds to the pia mater [37] and can be referred to as the pial surface. For the

sake of simplicity, the surfaces of the inner and outer edges of the cerebral cortex will

be referred to as the white matter surface and the gray matter surface, respectively.

Figure 1.1 visualizes these surfaces on a magnetic resonance (MR) scan of a human

brain.

Common measures, that is morphometrics, for estimating the form of the cere-

bral cortex include cortical volume[11], cortical thickness[11], cortical surface area[11],

and cortical folding (gyrification)[31]. Cortical volume measures the volume of the

brain that contains cortical tissue. Cortical volume can be approximated by estimat-

ing the volume that is in-between the white matter and gray matter surfaces. Cortical

thickness describes the local thickness of the layers of the cerebral cortex. As illus-

trated in Figure 1.1, cortical thickness can be quantified as the distance from white

matter surface to the gray matter surface. Cortical surface area is defined as either

the surface area of the white matter surface or the surface area of the surface midway

between the white matter surface and the gray matter surface[37]. Cortical folding,
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or gyrification, attempts to quantify the amount of cortex buried within the sulcal

folds and compare the amount of buried cortex to the amount of visible cortex[31].

Figure 1.1: Illustration showing the layers of the cerebral cortex (i.e. gray matter)

and the subcortical tissue (i.e. white matter). The edge between the white matter

and gray matter (i.e. white matter surface) is shown in blue while the outer edge of

the brain (i.e. gray matter surface) is shown in green. The cortical thickness is defined

as the distance between the white matter surface and the gray matter surface.

1.3 Image Processing Pipelines

A pipeline is a series data processing steps where the outputs of one process-

ing step act as the inputs to other processing steps down the line. Pipelines allows
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for many processing steps to be seamlessly interlocked into a single workflow. In

order to produce highly efficient pipelines that could be easily used and shared in the

neuroimaging community, all of the pipelines for image processing described in this

research were created in Nipype[7]. Nipype is an open source framework designed

for nueroimaging interfaces and pipelines. Nipype offers improvements over standard

shell scripting such as easier rerunning of the pipeline, improved parallel processing,

and support for high performance computing. Nipype also increases the modular-

ity of the pipeline code. This increased modularity allows for algorithms from other

packages (e.g., ANTS[1], FSL[38], BRAINSTools[16][17][18]) to be explored, added

into the pipeline, or take the place of existing processing steps. Nipype makes re-

running pipelines easier by checking the hash values for a given step in the pipeline

before starting that step. Hash values are used to uniquely identify data. If a set of

data changes, then the hash value identifier for that data will also change. There-

fore, if the hash value for a particular input file to a processing step has not changed

since a previous run of the pipeline, then that file is identical and does not need to

be reproduced. If the hash values for all of the inputs for a particular processing

step have not changed, then Nipype will save time by not rerunning that step of the

pipeline. Therefore, if a pipeline initially fails, Nipype will save time when rerunning

the pipeline by only running the parts of the pipeline that have not yet run.

Plugins in Nipype allow pipelines to submit jobs to available computing clus-

ters in a high performance computing environment as well as run jobs in parallel

on machines with multiple cores. This can dramatically reduce the amount of time
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required to complete the processing of a data set by performing steps in the pipeline

as soon as all the necessary inputs are collected. This is more efficient than running

pipelines in shell scripts that typically only run one command at a time. In conclu-

sion, since the benefits of Nipype offer many advantages to traditional shell scripting,

all of the pipelines for segmenting the white and gray matter surfaces in this research

were created as Nipype pipelines and with the goal of making them all available for

use and modification by the neuroimaging community.

1.4 Specific Aims

The first aim of this project is to develop a data set that can be used to

compare methods for reconstructing cortical surfaces. For this purpose, I explain

how I created a data set with simulated volume changes in specific regions of the

cerebral cortex, in Chapter 2. Since the volume changes in the cortex are known for

this data set, it can be used to measure the effectiveness of methods for detecting

cortical volume changes. In this thesis, the cortical volume changes will be calculated

from the resulting cortical surface reconstructions. Therefore, methods that segment

the cortical surfaces with greater precision will better reflect the known changes in

cortical volume.

The second aim of this project is to implement LOGISMOS-B in a robust,

automatic data processing pipeline capable of utilizing high performance computing

resources. Chapter 3 describes the processing steps of the LOGISMOS-B Nipype

pipeline that I created.
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The third aim of this project is to propose potential improvements to the

LOGISMOS-B pipeline. Chapter 4 details the conversion of FreeSurfer’s recon-all

into Nipype and it’s subsequent integration with the LOGISMOS-B pipeline. Chapter

5 implements machine learning to provide better cortical edge probability initializa-

tions that aim to enhance the accuracy of the surfaces segmented by LOGISMOS-B.

The artificially atrophied data set will be used to generate metrics for comparing the

effectiveness of these changes in the preprocessing methods for LOGISMOS-B.

The final aim of this project is to compare the various preprocessing meth-

ods for LOGISMOS-B against each other and against the current state of the art,

FreeSurfer. Chapters 6 & 7 describe and discuss the results of running the described

methods on the simulated data set.
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CHAPTER 2
SIMULATING CORTICAL VOLUME CHANGES

2.1 Introduction

Without quantified benchmarks for assessing the accuracy of cortical surface

reconstructions, comparing the effectiveness of these methods is impossible. Re-

searchers have previously attempted to validate image based cortical thickness mea-

surements resulting from cortical surface reconstructions by scanning and autopsying

two postmortem brains[29], histological examination on resected brain tissue[3], as

well as manual image analysis[19]. However, these methods were performed on a

very limited number of subjects and cortical regions. Furthermore, as mentioned

by Tustison et al.[35], the methods for assuring the quality of most of these manual

measurements is sorely lacking and the measurements themselves could be subject to

human bias.

Due to a lack of well-validated ground truth cortical thickness measurements,

comparative inferences have been proposed for the validation of image based cortical

thickness measurements[35]. This method of validation proposes that due to the

high correlation between cortical thickness and phenotypic data such as age and

gender, more accurate cortical thickness measurements will be better predictors of

such phenotypic data when analyzed on a large number of subjects[35]. While such

evaluation of cortical thickness trends may be useful, this method does not validate

against a ground truth and requires a large amount of data to be collected, processed,
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and analyzed.

In order to validate cortical surface reconstructions, I propose the creation

of a set of scans containing known cortical volume changes. By simulating volume

changes in the cortical anatomy of brain scans, an artificial ground truth for cortical

volume change can be attained. With this artificial ground truth, the precision with

which a method accurately detects cortical volume changes can be quantified. This

chapter describes how I created a data set with known, albeit artificial, changes in

cortical volume.

