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ABSTRACT

Image registration is a useful technique to measure the change between two or

more images. Lung CT image registration is widely used an non-invasive method to

measure the lung function changes. Non-invasive lung function measurement accuracy

highly depends on lung CT image registration accuracy. Improving the registration

accuracy is an important issue.

In this thesis, we propose incorporating information of the anatomical struc-

ture of the lung (fissures) as an additional cost function of the lung CT image reg-

istration. The intensity-based similarity measurement method (sum of the squared

tissue volume differences) is also used to complement lung tissue information match-

ing. However, since fissures are hard to segment, a sheet-likeness filter is applied to

detect fissure-like structures. Sheet-likeness is used as an additional cost function of

the intensity-based registration. The registration accuracy is verified by the visual

assessment and landmark error measurement. The landmark error measurement can

show an improvement of the proposed algorithm.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The lung is one of the most important organs in the human body. The main

function of the lung is to perform the gas exchange component of the respiratory

cycle. During the respiratory cycle, oxygen is inhaled into the lung and then carbon

dioxide is exhaled to the air. Inhaled oxygen is diffused into the blood though an air

sac called the aveoli. By this process, the lung provides fresh oxygen to the blood [1].

To understand how a lung works, it is necessary to understand the human

anatomy. The basic structures of the lung are the airway and vessel trees, lung

parenchyma, lobes, and fissures [2]. Specifically, normal human lungs consist of

five different lobes which are divided by fissures, and lobes are connected by air-

way branches. There are the upper and lower lobes in the left lung and the upper,

middle, and lower lobes in the right lung. This asymmetrical distribution of the lobes

is caused by the location of the heart in the left side of chest [2].

During the respiratory process, when the lung volume changes, the amount

the lung tissue expands depends on region of the lung. Lung volume change is caused

by contraction and relaxation of the diaphragm, a muscle below the lung. Because

of the location of the diaphragm, when the lung expands, there is more strain on the

lowest part of the lung [1].

Lung image registration is a useful image processing technique to help under-
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stand how the lung changes its shape/volume during the respiration process or for

longitudinal study of the lung function analysis. Understanding these volume changes

is an important issue pertaining to human physiology because many lung diseases,

such as emphysema, asthma, and cystic fibrosis, are correlated with the lung volume

changes during the respiration cycle [2].

There are many studies which try to improve the lung image registration ac-

curacy [3–15]. They register inter-modality images to analyze longitudinal, and inter-

phase changes at different inspiration or expiration pressures. There have been many

attempts to improve the lung image registration accuracy by using various algorithms.

Most lung image registration studies mainly focus on information of the image inten-

sities as a cost function, such as the sum of squared differences, correlation coefficient,

and/or mutual information [16].

Since the lung changes its density during the respiratory cycle, there are in-

tensity differences in the computed tomography (CT) images between inspiration and

expiration [12]. Due to these intensity differences, there is a limitation on the inten-

sity based image registration algorithm. To overcome this limitation, some studies

introduce alternative methods. Yin et al. introduce a new similarity measurement

metric which uses the tissue volume differences of the lung CT image, and they show

they can achieve reduced registration errors [9]. In addition, Cao et al. introduced a

new lung specific registration algorithm, which is based on the vesselness information

of the lung, and they demonstrate they can achieve improved vessel matching [7, 8].

Similarly, we think it would be possible to improve the registration accuracy by adding
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incorporative anatomical structures of the lung, such as fissures and lobes.

1.2 Organization of the thesis

Chapter 2 discusses the background and related work. First, the image reg-

istration and similarity measurement functions (cost function) are described. This

chapter describes the basics of image registration in the perspective of the transfor-

mation and corresponding features. This chapter also presents the currently published

cost functions of the lung image registration. In addition to the background, previous

lung image registration studies are described.

Chapter 3 presents the the proposed methods in detail. This chapter describes

the overall registration process we would like to propose, and introduces the proposed

additional cost function. The registration accuracy assessment is also described.

Chapter 4 discusses the experimental results of the proposed method. And

Chapter 5 summarizes and concludes this thesis work.
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CHAPTER 2
BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Image Registration

Image registration transforms one image (moving) to match another image

(fixed/target). The two images can be taken at different times, have different fields

of view, and/or be acquired using different modalities. In the medical imaging field,

image registration helps find changes after clinical treatment, plan radiation therapy,

and evaluate the treatment results. In addition, image registration can be applied to

align different modalities between the functional images, such as positron emission

tomography (PET), single photon emission computed tomography (SPECT), and

anatomical images, such as CT and magnetic resonance imaging (MRI). By registering

different modalities, we can see the subjects’ anatomical structures and organ function

overlaid together. This may have benefits to the relationship between the function

and spatial location of the tissues [17].

The registration transformation can be subdivided to two different methods

in the perspective of geometrical transformations: rigid and non-rigid [16]. The rigid

transformation consists of a rotation, translation, and reflection. The main char-

acteristic of the rigid transformation is preservation of the original size and shape

during the transformation [16]. The rigid transformation can be used to align initial

displacements, such as translation or rotation, of the lung. The non-rigid transfor-
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mation is more suitable to register lung tissues because the lung volume changes are

non-linear, and the amounts of the changes vary by the location of the lung. The

non-rigid transformation does not preserve the original image size or shape. There

are many non-rigid transformation methods: scaling, affine, projective, perspective,

and curved [16].

There are three popular registration methods which are categorized by corre-

sponding features to calculate or optimize the registration transformation: a point-

based method, surface-based method, and intensity-based method.

2.1.1.1 Point-based method

The point-based method uses corresponding points, which are matching fea-

ture points between images, to calculate the transformation. Anatomical landmarks,

such as bifurcation points (branch points) or salient points of the organs, are consid-

ered as corresponding points. The main advantage of the point based registration is

its fast calculation speed because it is possible to solve the relation of points as simple

linear algebraic equations [16].

2.1.1.2 Surface-based method

The surface-based method is widely used in the rigid registration protocol.

This method calculates the transformation by minimizing the error of corresponding

points between the moving and the fixed image surface [16]. It is possible to use land-

mark errors as a similarity measurement function by using an iterative closest points

(ICP) or trimmed iterative closest points (TICP) algorithm [18]. The ICP/TICP
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method consists of two steps, first, it is necessary to find closest pair points. The sec-

ond step is to calculate the deformation fields which minimize the sum of the distance

of paired points until it converges or reaches a pre-defined iteration number.

2.1.1.3 Intensity-based method

The intensity-based method uses the intensity values between the fixed and

moving image. An intensity based registration minimizes differences between two im-

ages’ picture element (pixel) or volume element (voxel) intensities [16]. To minimize

the differences between two images, in other words, to maximize two images’ similar-

ity, a similarity function should be used. There are many studies demonstrating how

to measure the similarity in the lung CT image registration [3–15]. There are three

widely used intensity-based similarity measurement functions, which are the sum of

squared differences (SSD), correlation coefficient (CC), and mutual information (MI)

methods [16].

