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ABSTRACT 
 

Regenerative medicine presents exciting strategies for healing critical-size bone defects 

through the implantation of cells and biocompatible scaffolds.  Most in vitro studies are 

performed in atmospheric oxygen conditions (~20%), which do not accurately mimic the 

CSD microenvironment. Due to damage to the vasculature at CSDs, oxygen levels fall 

into the hypoxic range (<5%), which can impact viability, proliferation and 

differentiation of the cells employed for bone regeneration.  Understanding the cellular 

responses to hypoxia has grown primarily from study of individual molecular factors. 

The master regulator of adaptive responses to low oxygen availability is the nuclear 

factor, hypoxia-inducible factor-1. HIF-1 is a heterodimeric protein, stable below 6% O2 

condition in the nucleus and has been shown to play a role in angiogenic-osteogenic 

coupling. We have developed a responsive, fluorescent, hypoxia detection system and 

determined whether HIF activity can be tracked in both 2-D and 3-D cultures. Adipose-

derived stem cells (ASCs) were selected due to their broad utilization in tissue 

engineering strategies and characterized the influence of HIF signaling on its phenotype. 

The work done identified that of hypoxia impaired osteogenic differentiation of ASCs in 

both 2-D and 3-D cultures and HIF-1 did not mediate this effect. Ischemic 

preconditioning (IPC) strategy and varied protocols used represents a clinically feasible 

manipulation of cell preparation to help the survival of implanted ASCs and accelerate 

osteogenic differentiation at physiological oxygen levels.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 EFFECT OF LOW OXYGEN ON STEM CELLS 

1.1.1 Stem Cells and their Microenvironment 

Stem cells produce all tissues in the body through proliferation and 

differentiation in response to cues from their microenvironment. Because of their 

plasticity, they are particularly sensitive to their immediate environments. In vivo they are 

thought to reside in specific niches, which maintain their pluripotent or multipotent 

capabilities. Consequently, differentiation along specific lineages is thought to coincide 

with their migration out of their specific niche into an environment that provides 

appropriate differentiation cues [Watt 2000]. 

As the field of tissue engineering has matured, new technology has been 

employed to regulate the application of mechanical as well as biological factors to 

developing tissue constructs. However, one developmentally important stimulus that is 

still rarely accounted for during in vitro culture is the oxygen tension. Low oxygen or 

hypoxia plays a substantial and critical role in many essential physiological and 

developmental pathways.  

Human embryonic stem cells that are derived from the inner cell mass of 

early stage blastocytes adapt to grow in this low oxygen environment until about the 11th 

week when the cytotrophoblasts traverse the arterial walls and the local partial pressure 
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of oxygen increases from 2.3% to 7.8% O2 [Rodesch 1992]. The oxygen distribution 

within the bone marrow has been studied almost exclusively in the context of 

hematopoietic stem cells (HSCs) and to a much lesser extent in the context of 

mesenchymal stem cells (MSCs). Early direct measurement revealed that bone marrow in 

general is hypoxic, where some regions are as low as 1–2% O2 [Cipolleschi 1993, Kofoed 

1985]. Results from recent in vivo studies, however, provided direct experimental 

evidence that long-term repopulating HSCs in the mouse reside in a hypoxic environment 

and hypoxia may in fact be an essential part of the microenvironment that maintains them 

in an undifferentiated state [Parmar 2007]. These measurements were further supported 

by modeling analysis of in vivo oxygen distribution in bone marrow indicating that HSCs 

exist within an extremely hypoxic region within bone marrow [Chow 2001].  

 

Figure 1.1: Stem cell microenvironment. 

 

In addition to bone marrow MSCs, adipose tissue has been identified as a 

source of multipotent cells that have the capacity to differentiate towards the adipogenic, 

chondrogenic, myogenic and osteogenic lineages [Gronthos 2001, Zuk 2002, Cho 2005, 

Knippenberg 2005, Lin 2005, Peterson 2005, Guilak 2006].  Adipose-derived stem cells 
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(ASCs) can be readily obtained from tissue harvested through liposuction or through 

abdominoplasty procedures. Despite the high degree of vascularity of adipose tissue 

relative to bone marrow, in vivo measurements of oxygen concentrations in mouse 

adipose tissues have shown the oxygen concentration to be in the vicinity of 3%, and so 

hypoxic cultures may still be beneficial to ASC in vitro proliferation and differentiation 

characteristics [Matsumoto 2005, Wang 2005, Zachar 2011]. Thus, physiologically 

relevant stem cell responses should be expected to occur as oxygen levels shift within this 

range. 

 

1.1.2 Effect of Oxygen on Proliferation and Differentiation of Stem Cells 

Low O2 environments have long been used by embryologists to culture 

embryos and the blastocytes produced under low O2 have significantly more inner cell 

mass compared with those generated under higher O2 [Nakao 1990, Thompson 1990, 

Harvey 2004]. The benefits have been demonstrated for rabbit, mouse, sheep, cow, and 

human embryos [Thompson 1990, Umaoka 1992, Li 1993, Catt 2000]. Culture conditions 

utilizing a physiological oxygen tension of 5% instead of 20% were also found to 

improve the establishment of mouse ESCs line by reducing oxidative stress [Wang 2006]. 

An oxygen tension of 2% resulted in enhanced human ESC clonal recovery and reduced 

chromosomal abnormalities without inducing hESCs to adopt a more differentiated 

phenotype [Forsyth 2006]. Low oxygen tension studies have been carried out with bone 

marrow MSCs from a variety of mammalian species. In general, MSCs exhibited greater 

colony-forming potential while proliferating at a higher rate and for an extended duration. 

[Lennon 2001, Grayson 2006, Ren 2006, Buravkova 2007, Fehrer 2007, Grayson 2007, 
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Martin-Rendon 2007]. Fewer investigations have been carried out concerning the effects 

of hypoxia on ASCs. Different conditions using oxygen concentration in the range of 1-

5% increased the growth rate of stem cells [Lee and Kemp 2005, Wang 2005, Malladi 

2006, Xu 2007, Lee 2009, Fink 2011, Rasmussen 2011]. 

Local oxygen concentrations can also direct cellular differentiation. In 

1961, Bassett and Hermann demonstrated that cells isolated from embryonic chick tibial 

cortexes differentiate in vitro toward bone when maintained under high (35%) oxygen 

concentrations and toward cartilage when maintained under low oxygen (5%) 

concentrations [Bassett 1961]. A number of investigations have recently been confirmed 

these early observations of oxygen-directed differentiation of cartilage and bone [Murphy 

2001, Domm 2002, Saini 2004, Mizuno 2005, Utting 2006, Mizuno 2005, Chen 2006, 

D’ippolito 2006, Hirao 2006]. Hypoxia inhibited the differentiation of primary rat 

osteoblasts and human bone marrow MSCs to an osteogenic phenotype [D’Ippolito 2006, 

Utting 2006]. In contrast, low oxygen conditions have been demonstrated to induce 

chondrogenic differentiation when expanded human chondrocytes were pelleted or 

embedded in alginate [Domm 2002, Malda 2004, Murphy 2004]. Studies have shown the 

strong influence of hypoxia on the differentiation potential of ASCs [Wang 2005, Betre 

2006, Lee and Kemp 2006, Malladi 2006, Xu 2006, Khan 2007]. Lee and Kemp showed 

that hypoxia affected the potential of human ASCs to differentiate along muscle and 

osteogenic lineages [Lee and Kemp 2006]. The effect of hypoxia on the differentiation 

potential of ASCs was also reported for murine cells. It was found that murine ASCs 

exhibited decreased chondrogenic and osteogenic potential when differentiated at 2% O2 

compared with normoxic conditions [Malladi 2006]. The following reviews include 
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examples of hypoxia both encouraging and discouraging differentiation of various types 

of stem cells and influencing the specific lineage of differentiation [Malda 2007, Lin 

2008, Ma 2009, Abdollahi 2010]. Hence, much effort has to expend to elucidate the 

mechanisms via which cells sense oxygen levels and transduce the signal to elicit a 

response. 