2.2 Software to Simulate Brain Atrophy and Growth in Human MR

Scans

Due to its public availability, growth and atrophy simulations were performed

using software provided by Karacali and Davatzikos[15]. This software simulates

either growth or atrophy on a set of images in a user-specified region while still

preserving the topology outside of that region. The region of on which cortical volume

changes are simulated is a sphere defined by a user-specified center and radius. The

software then simulates brain tissue atrophy or brain tissue growth in the user-defined

sphere shaped region of the image. Figure 2.1 shows an example of a scan before and

after the simulation has been applied along with the voxel intensity decrease shown in

red. The software also is given a desired rate of atrophy/growth. A rate below 1 tells

the software to simulate atrophy while a rate above 1 tells the software to simulate

tissue growth. In order to create a set of data with a wide range of simulated volume
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changes, I used atrophies rates of 1.5, 0.7, and 0.5.

Figure 2.1: Example of simulated atrophy on a T1 scan. (Top Left) Original T1 scan

with intensity units scaled from 0 to 5000. (Bottom Left) T1 scan with simulated

atrophy in the region encompassed by the red box. (Right) Difference between original

image and atrophied image. Scale is intensity units. Area shown in red has seen a

decrease in pixel intensity.

Unfortunately, due to the way the atrophy/growth simulator was designed,

the simulator shifts certain voxels contained within the scan. This shift causes the
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resulting atrophied scans to be misaligned to the original scan. In what presumably is

an attempt to save memory usage, the simulator crops the T1 image to the smallest

volume that contains all of the labeled values from the label map containing the

labels for cerebrospinal fluid (CSF), gray matter(GM) and white matter(WM). The

atrophy/growth simulation is then run on the smaller image. The shift occurs when

the simulator attempts to put the atrophied version of the smaller image back into

the original image. Instead of lining the image up correctly with the original image,

the smaller image is shifted by one index in all directions.

Fortunately, the shift that the simulator imposes is consistent. I was able to

create a processing pipeline in Nipype that performs the atrophy/growth simulation

and then automatically corrects the outputs by compensating for the shift. The

process used to correct for the shift is visualized in Figure 2.2. The first step used to

correct the output image with simulated atrophy/growth was to shift the image up

by one voxel in all directions. Next, the shifted atrophied image was cropped using

the CSF, GM, WM label map in an identical fashion to the cropping performed by

the atrophy simulator. Finally, the original non-atrophied image and the cropped

atrophied image were combined so that the voxels outside the boundaries of the

cropped image were filled in with the voxel values of the original image. In order to

test that the atrophy simulation workflow with the method for correcting the outputs

did not unintentionally distort images, the workflow was run with the atrophy rate

set to perform no changes to the image (atrophy rate = 1). Under these conditions,

the output images after being corrected by the simulation pipeline were identical to
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the image input into the pipeline. This indicates that all unintended distortions that

were applied to the images had been corrected. Figure 2.3 shows a part of a scan

with visual defects before correction by the simulation pipeline.

2.3 Creating the Simulated Cortical Volume Change Data Set

In order to detect a method’s ability to track changes in cortical thickness, a

new data set was created where simulated changes were introduced into the anatomy

of specific areas of a MRI brain scan. In these simulations of brain atrophy and tissue

growth, the volume changes in the cortical region are known.

20 scanning sessions were selected from 20 unique subjects. All scanning ses-

sions data came from a 3 Tesla scanner at the University of Iowa and contained both

T1w and T2w data. These sessions had previously been processed with BRAIN-

SAutoWorkup [16, 17]. The results were manually evaluated to ensure no obvious

errors existed in the automatic segmentation from BRAINSAutoWorkup. To add

variation in the simulation location, the 20 subjects were then randomly split into a

group of 10 subjects on whose images cortical volume change would be simulated in

the left hemisphere and 10 subjects on whose images the simulation would be done in

the right hemisphere. Due to its large size and thick cortex, the middle temporal re-

gion was selected as the location to simulate atrophy or growth in the left hemisphere.

The rostral middle frontal region was selected as the location of atrophy/growth in the

right hemisphere, as it had a similar size and thickness when qualitatively compared

to the middle temporal region.
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 Atrophied T1 Label Map 

Shift voxel lattice 
by (1,1,1) Crop Image 

Cropped T1 

 Original T1 

Fill in voxels 
outside of the 

cropped image 
with the original 

Corrected 
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Figure 2.2: Correcting the simulation images. After the simulation is performed the

modified images have a voxel lattice shift that needs to be corrected. To correct the

shift, the entire image is shifted one unit of spacing in all directions. The image is

then cropped to the smallest possible image that contains all of the positive values of

the label map. The resulting image is a cropped T1 image containing the atrophy/-

growth in the correct voxel space. The original T1 image that does not contain the

atrophy/growth is then used to fill in the information outside the cropped area.

The process for selecting the atrophy regions started with a labeled region in

the cerebral cortex as defined by Multi-Label Atlas Fusion(MALF)[41][36] which was
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Figure 2.3: Visualization showing an affected region containing an error due to the

atrophy simulation and the same region after correcting the error. The red ovals

highlight an area of the skull before and after the correction. Before the correction,

the surface of the skull appears to be jagged. After the correction, the jagged part of

the skull has been removed. This jagged edge that appeared before the correction is

due to the voxels being misaligned. The image on the right does not show the jagged

edge because the voxels have been aligned correctly.

performed as a part of BRAINSAutoWorkup. As mentioned earlier, the left middle

temporal region and the right rostral middle frontal were chosen as the general loca-

tions in which to run the atrophy/growth simulations. In order to randomly choose

a region in these general locations an automated process was employed. Figure 2.4

visualizes the automated process used to select the regions for growth/atrophy sim-
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ulations. To avoid performing atrophy or growth in areas that did not contain much

cortical tissue, only locations within thick areas of the cortex were selected. This was

accomplished by calculating the inner label distance of the labeled cortical region as

defined by MALF. The voxels(3 dimensional pixels) with the highest inner label dis-

tance correspond to thick cortical locations within the labeled region. The voxels that

lay along the skeleton of the labeled region were then selected as candidate atrophy

centers. So that only the thickest parts of the labeled region were selected, a thresh-

old was applied so that only the voxels that were above the 95th percentile for inner

label distance remained. The voxels were then selected randomly from those that

remained. The selected voxels were then used as the centers for the atrophy/growth

simulation.

In order to have atrophy/growth regions that were consistent in size relative

to the brain, the radius of atrophy was selected so that the atrophy region would

be approximately one one-thousandth of the total brain volume. This size was cho-

sen based on qualitative analysis of atrophy regions of various sizes. The atrophy

regions approximately one one-thousandth the size of the brain appeared to produce

noticeable amounts of atrophy without significantly disturbing the topology of the

brain. The process of selecting a region center and radius was repeated on each scan

set until the desired number of centers and radii had been obtained. These centers

and radii were then input into the simulation pipeline to perform the growth/atrophy

simulations in those regions.
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Figure 2.4: Selecting atrophy region location. (Left) The atlas labels are shown from

Multi-Atlas Label Fusion (MALF) done as a part of BRAINSAutoWorkup. The label

mask of the desired region is created from the MALF label atlas. To find the thickest

regions of the label mask the inner label distance is computed using SimpleITK[22].

