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ABSTRACT 

 

Magnetic source magnetic resonance imaging (msMRI) is an fMRI technique that 

has been under development for direct detection of neuronal magnetic fields to map brain 

activity and has been shown to be experimentally detectable using conventional means, 

but there is debate on the detection of the msMRI signal since it can be only a 0.2% 

change. Detection of its temporal characteristics has yet to be reported and may 

strengthen the case for msMRI detection. The temporal characteristics of the detected 

msMRI signal were examined in this work, but it was found that the sensitivity of 

conventional analysis techniques are low within the context of msMRI, preventing 

consistent msMRI signal detection and analysis of its temporal characteristics. 

Examination of blood oxygen level dependent (BOLD) contrast contamination and 

application of mean-shift clustering (MSC) to fMRI analysis were performed to look into 

the possibility of improving the low sensitivity. fMRI analysis is commonly performed 

with cross correlation analysis (CCA) and techniques based on the General Linear Model 

(GLM), but both CCA and GLM techniques typically perform calculations on a per-voxel 

basis and do not consider relationships neighboring voxels may have. MSC is a technique 

to consider for this purpose and shows improved activation detection for both simulated 

and real BOLD fMRI data. To consider the issue of BOLD contamination, the 

hemodynamic response over time was examined using repeated median nerve 

stimulation. On average, the results show the BOLD signal is not detectable after the 

second fMRI run. The results are consistent with previous hemodynamic habituation 

effect studies with other types of stimulation, but they do not completely agree with 
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findings of evoked potential studies. Overall, this work shows that the low detection 

sensitivity may be able to be addressed with the purpose of furthering msMRI research. 
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CHAPTER I 

INTRODUCTION 

 

Blood oxygen level dependent (BOLD) functional magnetic resonance imaging 

(fMRI) is an imaging technique introduced in the early 1990s and is currently commonly 

used to study brain function (Belliveau et al. 1991, Bandettini et al. 1992, Kwong et al. 

1992, Ogawa et al. 1992). The BOLD fMRI technique, like all current fMRI techniques, 

relies on measuring regional cerebral hemodynamics to infer neuronal activity, but may 

not accurately represent neuronal activity due to the indirect nature of the technique. 

Also, regional cerebral hemodynamics used to infer neuronal activity changes on the 

order of seconds, where neuronal activity happens on the order of milliseconds. The 

temporal resolution of such fMRI techniques are therefore unable to measure brain 

activity that happens on such time scale due to the relatively poor temporal resolution 

inherent to the technique.  

Magnetic source MRI (msMRI) is an fMRI technique that has been under 

development with the intent of directly assessing neuronal function. The technique is 

based on directly detecting MRI signal changes using changes in magnetic fields caused 

by firing neurons, which would address the issues of temporal resolution and the issues of 

accurately representing neuronal activity in theory. There are mathematical models that 

show the msMRI signal is detectable (Blagoev et al. 2007, Cassara et al. 2008, Konn et 

al. 2003, Pell et al. 2006, Xue et al. 2006) and studies that show experimental detection is 

possible (Bianciardi et al. 2004, Bodurka et al. 1999, Bodurka et al. 2002, Chow et al. 

2006a, Chow et al. 2006b, Liston et al. 2004, Petridou et al. 2006, Scott et al. 1992, Song et 
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al. 2001, Truong et al. 2006, Xiong et al. 2003, Xue et al. 2009), but temporal 

characteristics of the msMRI signal has not yet been reported. However, it was found that 

the sensitivity of conventional analysis techniques are too low within the context of 

msMRI to consistently detect the msMRI signal, which is likely further exacerbated by 

the fact that experimental data has shown that the msMRI signal can be only about a 

0.2% change (Xue et al. 2009) as well as other issues such as BOLD contamination. To 

address the issue of detection sensitivity, studies in cerebral hemodynamics (BOLD 

habituation in particular) and application of mean-shift clustering (MSC) in fMRI 

analysis were performed to examine possible methods of increasing detection sensitivity.  

Examinations in cerebral hemodynamics may give insight into when BOLD 

habituation may affect the BOLD signal. If there are scenarios when the BOLD signal is 

reduced or cannot be detected, it may indicate a scenario where BOLD contamination (a 

commonly brought up issue in msMRI research) could be minimized. If such a situation 

can be replicated within the context of msMRI and potentially further minimize BOLD 

contamination, it may strengthen the case for msMRI signal detection. Adopting MSC 

into fMRI analysis was attempted to examine the possibility of improving detection 

sensitivity from an analysis standpoint. Currently used analysis techniques typically 

perform calculations on a per voxel basis, meaning any relationships voxels may have 

with each other are not taken into consideration. MSC is a clustering technique based on 

density calculations on a feature space of chosen image characteristics, which addresses 

the issues of taking into consideration neighboring characteristics. If the incorporation of 

MSC in fMRI analysis can improve detection sensitivity in low signal to noise (SNR) 

situations as seen in msMRI, it may be possible to improve msMRI signal detection as 
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well. The results from these studies show that there is some promise of improving 

msMRI detection sensitivity.   
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CHAPTER II 

BACKGROUND 

 

Magnetic Resonance Imaging 

 Magnetic Resonance Imaging (MRI) is a medical imaging technique commonly 

used to image the body for medical diagnosis and research purposes. MRI is based on the 

quantum property of spin (a fundamental property of protons, neutrons, and electrons) 

which can be seen in atoms with unpaired protons or neutrons. This means that such 

atoms can be used to generate magnetic resonance images in theory. When such atoms 

are placed in a magnetic field (B0), they will absorb energy at a very specific frequency 

(Larmour frequency) as well as align in the same direction (parallel) or in the opposite 

direction (anti-parallel) of the B0 field. Despite there being only slightly more parallel 

spins (5 parts per million at 1.5 Tesla for example), it is this difference that provides a net 

magnetic moment along the direction of the B0 field and the source of the MRI signal.  

 The atoms can be excited with a radio frequency pulse (B1) at the Larmour 

frequency for the desired atom. The B1 field tips the spins to a specific flip angle so it is 

no longer aligned with B0, causing the spins to precess around the B0 direction. Magnetic 

gradients are applied to selectively alter the B0 field, causing spins to precess at different 

frequencies at specific locations. By using a B1 pulse in the shape of a sinc function, the 

gradients allows the targeted excitation of spins that are in a specific spatial range 

because the spins would have a specific range of frequencies that would be matched by 

the applied B1 pulse. As the spins precess after being excited, a signal known as the free 
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induction decay is produced and used to reconstruct the image by using the inverse 

Fourier transform.  

The aforementioned precession of spins does not happen indefinitely as they will 

eventually return to their equilibrium state in the B0 field. The process where the z 

component of the net magnetization, the component parallel to B0, relaxes or returns the 

equilibrium state is called T1 relaxation. The T1 time constant describes the rate at which 

the z component of magnetization recovers. It is mostly affected by the environment or 

“lattice” in which the magnetization resides, which is why T1 relaxation is also 

commonly referred to as spin-lattice relaxation. Likewise, the magnetization on the x-y 

plane, the component perpendicular to B0, will eventually decay to zero to return to the 

equilibrium state. This process is called T2 relaxation where the T2 time constant 

describes the rate at which the x-y magnetization component decays. The T2 time 

constant depends only on interactions between neighboring spins in an ideal situation, 

thus T2 relaxation is also called spin-spin relaxation. In real systems, differences in 

chemical environments as well as inhomogeneities in the magnetic field exist, which in 

practice creates a shorter time constant referred to as T2*.  

Different tissues have different T1, T2, and T2* relaxation times, which can be 

detected in the MRI signal to produce different contrast images. There are also other 

mechanisms that can affect the relaxation times to produce more different types of 

contrast images, such as the BOLD contrast used in fMRI. 
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BOLD fMRI Technique  

BOLD fMRI was introduced in the early 1990s and is used to detect neuronal 

activity (Bandettini et al. 1992, Belliveau et al. 1991, Kwong et al. 1992, Ogawa et al. 

1990). The BOLD technique utilizes the detection of changes in blood flow and blood 

oxygenation in the brain. Since neurons do not store energy internally, oxygenated blood 

must constantly be delivered to the brain in the form of oxyhemoglobin. When the 

oxygen is delivered and used, the oxyhemoglobin becomes deoxyhemoglobin. Due to the 

oxygen molecule that is not present, deoxyhemoglobin is paramagnetic, while 

oxyhemoglobin is diamagnetic. This change in magnetic properties of the hemoglobin 

can be observed as a change in T2* relaxation. An increase in T2* in an area of the brain 

would indicate a higher concentration of oxyhemoglobin and a higher BOLD signal 

intensity while higher concentrations of deoxyhemoglobin would lower BOLD signal 

intensity. The concentration of these different types of hemoglobin in specific regions of 

the brain change based on the metabolic demands of the neurons, making it possible to 

infer neuronal activity. While other fMRI techniques exist, Arterial Spin Labeling for 

example, the BOLD technique is currently the most commonly used. However, all 

current fMRI techniques depend on measuring regional cerebral hemodynamics to infer 

neuronal activity in one form or another.  