2.1.2 Similarity measurement

The similarity measurement function between the fixed and moving image is

required to calculate transformation. The similarity function, which is also called

correspondence cost function, depends on corresponding features [16].

2.1.2.1 Feature (point and/or surface)-based similarity function

A point-based method uses fiducial points to calculate the registration. We

can calculate the fiducial registration error (FRE) [16] which is defined as
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FREi = h(xi)− yi (2.1)

where h() denotes transformation, xi and yi denote feature points in the moving and

target image, respectively, and i denotes i-th corresponding points. FREi is the

distance differences between two corresponding points. The similarity function C for

the point based registration can be the sum of squared distance differences for the

feature points and/or normalized sum of squared distance differences.

C =
1

N

N∑
i=1

|FREi|2 (2.2)

where N is the number of corresponding points.

2.1.2.2 Intensity-based similarity function

There are three widely used intensity-based similarity measurement functions,

which are the sum of squared differences (SSD), correlation coefficient (CC), and mu-

tual information (MI) methods. First, the SSD uses the intensity differences between

the moving and target images. The SSD is widely used as a similarity function for

the intensity based registration. The SSD can be easily calculated. The SSD value

would be zero if two images match perfectly, but this may not be true in the lung

CT image registration because the image voxels at the end of expiration (EE) and

end of inspiration (EI) of the lung may have different intensities [9]. Because of the

intensity differences between EE and EI, the SSD may require an additional intensity

normalization scheme, such as histogram matching [19]. The SSD has a reasonable
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reliability and fast computational speed. However, if two images have large intensity

differences or severe noise in some regions, the registration result can be poor [20].

The formula for the sum of squared differences is defined as

SSD =
N∑
i=1

{T (x i)−M(h(x i))}2 (2.3)

whereN is number of voxels of the overlapping regions [16]. From formula (2.3), T and

M denote the target and the moving image intensity value at position x i = (xi, yi, zi),

and h() denotes transformation of the registration.

The correlation coefficient (CC) method shows the linear relationship between

two images. The CC method can be used as a cost function in lung image registration.

If the moving image is registered perfectly to the fixed image, the value of the CC

should be one [16]. However, in lung image registration, the CC value may not

be one due to the intensity differences between the EE and EI images. Therefore,

the optimization process tries to maximize the CC value. Although the CC can

be applied when complex transformation is necessary, the computational complexity

will be increased. This increased computational complexity increases the calculation

time and it is difficult to calculate the correct transformation matrix. In addition,

the registration result might be poor if the voxels of two images have a non-linear

relationship. The registration result may not match if there are outliers [21]. The

calculation method of CC is shown below [16].
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CC =

∑N
i {T (x i)− ave(T )} × {M(h(x i))− ave(M ′)}√∑N
i {T (x i)− ave(T )}2 × {M(h(x i))− ave(M ′)}2

(2.4)

From formula (2.4), ave() denotes average or mean intensity of the image, h() denotes

transformation of the registration, T denotes the target image intensity value at

position x i, and M ′ denotes the transformed moving image intensity value at position

x i.

The mutual information method uses the joint entropy of two images. The

joint entropy represents uncertainty between two or more variables. The joint entropy

between two images may not be a proper similarity measurement function because

the joint entropy is influenced by the overlaid regions of two images [16]. In addition,

the MI may not be suitable for the same modality lung image registration because

the image intensities (HU) vary by the amount of air in the lung. In addition, there

is no information about the relationship between neighboring voxels. However, the

MI method tries to minimize joint entropy and reduce the calculation complexity. To

find the transformation, it is necessary to maximize the MI between the two images.

The MI can be calculated by the two images’ joint entropies [16,22]. The formula for

the probability distribution function (PDF ) is defined as

PDF (i) =
HIST (i)∑
iHIST (i)

(2.5)

for i ∈ [1, . . . , N ], and HIST (i) denotes image histogram at position i. The marginal

entropy (ME) is defined as
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ME(T ) =
∑
i∈T

{PDF (i)× log (PDF (i))} (2.6)

and

ME(M ′) =
∑
j∈M ′
{PDF (j)× log (PDF (j))} (2.7)

The joint entropy (JE) is defined as

JE(T,M ′) = −
∑
j∈M ′

∑
i∈T

{PDF (i, j)× log (PDF (i, j))} (2.8)

The MI is defined as

MI(T,M ′) = ME(T ) +ME(M ′)− JE(T,M ′) (2.9)

where T denotes the target image, and M ′ denotes the deformed moving image. The

MI method is based on the joint histogram of the probability distribution function.

The main advantage of the MI is that it is suitable for inter-modality registration. In

addition, the MI results can be better when compared to the marginal entropy-based

method since the marginal entropy is computed by separate entropies of two images.

However, if the two images have large differences, it is possible that the entropies could

have a low value and therefore the registration can result in mismatched regions [23].

It is important to restrict the calculation window in the MI registration method.

To improve the performance of the MI method, Studholme et al. [22] intro-

duced the Normalized Mutual Information (NMI) method. According to Studholme
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et al. the normalization scheme has a strength in the size of the overlapping region

problem. The size of the overlapping region problem is that the size of the over-

laid region is changed when image registration transforms the images. This change

can bring large mismatching errors. However, the NMI is less variant than the MI

method. As a result of the invariant characteristic, the NMI provide more strength

than the MI method. The formula for the NMI is shown below formula (2.10)

NMI(T,M ′) =
ME(T ) +ME(M ′)

JE(T,M ′)
(2.10)

By using NMI method, they could achieve more robust results than MI method.

2.1.2.3 Lung CT image oriented similarity function

In recent studies, there were a couple of similarity measurement methods for

the lung registration, such as the sum of squared tissue volume difference (SSTVD) [9]

and the sum of squared vessleness measure difference (SSVMD) [7,8]. These methods

were invented for the lung similarity measurements, which give improved registration

accuracy. More details about these methods are introduced in the related work section

in Chapter 2.2.

2.1.3 Related work

A brief summary of previous lung image registration studies focusing on the

cost function will be explained here. Many researchers have tried to find the optimal

lung CT image registration method [3–15]. Many methods use intensity based regis-

tration and non-rigid transformation. In addition, some methods use both rigid and
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non-rigid transformation to minimize the registration errors.

Staring et al. [3] used the normalized correlation coefficient (NCC) as a cost

function to implement a fully automated intensity-based registration algorithm by

using Elastix, which is a toolbox for image registration [24]. This method consists of

three registration steps. The affine transformation was used for the initial alignment.

The second step consists of non-rigid registration without masks. Segmented lung

volumes are used as the masks. It has been shown that by applying lung masks to

the beginning of the registration step, the masks negatively affected the lung boundary

regions. The final step of the registration was non-rigid registration with masks. B-

Splines transformation (more details are explained in Chapter 3) method was applied

to deform a non-rigid transformation with multiple grids. To maximize the similarity

between the moving and fixed images, the NCC is used as the similarity function.

