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ABSTRACT 
 

The female heart undergoes adaptive remodeling during pregnancy to compensate for the 

increased hemodynamic load imposed by the developing fetus.  However, unlike a 

similar adaptive process which occurs under pathological conditions (such as 

hypertension and valvular heart disease) the cardiac changes observed during 

hypertrophy associated with pregnancy are reversible. The goal of this study is to identify 

changes in gene expression associated with pregnancy-induced hypertrophy.  We tested 

the hypothesis that pregnancy-induced physiological hypertrophy has a unique genetic 

signature, likely due to altered hormone levels, which supports and promotes reversible 

remodeling.  Comparing the gene expression profile associated with physiological 

remodeling with that involved in pathological remodeling of the heart, may lead to new 

therapeutic approaches for treating pathological heart disease under conditions of 

increased hemodynamic load.  We analyzed two microarray datasets for gene changes 

during mid and late pregnancy and the early post-partum period and compared them to 

virgin mice in diestrus.  Numerous changes in extracellular matrix genes were identified 

and the mRNAs for TIMP1-4, MMP3, MMP11, MMP13-MMP16, MMP25, and MMP28 

were quantified in left ventricles by real-time PCR confirming some of the microarray 

changes but not others.  Late pregnancy and the early post-partum period exhibited the 

most gene changes.  As changes in TIMP and MMP mRNAs may reflect changes in their 

protein levels and activity, we predict that MMPs and TIMPs are important players 
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during the peripartum period may determine the extent of matrix remodeling that occurs 

in the left ventricle during this time. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction Overview 

Cardiovascular disease is the most common cause of death in the world.  Based 

on 2013 statistics from the American Heart Association, approximately 83.6 million 

Americans are living with some form of cardiovascular disease (Go et al, 2014).  The 

cardiovascular system is comprised of the heart and a circulation system of blood vessels.  

The heart is a muscular organ which pumps blood through blood vessels to tissues to 

supply all the cells of the body with oxygen. Cardiac hypertrophy is defined as an 

increased thickening of the heart wall including that of the left and right ventricles and 

which can decrease the size of the heart chambers; it is a feature of many types of 

cardiovascular disease.  Despite advances to the cardiac research field, pathological 

cardiac hypertrophy is not completely understood and deserves further study.  Once 

damage occurs to the cardiac muscle, such as during cardiovascular disease, there is no 

way to restore the muscle back to normal.  Pathological changes in the heart extend to 

regions outside the cardiac muscle and include the extracellular matrix regions.  

Pathological cardiac hypertrophy can lead to heart failure, while physiological cardiac 

hypertrophy, such as that which occurs with exercise and during pregnancy, is beneficial 

to the heart and is reversible.  In this section the structure of the heart and cell types 

within it will be reviewed and the relationship between the muscle cells (myocytes) and
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their extracellular matrix (ECM) environment will be discussed.  Pathological and 

physiological hypertrophy (including that of pregnancy) will be reviewed and compared.  

As changes in the extracellular matrix are features of cardiac hypertrophy, components of 

the extracellular matrix will be reviewed.  Matrix metalloproteinases (MMPs) and Tissue 

inhibitors of metalloproteinases (TIMPs) are major regulators of extracellular matrix 

remodeling.  As initial microarray data analyses revealed that some genes for MMPs and 

TIMPS are regulated during the physiological hypertrophy accompanying pregnancy, 

these proteins will be the focus of this work and their general function and relevance to 

normal heart function and cardiac hypertrophy will be reviewed herein. 

1.2 Anatomy of the Heart   

In human, the heart is located within the mediastinum of the thorax and weighs 

usually between 250 to 350 grams (Marieb 2013).  One-third of the heart mass projects to 

the right of the mid-sternal line, and two-thirds of its mass lies to the left of the mid-

sternal line.  It has four chambers which serve to hold the blood.  The two upper 

chambers, the right and left atria, are separated by a wall called the interatrial septum.  

The two lower chambers, the right and left ventricles, are separated by a wall called the 

interventricular septum.  The heart muscle in the chamber walls serves to pump the 

blood.  The right ventricle pumps blood through the pulmonary trunk to the lungs, while 

the left ventricle pumps blood through the aorta and throughout the body.  Furthermore, 

there are four cardiac valves which are located in the heart at the entrance and the exit of 

each ventricle.  The heart has control of unidirectional blood flow through the chambers 

by opening and closing the valves of the heart.  Outflow valve opening and closure 

results from differences in the blood pressure on the two sides of the valve.  There are 
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two atrioventricular (AV) valves, the tricuspid and mitral valves.  When the ventricles are 

contracting the AV valves stop backflow through the atria.  The other two valves are 

called the semilunar valves and include the pulmonary and aortic valves.  When the 

ventricles relax these valves stop backflow through the aorta and pulmonary arteries.   

1.3 Cells types of the heart  

The heart contains different cell types that participate in the structural, 

biochemical, mechanical and electrical properties of the heart.  The main cell types 

include the cardiomyocytes, fibroblasts, endothelial cells, and smooth muscle cells.  The 

myocardium is composed of the atrial and ventricular cardiomyocytes to form the 

muscular walls of the heart (Xin et al, 2013).  Although myocytes occupy two thirds of 

the tissue volume, approximately 70% of cells within the myocardium are fibroblasts 

(Banerjee et al, 2007; Borg and Baudino, 2011; Goldsmith et al, 2004).  Fibroblasts 

reside in the connective tissue (Krenning et al, 2010; Souders et al, 2009). Vascular 

smooth muscle cells are found in blood vessel walls and endothelial cells line the inside 

of the heart and blood vessels. 

1.4 Myocardial cells (cardiac muscle cells) and fibroblasts  

The myocardium of the heart houses the cardiac muscle cells also called 

cardiocytes or cardiac myocytes (Wolfgang Kühnel 2003).  The cardiac muscle tissue is 

formed by an end to end arrangement of myocytes.  By a sliding filament mechanism, 

similar to skeletal muscle, the cardiac muscle contracts.  On the other hand, in contrast to 

skeletal muscle cells, cardiac cells are branched, short, and wide, and have centrally 

located nuclei.  The human cardiac myocyte can contract constantly 3 billion or more 

times without fatigue.  Myocytes measure approximately 100 to 150 µm in length and 20 
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to 35 µm in width, and each myocyte functions as an autonomous contractile unit (Severs 

2000). 

There are three types of cell junctions including the gap junction, the desmosome 

and the fascia adherens which are found at the intercalated discs between myocytes.  

Mitochondria comprise 30% of the volume of the cardiac cells and make those cells 

highly fatigue resistant.  Contractile myofilaments consist of actin, myosin, and 

associated proteins.  There are two types of myofilaments thin actin filaments and thick 

myosin filaments. The myofibrils are divided into repetitive sections called sarcomeres.  

Sarcomere that have (A) dark bands, (I) light band and (Z) discs which reflect the 

arrangement of actin and myosin filaments.  The cardiac muscle cell has sarcoplasmic 

reticulum tubules for storing and releasing Ca2+ which contributes to the contraction 

cycle (Marieb et al, 2013). 

Fibroblasts are cells of mesenchymal origin and are present in every tissue in the 

body (Krenning et al, 2010; Souders et al, 2009).  Morphologically, fibroblasts are flat, 

spindle-shaped with multiple processes of connective tissue surrounded by ECM.  

Cardiac fibroblasts play a central role in the physiological turnover of the ECM as well as 

its pathological remodeling (Fan et al, 2012).They secrete ECM proteins, cytokines, 

TIMPs and MMPs, natriuretic peptides and growth factors.Fibroblasts impact ECM 

homeostasis, myocyte hypertrophy and apoptosis, angiogenesis, and cardiac electrical 

properties. 

1.5 Pathological and physiological hypertrophy 

They are two forms of cardiac hypertrophy, concentric and eccentric, and the 

change in myocytes is different depending upon which one is occurs.  Concentric 
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hypertrophy results in a thickening of the ventricular wall and is associated with 

increased myocyte size while eccentric hypertrophy results in a lengthening of the 

myocyte and increased chamber diameter.  Hypertrophy can be adaptive and 

physiological or it can be pathological and ultimately maladaptive and detrimental to 

function.  Hypertrophy usually occurs in response to hemodynamic stress from volume or 

pressure overload and both types show increased cardiac growth or hypertrophy (Mone et 

al, 1996).  During pregnancy the heart develops physiological left ventricular 

hypertrophy as a result of the natural volume overload (Li et al, 2012).  In response to 

normal exercise or pregnancy physiological hypertrophy results and is characterized by 

an increase in cardiac pumping ability and muscle mass (Mone et al, 1996).  Pressure 

overload leads to concentric hypertrophy.  Volume overload-induced hypertrophy under 

non-pathological conditions is characterized as a proportional enlargement of the 

chamber size and the wall thickness (Dorn et al, 2003) and is reversible without aberrant 

effects on cardiac function (Daniels et al, 1988; Pluim et al, 2000; Schannwell et al, 

2002).  Physiological hypertrophy involves normal organization of cardiac structure and 

normal or enhanced cardiac function.  On the other hand, pregnancy, unlike exercise, has 

a continuous rather than sporadic force demand on the heart, and pregnancy is also 

accompanied by changes in the mother's hormonal environment (Iorga et al, 2012).  

Physiological growth is reversible in the instance of exercise- or pregnancy-induced 

hypertrophy and is associated with normal cardiac structure and normal or improved 

cardiac function (Ferrans , 1984; Schaible and Scheuer , 1984, Fagard 1997) (Fig.1).  

Physiological hypertrophy occurs in pregnancy in healthy women without heart disease 

to allow adaptation to the extreme hemodynamic changes that occur during pregnancy.  
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These changes in the heart slowly return to normal values during the post-partum period, 

but complete resolution may take as long as 6 months after delivery in humans.  In 

contrast concentric hypertrophy is a hypertrophic growth of a hollow organ without 

overall enlargement, and occurs as a result of pressure overload, which is characterized as 

increased wall thickness without a concomitant chamber enlargement.  Pathological 

hypertrophy occurs in response to chronic volume or pressure overload in a cardiac 

disease setting such as valvular heart disease, hypertension, myocardial infarction, or 

ischemia associated with coronary artery disease.  Pathological hypertrophy is also 

typically associated with loss of myocytes, fibrosis, cardiac dysfunction, and increased 

risk of heart failure and sudden death (Cohn et al, 1997; Levy et al, 1990; Weber et al, 

1993). 