 

BOLD fMRI Technique Shortcomings 

The BOLD fMRI technique depends on measuring regional cerebral 

hemodynamics which has drawbacks by nature since using regional cerebral 

hemodynamic measurements means that neuronal activity is not directly detected, but 
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inferred. The detected signal may not necessarily reflect neuronal activity as the 

relationship between regional cerebral hemodynamics and the underlying neuronal 

activity is often non-linear and complex (Fox 1986). Regional cerebral hemodynamics 

can also be affected by other sources (drug effects for example) without change in the 

underlying neuronal activity. With BOLD contrast, the signal also tends to be vascular in 

nature since larger BOLD signals may be detected in areas with larger and/or more veins 

(Lai et al. 1993). There is also the issue of temporal resolution of current fMRI 

techniques, which is on the order of seconds since cerebral hemodynamics itself responds 

in that time frame. This is slow when compared to neuronal firings, which occurs on the 

order of milliseconds, meaning fMRI techniques based on regional cerebral 

hemodynamics cannot detect neuronal signals that require a high temporal resolution. 

While there are methods of addressing these shortcomings using other functional imaging 

techniques, there is currently no single technique that can address all of the 

aforementioned issues with current fMRI techniques while providing the same benefits of 

fMRI, high spatial resolution for example. Techniques can be combined to address 

individual shortcomings (Schulz et al. 2004), but doing so increases cost and complexity 

of the technique as well as not necessarily addressing inherent shortcomings of the 

individual techniques.  

 

Development of msMRI 

The msMRI technique is currently under development with the intent of 

addressing the shortcomings of current functional imaging techniques. The technique is 

designed to directly detect neuronal activity by using an MRI to examine neuronal 
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magnetic fields generated during neuron firings. Directly detecting magnetic fields 

generated by neuron firings should in principle address the issues of low temporal 

resolution and accurate representation of brain activity associated with fMRI techniques 

based on cerebral hemodynamics. Neuronal activity generates ionic current along 

dendrites and axons which generates a weak transient magnetic field around the neuron, 

changing the precession rate of nuclear spins. Spins exposed to the neuronal magnetic 

field will lose phase coherence, causing a decrease in MRI signal strength. It is well 

established that this change in magnetic field is detectable at the scalp with MEG (Cohen 

1968). Theoretical models of msMRI also indicate that the change in magnetic field can 

cause a signal change which is detectable with the MRI (Blagoev et al. 2007, Cassara et 

al. 2008, Konn et al. 2003, Pell et al. 2006, Xue et al. 2006,). 

To model the magnetic fields generated by neuronal activity, each dendrite and 

axon is modeled as a current dipole to model the magnetic fields generated by neuronal 

activity. The magnetic field can be calculated at any point around a neuron using the 

Biot-Savart law. Since the majority of axons in the brain are myelinated, neuronal current 

of axons are concentrated at the nodes of Ranvier in the form of through-membrane 

current. It has been experimentally demonstrated that this type of current generates a 

negligible net magnetic field and can be safely ignored (Swinney and Wikson, 1980). The 

magnetic field generated by the dendrites can thus be considered the main source of the 

neuronal magnetic field. The orientation of dendrites relative to each other also needs to 

be considered since orientation can have an effect on the net neuronal magnetic field. If 

dendrites are organized in a parallel configuration, there would be a net magnetic field 

generated. If the dendrites are organized in an anti-parallel orientation, the individual 
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magnetic fields generated would add destructively, resulting in no net magnetic field. In 

the best case scenario, it has been calculated that the msMRI signal changes could be up 

to 2% (Xue et al. 2006). 

  

Issues of msMRI 

Despite having been shown to be experimentally detectable, there are concerns 

that have caused msMRI signal detection to be questioned. The detected signal can only 

about a 0.2% change despite the theoretical model suggesting that the signal can be 

upwards of a 2% change, making it difficult to determine if the detected activation is the 

msMRI signal in actuality. Another issue commonly brought up in msMRI signal 

detection is BOLD contamination, which is when a BOLD signal still exists in the image 

and potentially masks the msMRI signal. Xue et al. (2009) managed this issue by using a 

stimulation paradigm designed purposely to force the BOLD signal to reach a constant 

state with the msMRI signal superimposed on top of the BOLD signal and detected, thus 

minimizing the issue of BOLD contamination. However, BOLD contamination is an 

issue still generally not considered to be fully addressed. 

 

Temporal Characteristics of msMRI 

Since msMRI activation detection is still considered to be debatable, 

examinations on strengthening its detection is required to further this field of study. One 

method of doing so is to examine the temporal characteristics of the detected msMRI 

signal which has not yet been reported. The msMRI signal has previously been reported 

to be detectable using electrical median nerve stimulation (Xue et al. 2009), and temporal 



10 

 

 

characteristics of this stimulation type has been well studied (Allison et al. 1989a, Allison 

et al. 1989b), making it a reasonable choice for continued use in msMRI research. 

The known electrical waveform in the brain due to electrical median nerve 

stimulation can be used in the examination of the temporal characteristics of the msMRI 

signal. Since mathematical models have shown that the msMRI signal is dependent on 

the neuronal magnetic field, it stands to reason that the theoretical msMRI response 

function can be calculated provided the neuronal response function is known. The 

aforementioned electrical waveform due to median nerve stimulation can be considered 

to be analogous with the neuronal response function, which then can be used to calculate 

the theoretical waveform and compared with the measured waveform. If both the 

theoretical and measured waveform share specific temporal characteristics, it may 

strengthen the case for msMRI signal detection. However, it was found that detection 

sensitivity using conventional techniques was low and the msMRI signal and its temporal 

characteristics could not be reliably detected. To address the issue of low detection 

sensitivity, studies were performed with the intent of improving detection sensitivity of 

msMRI by examining the use of mean-shift clustering in fMRI analysis and examining 

the issue of BOLD contamination, both of which may prove beneficial to msMRI studies 

as well as fMRI studies in general. 

 

Mean Shift Clustering 

Mean-shift clustering (MSC) was examined for use in fMRI analysis in general 

with possible application to msMRI and fMRI analysis. Techniques based on cross-

correlation analysis (CCA) and the General Linear Model (GLM) are commonly used for 
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fMRI data analysis (Bandettini et al. 1993, Boynton et al. 1996, Bullmore et al. 1996, 

Calhoun et al. 2001, Cohen et al. 1997, Friston et al. 2004, Penny et al. 2003), however 

these techniques are not without drawbacks. Both techniques typically perform their 

calculations on a per voxel basis. This means that each calculation does not take into 

consideration any relationship that neighboring voxels may have with each other. This 

has the effect of lowering the sensitivity of the technique when attempting to identify 

activations, which is especially true in low contrast to noise ratio (CNR) situations.  

There has been interest in enhancing fMRI data analysis using cluster size tests 

with various techniques having been examined with that intention. Cluster analysis 

(based on random field theory) is commonly used to help isolate activations (Foreman et 

al. 1995, Worsley et al. 1992, Xiong et al. 1995). K-means clustering (MacQueen 1967) 

is a method where observations are partitioned into "k" number of clusters where each 

observation belongs to the cluster with the closest mean. Fuzzy clustering (Bezdek et al. 

1984) is similar to k-means clustering, except that fuzzy clustering takes into 

consideration that a single observation can belong to more than one cluster. Both K-

means and Fuzzy clustering have been examined for improving fMRI data analysis 

(Baumgartner et al. 1997, Baumgartner et al. 1998, Moser et al. 1997, Singh et al. 1996). 

Mean-shift clustering (MSC) is another technique to consider for the same purpose.  

The MSC technique was first introduced by Fukunaga et al. (1975) for examining 

pattern recognition, but the technique was mostly unexplored until more recently (Cheng 

1995, Dorin et al. 2002). The technique has found uses in image processing and vision 

tasks. Image segmentation has also been explored with this technique on brain images 

(Mayer et al. 2009). MSC revolves around a density estimation that is done on a 
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predetermined feature space. Intuitively, the technique works by calculating the mean 

shift vector, then shifting the kernel as dictated by the mean shift vector. This process is 

repeated as appropriate until convergence at which time a cluster in the feature space can 

be identified. By selectively choosing the features used for the feature space, it would be 

possible to incorporate characteristics of the data that normally would not be part of the 

analysis with CCA and GLM based techniques. MSC also offers some other advantages 

with regards to implementation. The technique does not require assumptions to be made 

about noise distribution. Compared to typical cluster analysis, no hard cut-off in cluster 

size is required with MSC. Since MSC is based on density estimation of a feature space, 

it does not make any assumption on the shape of the clusters either as well as allowing 

different feature spaces to be used to incorporate different characteristics of the data into 

analysis. These advantages with MSC may allow higher sensitivity when detecting 

activations for improved results.  

 

BOLD Habituation 

To examine the issue of BOLD contamination in msMRI signal detection, a closer 

examination of how cerebral hemodynamics behaves over time with identically repeated 

stimulation was performed. This phenomenon examined is also referred to as habituation, 

which is defined as a decrease in an elicit behavior resulting from the repeated 

presentation of an eliciting stimulus. Habituation has been of interest to many researchers 

and has been studied using fMRI for different brain systems and with various types of 

stimuli (Becerra et al. 1999, Dirnberger et al. 2004, Fischer et al. 2000, Pfeiderer et al. 