The NCC can be defined as

NCC =

∑N
i {T (x i)− ave(T )} × {M(h(x i))− ave(M ′)}√∑N
i {T (x i)− ave(T )}2 × {M(h(x i))− ave(M ′)}2

(2.11)

The total cost function C can be

C = NCC + αR (2.12)

where R denotes the regularization term (bending energy). This method has strength

to match both features and boundaries. This strength comes from the boundary

masked image. However, they exclude the regularization term because of the time
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complexity and dependent parameter α. The entire process takes less than 17 minutes

in general (the original image size is 512× 512× 579 voxels) on an Intel Xeon W3520

@ 2.66 GHz, 4GB RAM, Windows 7 64 bit computer. However, this method has some

limitations with regard to the singularities, which represent undesirable deformations,

because of the removal of the regularization term.

Dougherty et al. [4] used sum of squared differences (SSD) to register CT lung

volumes using an optical flow method. In this study, an optical flow is used as a

motion estimation method. They use an optical flow method to estimate positional

changes of two different volumes. To minimize differences between these, they use

the SSD of the two images after Laplacian filtering to calculate motion parameters.

The formula for this cost function C(u) is shown below

C(u) =
∑
x

{Li(x, t)− Li[x+ u(x), t+ 1]}2 (2.13)

where x is position of the image, Li denotes Laplacian filtered image intensity, i is

image pyramid level, t and t + 1 represent reference and moving image, and u(x) is

a motion parameter (pixel velocity) which minimizes the SSD of Li(t) and Li(t+ 1).

In addition, the SSD is used as a similarity function to minimize differences between

the moving image and the fixed image. The optical flow method has an advantage for

the lung CT image registration because the CT image has high resolution and high

contrast in the vessels, which can be used as landmarks. However, this method has

weakness in the field of view (FOV) change and initial displacements. For example,

the optical flow method cannot estimate or compensate for missing information when
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there are large initial displacements or the lung nodule size changes.

Han [5] used hybrid cost function of the MI and the normalized SSD (NSSD).

To select features, he uses robust 3D speed up robust feature (SURF) to register lung

CT images. SURF is a feature detector and descriptor to help recognize features.

Robust 3D SURF was used to extract feature points to calculate motion movements.

The main disadvantage of the intensity-based registration is the high computational

costs. To reduce computational costs, Han chose rigid registration prior to the non-

rigid registration. In addition, the feature-constrained MI registration was applied.

To find optimal transformation, Han uses a non-parametric model defind as

T (x) = x+ U(x) (2.14)

where T is a spatial transformation, U is a displacement field, and x is a position [25].

The cost function for feature-constrained MI registration is

C(T,M) = −MI(T,M ′) + αR + β
N∑
i=1

{T (x i)−M(h(x i))}2 (2.15)

where N denotes the number of the overlaid voxels, α and β are weight factors, and

R denotes the regularization term, which is Laplacian. After the feature-constrained

MI registration, the MI and NSSD are applied as a final registration process. The

intensity normalization scheme can be applied to the SSD method to reduce the

intensity variation. The image intensity normalization scheme is defined as

T̄ (x) =
T (x)− µT (x)

σT (x)
(2.16)



15

for σT =
√
{Gσ ∗ (T − µT )}2, and µT (x) is defined as

µT (x) = Gσ ∗ T (x) (2.17)

for Gσ denotes Gaussian smoothing (σ = 2 voxels). NSSD is defined as

NSSD(T,M) =
1

N

N∑
i=1

(
T̄ (x i)− M̄(h(x i))

)2

(2.18)

The final cost function for this method is

C(T,M) = −MI(T,M ′) + αNSSD(T,M) (2.19)

A feature based hybrid registration method may reduce calculation time because it

calculates features’ correspondence only. However, there is a possibility that these

features may not represent the anatomical structures in the lung CT image. This

misalignment or mismatch of features may bring an unpredictable registration result.

Kabus et al. [6] used the SSD as a similarity measurement method to calcu-

late an elastic image registration with the combination of two different registration

methods. The first method is the affine transform. This is useful to align initial

displacements which are the differences between the first scan and follow-up scan. To

avoid misalignments, lung masks are used to register the volumes. In addition to the

affine transform, the second method is the elastic registration which minimizes both

a similarity measurement and a regularizing term. In this registration algorithm, the

SSD is used as a similarity measurement method. The Navier-Lamé equation, which

is a linear elasticity measurement method, is used as an elastic regularization because
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the lung CT image can be considered as an elastic material. The cost function C for

this method is shown below (2.20)

C = SSD + αR (2.20)

SSD =
1

2

∫
Ω

(
T (x )−M(h(x ))

)2

dx (2.21)

R =

∫
Ω

(
µ

4

3∑
i,j=1

(
∂xjui(x) + ∂xiuj(x)

)2

+
λ

2
(∇ · u(x))2

)
dx (2.22)

where Ω is a domain which is satisfied Ω ⊂ R3 and deformation vector u deformed in

R3 → R3, R is an elastic regularization term, and λ and µ are Lame constants. This

method suggests a fast registration method for entire lung CT images. It takes less

than 30 minutes including the pre-/post-processing step in 512×512×579 (original size

of image) using MATLAB on 2.83 GHz, 3 GB RAM. However, this method performs

poorly if there is a large deformation, such as lower lung areas and fissures. Kabus et

al. mentioned that the poor registration performance is no usage of fissure detection

in the protocol. Although the regularizing term can help to reduce singularity errors,

this regularizing term also can prevent deformation of the moving image.

Yin et al. [9] introduce an improved similarity measurement method which

is the sum of squared tissue volume difference (SSTVD). The initial assumption of

the SSTVD is that the CT image intensity consists of the tissue or air volume. As

shown in formula (2.23), the CT intensity (Hounsfield Unit: HU) in position x can

be calculated by the the tissue and air volume.
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I(x) =
(Vair ×HUair + Vtissue ×HUtissue)

Vvoxxel
(2.23)

As a result, it is possible to calculate the SSTVD. The tissue volume can be calculated

as

V ol(x) = v(x)× I(x)−HUair
HUtissue −HUair

(2.24)

V ol(x) is the volume of the voxel at position x, I(x) is HU at position x. Yin et al.

assume that HU in air is -1000, and HU in tissue is 55. With this assumption, they

can measure the similarity as

SSTV D =
∑
x∈Ω

(
VT (x )− VM(h(x ))

)2

(2.25)

where Ω denotes overlap region of two images, VT denotes the tissue volume of the

target image, VM denotes the tissue volume of the moving image, and h() denotes

the transformation matrix. To apply the transformation, cubic B-spline was used

to deform the lung because of its performance and computational efficiency. With

the SSTVD, Yin et al. show that the volume of local tissues are preserved more

than the SSD. The advantage of this method is preserving the lung tissue volume

and weight, and providing more deformation of the lung volume change. However,

this method has limitations. If the data set has severe noise, minimizing the SSTVD

errors may converge to the local minima. In addition, if the data sets have large initial

displacements, the deformation of the registration can be mismatched. The reason is

that B-Spline deformation depends on its grid size. Although the multi scale scheme
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may help reduce registration errors and calculation time, the maximum displacement

still depends on B-spline grid size. The reduced image resolution for a multi scale

scheme can bring information loss, and this loss may affect to the registration result.