1.6 Extracellular matrix 

Extracellular matrix (ECM) is the collective group of proteins and 

polysaccharides that surrounds most cells in tissues.  It contributes to the structure and 

function of a tissue (Lodish Freeman 2007).  The ECM of the heart contributes to the 

structural and functional integrity of the heart by creating an organized complex of 

proteins and proteoglycans that service many functions (Borg et al, 1993).  In the 

myocardium the ECM scaffold surrounds and supports the cells such as the 

cardiomyocytes and fibroblasts (Frangogiannis 2012).  ECM molecules include collagen, 

fibrillin, fibronectin, hyaluronic acid, proteoglycans and proteases and numerous other 

glycoproteins and proteoglycans.  Proteases break down proteins.  There are two main 

classes of protease that breakdown ECM proteins, ADAMTs (A disintegrin and 

metalloproteinase domain-containing proteins) and MMPs (Lockhart et al, 2011). 
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Figure 1.1. Cardiac hypertrophy can be classified as physiological, which occurs during 
pregnancy or in response to chronic exercise training, is reversible and characterized by 
normal cardiac morphology and function.  In contrast, hypertrophy that occurs in settings 
of disease is detrimental for cardiac structure and function and can lead to heart failure. 
Developmental hypertrophy is associated with the normal growth of the heart after birth 
until adulthood. RV: right ventricle, LV: left ventricle. Normal/ physiological heart 
growth is shown in green, pathological heart growth is shown in red (Reproduced with 
permission from Dr. Julie R. McMullen and Pharmacology and Therapeutics).
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ADAMTs and MMPs are in turn inhibited by TIMPs.  Under normal conditions, 

all these players function in equilibrium to maintain cardiac ECM homeostasis (Bowers 

et al, 2010).  The ECM is critical in both homeostasis and pathological remodeling 

(Manabe et al, 2002), where it maintains structural stability, correct myocyte geometry 

and provides for the transmission of contractile force (Caulfield and Borg, 1979; Weber 

1989).  The loose connective tissue matrix of the endomysium fills the intercellular 

spaces and containing a number of capillaries (Marieb et al, 2013).  Recent work has 

revealed that the ECM is involved in cell-cell signaling, regulation of cell proliferation, 

and control of gene expression.  It also aids in cell differentiation, cell migration and cell 

growth that aids the formation of cells into tissues and organizes their cellular functions 

(Daley et al, 2008; Frantz et al, 2010).  ECM remodeling is a key process for 

development of cardiac hypertrophy, the post-myocardial infarction response, dilated 

cardiomyopathy and heart failure (Swynghedauw 1999). 

 The cardiac myocytes of the myocardium are tethered together by an intricate 

framework of ECM proteins which provides structural integrity to the tissue and a means 

for optimal vectoral transmission of force (Baicu et al, 2003).  Cardiac remodeling 

includes myocyte hypertrophy and fibroblast proliferation and alterations to the 

expression and distribution of major structural proteins of the ECM.  The different cell 

populations of the heart vary in their ability to make and secrete different ECM 

components.  Various studies show that cardiac fibroblasts are the main cells that 

synthesize ECM components and secrete proteolytic enzymes such as the MMPs 

(Eghbali et al, 1989; Pelouch et al, 1993).  Cardiac fibroblasts are the primary producers 

of MMP family members (Baudino et al, 2006).  Fibroblasts and vascular smooth muscle 
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cells (VSMCs) are involved in collagen type I and III and fibronectin production, and 

VSMCs, myocytes and endothelial cells produce laminins and type IV collagen (Cohn et 

al, 2000).  Cardiac myocytes also produce collagen VI and proteoglycans (Jane-Lise et al, 

2000).   

 The cardiac ECM plays an important role in synchronized beating of 

cardiomyocytes to help the relaxation phase of the heart (Mishra et al, 2013). The 

function of the healthy heart depends on an effective transmission of force from cardiac 

myocytes to the ECM scaffold and the ECM protein content and arrangement are 

important for this process.  Aberrant expression of ECM components can lead to cardiac 

malformations like those found in congenital heart disease (Lockhart et al, 2011).  

Understanding ECM turnover during LV remodeling for post-MI patients and targeting 

ECM proteins will likely aid development of novel treatment strategies (Yabluchanskiy 

et al, 2013).   

 The following describes the major ECM and ECM-associated proteins, collagen, 

elastin, proteoglycans, hyaluron, fibronectin, laminin, and integrins:  

Collagen: Fibrillar collagens are the most abundant of the ECM proteins.  These 

proteins provide structural strength by helping to create three-dimensional matrix 

between cardiac muscle fibers (Bishop and Laurent, 1995).  Collagen structure is a unique 

triple helix: a right-handed supercoil of three left-handed polyproline II-like polypeptide 

strands composed of regular Gly-XY repeats (typically, X and Y are Pro and 4-

hydroxyproline (Hyp), respectively) (Beck and Brodsky, 1998; Okuyama 2008).  The 

specific cellular functions of collagen are known to be elicited by the interaction of 

specific epitopes displayed on the triple helix with either collagen receptors (i.e., 
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integrins, discoidin-domain receptors, and platelet glycoprotein VI) (Lebbink et al, 2009; 

Leitinger and Hohenester, 2007) or other collagen-binding molecules (Giudici et al, 

2008; Sweeney et al, 1998).  There are at least 28 distinct collagen types expressed in 

vertebrates.  Several collagen types have been identified within the myocardium 

including types I, III, IV, V, VI and VIII (Chapman et al, 1990; Iruela-Arispe and Sage, 

1991; Kitamura et al, 2001).  Approximately 70% to 85% of total cardiac collagen is in 

the left ventricle and provides tensile strength.  The majority of this collagen is type 

collagen I.  Collagen type III makes up approximately 10% of total cardiac collagen and 

helps maintain the elasticity of the ECM network.  Early pressure-overload hypertrophy 

studies revealed increased collagen content as well as myocardial mass as a result of 

experimental pressure overload (Bing et al, 1971).  Throughout systole, myocytes bear 

the vast majority of the wall stress but the surrounding collagen transmits force and helps 

maintain myocyte arrangement.  In diastole, perimysial collagen fibers uncoil as the 

ventricle fills; once these fibers are stretched to become straightened these fibers resist 

further expansion, account for the steep portion of the end-diastolic pressure-volume 

curve, and prevent myocytes from overstretching.  This concept of the mechanical role of 

fibrillar collagen in the heart emerged generally through correlative studies (Borg et al, 

1981).  Passive tension in cardiac muscle is due to the contribution of collagen, titin, 

microtubules, and intermediate filaments.  More quantitative modeling studies of 

collagen structure and content to myocardial mechanics is needed to completely 

understand the mechanical impact of changes in collagen type ratios and collagen cross-

linking.  The fibrillar collagens are identified with structural support for the matrix but 

the non-fibrillar collagens are important regulators in securing and organizing the ECM 
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meshwork.  Type IV collagen is the major component of the basement membrane.  

Collagen IV constructs a scaffold with laminin, entactin, and perlecan to create a 

collagen, proteoglycan, and glycoprotein meshwork in the basement membrane 

(Khoshnoodi et al, 2008; LeBleu et al, 2007).  Types IV and VI collagen interact in the 

basement membrane creating a connecting bridge between the basement membrane and 

the interstitial matrix (Kuo et al, 1997). 

Elastin: Elastic fibers impart passive recoil, promote cell attachment and regulate 

growth factor availability to dynamic tissues such as lung, aorta and skin (Kielty 2006).  

Elastic fiber constituents (elastin and fibrillin microfibrils) are degraded by serine 

proteases and MMPs (Ashworth et al, 1999).  Individuals with cardiac disease and 

increased MMP activation will eventually have reduced myocardial elastin content which 

is associated with increased ventricular stiffness, such as in the case of the spontaneous 

hypertrophic rat with decompensated heart failure (Mujumdar and Tyagi, 1999).  The 

myocardium contains elastin in the walls of coronary blood vessels as well as in the 

interstitium, but it is yet unclear whether elastin contributions are significant to 

myocardial mechanics (Fomovsky et al, 2010).  Acute ischemia disrupts the interstitial 

elastin fibers (Sato et al, 1983), as well as pressure overload (Henderson et al, 2007) and 

consequential heart failure (Cheng et al, 2006).  Fifteen years ago (1999), Mujumdar and 

Tyagi speculated that changes in both the elastin-collagen ratio rather than collagen 

content alone controlled the increased diastolic stiffness in pressure overload. 

Proteoglycans:  The ECM is composed of large proteoglycans (PGs) that a 

contain glycosaminoglycan (GAG) (Gao et al, 2014).  Water flow in and out of the tissue 

during loading regulates cartilage mechanics and is controlled by proteoglycans.  There is 
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currently no evidence that proteoglycans play a similar role in the myocardium, but it is 

possible.  Fluid movement is important to myocardial mechanics yet it is poorly 

understood.  Proteoglycans present in the myocardium are frequently overlooked when 

examining the cardiac ECM (Azeloglu et al, 2008).  Proteoglycans are known to be a 

significant determinant of residual stress in arteries, but their role in the myocardium 

needs further study.   

Hyaluronan: (HA) is the most abundant GAG in the developing heart. 

Glycosaminoglycans are long unbranched polysaccharide chains of repeating 

disaccharide units.  Hyaluronan is a non-sulfated GAG composed of an extra-long 

carbohydrate chain which allows it to displace a large volume of water.  It can act to 

absorb shock and affects the distribution and transport of proteins in ECM (Toole et 

al,2004).  In the developing heart, HA is found in the cardiac jelly and later in 

development in the AV canal and cardiac outflow tract endocardial cushions tissues and 

forming leaflets. Moreover, HA is also a present in epicardial mesenchyme and in the 

interstitial space surrounding the cardiomyocytes of the myocardial structures in the 

heart.  HA and its receptor CD44 are present in the heart of newborn and adult rats 

(Hellström et al, 2006).  An experimental rat model of cardiac hypertrophy showed 

increased synthesis of HA and CD44 (Hellman et al, 2008).  

Adhesive glycoproteins: 

Fibronectin (FN): Fibronectin is a ubiquitous, multifunctional extracellular 

glycoprotein involved in cell adhesion, wound healing, migration and tissue structuring 

throughout embryogenesis (Hay 1991; Potts and Campbell, 1996).  The structure of 

fibronectin has a series of repeating FN I, II and III domains and is considered to be 
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synthesized by nearly all the heart cell types except cardiac myocytes (Hein and Schaper, 

2001).  Fibronectin can interact with integrins other ECM proteins including hyaluronan, 

heparin sulfate proteoglycans, collagen, fibronectin and other molecules (Pankov and 

Yamada, 2002).  In the myocardium, fibronectin is mostly located in the basement 

membranes surrounding myocytes, smooth muscle cells and endothelial cells (Ahumada 

et al, 1981; Heling et al, 2000; Sharov et al, 2005).  

