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ABSTRACT
Genetic sequences are being collected at an ever increasing rate due to rapid cost
reductions; however, experimental approaches to determine the structure and function of
the protein(s) each gene codes are not keeping pace. Therefore, computational methods to
augment experimental structures with comparative (i.e. homology) models using physics-
based methods for building residues, loops and domains are needed to thread new
sequences onto homologous structures. In addition, even experimental structure
determination relies on analogous first principles structure refinement and prediction
algorithms to place structural elements that are not defined by the data alone.
Computational methods developed to find the global free energy minimum of an amino
acid sequence (i.e. the protein folding problem) are increasingly successful, but
limitations in accuracy and efficiency remain. Optimization efforts have focused on
subsets of systems and environments by utilizing potential energy functions ranging from
fixed charged force fields (Fiser, Do, & Sali, 2000; Jacobson et al., 2004), statistical or
knowledge based potentials (Das & Baker, 2008) and/or potentials incorporating
experimental data (Brunger, 2007; Trabuco, Villa, Mitra, Frank, & Schulten, 2008).
Although these methods are widely used, limitations include 1) a target function global
minimum that does not correspond to the actual free energy minimum and/or 2) search
protocols that are inefficient or not deterministic due to rough energy landscapes
characterized by large energy barriers between multiple minima.
Our Global Optimization Using Metadynamics and a Polarizable Force Field
(GONDOLA) approach tackles the first limitation by incorporating experimental data

(i.e. from X-ray crystallography, CryoEM or NMR experiments) into a hybrid target



function that also includes information from a polarizable molecular mechanics force
field (Lopes, Roux, & MacKerell, 2009; Ponder & Case, 2003). The second limitation is
overcome by driving the sampling of conformational space by adding a time-dependent
bias to the objective function, which pushes the search toward unexplored regions
(Alessandro Barducci, Bonomi, & Parrinello, 2011; Zheng, Chen, & Yang, 2008).

The GONDOLA approach incorporates additional efficiency constructs for search space
exploration that include Monte Carlo moves and fine grained minimization. Furthermore,
the dimensionality of the search is reduced by fixing atomic coordinates of known
structural regions while atoms of interest explore new coordinate positions. The overall
approach can be used for optimization of side-chains (i.e. set side-chain atoms active
while constraining backbone atoms), residues (i.e. side-chain atoms and backbone atoms
active), ligand binding pose (i.e. set atoms along binding interface active), protein loops
(i.e. set atoms connecting two terminating residues active) or even entire protein domains
or complexes. Here we focus on using the GONDOLA general free energy driven
optimization strategy to elucidate the structural details of missing protein loops, which
are often missing from experimental structures due to conformational heterogeneity
and/or limitations in the resolution of the data.

We first show that the correlation between experimental data and AMOEBA (i.e. a
polarizable force field) structural minima is stronger than that for OPLS-AA (i.e. a fixed
charge force field). This suggests that the higher order multipoles and polarization of the
AMOEBA force field more accurately represented the true crystalline environment than
the simpler OPLS-AA model. Thus, scoring and optimization of loops with AMOEBA is

more accurate than with OPLS-AA, albeit at a slightly increased computational cost.



Next, missing PDZ domain protein loops and protein loops from a loop decoy data set
were optimized for 5 ns using the GONDOLA approach (i.e. under the AMOEBA
polarizable force field) as well as a commonly used global optimization procedure (i.e.
simulated annealing under the OPLS-AA fixed charge force field). The GONDOLA
procedure was shown to provide more accurate structures in terms of both experimental
metrics (i.e. lower Rgee Values) and structural metrics (i.e. using the MolProbity structure
validation tool). In terms of Ryee, Only one out of seven simulated annealing results was
better than the Gondola global optimization. Similarly, one simulated anneal loop had a
better MolProbity score, but none of the simulated annealing loops were better in both
categories. On average, GONDOLA achieved an Rfe value 19.48 and simulated
annealing saw an average Rgee Value of 19.63, and the average MolProbity scores were
1.56 for GONDOLA and 1.75 for simulated annealing.

In addition to providing more accurate predictions, GONDOLA was shown to converge
much faster than the simulated annealing protocol. Ten separate 5 ns optimizations of the
4 residue loop missing from one of the PDZ domains were conducted. Five were done
using GONDOLA and five with the simulated annealing protocol. The fastest four
converging results belonged to the GONDOLA approach. Thus, this work demonstrates
that GONDOLA is well-suited to refine or predict the coordinates of missing residues

and loops because it is both more accurate and converges more rapidly.
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PUBLIC ABSTRACT

The human genome project sparked a revolution in the availability of low-cost genetic
information and dramatically improved our understanding of human health and disease.
Many approaches are being explored to assist clinical decision making in light of low-
cost genetic information. For missense variants that have not been characterized
biochemically, computational approaches capable of predicting the impact on protein
structure, function and human phenotype are sorely needed. The starting point for such
approaches are accurate protein structures for both wildtype and variant sequences.
However, X-ray crystallography, a widely used method for the experimental
determination of protein structure, is too time-consuming to be applied to all missense
variants of clinical interest. Therefore, computational methods to augment experimental
structures with comparative (i.e. homology) models based on physics-based methods for
building missing residues, loops and domains of protein structures are imperative.

Here we propose an algorithm called GONDOLA to predict the atomic coordinates of
protein residues, loops and domains. GONDOLA uses a state-of-the-art polarizable force
field called AMOEBA to describe the interactions between atoms, and molecular
dynamics with a time-dependent bias to drive efficient global optimization of the
structure. The approach improves the quality of both experimental protein structures and
those generated from homology modeling relative to existing methods. We demonstrate
the power of GONDOLA by showing that it converges more rapidly than global
optimization by simulated annealing, while also providing more accurate protein loops

based on both experimental and physical criteria.
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CHAPTER 1: INTRODUCTION

Pioneers in biochemistry, like Christian Anfinsen, proposed that a primary amino acid
sequence contains all information needed to define a protein fold, which is equivalent to
asserting that the folded or native structure of a sequence is at the free energy minimum
(Anfinsen, 1973). Currently, fast and reliable methods for deterministically finding the
global free energy minimum of an amino acid sequence have only been partially realized.
Such optimization efforts have focused on subsets of systems and environments by
optimizing potential energy functions ranging from fixed charged force fields (Fiser et
al., 2000; Jacobson et al., 2004), statistical or knowledge based potentials (Das & Baker,
2008) and/or potentials that incorporate experimental data (Brunger, 2007; Trabuco et al.,
2008).