 

1.2 MECHANISM OF CELL RESPONSE 

Hypoxia Inducible Factors (HIF) family of proteins has been convincingly 

demonstrated to mediate majority of the cellular responses under low oxygen 

environment [Semenza and Wang 1992, Weiner 1996, Maltepe 1997, Iyer 1998, Wenger 

2000, Goda 2003]. HIF is a αβ heterodimeric transcription factor. The HIF family 

comprises three α subunits: HIF-1α, HIF-2α and HIF-3α that are regulated by cellular 

oxygen levels. The HIF-1β subunit (also known as the aryl hydrocarbon receptor nuclear 

translocator, ARNT) is constitutively expressed in the nucleus in an oxygen-independent 

manner [Wang 1993]. Among the HIF family, HIF-1 is very well characterized and has 

been shown to play a role in regulating more than 200 genes [Loboda, 2012, Haase 

2013]. HIF-2α shares 48% amino acid homology and has similar structure and functional 

domains with HIF-1α. Consequently, it is regulated via the same hydroxylase 

mechanisms described for HIF-1α and, although not all the downstream target genes of 

HIF-2α been identified, it is believed that it has distinct functions from HIF-1α in vivo 

[Fedele 2002, Hu 2006, Rankin 2007, Ratcliff 2007, Loboda 2010]. HIF-3α is the more 

distantly related isoform and, in certain splicing arrangements, encodes a polypeptide that 
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antagonizes hypoxia-responsive element dependent gene expression. [Wenger 2000, 

Maynard 2007, Augstein 2011]. 

 

1.2.1 HIF-1: Mediator of Hypoxic Response 

HIF-1 was identified and isolated by Semenza and Wang, due to its 

binding an enhancer region in the 3’-flanking region of the EPO gene in response to 

hypoxia [Semenza and Wang 1992]. It has since been shown that HIF-1 also binds the 

enhancer region of VEGF (in its 5’-flanking region), GLUT-1, GLUT-3, GAPDH and a 

plethora of other genes during hypoxic stress [Semenza 1999]. HIF-1 protein is 

upregulated during hypoxia and when hypoxia is simulated by culturing cells in the 

presence of cobalt chloride to replace the iron in the heme proteins, and knocking out the 

gene for the HIF-1α subunit prevents cells from responding to hypoxic stress. These data 

indicate that HIF-1 plays a central role in the mechanism for eliciting cellular responses 

to hypoxia. 

 

1.2.2 Mechanism of Cellular Hypoxia Response: HIF-1 

Further examination of 256-base-pair region of the erythropoietin gene, 

the study delineated the essential 50-nucleotide enhancer sequence, eventually termed the 

hypoxia-responsive element (HRE), and identified a nuclear factor which exhibited 

hypoxia-dependent binding to the HRE [Semenza 1992]. Presence of a functional HRE 

resulted in a seven-fold increase in erythropoietin production in response to hypoxia (1% 

oxygen). Maxwell, et al., soon showed that HRE elicited hypoxia-responsive 

transcription in a number of other cell types and species as well [Maxwell 1993]. Human 
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fetal lung fibroblasts, human skin fibroblasts, human monocyte/macrophage cells, 

monkey renal fibroblasts, pig retinal epithelial cells, rat aortic endothelial cells, Chinese 

hamster lung fibroblasts, Chinese hamster ovary cells, mouse renal adenocarcinomas, and 

mouse erythroleukemias were transiently transfected with a plasmid containing the HRE 

enhancer fused to a broadly active promoter and the α1-globin gene as a reporter 

[Maxwell 1993]. In 1% oxygen, 11 of the 12 tested lines demonstrated a 3 to 11-fold 

induction of α1-globin production, similar to the original observations in hepatomas. This 

implied that the same hypoxia-responsive nuclear factor responsible for HRE binding and 

erythropoietin upregulation must be present in a range of cell types and may represent a 

widespread mechanism for response to hypoxia. 

Following studies by Wang and Semenza showed that HIF-1 DNA 

binding occurred in response to hypoxia in a number of mammalian cells types not 

expressing the erythropoietin gene and that the sequence of the enhancer binding region 

was conserved [Wang 1993]. HIF-1 ubiquity was further shown when Weiner, et al., 

demonstrated HIF-1 expression in all human and mouse organs tested, including brain, 

kidney, liver, heart, placenta, pancreas, and skeletal muscle [Weiner 1996]. Additionally, 

they showed an in vivo upregulation of HIF-1 in rats chambered in 7% oxygen. But 

beyond triggering pathways designed to directly increase tissue oxygenation, HIF-1 

activity was found to be vital in essential physiological and developmental pathways. 

Embryogenesis, for example, is inhibited in embryonic stem cells that are unable to 

produce HIF-1, even under normal, physiological oxygen conditions [Maltepe 1997, Iyer 

1998]. HIF-1 is also essential for cell cycle arrest in hypoxic cells [Goda 2003]. The 

combined conclusion of these studies implies the broad influence of hypoxia on cell fate. 



	
  

	
   8	
  

 

1.2.3 Structure of HIF-1 

HIF-1 is a heterodimeric protein composed of α and β subunits. Both 

subunits have been identified as basic-helix-loop-helix-PER-ARNT-SIM proteins 

(bHLH/PAS) [Wang 1995, Kewely 2004]. Factors in this family must dimerize to 

become functional and are defined by three major domains: (1) A bHLH domain near the 

N-terminus responsible for non-specific dimerization with the basic region being the site 

of DNA binding [Murre 1989, Ferré-D’Amaré 1993). (2) A PAS homology domain 

(named for three early homologous Drosophila and human proteins in which the 

sequence was found, periodic circadian protein (PER), aryl hydrocarbon receptor nuclear 

translocator protein (ARNT), and single-minded protein (SIM)) which establishes 

dimerization partner specificity and target gene specificity [Pongratz 1998]. (3) A 

transactive domain which interacts with transcriptional coactivators to help initiate 

transcription [Kewely 2004]. Wang et al., identified HIF-1α as a novel 120 kDa 

bHLH/PAS polypeptide while HIF-1β was identified as the previously known ARNT 

[Wang 1995]. While the β unit is known to interact with a number of other bHLH/PAS 

proteins, HIF-1 α dimerizes almost exclusively with HIF-1β. In hepatoma cells, levels of 

both HIF-1α and HIF-1β RNA and protein were dramatically increased upon exposure to 

1% oxygen. RNA levels peaked at 1-2 hours of continuous hypoxia while protein levels 

peaked between 4 and 8 hours. Levels of both diminished to basal values within minutes 

after cells were returned to 20% oxygen. Additionally, HIF-1α was found to contain large 

clusters of proline, glutamic acid, serine or threonine (PEST) residues, which are 

implicated in protein instability and degradation [Wang 1995]. 
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1.2.4 Regulation of HIF-1 

Activation of HIF-1 is oxygen-dependent and is regulated by stability of 

the HIF-1α protein subunit. Both HIF-1α and HIF-1β mRNAs are constitutively 

expressed intracellularly, but HIF-1α protein levels are nearly undetectable in normoxic 

cells, even when HIF-1α is overexpressed. In hypoxic cells, high levels HIF-1α are 

observed, but HIF-1β levels are unaffected. Both DNA binding of HIF-1 and levels of 

HIF-1α rapidly decrease upon reintroduction of normoxia [Haung 1996, Nguyen 2013, 

Prabhakar 2013]. The regulation of HIF-1 is represented schematically in Figure 1.2. 