Laminin: The basement membrane glycoprotein laminin is a potent cell adhesion 

molecule with similar functions to fibronectin, and mediates cell migration, expansion 

and contributes to the structure of basement membranes (Tryggvason 1993).  Laminin 

can bind integrin receptors.  Pressure overload hypertrophy results in an increased levels 

of total laminin; however, in response to increased workload differential expression of 

laminin isoforms has been reported.  The hypertrophied left ventricle in the rat pressure 

overload model exhibited increased laminin chain expression (Grimm et al, 1998). 

 Integrins:  Integrins are heterodimers consisting of both alpha and beta subunits.  

Integrins are expressed in both myocytes and fibroblasts in the myocardium, however 

only a subpopulation of the known eighteen α and eight β subunits have been identified in 

these cell types.  The subunits α1, α3, α5 , α6, α7, α9 and α10 associate with β1 subunit in 

the myocardium and β3 and β5 expression have also been detected in cardiac tissue (Ross 

and Borg, 2001).  Integrins function as a family of transmembrane cell surface adhesion 

receptors that mediate bidirectional signaling to the plasma membrane and anchor the 

intracellular cytoskeletal proteins to the surrounding ECM (Humphries et al, 2004).  

Under normal conditions integrins allow signaling interactions between cardiac cells and 

matrix proteins to promote ECM homeostasis.  During cardiovascular disease ADAMs 
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proteases can attack integrins causing shedding which reduces cell-matrix interactions 

(Fedak et al., 2006).  Proteolytic cleavage of integrins can also give rise to soluble 

integrin fragments with the ability to bind various ECM proteins and stimulate myocyte 

attachment to matrix proteins during cardiac growth (Goldsmith et al., 2003).  

1.7 Matrix metalloproteinases and Tissue inhibitors of 

metalloproteinases are important regulators of extracellular matrix 

remodeling 

Matrix metalloproteinases are a group of extracellular matrix degrading enzymes 

that are involved in normal matrix turnover, but that are also involved in causing adverse 

remodeling which can result in ventricular dysfunction (Berk et al, 2007; Umar et al, 

2007).  Matrix metalloproteases are zinc containing calcium-dependent endopeptidases 

which are released as inactive zymogens in a latent form (Dhanaraj et al, 1996; Lindsey 

and Zamilpa, 2012; Tyagi et al, 1993).  MMPs are activated by autoproteolysis, serine 

proteases, or other activated MMPs.  In the late 1970s a search for MMPS inhibitors 

began (Hodgson 1995).  At that time only a few MMPs had been identified, making their 

individual functions difficult to assess.  Abnormal MMP enzyme activity aberrantly 

increases proteolysis of extracellular matrix proteins leading to the loss of their 

supportive role to cardiomyocytes.  Such events promote disorder in ECM protein 

orientation and its coordination and can result in left ventricular dysfunction as well as 

pump failure (Aggeli et al, 2012).  MMPs can degrade a wide variety of extracellular 

molecules including various bioactive molecules.  Twenty four MMP genes have been 

identified within humans, which are classified into six groups based on domain 

organization and substrate preference.  These include:  Stromelysins (MMP-3, -10 and -
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11), Gelatinases (MMP-2 and -9), Collagenases (MMP-1, -8 and -13), Matrilysin (MMP-

7 and -26) , Membrane-type (MT)-MMPs (MMP-14, -15, -16, -17, -24 and -25) and 

others (MMP-12, -19, -20,-21, -23, -27 and -28) (Visse and Nagase, 2003).  Collectively, 

these enzymes can degrade all components of the extracellular matrix thereby influencing 

many essential processes, such as cell proliferation, migration, differentiation, and death, 

along with cell-cell interactions (Elkington et al, 2005).  By modulating the expression 

and activity of MMPs via TIMPs, fibroblasts can modify collagen production and 

degradation (Truter et al, 2009). 

 MMPs are inhibited by TIMPs, there are four TIMP types that have been 

identified and exist within the ECM, these include TIMP-1, -2, -3 and -4.  TIMPs are 

involved in normal and abnormal cardiac function such as cardiac fibrosis (Spoto et al, 

2012), angiogenesis (Seo et al, 2003; Seo et al, 2011) as well as apoptosis (Finan et al, 

2006; Kallio et al, 2011).  Each type of TIMP displays a different tissue expression with 

all four types being expressed in the heart.  TIMP-4 expression is abundant in heart.  The 

activity of MMPs is governed through activation and inhibition by other proteins along 

with the TIMPs as well as at the transcriptional level.  As cardiac fibroblasts produce 

both MMPs and ECM proteins, fibroblasts play a central role in the arrangement of ECM.   

ECM remodeling is managed by the balance in activity of MMPs by their natural 

inhibitors, TIMPs.  Studies of cardiac disease have noted disturbances in the equilibrium 

between the TIMPs and MMPs in the failing heart which occur transitional time points 

(Graham et al, 2008).  TIMPs bind to MMPs stoichiometrically in a 1:1 ratio and once the 

levels of MMPs are equivalent to TIMPs, proteolysis is neutralized.  In many 

pathological situations, the concentration of MMPs is increased as the TIMP levels are 
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decreased, disturbing the balance in favor of the proteinases.  Such imbalance correlates 

with extreme substrate turnover along with a worsened disease status.  Animal models 

have indicated direct causal roles of excess MMP activity in pathological left ventricle 

remodeling.  The effects of MMP activity depends on whether the pressure overload is 

acute or chronic (Fingleton 2007).   

Neutrophils are considered a rich source of MMPs.  Neutrophil infiltration occurs 

as early as 15 minutes after the initiation of reperfusion in the heart (Frangogiannis 

2012).  MMPs cleave collagens and other ECM proteins at site-specific locations to 

generate ECM fragments (Villarreal et al, 2003).  In many pathological situations, this 

degradation of ECM is accompanied by the continuous generation of a fibrin-based 

provisional matrix that provides structural support for the infarct region.  

1.8 Other ECM proteins and their genes: 

Biglycan:  Biglycan, an extracellular proteoglycan, is synthesized as a 38 kDa 

polypeptide core sequence, and is a member of the small leucine-rich repeat proteoglycan 

or SLRP family (Mercado et al, 2006).  It is encoded by the BGN gene (Traupe et al, 

1992).  The functions of biglycan include collagen fibril assembly (as it can bind 

collagen), cell adhesion, and growth factor interactions (as it can bind some growth 

factors and regulate their bioactivity) (Ahmed et al, 2003; Schonherr et al, 1995).  It 

regulates the expression and sarcolemmal localization of the intracellular signaling 

proteins dystrobrevin-1 and -2, α-, β1-syntrophin and nNOS.  It promotes muscle cell 

integrity.  Biglycan has a direct role in pathological remodeling of cardiac tissue and 

mediates cardioprotection (Bereczki et al, 2007).  Angiotensin II receptor type 1 (AT1) 

antagonism, which is a intervention well documented to halt cardiac remodeling during 
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heart failure, can block the increase in target myocardial biglycan expression (Ahmed et 

al., 2003). 

Versican : The VCAN gene encodes the ECM protein versican, a large 

chondroitin sulfate proteoglycan and is a major component of the ECM with a wide tissue 

distribution which includes the vasculature (Kenagy et al, 2006; Wight and Merrilees, 

2004).  In ECM it can bind hyaluronan and a variety of other ECM molecules including 

type I collagen, fibronectin, fibulins, tenascin-R, and integrins among others 

(Zimmermann and Dours-Zimmermann, 2008).  During development of cartilage, heart, 

hair follicles and kidney, versican is found as highly expressed in the mesenchymal cell 

condensation areas and versican V0 and V1 isoforms in vitro are show to be involved in 

the process of precartilage mesenchymal condensation and subsequent chondrogenesis.  

ADAMTS family members can cleave versican (Kern et al, 2006).   

 Fibulin-2:  Fibulin-2 is a calcium-binding protein encoded by the FBLN2 gene 

and its mRNA is prominently expressed in mouse heart tissue and is present in low 

amounts in other tissues (Zhang et al, 1994).  Fibulin-2 contains multiple calcium-binding 

sites in a tandem array of 11 epidermal growth factor-like domains and forms an anti-

parallel disulfide bonded homodimer (Pan et al, 1993; Sasaki et al, 1997).  There is high 

expression of fibulin-2 during cardiac valvuloseptal formation.  It is produced by 

migratory cardiac mesenchymal cells that derive from endocardial cells (Bouchey et al., 

1996; Tsuda et al, 2001; Zhang et al, 1995).  Fibulin-2 serves as a scaffold protein in the 

ECM by binding to a variety of ligands including type IV collagen, fibronectin, 

fibrinogen, fibrillin, laminins, aggrecan, and versican (Gu et al, 2000; Olin et al, 2001; 

Sasaki et al, 1995).  The fibulin-2 is produced by epicardial cells upon their migration 
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over the myocardial surface and expression persists throughout coronary vasculogenesis 

and angiogenesis (Tsuda et al, 2001).  Fibulin-2 helps bridging plasma membranes to the 

basement membranes.  During wound-healing, FBLN2 becomes overexpressed and may 

also influence tissue remodeling (Fassler et al, 1996; Strom et al, 2006). 

Tenascin XB and C:  Tenascin C and tenascin XB are two members of the 

tenascin gene family encoded by the TNC and TNXB genes, respectively (Tee et al, 

1995).  A member of the tenascin family, also known as hexabrachion-like protein is a 

glycoprotein that is expressed in connective tissues including skin, joints and muscles.  

There are few studies that have shown that C-terminal domains of human TNX bind to 

major dermal fibrillar collagens and tropoelastin.  The interaction has been mapped to the 

fibronectin type III repeat 29 (FNIII 29) and the C-terminal fibrinogen domain (FbgX) of 

TNX (Egging et al, 2007).  Tenascin organizes collagen fibrils for both structure and 

stability and impacts the rigidity and elasticity of tissues.  Tenascin X, a product of 

fibroblasts in the ECM can mediate fibrosis in the presence of collagen.  Consequently, 

Jing et al. showed tenascin facilitates myocardial fibrosis and cardiac remodeling by the 

transforming growth factor-β1 and peroxisome proliferator-activated receptor γ in 

alcoholic cardiomyopathy (Jing et al, 2011). 