2002, Mosbascher et al. 2010, Seitz et al. 1992, Talavage et al. 1999, Taylor et al. 1978, 
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Tomberg et al. 1989). Habituation from repeated presentation of visual stimulations is 

characterized by a decrease of activity in the primary visual region and can occur in brief 

sessions (Fischer et al. 2000). Significant habituation has also been found in the primary 

auditory cortex with repeated presented auditory stimuli (Pfeiderer et al. 2002, Talavage 

et al. 1999). Pain stimuli have been used in similar studies which have found the 

habituation effect to be present (Becerra et al. 1999, Mosbascher et al. 2010). Research 

involving motor stimulations has shown that the detected signal does decrease over time 

(Dirnberger et al. 2004, Seitz et al. 1992, Taylor et al. 1978). Critically, these studies 

demonstrate that cerebral hemodynamic signals should typically habituate over time 

when repeatedly presented with the same stimuli.  

In tandem with the habituation studies of cerebral hemodynamic signals, 

habituation of evoked potential signals of the human brain has been also widely studied 

(Allison et al. 1989a, Allison et al. 1989b, Thees et al. 2003). In particular, several 

research groups have carefully studied the habituation effects of electrical stimulation of 

the median nerve (Ozkul et al. 2002, Restuccia et al. 2011). It was reported by Thees et 

al. (2003) that the overall signal strength of brain response in the motor and sensorimotor 

areas does not significantly change over a one-hour recording period, suggesting that the 

overall signal strength is not sensitive to habituation. However, there are also studies that 

have shown that habituation does affect particular peaks of the response waveform 

despite the overall signal strength being relatively constant (Ozkul et al. 2002, Restuccia 

et al. 2011). Such studies have shown that the N20 peak is susceptible to habituation 

effects. Ozkul et al. (2002) reported a significant decrease in the N20 peak (14.4 ± 

4.70%) over a period of four hundred stimulations among healthy volunteers. A similar 
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study performed by Restuccia et al. (2011) also reported a significant decrease in the 

amplitude of the N20 peak after three thousand stimulations. Unlike cerebral 

hemodynamic signals which typically habituate over various types of stimuli, evoked 

potential habituation is apparently more complex. The overall signal strength in the S1 

region does not appear to be affected significantly by habituation (Thees et al. 2003), but 

the same may not be true for specific peaks (N20 for example) in the waveform (Ozkul et 

al. 2002, Restuccia et al. 2011).  

Cerebral hemodynamic responses with median nerve stimulation have also been 

reported (Arthurs et al. 2004, Backes et al. 2000, Ferretti et al. 2003, Feretti et al. 2007). 

These studies all utilized median nerve stimulation over a period of time and did show 

changes in the recorded Blood Oxygen Level Dependent (BOLD) signal in their results, 

but it should be noted that none of the studies had a specific focus on the habituation 

effect. The study performed by Arthurs et al. (2004) focused on how attention may affect 

the measured BOLD signal. Ferretti et al. (2003, 2007) focused on how pain delivered 

with median nerve stimulation can affect the measured BOLD signal. Since these studies 

did not have habituation as the main focus, the stimulations delivered typically varied 

over time in some way (e.g., intensity, frequency). To investigate the habituation effects, 

the stimuli delivered would ideally be identically repeated throughout the duration of the 

study. Backes et al. (2000) performed a study that utilized identically repeated stimuli, 

but the volunteers were asked to perform attention tasks (counting total number of 

interruptions in stimulations) during the study.  It is possible that the measured BOLD 

signal reflects the task effects rather than possible habituation effects in such scenarios. 

Habituation has been studied using other forms of stimuli as previously mentioned, but 
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cerebral hemodynamic habituation of median nerve stimulation has not yet been reported 

to the best of our knowledge.  

Electrical stimulation of the median nerve has been commonly used in the clinical 

setting to identify the somatosensory and motor cortex with intra-operative direct cortical 

recordings (Allison et al. 1989a, Allison et al. 1989b). Direct cortical recordings are 

considered to be the gold standard in measuring evoked potentials because it provides 

spatially and temporally accurate information. The BOLD fMRI technique (Kwong et al. 

1992, Ogawa et al. 1990) measures cerebral hemodynamic changes induced by neuronal 

activity of the brain. Combining direct cortical recordings with the BOLD technique 

offers a good opportunity to study the coupling between evoked potentials and cerebral 

hemodynamics (Heeger et al. 2000, Logothetis et al. 2001) as well as the behavior of 

coupling over repeated stimulations. As the first step, the presented study investigated the 

hemodynamic habituation effects of the median nerve stimulation using fMRI. Follow-

ups to this study would involve directly comparing cerebral hemodynamics (BOLD) with 

evoked potentials. A better understanding of BOLD habituation may be able to mitigate 

the issue of BOLD contamination and improve sensitivity in msMRI signal detection 

considering BOLD contamination is a commonly brought up issue in msMRI research 

because the msMRI signal itself is small and may be masked by unwanted BOLD signals.  

 

Relationship of MSC and BOLD Habituation to msMRI  

The examination of low detection sensitivity by studying BOLD habituation and 

application of MSC into fMRI analysis may further develop the field of msMRI research. 

Examining habituation with identical repeated median nerve stimulation would allow a 
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better understanding of how regional cerebral hemodynamics correlates with the 

underlying neuronal activity which may give more insight on when the BOLD 

contamination is an issue while investigating msMRI signal detection. If there are 

scenarios with no BOLD signals detected, it may give strength to msMRI signal detection 

if such situations can be similarly replicated, further minimizing BOLD contamination. 

The examination of MSC adoption into fMRI analysis investigated how it may improve 

the sensitivity of fMRI analysis in general with application in msMRI analysis. The MSC 

technique allows the consideration of different image characteristics which are normally 

not part of CCA or GLM based fMRI analysis techniques, which may improve activation 

detection in general by maintaining low false positive rates in low CNR situations. Also 

considering that the MSC technique by itself does not require a hard kernel size 

threshold, it may also improve highly focused activation detection. Since msMRI 

activations could be considered to be highly focused activations and occur in low CNR 

situations, msMRI detection may receive benefits from these aspects of the proposed 

MSC technique. Further examination of these two topics may help in the development of 

msMRI activation detection. 
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CHAPTER III 

THEORY AND METHODS 

 

fMRI Data Acquisition – msMRI Temporal Characteristics 

Twelve subjects (6 females, 6 males, ages 20-44) gave informed written consent 

with the approval of the University of Iowa’s Institutional Review Board. All subjects 

reported that they were right-handed, not using medications at the time of scanning, 

healthy, and had no history of any mental or psychiatric conditions. All ten subjects were 

scanned at the University of Iowa's Medical Education and Research Facility.  

The msMRI data was acquired on a Siemens 3T Trio scanner (Siemens Medical 

Solutions, Erlangen, Germany) using a gradient echo EPI pulse sequence with the 

following MRI parameters: TR = 100ms, TE = 30ms, flip angle = 21º, matrix = 64 x 64, 

FOV = 220mm, slice thickness = 5mm with 20% gap, 180 images per run, 4000 images 

per scan. Three runs were performed per scanning session. BOLD fMRI data was 

acquired on the same MRI machine using a gradient echo EPI pulse sequence with the 

following MRI parameters: TR = 2000ms, flip angle = 90 degrees, TE = 30ms, matrix = 

64 x 64, FOV = 220mm, slice thickness = 5mm with 20% gap, 180 images per run. Only 

one run was performed per scanning session. A T1 anatomical scan was also performed 

with the following parameters: TR = 1590ms, flip angle = 10 degrees, TE = 3.39ms, 

matrix = 128 x 128, FOV = 220mm, slice thickness = 2mm.  

Unilateral electrical stimulation was delivered to the subject’s right median nerve 

using a Grass S48 stimulator (Grass Technologies, West Warwick, Rhode Island, USA). 

The delivered stimulations were square wave pulses with 0.2ms duration between 70-
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120V, enough to obtain a thumb twitch. For the msMRI scans, a randomized inter-

stimulation interval (ISI) between 200-300 ms was used for the duration of each run. The 

BOLD scan used a block design of four and a half off/on cycles (40 seconds off, 40 

seconds on) with an ISI of 600 ms. A randomized ISI was used to reduce any effect that 

expecting a stimulation occurring with a fixed inter stimulation interval might have on 

the resulting BOLD signal. The volunteers were asked to passively feel the stimulation, 

stay still, stay awake, and not actively perform anything else for the duration of the scan.  