Cao et al. [7,8] introduce sum of squared vesselness measure difference (SSVMD)

as a new similarity measurement method. This method uses a lung vessel structural

shape and characteristics of the respiratory system. In the respiratory process, the

lung vessel tree structures do not change their structure. Lung blood vessels can be

used to help to improve the registration accuracy. To calculate vesselness of the lung,

they used the eigenvalues of the Hessian matrix. The Hessian matrix is a second

order partial differential matrix of the image. More details about the Hessian matrix

is showed in Chapter 3. The vesselness measurement is computed from the Frangi’s

vesselness function Vf as

Vf (λ) =


(

1− e
V 2
a

2α2

)
·
(

1− e
V 2
b

2β2

)
·
(

1− e
V 2
c

2γ2

)
, if λ2 < 0 and λ3 < 0

0 , otherwise
(2.26)

where Va = |λ2|
|λ3| , Vb = |λ1|√

λ2λ3
, Vc =

√
λ2

1 + λ2
2 + λ2

3, λ1, λ2, λ3 denotes eigenvalues of

the Hessian matrix, and α, β, γ are thresholds for controlling the sensitivity of the

vesselness measurement [26]. Cao et al. rescale the value of vessleness from 0 to

1, and a larger value means it has more vessel-like feature. By adding the SSVMD

constraints to the SSTVD [9], MI and SSD, the SSVMD method with the weighted

factor helps to achieve improved the registration accuracy, especially near the vessel

areas. The cost function SSVMD is defined as



19

SSVMD =
∑
x∈Ω

(
Vf−T (x )− Vf−M(h(x ))

)2

(2.27)

where Ω denotes overlap region of the images, Vf−T ) denotes vesselness of the target

image, Vf−M denotes vesselness of the moving image, and h(x ) denotes the trans-

formation matrix. To transform the image, the authors use the uniform quadratic

B-spline to transform the moving image with image pyramids, which is a multireso-

lution scheme. However, the grid size of the B-spline limits the maximum deformable

size. If there is a large initial displacement between the two images, the registration

transformation may not find exact deformation for the moving image to fit the fixed

image. In addition, calculating the B-Spline transformation takes a long time as it

requires solving the formulation for each control point. it is possible to mismatch the

corresponding vesselness. This may bring some errors during the registration process.

Betke et al. [10] use the sum of squared residual errors to develop corresponding

anatomical landmarks matching algorithm to register lung CT images. Their method

is based on the landmark based registration algorithm with the sum of squared errors

of the landmark distances. The cost function for sum of squared error C is defined as

C =
N∑
i=1

(xi − h(pi))
2 (2.28)

where xi is a series of points in the target image, and pi is a series of corresponding

points in the moving image, and h(x) is the transformation which transforms corre-

sponding points to target points. The first step of this method is to find corresponding

points. To accomplish this, Betke et al. use a template matching algorithm to find the
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center points of the trachea. With these points, they can calculate affine transform.

To verify the registration accuracy, they test nodules within the lung. However, the

all pair points are decided by Euclidean distances, and therefore the points might not

be the same corresponding physical points between the two images. This error may

bring errors to the registration precision. However, this method is based on global

registration which is not suitable for lung CT image registration because the lung

volume changes more at the base than the apex of the lung.

Busayarat and Zrimec [11] used landmark errors as a cost function to imple-

ment a ray-tracing based high resolution lung CT image registration. This is a hybrid

registration method of a point based and a surface based registration. For the point

based global registration, the hilum of the lung (lung root), sternum and spinal cord

are used as landmark points to calculate rotation, translation, and scaling. The point

based global registration was used to align initial displacements. For the surface de-

tection, the adaptive thresholding and the active contour snakes [27] methods are

used. The ray tracing method was used to find corresponding points between the two

images. The lung roots, which are defined as the main branch points connected to

the lung, are used as the origin points of the ray. By using the distance of the two

rays from their respective origins, the desirable registered points are calculated. The

main advantage of this method is that registered points are located inside of the lung

boundaries. However, the major disadvantage of this method is that the internal reg-

istration results may be varied because this registration method is based on surface

information. In other words, although to keep the singularities is an important issue
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in the pulmonary registration, this method cannot guarantee the singularities in lung

image registration [15].

Schmidt-Richberg et al. [12] presented a fully automated registration method

with the mean squared differences of distance. There are two main processes in this

algorithm. The first step is a pre-registration, which is performed by the surface point

registration. The second step is an image-based diffeomorphic registration. To calcu-

late the pre-registration transform, lung masks, marching cubes algorithm, iterative

closest point (ICP) algorithm, and thin plate spline (TPS) interpolation methods

are used. After the pre-registration process, they apply an image-based diffeomor-

phic registration. One of the strongest points in the diffeomorphic transformation is

that object topology is preserved. This characteristic helps anatomically meaning-

ful transformation. Diffeormorphic transformation is calculated by the solution of

the stationary flow equation. In the diffeormorphic registration process, the mean

squared difference (MSD) of landmarks is used to stop the registration process by up-

dating the terms of the velocity field and performing a diffusive regularization. The

landmark points are extracted by using the automatic landmark detection algorithm

where used [28]. However, due to the intensity differences at the different respiratory

cycles, it is necessary to do histogram matching between the moving and fixed im-

ages before the registration process. The desirable cost function for this registration

method is finding the velocity field v which minimizes the distance D between of the

target and moving image with regularization term R. This can be expressed as
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C[exp(v)] = D[T,M ; exp(v)] + αR[exp(v)] (2.29)

where T denotes target image, M denotes moving image, R[exp(v)] =
∫

Ω
||∇v ||2 dx,

and exp() denotes the group exponential map. This method has many advantages,

such as preventing singularities, ease of calculating the inverse of the transform, and

reducing calculation time and memory usages. However, it is possible that the defor-

mation can cause singularities during the pre-registration step.

Muenzing et al. [13] introduce a novel local regularization of image registration

by using a diffeomorphic demon algorithm using the SSD and boundary distances. By

using a machine learning process, the local regularization is considered as a regression

problem. In this paper, they focuse on the diffusion-like kernel as a regularization

term. By optimizing parameters of the regularizers, they test for the best combination

of the kernel. They apply the diffeomorphic demons algorithm which is proposed by

Vercauteren et al. [29] to represent their non-parametric registration algorithm. In

their study, a moving image which consists of a deformable grid is diffused through

the boundary of the fixed image. This diffusing direction and gradient are calculated

by a vector field (e.g. optical flow). The cost function proposed by Vercauteren et

al. [29] is

C(v, t) =
1

σ 2
n

· 1

2Ω

∑
x∈Ω

|T (x )−M(h(x ))|2 +
1

σ 2
u

D(t, v)2 +
1

σ 2
r

R(t) (2.30)

where v denotes a vector field which is a point correspondence between image pixels,

t denotes a transformation model, T and M denote the image intensity of fixed and
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moving images at position x , D denotes distance, R denotes a regularization term,

σ 2
n = noise, σ 2

u = spatial uncertainty on the correspondences, and σ 2
r = the amount

of regularization. To optimize the transformation, they use a combination of the lung

boundary region and lung tissues with the landmark-based optimization method.