Agrin:  Agrin is an ECM protein encoded by the AGRN gene (Rupp et al, 1991).  

It is involved in the accumulation of acetylcholine receptors at the neuromuscular 

synapse during embryogenesis.  Agrin signals through MuSK, a muscle-specific receptor 

tyrosine kinase which is also present at the neuromuscular junction (Ngo et al, 2007).  In 

the myocardium agrin interacts with the α3 subunit of the Na+-K+-ATPase, and it 

modulates the basal frequency of myocyte contraction (Hilgenberg et al, 2009b; 
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Hilgenberg et al, 2009c).  Myocytes from agrin mutant mice show higher contraction 

frequency which is reversed with agrin treatment, and treating wildtype with agrin 

antagonist shows a similar phenotype.(Hilgenberg et al, 2009a)(Hilgenberg et al, 2009)  

Heparinase-1:  Heparinase is an endo-β-D-glucuronidase that degrades the 

sulfate side chains of the GAG heparin sulfate in the extracellular matrix (Nakajima et al, 

1983).  In β-adrenergic agonist-induced cardiac hypertrophy, heparinase expression 

might be induced in ventricular myocardium and might play an important role in cardiac 

hypertrophy development (Kizaki et al, 2005).  In the heart, heparinase is synthesized by 

endothelial cells as a latent 65-kDa form and is processed in lysosomes to become a 50-

kDa active enzyme (Zetser et al, 2004).  It cleaves heparin sulfate at low-sulfation sites, 

liberating sequestered ligands from surface HSPGs (Pillarisetti et al, 1997).  It has also 

been shown that through surface HSPGs, heparinase can trigger intracellular signal 

pathways including Src, Akt, and p38 MAPK.(Cui et al, 2011; Fux et al, 2009) 

Thrombospondin-1: Thrombospondin-1 (TSP-1) is a multifunctional matrix 

protein mediating inhibition of angiogenesis, promotion of apoptosis, cell to cell and cell 

to matrix interactions (Crawford et al, 1998; Sezaki et al, 2005).  Thrombospondin is 

encoded by the THBS1 gene.  In ECM it exists as a large modular glycoprotein 

component and contains three subunits (Wolf et al, 1990).  It is expressed by 

macrophages and endothelial cells in a highly regulated manner and is also present in 

platelet granules (Sheibani and Frazier, 1998).  It can be rapidly induced as for example 

during vascular injury (Raugi et al, 1990).  Thrombospondin is upregulated during heart 

failure and thought to be protective (Schellings et al, 2009). 
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Procollagen C-endopeptidase:  Procollagen C-endopeptidase is also known as 

bone morphogenic protein 1 and encoded by the BMP1 gene, and functions as a positive 

regulator of collagen deposition (Ogata et al, 1997) and plays a role in cardiac fibrosis 

(Kessler-Icekson et al, 2006).  Procollagen C-endopeptidase enhancer 1 increases its 

activity.  It may also play a key role in the ECM production during atheroma formation 

and the proliferation of smooth muscle cells (Kanaki et al, 2000), and may contribute to 

cell growth and differentiation (Masuda et al, 1998). 

Lysyl oxidase:  Lysyl oxidase is a copper-containing protein that is encoded by 

the LOX gene (Hamalainen et al, 1991).  Specific lysyl oxidases catalyze the post-

translational modifications such as cross-linking of collagen and elastin in the ECM.  The 

primary sources of lysyl oxidases in the heart are cardiac myocytes and fibroblasts.  The 

enzyme induces oxidative deamination of the ε-amino group of selected lysine and 

hydroxylysine residues of proteins resulting in the formation of allysine and 

hydroxyallysine.  The percentage of cross-linking is a contributing factor to diastole 

function during the filling phase of the cardiac cycle (Yu et al, 2010).  In addition, the 

collagen cross-linkages appear to protect the fibrillar collagen from MMP mediated 

degradation (van der Slot-Verhoeven AJ et al, 2005).  Therefore, altered ECM 

biomechanical properties and ventricular diastolic mechanics may result from elevated 

concentrations of cross-linked ECM collagen. 

Collagen 8 alpha1: The COL8A1 (collagen type VIII, alpha-1) gene encodes 

alpha 1 chain of collagen, type VIII.  This collagen form is thought to control adherence, 

migration, and proliferation of different cells (Zhao et al, 2009).  Type VIII collagen is 

localized within the vascular basement membrane beneath endothelial cells (Wayne et al 
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1996). This collagen is made by mast cells, endothelial cells, keratinocytes and some 

tumor cells (Shuttleworth 1997). 

Collagen 3 alpha1: The COL3A1 gene encodes the ECM collagen type III, 

alpha-1 protein (Janeczko and Ramirez, 1989; Superti-Furga et al, 1988).  The expression 

of COL3A1 is associated with chronic liver diseases (Lee et al, 2008).  Collagen types I 

and III from fibroblasts form a network to assistant cardiac cell alignment, interaction and 

communication.   

Collagen 5 alpha1: The COL5A1 gene encodes the ECM protein collagen, type 

V, alpha 1 (Greenspan et al, 1992).  Collagen type V is a heterotrimer that is composed of 

two pro-α1(V) chains and a single pro-α2(V) chain, which are encoded by the COL5A1 

and COL5A2 genes, respectively (Ritelli et al, 2013).  Col5a1 expression was found in 

the heart, dorsal aorta wall, mesonephric tubules, branchial arches, and intestinal 

mesenchyme (Roulet et al, 2007). 

Collagen 1 alpha2: The COL1A2 gene, which encodes the α1 and α2 chain of 

type I collagen, COL1A2 chain protein (Malfait et al, 2006; Retief et al, 1985). COL1A2 

is overexpressed in intracranial aneurysms and is located on 7q22.1 where the best 

evidence of linkage was detected (Voss and Rauterberg, 1986; Yoneyama et al, 2004).  

Occasionally, mutations in COL1A2 result in a rare form of Ehlers-Danlos syndrome  

Collagen 1 alpha1: Type I collagen is a heterotrimer consisting of two α1 (I) 

chains and one α2 (I) chain, encoded, respectively, by the COL1A1 and COL1A2 genes.  

In the skin, type-I collagen chain is the most abundant ECM protein and is necessary for 

differentiation, normal growth, and wound repair (Powell et al, 1999).  Collagen-I 

enhances ECM cross-linking, resulting in increased mechanical strength in the wound.  
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Tightly regulated synthesis of these two moieties ensures a 2:1 ratio of COL1A1 and 

COL1A2 (Kanji et al, 2014; Karsenty and de, 1991).  Some mutations in COL1A1 result 

in a rare form of Ehlers-Danlos syndrome.  

TIMP1: Tissue inhibitor of metalloproteinase 1 is encoded by the TIMP1 gene.  

This enzyme is produced and secreted by fibroblasts, macrophages, endothelial cells, 

VSMCs and cardiomyocytes (Vanhoutte and Heymans, 2010).  TIMP1 inhibits all 

MMPs, but it can’t inhibit MMP-2 and MT1-MMP (Creemers et al., 2003).  The effect of 

TIMP1 in the heart is decreased cardiac inflammation and reduced hypertrophic response 

(Heymans, 2005, Heymans, 2006). 

TIMP2: Tissue inhibitor of metalloproteinase 2 is encoded by the TIMP2 gene.  

This enzyme is produced by fibroblasts, endothelial cells, macrophages, VSMC, and 

cardiomyocytes.  It inhibits all MMPs, except MMP-9; and activates pro-MMP-2 

(Vanhoutte et al, 2006). 

TIMP3: Tissue inhibitor of metalloproteinase 3 is encoded by the TIMP3 gene. 

The cellular sources are fibroblasts, VSMC and cardiomyocytes.  TIMP3 inhibits MMP-

1, -2, -3, -9 and -13, spontaneous hypertrophic response, LV dilatation and contractile 

dysfunction (Fedak et al, 2004).  It reduces fibrosis and increases proliferation, apoptosis, 

and angiogenesis (Tian et al, 2007).  It contributes to LV dilatation and mortality and 

dilated cardiomyopathy (Kassiri et al, 2005). 

 TIMP4: Tissue inhibitor of metalloproteinase 4 is encoded by the TIMP4 gene 

metalloproteinase 4 (TIMP-4) this enzyme is produced in by fibroblasts, cardiomyocytes 

,VSMCs.  TIMP4 inhibits MMP-1, -3, -7 and -9 (Vanhoutte et al,2006). 
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MMP2:  Matrix metalloproteinase 2 is encoded by the MMP2 gene, falls under 

the gelatinase group, and is also called gelatinase A or matrix metallopeptidase 2 

(Devarajan et al, 1992).  The cellular source is fibroblasts, cardiomyocytes, macrophages, 

T- and B-lymphocytes and VSMCs.  One of the major known functions of matrix 

metallopeptidase 2 is to degrade collagens including types I, IV, V, VII, X, XI and XIV 

collagen, aggrecan, decorin, elastin, fibronectin, galectin-3, gelatin, hyaluronidase-treated 

versican, laminin-1 and-5, and osteonectin.  Excess MMP2 activity in the heart results in 

slower wound healing, decreased inflammatory response and cardiac rupture (Matsumura 

et al, 2005).  MMP2 has a role in myocardial remodeling in a number of cardiovascular 

diseases, including idiopathic dilated cardiomyopathy and ischemic and myocardial 

infarction (Braunhut and Moses, 1994; Coker et al, 1999).  Additionally, in vascular 

remodeling of hypertrophied heart it prevented progression to ventricular dilation, 

increased capillary formation as well as severe hypertrophy and dysfunction as result of 

vascular remodeling (Friehs et al, 2006). 

MMP3:  Matrix metallopproteinase 3 is encoded by the MMP3 gene, falls under 

the stromelysin group, and is also called stromelysin-1or matrix metallopeptidase 3 (Zhu 

et al, 2011).  The cellular source for this enzyme is fibroblasts, cardiomyocytes, and 

VSMCs.  One of the major known functions of MMP3 is to degrade collagens including 

types III, IV, V and IX collagen, aggrecan, decorin, elastin, entactin, fibronectin, gelatin, 

hyaluronidase-treated versican, laminin, large tenascin-C, ostenectin, perlcan, and 

proteglycan linked protein.  There is no the cardiac effect observed with MMP3deletion 

in mice (Heymans et al, 1999).  
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MMP11:  Matrix metalloproteinase 11 is encoded by the MMP11 gene and is 

also called stromelysin-3 or matrix metallopeptidase 11 (Li et al, 2000).  MMP11 targets 

include: gelatin, insulin-like growth factor-binding protein-1, the laminin receptor, serine 

proteinase inhibitors (such as α1-proteinase inhibitor, α1PI, and α2-antiplasmin), type VI 

collagen α2-macroglobulin and β-casein (Barrasa et al, 2012; Motrescu et al, 2008). 