While tremendously insightful, these methods often have one or more limitations
including 1) target function minimum that do not correspond to the free energy minimum
and 2) search protocols that are inefficient or not deterministic due to rough energy
landscapes characterized by large energy barriers between multiple minima. To address
the first limitation, it is possible to target experimental data, such as from X-ray
crystallography, CryoEM or NMR experiments, and also to include information from
next generation polarizable molecular mechanics force fields (Lopes et al., 2009; Ponder
& Case, 2003). To address the second limitation, sampling of conformational space can
be driven by addition of a time-dependent bias to the objective function, which pushes
the search toward unexplored regions (Alessandro Barducci et al., 2011; Zheng et al.,

2008).



Here we explore the synthesis of novel objectives functions and global optimization
schemes to efficiently determine the coordinates of missing protein loops. We focus on a
general free energy driven optimization strategy based on a target function that is a
weighted combination of a polarizable force field and electron density maps (i.e. that can
be defined by either X-ray crystallography or Cryo-EM experiments). Using this target,
global optimization proceeds via molecular dynamics combined with addition of a time-
dependent bias (generally known as metadynamics) to drive the sampling towards new
regions of conformational space. To reduce the search space, atomic coordinates of
known structural regions are fixed, while atoms of interest explore new coordinate
positions. The overall approach can be used for optimization of side-chains (i.e. set side-
chain atoms active while constraining backbone atoms), residues (i.e. side-chain atoms
and backbone atoms active), ligand binding (i.e. set atoms along binding interface active),
homology models (i.e. set atoms connecting two domains active) or even entire protein
optimization.
In this work, we will demonstrate the approach by elucidating the structural details of
/ mobile segments of proteins (i.e. loops), which are often
difficult to resolve from experimental data. These protein

Q A loops, flexible regions of a polypeptide chain that anchor

QS&’\ two contiguous secondary structures, play decisive roles
in important biological functions such as protein kinase

D activation, molecular recognition (Ciarapica, Rosati,

Figure 1: Protein structure of

PDZ domain in complex with Cesareni, & Nasi, 2003) and for the catalytic and ligand
Syndecanl peptide. (PDB ID:

4GVD) binding sites of enzymes (Bernstein et al., 2004; Mol et



al., 2003; Slesinger, Jan, & Jan, 1993; Steichen et al., 2012; Stuart et al., 1986). Accurate
loop predictions are essential in structural refinement (R. Bruccoleri, 2000; Dmitriev &
Fillingame, 2007) and are often needed to understand fundamental biophysics of dynamic
processes in a variety of structural biology applications (Espadaler, Querol, Aviles, &
Oliva, 2006; Martin, Cheetham, & Rees, 1989; Tasneem, lyer, Jakobsson, & Aravind,
2005; Yarov-Yarovoy, Baker, & Catterall, 2006).

The most common method of determining protein structures, X-ray crystallography, often
fails to define loop atom coordinates with a high degree of certainty due to their high
flexibility and mobility. Thus, loops are often omitted from PDB submissions, but must
be rebuilt to permit downstream analysis including molecular simulation studies of
function or for molecular design applications. As an example, PDZ domains are often
missing short loops. PDZ domains are common tertiary structures found in over 250
different cell types in the human body, and are found in cell signaling complexes of the
cell membrane to act as protein-protein recognition sites binding specifically to C-
termini. More specifically, the flexible region responsible for this interaction is known as
the carboxylate-binding loop (Penkert, DiVittorio, & Prehoda, 2004). Specificity in
ligand binding is partially contributed by this loop (Doyle et al., 1996); however, it is
often omitted from structures deposited on the Protein Data Bank (Berman et al., 2000).
This thesis explores computational determination of protein loops using the combination
of 1) a novel target function defined by a weighted sum of experimental data (i.e. an
electron density map) and a polarizable atomic multipole force field (Fenn & Schnieders,
2011; M. J. Schnieders, Fenn, & Pande, 2011) and 2) a global optimization protocol

characterized by addition of a time dependent bias to force exploration of new regions of



phase space (Park et al., 2014; Michael J. Schnieders et al., 2012). The advantages of the
target function are quantified using both structural (i.e. backbone and side-chain
conformation) and experimental metrics (i.e. R/Rfee). The efficiency of the search
protocol is compared to established global optimization schemes such as simulated
annealing. Finally, all algorithms are publicly disseminated as part of the open source
Force Field X (FFX) molecular biophysics software available from the University of

lowa (http://ffx.biochem.uiowa.edu).




CHAPTER 2: BACKGROUND

2.1: Force Fields

Classical modeling of molecular systems began with seminal hand calculations by
Frank Westheimer in the 1940’s (Westheimer & Mayer, 1946). Those molecular
mechanics equations lead to the development of computer-aided simulations that describe
atomic resolution interactions and molecular forces. As interest rose in studying larger
systems, the quantum mechanical level of detail, i.e. electronic motion, was unsuitable
due to prohibitive computational costs, so classical mechanics and hybrid systems were
used to study nuclear motion (Warshel & Levitt, 1976). Thus, the use of classical
mechanics in the field of computational biophysics began as a quest to understand and
predict experimental results of various molecular properties; these approximations were
necessary due to the computational expense of quantum mechanical calculations for the
simulation of biological systems.
2.1.1: Fixed Charge Force Fields

By representing organic chemistry as mechanical systems of atoms that interact based on
harmonic bonded terms and non-bonded through-space interactions, the potential energy
as a function of coordinates quickly became useful in understanding emergent physical
properties. More specifically, classical bonded terms (i.e. bond stretching and bond angle
bending) and non-bonded terms (i.e. van der Waals and Coulomb interactions between
atoms) are described by Hooke’s Law (1676), Coulomb’s Law (1785), and Mie (1903) or
Lennard-Jones (1924) potentials (Jorgensen, 2013). The functional form of the
mechanical system and the parameters needed to calculate the various molecular

properties, are known as a force field. Furthermore, the development of these classical



mechanics models focused on electrostatic models that were limited to fixed atomic
charges from around 1960 until the turn of the 21% century (Ponder & Case, 2003).
Although fixed atomic partial charges can implicitly include electronic polarization of the
electronic cloud in proportion to a defined environmental field, this approach lacks
energetic transferability between high and low dielectric environments (Ponder & Case,
2003). While fixed charge force fields are efficient, their accuracy is often limited for
cases that include transfer between vacuum and condensed phase states or between the
surface of a protein and its hydrophobic core. Thus, most molecular dynamics
calculations currently lack explicit inclusion of polarization or higher order fixed atomic
multipoles.
2.1.2: Polarizable Force Fields