 

fMRI Data Acquisition – MSC and Habituation 

Ten subjects (5 females, 5 males, age 22-32) gave informed written consent with 

the approval of the University of Iowa’s Institutional Review Board. All subjects reported 

that they were right-handed, not using medications at the time of scanning, healthy, and 

had no history of any mental or psychiatric conditions. All ten subjects were scanned at 

the University of Iowa's Medical Education and Research Facility 

BOLD fMRI data was acquired on a Siemens 3T Trio scanner (Siemens Medical 

Solutions, Erlangen, Germany) using a gradient echo EPI pulse sequence with the 

following MRI parameters: TR = 2000ms, flip angle = 90 degrees, TE = 30ms, matrix = 

64 x 64, FOV = 220mm, slice thickness = 5mm with 20% gap, 180 images per run. Each 

run was six minutes in length. Each scanning session was composed of seven of runs, 

though only the first run was used for the purposes of the MSC study. A T1 anatomical 

scan was also performed with the following parameters: TR = 1590ms, flip angle = 10 

degrees, TE = 3.39ms, matrix = 128 x 128, FOV = 220mm, slice thickness = 2mm.  
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Unilateral electrical stimulation was delivered to the subject’s right median nerve 

using a Grass S48 stimulator (Grass Technologies, West Warwick, Rhode Island, USA). 

The stimulation voltage used was 15 volts above the motor threshold, which was 

individually defined as the minimum voltage required to obtain a thumb twitch. The 

delivered stimulations were square wave pulses with 0.2ms duration. A block design of 

four and a half off/on cycles (40 seconds off, 40 seconds on) with a randomized inter-

stimulation interval (ISI) between 1.0-2.0 seconds was used. A randomized ISI was used 

to reduce any effect that expecting a stimulation occurring with a fixed inter stimulation 

interval might have on the resulting BOLD signal. The volunteers were asked to 

passively feel the stimulation, stay still, stay awake, and not actively perform anything 

else for the duration of the scan.  

 

Simulated Data – MSC 

The simulated data was designed to emulate fMRI data using one hundred 

images, 128x128 matrix size, and with a block design of two and a half off/on cycles (20 

images per off or on cycle). Activations of various sizes (20x20, 10x10, 2x2 voxels) were 

inserted onto the data for analysis. Gaussian noise at different CNRs (0.20, 0.40, 0.06, 

and 0.80) was generated and inserted into the simulated data. 

 

Time Locked Averaging – Temporal Characteristics of msMRI 

The examination of msMRI temporal characteristics requires the use of time 

locked averaging with a randomly sampled waveform. By using a randomly generated 

ISI for the stimulation paradigm, the neuronal response function in the MRI effectively 
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becomes randomly sampled. Locking time to stimulation onset allows calculating the 

time locked averages for the measured msMRI waveform, which making a comparison 

between it and the theoretical msMRI waveform possible. The theoretical msMRI 

waveform as detected by the MRI scanner needs to be calculated based on the neuronal 

response function using median nerve stimulation for comparison with the measured 

waveform. It has been shown from mathematical models that the msMRI signal is 

dependent on the neuronal magnetic field originating from dendrites of the neurons. The 

magnetic field generated by a single dendrite can be calculated with the Biot-Savart Law: 

 

∫
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where φ  is acquired phase, TE is the echo time during MRI acquisition, γ  is the 

gyromagnetic ratio, 
//

B  is the component of B
r

 parallel to 
o

B

r

, and θ  is the angle 

between B
r

 and 
o

B

r

. The MRI signal for an image voxel can then be shown as: 
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where S(t) is the MRI signal for the voxel, φ  is still acquired phase, and ρ  is spin 

density within the voxel. Using the neuronal response function using median nerve 

stimulation with direct recordings from an exposed cortical brain surface as reported by 

Allison et al. (1989) (Figure 1), the waveform of MRI signal, S(t), can be theoretically 

calculated using Eq. 2-4 (Figure 2), which would then be used for comparison purposes 

with the measured msMRI waveform. 

 

MSC Theory 

The proposed MSC technique was evaluated using both simulated and real fMRI 

data. The data analysis was performed using Cross Correlation Analysis (CCA) to 

generate a statistical parametric image (SPI). The mean-shift clustering was then applied 

to a feature space constructed using selected characteristics of the SPI. Comparisons were 

made among CCA, CCA plus cluster analysis (CCA+CA), and CCA + MSC to examine 

the application of MSC. 

MSC is based on density estimation of a predetermined multi-modal feature space 

of image characteristics. Previously used feature spaces, such as perceived color 

(Connolly 1996, Wyszecki et al. 1982), are generally not applicable to fMRI analysis 
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since color is not a feature that would be of interest. For this study, a feature space of the 

estimated Z values of the SPI and the mean voxel values surrounding a voxel in the same 

SPI (eight neighboring voxels in 2D and twenty six neighboring voxels in 3D) was used 

as they can be features of interest and incorporating them in the analysis may help with 

activation detection. The estimated Z values were used because it relates directly to 

statistical significance, and the mean voxel value of the surrounding voxels were used to 

take into consideration neighboring effects. The image features are mapped into a point in 

a multi-dimension space.  The density is calculated within a defined kernel on the feature 

space. The kernel is moved based on the density gradient in the feature space until the 

local maximum is found. Points in the feature space associated with the same local 

maximum are considered to belong to the same cluster, and the calculation is repeated 

until all points are assigned to a cluster. 

Using the Parzen window technique (Parzen 1962), the kernel density estimation 

at point x can be described by: 
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where n is the number of data points, k
c  is a constant, k is the kernel, h is the kernel size, 

and d is the number of dimensions in the feature space. The local maximum density is 

identified at 0)(ˆ =∇ xf  by moving the kernel based on the gradient ascent in the feature 

space. Equation 5 can be rewritten as: 
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Assuming g(x) = -kꞌ(x), the gradient density estimator can then be described as: 
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The first term of Equation 8 is proportional to the density estimate computed with the 

kernel. The second term: 
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is the mean shift vector where g is the kernel, h is the kernel size, x is the mean estimate 

inside the kernel, and xi is the element inside the kernel. The mean shift vector, m(x), 

defines how the kernel will move along the density gradient towards the local maximum 

which corresponds with dense regions in the feature space. This calculation is performed 

at each data point, shifted by m(x) along the density gradient, and repeated until 

convergence is reached when local maximum is found. This procedure allows the mean 
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shift clustering technique to identify such locations without having to estimate the 

probability density function of the associated data. Points associated with the same local 

maximum belong to the same cluster. 

Within the mean-shift vector equation, the parameter that likely has the largest 

effect on the analysis is the kernel size, h, as differences in kernel sizes can change the 

density estimates calculated which the MSC technique is based on. While adaptive 

techniques do exist, a range of kernel sizes was used to examine how the technique 

behaves.  

 

Temporal Characteristics Analysis 

The MRI images were processed using MATLAB (MathWorks Inc., Natick, MA) 

using custom written software and Analysis of Functional NeuroImages (AFNI) (Cox 

1996). The first 200 images were discarded to allow hemodynamics to reach a steady 

state. A two dimensional motion correction was used. A spatial Gaussian filter with full 

width half maximum (FWHM) of 3mm was used, and a high pass temporal filter with 

cutoff frequency 2Hz was applied to remove physiological noise such as heartbeat and 

respiration. Cross correlation analysis was performed with a statistical z threshold of 3 

with a cluster size threshold of 5 voxels were applied to isolate significant activation(s). 

The reference function used for CCA was based on the calculated theoretical neuronal 

response function and the known randomized ISIs. The resulting time course was then 

used as the reference function for the analysis.  

For comparison purposes, a time course was extracted for a region of interest 

from the recorded data. Time locked averages with time locked to stimulation onset, was 
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performed to generate the measured neuronal response function. A temporal Gaussian 

filter was applied with a FWHM of 20ms to produce the final measured waveform. 

 

Habituation Data Analysis 

The MRI images were processed using AFNI. Three-dimensional motion 

correction was performed to minimize motion effects. All images were normalized to 

Talairach space (www.bic.mni.mcgill.ca). Constant, linear, and quadratic trends were 

identified and removed. A Gaussian filter with full width half maximum of 4mm was 

used to smooth the images. A reference function was generated by using the 

hemodynamic response function convolved with the task function. Cross correlation 

analysis was performed to generate a statistic map using the generated reference function. 

The Fisher transform was used to convert correlation values to Z statistical values. A 

statistical threshold of Z = 3 (p = 0.0013, uncorrected) and a cluster size threshold of 240 

mm³ was used to isolate areas of activations. These Z statistic maps were averaged 

together with their ten corresponding maps across subjects to produce an average statistic 

map per corresponding run in the scanning sequence.  

 

MSC Data Analysis 

The general approach to the proposed MSC analysis method is applying MSC to a 

feature space constructed using selected characteristics of the SPI generated using CCA. 

CCA was chosen over GLM because (1) which technique used to generate the SPI is less 

important for the purposes of this study; (2) the CCA technique allows easy control over 

the significance level while it is more difficult to do so with GLM. 
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The real fMRI images were processed using AFNI and custom Matlab software. 

As part of the CCA analysis, three-dimensional motion correction was performed to 

minimize motion effects. All images were normalized to Talairach space. Constant, 

linear, and quadratic trends were removed. To investigate the effect of a Gaussian filter 

on activation detection with MSC, no Gaussian filter and a Gaussian filter with full width 

half maximum (FWHM) of 4mm was applied. SPIs were generated for individual 

subjects. 