However, since these local regularizers are not related with anatomical structures,

it is possible that the deformation results transformed in undesirable directions. To

avoid this problem, they add the signed Euclidean distance transformation based on

the vessel segmentation. Additionally, to combine the regularization analysis and

anatomical information, Muenzing et al. may achieve better results in registration.

However, this algorithm has a weakness when the volume change of data pairs is

greater than the volume change of trained data sets. The registration results may be

undesirable. This is because the registration calculation is based on the trained data

sets, and these trained data sets work as a regularization term of the transformation.

Modat et al. [14] introduce a combination of the local and global registration

method called NiftyReg using the CC and NMI methods. They use a block-matching

algorithm for the global registration of the feature alignments, and the Free-Form

Deformation (FFD) algorithm using the B-Spline interpolation scheme for the local

registration. A graphic processor unit is also used to reduce calculation time. For the

global registration using the block-matching algorithm, it is necessary to divide the

fixed image and the moving image into blocks or sub-volumes. To find similarities

between the two images, they use a least trimmed squares method via the cross cor-

relation coefficient because this method has an advantage in reducing outliers. They
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consider 50% of correspondences as inliers and the other 50% as outliers because the

blocks may not be comparable [30]. The formula for the cross-correlation coefficient

for the block matching algorithm is

CC(Bxy, B
′
uv) =

1

N2

N−1∑
i=0

N−1∑
j=0

([
M ′(x+ i, y + j)− M̄ ′

(x,y)

]
×
[
T (u+ i, v + j)− T̄(u,v)

]
σM ′(x, y) · σT (u, v)

)
(2.31)

where B denotes a block of the image, σ denotes the standard deviation of the block,

M̄ ′ and T̄ denotes the mean of the block [30]. After the calculation of the corre-

spondence of each block, a global transformation is applied. In addition to the global

registration scheme, for the local registration, they apply the FFD to deform the im-

ages. This registration algorithm includes the normalized mutual information (NMI)

and bending energy. The NMI is used as a similarity measurement, and the bending

energy as a deformation constraint. They define the bending energy as the sum of

squared second derivatives of the transformation. In addition, the squared Jacobian

determinant is used to ensure singularity. The cost function of this method is

C(F,M ′) = (α− β)

(
ME(T ) +ME(M ′)

JE(T,M ′)

)
− α

∑
xinΩ

[(
∂2h(x)

∂x2

)
+

(
∂2h(x)

∂y2

)
+

(
∂2h(x)

∂z2

)]
− α

∑
xinΩ

[
2×

(
∂2h(x)

∂xy

)
+

(
∂2h(x)

∂yz

)
+

(
∂2h(x)

∂xz

)]
− β ×

∑
xinΩ

log (|Jac(h(x))|)2 (2.32)

where αandβ denote user defined weights, ME(T ) and ME(M) denote the marginal

entropy, JE(T,M) denotes the joint entropy, h(x) denotes transformation, Jac de-
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notes the Jacobian determinant at position x. The main strengths of this algorithm

are calculation speed and matching of the lung boundaries. However, there are some

mis-matched points in the registration process, especially in near fissure areas and

the lower part of the lungs. This means if there are large displacements or intensity

changes, this method cannot compensate for these large differences.
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CHAPTER 3
METHODS

3.1 Data acquisition

Six normal human data sets are used for this thesis. For each subject, a pair

of volumetric CT images are acquired from Siemens Sensation 64 multi-detector CT

scanner in supine position. Each subject is named from H-1 to H-6. Each pair consists

of two different volumes. One is functional residual capacity (FRC), and the other

is total lung capacity (TLC). These are acquired in breath-holding status. Six pairs

of CT image data sets are acquired. These twelve images consist of 0.5 ∼ 0.6mm

sectional pixel spacing and 512 × 512 matrix. The spatial resolution of the in-plane

is approximately 0.6× 0.6mm. Figure 3.1 shows an example of the subject H-1.

3.2 Overall process

Figure 3.2 shows a block diagram of the entire procedure. Six human data sets

are used to verify registration accuracy. For this study, we use total lung capacity and

functional residual capacity images. Total lung capacity (TLC) is the volume in the

lung at maximal inspiration. TLC is the sum of vital capacity and residual volume.

Vital capacity is the volume of air exhaled after maximal inhalation. Residual volume

is the volume of air remaining in the lung after maximal exhalation. Functional

residual capacity (FRC) is the volume in the lung at the end of expiration. All the

experiments are applied from TLC to FRC image registration.

In this registration process, to transform one image to another, the cubic B-
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Figure 3.1: Segmented FRC and TLC lung images of the H-1 data set. The upper

row shows the transverse plane, and the lower row shows the coronal plane. (a) shows

FRC image, (b) shows the absolute difference image between FRC and TLC image,

and (c) shows TLC image
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Figure 3.2: The entire procedure of the registration
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Spline transformation is used. The B-Spline transformation is widely used in non-rigid

medical image registration [31]. t(x) is transformation model which deforms every

point in one image to its corresponding point.

t(x) = x +
∑
i∈S

ωi · βββ(x− xi) (3.1)

where x denotes vector (x, y, z)T , S denotes spline grid, ωi denotes the coefficient of

the i-th control point, and βββ(x) denotes a separable convolution kernel which can be

defined as

βββ(x) = βββ(x)βββ(y)βββ(z) (3.2)

The uniform cubic B-Spline basis function can be defined as

βββ(x) =



(x3 + 6x2 + 12x+ 8)/6 , −2 < x ≤ −1

(−3x3 − 6x2 + 4)/6 , −1 < x ≤ 0

(3x3 + 6x2 + 4)/6 , 0 ≤ x < 1

(−x3 + 6x2 − 12x+ 8)/6 , 1 ≤ x < 2

0 , otherwise

(3.3)

A multiresolution scheme is used in order to increase the calculation speed and

registration accuracy. The basic idea of the multiresolution scheme is that, in lower

resolution, the registration tries to match an initial alignment of the two images, and

gives the transformation information to the next step until the registration process

reaches final resolution. This multiresolution scheme helps avoid local optima at

lower scales and improve matching at the final resolution. We use this multiresolution
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process starting from one-eighth and increasing by a factor of two until full resolution

is reached. Table 3.1 shows how the multiresolution strategy is applied.