Fixed charged force fields are continually being improved based on modest modifications
to their functional form and by more complete optimization of their parameters. For
example, torsional potential energy terms that dictate secondary structure populations
have recently been revisited (Hornak et al., 2006; MacKerell, Feig, & Brooks, 2004);
however, the implicit treatment of polarization inherently limits the energetic
transferability between environments in a manner that cannot be resolved without
introduction of explicit atomic polarizablility into the electrostatics model. Consequently,
a group of more sophisticated force fields has emerged (GEMM (Elking, Cisneros,
Piguemal, Darden, & Pedersen, 2010) SIBFA (Gresh, Cisneros, Darden, & Piquemal,
2007), Charmm Drude Model (Lopes et al., 2013), Charmm Fluc-Q model (Patel &
Brooks, 2006). These force fields include explicit polarization, which allows charges to

redistribute in response to the total electric field of the environment and approximates the



guantum mechanical response of organic molecules (Bottcher, 1993). For example,
negatively charged electron density moves towards the positive potential of cationic
charges and away from the negative potential of anionic charges. Force fields can
implement a polarization response via charge-on-springs (i.e. Drude) (Anisimov et al.,
2005; Yu et al., 2010), fluctuating charges (Patel & Brooks, 2006), or induced point
dipoles (Ren & Ponder, 2002). An example of the latter is the Atomic Multipole
Optimized Energetics for Biomolecular Applications (AMOEBA), which treats
polarization using induced dipoles and fixed electron distribution using permanent
multipoles (Ren, Wu, & Ponder, 2011; Shi et al., 2013). In principle, explicit inclusion of
polarization improves transferability between environments and offers advantages over
electrostatic models used in previous loop building and refinement algorithms.
2.1.3: AMOEBA Force Field Functional Form
The AMOEBA protein force field is described by six bonded and three non-bonded terms

(Shi et al., 2013)
Uamoesa = Ubond + Uangle + Ube + Uoop + Utorsion + Uror—torgLyy ~ EQN. 1
+ Uyaw + Ude " + Uel

The energy contributions of bond and angle terms capture higher-order deviations from
ideal bond lengths (i.e. by) and angles (i.e. 8o) to account for anharmonicity. The bond
stretching between two atoms is described by

Ubona = Kp (b — bg)?[1 — 2.55 (b — by) + 3.793125 (b — by)?] Eqn.2
and the energy of a bond angle by

Usngle = Ko(8 — 80)?[1 — 0.014 (8 — 8,) + 5.6x1075 (6 — 6,)®>  Eqn. 3

— 7.0x1077 (8 — 8,)3 + 2.2x1078 (0 — 0,)*]



The bonded term for the coupling of bond stretching with bond angle bending (i.e. a
bond-angle cross term) is given by
Upg = Kpg[(b — bg) + (b —b'g)](6 — 6) Eqn. 4
To restrain sp® hybridized trigonal centers to out-of-plane bending is described as a
scaled value of the angle (i.e. y) between j1 vector and ijk plane for sequentially bonded
atom centers (i,j,k,1) as given by
Uoop = Kyx? Egn. 5
Torsional energies describe rotational barriers about the central bond of four linearly
bonded atoms that define a dihedral angle ¢ using a Fourier expansion with n terms,

where the n™ term is parameterized by its magnitude K, and phase &,

Usgrsion = ) Kl + cos(nep £8,)] Ean. 6

A torsion-torsion energy coupling term was implemented in previous version of AMOEBA via a
grid-based correction to ensure correct conformational energies for -y based on quantum
mechanics target data. However, recent efforts have focused on achieving similar quality from
traditional 3-term Fourier expansion torsional functions. An exception is the backbone @-{
coupling for glycine residues, which continue to be corrected by a two-dimensional bicubic
spline (Shi et al., 2013).

Pairwise additive van der Waals (vdW) interactions are described using a buffered 14-7

potential, which has a general functional form described by

1+ 6\ /1+y Eqgn. 7
Uvaw = &j | — = m -2
pij+4 pi; +v

The potential well depth is given by &; and p; represents Ry/R%;, where R%; is the

minimum energy distance and Rj; is the separation between atoms i and j. Furthermore,



the fixed values of n = 14, m =7, 6 = 0.07, and y = 0.12 were chosen (Halgren, 1992).

Thus, van der Waals interactions are given by

—_— 1.07 \' [ 112 , Eqn. 8
vaw = G\ o+ 0.07) \pf, + 012

- . o _ R+ R})?
where the combining rules for heterogeneous atom pairs are R;; = RO2r(RY)E
i ji

for

— for well depth.
1/2, 1/2
(Eii tEjj )

minimum energy distance and ¢;; =

Furthermore, AMOEBA charges and van der Waals parameters are designed to reproduce
properties of molecules in both vapor and condensed phase environments. This
transferability depends on an electrostatic model defined by ideal induced dipoles and
permanent multipoles (through quadrupole order) placed at each atomic center. The

permanent electrostatic energy between atoms i and j separated by a distance rjj is given

by Uflirm(rij) = M[T;;M; where

7]
1 g J g Eqn. 9
0, 0, 0,
d 0° 0° 0°
O Oxdx; Ox0y, 0n0y |
Tij =| 9 0 2 9 2 9 2 I
ayi aYiax] ayian aJ/LaZ]
d 0° 0% 0%
O,y Oplx, 0y0y, Oy0,,

and the permanent multipole for atom i is given by a vector containing a partial charge,
an ideal point dipole and an ideal traceless quadrupole

Mi = [qu .ui,x' ﬂi,yJ :ui,z' Qi,xx' Qi,xy' Qi,xz: Qi,zz]T Eqn- 10



Polarization is described by an induced dipole at each atomic center, which for atom i is
given by
wih' = a;E;q Eqgn. 11
where E; , is the total electric field along the a-axis (i.e. where a is X, y or z) and «; is
the polarizability of atom i. The total electric field is generated by permanent multipoles
and induced dipoles at all other atomic centers (neglecting masking rules) as summarized
by
Eqgn. 12

pid = | ) TIM + ) T
{J} U"

The polarizable AMOEBA model has been defined for water (Ren & Ponder, 2003) and
ions (Grossfield, Ren, & Ponder, 2003), small molecules (Ren et al., 2011) and proteins
(Shi et al., 2013) and support for continuum electrostatics has been established (M. J.
Schnieders, Baker, Ren, & Ponder, 2007; M. J. Schnieders & Ponder, 2007). Application
of the AMOEBA model in the context of biomolecular X-ray crystallography refinement
at both high and low resolution has demonstrated improvements to both MolProbity
assessment (Chen et al., 2010) and agreement with experimental scattering data (Fenn &
Schnieders, 2011; Fenn, Schnieders, Brunger, & Pande, 2010; M. J. Schnieders et al.,
2011). For example, global optimization of amino acid side-chain conformations for
PCNA structures was recently explored (LuCore et al., 2015). Additionally, a general
automatic parameterization procedure using the Poltype tool has been developed. Poltype
is used to parameterize arbitrary organic molecules for the AMOEBA force field (J. C.
Wu, Chattree, & Ren, 2012), which broadens the scope of applicability of AMOEBA
refinement approaches to most data sets found in the Protein Databank (Berman et al.,

2000).
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2.2: Local and Global Optimization

Both local and global optimizations are critical for protein structure optimization in the
context of interpreting experiments and for ab initio predictions. The algorithms used to
determine optimal loop conformations often depend on both. Here we introduce some of
the most commonly used techniques for optimization, with a particular focus on schemes
that have been applied to protein loop prediction.