 

MSC Comparisons 

The proposed method (CCA+MSC) was compared with typical CCA and CCA 

plus cluster analysis (CCA+CA) procedure using the same simulated data. Activations of 

sizes 20x20, 10x10, and 2x2 were inserted onto the data to identify how the techniques 

behave with different sized activations. The total area of all test patterns was maintained 

to be the same by varying the number of inserted activations. The 2x2 activation size can 

be considered to be a simulation for highly focused activations. One thousand different 

Gaussian white noise patterns were generated and inserted and averaged into the 

simulated data at per CNR (0.20, 0.40, 0.60, 0.80) for examination on how the technique 

reacts to noise. No additional smoothing filter was applied to the simulated data.  

The proposed technique was assessed based on sensitivity and specificity and 

compared with the performances of the aforementioned techniques (CCA, CCA+CA, 

CCA+MSC) on simulated data. True positive rate comparisons were used to examine 

how the different kernel sizes affected the outcomes at various CNRs, and false positive 

rate comparisons were used to examine the amount of noise that appear in the results of 
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each technique. Since simulated data was used, the ground truth is known, so identifying 

true and false positive rates is a simple task by comparing detected activations with true 

activations. Receiver operating characteristic (ROC) curves were drawn to allow a direct 

comparison of performance between the techniques.  

The real fMRI data from ten subjects was analyzed for evaluating CCA, 

CCA+CA, and CCA+MSC. The three techniques are evaluated using both individual 

fMRI data and averaged fMRI data while controlling significance level at p = 0.01. 

Different statistical thresholds were determined and applied in order to set the 

significance level to p = 0.01 for comparison purposes. The threshold for CCA was 

calculated to be z = 4.8 for the filtered and z = 4.9 for the unfiltered (Bonferroni 

corrected). The CCA+CA used a threshold of z = 2.6 which was calculated based on a 

study performed by Xiong et al. (1995) with a cluster of threshold of 6 voxels for FWHM 

= 4mm and 4 voxels for the unfiltered dataset. The CCA+MSC used a threshold of z = 2 

for both filtered and unfiltered data. The z threshold for CCA+MSC was selected based 

on the results of simulations to achieve an approximate significance level of p = 0.01 (see 

results section). 
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Figure 1: Representation of the reported neuronal response function from measured 

evoked potentials using direct recordings from an exposed cortical brain surface (Allison 

et al. 1989) 



29 

 

 

 

Figure 2: The theoretical neuronal response waveform calculated using Eq. 2-4 based on 

the reported neuronal response function (Figure 1). This calculated waveform should be 

seen by the MRI scanner in theory and will be compared with the measured waveform. 
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CHAPTER IV 

RESULTS 

 

Temporal Characteristics Results 

The msMRI activation map shows activation in the primary motor cortex (M1), 

which agrees with the BOLD M1 activation (Figure 3). The measured msMRI waveform 

appears to show similarities in temporal characteristics with the theoretical neuronal 

response function (Figure 4). Both waveforms have local maximums at similar temporal 

locations at approximately 0ms and 60ms. Both waveforms also show the largest 

negative peak at approximately 100ms. While the theoretical neuronal response function 

approaches zero after approximately 160ms, the measured waveform shows that it does 

not. This discrepancy may be due to our assumption that the NRF approaches zero after 

approximately 170ms. It was also found that the M1 activation was not consistently 

detected across all subjects. Only five of the twelve subjects showed activations in 

general, indicating that is an issue with detection sensitivity. 

 

Habituation results 

Inter-run habituation is shown in figure 5. The data was averaged across all ten 

subjects. The very first run showed significant activations in the left S1/M1 region of the 

brain with a statistical threshold of Z = 3 (p = 0.0013, uncorrected) and with a cluster size 

threshold of 240 mm³. No significant activations were observed in the remaining six runs.  

Figure 6 shows the individual average across runs of activation cluster volume 

that were found in the left M1/S1 area. Activations were isolated with a statistical 
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threshold of Z = 3 and a cluster size threshold of 240 mm³. On average, the volume of 

activation clusters in the first scan is 6253.6 ± 5006.8 mm³. The second scan is 3988.8 ± 

3473.7 mm³. The third scan has activations of 2621.6 ± 2762.7 mm³. The fourth scan has 

activations of 2602.4 ± 2768.5 mm³. The data shows a consistent rapid decrease in the 

cluster volumes of statistical significance (ANOVA, F = 2.59, p<0.05). It should be noted 

that run 6 appears to show an unusually high average volume when compared to runs 5 

and 7. In the data, one subject showed an unusually large activation in run 6. This can 

explain why there is a sudden spike in the average; however, an ANOVA test shows that 

this sudden spike is not statistically significant when compared to runs 5 and 7 (F = 0.56, 

p>0.05). 

Figure 7 shows the average percent change found in individual 3x3x3 voxel 

regions of interest in the left S1/M1 area of identified activations. A rapid decay in the 

average percent change can be seen. The first scan has an average percent change of 

0.79%. The second scan has an average of 0.48%. The third scan's average was 0.30%. 

The fourth scan's average was 0.40%. This decay of average percent change is consistent 

with what is seen in figure 6 (decay in activation voxel size). ANOVA analysis showed 

that this decrease in percent change is statistically significant (F = 3.10, p<0.05). 

Figure 8 shows split-half analysis that was used to show intra-run habituation with 

average data across all ten subjects. The left image is processed with the first 2.5 cycles 

of the first run and shows significant activation in the M1/S1 regions on the left side of 

the brain. The right image is processed with the last 2.5 cycles of the first run and also 

shows that the activations have been detected in the M1/S1 region on the left side of the 

brain. The activation size of the right image is smaller than the activation size in the left 
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image. As before, a statistical threshold of Z = 3 and a volume threshold of 240 mm³ was 

used.  

The average volume of activation clusters from individual half-runs found in 

M1/S1 from the split-half analysis is shown in Figure 9. A statistical threshold of Z = 3 

and volume threshold of 240 mm³ was used. In the first 2.5 cycles, the average volume of 

activation clusters was 11807.2 ± 4439.7 mm³. The last 2.5 cycles had an average of 

8533.6 ± 5284.9 mm³. Paired T-test shows that the volume of the first half is statistically 

larger than the volume of the second half (t = 2.22, p < 0.05). 

 

MSC results 

True Positive Rate Comparison 

Using the proposed CCA + MSC technique, true positive rates were plotted to 

examine the behavior of the technique at various kernel sizes. The statistical threshold 

was applied at Z = 3. The kernel sizes used were in the range of 0.05 to 0.50. The CNRs 

of the simulated data are 0.20, 0.40, 0.60, and 0.80. The results show the true positive rate 

is dependent on the kernel size (Figure 10). Essentially nothing was detected at CNR of 

0.20, but the true positive rates can start to decline significantly at a kernel size of 0.20 

for CNR = 0.40. For very high CNR (0.80), the true positive rate remains high across the 

range of kernel sizes used. The true positive rates do fluctuate as the kernel size is 

changed, but this is expected as the noise is being randomly generated and changing the 

kernel size likely has an effect on the cluster assignment of the voxels. Figure 10 

indicates that the kernel size can be optimized for enhanced activation detection. A kernel 
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size of 0.20 was used for the rest of the comparisons, although not exclusively, as it 

seems to be an appropriate choice for most CNR and activation sizes. 

 

False Positive Rate Comparison 

False positive rates of the proposed CCA+MSC technique were examined while 

varying the z threshold (0.1 to 5.0) using simulated data. The same CNRs were used. A 

kernel size of 0.20 was selected based on the true positive rate comparisons (Figure 10). 

The false positive rate shows significant improvements over CCA at all simulated 

activation sizes (Figure 11) despite the curves being similar in shape to the CCA curve. It 

increases as z threshold decreases until z = 1 where it increases beyond the figure cap of 

false positive rate 0.05 and thus not shown. The 2x2 case follows the CCA curve more 

closely than the 10x10 and the 20x20 cases, but an improvement was still seen. The 

comparison was also made without an activation map (only Gaussian noise), and the 

result is similar to the 20x20 and 10x10 cases. Figure 12 shows representative activation 

maps generated by CCA and CCA+MSC with a z = 1 threshold at CNR = 0.80 with a 

0.20 kernel size. It can be visually observed that there are less false activations in the case 

with CCA+MSC, which agrees with the results from Figure 11. 

 

ROC Comparison of Different Kernel Sizes 

A comparison was made with ROC curves between CCA, CCA+CA, and the 

proposed CCA+MSC at the same CNRs as before, and on the same simulated data set 

(Figure 13).  Simulated data was used for this comparison with the statistical threshold 

varied from Z = 0.1 to 5.0 and the kernel size being set at 0.10, 0.20, and 0.50. The ROC 
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curves indicate that a properly chosen kernel size, in this case 0.20, show an 

improvement over CCA and shows similar performance with CCA+CA at certain false 

positive rates and CNRs. If the kernel size (e.g., 0.50) used is too large, essentially no 

activations are detected using CCA+MSC at low CNR (0.20), but can show significant 

improvement over CCA and CCA+CA at higher CNRs (0.40, 0.60, 0.80) with the 

exception of the 2x2 simulation where CNR of 0.40 also lacked detection. If the kernel 

size (e.g., 0.10) is too small, the CCA+MSC technique is generally inferior to CCA+CA 

and performs similarly with CCA.  