MMP13:  Matrix metalloproteinase 13 is encoded by the MMP13 gene, falls 

under the Collagenase family, and is also called Collagenase-3 or matrix 

metallopeptidase 13.   Fibroblasts produce MMP13.  It is involved in the breakdown of 

collagens including type I, II, III, IV, IX, X  and XIV collagen, aggrecan, fibronectin, 

gelatin, large tenascin-C, osteonectin, and perlecan.  Nevertheless, MMP13 deletion in 

mice has no significant effect on the heart (Vanhoutte et al,2006). .  

MMP14:  Matrix metalloproteinase 14 is encoded by the MMP14 gene and is the 

first member of the MT-MMP group, whose members are membrane inserted.  It is also 

called Membrane-type MMP (MT1-MMP) or matrix metallopeptidase14.  It is produced 

by fibroblasts, cardiomyocytes, and VSMCs.  MMP14 plays role in ECM remodeling and 

is involved in the breakdown of collagens including type I, II and III collagen, 

fibronectin, laminin , elastin, casein, vitronectin, gelatin entactin, large tenascin and 

proteoglycan under physiological and pathological conditions.  However, there is no the 

cardiac effect observed in the MMP14 null mouse (Klawitter et al, 2011; Stroud et al, 

2002). 

MMP15:  Matrix metalloproteinase 15 is encoded by the MMP15 gene and is the 

second member of the MT-MMP group.  It is also called Membrane type-2 matrix 

metalloproteinase (MT2-MMP) or matrix metallopeptidase 15 and is membrane inserted.  
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MMP15 is responsible for degradation of various components of the ECM under 

physiological and pathological conditions. 

MMP16:  Matrix metalloproteinase 16 is encoded by the MMP16 gene and is the 

third member of the MT-MMP group.  It is also called Membrane type-3 matrix 

metalloproteinase (MT3-MMP) or matrix metallopeptidase 16 and is membrane inserted  

Additionally, MMP-16 can not only directly degrade some matrix molecules, However, it 

can also activate pro-MMP-2 (gelatinase A).  The resulting activated MMP-2 hydrolyses 

collagen type IV and other connective tissue substrates and is thought to be one of the 

most important MMPs in tissue remodeling and cell migration (Planutiene et al, 2011; 

Walsh et al, 2007). 

MMP25:  Matrix metalloproteinase 25 is encoded by the MMP25 gene and is the 

sixth member of the MT-MMP group.  It is also called type 6 metalloproteinase (MT6-

MMP) or matrix metallopeptidase 25.  It was first detected in polymorphonuclear 

leukocytes.  Functional studies showed that MT6-MMP is involved in the breakdown of 

type I-IV collagens, gelatin, fibronectin, and fibrin(English et al, 2001).  MMP-25 has 

been suggested to have a role in inflammation, cellular migration, and is linked to tumor 

invasion (Kuula et al, 2008). 

MMP28: Matrix metalloproteinase 28 is encoded by the MMP28 gene and is 

alternatively named epilysin or matrix metallopeptidase 28 (Marchenko and Strongin, 

2001).  MMP28 was expressed in keratinocytes and testis and in response to injury.  The 

number of normal tissues which express it including the heart, skin, lung, intestine, testes, 

and brain as well as a variety of tumor and tumor cell lines (Padmavati et al, 2013).  

During wound repair, MMP-28 may play a key role in epithelial cell proliferation and 
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may also play a key role in the restructuring of newly formed basement membrane. (Ma 

et al, 2013).  MMP28 was play increase interest role in vivo, however, little is known 

about its substrates.  Recombinant MMP28 has been reported to degrade casein in vitro 

and is thought to cleave several neural proteins such as neurite outgrowth inhibitor A 

(Nogo-A), neural cell adhesion molecule (NCAM-1) and neuregulin 1 (NRG1) (Lohi et 

al, 2001; Werner et al, 2008; Werner et al, 2007).   

1.9 Aims of this study  

A wealth of information regarding gene changes in the hearts of various models 

of pathological cardiac hypertrophy exists, yet there is only limited information about the 

gene expression changes that accompany the physiological hypertrophy of pregnancy and 

its reversal during the post-partum period.  In this project, we have two aims.  Aim I is to 

utilize microarray analyses to determine changes in gene expression in the left ventricle 

of the hearts of pregnant and non-pregnant mice that are related to extracellular matrix 

and pathological cardiac hypertrophy states.  Aim II is to quantify by real-time PCR 

changes in specific MMP and TIMP mRNA expression in the left ventricle of the hearts 

from non-pregnant mice and mice during pregnancy and the early post-partum period.
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Animals.  

Age-matched 3-4 month old non pregnant and timed pregnant C57BL/6 mice 

were purchased from Jackson Laboratories (Bar Harbor, ME) and divided into 4 groups 

(n = 4-6 per group).  Animals were housed under standard conditions.  All of the animals 

were handled and euthanized under the guidelines of University of South Carolina 

Institutional Animal Care and Use committee.  Animals were subjected to isoflurane 

inhalation until toe pinch reflex was lost, subjected to cervical dislocation, and 

decapitated to collect trunk blood.  Animals were sacrificed under the following states:  

1) non-pregnant mice in diestrus mice (checked daily for two consecutive cycles by 

vaginal smears) (Champlin et al, 1973), 2) Mice at 12 days of pregnancy (mid-

pregnancy) where cardiac remodeling is well underway, 3) Mice at 18/19 days of 

pregnancy (late pregnancy) where the demands on the heart are the greatest, 4) Mice at 

1.5 days post-partum when the heart's structure is in the process of returning to the non-

pregnant state, a process that is believed to be complete by post-partum day 1 in mice 

(Gonzalez et al, 2007).  

2.2 Cardiac tissue collection  

The body weight, heart weight, kidney weights, lung weight, tibia length, and 

number of embryos were recorded for each mouse.  At the sacrifice, the left ventricles 

and other tissues (uterus, ovary, liver, heart leftovers devoid of the ventricles) were
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immediately frozen on dry ice or in liquid nitrogen and stored at -80 ºC for later RNA 

isolation.   

2.3. Quantitative real-time PCR (Q-PCR) 

2.3.1. RNA isolation 

Frozen tissues were maintained on dry ice after removal from the -80 °C.  RNA 

was isolated using Trizol reagent (cat#15596-026, Life Technologies) and the Qiagen 

RNeasy kit.  Excess Trizol reagent was added to frozen tissue in a glass dounce 

homogenizer on wet ice and dispersed with 15-20 strokes.  Lysates were transferred to 

microfuge tubes and spun 10 min in an Eppendorf refrigerated microfuge at 12000xg at 4 

°C to pellet debris and then the supernatant transferred to new tube.  Lysates were 

allowed to sit for 5 min at room temperature to allow dissociation of ribonucleoprotein 

complexes.  The volume of supernatant was measured and 0.2 ml chloroform was added 

to each 1 ml of Trizol. The tube was vigorously shaken by hand for 15 seconds, then let 

sample to sit for 3 min and spun for 10 min at 12000xg at 4 °C.  The mixture was 

separated into a lower red phase and a colorless upper aqueous phase. The upper aqueous 

phase was collected as the interphase was avoided.  The aqueous phase was placed in a 

new tube.  After measuring the volume an equal volume of 70% ethanol was added to the 

aqueous phase and the tube was vortexed and samples were loaded into an RNeasy 

column with collection tubes and centrifuged at 9,000xg for 30 seconds.  After discarding 

the flow-through, RW1 buffer (700 µl) from the Qiagen kit was added to column and was 

centrifuged at 9,000xg for 30 seconds and flow.  RPE wash buffer (500 µl) was added to 

column with new collection tube and centrifuged at 9,000xg for 30 seconds.  After the 

flow-through was discarded the another 500 µl of RPE buffer was added, centrifuged at 
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9,000xg for 2 minute and finally the flow-through was discarded from collection tube.  

The column with the bound RNA was dried by centrifugation at 9,000xg for 2 minutes.  

RNase-free water (40 µl) was added to the column matrix and eluted by spinning 2 

minutes at 9,000xg and then kept on ice for use or stored at -80 ºC.  RNA was quantified 

using a Biophotometer (Eppendorf) at 260 nm.  Dilutions were made for cDNA synthesis 

and stored at -80 ºC. 

2.3.2 Microarray analyses: 

Gene expression profiling or microarray analysis enables measurement of 

thousands of genes in a single RNA sample and thus was used for this purpose with left 

ventricular RNA.  Purification of RNA was performed using Trizol and the Qiagen 

RNeasy kit as above.  Samples for microarray analyses were screened for quality by 

Expirion (Biorad) RNA analysis chip.  An aliquot of high quality RNA (n = 2 per group) 

was sent to the MUSC Medical University of South Carolina Proteogenomics Facility for 

microarray hybridization to AffymetrixGeneChip Mouse Gene 2.0 ST array.  Dr. Jeremy 

Barth at the MUSC searched the Gene Ontology (GO) term database for genes related to 

extracellular matrix and cardiac hypertrophy and the resulting list was supplemented 

from the literature.  These gene lists were used as the basis of examining gene changes 

initially from data from an existing NCBI GEO dataset #GSE36330 (entitled:  

comparison of exercise and pregnancy-induced cardiac hypertrophy) and subsequently 

from data derived our animals and the Affymetrix 2.0 ST arrays. 

 Briefly, total RNA samples will be converted into biotin-labeled and fragmented 

cRNA and then hybridized to Affymetrix mouse GeneChip 2.0 ST using established 

procedures.  Hybridized arrays were washed, fluorescently labeled and then scanned in an 
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Affymetrix 7G scanner.  Resulting hybridization data will be normalized by RMA 

algorithm and then filtered by fold change and statistical (t-test) thresholds to identify 

genes differentially expressed between experimental and control samples at acceptable 

false discovery levels (e.g., <5%).  Pathway enrichment was also evaluated with Partek 

software.  Heat maps were created for the lists of extracellular matrix genes and cardiac 

hypertrophy genes. 