Ratcliffe et al. identified a region between amino acids 530 and 652 in 

HIF-1α that conferred oxygen-dependent repression when transferred to a reporter gene 

system and suggested that the mechanism of regulation may be mediated by proteolytic 

degredation [Ratcliffe 1998]. It was shown that in the presence of oxygen, the product of 

the von Hippel-Lindau tumor suppressor gene (pVHL), in complex with several other 

proteins, interacts directly with this region of HIF-1α (termed the oxygen-dependent 

degradation domain (ODD)), marking the protein for proteosomal degradation by the E3-

ubiquitin ligase pathway [Ohh 2000]. Furthermore, a conserved family of prolyl-4-

hydroxylases were found to post-translantionally modify HIF-1 by hydroxylating specific 

residues [Bruick 2001, Epstein 2001]. Most notably, HIF prolyl 4-hydroxylase 2 (P4H2) 

is responsible for hydroxylating two key proline residues (Pro564 and Pro402) in the 

HIF-1α ODD required for binding of pVHL [Ivan 2001, Masson 2001, Berra 2003]. 

Activity of the HIF prolyl-hydroxylase family of enzymes is dependent on Fe(II) and 2-

oxogluterate as cofactors and dioxygen as a cosubstrate. 
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Figure 1.2: Mechanism of cell response in hypoxia. 
 

In low oxygen conditions, the hydroxylase is not active, HIF-1α is not 

modified, the pVHL complex fails to bind, and HIF-1α is not degraded. Additionally, 

P4H2 mRNA is oxygen-inducible [Epstein, 2001]. Thus this enzyme appears to be the 

key oxygen sensor responsible for setting basal normoxic HIF-1 levels. A secondary 

regulatory mechanism was found to work in a similar manner. Under hypoxic conditions, 

the C-terminal domain of HIF-1α is able to interact with coactivators, such as p300/CBP, 

to initiate transcription of target genes [Ema 1999]. In normoxic conditions, a key 

asparagine residue (Asp201) is hydroxylated, preventing binding of p300/CBP and 

suppressing HIF-1 activity [Lando 2002]. The factor responsible for asparagine 

hydroxylation, deemed factor inhibiting HIF-1 (FIH-1), functions similarly to P4H2, and 

likewise shows iron and oxygen dependence [Lando 2002]. Thus two primary 
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mechanisms, both dependent on post-translational protein modification, exist for oxygen-

dependent regulation of HIF-1α. 

In summary, HIF-1α is constitutively expressed, but in normoxia the 

protein levels are kept low by rapid ubiquitination and proteosomal degradation. Activity 

of any remaining basal HIF-1α is suppressed by the failure of the p300 co-activator to 

bind. In hypoxic conditions, oxygen dependency of both hydroxylases prevents HIF-1α 

modification and subsequently inhibits degradation and allows for binding of co-

activators and dimerization. 

 

1.2.5 Kinetics of HIF-1 Response 

Hydroxylated HIF-1α is rapidly degraded in vivo, with a half-life of 

approximately 5 minutes [Huang 1998]. Though the HIF-1α protein is very unstable in 

normoxia, HIF-1α mRNA is constitutively expressed and the protein is constantly 

produced. Additionally, P4H2, the enzyme primarily responsible for hydroxylating HIF-

1α, has an activity dependent upon dioxygen with a Km (Michaelis constant) just above 

the concentration of dissolved O2 in air. This high value ensures that even a small 

decrease in oxygen is likely to have a significant effect on P4H2 activity and makes 

oxygen concentration the limiting determiner of HIF-1α stability [Hirsila 2003]. Thus 

HIF-1 can be both a highly sensitive and rapidly responsive initiator of hypoxia response. 

Even though low oxygen activity of HIF-1 is dependent upon de novo production of HIF-

1α, this can occur rapidly because HIF-1α mRNA is constantly produced [Semenza 

1992]. Studying hepatoma cells exposed to 1% oxygen for 0-4 hours, Wang and Semenza 

found that HIF-1 activity was first detectable within 15 minutes, with 8% maximal 
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activity at 30 minutes, 50% maximal activity between 1 and 2 hours, and maximal 

activity at 4 hours [Wang 1993]. After rapid re-exposure to 20% oxygen, HIF-1 activity 

was reduced to 34% within 5 minutes and was eliminated by 15 minutes. The group also 

showed that binding of stabilized HIF-1 to DNA occurred rapidly, with 77% binding 

within 1 minute and 100% binding within 5 minutes. 

 

1.2.6 Gradation of HIF-1 Response 

The sensitivity of P4H2 to changes in oxygen concentration also imparts a 

graded responsiveness of HIF-1 to O2. Jiang et al. exposed HeLa cells to oxygen 

concentrations ranging from 0 to 20% and measured levels of the HIF-1 subunit proteins 

and HIF-1 DNA binding [Jiang 1996]. As expected, the HIF-1α subunit was dramatically 

responsive to oxygen concentration. Between 20 and 6% oxygen, HIF-1α levels and 

DNA binding modestly increased as oxygen concentration decreased. However, below 

6% oxygen both HIF-1α and HIF-1 DNA binding increased exponentially to reach 

maximal values at 0.5% oxygen. Half-maximal responses were observed between 1.5 and 

2% oxygen. Thus, the majority of HIF-1 activity takes place over a physiologically 

relevant range of oxygen 0-5%, with the largest response at hypoxic levels 0.5-1.5%. 

Bracken et al., tested the graded response of HIF-1 in a similar set of 

experiments with a variety cell types: HEK293T, HeLa, COS-1, HepG2, CACO-2, and 

PC12 cells [Bracken 2006]. In every case, they also found an exponential increase in 

HIF-1α protein levels as oxygen was decreased from 5 to less than 1%. However, though 

HIF-1 activity, as measured by reporter protein production, was also maximal below 1% 

oxygen, the response did not always match HIF-1α protein levels. In addition to 
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differences in maximal reporter protein production levels between cells types, they noted 

two categories of response. Some cells gradually increased reporter protein production as 

oxygen decreased from 10 to less than 1%. Others required an oxygen concentration of 

less than 2% before exhibiting a dramatic increase in reporter protein production, which 

much more closely coincides with changes in HIF-1α levels. Therefore, having a system 

that can help in tracking HIF-1 activity, would be helpful for the tissue engineering 

community to link it to cell behavior or fate.  

 

1.3 EFFECT OF OXYGEN ON OSTEOGENIC DIFFERENTIATION 

1.3.1 Clinical Relevance: Critical-size Bone Defects (CSDs) 

CSDs are bone defects that do not heal by themselves, as they are large 

enough to preclude spontaneous healing. Critical-size bone defects can be either 

inherited, occur following trauma, surgical correction of hereditary defects, through 

infection, congenital anomalies but can also arise due to operative intervention such as 

cyst and tumor resections [Rodriguez-Merchan 2004, Hulth 1989]. In general, CSDs can 

be classified based on their morphological characteristics such as length, breadth and 

depth of injury. In addition to this the localization of the defect plays an important role in 

the treatment of the defect as it leads to decrease of mesenchymal progenitor cells. Apart 

from this the decreased vascularity leading to low oxygen concentration at the site plays a 

crucial role in the process of bone healing. 