Table 3.1: Applied multiresolution scheme

Image resolution B-Spline grid size Max iteration

1/16 256mm 4000
1/8 128mm→ 64mm 4000
1/4 32mm→ 16mm 400
1/2 16mm→ 8mm 200
1 8mm→ 4mm 50

3.3 Anatomical similarity function

The similarity function measures how the moving image matches to the target

image with a given transformation. As mentioned in Chapter 2, there are many

similarity functions. We choose to use the SSTVD as a main cost function because

this similarity measurement gives better registration accuracy than the SSD [9]. In

addition to the SSTVD, we design the lung specific cost function which uses the

fissure-likeness measurement. Incorporating fissure and lobe information can improve

registration accuracy because of these features’ physiological characteristics. The

human lungs (left and right sides) are composed of five different lobes, two left lobes

and three right lobes. These lobes are divided by fissures. Lower lobes expand more

than upper lobes when the main expansion forces come from the contraction of the

diaphragm muscles. Since the lung deformation during the respiratory cycle is a
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non-homogeneous process, the location of fissures is important to assess registration

accuracy. Since the shape of fissures seems to have a sheet-like structure, fissures can

be highlighted as a sheet-like structure. For this reason, fissures are added to improve

registration accuracy. Before we start to explain about fissure-likeness, it is necessary

to understand the background of the Hessian matrix based shape detection method.

The Hessian matrix is composed of second order partial derivatives, and is

defined as

H(f) =



∂2f

∂x 2
1

∂2f

∂x1∂x2

∂2f

∂x1∂x3

∂2f

∂x2∂x1

∂2f

∂x 2
2

∂2f

∂x2∂x3

∂2f

∂x3∂x1

∂2f

∂x3∂x2

∂2f

∂x 2
3


(3.4)

where f is a intensity value function which consists of (x1, x2, x3) which represent each

axis. Eigenvalues of the Hessian matrix can be calculated by det(H(f) − λλλI) = 0

where λλλ denotes eigenvalues λλλ = (λ1, λ2, λ3) in the given matrix H(f), and I is the

identity matrix. Eigenvalues represent the length of corresponding eigenvectors, and

eigenvectors (vvv) have the same direction as H(f)vvv. Eigenvectors can be calculated as

H(f)vvv = λvλvλv where vvv is eigenvectors which can be represented as a 3× 3 matrix. Sato

et al. introduce a tissue classification measurement method based on local intensity

structure of the image [32]. Figure 3.3 shows how the tissue structure is classified.

The sheet-likeness measurement can be defined as the extension of Frangi’s

objectness function [26,33].
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Figure 3.3: Tissue shape classification measure based on eigenvalues of the image.

(a) Line measure. (b) Blob measure. (c) Sheet measure. In this figure, λ1 ≥ λ2 ≥ λ3.

Figure from Sato et al. [32].
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F (λ) =


(

1− e
V 2
a

2α2

)
·
(

1− e
V 2
b

2β2

)
·
(

1− e
V 2
c

2γ2

)
, if λ2 < 0 and λ3 < 0

0 , otherwise
(3.5)

V 2
a =

∏N
i=T+1 |λi|∏N

i=T+2 |λi|
N−T
N−T−1

(3.6)

V 2
b =

∏N
i=T |λi|∏N

i=T+1 |λi|
N−T+1
N−T

(3.7)

V 2
c =

√√√√ N∑
i

λ 2
i (3.8)

where λi denotes eigenvalues of the Hessian matrix (|λi| ≤ |λi+1|), N is a dimension

of the image, T is dimension of the structures which is defined as 0 for blobs, 1 for

vessels, 2 for plates, and 3 for hyper-plates (T < N), and α, β, and γ are thresholds

for controlling the sensitivity of the vesselness measurement [26]. In this thesis, we

use N = 3, T = 2, α = β = 0.5 and γ = 5. Va is used to distinguish plate-like and

line-like structures. Vb accounts for a blob-like structure. Vb has a maximum value

for a blob-like structure and zero when λ1 ≈ 0, or λ2 has a very small value. Vc is the

norm of eigenvalues, and Vc has a lower value when it is in the background and has

low contrast.
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Table 3.2: Object patterns decided by eigenvalues.

Singular Plural

λ1 λ2 λ3

Low Low High Plate-like structure
Low High High Tube-like structure
High High High Blob-like structure

Table 3.2 adapted from Frangi et al. [26] shows the object shapes which are

decided by eigenvalues. When eigenvalues consist of λ1 ≈ λ2 ≪ λ3, this object

can be classified as a plate-like structure. If eigenvalues have λ1 ≪ λ1 ≈ λ3, this

object has a tube-like structure. In addition, a blob-like structure has eigenvalues

λ1 ≈ λ2 ≈ λ3 ≫ 0. The multiresolution scheme is applied to increase the sensitivity

of the shape structure. Gaussian smoothing is used to apply the multiresolution

strategy. Maximum values are selected at each resolution.

More information is observed in the sheet-likeness measurement than the ves-

selness measurement. Figure 3.4 shows the extracted vesselness measurement results

and comparison between the extracted vesselness and sheet-likeness image. The ma-

jor difference is the existence of the fissures. The red circle points out the location of

the fissures. Fissures mainly consist of green color which means that the vesselness

method cannot detect fissures.

Figure 3.5 and 3.6 show extracted sheet-likeness structures of subject H-1.

There are many vessel walls also extracted because of the Hessian matrix kernel size.

At first, we thought vessel walls should be removed because we would like to focus



35

Figure 3.4: Comparison between vesselness and sheet-likeness. The upper row repre-

sents the transverse plane, and the lower row represent the coronal plane, (a) shows

the vesselness results, (b) shows the fused image between vesselness and sheet-likeness.

Red color is used for vesselness, and green color is used for sheet-likeness. Red circles

represent the location of the fissures.
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Figure 3.5: Extracted fissure-like structure in FRC. The upper row shows the trans-

verse plane, and the lower row shows the coronal plane, (a) shows the corresponding

CT image, and (b) shows the extracted fissure-like structure. The red dotted line

represents the location of the fissure.
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Figure 3.6: Extracted fissure-like structure in TLC. The upper row shows the trans-

verse plane, and the lower row shows the coronal plane, (a) shows the corresponding

CT image, and (b) shows the extracted fissure-like structure. The red dotted line

represents the location of the fissure.
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on the sheet-likeness shapes. However, Cao et al. suggest vesselness as an additional

cost function, and they achieve enhanced registration accuracy [7, 8]. Therefore, we

decided to keep the extracted vessel walls. The sheet-likeness measurement image is

normalized to have a value from 0 to 1 because we can consider the sheet-likeness

measurement as a probability function. In this sheet-likeness image, a higher value

means that there is a high probability to be classified as a sheet-like structure, and

a lower value means that there is a lower probability of this classification. The cost

function for the sheet-likeness measurement can be defined as

Sheet =

∫
x∈Ω

[ST (x)− SM(h(x))]2 (3.9)

where Ω denotes the overlaid region of the two images, ST and SM denote the sheet-

likeness measurement of the target and moving image, respectively, and h() denotes

the transformation.