2.2.1: Local Optimization: Steepest Decent, Newton and Quasi-Newton Algorithms
Relaxing biomolecules to local minima has been accomplished through methods with
varying trade-offs. By exploiting derivatives of the energy function, line search
algorithms are able to discover lower energy coordinates for a system. The simplest use
of the derivative landscape is a greedy choice algorithm coined steepest descent; step
directions are always chosen to coincide with the negative gradient direction.
Alternatively, Newton’s method makes use of the second derivative matrix (i.e. the
Hessian) to locate the potential energy minimum using fewer steps, albeit at a greater cost
per step. The Hessian information helps to reduce oscillations about the local minimum,
but calculation and storage of n? elements is computationally intensive and memory
expensive. Fortunately, the inverse Hessian can be estimated using a series of gradient
evaluations. This leads to quasi-Newton algorithms, such as the limited memory-BFGS
(Byrd, Lu, Nocedal, & Zhu, 1995) scheme, which converge in fewer iterations than
steepest descent, but with a similar computational cost per step (Ponder & Richards,

1987).
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2.2.2: Global Optimization Using Molecular Dynamics and Simulated Annealing (SA)
Protein loop optimization in 3-dimensional Euclidean space is simplified to some degree
due to constraints defined by the loop end-points (i.e. peptide carboxyl or amino termini).
As mentioned previously, the local optimization methods use slope information (i.e. the
gradient) to step in the direction of a local minimum. On the other hand, global
optimizers must avoid favorable local minimum and overcome barriers that would
otherwise halt further progress. In other words, the potential energy functions for proteins
describe a rough landscape with many barriers and local minima. To escape local minima
and overcome barriers, the simulated annealing global optimization techniques use
temperature and kinetic energy in a simulation method known as molecular dynamics
(MD) (Alder & Wainwright, 1959) where MD simulations act on forces via discrete
integration of mass and acceleration of the atoms in a molecular system. Higher
temperature increases the velocity distribution of the atoms and the total kinetic energy of
the system. The larger the kinetic energy, the greater the ability of the system is to escape
local minima (i.e. higher barriers can be crossed). Furthermore, the procedure finished by
following a slow cooling protocol, which allows system (i.e. the loop) to relax into the
global minimum potential energy. The success of the algorithm is directly tied to the
cooling protocol and duration (Brunger, Krukowski, & Erickson, 1990).

2.2.3: Potential Smoothing
Overarching strategy of potential smoothing is to flatten the original potential energy
surface and reduce the number of local minima (Piela, Kostrowicki, & Scheraga, 1989).
The use of potential smoothing for global optimization repeatedly transforms the

potential energy surface until only one minimum remains. The minima are described by
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the depth of their potential well, which is defined as the difference between the minimum
value at the boundary and the value at the bottom of the well (i.e. the local minimum).
The underlying assumption is that shallower potential wells will blur into the surrounding
surface more easily than a deep well, so it is expected that the deformation of the
potential energy surface will disappear shallow wells by absorbing them into growing
deeper potential wells. The method avoids issues associated with the generation of
Boltzmann distributions for each temperature gradient, which can be problematic for the
aforementioned temperature dependent global optimization methods (Hart, Pappu, &
Ponder, 2000). However, there is a drawback because the modified potential energy
surface has potential wells with shallower depths, modified positions, altered gradients,
and a different overall size. In response to these issues, once a single minimum is reached
the algorithm is reversed and the minimum is traced back to its origins.

2.2.4: Metadynamics and Orthogonal Space Random Walk (OSRW)
Metadynamics is a powerful enhancement to MD sampling based on addition of a time
dependent bias to the total potential energy, which drives the system to escape local free
energy minima and more rapidly explore phase space (Kong & Brooks, 1996; Laio &
Parrinello, 2002). The time-dependent bias is usually based on a summation of Gaussian
functions whose locations are a function of a state variable (i.e. A) (A. Barducci, Bussi, &
Parrinello, 2008). Thus, metadynamics is an attractive alternative to potential smoothing
because the time-dependent bias flattens the potential energy landscape without the
smoothing transformation, which is cumbersome to derive and implement for advanced
force fields. Furthermore, a priori definition of a cooling schedule and duration required

for simulated annealing are avoided. For these reasons, the current work explores a
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metadynamics optimization strategy, rather than potential smoothing or simulated
annealing, to achieve efficient configurational search during optimization of loop
coordinates.
As a metadynamics simulation converges, the A-dependent biasing potential f,,(t, 1)
approaches the negative value of the A-dependent AMOEBA free energy—Gaporsa(A)-
The time-dependent total potential energy equation is given by
Un = Uamoea(A) + fr(t, 1) Eqn. 13

where A is a thermodynamic path variable. In the case of loop optimization, A = 1
corresponds to the loop interacting with its condensed phase environment, while A = 0
corresponds to the loop being uncoupled from the environment where it experiences a
vapor state.
While metadynamics increases search efficiency along the reaction coordinate defined by
A, hidden barriers remain (Zheng et al., 2008). The Orthogonal Space Random Walk
(OSRW) method expands the Gaussian-shaped repulsive potential to include bias along
the derivative of the potential energy with respect to A (F; = dU/dA) to give a total
potential energy defined by

Un = Usmorsa() + (D) + gm(4, Fy) Eqgn. 14
where g,,(4, Fy) is the sum two-dimensional Gaussian-shaped repulsive potentials (i.e.

hills) centered at states given by [A(t;),F,(t;)] (Michael J. Schnieders et al., 2012):

(ll—ﬂ(tiﬂzx|F/1—Fa(ti)|2) Eqn. 15
gmOVE) = ) hel 2wt v
ti

The additional biasing dimension promotes crossing of hidden barriers relative to the

simpler one-dimensional bias of original metadynamics approaches. This motivates the
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choice of OSRW for protein loop optimization, where the goal is to broadly explore the
conformational landscape to discover the minimum free energy configuration.
2.2.5: Previous Loop Optimization Efforts

In some respects, the challenge of modeling protein loops is a subset of the general
protein folding problem and much has been learned from prior attempts at ab initio loop
structure prediction. Conceptually, it is useful to subdivide loop determination into three
interrelated pieces: 1) loop closure, 2) enumeration of conformations and 3) choice of
target function or score. Loop closure bridges known peptide carboxyl and amino termini
anchors with a viable starting conformation. Next, conformational enumeration proceeds
using a sampling scheme such as MD or Monte Carlo. Both loop closure and
conformational enumeration depend on a target function or score to access the relative
probability of loop coordinates and ultimately choose the best conformation (or ensemble
of conformations).