CSDs remain a clinically challenged problem in orthopedic surgery. 

Currently, an autograft bone surgery is the gold standard method to treat CSDs. But, the 

procedure requires a second surgical site, it is limited in quantity, and is restricted 
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regarding the integration of implanted bone and vascular structures with native tissue and 

longer rehabilitation time for patients in hospitals. To overcome these drawbacks, the 

need for an alternative has been recognized [Langer and Vacanti 1993]. The concept of 

the use of stem cells in therapeutic applications is an appealing one, as stem cells already 

have a natural role in tissue repair and regeneration [Green 1977, Laurencin 1999, Blau 

2001, Spraddling 2001, Allison 2002, Kneser 2002, Presnell 2002, Preston 2003]. 

 

1.3.2 Bone Cells and Expression of Osteogenic Markers 

Bone is a vascularised tissue that provides mechanical stability to the 

skeleton that is required for locomotion, load bearing and protection of the brain, spinal 

cord, heart and lungs. Furthermore it serves as a mineral reservoir for calcium and serves 

as an attachment ground for muscles, ligaments and tendons [Nakashima 2003]. There 

are two fundamentally different mechanisms of ossification. Firstly, direct ossification of 

embryonic connective tissue (intramembranous ossification) and secondly the 

replacement of hyaline cartilage by compact bone (endochondral ossification). 

Endochondral ossified bones, mainly large hollow bones such as femur, tibia or humerus, 

represent most of the adult bones. Bones, such as clavicula or the skull develop by 

intramembranous ossification [Bruick and McKnight 2002]. Both types of bone arise 

during embryonic development by a complex interaction of diffusion of nutrients, oxygen 

gradients and cellular apoptosis [Semenza 1999, Ivan 2001, Zhu 2001]. 

Bones are composed of different cell types; osteoprogenitor cells, 

osteoblasts, osteocytes, and osteoclasts. The osteoprogenitor cells located in periosteum, 

endosteum, and Haversian canals receive a stimulus to proliferate and differentiate into 
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osteoblasts before forming bone. Factors with the capacity to induce this differentiation 

towards osteoprogenitor cells and further towards osteoblasts include bone 

morphogenetic proteins (BMPs), transforming growth factor-β (TGF-β), fibroblast 

growth factor (FGF), insulin-derived growth factor (IGF), platelet-derived growth factor 

(PDGF), and interleukins. The primary function of osteoblasts is production and secretion 

of organic and inorganic bone ECM [Mackie 2003]. Osteoblasts are also not terminally 

differentiated cells. They have two fates: they become embedded in their own bone 

matrix and become osteocytes, or undergo apoptosis [Jilka 1998, Safadi 2003]. 

Osteoblasts contain active cytoskeletal proteins to maintain their structural 

integrity as well as facilitate motility and attachment to surfaces. Their contact 

interactions with neighboring osteoblasts and osteocytes at intercellular gap junctions are 

achieved by the extensions created by their plasma membranes. They lay down 

premineralized bone matrix, osteoid, and subsequently facilitate its mineralization. The 

osteoid matrix itself provides a favorable environment for crystallization. The 

mineralization process involves supersaturation of extracellular fluids at local zones and 

increased osteoblastic alkaline phophatase (ALP) activity, which raises local calcium and 

phosphate concentrations [Stains 2005, Iain 2001]. Notably, conditions of high bone 

turnover or rapid bone formation lead to increased ALP activity and increased circulatory 

ALP levels. Osteoblasts also produce osteocalcin, which binds calcium, further 

concentrating local calcium levels [Bielby 2004, Karner 2007]. 

The most abundant non-collagenous bone ECM protein is osteonectin. 

Osteonectin (ON) has multiple Ca2+ and collagen binding sites and has been shown to be 

a potential nucleator of Hap (Hydroxyapatite) [Young 1992, Maurer 1996]. The second 
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most abundant non-collagenous protein in bone matrix is osteocalcin, which is a vitamin-

K dependent protein exhibiting Ca2+/HAp affinity, and has also been suggested to play a 

role in osteoclast migration [Ducy 1996]. Osteopontin (OPN) is a multifunctional 

extracellular glycoprotein involved primarily in cell migration, and regulation of mineral 

deposition [de Oliveira 2004]. Among all the non-collagenous matrix proteins found in 

mineralized tissue, OPN is unique as it preferentially accumulates at mineralized tissue 

interfaces and at mineralized tissue/implant interfaces suggesting a role as an interfacial 

adhesion molecule, thereby maintaining overall structural integrity of bone and 

bone/implant systems [McKee 1996, Pietak 2006, Baht 2008]. ALP, OPN, OC and OPN 

are therefore the typical biomarkers used for osteoblast phenotypic behavior when 

tracking differentiation of a multipotent cell population. 

 

1.3.3 Effect of Oxygen on Osteogenic Differentiation 

Although it remains to be determined what true hypoxic conditions are, it 

is now widely accepted that 20% of oxygen as commonly used in cell culture is rather a 

state of artificial hyperoxia [Grayson 2007, Fehrer 2007, Malda 2007]. As discussed in 

previous sections, low oxygen tensions (non-atmospheric) are considered to be a more 

physiological milieu for stem cells and affects stem cell fate [Heppenstall 1975, Watt 

2000, Warren 2001, Park 2002, Grayson 2006, Malladi 2006, Fehrer 2007, Potier 2007, 

Volkmer 2010]. Several studies have been summarized in Table 1, to provide a more 

detailed summary of the findings for the effects of in vitro hypoxia on the stem cells of 

interest. It has been reported that hypoxia (2% and 5% O2) enhanced the in vitro and in 

vivo bone-forming potential of rat and human MSCs respectively [Lennon 2001, Grayson 
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2007]. But in another study hypoxia inhibited the in vitro osteogenic potential of MIAMI 

cells and induced down-regulation of osteoblastic genes in hMSCs in vitro [D’Ippolito 

2006]. Several other articles have provided proof that osteogenic differentiation may be 

negatively affected by hypoxia [Park 2002, Salim 2004, Malladi 2006, Utting 2006, 

Potier 2007]. The majority of the studies have shown that hypoxia brings about a 

decrease in the expression level of key transcription factors and osteogenic marker genes, 

such as RUNX 2, OC, OPN and COL 1 [Park 2002, Salim 2004, Utting 2006]. However, 

it is very difficult to arrive at a consensus even after collating and analyzing the results of 

published studies. Differences in cell isolation methods, experimental parameters, growth 

factor concentrations, oxygen tensions, and specific evaluation techniques highlight the 

challenges in determining the role of oxygen in stem cell differentiation. Table 1 sums up 

the list of some studies examining the effect of hypoxia on osteogenic differentiation of 

stem cells. 