 The relative performance of CCA+MSC and CCA+CA shows a rather complex 

relationship. In the 20x20 and 10x10 cases at kernel size = 0.20, CCA+CA is better than 

CCA+MSC at all false positive rates, but can show similar results roughly starting at 

false positive rate of 0.04. However, CCA+MSC does not show similar results with 

CCA+CA at CNR 0.20 despite showing improvement over CCA. In the 2x2 case, 

CCA+MSC appears to be better than CCA+CA up to a false positive rate of about 0.015 

with the two techniques performing similarly after that. Significant improvements over 

CCA+CA can be seen with CCA+MSC at CNRs of 0.60, 0.80, and sometimes 0.40 with 

kernel size = 0.50, occurring mostly between false positive rates at about 0.0025 to 0.01. 

Considering that significance level of p = 0.05 is commonly used for activation detection, 

CCA+MSC should show improvement over CCA and sometimes CCA+CA at lower 

significant levels in a practical situation.  
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CCA vs CCA+MSC vs CCA+CA on Real Data 

The real fMRI data was analyzed using CCA, CCA+CA, and CCA+MSC (Figure 

14). Activations are expected to be seen on the left M1/S1 region due to the right median 

nerve stimulation. The CCA+MSC was applied with different kernel sizes of 0.05, 0.10, 

0.15, and 0.20. Based on Figure 11, a threshold of z = 2 was applied to achieve a 

significance of p=0.01. As shown in Figure 14, the expected activations can be detected 

using CCA+CA and CCA+MSC with or without a filter in the expected areas while no 

activation can be seen with standard CCA. Table 1 summarizes the activation volume and 

average z-scores of the averaged data of both filtered and unfiltered fMRI data. The 

kernel sizes where activations can be detected for real fMRI is 0.05 and 0.10, which is 

smaller than the kernel size of 0.20 for the simulated data. Both kernel sizes of 0.05 and 

0.10 cases show activations with the 0.10 case showing slightly smaller activations than 

CCA+CA and the 0.05 case showing larger activations when compared to CCA+CA. In 

the cases with no filter applied, the detected activations are smaller than their filtered 

counterparts (Table 1) likely due to the filter enhancing CNR of the SPI, but the non-

filtered results generally show the same trends as the filtered results. Individual results 

are summarized in Table 2 and essentially follow the same trends seen in Table 1. The 

results show that CCA, CCA+CA, and CCA+MSC (kernel size = 0.10) are statistically 

different when unfiltered (ANOVA, F = 15.4, p<0.05) or filtered (ANOVA, F = 10.9, 

p<0.05). The Tukey test further reveals that CCA+MSC is significantly better than CCA 

in both filtered and unfiltered cases (p = 0.05). The performance of CCA+MSC is 

statistically similar with CCA+CA (p = 0.05). 
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The z threshold was also held at z = 2 for comparison purposes between the 

techniques despite this meaning that the effective p values would differ for each 

comparison (Figure 15). The expected activations are seen in the expected regions of 

M1/S1 using all of the mentioned techniques. CCA and CCA+MSC produce similar 

results where CCA and CCA+MSC shows 139 and 127 activated voxels respectively if 

unfiltered, 318 and 311 activated voxels respectively if filtered. The CCA+CA results are 

also similar at 135 voxels if unfiltered and 312 voxels if filtered. It is expected that 

CCA+CA and CCA+MSC show smaller activation sizes as they are both second steps 

added to the analysis for removing false positives. 
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Figure 3: Activations seen due to electrical right median nerve stimulation using BOLD 

fMRI and msMRI. BOLD (left) activations can be seen in the left M1, S1, and SMA. 

msMRI (right) activation can be seen in the left M1. 
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Figure 4: Measured neuronal response function of the left M1 area. The time course was 

extracted from the left M1 activation seen in the msMRI image and had time locked 

averaging applied, resulting in the measured neuronal response function.  
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Figure 5: Inter-run habituation effect with median nerve stimulation. Only the very first 

run showed significant activation. Data was averaged across all ten subjects. A statistical 

threshold of Z = 3 (p = 0.0013, uncorrected) and a cluster size threshold of 240 mm³ was 

used to isolate activations. The right hemisphere is on the right and the left hemisphere is 

on the left.  
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Figure 6: The average volume of activation for seven runs of data acquisition.  The 

activation volumes were measured in the left M1/S1 area.  The activation map was 

generated using a statistical threshold of Z = 3 and a volume threshold of 240 mm³.  The 

individual activation volumes across all subjects were identified and averaged. The error 

bars represent one standard error.  
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Figure 7: The average percent change in a 3x3x3 voxel region of interest in the S1/M1 

area across 7 runs of all subjects. The error bars represent one standard error.  
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Figure 8: Split-half analysis was used to show intra-run habituation. Only the first run 

was used. The left image represents activation map processed with the first 2.5 cycle data 

of the first run. The right image is activation map processed with the last 2.5 cycle data of 

the first run. A statistical threshold of Z = 3 and a volume threshold of 240 mm³ was 

used. The right hemisphere is on the right and the left hemisphere is on the left. 
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Figure 9: The average volume of activation clusters found in the first and last 2.5 cycles 

of scan 1 (figure 4).  The activation volumes were measured in the left M1/S1 area.  The 

error bars represent one standard error. 
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Figure 10: Effect of kernel size on true positive rates for various activation sizes with 

simulated data. The statistical threshold was held constant at z = 3. A range of kernel 

sizes was used from 0.05 to 0.50. CNRs used are 0.20, 0.40, 0.60, and 0.80. A: 20x20 

activation size. B: 10x10 activation size. C: 2x2 activation size.  
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Figure 11: Change of false positive rates at different z thresholds using various 

activation sizes with simulated data. Kernel size was held constant at 0.20. The z 

thresholds were varied from 0 to 5. CNRs used are 0.20, 0.40, 0.60, and 0.80. A: 20x20 

activation size. B: 10x10 activation size. C: 2x2 activation size. D: Activation map 

consisting of noise only. 
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Figure 12: Activation map of CCA and CCA+MSC. A threshold of Z = 1 was applied. 

CNR of 0.80 was used with kernel size of 0.20. A: CCA activation map. B: CCA+MSC 

activation map 
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Figure 13: ROC curves for CCA, CCA+CA, CCA+MSC with different kernel sizes and 

different activation sizes using simulated data. Kernel sizes are 0.10, 0.20, and 0.50.  

Activation sizes used are 20x20, 10x10, and 2x2. CNRs used are 0.20, 0.40, 0.60, and 

0.80. A: 20x20 activation size, kernel size = 0.10 B: 20x20 activation size, kernel size = 

0.20 C: 20x20 activation size, kernel size = 0.50 D: 10x10 activation size, kernel size = 

0.10 E: 10x10 activation size, kernel size = 0.20 F: 10x10 activation size, kernel size = 

0.50 G: 2x2 activation size, kernel size = 0.10 H: 2x2 activation size, kernel size = 0.20 

I: 2x2 activation size, kernel size = 0.50 
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Figure 14: Activation of median nerve stimulation detected with CCA, CCA+CA, 

CCA+MSC. Significance levels were controlled at p = 0.01 for all images. Z thresholds 

were changed for each technique based on the significance level. A: CCA, Z = 4.8, 

FWHM = 4mm B: CCA+CA, Z = 2.6, cluster size threshold = 6 voxels, FWHM = 4mm 

C: CCA+MSC, Z = 2, kernel size = 0.05, FWHM = 4mm D: CCA+MSC, Z = 2, kernel 

size = 0.10, FWHM = 4mm E: CCA+MSC, Z = 2, kernel size = 0.15, FWHM = 4mm F: 

CCA+MSC, Z = 2, kernel size = 0.20, FWHM = 4mm G: CCA, Z = 4.8, no filter applied 

H: CCA+CA, Z = 2.6, cluster size threshold = 4 voxels, no filter applied I: CCA+MSC, 

Z = 2, kernel size = 0.05, no filter applied J: CCA+MSC, Z = 2, kernel size = 0.10, no 

filter applied K: CCA+MSC, Z = 2, kernel size = 0.15, no filter applied L: CCA+MSC, 

Z = 2, kernel size = 0.20, no filter applied 
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Figure 15: Activation of median nerve stimulation detected with CCA, CCA+CA, 

CCA+MSC. Z thresholds were controlled at z = 2 for all images. Significance level 

changes for each technique. A: CCA, Z = 2, FWHM = 4mm B: CCA+CA, Z = 2, cluster 

size threshold = 6 voxels, FWHM = 4mm C: CCA+MSC, Z = 2, kernel size = 0.05, 

FWHM = 4mm D: CCA, Z = 2, no filter applied E: CCA+CA, Z = 2, cluster size 

threshold = 6 voxels, no filter applied F: CCA+MSC, Z = 2, kernel size = 0.05, no filter 

applied 
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Table 1: Activation Volume and Average Z-Scores for Averaged Real fMRI Data 
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Table 2: Activation Volume and Average Z-Scores for Individual 

Subjects on Real fMRI Data 
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CHAPTER V 

DISCUSSION 

 

Temporal Characteristics Discussion 

The results show that the temporal characteristics of msMRI can be detected with 

both BOLD and msMRI signals seen in overlapping areas of interest (M1). The measured 

NRF from the time locked averages of the extracted time course does show identifiable 

temporal characteristics of that is shared with the theoretically calculated NRF, such as 

the largest peak at roughly 100ms for instance. However, it was also found that the signal 

could not be reliably detected. 