Loop closure is often done under geometric constraints that are consistent with peptide
backbone geometry (i.e. steric overlaps must be avoided and low-energy ¢-y angles
achieved). Furthermore, loop closure of three residues or less must have a discrete
number of possible loop conformations based on peptide ring closure work (Go &
Scheraga, 1970) that showed the number of geometric constraints is consistent and equal
to the number of degrees of freedom (i.e. six torsion angles for three residue loops).
Because there are a discrete number of loop conformations for three residues, inverse
kinematics methods have been developed for loop conformations (Canutescu &
Dunbrack, 2003; Coutsias, Seok, Jacobson, & Dill, 2004). First, a greedy algorithm

known as Cyclic Coordinate Descent (CCD) iterates over any number of loop dihedral
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angles and adjusts the angle to minimize the sum of the squared distance between back
bone atoms of the moving C-terminal anchor and the known fixed C-terminal anchor
(Canutescu & Dunbrack, 2003). Another commonly used algorithm stemming from
inverse kinematics, kinematic closure (KIC), reduces the tripeptide closure problem to a
16-degree polynomial and analytically solves for all possible loop conformations
(Coutsias et al., 2004). However, the initial conformation of loop atoms may not
ultimately limit the quality of conformations (Fiser et al., 2000), such that random
placement or buildup of atoms is sufficient for closure when used in tandem with a robust
global optimizer. Even so, it is reasonable to expect that initial conformations near the
global minima of the target function will converge most efficiently. Other loop closure
methods include random tweak (Fine, Wang, Shenkin, Yarmush, & Levinthal, 1986;
Xiang, Soto, & Honig, 2002), direct tweak (Soto, Fasnacht, Zhu, Forrest, & Honig,
2008), a meet in the middle approach (Jacobson et al., 2004; Spassov, Flook, & Yan,
2008; Zhu, Pincus, Zhao, & Friesner, 2006), and polypeptide fragment mining based on
closure gap distance (Deane & Blundell, 2000, 2001; Ko et al., 2011).

Protein loop conformations produced from loop closure are the starting coordinate seeds
for conformational optimization techniques that locally or globally explore the search
space of loop conformations. Methods to explore search space include MD simulations
(R. E. Bruccoleri & Karplus, 1990), SA (Collura, Higo, & Garnier, 1993) or a variety of
Monte Carlo (MC) move sets to locate low energy conformations (Li & Scheraga, 1987).
In the case of MC, local moves propose new loop conformations followed by application
of the Metropolis acceptance-rejection criterion (Metropolis, Rosenbluth, Rosenbluth,

Teller, & Teller, 1953) to decides whether to keep the original conformation or accept the
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new placement. Several MC variations have explored both move sets and alternative
acceptance criteria to optimize protein structure, including hierarchical MC (Jacobson et
al., 2004), biased MC searches (Abagyan & Totrov, 1994; M. G. Wu & Deem, 1999) and
a few others (Cui, Mezei, & Osman, 2008; Mandell, Coutsias, & Kortemme, 2009; Rohl,
Strauss, Chivian, & Baker, 2004). Other optimization efforts considered use of fine-
grained sampling in conjunction with conjugate gradients (Fiser et al., 2000), limited-
memory BFGS (de Bakker, DePristo, Burke, & Blundell, 2003; DePristo, de Bakker,
Lovell, & Blundell, 2003), Newton-Raphson minimization (Spassov et al., 2008), side
chain optimization (Lee, Lee, Park, Coutsias, & Seok, 2010) and steepest descent
minimization (Cui et al., 2008).
Finally, enumeration and evaluation of the optimization steps or loop conformations is
guided by a variety energy functions ranging from fixed charged force fields (Fiser et al.,
2000; Jacobson et al., 2004), statistical or knowledge based potentials (Das & Baker,
2008) and/or potentials that incorporate experimental data (Brunger, 2007; Trabuco et al.,
2008). In this work, we focus on a target function that is a weighted combination of the
polarizable AMOEBA force field and electron density maps that arise from either X-ray
crystallography or Cryo-EM. Combination of this hybrid target rests on maximum-
likelihood principles (Murshudov, Vagin, & Dodson, 1997) and is defined by

Etot = Echem + WaEx—ray Eqn. 16
where Ei is the hybrid target, Ecrem is the force-field energy, Ex.ay is @ metric of
agreement between real-space map (Cowtan, 2005; Read, 1986) and the electron density

map, and wa is the weight given to that metric.
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CHAPTER 3: GLOBAL LOOP OPTIMIZATION USING A POLARIZABLE
FORCE FIELD
GONDOLA is flexible global optimization strategy for structural biophysics. Here we
will focus on its relative merits for finding optimal protein loop conformations using the
OSRW flavor of metadynamics and a target function that combines experimental data
and a polarizable force field (i.e. AMOEBA). In this case, the experimental target
function uses a real-space density map (i.e. a SigmaA weighted 2F,-F. map) that was
used successfully in previous PCNA structure refinement work (LuCore et al., 2015).

3.1: Formal Loop Definition

Given two consecutive secondary structure elements, a loop can be defined as residues in
the range [Xi-Xn.1] where X, corresponds to the terminal residue of the secondary
structure proximal to the N terminus of the defined loop, and X, represents the origin of
the second secondary structure. Xo and X, serve as anchoring points for loop closure. In
practice, this definition can be relaxed to include upstream and/or downstream structural
regions in any conformation, so long as they serve to anchor the beginning and end of
intermediate sequence (i.e. loop) that will be optimized. Despite being included in our
loop definition, the terminal coordinates are immobile during optimization procedures.
Furthermore, the loop optimization occurs with all non-loop elements remaining
stationary during molecular dynamics simulation; however, all atoms contribute to the

total potential of the system.
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3.2: Loop Build-Up
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Figure 2. Shown are the initial steps of placing protein loops (1-3), the initial starting seed
relaxation (4), back and forth metadynamic exploration of loop conformation space where L is A
state value (5a-5c), and the final loop local minimization (6).