The skeleton of the label mask is then multiplied with the inner distances. A random

pixel above the 95th percentile for inner label distance is selected from the skeleton

pixels. This pixel is used as the center for the atrophy region. So that the atrophy

region will be proportional to the size of the brain, the radius of the atrophy region

is computed to equal 1/1000th of the total brain volume as defined by the MALF

labels. (Bottom right) The region that will be affected by the simulated atrophy is

shown in green.

2.4 Simulation Data Set Summary

In total, 400 atrophy simulations and 200 growth simulations were performed.

200 simulations were run with each of the atrophy rates of 0.5, 0.7, and 1.5. 300 of
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the simulations were performed in the location of left middle temporal region and the

other 300 in the right rostral middle frontal region. 22 of the atrophy simulations

were duplicates, having the same atrophy rate at the same location, and were not

included in the final data set. Therefore, the final a data set contained 578 unique

simulations. Figure 2.5 shows the resulting distribution of simulated cortical volume

in the data set.

2.5 Using the Simulated Data Set

With this set of atrophy simulations and their known changes in cortical tissue

volume within the region of atrophy, different methods of detecting the white and gray

matter surfaces can be compared.

Since the volume change is known, the method for detecting surfaces that has

volume changes closest to the known volume change will be the more precise method

for measuring cortical volume changes. Figure 2.6 shows how the cortical volume

within the specified atrophy region was calculated from the white and gray matter

surfaces. The comparisons were done by converting the output gray matter and white

matter mesh surfaces to a mask files representing the volume inside each surface. The

cortical volume mask was found by taking the volume inside the gray matter surface

that was not inside the white matter surface. The cortical volume contained within

the atrophied region was then calculated.

The cortical volume inside the atrophy regions was measured with each method

for detecting surfaces for all atrophy simulations both at baseline and with the sim-
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Figure 2.5: Distribution of simulated cortical volume changes. Shown are the his-

tograms of the simulated cortical volume changes with the atrophy simulation rate

set to 0.5 (top left), 0.7 (top right), and 1.5 (bottom left). Also shown is the com-

bined distribution of all the simulations. The volume decreases were calculated by

taking the cortical volume of the atrophied region from the label map input into the

simulator as well as the atrophied label map produced by the simulator.

ulated atrophy. The change in volume was then compared to the known change in

cortical volume from the atrophy simulator.
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Figure 2.6: Method for measuring the cortical volume contained within the atrophy

region from white and gray matter surfaces. Given the surfaces (e.g. from FreeSurfer,

LOGISMOS-B, etc.) a mask is created defined as the pixels contained within the gray

matter surface but not contained within the white matter surface. The resulting mask

is the cortical mask (top middle). This mask can be combined with the atrophy region

mask to give a mask of the cortical volume contained within the atrophy region.
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CHAPTER 3
LOGISMOS-B PIPELINE

3.1 Introduction to LOGISMOS-B

One approach to improving the accuracy of cortical surface reconstructions

is to utilize a different surface segmentation framework. The LOGISMOS[14] graph

segmentation framework is promising, as it has been shown to accurately segment

multiple surfaces simultaneously in various medical imaging modalities and applica-

tions [33][40][43]. Developments by Oguz et. al.[26] have utilized the LOGISMOS

framework to segment the white and gray matter surfaces of the brain from anatomi-

cal MR images. Oguz et. al.[26] have demonstrated that the Layered Optimal Graph

Image Segmentation of Multiple Objects and Surfaces for the Brain (LOGISMOS-B)

may have promise for improving upon the current state of the art reconstructions.

3.2 Implementation

I implemented LOGISMOS-B in a robust pipeline for reconstructing the cor-

tical surfaces. This implementation allowed for a comparison to FreeSurfer’s surface

segmentation. Furthermore, the creation of the pipeline in Nipype allowed for easy

modification and comparison between preprocessing methods.

As LOGISMOS-B requires prior information in addition to the T1w and T2w

scans, the preprocessing methods used have a substantial impact on the final results.

Table 3.1 describes the inputs required by LOGISMOS-B and Figure 3.1 gives a broad

overview of the LOGISMOS-B preprocessing pipeline that I developed as a part of



22

this thesis.

The first step of the LOGISMOS-B pipeline was to normalize and segment the

input T1w and T2w images using BRAINSAutoWorkup(BAW) [16][17][18]. BRAIN-

SAutoWorkup outputs the following images that were used for later steps in the

LOGISMOS-B pipeline:

• Averaged and normalized T1w and T2w scans aligned in ACPC space.

• Labeled atlas from a 42 year old male (i.e. HNCMA atlas) [8] aligned to the

T1w and T2w images.

• Posterior probabilities for the cerebrospinal fluid (CSF). These probabilities

range from 0 (low probability) to 1 (high probability).

• Label atlas produced by multi-atlas label fusion (MALF)[16].

• Atlas of brain labels as defined by BRAINSABC.

A crucial step in LOGISMOS-B pipeline is the generation of the label map

produced by BRAINSABC. LOGISMOS-B uses the BRAINSABC label map to de-

termine the regions that LOGISMOS-B considers to be inside the brain or outside

the brain. To void excluding brain tissue that may have been inaccurately excluded

from the label map, LOGISMOS-B dilates the label map upon execution. Only voxel

locations inside the dilated label map are considered for the graph segmentation by

LOGISMOS-B.

In practice, it was observed that with the default label map output from

BRAINSABC the segmentation produced by LOGISMOS-B would sometimes place

the gray matter surface in the middle of area that is likely to be CSF. In such cir-
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Figure 3.1: Illustration of the LOGISMOS-B preprocessing pipeline. The first step

in the pipeline is to run BRAINSAutoWorkup. The MALF labels and cerebrospinal

fluid(CSF) posterior probabilities are used to remove from the BRAINSABC label

map areas that include the hemisphere not being processed and voxels that likely

contain CSF. The resulting label map is then used to create a white matter mask and

a genus zero white matter surface. After this preprocessing, LOGISMOS-B is run.
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Table 3.1: Inputs required by LOGISMOS-B[25]. Note that I did not create any part

of LOGISMOS-B.

T1w and T2w scans LOGISMOS-B uses gradient vector field of these scans

to create the graph. Furthermore, LOGISMOS-B uses

a combination of the gradient magnitudes of these scans

as a cost function for the graph.

BRAINSABC label map LOGISMOS-B uses the label map provided by

BRAINSABC to determine the areas of the graph that

are outside the brain.