2.3.3. cDNA synthesis 

cDNA was synthesize using the Biorad iScript cDNA Synthesis Kit (cat# 1636, 

Bio-Rad).  The cDNA synthesis reaction consisted of 15 µl of RNA, 4 µl of 5X buffer 

iScript reaction mix, and 1µl of iScript Reverse Transcriptase mix. cDNA synthesis 

reaction were added to a 0.6 ml PCR tube for each sample and placed in the room 

temperature for 2 minute before putting in thermal cycler and then cDNA synthesis was 

carried out in a thermal cycler (Effendorf, Hauppauge, NY).  The cycle consisted of 25 

ºC for 5 minutes, 42 ºC for 30 minutes, and 85 ºC for 5 minutes, and 4 ºC hold.  After 

cDNA synthesis, each sample of the cDNA was diluted with 60 µl RNase-free water and 

stored at -20º C for later usage for real time PCR. 

2.3.4. Real time PCR  

 Validated mouse primers for PCR were purchased from Qiagen Superarray.  

Standard curves were generated for each primer set.  The genes evaluated were:  TIMP1, 

TIMP2, TIMP3, TIMP4, MMP2, MMP3, MMP11, MMP13, MMP14, MMP15, MMP16, 

MMP25, and MMP28.  RNA levels for each tissue sample were derived using the 

standard curve method and normalized to internal control rplp0 mRNA levels.  All PCR 

primers were initially tested for single products as assessed by single peaks in melt-
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curves and by visualizing the correct size band on 2% agarose gels.  Standard curves 

were generated by initially amplifying the amplicon, purifying it using the Qiagen PCR 

purification kit, quantifying the amplicon and making 10-fold serial dilutions of the 

amplicon, followed by real-time PCR amplification of the dilution series.   

Quantitative polymerase chain reaction was performed using real-time PCR.  We 

used SYBR-green based reagents (BioRAD Sso-Advanced Mastermix) for real-time PC 

with cDNA from the left ventricle of each animal.  In some cases, leftover heart tissue 

(right ventricle and septa) RNA was also examined by real-time PCR (not shown).  All 

primers used are listed in table 2.1. Quantification was performed by real-time PCR using 

the standard curve method.  cDNA samples were amplified in duplicate and repeated if 

numbers varied by more than 0.8 Ct.  A water negative control was included in each PCR 

run.  PCR reactions consisted of 4 ul cDNA (20 ng) 1µl primer mix assay, 5µl RNase-

free water and10 µl 1X SSoAdvanced SYBR Green mastermix.  Real-time PCR was 

performed using an I-cycler (Bio Rad Hercules, CA) with the initial denaturation, 1X, 95 

ºC for 1.5 min, followed by 35 cycles of denaturation for 15 seconds at 95 ºC, annealing 

for 15 seconds at 60 ºC, elongation for 30 seconds at 72º C, followed by 10 min final 

extension at 72 ºC, and a melt curve using 80 cycles of 0.5 ºC increments starting at 60 

ºC.  The expression profile of each gene analyzed by real-time PCR was visually 

compared with the microarray results to determine if the trends were similar or different. 

2. Data and statistical analysis 

The amount of target mRNA for each sample was extrapolated from a standard 

curve generated for each primer set and an example is shown in Figure 2.1.  Each target 

mRNA amount was normalized to amount of rplp0 mRNA in the sample.  All results are 
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expressed as mean ± standard error of mean (SEM).  PCR ratios were ln-transformed and 

analysis of variance (ANOVA) preformed.  Statistical significance was tested with 

analysis of ANOVA followed by Tukey’s post-hoc test for multiple group comparisons 

and GraphPad Prism version 3.02 for Windows (GraphPad Software, Inc, San Diego, 

CA) was used for statistical analysis for at least fourth independent sets of samples of 

mRNA in left ventricle tissues of female mice for all real-time PCR data.  The mean and 

standard error of the mean were used on this study. A  P-value less than or equal to 0.05 

was regarded as significant. 
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Table2.1. Summary of primers used for real-time PCR analysis of mRNA 
expression. 
 

Official Name Gene 
Symbol 

Gene bank 
Accession # 

Reference 
Position 

Amplic
-on size 

(bp) 

Standard 
curve 
slope 

Tissue inhibitor of 
metalloproteinase 1 

TIMP1 NM_011593.2 710 83 -3.30 

Tissue inhibitor of 
metalloproteinase 2 

TIMP 2 NM_011594.3 960 116 -3.27 

Tissue inhibitor of 
metalloproteinase 3 

TIMP3 NM_011595.2 702 75 -3.59 

Tissue inhibitor of 
metalloproteinase 4 

TIMP4 NM_080639.3 726 156 -3.37 

Matrix 
metallopeptidase 2 

MMP2 NM_008610.2 2258 63 -3.45 

Matrix 
metallopeptidase 3 

MMP3 NM_010809.1 1175 94 -3.38 

Matrix 
metallopeptidase 11 

MMP11 NM_008606.2 1470 94 -3.49 

Matrix 
metallopeptidase 13 

MMP13 NM_008607.2 1145 88 -3.21 

Matrix 
metallopeptidase 14 

MMP14 NM_008608.3 1904 122 -3.36 

Matrix 
metallopeptidase 15 

MMP15 NM_008609.3 1108 116 -3.39 

Matrix 
metallopeptidase 16 

MMP16 NM_019724.3 1769 143 -2.99 

Matrix 
metallopeptidase 25 

MMP25 NM_00103333
9.3 

2061 191 -3.50 

Matrix 
metallopeptidase 28 

MMP28 NM_172797.2 2227 161 -3.49 



 

34 

CHAPTER 3 

RESULTS 

3.1 Animal tissue data and heart weight/tibial length 

The body weight (BW) of each mouse was recorded before sacrifice.  Hearts were 

weighed after removal of excess blood.  Table 3.1 shows the mean body weights, heart 

weights (HW), tibia length (TL), right and left kidney weights, HW/BW and HW/TL for 

each animal.  Tibia length was used for normalization of heart weight (HW/TL), as it has 

been previously demonstrated to be more reliable than normalization based on body 

weight (Wei et al, 1984; Yin et al, 1982).  Mean heart weight were normalized to tibia 

length for each group of animals (virgin, day 12 pregnancy, day 18/19 pregnancy and 

post-partum 1.5 day).  As predicted, late pregnancy and the early post-partum period 

were associated with a significant increase in heart weight.  There was no difference 

between day 12 groups and virgin group heart weights normalized to tibia length.  There 

were significant increases in the HW/TL of the day 18/19 group and post-partum 1.5 day 

group compared to the virgin group.  There was an increase in the HW/TL for day 18/19 

and post-partum 1.5 day compared to the day 12 group.  There was no difference between 

the day18/19 and post-partum 1.5 groups (Figure 3.1)
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3.2 .Microarray data:  Differentially expressed genes in the left ventricle. 

The GEO database (GEOset) contains publicly accessible microarray datasets.  To 

reveal differentially expressed genes, we generated heat maps for the GEO dataset 

GSE36330 and our 2.0 ST microarray data for both the GO list of extracellular matrix 

genes (Figures 3.2 and 3.3) and cardiac hypertrophy genes (not shown).  For our animal 

study and the 2.0 ST microarrays (Figure 3.3) 63 extracellular genes were differentially 

expressed and 147 probe sets were differentially expressed for the GEO dataset 

GSE36330 array.  The differential expression criteria was P<0.05 between any possible 

pairwise comparison (unadjusted student's t-test).  The heat map represents the relative 

expression of the genes across the 4 groups with each animal represented individually in 

the heat map.   

As shown in Figure 3.2 the genes between 49-Wnt1: wingless-related MMTV 

integration site1 63-Lamc3: l laminin gamma3 were lower in the virgin mice and higher 

in day 18/19 mouse left ventricles. The genes shown between 1-Tfip11: tuftelin 

interacting protein 11 to 21-Agrn: agrin appear higher in post-partum left ventricles.  

From 49-wingless-related MMTV integration site to 60-Thbs1: thrombospondin 1 were 

higher on day 18/19 pregancy and post-partum 1.5 days.  However, with some exceptions 

virgin and day 12 animals were lower for genes listed from 1-Tfip11: tuftelin interacting 

protein 11 to 63-Lamc3: laminin gamma3 except the genes from 23- Serac1: serine active 

site containing 1 to number 33- Ltbp1: latent transforming growth factor beta binding 

protein 1.   

 Figures 3.4, 3.5, 3.6 and 3.7 show heat maps for selected ECM genes discussed in 

the Introduction section.  These 25 genes reveal striking differences in their temporal 



 

36 

pattern of gene expression depending on the state of pregnancy.  Day18/19 of pregnancy 

and the post-partum period showed versican and thrombospondin 1 genes were increased.  

Genes increased at post- partum day 1.5 included biglycan, versican, fibulin 2, tenascin 

XB and C, agrin, and thrombospondin 1; however, heparanase was lowest in post-partum 

animals and highest in day18/19 mice.  Data in Figure 3.5, show that some collagen-

related genes were increased post-partum mice including procollagen C-endopeptidase 

enhancer protein collagen, type I, alpha 2, collagen, type III, alpha 1 collagen, type V, 

alpha 1 and collagen, type VIII, alpha 1.  Figures 3.4 and 3.5 shows that most of these 

genes were lower in virgin and day 12 mice with the exception of bioglycan in virgin  

fibulin 2, agrin and thrombospondin 1 which had mixed results on day 12 ,which showed 

higher expression in the virgin and day 12 mice. 

 Data in Figures 3.6 and 3.7 showed that TIMP1 and MMP3 were higher in the 

day 18/19 and post-partum mice, while TIMP1 was lower in virgin and day 12 mice.  

TIMP2 gene expression was increased in the post-partum period whereas the other 

groups had lower overall expression.  TIMP3 did not show any pattern by microarray 

(not shown).  By microarray TIMP4 mRNA was lowest in the virgin group but the other 

groups were higher.  MMP2 and MMP14 mRNAs were highest in the day 12 mice while 

other groups were had lower expression.  MMP11 gene expression was lowest in day 

18/19 mice.  In the virgin and post-partum groups MMP13 gene expression was lowest, 

while on day 12 MMP13 gene expression was highest by microarray (Figure 3.7).  By 

microarray, MMP15 and MMP16 gene expression was higher in virgin and day 12 mice 

and in day 18/19 was lowest and post-partum mice tended to be less than the virgin 

group.  MMP25 gene expression was low in all groups of mice with the exception of one 
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mouse at day 18/19.  MMP28 gene expression was low in all groups of mice except 

day12 were it was higher. 