At the site of fractured bone, a milieu of reduced oxygen triggers bone 

healing linking hypoxia to osteogenic differentiation of bone precursor cells [Ke 2006, 

Wang 2007, Giannoudis 2007, Riddle 2009, Araldi 2010]. It is thus evident that cells that 

are utilized to regenerate bone tissue will face hypoxic conditions, either when used in 

the setting of bone tissue engineering or whenever a fracture has occurred [Polykandriotis 

2006, Kneser 2006]. 
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Table 1: Studies examining effect of oxygen on osteogenic differentiation of stem cells. 
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1.3.4 Role of HIF-1 Pathway in Bone Formation 

Wan and colleagues conducted experiments in osteoblasts of mice that 

lacked pVHL and therefore had a constitutive HIF-1α activation and observed that these 

mice had an increased vascularity and produced more bone in response to distraction 

osteogenesis compared to mice that lacked HIF-1α that had an impaired angiogenesis and 

bone healing [Wan 2008]. Similarly Wang et al. showed that mice overexpressing HIF 1α 

in osteoblasts through the deletion of the VHL expressed high levels of VEGF and 

developed extremely dense, heavily vascularised long bones. In contrast they observed in 

mice lacking HIF-1α in osteoblasts an opposite skeletal phenotype; in either the long 

bones were substantially thinner and less vascularised. In mice that lacked both VHL and 

HIF-1α the phenotype of the long bone was intermediate between the mice lacking HIF-

1α through the deletion of VHL and the mice overexpressing HIF-1α [Wang 2007]. 

Interestingly Wang et al. were able to show that upon HIF-1α knockdown the mice 

produced an elevated level of HIF-2α and as both HIF-1α and HIF-2α have overlapping 

function, HIF-2α might substitute partially for the loss of function of HIF-1α. This 

compensatory mechanism might also explain why HIF-1α knockdown mice were still 

able to develop functional bone [Wang 2007]. Taken together the results of Wang and 

Wan depicts HIF-1α pathway as a critical mediator of neoangiogenesis that is required 

for bone development and regeneration. Their studies collectively imply a possible 

therapeutic application of HIF-1 activators to improve bone repair. 
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1.3.5 Summary 

Oxygen is not only a nutrient but also an important signaling molecule 

whose concentration can influence the fate of stem cells. The combination of 3-D 

scaffolds and cells used to in tissue engineering applications often have limitations of 

oxygen diffusion leading to gradient formation. Due to the link between local oxygen 

levels and cell behavior, these gradients can cause heterogeneous behavior of cells. Cell 

response to reduced oxygen tension is primarily regulated by HIF-1α. A number of 

techniques exist to measure the amount of HIF-1α in cells but many require that the cells 

be lysed or fixed. Also, HIF-1 activity does not always correlate with the amount of HIF-

1 protein or mRNA that compromises techniques measuring such quantities that seek to 

predict expression of HIF-regulated genes. Therefore, it is important to have a system 

that can track HIF-1 activity in 2-D as well as in 3-D to help understand cell behavior. 
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CHAPTER 2 

OBJECTIVES AND EXPERIMENTAL DESIGN 

OBJECTIVE 1: The objective of this study is to evaluate a responsive, fluorescent, 

hypoxia detection system and determine whether HIF activity can be tracked at a cellular 

level in both 2D and 3D cultures.	
  

Experimental Design 1: In order to test the hypoxia detection, adipose-derived stem cells 

(ASCs) are used, cultured in two-dimensional (2D) and 3D culture conditions and 

exposed to 20% or 1% oxygen environments for 96 h. The marker signal for HIF-1 is 

tracked at time point’s 4hr, 8hr, 12hr, 24hr, 48hr, 72hr and 96hr. A parallel setup is 

prepared to track and quantify HIF-1 through other commonly used techniques such as 

Immunofluorescence and western blotting. 

 

Figure 2.1: Experimental Design 1. To evaluate the hypoxia detection system.  
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OBJECTIVE 2: To examine the impact of hypoxia on osteogenesis of ASCs in both 2-D 

and 3-D culture condition and determine if HIF-1 represents a potential therapeutic target 

that would alter this effect. 

Experimental Design 2: In order to examine the effect of hypoxia on osteogenesis, ASCs 

are cultured in two-dimensional (2D) and 3D culture conditions and exposed to 20%, 2% 

and 1% oxygen environments. 1% and 2% oxygen environments are modeled as the 

implantation environment in the study. The cells are directed towards osteogenic lineage 

using a differentiation media and processed for ALP activity (Days- 7, 14, 21, 28), 

Mineralization (Days- 14, 28) and protein detection (Osteonectin and Osteopontin- Day 

28). In order to examine the role of HIF-1 in the process of osteogenic differentiation, a 

parallel setup is prepared with a HIF-1 inhibitor added to the osteogenic differentiation 

media. 

 

 

Figure 2.2: Experimental Design 2. To examine the effect of hypoxia and role of HIF-1 in 
osteogenic differentiation of ASCs. 
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OBJECTIVE 3: To examine the impact of varied ischemic preconditioning (IPC) protocols 

on ASCs phenotypic change, resistance to apoptosis and osteogenic differentiation. 

Experimental Design 3: ASCs are cultured in 4%, 2% and 1% oxygen environments for 

96 hours with and without the HIF-1 inhibitor. Every 24 hours, lysates are collected from 

each oxygen condition to examine the pro-apoptotic markers (HIF-1, pAKT, Bcl-2) and 

anti-apoptotic markers (Bax, active caspase-3). To examine the effect of hypoxia on 

phenotypic change, samples are collected at 96 hours to run flow cytometry to examine 

the presence stem cell antigen markers (CD 105, CD 45). To examine the effect of IPC 

on osteogenesis, 2% oxygen environment is modeled as the implantation site. 3 different 

IPC protocols are used step-up IPC (From 1% to 2%), standand IPC (from 2% to 2%) and 

step-down IPC (4% to 2%). ALP activity, mineralization and protein expression of ON 

and OPN are quantified to measure the degree of osteogenic differentiation. 

 

 
Figure 2.3: Experimental Design 3. To examine the effect of varied IPC protocols on 
stem cell phenotype, apoptotic marker expression and osteogenic differentiation of ASCs. 
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CHAPTER 3 

TRACKING HYPOXIC SIGNALING IN ENCAPSULATED STEM CELLS 

3.1 INTRODUCTION 

Molecular oxygen serves as a metabolic substrate and signaling molecule 

for cells both in vitro and in vivo. Stems cells reside in a range of different 

microenvironments and the local oxygen concentration can help guide their 

differentiation. Ma et al., point out that mammalian embryogenesis and development take 

place at hypoxic conditions of 1.5-8% O2 and 2.3-5.2% O2, respectively [Ma 2009]. In 

the literature, oxygen concentrations less than 5% have been described as hypoxic 

conditions [Ren 2006, Fehrer 2007, Ma 2009]. Hypoxia can create a potentially lethal 

environment and limit cellular respiration and growth or, alternatively, enhance the 

production of specific extracellular matrix components and increase angiogenesis 

[Semenza 2000]. A hypoxic environment plays a substantial and critical role in many 

essential physiological and developmental pathways. It has been linked to maintenance, 

proliferation, survival and differentiation of various types of stem cells and influences the 

lineage commitment of multipotent cells [Malda 2007, Lin 2008, Ivanovic 2009, 

Abdollahi 2011]. 