The final cost function of registration is

C = αSSTV D + βSheet+ γReg (3.10)

where α, β, and γ are user defined weight constants. In this thesis, we use α = 1, β =

1, and γ = 0.5. Reg is a regularization term which is Laplacian. The regularization

term is used to smooth the transformation, and helps reduce the unexpected changes

in the displacement fields.
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3.4 Optimization

To maximize the similarity function of the two images, it is necessary to find

the optimal values and iteration numbers which maximize the correspondence of the

two images. According to Hill et al. [20], these optimization problems are difficult to

solve because calculating the optimal transformation can easily be converged to the

local minima or maxima. Avoiding the local minima or maxima is a difficult issue

in the registration. There are many algorithms to optimize the similarity measure-

ment, such as the conjugate gradient based method (e.g. Fletcher-Reeves) and quasi-

Newton based method (e.g. Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS)) [34]. We choose L-BFGS algorithm as an optimizer because L-BFGS is a

good optimization algorithm for a high degree of freedom parameters.

3.5 Landmark error

Landmarks are feature points of the object. Landmarks are selected from

the bifurcation points of the vascular tree. These points have good features to verify

registration accuracy because the vessel bifurcation points keep the structural location

during the respiratory cycle. The Euclidean distance between the landmark points is

called landmark error. Landmark error (L) can be calculated as

L =
N∑
i

√
(Ai −Bi)

2 (3.11)

where Ai denotes landmark points in the fixed image, and Bi denotes landmark points

in the moving image. These landmark points are well distributed in the image pairs.
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Figure 3.7: Distribution of the landmark points in the FRC image. Green dots

represent each landmark point. Although green dots appear to the outside of the

lung, they are located inside of the lung in 3D space. More than 100 well distributed

points are used for each data pair.

Each i-th landmark point between the fixed and moving image corresponds with each

other. Figure 3.7 shows the distribution of the landmark points.

Table 3.3 shows the initial landmark error (before registration) and lung vol-

ume ratio between FRC and TLC in every data set. Large mean landmark error

represents that there are large displacements, and the larger volume ratio signifies an

increased in volume change between FRC and TLC.
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Table 3.3: The initial landmark error (before registration) and volume ratio between

the FRC and TLC image

Subject Mean landmark error (before) Volume ration (TLC/FRC)

H-1 26.49 mm 1.96
H-2 25.54 mm 1.75
H-3 25.06 mm 1.79
H-4 25.54 mm 1.89
H-5 27.75 mm 1.91
H-6 31.53 mm 2.15
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CHAPTER 4
EXPERIMENT RESULTS

The registration accuracy measurement is based on two different methods: a

visual assessment and a landmark error measurement. We also compare the differ-

ences between the SSVMD and the sheet-likeness cost function.

4.1 Visual assessment

Registration accuracy can be assessed by the visual comparison of the fixed

image and deformed moving image. Figure 4.1 shows the comparison between before

and after the registration process. Figure 4.1 (d) shows initial volume differences

before the registration is applied. Bright intensity regions represent large intensity

differences, and dark intensity regions represent small or no intensity differences be-

tween the two images. Large bright regions are mainly observed at the bottom of the

lung areas. However, figure 4.1 (e) shows small intensity differences. Theoretically,

if the two images match completely, there are no intensity differences between the

two images. Nevertheless, there are initial intensity differences between the FRC and

TLC images due to the density differences at the different pressures of the lung. We

can observe that the high contrast regions, such as vessels, are matched well.

4.2 Landmark error

Landmarks are useful to assess registration accuracy, as mentioned in Chapter

3. To verify registration accuracy, more than 100 landmark points are used for each
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Figure 4.1: Comparison between before and after registration. (a) shows the fixed

image (FRC) of subject H-1, (b) shows the moving image (TLC), (c) shows the

deformed moving image (registration result), (d) shows the absolute difference image

between the fixed and moving image, and (e) shows the absolute difference image

between the fixed image and deformed moving image. All images are taken in the

coronal plane.
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pair. Mean, minimum, and maximum landmark error are calculated. In addition to

these errors, the accumulated landmark error histogram is also used to see how many

errors are located below a certain percentile. Table 4.1 shows the mean landmark

error before and after registration with sheet-likeness.

In table 4.1, we can calculate that the average registration error is 1.42 mm.

Since we use a half-size image to increase the registration speed, the input image

voxel spacing is approximately 1.3 mm. Mean landmark error is approximately one

voxel distance in average. The mean landmark errors after registration are close to 1

mm except the H-6 data pair. The H-6 data set has a large error than the other data

pairs because the H-6 volume pair has the largest volume changes at the EE and EI.

Table 4.1: Mean landmark between before and after the registration with sheet-

likeness

Before registration After registration

H-1 26.49 mm 1.16 mm
H-2 25.54 mm 1.17 mm
H-3 25.06 mm 0.87 mm
H-4 25.54 mm 0.95 mm
H-5 27.75 mm 1.04 mm
H-6 31.53 mm 3.33 mm

4.3 Comparison between cost functions

We propose the sheet-likeness measurement in terms of an additional cost

function of the lung CT image registration. To prove the superiority of the proposed
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algorithm, we compare our results with those of the previous study which uses the

SSTVD and the SSVMD. Since the SSVMD uses vessel-like structure as an additional

cost function, we prove the registration accuracy enhancement of our study by com-

paring landmark errors of our method, which is the combination of the SSTVD and

the sheet-likeness, to the SSTVD only, the combination of the SSTVD and SSVMD.

The experiment is performed in multiple times with the same subjects and the same

registration parameters. The only difference is the cost function that is used. Table

4.2, 4.3, and 4.4 represent mean, minimum, and maximum landmark errors for each

method.

Table 4.2: Mean landmark error comparison between before and after the registration

with various methods (unit : mm)

H-1 H-2 H-3 H-4 H-5 H-6

Before
26.49 25.54 25.06 25.54 27.75 31.53

(±12.35) (±14.18) (±13.18) (±12.82) (±13.45) (±18.20)

only SSTVD
1.37 1.44 0.89 1.26 1.38 3.84

(±1.54) (±1.25) (±0.46) (±1.43) (±1.68) (±4.26)

SSTVD+SSVMD
1.19 1.16 0.86 0.91 1.12 3.89

(±1.10) (±0.49) (±0.46) (±0.50) (±1.10) (±4.66)

SSTVD+Sheet
1.16 1.17 0.87 0.95 1.04 3.33

(±0.98) (±0.50) (±0.46) (±0.56) (±0.53) (±4.02)
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Table 4.3: Minimum landmark error comparison between before and after the regis-

tration with various methods (unit : mm)

H-1 H-2 H-3 H-4 H-5 H-6

Before 5.38 4.79 5.82 4.57 5.53 3.11
only SSTVD 0.16 0.24 0.03 0.14 0.13 0.36
SSTVD+SSVMD 0.15 0.15 0.12 0.12 0.09 0.35
SSTVD+Sheet 0.17 0.15 0.08 0.21 0.17 0.27

Table 4.4: Maximum landmark error comparison between before and after the reg-

istration with various methods (unit : mm)

H-1 H-2 H-3 H-4 H-5 H-6

Before 59.44 62.43 62.29 52.45 55.48 72.91
only SSTVD 12.30 10.78 3.17 8.67 14.88 19.43
SSTVD+SSVMD 9.76 3.33 3.17 3.66 13.57 20.08
SSTVD+Sheet 8.40 3.13 3.04 3.94 3.48 18.48

Figure 4.2 shows the bar chart of the landmark error before registration and figure

4.3 shows the bar chart of the landmark error after registration.