3.3 Real-time PCR results for TIMPs 

The entire set of four TIMP mRNAs was evaluated using qPCR and was selected 

based on our initial analysis of the GEO dataset microarray results and that TIMPs are 

endogenous inhibitors and important for ECM remodeling.  Figure 3.8 shows there was a 

tendency of 18/19 and post-partum 1.5 day animals to have a higher mean in TIMP1; 

however this was not significantly different from other groups.  For TIMP2 mRNA 

expression there was a tendency for virgin and post-partum 1.5 day animals to have the 

lowest means; however this was not significantly different from other groups (Figure 

3.9).  We found that TIMP3 was not significantly different between groups (Figure 3.10) 

and this was consistent with the array findings.  As shown in Figure 3.11, TIMP4 mRNA 

in the virgin and day 12 groups were significantly higher than the post-partum day 1.5 

group (P<0.05).  The day 18/19 group was significantly higher than the post-partum 

group (P<0.01). 

3.4 Real-time PCR results for MMPs 

We selected a set of nine MMP genes to evaluate using qPCR based the 

microarray results.  For MMP2 mRNA, there was a tendency for virgin animals to have 

the highest mean, but it did not significantly differ from the other groups (Figures 3.12).  

As shown in Figure 3.13, MMP3 mRNA in the pregnancy day 12 group was significantly 

lower than the day 18/19 group (P<0.05).  There were no other differences between 

groups.  A decrease in MMP11 mRNA in the post-partum group was observed and was 

not significantly changed between the groups (Figure 3.14).  MMP13 mRNA in the post-
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partum group was significantly lower than day 18/19 group; there were no other 

differences between groups for MMP13 mRNA (Figure 3.15).  MMP14 was not 

significantly changed between the groups (Figure 3.16).  MMP15 had no significant 

change between groups (Figure 3.17).  The post-partum group had the lowest MMP16 

mRNA but was not significantly different from other groups (Figure 3.18).  There was no 

statistically significant difference in the gene expression levels of MMP-25 found 

between groups (Figure 3.19). mRNA expression for MMP-28 did not vary significantly 

among groups (Figure 3.20). 
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Table: 3.1. The mean body weights, heart weights, tibia length, right and left kidney 
weight, ratio HW/BW and ratio HW/TL for each animal.  
Measurement Virgin 

(n=6) 
Day 12 
(n=5) 

Day 18/19 
(n=6) 

PP1.5 
(n=4) 

body weight (g) 19.41 ± 
0.528 

 

23.76 ± 0.408 34.21 ± 1.72 24.23 ± 1.04 

heart weight (g) 0.103 ± 

0.006 
 

0.097 ± 0.003 0.119 ± 0.002 .127± 0.009 

tibia length 
(cm) 

1.792± 

0.037 
1.76 ± 0.735 1.77 ± 0.0421 1.750 ± 0.50 

number of 
embryos 

0 5.80 ± 0.734 6.33± 1.145 6.250 ± 0.479 

right kidney 
weight (g) 

0.133 ± 

0.006 
0.15 ± 0.010 0.17 ± 0.007 .162 ± 0.0105 

left kidney 
weight (g) 

0.134 ± 

0.006 
0.15 ± 0.011 0.15 ± 0.005 0.159 ± 0.0100 

lung weight (g) 0.131 ± 

0.008 
 

0.168 ± 0.011 0.14 ± 0.006 0.146 ± 0.0063 

HW/BW (mg/g) 5.373 ± 

0.396 
 

4.10 ± 0.173 3.56 ± 0.224 5.2610 ± 0.309 

HW/TL 
(mg/mm) 

5.820 ± 

0.404 
5.55± 0.253 6.80 ± 0.205 7.281. ± 0.472 

-Values expressed as mean 4 standard error of mean.  
-n = number of mice per group.  
-Groups represent virgin mice in diestrus, mice at day 12 pregnancy (Day 12), mice at 
day 18/19 pregnancy (Day 18/19), and mice at post-partum day 1.5 (PP1.5).   
-Abbreviations:  BW, body weight; HW, heart weight, TL, tibia length. 
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Figure 3.1.  The ratio of heart weight to tibia length (HW/TL) for the four groups of 
female mice.  Groups represent virgin mice in diestrus, mice at day 12 pregnancy (day 
12), mice at day 18/19 pregnancy (day 18/19), and mice at post-partum day 1.5 (PP1.5).  
The bars represent mean and SEM for n = 5 virgin animals, n = 4 animals at day 12 and 
PP 1.5, and n = 6 animals for day 18/19.  Data was analyzed by ANOVA followed by 
pairwise T test.  * indicates P<0.05 vs. the virgin group, # means P<0.05 vs. day12, + 
indicates P<0.05 vs. day 18/19. 
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Figure 3.2.  Heat map showing differential expression of extracellular matrix genes 
in the left ventricle from GEO dataset GSE36330. Red represents the most highly 
increased genes, blue represents the most highly decreased genes, and white indicates no 
relative change in expression. 



 

 
Figure 3.2 Continued.  
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Figure 3.3.  Heat map showing differential expr
in the left ventricle as measured by our 
most highly increased genes, 
indicates no relative change in expression
diestrus, P day 12 and day18/19 indicate the day of pregnancy, and pp1.5 represents post
partum day 1.5.  
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3.3.  Heat map showing differential expression of extracellular m
in the left ventricle as measured by our Affymetrix 2.0 ST array. Red represents the 

 blue represents the most highly decreased genes, and white 
change in expression or intermediate levels.  Virgin mice 

diestrus, P day 12 and day18/19 indicate the day of pregnancy, and pp1.5 represents post

 

matrix genes 
represents the 

represents the most highly decreased genes, and white 
Virgin mice were in 

diestrus, P day 12 and day18/19 indicate the day of pregnancy, and pp1.5 represents post-
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Figure 3.4.  Individual gene profiles from the heat maps for selected genes discussed 
in the Introduction from our array Affymetrix 2.0 ST.  Colors represent relative 
expression with blue being less and red indicating greater relative expression and white 
being intermediate (no relative change).  Virgin mice were in diestrus, P day 12 and 
day18/19 indicate the day of pregnancy, and pp1.5 represents post-partum day 1.5.  



 

 
Figure 3.5.  Individual gene profiles from the 
collagen related genes in left ventricles. 
array Affymetrix 2.0 ST. Colors represent relative expression with blue being less and 
red indicating greater relative expression
were in diestrus, P day 12 and day18/19 indicate the day of pregnancy, and pp1.5 
represents post-partum day 1.5. 
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gene profiles from the heat map for selected collagen and 
in left ventricles.  This part of the heat map comes from our 

Colors represent relative expression with blue being less and 
red indicating greater relative expression and white intermediate or neutral.  Virgin mice 

re in diestrus, P day 12 and day18/19 indicate the day of pregnancy, and pp1.5 
partum day 1.5. 

 

selected collagen and 
heat map comes from our 

Colors represent relative expression with blue being less and 
Virgin mice 

re in diestrus, P day 12 and day18/19 indicate the day of pregnancy, and pp1.5 
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Figure 3.6.  Individual gene profiles from the heat map for TIMP1, TIMP2 and 
TIMP4 gene expression in left ventricles.  TIMP3 was not included in the heat map 
analysis because it showed no changes.  TIMP1 data comes from our array Affymetrix 
2.0 ST while TIMP2 and TIMP4 data come from GEO dataset GSE36330.  Colors 
represent relative expression with blue being less and red indicating greater relative 
expression. Virgin mice were in diestrus, P day 12 and day18/19 indicate the day of 
pregnancy, and pp1.5 represents post-partum day 1.5.  
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Figure 3.7.  Individual gene profiles from the heat maps for MMP2, MMP3, 
MMP11, MMP13, MMP14, MMP15, MMP16, MMP25, and MMP28 in left 
ventricles.  MMP11, MMP13, MMP25 and MMP28 data comes from our array 
Affymetrix 2.0 ST.  MMP2, MMP3, MMP14, MMP15 and MMP16 data comes from 
GEO dataset GSE36330.  Colors represent relative expression with blue being less and 
red indicating greater relative expression and white being neutral or no relative change. 
Virgin mice were in diestrus, P day 12 and day18/19 indicate the day of pregnancy, and 
pp1.5 represents post-partum day 1.5.



 

48 

 
 
Figure 3.8. The level of tissue inhibitor of metalloproteinases 1 (timp1) mRNA in left 
ventricle tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, 
day 12 and day18/19 indicate the day of pregnancy, and pp1.5 represents post-partum day 
1.5.  Bars represent mean and SEM for n=5 virgin animals, n=4 animals for day 12 and 
pp 1.5, and n=6 animals for day 18/19.  ANOVA was not significant. 
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Figure 3.9. The level of tissue inhibitor of metalloproteinases 2 (timp2) mRNA in left 
ventricle tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, 
day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum 
day 1.5.  Bars represent mean and SEM for n=5 virgin animals, n=4 animals for day 12 
and pp 1.5, and n=6 animals for day 18/19.  ANOVA was not significant. 
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Figure 3.10. The level of tissue inhibitor of metalloproteinases 3 (timp3) mRNA in 
left ventricle tissue of female mice as measured by qPCR.  Virgin mice were in 
diestrus, day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-
partum day 1.5.  Bars represent mean and SEM for n=5 virgin animals, n=4 animals for 
day 12 and pp 1.5, and n=6 animals for day 18/19.  ANOVA was not significant. 
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Figure 3.11. The level of tissue inhibitor of metalloproteinases 4 (timp4) mRNA in 
left ventricle tissue of female mice as measured by qPCR.  Virgin mice were in 
diestrus, day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-
partum day 1.5.  Bars represent mean and SEM for n=5 virgin animals, n=4 animals for 
day 12 and pp 1, 5, and n=6 animals for day 18/19.  ANOVA had P=0067.  * indicates 
mean is significantly different than pp 1.5 at P<0.05 and ** P<0.01 by Tukey’s post-hoc 
test. 
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Figure 3.12. The level of matrix metalloproteinase 2 (mmp2) mRNA in left ventricle 
tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, day 12 and 
day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum day 1.5.  Bars 
represent mean and SEM for n=5 virgin animals, n=4 animals for day 12 and pp 1.5, and 
n=6 animals for day 18/19. ANOVA was not significant. 
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Figure 3.13. The level of matrix metalloproteinase 3 (mmp3) mRNA in left ventricle 
tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, day 12 and 
day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum day 1.5.  Bar 
represent mean and SEM for n=4 animals for virgin, day 12 and pp 1.5, and n=6 animals 
for day 18/19.  ANOVA had P=0.05.  Day 12 significantly differed from day 18/19 
P<0.05 by Tukey’s post-hoc test. 
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Figure 3.14.  The level of matrix metalloproteinase 11 (mmp11) mRNA in left 
ventricle tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, 
day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum 
day 1.5.  Bar represent mean and SEM for n=4 animals for virgin, day 12 and pp 1.5, and 
n=6 animals for day 18/19. ANOVA was not significant. 
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Figure 3.15. The level of matrix metalloproteinase 13 (mmp13) mRNA in left 
ventricle tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, 
day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum 
day 1.5.  Bar represent mean and SEM for n=4 animals for virgin, day 12 and pp 1.5, and 
n=6 animals for day 18/19.  ANOVA had P=0.049.  Day 18/19 significantly differed from 
pp 1.5 P<0.05 by Tukey’s post-hoc test. 
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Figure 3.16. The level of matrix metalloproteinase 14 (mmp14) mRNA in left 
ventricle tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, 
day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum 
day 1.5.  Bar represent mean and SEM for n=5 virgin animals, n=4 animals for day 12 
and pp 1.5, and n=6 animals for day 18/19. ANOVA was not significant. 
 