The algorithm begins by building the missing residues along a vector from the XO
carbonyl carbon to the nitrogen of Xn as an extended polypeptide chain that connects the
defined anchoring residues (step 2 of Figure 2). The initial coordinates of built loops are
given a small, random coordinate bump (step 3 of Figure 2) because off-center starting
coordinates avoid numeric instabilities (e.g. singular multipole rotation matrices) inherent
to our target function. Next, the loop is subject to a local minimization using the Limited
Memory-BFGS (L-BFGS) method without including non-bonded energy terms (step 4 of
Figure 2). By removing van der Waals interactions while bonds and angles are relaxed,
unreasonably large steric hindrance energies are avoided. The resulting conformation

provides a relatively stable starting seed for the downstream metadynamics step.
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3.3: Global Optimization Using Metadynamics and a Polarizable Force Field

GONDOLA

3.3.1: Defining the A Path
The third and most expensive step uses the OSRW variant of metadynamics to explore
conformational space for the global loop minimum. For MD that updates positions and
velocities using Beeman integration (Beeman, 1976), coupling to a heat bath at 300 K is
performed using either the Berendsen velocity rescaling thermostat (Berendsen, Postma,
Vangunsteren, Dinola, & Haak, 1984) or the Bussi thermostat (Bussi, Zykova-Timan, &
Parrinello, 2009). Alternatively, stochastic dynamics (Allen, 1980) can also be used with
a time step of 1 fs. As before, the coordinates of non-loop atoms are fixed while the loop
is allowed to move according to the integration scheme. The non-loop portion of the
protein contributes to the potential energy as a function of the state variable A. This
controls the strength of non-bonded energy terms (i.e. softcore van der Waals and
electrostatic interactions), and as the simulation proceeds A varies continuously between 0
and 1 (Michael J. Schnieders et al., 2012). Favorable conformations allow loop and non-
loop atoms to attain their full non-bonded interactions (i.e. A=1), which are consistent
with the condensed phase environment (i.e. the crystal). When A is zero, the loop atoms
only experience bond stretching and angle bending terms, which can be thought of as an
alchemical (i.e. unphysical) vapor-like phase. While the loop is in such an alchemical
state, it can easily escape conformations that are confined by potential energy barriers
found in the crystalline environment. In addition to smoothly eliminating non-bonded
interactions as A approaches 0, torsion, pi-torsion and torsion-torsion AMOEBA energy

terms are also scaled to zero. Thus, in the unphysical A=0 state, the potential has

20



effectively been smoothed to remove all barriers to rotations about dihedral angles,
leaving only bond-stretching and angle-bending topological restraints.

3.3.2: Condensed Phase Quenching
Periodic local minimizations quench the system to assess the depth of the current
potential energy well, based on the condensed phase potential energy (i.e. A=1). Because
the objective of the search is to find the global minimum of the physical end state and not
the alchemical vapor state (i.e. A=0), assessment of conformational energy and fit to the
data is only done when A > 0.5. Importantly, for A greater than 0.5, the loop conformation
is favorable enough that softcore non-bonded interactions are substantially contributing
and scaled bonded terms terms are at least half of their physical value. A typical
ensemble average of the partial derivative of the potential energy function (Figure 3)
demonstrates that the state of the protein loop is driven towards condensed phase
whenever the protein loop has discovered a favorable environment (i.e. <oU/oA> is less
than O for A greater than 0.5).
Assessment of A state occurs at intervals of 1000 fs. Shorter intervals of simulation time
between assessments would use unnecessary computational resources without allowing
the loop time to explore a new potential well. Similarly, intervals that are too larger may
miss minima due to the time-dependent bias driving the simulation to explore new
regions of phase space.
Local minimizations are performed on an unbiased hybrid target. The energy and
coordinates of the condensed phase optimized structure are saved if they are the energy
value is the lowest the simulation has found. After minimization, the loop is reverted

back to the coordinates and A state to allow the OSRW search to continue.
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3.3.3: The Biasing Potential
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Figure 3. Shown is a typical ensemble average partial derivative of the potential energy
with respect to lambda ((dU/a@A4)). Its value as a function of A for loop optimization
demonstrates that the loop is readily pushed toward the A=1 state (i.e. condensed phase)
except for A near 0. The threshold for local minimization (quenching) as described in
section 3.3.2 is marked at A=0.5. The topological clues provided by this graph (i.e.
barriers present for various A states) support this decision because states of A > 0.5 are
closer to the true potential energy surface seen by A=1. KIC moves can be attempted
when A < 0.1 (see section 3.3.4) to improve search space exploration for highly smoothed
non-bonded interactions.

While molecular dynamics is running at 300K on the loop portion of the protein, the
OSRW method works to flatten the energy landscape by applying Gaussian bias
potentials that are a function of the state variable (1) and the partial derivative of the
potential energy in terms of A (i.e. U/0)). The bias enables the loop to sample coordinate
search space efficiently by promoting escape over barriers via smoothing the potential

energy surface. Thus, OSRW presents a computationally efficient global optimization
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procedure, if run for long enough that will flatten the potential energy landscape and
allow the loop to cross barriers that exist along both A and dU/o\ (i.e. hidden barriers).
Optionally, it is possible to tune efficiency by utilizing a higher initial bias magnitude
(i.e. bias > 0.002 Kcal/mol). This may allow the optimization to escape barriers more
quickly; however, the buildup of large bias potentials becomes problematic for the oU/oA
term. Unlike A, oU/OA is not bounded, so accumulation of bias potential along oU/ox
pushes the protein loop to explore increasingly high-energy states, which can eventually
lead to unstable simulations. A somewhat analogous concern exists for high-temperature
SA, where increasingly high atomic velocities require reductions in MD time step. The
concerns associated with using large Gaussian magnitudes can be mitigated by the use of
transition tempered OSRW (TT-OSRW) (Dama, Rotskoff, Parrinello, & Voth, 2014).
TT-OSRW systematically decreases the size of new bias potentials by a depreciating
scalar as the sum of bias potential and true potential reaches a flat potential energy
surface. By using the current minimum bias height the TT-OSRW method scales by

Bias.yrrent = Biasorige(_%) Eqn. 17
where AT tunes the decay rate.