According to table 4.2, there are large landmark error differences between the

only SSTVD method and the combined methods. The average mean landmark error

is 1.70mm for only the SSTVD, 1.52mm for the SSTVD and SSVMD, 1.42mm for

the SSTVD and sheet-likeness. As you can see in this table, we can observe lager

mean landmark errors in the SSTVD only method compared to the combination
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Figure 4.2: Landmark error before registration showing standard deviation (unit :

mm).

Figure 4.3: Landmark error after registration showing standard deviation for the

three different cost functions (unit : mm).
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of the SSTVD and SSVMD and the combination of the SSTVD and sheet-likeness.

There is statistical significance between the SSTVD only and the combination of

the SSTVD and SSVMD in the data pairs of H-2, H-4 and H-5 (p < 0.05). There

is also statistical significance between the SSTVD only and the combination of the

SSTVD and sheet-likeness in the data pairs of H-2, H-4 and H-5 (p < 0.05). There

is no statistical significance in some data sets, and the reason is that the SSTVD

only method can achieve small landmark errors as well as the combined methods (for

H-1 and H-3) or every algorithm fails to reduce landmark errors which means the

registration result has large landmark errors(for H-6). Table 4.3 shows the minimum

landmark error for the three methods. The average minimum landmark error is

0.177mm for the only SSTVD, 0.163mm for the SSTVD and SSVMD, and 0.175mm

for the SSTVD and sheet-likeness. The best result is observed from the combination

of the SSTVD and SSVMD. 4.4 shows the maximum error for three methods. The

average maximum landmark error is 11.538mm for the only SSTVD, 8.928mm for

the SSTVD and SSVMD, and 6.745mm for the SSTVD and sheet-likeness. The best

results of the landmark errors are observed from the combination of the SSTVD

and sheet-likeness. For more detail results, in the appendix section, accumulated

landmark error histograms and box plots are available to compare these three cost

functions.

However, since the landmark points are located on vessel bifurcation points,

the landmark errors may not be enough to represent the advantage of the sheet-

likeness method. To further show the advantage of our method, we provide the
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comparison between the combination of the SSTVD and SSVMD and the combination

of the SSTVD and sheet-likeness. Figure 4.4 shows the differences between the two

methods. We use the segmented lobe image to show the differences between the

results. In figure 4.4 (a), a little more red and green colors are observed than in

figure 4.4 (b). In addition, the only difference in figure 4.4 (c) is observed near

the fissure areas. If two images match perfectly, the fused image can be shown in

yellow. However, it is difficult to determine the better method because there are

minor differences near fissure areas, and it is difficult to prove lung parenchyma

matching.
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CHAPTER 5
DISCUSSION AND CONCLUSION

In this thesis, we suggest an additional cost function to improve lung CT image

registration accuracy by adding an additional anatomical cost function. Registration

accuracy of the lung CT image registration is an important issue. As shown by

a previous study [31], the additional cost function of vesselness, which is based on

the anatomical structure similarity measurement of the lung, can achieve improved

registration accuracy. Inspired by the previous work [31], we think that fissures can

be useful features for lung CT image registration. Since the fissures have a sheet-

like shape, an eigenvalue-based shape detection filter is used to extract the sheet-

like structure. However, there are some difficulties in segmenting fissures with the

shape detection filter due to the low contrast and incompleteness. The registration

accuracy measurement method is based on the landmark error which is the Euclidean

distance of the vessel bifurcation points. However, the landmark error may not be

enough to verify the internal tissue matching. Although the vessels matched well,

the lung parenchyma may not match. We compare the differences between three

lung CT image registration techniques based on the landmark error. We can observe

the differences between three metrics. The SSTVD cost gives the worst result in

average mean landmark error. The combination of the SSTVD and the SSVMD

costs, and the combination of the SSTVD and the sheet-likeness costs have small

differences in the landmark error. The combination of the SSTVD and sheet-likeness

shows slightly better average mean and maximum landmark errors. However, the
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deformation patterns between SSVMD and sheet-likeness show some differences. The

most differences are observed near fissure areas. The sheet-likeness can align the

fissures more than the combination of the SSTVD and SSVMD metric when we can

detect fissures on the image. However, some data sets have incomplete fissures which

are not detected. There are some limitations in the incomplete fissures with the sheet-

likeness filter. In this case, more misalignments are observed near the fissure areas. In

addition to the misalignment, there are possibilities that mismatched correspondences

can cause errors during the registration process. To minimize mismatching, we do the

experiments with various parameters such as user-defined weight factors of the cost

functions. This thesis work presents an additional cost function which combined with

the intensity based registration cost function. The intensity only based registration

metric is not enough to match the internal tissues. By combining the intensity-based

cost function (SSTVD) and anatomical structure based cost function (sheet-likeness),

we can achieve better accuracy than previous studies. Improved registration accuracy

can result in enhanced measurement accuracy of the mechanical analysis of the lung.

A more detailed analysis method, such as the fissure alignment comparison, can help

to verify the strength of our method.
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APPENDIX A
ACCUMULATED LANDMARK ERROR

Figure A.1: Subject H-1. Comparison between before and after registration with

three different cost functions.
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Figure A.2: Subject H-2. Comparison between before and after registration with

three different cost functions.
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Figure A.3: Subject H-3. Comparison between before and after registration with

three different cost functions.
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Figure A.4: Subject H-4. Comparison between before and after registration with

three different cost functions.
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Figure A.5: Subject H-5. Comparison between before and after registration with

three different cost functions.
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Figure A.6: Subject H-6. Comparison between before and after registration with

three different cost functions.
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APPENDIX B
BOX PLOT OF THE LANDMARK ERROR AFTER REGISTRATION

Figure B.1: Subject H-1. Box plot of the landmark error after registration with three

different cost functions.
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Figure B.2: Subject H-2. Box plot of the landmark error after registration with three

different cost functions.
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Figure B.3: Subject H-3. Box plot of the landmark error after registration with three

different cost functions.
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Figure B.4: Subject H-4. Box plot of the landmark error after registration with three

different cost functions.
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Figure B.5: Subject H-5. Box plot of the landmark error after registration with three

different cost functions.
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Figure B.6: Subject H-6. Box plot of the landmark error after registration with three

different cost functions.
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