Note:  The second round of animals gave RNA concentrations that were 10-100 fold 
greater than the first round of animals.  Available samples may need to be  
reassayed in the future together to address this discrepancy. 
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Figure 3.17.  The level of matrix metalloproteinase 15 (mmp15) mRNA in left 
ventricle tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, 
day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum 
day 1.5.  Bar represent mean and SEM for n=5 virgin animals, n=4 animals for day 12 
and pp 1.5, and n=6 animals for day 18/19. ANOVA was not significant. 
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Figure 3.18. The level of matrix metalloproteinase 16 (mmp16) mRNA in left 
ventricle tissue of female mice as measured by qPCR. Virgin mice were in diestrus, 
day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum 
day 1.5.  Bar represent mean and SEM for n=5 virgin animals, n=4 animals for day 12 
and pp 1.5, and n=6 animals for day 18/19. ANOVA was not significant. 
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Figure 3.19. The level of matrix metalloproteinase 25 (mmp25) mRNA in left 
ventricle tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, 
day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum 
day 1.5. Bar represent mean and SEM for n=4 animals for virgin, day 12 and pp 1.5, and 
n=6 animals for day 18/19.  ANOVA was not significant. 
 
Note:  We may want to redo MMP25 with more cDNA in the future as many were near 
upper end of standard curve and may account for the large variability. 
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Figure 3.20. The level of matrix metalloproteinase 28 (mmp28) mRNA in left 
ventricle tissue of female mice as measured by qPCR.  Virgin mice were in diestrus, 
day 12 and day 18/19 indicate the day of pregnancy, and pp1.5 represents post-partum 
day 1.5.  Bar represent mean and SEM for n=4 animals for virgin, day 12 and pp 1.5, and 
n=6 animals for day 18/19.  ANOVA was not significant. 
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CHAPTER 4 

DISCUSSION 

Pregnancy-induced cardiac hypertrophy is a physiological adaptation to a volume 

overload situation which involves thickening of the ventricular wall (Eghbali et al, 2006).  

The myocardial ECM and its integrity impact both cardiac structure and function and are 

altered during the hypertrophy process.  During the post-partum period there is a return of 

the hypertrophied heart to its non-pregnant state.  As ECM remodeling is important in the 

process of hypertrophy and recovery from hypertrophy we examined the ECM gene 

expression profile by microarray and followed up the expression of some genes by 

quantitative PCR.  This project has three major findings.  First, the heart weight/tibial 

length ratio was significantly increased in the late pregnancy and post-partum mice 

versus the virgin mouse group, indicating significant heart hypertrophy.  Second, the 

hearts of late pregnant and post-partum mice versus the virgin mice when assessed by 

microarray showed that 63 genes extracellular matrix gene probe sets from our 

Affymetrix 2.0 ST array and 147 genes extracellular matrix genes probe sets from GEO 

dataset GSE36330 array were differentially expressed depending on the state of cardiac 

hypertrophy.  Third, some TIMP and MMP mRNAs were significantly regulated when 

assessed by qPCR whereas some were not consistent with the pattern observed by the 

heat maps of the microarray data.   

There was a significant increase in the HW/TL of the day 18/19 group and post-

partum 1.5 day group compared to the virgin group which is in agreement with the 
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concept that by late pregnancy there is a physiological adaptation that is not completely 

reversed by day 1.5 post-partum in our animals (Umar et al, 2012; Xiao, et al,2014). 

Sixty-three ECM genes by heat map (from our animals and our 2.0 ST array data) 

showed had a significant difference in the expression between virgin, day 12 of 

pregnancy, day 18/19 of pregnancy and post-partum 1.5 day animal groups.  Twenty-five 

of these genes were discussed in the Introduction.  The heat map showed 8 of 25 mRNAs 

were increased in late pregnant and immediately post-partum  mice including Bgn, Vcan, 

Fbln2, Tnxb, Tnc, Agrn, Loxl1 and Thbs1 and some collagen genes were also found to 

have increased expression during the same period including Col1a2, Col3a1, Col5a1 and 

Col8a1.  However, Hpse was lowest-regulated on post-partum and highest-regulated on 

day18/19 mice.  The heat map showed that TIMP1, TIMP2, TIMP4 and MMP3 are 

increased in the late pregnant or post-partum period, while MMP2, MMP11, MMP13, 

MMP14, MMP15, MMP25 and MMP28 genes were as a whole lower during the same 

period.  Confirmation of many of these microarray changes still need to be validated by 

quantitative PCR as we found that the qPCR data did not always agree with the 

microarray heat map data. 

Because TIMP and MMP protein activity balance each other and net MMP 

activity determines matrix molecule turnover, we focused on the four members of the 

TIMP and nine members of the MMPs gene families, all of which were detected by the 

microarray as potentially regulated (with the exception of TIMP3). By PCR, TIMP4 

mRNA was significantly lower in the early post-partum suggesting potentially lower 

TIMP4 levels/activity.  If TIMP4 protein and activity are consistent with the mRNA 

change it would suggest that its targets MMP-1, -3, -7 and -9 were less inhibited during 
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this period.  TIMP1 mRNA trended to be higher in late-pregnancy and the post-partum 

period although it was not statistically significant.  TIMP1 can inhibit all MMPs except 

MMP-2 and MT1-MMP, suggesting that if protein levels/activity followed the pattern of 

mRNA expression that many MMP targets would be inhibited.  By PCR, overall at post-

partum day 1.5 there was a trend for MMP11, MMP13, MMP14, MMP16, MMP25, 

MMP28 to have their lowest mean (although not statistically significant in most cases).  

MMP3 mRNA was decreased in the day 12 mid-pregnancy group and MMP13 was 

decreased in post-partum group than day 18/19 groups, suggesting that their protein 

targets would have lower turnover at these times.  One must keep in mind that mRNA 

levels do not necessarily reflect protein levels or protein activity levels and so caution 

must be taken in interpreting mRNA exclusively.  Although there were trends in TIMP 

and MMP mRNA expression, much of our qPCR data turned out not to be statistically 

significant.  As there was a lot of variability between animals it may be necessary to 

increase the number of animals per group to reduce the variability of the small group size. 

Our data showed there are changes in gene expression in the left ventricle during 

pregnancy and in the early post-partum period compared to virgin mice.  Other studies 

have showed shown gene changes in the heart with pregnancy (Bernardo et al, 2010).  

Umar et al. (2012) found MMP2 mRNA was lower in the hearts of late pregnant mice 

than in virgin animals and the GEOset microarray data here are in support of this prior 

finding.  In contrast, pathological hypertrophy microarray analysis showed increased 

expression of MMP-2 in the mouse LV after transverse aortic constriction (Wang et al, 

2003).  One interpretation of this difference is that the type of hypertrophy may influence 

MMP2 mRNA increase or decrease.  In addition, the stage of hypertrophy progression at 
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which the RNA level was assessed may influence the results.  Our study identified 

TIMP1 to be highest (not significant by qPCR) in late pregnancy and the early post-

partum period, TIMP2 was high in late pregnancy and lowest in post-partum animals, and 

MMP3 was lowest in D12 animals and higher in virgin, late pregnant and post-partum 

animals.  Mori et al. (2006) using a pathological hypertrophy mouse model of TNF1.6 

overexpression showed increased MMP3, TIMP1, andTIMP2 mRNA levels.  Another 

study showed the level of transcripts for TIMP1 and TIMP2 were increased in 

pathological heart due to aortic stenosis (Heymans et al, 2005).  Although the pattern of 

MMP3, TIMP1, and TIMP2 was not identical between the pathological and physiological 

hypertrophy models, the same genes showed differential expression.   

Our animal data showed that mRNA expression by microarray for collagen I and 

collagen III increased in the post-partum period possibly indicating the need for new 

collagen synthesis and deposition during the return to the non-pregnant state.  Collagen I 

and collagen III in the left ventricle were increased in a myocardial infarction model.  

This suggests a distinct pattern of cardiac gene expression induced by the physiological 

load versus pathological load (Jin et al, 2000).  Col1a2, Col3a1, Col5a1, Col8a1, Bgn, 

Vcan, Fbln2, Tnxb, Tnc, Agrn, Loxl1 and Thbs1 showed changes on the heat map by 

microarray.  These gene changes in the left ventricle of pregnant mice suggest that the 

extracellular matrix is being remodeled and may indicate changes in newly synthesized 

collagen and other matrix proteins.  

 Another study in mice showed that there was a significant increase during the late 

pregnant and the post-partum period in MMP3 and TIMP1 mRNA expression (Chung et 

al, 2012).  Our results are fairly consistent with this prior study.  The MMP mRNAs 
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examined here showed a tendency as a whole to be decreased during late pregnancy and 

the post-partum period, suggesting the possibility of decreased MMP level/activity in the 

left ventricle during this time.   

The physiological hypertrophy of pregnancy is reversed during the post-partum 

period although in our case it was not completely reversed by post-partum day 1.5.  In 

contrast, pathological hypertrophy is associated with development of heart failure.  The 

most significant distinction between physiological and pathological hypertrophy is the 

reversible nature of physiological hypertrophy.  In future studies it will be interesting to 

compare the pregnancy gene profile we analyzed with that for models of volume 

overload that progress to pathological hypertrophy.  Future studies will determine if the 

changes in some TIMPs and MMPs are observed at the protein and activity level.  In 

addition, it will be interesting to determine if the changes are regulated by pregnancy 

hormones and whether pregnancy hormones could be protective to the heart in animal 

model of pathological cardiac hypertrophy. 
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