3.3.4: Vapor Phase MC with KIC Based Move Set

Although the biasing potential eventually smoothes the overall potential energy surface
along both A and oU/o\, escaping deep energy wells may still consume a large amount of
compute power. To promote discovery of substantially different loop configurations, it is
possible to propose aggressive MC moves every 1000 fs if the loop is near the vapor state
(i.e. non-bonded repulsion has been turned off). We define “near” vapor phase for the
purposes of MC moves as A < 0.1, although the success probability of a given MC move

set can be further tuned by changing this limit. The proposed MC move is defined as a
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chain move of five iteration calls to the tripeptide analytic solution of KIC. Each of the
iterations picks the center residue to be a random residue from X,.; to X;. The criterion is
applied only to the final solution such that the chained moves are aggregated to propose a
drastically altered configuration. These large swings in the vapor phase allow the loop to
explore new wells and cross barriers more efficiently. Additionally, because the move is
an analytically derived correct answer to a sub-problem, the loop is guided towards
minima containing this solution.
3.3.5: Parallelization

Parallelization of this algorithm was achieved through using a Message Passing Interface
defined by the Parallel Java APl (Kaminsky, 2007). The software is launched on a main
compute node for scheduling. Then each compute node in use builds a loop via the
random build-up, which allows each node to have a different starting seed. The nodes run
their own GONDOLA, but all of the calculations contribute to the same global histogram
(i.e. the same OSRW bias). In other words, each built loop shares its search findings
(repulsive Gaussians) with the other loops. Finally, optimal loops are locally minimized
using L-BFGS with a reciprocal space crystallography target to finalize coordinates and
b-factors.

3.4: Finalizing Structure and Metrics

The final steps after Figure 2 include 1) a full potential minimization of the loop atom
coordinates, 2) a hybrid target local optimization for the entire protein (coordinates and b-
factors), and 3) evaluation of the final loop conformation using experimental metrics
(R/Rfree) and structural metrics including clashes, poor rotamers, unfavorable dihedral

angles, and other bond geometry using the MolProbity structure validation tool, which
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assigns structural scores based on van der Waals contacts, hydrogen-bond distances, side-

chain rotamers, and peptide backbone conformation.

25



CHAPTER 4: PROTEIN LOOP OPTIMIZATION RESULTS
The first goal of the protein loop applications presented below is to demonstrate that
limitations of previous generation fixed charge force fields for scoring loops can be
overcome using the polarizable atomic multipole AMOEBA force field. The second goal
IS to assess the relative efficiency of the novel metadynamics search protocol compared
to previous loop optimization approaches such as simulated annealing.

4.1: Force Fields as Scoring Functions

The target functions explored here are a sum of force field and experimental energy
terms. If the former recapitulates the crystalline environment to high degree, there will
be concordance with the experimental data (i.e. the target function will be relatively
insensitive to the weighting of the force field and experimental energy terms). To access
the concordance, Figure 4 shows the agreement between the Rgee Vvalue for the

experimental data and two different force field potential energies.
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Figure 4. 574 eight residue long decoy loops corresponding to PDB ID 1CBS and 553
twelve residue long decoy loops corresponding to PDB ID 1AKZ from a commonly used
loop decoy data set (Jacobson et al., 2004) were scored using a polarizable force field
(AMOEBA) and a fixed charged force field (OPLS-AA) (shown on the top-left and
bottom-left). Each loop received a local minimization in the respective force field, and
then the force field potential energies were compared to the Ryee value of each structure.
AMOEBA is shown to correlate better to Rgee Values than OPLS-AA, which supports the
claim that a polarizable force field serves as a more accurate scoring function.

The AMOEBA and OPLS-AA force fields showed some correlation (i.e. coefficient of
determination > 0) to R, Suggesting that both force fields provide reasonable forces for
crystalline protein simulations. However, the higher order multipoles and polarization of
the AMOEBA force field more accurately represented the true crystalline environment.
Thus, scoring of loops with AMOEBA provides more realistic evaluations. Figure 4 also
shows that neither force field is perfectly correlated (i.e. coefficient of determination = 1)
to experimental data, which supports the need for a hybrid target function. Note that

evaluation of force field potential energy does not capture entropy (i.e. well depth is
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critical and well width is ignored) such that its minima are not equivalent free energy
minimum. Each of these points motivates use of the AMOEBA potential (i.e. better
representation of the crystalline environment) as part of a hybrid target (i.e. experimental
data allows us to bias the scoring function toward free energy minima) function for
optimizing protein loops (Fenn & Schnieders, 2011).

4.2: Convergence Analysis: Metadynamics Compared to SA
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Figure 5. Shown are ten loop optimizations of the four residue loop in PDB ID 4GVD
occurring over 5ns of simulation time (five simulated annealing simulations following a typical
cooling protocol (Hart et al., 2000) and five simulations based on the metadynamics approach
discussed in this thesis). The four lowest energy structures were outputs from the metadynamics
approach. The sixth best loop also belonged to the metadynamic method.

Establishing a target function independently of loop optimization allowed analysis
between current gold standards in loop optimization and the GONDOLA approach as
seen in Figure 5. Out of five metadynamics (i.e. GONDOLA) and five simulated annealing
trials, GONDOLA discovered four loops with energies lower than any discovered via SA.
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Furthermore, three loop conformations with energies lower than any found by SA were achieved
before 0.5 ns of simulation time. The GONDOLA approach allows the search to be restarted (i.e.
continuation from any of the achieved loops), whereas SA requires the entire temperature
schedule to be repeated (i.e. temperature must be raised to allow kinetic energy to overcome the
highest barrier between the current well and that of the global minimum).

4.3: Building PDZ Domains and Rebuilding Known Loops

4.3.1: Initial Structure Evaluation
The performance of loop optimization was tested against two datasets. The first contains
three PDZ Domains, which do not have coordinates determined for a section of the
carboxylate binding loop, and two of these proteins are also missing a two residue loop
slightly further down the chain. The proteins that are missing two loops had both loops
built and optimized simultaneously. The second data set removes known loop coordinates
from a loop decoy data set that has been used extensively for previous loop building

assessment (Jacobson et al., 2004).
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Table 1. The PDB ID, resolution, R/Rs values and MolProbity analyses for the deposited
protein models are shown. Three PDZ Domains are listed, and each is missing one or more
protein loops. Seven additional loops were assessed to measure the algorithms performance
over increasing loop lengths. All seven of these latter loops have known conformations based
on structures in the Protein Data Bank.