White matter mask A mask containing the white matter area that is used

for creation of the graph.

White matter surface An initial estimate for the white matter surface.

HNCMA labels The HNCMA atlas[8] morphed to the subject space.

LOGISMOS-B uses these labels to segment with differ-

ent parameters the regions of the cortex that should be

thicker or thinner.
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cumstances, since LOGISMOS-B solves for both surfaces simultaneously, the white

matter surface would be inaccurate as well.

To remedy this problem of LOGISMOS-B misplacing the cortical surfaces, the

pipeline I created modifies the BRAINSABC label map to only include the cortical

and subcortical voxels for the hemisphere being processed. When the left hemisphere

is being processed, the pipeline only retains the voxels belonging to the left hemisphere

in the label map, and the same is true for the right hemisphere. Automatically

segmenting the hemispheres in the brain is complicated due to the fact the that

the brain hemispheres are asymmetrical [34]. Despite the asymmetry, the label map

produced by multi-atlas label fusion (MALF) appeared to provide robust and accurate

segmentation of the hemispheres.

The LOGISMOS-B pipeline combines the MALF label regions belonging to

the hemisphere being processed into a single hemisphere mask. First, a dictionary

was created of all the label names and the corresponding integer that represents that

label in the label map image. Next, a mask was created of all the labels in the left

hemisphere and another mask for all the labels in the right hemisphere. These masks

were then applied to the ABC labels to generate a label map for the left hemisphere

and a separate label map for the right hemisphere. The CSF voxels, the third and

fourth ventricles, the brain stem, and the cerebellum as defined by the MALF label

map are all removed from the hemisphere mask. In order to keep LOGISMOS-B

from reconstructing the gray matter surface in an area that is likely to be CSF, the

pipeline removed from the label map any voxel with a posterior CSF probability
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greater than 90%. Furthermore, to avoid having holes in the subcortical regions, the

lateral ventricles were preserved and not removed along with the rest of the CSF.

Qualitatively, the exclusion of non-cortical and non-subcortical regions along

with the voxels from the opposite hemisphere appeared to improve the surface recon-

structions resulting from the pipeline. However, even with CSF voxels removed, it

was observed that LOGISMOS-B would still place the gray matter surface in a CSF

region. This is due to the fact that the BRAINSABC label map is dilated upon the ex-

ecution of LOGISMOS-B. Therefore, modifying the BRAINSABC label map was not

enough to prevent LOGISMOS-B from making obvious errors when reconstructing

the gray matter surface.

LOGISMOS-B also requires a white matter mask as well as an initial white

matter surface. I observed that LOGISMOS-B appeared to produce more accurate

results when given a white matter segmentation that erred on the side of falsely la-

belling gray matter as white matter (false positive) rather than incorrectly classifying

white matter as a different tissue type (false negative). In an early version of the

LOGISMOS-B pipeline, the MALF label map was used to generate the white matter

segmentation. This segmentation appeared to be relatively accurate but erred on the

side of being an under ambitious segmentation that left out small areas of white mat-

ter. LOGISMOS-B was not able to recover the missing white matter segments during

execution. Therefore, the latest version of the pipeline uses the BRAINSABC label

map to define the white matter segmentation. This label map tends to include parts

of the gray matter in in its segmentation. However, the final reconstructions output
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from LOGISMOS-B appeared to adjust and correct the areas where gray matter was

inaccurately labeled as white matter in the white matter mask.

After the white matter mask was created, the pipeline used the GenusZeroIm-

ageFilter (included in BRAINSTools) on the mask to fill in any holes and handles.

Then, the pipeline generated a smooth initial estimate of the white matter surface

by converting the white matter mask into a surface with BRAINSSurfaceGeneration

(also included in BRAINSTools).

The final step in the pipeline was to use LOGISMOS-B to reconstruct the

gray and white matter surfaces for each hemisphere. LOGISMOS-B takes as inputs

the filled white matter mask, the white matter surface mesh, and the brain labels

the hemisphere being processed. LOGISMOS-B also uses the warped HNCMA to

set graph constraints differently depending on the labeled region. To set the graph

node costs, LOGISMOS-B uses a combination of gradient magnitudes from the T1

and T2 images. Using the gradient magnitude as a cost function allows for the graph

segmentation to detect the edges of features in the image.
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CHAPTER 4
NIPYPE IMPROVES THE PERFORMANCE TIME AND
CUSTOMIZABILITY OF FREESURFER’S RECON-ALL

A prominent tool for processing scans and reconstructing the cortical surfaces

is FreeSurfer’s recon-all script. FreeSurfer’s recon-all script sequentially calls

approximately 170 commands on FreeSurfer executables. The recon-all script’s

specific combination of commands take the input MR head images and process them

to produce numerous meaningful neuromorphological measurements, label maps, and

surfaces. Among the output from this script are the white and gray matter surfaces

that are then used to generate cortical thickness measurements and other cortical

morphometrics.

Due to the large number of commands that are run by recon-all, the pro-

cessing time for a single MR session is rather large. When tested on a 16 core CentOS

machine with 64 GB of memory, the processing time for the recon-all script took

nearly 9 hours. Converting the recon-all script into a Nipype pipeline could re-

duce the amount of processing time required by effectively using available computing

resources. Nipype pipelines are able to run commands simultaneously on multiple

computing cores. This feature makes Nipype pipelines more efficient than scripts

when run on computers with multiple cores and in high performance computing en-

vironments.

In addition to quicker processing times, converting the recon-all shell script

to a Nipype pipeline would allow for easy modification and experimentation. The
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Nipype pipeline could be easily modified to create a hybrid pipeline that incorporates

both FreeSurfer and LOGISMOS-B to segment the cortical surfaces. For more details

on the advantages of Nipype pipelines see Section 1.3.

4.1 Creating the Nipype Recon-All Pipeline

The first step to creating the Nipype equivalent of the recon-all script was

to determine what commands the script runs and in what order. This information

was ascertained by running the recon-all script on a set of test scans and then

inspecting the recon-all.cmd output log. This log lists the commands that were run

by the script and the time that they were run.

Once the list of commands had been obtained, the next step was to wrap each

of the necessary FreeSurfer executables in a Nipype interface. The Nipype interface

allows command line executables to be called in Python. Each interface calls a specific

executable and translates Python coded inputs to inputs on the command line.