The low sensitivity of msMRI signal detection is likely due to a variety of factors. 

The NRF used in this study is based on what was reported by Allison et al. (1989). 

Considering that different subjects were used in this study than Allison et al.’s (1989) 

study, it is possible that the NRF per subject will not be identical across subjects and that 

difference is enough to affect the results. Another commonly brought up issue with 

msMRI signal detection is BOLD contamination. Although a stimulation paradigm 

designed to minimize BOLD contamination was used, it is still possible that BOLD 

contamination is masking the msMRI signal in this case as it is unlikely that unwanted 

BOLD signal has been completely eliminated. Conventional fMRI analysis techniques 

may also lack the sensitivity to consistently detect the msMRI signal. All of the possible 

issues are further exacerbated by the fact that the msMRI signal may be very small in 

reality, possibly as low as 0.2%. As a result, the examination of the msMRI signal’s 

temporal characteristics was temporarily abandoned with the motivation of studying 
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methods of improving msMRI detection sensitivity from a technique standpoint and from 

an analysis standpoint.  

 Despite the issues of detection sensitivity, it is important to investigate the 

different aspects that contribute to detection sensitivity in msMRI especially since it is 

known that there are potential problems with currently used fMRI techniques based on 

cerebral hemodynamics. Temporal resolutions of such techniques are low when 

compared to neuronal firings because cerebral hemodynamics changes on the order of 

seconds while neuron activity happens on the order of milliseconds, meaning these 

techniques cannot detect activity that requires a high temporal resolution. There can also 

be some concerns about how accurate the detected locations are in actuality as things like 

drug effects or vasculature of the individual brain can affect regional cerebral 

hemodynamics. The msMRI technique in principle should address these issues, but the 

many aspects of detection sensitivity have caused msMRI signal detection to be a matter 

of debate. Despite this, the aspects of detection sensitivity in msMRI should be 

investigated not only to strengthen msMRI research, but also because the results from 

these studies may also improve knowledge on currently used fMRI techniques which may 

enable better use of the techniques. Although done with the intent to strengthen msMRI 

research, this work examines two aspects of the detection sensitivity issue (BOLD 

habituation and MSC) which also can be applied to currently used fMRI techniques and 

analysis.  
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Habituation Discussion 

Using median nerve stimulation and BOLD fMRI, the hemodynamic habituation 

effect was observed in the experiment. The data shows that the habituation effect is quite 

severe between runs as only the first run showed a detectable activation on average. The 

data also shows that significant decay happens within the duration of the first scan that 

was performed in the series of seven. It would not be unreasonable to conclude that there 

is a strong habituation effect with cerebral hemodynamics associated with median nerve 

stimulation. 

The habituation of cerebral hemodynamics found in our data are consistent with 

other types of stimulations such as visual, auditory, motor, and pain (Becerra et al. 1999, 

Dirnberger et al. 2004, Fischer et al. 2000, Pfeiderer et al. 2002, Mosbascher et al. 2010, 

Seitz et al. 1992, Talavage et al. 1999, Taylor et al. 1978, Tomberg et al. 1989). Most of 

these studies were designed to study the habituation effect, and they have reported 

decreases in signal in their findings after repeated stimulations over time. While the 

stimulation type varied across studies, hemodynamic habituation is a common finding. 

Our study using repeated median nerve stimulation over time also found hemodynamic 

habituation, which is consistent with the aforementioned studies.  

Several other groups have studied median nerve stimulation using fMRI (Arthurs 

et al. 2004, Backes et al. 2000, Ferretti et al. 2003, Feretti et al. 2007). However, these 

studies were designed to investigate attention effects and other effects. They did not have 

a focus on hemodynamic habituation effects. Subjects performed different tasks during 

the studies and/or received magnitude varying-stimuli, which could potentially mask 

habituation. Results from such studies would likely be dominated by the main task effects 



55 

 

 

of the different stimulation paradigms. None of these studies have specifically mentioned 

any habituation effect. Even if it were to be assumed that the habituation effects were not 

masked, none of these studies showed a change in recorded BOLD signal as severe as is 

seen in the presented results. The presented study used an identically repeated stimulation 

with the volunteer passively feeling the stimulation. Severe habituation in the BOLD 

signal was observed. This would suggest that non identically repeated stimuli and tasks 

do in fact mask or minimize habituation effects or cause enough differences that 

habituation does not occur. It may also be worth noting that it is not unreasonable to 

consider the possibility that the subjects’ attention to the stimuli could be in different 

states for the duration of the scan, thus the attention effect cannot be completely 

discounted as a contributor to the severe signal decrease seen in the presented data.  

Since the BOLD signal is coupled to evoked potentials, measuring BOLD signal 

and neuronal activity concurrently offers an opportunity to study the coupling 

relationship. Janz et al. (2001) examined this relationship using BOLD fMRI and Visual 

Evoked Potentials (VEP). Their fMRI results show a maximum signal change of 1.2 - 

2.9% after approximately ten seconds. Their VEP results show a curve with a continuous 

decline that they state can be described with an exponential with a time constant of 14.7 ± 

2.1 seconds. When comparing the VEP and BOLD signals, their conclusion states that the 

BOLD signal time course was not being accurately predicted with a linear model. The 

coupling between evoked potentials and hemodynamic response would appear to be 

rather complex, though Janz et al. (2001) themselves do not offer any particular insight 

into this relationship beyond what was already stated. 
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Unlike hemodynamic response which shows significant habituation across a wide 

range of stimuli, evoked potentials of the MNS over repeated stimulations is apparently 

not as simple. It has been reported that the overall signal strength of evoked potentials in 

the brain does not vary significantly over repeated median nerve stimulation, suggesting 

that habituation effects are not significant (Thees et al. 2003). However there are also 

studies that have shown that specific peaks in the waveform (e.g., N20) are susceptible to 

severe habituation (Ozkul et al. 2002, Restuccia et al. 2011). This raises the question of 

how the cerebral hemodynamics is coupled with neuronal activity. One possible 

explanation is that cerebral hemodynamics is coupled to the overall signal strength of 

evoked potentials. If this is true, then the coupling relationship between cerebral 

hemodynamics and evoked potentials must decrease over repeated stimulations. Only if 

the coupling relationship decreases over time can it possibly explain the relationship of a 

constant evoked potentials and a decreased hemodynamic response for the repeated MNS 

as seen in the presented results. Another possible explanation is the cerebral 

hemodynamics are coupled to specific peaks of evoked potentials (e.g., N20) instead of 

the overall signal strength. As it is known that specific peaks can be susceptible to severe 

habituation, coupling cerebral hemodynamics with specific peaks would likely show a 

decrease in the detected activation if habituation were to occur, explaining the habituation 

observed in our results. It should be noted that comparable evoked potential data (e.g., 

same subjects, same stimuli, etc.) was not collected for the purpose of this study. As a 

result, this study is not able to differentiate which possible explanations for the 

phenomenon are more likely, or if there are other explanations (such as attention effects). 

Further investigations of the coupling between evoked potentials and cerebral 



57 

 

 

hemodynamics as well as the behavior of coupling over repeated stimulations would be 

needed. 

 In summary, we have found severe habituation in BOLD signals when using 

median nerve stimulation. Between the seven runs performed, the habituation can be seen 

very quickly as activations were detected only in the first run on average. Within the first 

run, statistically significant BOLD signal decay was identified when using split-half 

analysis. The observed habituation is consistent with other studies that have focused on 

hemodynamic habituation using various types of stimulation. However, the results are not 

consistent with studies that have focused on evoked potentials with median nerve 

stimulation. The results do raise the question of how evoked potentials relates to cerebral 

hemodynamics when examined over a period of time with the presented scenario. It is 

possible that the coupling relationship between cerebral hemodynamics and evoked 

potentials decreases over time. Another possibility is that cerebral hemodynamics and 

evoked potentials are coupled with specific peaks within the electric waveform that are 

susceptible to severe habituation. As no evoked potential data was collected for this 

study, we are not able to determine which of these scenarios are more likely, or if there 

are other explanations for the phenomenon. Further investigations would be required to 

determine the underlying cause of the hemodynamic habituation seen in our results.  

 

MSC Discussion 

In this study, the adoption of MSC into fMRI analysis was examined by 

comparing it to CCA and CCA+CA. The ROC curves (Figure 13) indicate that the 

proposed MSC technique show an improvement over CCA and can show improvements 
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over or similar results when compared to CCA+CA. The false positive rate comparisons 

(Figure 11) showed significant improvement over CCA which indicates that CCA+MSC 

controls noise very well. This allows a lower statistical threshold to be used when 

identifying activations (Figure 12). Another potential benefit of MSC is for highly 

focused activation detection since no cluster threshold is applied.  