Data Loop Res. Reported FFX MolProbity Clash Rama Poor

Set Size (A) R R R Rfee Score % Score % Out Fav Rot%

PDZ DOMAINS
4ANXP 5230 258 217 240 25.3 2.00 90 528 99 0.0 97.6 6.8
4GVD 4,2 185 243 196 22,9 25.0 1.94 70 8.99 82 0.0 98.3 4.1

3KZE 2,2 180 212 19.6 19.1 21.0 1.56 91 569 94 0.0 99.3 2.2

LOOP DECOYS

1CBS 4 180 200 237 19.4 20.0 1.40 97 401 98 0.0 97.8 1.6

2ARC 5150 179 232 18.8 23.2 2.02 40 6.79 84 0.0 97.0 4.1

2ARC 6 150 179 232 18.8 23.2 2.02 40 6.79 84 0.0 97.0 4.1

1CBS 7180 20.0 237 19.4 20.0 1.40 97 401 98 0.0 97.8 1.6

Mean 1.79 210 221 204 225 1.76 75 594 91 0.0 97.8 3.5

All of the deposited structures had a resolution better than 2.0 A, except 4NXP, which
was slightly worse at 2.30 A. The Ryee values were recomputed with the FFX software
package to provide a baseline for a direct comparison with optimized structures. The
difference between R and Ryee in 1CBS, 3KZE, and 4NXP did not correspond to the
deposited values, which could indicate that the correct Rsee flags were not deposited.
MolProbity assessment further indicates that there are minimal clashes, zero

Ramachandran outliers, and some poor rotamers.
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4.3.2: Evaluation of Optimized Structures

Table 2. The R/Rfe values and MolProbity analyses for the PDZ Domain and loop decoy data
sets are given for SA using the OPLS-AA fixed charged force field and GONDOLA under the
AMOEBA force field refinement methods. All R/Rse Vvalues were calculated in FFX for
consistency. The order which loops are presented is identical to Table 1.

Data Optimization MolProbity Clash Rama Poor

Set Method R Riree Score % Score % Out% Fav% Rot%

PDZ DOMAINS

ANXP SA|OPLS 21.03 29.06 184 95 0.7 100 20 944 9.1
GONDOLA 20.43 26.24 1.26 100 0.0 100 20 96.6 5.2
4GVD SA|OPLS 20.20 23.23 1.12 100 0.0 100 1.0 96.8 3.6
GONDOLA 20.24 23.22 150 95 3.0 99 00 974 2.4
3KZE SA|OPLS 21.45 27.04 142 96 1.3 100 20 979 4.9
GONDOLA 21.05 25.80 140 96 2.7 99 20 99.0 2.9

LOOP DECOYS

1CBS SA|OPLS 17.93 2241 177 80 1.8 100 20 956 4.9
GONDOLA 17.59 2221 170 89 23 99 20 95.6 3.3
2ARC SA|OPLS 18.85 23.25 211 32 72 81 30 96.6 4.4
GONDOLA 18.36 22.38 1.88 53 3.8 96 40 96.0 3.7
2ARC SA|OPLS 18.20 22.57 198 43 6.7 85 20 96.6 3.3
GONDOLA 17.68 22.04 155 82 23 99 10 972 3.3
1CBS SA|OPLS 19.73 24.16 201 62 2.7 99 30 919 4.1
GONDOLA 21.04 25.69 1.61 100 1.4 100 20 948 3.3
Mean SA|OPLS 19.63 24.53 175 73 29 95 21 957 4.9
GONDOLA 19.48 23.94 156 88 22 99 19 96.6 3.4

Table 2 demonstrates that, on average, GONDOLA was able to achieve a lower Riyree
value (i.e. the models represent experimental data more accurately), a MolProbity score

that was lower than both the SA annealing method and initial structure, fewer steric
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clashes, fewer unfavorable Ramachandran values, and decreased the number of poor
rotamers compared to the initial structure. As was shown in Figure 5, the convergence
rate is dependent on the random build-up loop structure (i.e. the starting seed); therefore,
it is not surprising the SA method was able to achieve a lower R Value (i.e. 24.16 <
25.69) in one of the seven loops attempted (7 residue loop of 1CBS). SA was also able to
yield a better MolProbity score for 4GVD despite having a slightly higher Ryee value

compared to the output of GONDOLA.

AN
~e

%

-

Figure 6. The protein structure of a PDZ domain in complex with Syndecanl peptide
(PDB ID: 4GVD) is shown with a 2Fo-Fc map contoured at 0.75c. Residues predicted

with GONDOLA are shown as stick models, and the corresponding map contours are
highlighted in green.
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CHAPTER 5: CONCLUSION

5.1: Summary of the GONDOLA Approach

The overarching goal of this work was to produce an efficient search method for
computing ab initio protein structures and to evaluate the benefits gained by using a
polarizable force field and a hybrid target function. Three carboxylate binding loops and
two small two residue loops from PDZ Domains were constructed from PDB files
missing coordinate data. For the well-behaved system, PDB ID 4GVD, the overall
structure’s R Was decreased using both SA with the OPLS-AA fixed charge force field,
and the GONDOLA approach. Known protein loops from a heavily used loop modeling
data set were also reconstructed.

GONDOLA was shown to converge faster than simulated annealing in Figure 5 while
Figure 4 demonstrated that scoring loop conformations with the AMOEBA potential
more correlated to experimental metrics (i.e. Rfee) than fixed partial charge force fields
for crystalline environments. Comparisons made in Table 2 confirmed that for every
metric (i.e. Rfee, VAW clash score, Ramachandran peptide backbone angles, and side-
chain conformations) that, on average, the GONDOLA approach was able to construct
the protein loop more accurately than SA with a fixed charge force field.

5.2: Future Direction and Alternative Applications

With genomic and protein sequence data being gathered at astonishing and increasing
rates, experimental protein structure determination cannot keep pace. Therefore, it is
imperative to augment experimental structures with predictive models. Furthermore, ab
initio methods for building missing residues, loops and domains during refinement of

experimental models are also critical. This work demonstrates that GONDOLA is well-
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suited to refine or predict the coordinates of missing residues. The flexibility in the
optimization protocol allows GONDOLA to be easily reconfigured for refinement of
side-chains (i.e. set side-chain atoms active while constraining backbone atoms), residues
(i.e. side-chain atoms and backbone atoms active), ligands (i.e. set atoms along binding
interface active), or any desired portion of a protein.

Of particular future interest are the benefits of GONDOLA for homology modeling.
Current theory that underlies the widely used SwissMod (Kiefer, Arnold, Kunzli,
Bordoli, & Schwede, 2009) and Modbase (Pieper et al., 2014) homology modeling
databases attempt to use multiple sequence alignments, coupled with assumptions of
evolutionary conservation of protein folds to thread new protein sequences onto existing
structures using fixed charge force fields. As one could imagine, the proteins are not
identical, and this approach may fail for regions where the target sequence strays from
the template sequence. These regions between highly conserved folds are fundamentally
similar to the protein loops analyzed in this thesis, and therefore, may be amenable to
GONDOLA'’s accurate ab initio structure prediction.

Furthermore, GONDOLA is not restricted to crystalline environments or the time-
dependent biasing protocol described here. For example, alternative biasing potentials
might focus on sampling backbone or residue torsional angles. The AMOEBA force field
potential could also be augmented to include explicit or implicit solvent, which may
further improve conformational preferences of surface exposed residues, the binding
interface between a protein and its ligand, or any other application where solvent

environment is critical.
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