Cell response to reduced oxygen tension is primarily regulated by 

hypoxia-inducible factors [Semenza 2002, Semenza 2010]. HIFs are transcription factors 

which belong to the bHLH-PAS (basic Helix-Loop-Helix-PER-ARNT-SIM) family. HIF-

1 is a heterodimer composed of HIF-1α and HIF-1β.  HIF-1β, also referred to as ARNT 
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(aryl hydrocarbon receptor nuclear translocator) is stable regardless of local oxygen 

tension, whereas, HIF-1α is only stable under hypoxic conditions.  Under normoxia (high 

oxygen conditions), HIF-1α is rapidly degraded due to hydroxylation, which promotes 

ubiquitination and subsequent proteosomal degradation [Jiang 1996, Semenza 1998, 

Semenza 2002, Semenza 2010].  The amount of HIF-1α increases exponentially in cells 

as oxygen levels drop from 6% O2 [Jiang 1996].  HIF-1 regulates transcription of genes 

which contain HREs in their promoters, introns and/or 3’ enhancers.  HIF-1 interacts with 

HREs leading to transcription of oxygen-regulated genes like VEGF, erythropoietin, 

iNOS, and glycolytic enzymes that enhance cellular adaptation to hypoxia [Sharp 2004, 

Hwang 2008, Wang 2007].  This oxygen-sensitive regulation of transcription allows cells 

to adapt to changing oxygen tensions or to survive in physiological environments where 

the oxygen level is always in the hypoxic range. It has been estimated that 5% or more of 

our genes are regulated by HIF-1. VEGF, basic fibroblast growth factor (bFGF), 

angiopoietin 2 (Ang-2) and platelet-derived growth factor (PDGF) are examples of 

angiogenic molecules whose expression is increased by HIF-1 activity [Forsythe 1996, 

Kelly 2003, Ceradin 2004, Manalo 2005, Simon 2008]. Hypoxia and HIF-1 are also 

implicated in the recruitment of circulating angiogenic cells, critical in vascular 

remodeling [Asahara 1999, Grant 2002, Kinnaird 2004, Kinnaird 2004]. Given the 

interest in driving vascularization of tissue engineering constructs, HIF-1 activity is an 

important event to monitor for cells in these scaffolds. 

Most in vitro cell culture studies are conducted at atmospheric oxygen 

levels of approximately 20%, which far exceed the physiological levels. Since oxygen 

concentration is an important component of the stem cell “niche” which affects the 
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behavior of stem cells, it is important to account for it while interpreting experiments 

[Moore and Lemischka 2006]. The effect of oxygen on adipose-derived stem cells 

(ASCs) has been explored in a number of recent studies [Wang 2005, Lee 2006, Bhang 

2011]. ASCs are multipotent, mesenchymal stem cells which can be isolated through 

lipoaspiration. ASCs have been used to differentiate into chondrogenic, osteogenic, 

endothelial, cardiomyogenic, myogenic, adipogenic and potentially neurogenic 

phenotypes with HIF-1 activity affecting many of these pathways [Zuk 2001, Wang 

2005, Fraser 2006, Lee 2006, Schaffler 2007, Bunnell 2008, Bhang 2011, Liu 2011].  

The design of a tissue engineering scaffold can also impact local oxygen 

levels for cells within the material. Hydrogels are an attractive choice as a scaffold 

material because their high water content facilitates transport of nutrients and waste 

products to and from the encapsulated cells. Poly(ethylene glycol) (PEG) hydrogels are 

broadly-utilized in the field of tissue engineering and can be easily functionalized to 

create custom microenvironments for encapsulated cells [Lin-Gibson 2004, Nuttelman 

2004, Ford 2006,  Hwang 2006, Benoit 2007, Buxton 2007, Salinas 2007, Stosich 2007, 

Weber 2008]. Oxygen supply to cells in 3-D constructs is more complex than in 2-D 

cultures as it is influenced by the chemistry of the scaffold material(s), scaffold 

dimensions, local oxygen tension, cell type, cell density as well as by the mechanisms of 

transport, i.e., diffusion or convection. Studies in 3-D culture revealed that the oxygen 

concentration decreases from the periphery toward the center of the scaffolds, which 

correlates with cell density and cell viability [Volkmer 2008, Radisic 2006]. The oxygen 

concentrations in the media and inside the scaffolds have been measured using oxygen-

sensing dyes, oxygen microelectrodes, fluorescent probes and microparticles [Kellner 
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2002, Malda 2004, Cochran 2006, Revsbech 1983, Krihak 1996, Acosta 2009]. 

Mathematical modeling approaches have been developed accounting for scaffold 

geometry and local oxygen tension to predict oxygen gradients inside the scaffolds 

[Sengers 2007]. These techniques to measure or predict oxygen concentration offer a 

great deal of information to the tissue engineering community. However, it is also 

important to know how cells react to their local oxygen concentration to predict changes 

in phenotype. 

Because of the importance of how cells respond to the local oxygen and 

the role of HIF-1 in stem cell behavior, we developed a responsive, fluorescent hypoxia 

marker based on a recombinant adenovirus [Skiles 2011]. The sequence of a red 

fluorescent protein (Ds Red DR) was placed under the control of a minimal promoter and 

HRE trimer. This virus is referred to as HRE Ds Red DR. Expression of the fluorescent 

protein should match the expression of other HIF-1-regulated genes. HIF-1 regulates 

expression of anti-apoptotic genes and secretion of numerous angiogenic factors. A 

system to track the onset of these events will assist tissue engineering efforts using a 

range of scaffold materials and culture in many different oxygen conditions. A number of 

techniques exist to measure the amount of HIF-1α in cells but many require that the cells 

be lysed or fixed. HIF-1 activity does not always correlate with the amount of HIF-1 

protein or mRNA which compromises techniques measuring such quantities that seek to 

predict expression of HIF-regulated genes. 

The objective of this study was to evaluate a responsive, fluorescent, 

hypoxia detection system and determine if HIF activity can be tracked at a cellular level 

in both 2-D and 3-D culture. ASCs were selected due to their broad utilization in tissue 
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engineering strategies and the influence of HIF signaling on ASC phenotype. The 

experiments outlined below were designed to examine the relationship between culture 

conditions and hypoxic signaling. A mechanism to continuously monitor HIF activity in 

encapsulated cells is a useful tool for the tissue engineering community. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Cell culture 

Human ASCs isolated from human lipoaspirate tissue were purchased 

from Invitrogen at passage 1. Cells were cultured in proprietary MesenPRO RSTM basal 

medium supplemented with MesenPRO RSTM Growth Supplement, 1% 

penicillin/streptomycin (Mediatech, Manassas, VA) and 2 mM L-glutamine (MP 

Biomedicals, Irvine, CA, USA). Culture conditions for passaging were maintained at 

95% air and 5% CO2 at 37°C. For experiments, cells between passages 2 and 5 were used 

as recommended by the supplier. 

 

3.2.2 Oxygen-controlled culture 

Nitrogen-purged, programmable incubators were used to maintain 

constant oxygen levels for cellular studies (Napco Series 8000 WJ, Thermo Electron). 

Normoxic oxygen studies were maintained at 5% CO2 and 20% oxygen and hypoxic 

studies were maintained at 5% CO2 and 1% oxygen conditions. For 1% oxygen 

experiments, all media, buffered salt solutions, and fixatives to be used with cells were 

kept in vented tubes in the hypoxic incubator for 24 hours prior to use so as to equilibrate 

the solutions to the appropriate dissolved oxygen concentration. Previous studies in our 
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lab have shown this period to be sufficient to equilibrate the dissolved oxygen 

concentration [Skiles 2011].  All cell manipulation (media changes and imaging) was 

performed as quickly as possible to minimize exposure to atmospheric air.  These 

procedures were kept under 10 minutes per day.  Studies using a dissolved oxygen sensor 

tracked the change in dissolved oxygen levels in the media during this time and found 

that levels only increased from 0.3 mg/L (concentration equilibrated in 1% oxygen 

incubator) to 0.4 mg/L after 10 minutes outside of the incubator.  The concentration had 

returned to 0.3 mg/L within 10 minutes of placement back in the incubator. 