In order to wrap an executable in a Nipype interface, it is necessary to know the

executable input files, input parameters, and output files. Sometimes the input files,

parameters, and output files are all listed on the command line or in the FreeSurfer

documentation. However, many of the FreeSurfer executables assume the location of

input files. For example, assume that ImplicitExampleEXE is an executable that is

run on the command line. The user runs the executable as follows:

bash$ ImplicitExampleEXE
’some example text’
bash$

From the documentation we might know that what ImplicitExampleEXE
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prints to the screen is the contents of a file. However, this file is not specified on

the command line. Instead, the file location is hard coded within the program. As

with many FreeSurfer executables, the hard coded location of the file may not be

given in the documentation. Figuring out what file the executable is calling requires

some investigating. FreeSurfer commands often make use of a custom environmental

variable SUBJECTS_DIR and then read in contained at specific locations with in the

directory specified by SUBJECTS_DIR. We can purposefully cause the executable to

fail by setting SUBJECTS_DIR to an empty directory.

bash$ export SUBJECTS DIR=/path/to/empty/dir
bash$ ImplicitExampleEXE
IOERROR: Failed to read ’/path/to/empty/dir/ExampleFile.txt’
bash$

When the ImplicitExampleEXE failed, the error message printed the location

of the input file that it was trying to read. Now we know that the executable is reading

the file $SUBJECTS_DIR/ExampleFile.txt. By purposefully causing the executables

to fail in this way, we were able to determine the location of the hard coded input

files for all the executables used in the recon-all script.

However, when the input files are hardcoded into the executable rather than

explicitly defined by the user on the command line at execution, there is no way to

tell the executable to read in a user-specified file from different location in the file

system. Nipype interfaces depend on being able to dictate the input and output files

for command line executables. This control allows over the input and output files

allows Nipype to link together interfaces into fully automatic processing pipelines.

Without this control, Nipype would not be able to run processing steps in parallel as
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commands could potentially modify shared directories in unpredictable ways.

The lack of control over the hardcoded input files for FreeSurfer executables

was solved by creating an empty directory, modifying the SUBJECTS_DIR environ-

mental variable to point to that empty directory, and then by copying the neces-

sary input files into their respective hardcoded locations within the directory. In

the case of ImplicitExampleEXE we know that the executable reads in the file

$SUBJECTS_DIR\ExampleFile.txt. However, we want to create an interface that

allows us to use ImplicitExampleEXE to read in any file specified by the user. In

the Nipype interfaces for ImplicitExampleEXE we can create an input called ’in-

putFile’. Next we can write code to have the interface make an empty directory,

change SUBJECTS_DIR to point to that directory, and then copy the file specified by

’inputFile’ to the location $SUBJECTS_DIR\ExampleFile.txt. Every time the inter-

face is called, it will run this code prior to running the executable. So, if we want

ImplicitExampleEXE to read SomeOtherFile.txt we can pass SomeOtherFile.txt

as the input to the interface. The interface will then copy that file in the method above

and ImplicitExampleEXE will read SomeOtherFile.txt. In this fashion, Nipype in-

terfaces were created for all of the FreeSurfer executables used in the FreeSurfer’s

recon-all script. Furthermore, documentation, examples, and tests were written

for each of the interfaces. The interfaces and code were then made freely avail-

able as part of the Nipype source code at https://github.com/nipy/nipype/tree/

master/nipype/interfaces/freesurfer.

With the interfaces available, the Nipype pipeline that replicates the process-
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ing steps of FreeSurfer’s recon-all was assembled by carefully connecting the input

and output files of the interfaces together in the proper order. Most of the informa-

tion needed to connect the interfaces in the pipeline could be ascertained from the

recon-all.cmd output log or FreeSurfer’s helpful, yet non-exhaustive, developer’s

table https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllDevTable. The in-

formation that could not be found was inferred by testing different configurations

of interfaces in Nipype against the outputs from the recon-all script. Separate

Nipype pipelines were created for AutoRecon1, AutoRecon2, and AutoRecon3, the

three main processing steps for FreeSurfer’s recon-all script. These pipelines were

connected together to create the high-level Nipype pipeline that replicates the pro-

cessing steps of FreeSurfer’s recon-all script. Furthermore, an output node was

created with the all files produced by the pipeline. This allows for additional steps

to be seamlessly added onto the end of the pipeline. After processing, the output

files are copied to a user-specified location with traditional FreeSurfer result lay-

out. The pipeline is designed to detect the version of FreeSurfer being used and

run either 5.3.0 and 6.0beta versions of the recon-all script. The pipelines was

also integrated into the source code for Nipype and is freely available at https:

//github.com/nipy/nipype/tree/master/nipype/workflows/smri/freesurfer.

The Nipype pipeline can be easily run in Python with Nipype release 0.12.1

or later:

from nipype.workflows.smri.freesurfer import
create reconall workflow

recon all = create reconall workflow()
recon all.inputs.inputspec.subjects dir = "/path/to/

example directory"
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recon all.inputs.inputspec.T1 files = "t1 file.nii"
recon all.inputs.inputspec.subject id = "example"
recon all.run()

The above code will run the Nipype pipeline on the specified T1w file and output

processed files into the directory specified by input ”subjects dir” variable.

Finally, a tutorial was created to demonstrate how to use the pipeline. This

tutorial was added to the Nipype source code as well at https://github.com/nipy/

nipype/blob/master/examples/smri_fsreconall.py.

4.2 Test Results and Performance Improvements

A thorough comparison between the newly created pipeline in Nipype and

the recon-all script proved that the Nipype pipeline produced identical images

and surfaces to those of FreeSurfer’s recon-all script. Both the pipeline and the

script were run on identical sets of inputs and a folder was created with the set of

outputs from each. All the images from both output folders were converted into NIfTI

format[20] and the surfaces were converted into VTK’s ASCII format[32]. Next each

of the converted output images and surfaces from FreeSurfer’s recon-all script was

compared to the identically named file in the Nipype pipeline’s output folder. The

images were compared by loading each image into Python using SimpleITK[22] and

testing if the SimpleITK hash values of each image were identical. Identical hash

values between two images indicate that the information contained in those images

is identical. The surfaces were compared using the ’diff’ tool that can be found on

UNIX operating systems. The ’diff’ tool prints to the screen text differences in files.
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Figure 4.1: Visualization of the cortical thickness projected onto the left hemisphere’s

inflated surface for both the FreeSurfer(left) and Nipype(middle) pipelines as well as

the difference of the two thickness maps(right). The thickness measurements pro-

duced by the Nipype pipeline showed no differences to those produced by FreeSurfer’s

recon-all script.

If ’diff’ does not print any differences to the screen, then the text files are identical.

’diff’ was able to compare the VTK files because they were stored in ASCII format. If

’diff’ does not print any differneces to the screen, then the two VTK files must contain

identical information. Using these tests, all of the images and surfaces output by the

Nipype pipeline and the FreeSurfer script were identical.

The cortical thickness measurements were also compared between the Nipype

pipeline and FreeSurfer’s recon-all script. The results were visualized as can be

seen in Figure 4.1. The thickness measurements produced by the Nipype pipeline

showed no differences to those produced by FreeSurfer’s recon-all script.