The performance of CCA+MSC depends on the kernel size being used (Figure 

10), but determining an optimal range of kernel sizes is not a trivial issue. If the kernel 

size used is too large, potentially no activations would be detected. Conversely, if the 

kernel size used is too small, the proposed technique does not show an improvement 

when compared to CCA and CCA+CA. A proper kernel size needs to be used in order to 

see an improvement over CCA and CCA+CA. When tested with simulated data, the ROC 

curves and true positive comparison indicate that a kernel size of roughly 0.20 is a 

reasonable kernel size to use and should show an improvement over CCA (Figures 10 

and 13), but no activations were detected with real fMRI data at that kernel size. Real 

fMRI data showed activations at kernel size of 0.05 and 0.10 (Figure 14). The difference 

in optimal kernel sizes between the real and simulated data may be explained by the 

different noise characteristics of the data. The simulated data is the ideal situation with 

only Gaussian white noise. Real fMRI data has multiple noise types such as movement 

artifacts, physiological noise, noise from the MRI machine itself, etc. It is likely that the 

optimal kernel size depends on the structure of noise in the data and needs optimized for 

each individual data set. Future studies are required to examine this issue in more detail. 

Significant improvement is seen with CCA+MSC over CCA on the simulated 

data in the ROC curves at a kernel size of 0.50 at CNRs 0.40 (not 2x2 case), 0.60, and 
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0.80 (Figures 13C, F and I), but this improvement is sudden and is concentrated in the 

region of false positive rates up to 0.05. While this type of improvement is typically 

unexpected, it is mostly consistent with Figure 10 where larger kernel sizes does result in 

detection of true positives, but Figures 10 and 13 are not necessarily directly comparable. 

Also, kernel size 0.50 was not included in all comparisons for this study because Figure 

10 does not show it to be useful at all CNRs.  

The false positive rate comparison for the 2x2 test pattern showed a curve that is 

more similar to the CCA curve than the 10x10 and 20x20 cases (Figure 11). This may be 

due to the 2x2 case having many more neighboring voxels adjacent the test pattern than 

the other cases. Four 20x20 test patterns were inserted into simulated fMRI images, 

which results in 320 neighboring voxels. To maintain the same total area of the test 

pattern, four hundred 2x2 activations were used, resulting in 3200 neighboring voxels. 

The 2x2 test image has ten times the number of voxels that are directly adjacent the 

inserted activations when compared to the 20x20 test image. It is more likely for falsely 

activated voxels to be detected by cluster analysis techniques if it is attached to the test 

pattern than when isolated. More falsely activated voxels are expected to be detected for 

the 2x2 test pattern, thus increasing the false positive rate. Regardless, the proposed 

technique still shows improvement when compared to CCA in the 2x2 case. 

CCA+MSC can show similar results when compared to CCA+CA at a false 

positive rate of greater than about 0.04 with a kernel size of 0.20 (Figure 13), but this 

similarity is not seen in the 2x2 case where CCA+MSC was either slightly improved or 

about the same as CCA+CA. A cluster threshold of 4 voxels was used to set the 

significance value at p = 0.01, which also happens to be the exact size of the simulated 
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activations in the 2x2 case. If the activation size was three voxels or a different 

significance level was used and the voxel cluster threshold was increased, the activations 

would have been removed by the cluster analysis. The CCA+MSC technique by itself 

does not have a cluster threshold and has the potential of better detecting highly focused 

activations. 

The selection of image characteristics used in the feature space should be 

examined in future studies as the feature space likely has a large effect on the results as 

well as the range of acceptable kernel sizes. The image characteristics selected for the 

featured space used in this study was the estimated Z values found in the SPI and the 

mean voxel values surrounding a voxel in the SPI. While there are many methods of 

constructing a feature space, the feature space used did show an improvement over CCA 

in the simulated and real fMRI data at the same significance level, it is unknown what 

image features or what combination of image feature produces the best feature space for 

fMRI analysis. The feature space used in this study does not incorporate temporal 

features in the data or positional features for example. There may be other types and 

combinations of image features that can be used, and it would certainly be an area of 

further examination.  

The proposed technique has the limitation that the significance levels cannot be 

easily theoretically calculated (or at least a method has yet to be implemented at the time 

of this writing). This presents a particular drawback when doing comparisons. 

Significance levels can be approximated using simulations as was done in this study, but 

still may present some challenges when very accurate comparisons are required. 
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The experiment performed in this study examines the application of MSC to CCA 

in fMRI activation detection. The results show that an improvement with CCA+MSC can 

be seen over the typical CCA and CCA+CA analysis technique. The proposed technique 

maintains a lower false positive rate than CCA which allows the use of lower statistical 

thresholds while controlling for noise and helps activation detection in low CNR 

situations. This also helps in detecting small highly focused activations especially 

considering that CCA+MSC does not require the application of a cluster size threshold, 

which is required by most cluster analysis techniques. By nature, CCA+MSC also has the 

ability to incorporate different image characteristics into a feature space for analysis. 

These benefits can help to improve activation detection in fMRI data. However, studies 

in the optimization in kernel size and feature space are needed to further develop the 

proposed technique. Despite the aforementioned limitations, the proposed technique 

shows promise in improving fMRI activation detection.  

 

Discussion With Relation to msMRI 

The results from the experiments performed show that it is possible to further 

address some of the concerns that have caused msMRI signal detection to be a matter of 

debate. The habituation study performed shows that the BOLD signal decays rapidly with 

repeated median nerve stimulation, which gives insight on when BOLD contamination is 

more likely to be an issue within the context of msMRI signal detection. The adoption of 

MSC into fMRI analysis showed that the proposed MSC technique can show 

improvements over currently used fMRI analysis techniques, which may have 

applications in msMRI to address the issue of its signal being very small. 
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The habituation study showed that the BOLD effects due to identically repeated 

electrical median nerve stimulation become rapidly undetectable on average, indicating 

that cases exist where BOLD contamination may be less of an issue in the context of 

msMRI research. In such a scenario, if an msMRI signal is detected, it would be less 

likely for it to be noise caused by BOLD contamination, giving more strength to research 

on msMRI signal detection. While this could strengthen msMRI research, it requires 

further examination to fully understand the phenomenon as there are other issues that can 

affect regional cerebral hemodynamics thus affecting how much BOLD contamination 

may be present. For example, attention effects have been shown to have an effect on the 

detected BOLD signal, which may in turn have an effect on msMRI signal detection. 

Although the results of this experiment show the BOLD signal being undetectable after a 

certain amount of time, the BOLD signal in actuality does not truly vanish. If any BOLD 

signals do not meet the criteria set by the analysis method, the BOLD signal has simply 

been defined as not present, but can still have an effect on the msMRI signals especially 

considering that previous experimental data has shown how small the msMRI signal can 

be in actuality. More examinations are needed to fully understand these issues. 

The application of MSC into fMRI analysis shows that there are a variety of 

benefits that may be applied to msMRI analysis. The results show that incorporating 

MSC into fMRI analysis controls false positive rates well compared to the commonly 

used CCA analysis even in low CNR situations, allowing the use of lower statistical 

thresholds compared to CCA. Considering that one of the issues surrounding msMRI 

signal detection is that the signal itself may be very small according to experimental data, 

the applying of MSC to the msMRI analysis could help to alleviate some of these 
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concerns. MSC can also show benefits when detecting highly focused activations 

compared to CCA and CCA+CA if properly optimized as msMRI activations can be 

considered to be highly focused, thus it would be less likely to be removed by the 

aforementioned cluster thresholds while retaining the other benefits of the MSC 

technique. However, what was done for the purposes of this study may not be ideal for 

use in msMRI research or fMRI research in general. The feature space used for this 

study, while not arbitrarily selected, may not be optimal for msMRI research or for fMRI 

analysis. Further examinations in feature spaces, among other needed optimizations such 

as kernel sizes, would need to be performed before this technique can be realistically 

applied in a practical setting.  

 

Summary 

In summary, this work examines the feasibility of msMRI by studying possible 

acquisition strategies and data analysis strategies. Detection of the temporal 

characteristics of the msMRI signal is possible, where the largest peak at about 100ms 

can be detected. However, the inconsistent detection of the temporal characteristics 

motivated the aforementioned studies. BOLD habituation was examined to identify under 

what conditions the BOLD signal would be reduced. MSC was applied to fMRI analysis 

to examine if detection sensitivity can be improved. 

The BOLD habituation study showed the BOLD signal habituating severely, to 

the point of being undetectable within the first MRI run, using identically repeated 

median nerve stimulation. By understanding what causes this situation and being able to 

replicate it reliably, it would be possible to reduce the issue of BOLD contamination in 
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the context of msMRI signal detection. Targeting when the BOLD signal has habituated 

away for msMRI signal detection should reduce the issue of BOLD contamination as the 

BOLD signal itself is undetectable or at a minimum.  

Applying MSC to fMRI analysis improves the analysis results when compared to 

the commonly used CCA and CCA+CA in certain situations. MSC controls false positive 

rates well compared to CCA and CCA+CA in low CNR situations and can improve 

detection of highly focused activations if properly optimized. Since the msMRI signal 

can be very small in magnitude and highly focused, the MSC technique can help to 

identify msMRI activations if optimization is achieved. The feature space used in this 

study is similar to other cluster analysis techniques in concept (magnitude and 

neighbors), and incorporating other features, temporal features for example, can further 

the examination of MSC in msMRI and fMRI analysis. 
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