 

3.2.3 Infection of ASCs and tracking hypoxic signaling 

The preparation of the virus was briefly described earlier and is detailed in 

previously published studies [Skiles 2011]. As observed in those previous studies, the 

virus exhibited 100% infection efficiency with ASCs.  For marker studies, ASCs were 

seeded into a 12-well tissue culture treated plate with the HRE DsRed DR virus at a 

multiplicity of infection of 25. The plates were incubated overnight in static culture at 

20% O2 for the cells to attach to the surface and for the infection to take place. Both 2-D 

and 3-D samples were fluorescently imaged periodically over 96 hours using a Nikon 

Eclipse Ti microscope (Nikon, Tokyo, Japan) and the Nikon NIS-Elements imaging 

software with consistent exposure times and fluorescent lamp intensities. Multiple images 

(3-4 images for 2-D samples and 5-6 images for 3-D samples) from three independent 

studies were used to quantify the cells expressing positive marker signal. 
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3.2.4 Cell encapsulation for 3-D experiments 

Poly(ethylene glycol) with an average molecular weight of 10,000 Da 

(Sigma-Aldrich,  St. Louis, MO) was functionalized by addition of methacrylate end 

groups resulting in poly(ethylene glycol) dimethacrylate (PEGDM). ASCs were 

trypsinized, counted using a hemocytometer and spun down in a microcentrifuge tube 

prior to removal of the media. Cells were then re-suspended in a solution of 10 wt% 

PEGDM and 0.025 wt% 2-hydoxy-1-[4-(2-hydroxyethoxy)-phenyl-2-methyl-1-

propanone (Irgacure 2959) (Ciba, Tarrytown, NY) which is a photoinitiator in Hank’s 

balanced salt solution (HBSS) (Mediatech Inc, Manassas, VA). Each gel in these studies 

was designed to contain 400,000 dispersed ASCs so enough cells were added to the 

PEGDM to create a concentration of 10,000 cells/µl. After re-suspension of the cells, 40 

µl of the PEGDM suspension was added to a 1 ml syringe and exposed to a 365 nm light 

source at an intensity of 7 mW cm−2 for 10 min under sterile conditions. The resulting 

gels are cylindrical discs measuring 5 mm in diameter and 2 mm in height.  The gels were 

transferred to a 24 well plate, washed in HBSS and placed in 1.5 ml of media. The plates 

were cultured in the varied oxygen conditions on orbital shakers set to continuous 

rotation at 100 rpm. This encapsulation procedure has been shown previously to not have 

an adverse impact on viability for a range of cell types [Benoit 2007, Weber 2008]. 

 

3.2.5 Protein extraction and western blotting for HIF-1α 

Total cell lysates were collected from the 2-D and 3-D samples with RIPA 

lysis buffer (Thermo Scientific, Rockford, IL) containing a protease and phosphatase 

inhibitor cocktail (Thermo Scientific, Rockford, IL), stirred on ice for 10 min and 
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sonicated for 15 min. The mixtures were then centrifuged at 14,000 rpm at 4°C for 15 

min. The supernatants were collected and protein concentration was quantified using a 

Coomassie Plus Bradford Assay kit (Thermo Scientific, Rockford, IL) according to the 

manufacturers’ instructions.  

Western blotting was performed by SDS-PAGE with 50 µg of protein 

lysate loaded per lane of 4-20% gradient gels followed by transfer to PVDF membranes 

(Millipore, Billerica, MA). The membrane was first incubated in 5% dry milk, 1% bovine 

serum albumin (BSA) diluted in HBSS for 1 h at room temperature. The membrane was 

then washed twice for 10 min each in “wash 1” (0.1% Tween-20, 0.1% dry milk, 0.1% 

BSA in HBSS). The membrane was then incubated with rabbit anti-HIF-1α antibody 

(1:1000) (Santa Cruz Biotechnology, Santa Cruz, CA) and rabbit anti-b-actin antibody 

(1:1000) (Santa Cruz Biotechnology, Santa Cruz, CA) for 2 h at room temperature (RT). 

The membrane was then washed three times for 10 min each in “wash 1”. Membranes 

were then incubated with peroxidase-conjugated, goat, anti-rabbit IgG (1:5000) 

(Rockland Immunochemicals, Gilbertsville, PA) for 2 h at RT. Membranes were then 

washed 3 times for 10 minutes each in “wash 2” (0.1% Tween-20 in HBSS). Protein 

detection was achieved by 5 min incubation in a chemiluminescence reagent, SuperSignal 

West Pico Substrate (Thermo Scientific, Rockford, IL). Bands were then detected using 

ChemiDoc™ XRS+ System with Image Lab™ image acquisition and analysis software 

(Bio-Rad, Hercules. CA). With densitometry analysis, the expression of proteins was 

normalized to β-actin to account for % IOD (intensity optical density) fold difference of 

HIF-1α protein expression. All incubation steps and washes were performed on an orbital 
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shaker set to continuous rotation at 100 rpm. The statistics shown represent results 

obtained from three independent studies. 

 

3.2.6 Immunostaining for HIF-1 activity 

100,000 ASCs were plated in flat-bottom 96-well plates for 2-D 

experiments. The previously described, ASC-containing PEG gels were used for 3-D 

experiments. The samples were maintained in 1% and 20% O2 for a period of 96 hours. 

To prepare the cells for staining, samples were fixed after 24h, 48h, 72h and 96h with 4% 

paraformaldehyde (Thermo Fisher, Waltham, MA) on ice for 30 min and washed twice 

with HBSS. Staining was performed every 24 hours during the 4 day period. Cells were 

permeabilized with 0.1% Triton X (EMD Chemicals, Gibbstown, NJ) for 30 min and then 

washed successively in 5% bovine serum albumin (EMD) and 5% normal donkey serum 

(EMD) for 1 h each. An overnight incubation at 4°C with polyclonal rabbit antibody to 

HIF-1α (1: 1000) (Santa Cruz Biotechnology, Santa Cruz, CA) was followed by two, 15 

min washes in 1% BSA and a 1 h incubation in 5% normal donkey serum. A 

fluorescently-labeled, goat, anti-rabbit secondary antibody (1:1000) (Rockland 

Immunochemicals, Gilbertsville, PA) was added for an hour followed by final washes in 

1% BSA in HBSS. Samples were fluorescently imaged with the instrumentation and 

software previously mentioned. Multiple images (3-4 images for 2-D samples and 5-6 

images for 3-D samples) from three independent samples were analyzed to quantify the 

number of cells expressing HIF-1α. 
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3.2.7 Viability of ASCs 

Live/Dead® staining kit (Invitrogen) was used to test the viability of the samples. 

Fluorescent dyes indicate esterase activity (observed as green signal in live cells) or loss 

of nuclear membrane integrity (observed as red signal in dead cells). The 2-D and 3-D 

samples were in culture conditions similar to the previous experiments and the staining 

was performed in accordance with the manufacturer’s guidelines. Results are given as a 

percentage of viable cells based on analysis of three independent studies. 

 

3.2.8 Statistical analysis 

Statistical analysis was performed using Graphpad Prism 4.01 (GraphPad 

Software Inc., San Diego, CA). Experimental results were expressed as the mean ± 

standard deviation. All the collected data were analyzed by two-way ANOVA for 

comparisons and p-values < 0.05 were defined as statistically-significant differences. 