The pipeline running times were compared by running FreeSurfer’s recon-all

and the equivalent Nipype pipeline. The Nipype pipeline was run using multiprocess-
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ing to utilize multiple cores on the machine. Though both pipelines allow for multi-

threading of certain pipeline steps using OpenMP, this feature was not utilized in this

test. Under these conditions, FreeSurfer’s recon-all pipeline completed processing

in over 8.9 hours. The Nipype pipeline completed processing in under 6 hours.

The near 3 hour performance enhancement is likely due to the fact that Nipype

runs in parallel as many commands as possible while FreeSurfer runs commands

sequentially.

4.3 Incorporating LOGISMOS-B into Recon-All

After the creation of the Nipype recon-all pipeline, it was then possible

to create a FreeSurfer modified pipeline that incorporated both LOGISMOS-B and

FreeSurfer. This allowed for better comparisons between the pipelines. The white

surface file was used as the initial white surface file for LOGISMOS-B after it had been

converted to the VTK format in the subject space using mris_convert. This surface

was made into a white matter mask file by using mri_surfacemask. The segmentation

file used by FreeSurfer when segmenting the surfaces was recoded so that the label

numbers matched those used by BRAINSAutoWorkup and LOGISMOS-B. Another

segmentation file from FreeSurfer with the right and left hemispheres defined was used

to split the recoded label map into separate hemispheres. Finally, the unmodified

averaged T1 file from FreeSurfer was used as the input T1 to LOGISMOS-B.
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CHAPTER 5
CORTICAL EDGE DETECTION USING MACHINE LEARNING

5.1 Replacing the Gradient Magnitude Cost Function

LOGISMOS-B uses the gradient magnitude image to define the node costs

for its graph optimization. These node costs are inversely related to the gradient

magnitude. This allows the algorithm to find areas in the image with sharp changes

in pixel intensity. Pixels with a large gradient magnitude are more likely to be edge

pixels than those with a small gradient magnitude. Therefore, by assigning the inverse

gradient magnitude as the cost function, the lowest cost path will lie along pixels with

large gradient magnitudes. This is how LOGISMOS-B detects the white and gray

matter surfaces from the MR scans.

Using the inverse of the gradient magnitude as the cost function works well

for most applications. However, it causes problems in areas where no hard edge can

easily be detected. When LOGISMOS-B gives inaccurate results, it is often because

the algorithm is detecting the wrong edge or failing to detect the white or gray matter

edge. For example, in many cases LOGISMOS-B will place the white matter edge

close to what is truly outer gray matter edge and will place the gray matter edge

somewhere in the CSF. Further complicating the use of the gradient magnitude as

the cost function is that nonzero gradient values are often reported throughout the

gray matter as it is not homogeneous. This makes detecting a single white matter and

gray matter edge difficult. Having a separate cost function for both the gray matter
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edge and the white matter edge would increase the specificity of the cost function

and prevent LOGISMOS-B from detecting the wrong edge.

In order to provide a more specific cost function for the white matter and gray

matter edges, machine learning techniques can be applied. By training classifiers that

can predict the white and gray matters edge pixels a set of costs for the white matter

edges and gray matter edges based on the predicted probability from the classifier.

5.2 Ground Truth

In order to train classifiers to predict the white and gray matter edges, a set

of ground truth white and gray matter edges are needed. The Neuromorphometrics

data set provides a set of manually traced label maps using ADNI T1w scans[13][39].

By finding the contour from the label map between the white matter and non-white

matter labels, the white matter edge pixels were masked. The gray matter edge

pixels were masked by finding the contour pixels between the gray matter and the

CSF/background pixels. Figure 5.1 shows the gray matter edge mask (blue) and the

white matter edge mask (green) along with the original T1w and manual segmentation

images.

5.3 Features

Before training the edge classifiers appropriate features that describe the edges

were selected and normalized. The machine learning workflow utilized BRAIN-

SAutoWorkup to provide normalized T1w intensity image for each session.

From the normalized T1w image, various image features were computed for
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Figure 5.1: Example of determining the ground truth from Neuromorphometrics data

set. (Left) ADNI 3 Tesla T1w scan and (center) manually edited label maps from the

Neuromorphometrics data set corresponding to the T1w scan. (Right) Ground truth

masks derived from the label maps used for training the classifier. The gray matter

edge is shown in blue, and the white matter edge is shown in green.

use in training the edge classifier. Included in these features were edge measures such

as the gradient magnitude, second order gradient magnitude, and others. In order to

provide information on shapes of varying size, a set of features were also calculated

with a set of different size Gaussian smoothing kernels. Gaussian smoothing kernels

were used with sigma values of 0.5, 1.0, 1.5, 2.0. To provide a higher order features

that help describe the shapes in an image, the eigenvalues of the Hessian matrix were

used. In order to detect both light and dark shape features, the eigenvalues were

sorted by absolute value. Previous research has shown that the sorted eigenvalues

can be used to detect blob, plate, and vessel shapes [6].
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BRAINSAutoWorkup also provided posterior probabilities for tissue classifi-

cation. These probabilities were added to the feature vector to allow the classifier

to leverage classification data from BRAINSAutoWorkup. For features that encode

pixel location with respect to the center of the image, the rho, phi, and theta spheri-

cal coordinate images were added to the feature list. In order to normalize the data,

all of the features images were sampled with a spacing of 1mm x 1mm x 1mm. The

original manually traced label maps were also resampled using nearest neighbor so

that their spacing matched that of the feature images. See Table 5.1 for a complete

list of the features used for training and classification.

5.4 Classifier Selection

A random forest classifier was selected, as it provided an efficient parametrized

classifier that does not store the training data and can produce predictions with a

probability percentage. A parameterized classifier was necessary as the memory con-

sumption of storing the features is very high. Therefore, non-parameterized classifiers,

such as nearest-neighbor, were not considered. The probability percentage output by

the random forest classifier was used as the inverse of the node cost for LOGISMOS-B.

5.5 Classifier Training

The classifier was trained using the Neuromorphometrics data set described

in Section 5.2. Only the 3 Tesla scans were used from this data set as they provided

higher quality images. The T1w images were processed using BRAINSAutoWorkup

and the features described in Section 5.3 were combined into a single data table along
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Table 5.1: List of features used for edge classification.

T1w Features without Smoothing

1 T1w Pixel Intensity

2 T1w Gradient Magnitude

3 T1w Second Order Gradient Magnitude

4 T1w with Sobel Filter

5 - 7 T1w Eigenvalues of Hessian Matrix

8 T1w with Laplacian Filter

T1w Features with Recursive Gaussian Smoothing
(sigma = 0.5, 1.0, 1.5, 2.0)

9 - 20 Smoothed T1w Eigenvalues of Hessian Matrix

21 - 23 Smoothed T1w Laplacian

24 - 26 Smoothed T1w Pixel Intensity

27 - 29 Smoothed T1w Gradient Magnitude

Posterior Probabilities from BAW

24 White Matter Posterior

25 Surface Gray Matter Posterior

26 Cerebellum Gray Matter Posterior

27 Cerebellum White Matter Posterior

28 Cerebrospinal Fluid Posterior

29 Venous Blood Posterior

Spherical Coordinates

30 - 32 rho, phi, theta Coordinate Images

with the gray matter and white matter edge masks. The feature data and the truth

columns were then used to train a white matter edge classifiers and a gray matter

edge classifier using scikit-learn[27]. The classifiers were then saved to file.
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5.6 Edge Prediction Pipeline

A pipeline was built that takes advantage of the trained classifiers. The

pipeline was built on top of the previously built FreeSurfer and BRAINSAutoWorkup

pipelines. Figure 5.2 provides a visualization of the general processing steps in

the edge prediction pipeline. Due to the promising results of the FreeSurfer +

LOGISMOS-B pipeline, the pipeline using the trained classifiers used the white mat-

ter surfaces output from recon-all. The features were all extracted from BRAIN-

SAutoWorkup as described in Section 5.3. The brain label segmentation as well

as the registered HNCMA atlas from BRAINSAutoWorkup was used as inputs for

LOGISMOS-B.
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BRAINSAutoWorkup.
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CHAPTER 6
RESULTS

6.1 Evaluating Algorithm Performance

Table 6.1 shows the root mean square error in mm3 of each of the three work-

flows tested. The known simulated changes were used as the ground truth. The

method that used a trained random forest (RF) to predict the cortical edges and

then pass the predicted probabilities to LOGISMOS-B provided the lowest root mean

square error (RMSE). The RMSE was lower for the RF + LOGIMSOS-B pipeline was

lower than all the other workflows when the cortical volume change was in the Left

Middle Temporal region as well as when the cortical volume change was in the Right

Rostral Middle Frontal region. Also, the RMSE were higher for the workflows involv-

ing LOGISMOS-B when the volume change was in the Right Rostral Middle Frontal

region than in the Left Middle Temporal Region. On the other hand, FreeSurfer

showed the opposite trend and performed better in Right Rostral Middle Frontal

region than in the Left Middle Temporal Region.

Figures 6.1 and 6.2 show the distribution of the measured cortical volume

changes as compared to the target volume changes (represented by the black line).

The ”BAW + LOGISMOS-B” and ”FreeSurfer + LOGISMOS-B” workflows tracked

well with the atrophy simulations on average, but both methods show large variations

in error. These methods also appeared to under represent the amount of cortical vol-

ume increase in the growth simulations. Both the ”RF + LOGISMOS-B” and the
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Table 6.1: Root mean square error in mm3 of each of the workflows utilized to measure

the simulated volume changes.

Root Mean Square Error (mm3)

Left Middle
Temporal Region

(n=282)

Right Rostral
Middle Frontal Region

(n=296)

Total
(n=578)

BAW + LOGISMOS-B 1.42e+03 1.80e+03 1.62e+03

FreeSurfer + LOGISMOS-B 1.05e+03 1.50e+03 1.30e+03

FreeSurfer 1.07e+03 9.54e+02 1.01e+03

RF + LOGISMOS-B 5.91e+02 6.87e+02 6.42e+02

FreeSurfer methods appear to track well with the target volume changes, but the

FreeSurfer method consistently measured too much volume decrease for the atro-

phy simulations and too little volume increase for the growth simulations. Figures

6.3 and 6.4 further reinforce these observations. The ”BAW + LOGISMOS-B” and

”FreeSurfer + LOGISMOS-B” methods both had higher variances in the amount of

error, but their median values were close to 0 for the atrophy simulations. The ”RF

+ LOGISMOS-B” and the FreeSurfer methods had much tighter error distributions.

The median values for error for the ”RF + LOGISMOS-B” method that utilized

machine learning was close to zero for both the atrophy simulations and the growth

simulations.

6.2 Evaluating the Significance of Differences Between Methods

We used R[28] and lme4[2] to perform a linear mixed effects analysis of the

relationship between volume measurements and the tool used to generate the mea-
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Figure 6.1: The simulated volume change (x-axis) compared to the measured volume

changes (y-axis) in the cortex for each pipeline. The black line (y=x) represents the

target of the measured volume changes matching the simulated volume changes.

sures. In this analysis we modeled change in volume as the dependant variable. The

pipeline being used and the rate of atrophy were modeled as fixed effects. The in-

tercepts for subjects were used as random effects. The general linear hypothesis was

that the means are the same. P-values were obtained by likelihood ratio tests of the

full model with the effect in question against the model without the effect in question.

The p-values of linear mixed effects analysis are shown in Table 6.2. The pipeline

utilizing machine learning (RF+LOGB) produced volume changes that were signifi-

cantly different from the other three pipelines. Therefore, not only did the machine
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Figure 6.2: Scatter plot of the absolute error (y-axis) of the pipelines to measure

the simulated volume change (x-axis) in the cortex. The black line (y=0) represents

the target absolute error of the measured volume changes compared to the simulated

volume changes.

learning method track the simulated volume changes with lower amounts of error

on average, but the difference between the machine learning method and all other

methods was significant.
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Table 6.2: P-values of linear mixed effects analysis comparing the means of the vol-

ume changes under the general linear hypothesis that the means are the same. The

pipeline utilizing machine learning (RF+LOGB) produced volume changes that were

significantly different from the other three pipelines.

p-values

BAW+LOGB FS+LOGB FS RF+LOGB

BAW+LOGB .0537 <0.001 <0.001

FS+LOGB .0537 <0.001 <0.001

FS <0.001 <0.001 <0.001

RF+LOGB <0.001 <0.001 <0.001
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CHAPTER 7
CONCLUSIONS

7.1 Summary

In this project, I successfully implemented and compared 4 methods for recon-

structing cortical surfaces. I developed image processing pipelines for all 4 of these

methods that use computing resources efficiently and are optimized for running in

parallel in high performance computing environments. I also created a data set of

simulated cortical volume changes in human MR scans. I used that dataset to com-

pare the 4 methods for reconstructing cortical surfaces. Since the volume changes in

this dataset are known, I compared the resulting cortical volume changes from the

processing methods to the known target changes of the simulation data set. The

results of my test showed that utilizing machine learning to predict the edges of the

cerebral cortex prior to reconstructing those cortical edges as surfaces resulted in an

improved ability to track the cortical volume changes.

The first method for reconstructing the cortical surfaces utilized BRAIN-

SAutoWorkup(BAW) to normalize and segment the input scans. The next step

in this method was to use the segementations provided by BAW to estimate the

white matter surface. This information was then passed to the graph segmentation

tool, LOGISMOS-B, which reconstructed the cortical surfaces. While this method

(BAW+LOGISMOSB) was able to track with the target volume changes on average,

the precision of the measurements was poor, and this method resulted in the highest
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standard error out of all the methods tested.

The second method used FreeSurfer instead of BRAINSAutoworkup for the

preprocessing of the MR scans. When tested, the use FreeSurfer for the preprocessing

and initial estimation of the white matter surface proved to reduce the error. However,

this method still resulted in the second highest standard error out of the four methods.

The third method combined the first two methods and added a machine learn-

ing classifier (more specifically, a random forest) to the previous method. This classi-

fier was trained to predict the edges of the cerebral cortex using manually segmented

atlases of human MR brain scans. During processing, this classifier takes in a set

of precomputed image features from the input T1w scan and outputs a probability

map for both the inside and outside edges of the cerebral cortex. This probability

map is then used by LOGISMOS-B to reconstruct the cortical surfaces. This method

produced the lowest standard error of the 4 methods tested.

The final method was FreeSurfer’s recon-all method for reconstructing the

cortical surfaces. Though I did not develop FreeSurfer’s recon-all processing method,

I did develop a novel method for implementing FreeSurfer’s recon-all. I created a

pipeline using Nipype that executed the exact same processing steps as recon-all,

but was better optimized for parallel processing. During testing, FreeSurfer performed

better than the first two methods that utilized LOGISMOS-B, but produced larger

standard error than the method utilizing machine learning.
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7.2 Discussion

Morphometrics describing the form of the cerebral cortex have allowed re-

searchers to quantify differences and changes in the cortex and find correlations to dif-

ferences and changes in neurological health. Morphometrics such as cortical thickness

and surface area have been used to describe abnormalities in Alzheimers disease[21],

Parkinsons disease[42], Huntingtons disease[30], and autism[9]. In the case of autism,

cortical morphometrics were even used to predict a future diagnosis in infants[9].

Previous studies have shown FreeSurfer, a freely available tool for reconstruct-

ing cortical surfaces, to be both accurate and reproducible[29][3][12]. However, a

recent study demonstrated that many of the automatic results from FreeSurfer were

not reliable[12]. The reproducibility of FreeSurfer for the test-retest data was im-

proved following the removal of the scans that failed visual inspection[12].

Having more precise cortical reconstructions would allow for the researchers

to increase the power of studies involving cortical morphometrics. Increased power

could in turn result in correlations being found between cortical form and neurological

health with fewer numbers of subjects. Furthermore, since increased precision allows

for smaller changes in the cortical surfaces to be detected, new correlations between

the form of the cerebral cortex and neurological health could be discovered.

My research shows that changes in the cerebral cortex can be tracked with

more precision by utilizing machine learning. The machine learning classifier I trained

takes advantage of data from manual segmentations and uses it to guide the graph

segmentation tool along the cortical edges. The classifier is able to detect the dif-
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ference between different strong edges in the brain. This allowed for the classifier to

keep the graph segmentation from mistaking an edge such as the CSF-skull boundary

for the outer edge of the cortex.

Therefore, using my machine learning method for reconstructing the cortical

surfaces could detect changes with more precision than FreeSurfer. By providing

more precise reconstructions with less variation, this method could, in turn, reduce

the number of subjects required to determine if differences in the cortical morphology

between two populations is significant. Since recruiting and enrolling subjects in

research studies is expensive and time consuming, reducing the need for the number

of subjects would greatly benefit neuroimaging researchers.

Furthermore, adopting my machine learning method could provide more re-

liable cortical surface reconstructions. In a large, multi-site study of around 800

subjects, if FreeSurfer does not provide reliable cortical surface reconstructions for

38 percent[12] of the subjects than 300 of the 800 subjects would be excluded from

analysis. A more reliable method for reconstructing the cortical surfaces could make

the number of subjects excluded much less.

The results of this research may also be subject to bias. The most obvious form

of bias comes from the simulated cortical volume changes. If the simulation of cortical

changes is not realistic, the improved precision found by using machine learning may

not be reproducible in non-simulated data. Furthermore, partial volume effects that

occur when the cortical surfaces were converted into cortical volume masks may also

have biased the results. However, it would be expected that the partial volume
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effects would impact all of the reconstructed surfaces similarly. Therefore any bias

from partial volume effects should be minimal.

Overall, the results of my research are very exciting. The methods I have

demonstrated utilize machine learning to provide information for reconstructing the

cortical surfaces could be used to provide more precise measurements to a wide array

of future studies that aim to analyze the shape and form of the cortical surfaces.

7.3 Recommendations for Future Work

It should be noted that this research did not evaluate the accuracy of the

reconstructed surfaces themselves. Instead, this research compared the ability of the

reconstructed surfaces to accurately detect changes. Future research could involve

performing more comparisons between the processing methods. Reproducibility of

methods for reconstructing cortical surfaces could be tested using a test-retest set of

images. A test-retest data set contains images from the same subject scanned at two

different times. The two scanning sessions (test and retest) are performed within a

short amount of time from each other, so as to minimize any changes in anatomy that

might take place. Using a test-retest data set would add insight into the variance that

exists in each of the methods measurements.

Another area of future work on this research involving machine learning for

cortical surface reconstruction could reduce the number of processing steps required.

Right now, the workflow uses BAW+FreeSurfer+RF+LOGISMOS-B, which makes

the compute time rather large.
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The results might also be improved by adding data to the training set that

would allow the workflow to make better predictions. During testing the machine

learning workflow erred on the side of underestimating the volume changes for the

atrophy simulations. This could be due to the classifier overfitting to a data set that

with a limited range of cortical thicknesses. When the cortex becomes too thin, the

classifier might be failing to recognize the edge, because it has not been trained to

classify brains with that thin of a cortex. Adding more data with diverse anatomies

could potentially fix the underestimation of cortical volume changes. Training data

that contains both T1w and T2w scans would allow the classifier to utilize multiple

modalities when making predictions. Furthermore, training data from many different

scanners and sites would allow the machine learning processing workflow to provide

accurate segmentations regardless of the scanner used.

More research could also be focused on improving the graph construction used

by LOGISMOS-B. Based on qualitative visual analysis, the graph construction con-

tained regions of high node density in the sulci and regions with vary low node density

on the gray matter/csf boundaries. Low node density often resulted in the graph op-

timizer not being able to follow the edge predictions as well as it does in the high

density regions. While regions of higher node density qualitatively appeared more ac-

curate and were aligned better with the predictions output by the machine learning

classifier. Therefore, a method for a higher and more uniform distribution of nodes

could lead to better cortical surface reconstructions.

Finally, creating a workflow that only uses machine learning and FreeSurfer
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could provide insight into the effectiveness of LOGISMOS-B’s versus FreeSurfer’s

method for reconstructing cortical surfaces.
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