 

3.3 RESULTS 

3.3.1 HIF-1α immunostaining  

The HIF-1α staining (green) was primarily focused in the cytoplasm of 

ASCs. In 2-D at 20% O2, no staining was evident during the entire time course. A 

representative image after 96 hours of culture is shown in figure 3.1A. In 1% O2, no 

signal was observed at 24 and 48 hours. 56±3% and 61±4% cells stained positive for 

HIF-1α at 72 and 96 hours respectively. Representative images are shown in figure 3.1 (B 

and C). In 3-D, no signal was observed at 24 and 48 hours at both 1% and 20% O2. In 1% 

O2, staining was observed at 72 and 96 hours with 13±2% and 25±4% cells staining 
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positive respectively. The representative image at 96 hours in 1% O2 is shown in figure 

3.1 (D1, D2 (overlay image)). Immunostaining was also observed at 20% O2 in 3-D, with 

9±2% and 11±3% cells stained positive for HIF-1α at 72 and 96 hours respectively as in 

shown in figure 3.1 (E1, E2 (overlay image)). These results are summarized in figure 

3.1F.  

 

 

Figure 3.1: Immunostaining for HIF-1α. HIF-1α, if present, was stained green. As a 
counterstain, cell nuclei labeled with DAPI appear blue. (A) At 20% O2, there was no 
significant staining at 96 h in 2D. (B,C) shows cells in 2D at 1% O2 stained for HIF-1α at 
72 and 96 h, respectively. (D, E) HIF-1α staining in 3D. (D1) Immunostaining in 1% at 
96 h (D2 is an overlay image). (E1) is the representative image of staining at 20% O2 at 
96 h (E2 is an overlay image). Quantification of HIF-1α expressing cells (F) from each of 
the studies (A–E). 
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3.3.2 Hypoxia marker signaling 

In 2-D at 20% O2, there was no marker signal throughout the study period 

of 4 days. At 1% O2, the onset of the signal was seen at 8 hours with 4±1% cells showing 

positive red fluorescence signal for HIF-1α activation. Signal progression increased with 

11±3%, 17±4%, 26±3%, 54±2% and 59±3% of cells showing positive marker signal at 

12, 24, 48, 72 and 96 hours respectively. A representative image for each time point is 

shown in Figure 3.2 (A1-A6). In 3-D at 1% O2, we observed the onset of the marker 

signal at 4 hours with 5±1% cells expressing positive signal. The prevalence of the signal 

increased over time with 9±3%, 15±5%, 32±4%, 54±2%, 62±4% and 76±3% cells 

expressing positive marker signal at 8, 12, 24, 48, 72 and 96 hours respectively. 

Representative images for each time point are shown in Figure 3.2 (B1-B7). Marker 

signal was also observed in 3-D at 20% O2. The onset of the signal was at 24 hours with 

4±2% cells showing positive marker signal. The prevalence of the signal increased over 

time with 7±2%, 9±4% and 13±3% cells expressing positive marker signal at 48, 72 and 

96 hours respectively (Figure 3.2: C1-C4). The above results are summarized in Figure 

3.3. 

 



	
   36	
  

 

Figure 3.2: Hypoxia marker progression. (A1–A6) shows marker progression in 2D at 
1%O2 through 8, 12, 24, 48, 72, and 96 h, respectively. In 3D, onset of marker signal was 
first observed at 4 h (B1) and the prevalence of the signal increased over time, as shown 
in (B2–B7) corresponding to 8, 12, 24, 48, 72, and 96 h of culture, respectively. In 3D, 
signal was also observed in 20%O2. These images (C1–C4) show marker progression at 
24, 48, 72, and 96 h, respectively. 
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Figure 3.3: Quantification of cells positive for marker signal. The graph quantifies the 
percent positive cells expressing hypoxia marker signal in 2D and 3D conditions in both 
1% and 20% O2 conditions. 

 
3.3.3 Quantification of HIF-1α protein 

Western blotting was performed to quantify the amount of HIF-1α protein 

expressed in 2-D and 3-D culture conditions under 1% and 20% O2. Figure 3.4A shows 

bands for HIF-1α protein in 1% O2 in both 2-D and 3-D culture conditions. 

Quantification of these results using %IOD measurements and normalizing HIF-1α 

expression with β-actin expression showed an increase in HIF-1α expression over time. 

In 3-D at 1% O2, we saw a %IOD fold difference of 6.01±0.42, 10.31±0.34, 11.31±0.453 

and 11.39±0.31 at 24, 48, 72 and 96 hours respectively. In 2-D at 1% O2, we observed a 

%IOD fold difference of 1.31±0.21, 2.52±0.34, 6.78±0.23 and 7.11±0.36 at 24, 48, 72 

and 96 hours respectively. Figure 3.4B shows protein levels of HIF-1α examined at 20% 
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O2 in both 2-D and 3-D. In 2-D, we observed no expression of HIF-1α throughout the 

study period. In 3-D the expression pattern was 0.61±0.246, 3.32±0.283, 3.98±0.183 and 

4.01±0.15 %IOD fold difference at 24, 48, 72 and 96 hours respectively. The above 

results are summarized in Figure 3.4C. 

 

Figure 3.4: Western blot for HIF-1α and β-actin. Results are shown for ASCs cultured in 
1% O2 (A) and 20% O2 (B). These results are quantified in (C). 

 
3.3.4 ASC viability 

Viability of ASCs in 2-D and 3-D culture at both 1% and 20% O2 was 

observed every 24 hours for the time period of 4 days. In 2-D at 20% O2, the % viability 

was 99±0.2%, 98±0.6%, 98±0.4% and 98±0.3%, at 24, 48, 72 and 96 hours respectively. 

At 1% O2 incubation the % viability was observed at 99±0.4%, 99±.02%, 98±0.5% and 

98±0.3% at 24, 48, 72 and 96 hours respectively. For 3-D cultures in 20% O2, 99±0.4, 

99±0.3, 98±0.6 and 97±0.4 % viability was observed at 24, 48, 72 and 96 hours 

respectively.  Finally, for 3-D cultures in 1% O2, 99±0.2, 98±0.4, 97±0.3, 97±0.4 % cell 

viability was observed at 24, 48, 72 and 96 hours respectively. 
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3.4 DISCUSSION 

Immunostaining results in 2-D at 20% O2 did not show any staining for 

HIF-1α at any of the time points, which correlates with our marker.  At 1% O2, signal 

was only observed at 72 and 96 hours which also correlated well with our marker. 

Interestingly in 3-D, we observed immunostaining and hypoxia marker signal (Figure 

3.2: C1-C4) in both 1% and 20% O2. The results in 20% oxygen show the impact of the 

PEG material on oxygen diffusion. The immunostaining in 3-D did not correlate as well 

with our marker, as a lower percentage of cells stained positive for HIF-1α (Figure 3.1F 

and Figure 3.3) than displayed the fluorescent marker signal under the same conditions.  

The discrepancy could be due to limited diffusion of the primary and 

secondary antibodies through the scaffold. Crosslinked PEG hydrogels formed from 

macromers of mol. wt. 10kDa exhibit a mesh size of 7.78nm [Lin 2011]. The 

hydrodynamic radius of our antibodies should be below this size but the pore size is 

heterogeneous and diffusion may have been impeded.  Limitations in protein diffusion 

were not observed in our western blotting experiments. The protein quantity yield of 

400,000 cells lysed in 2-D culture was equivalent to that obtained when lysates were 

collected from gels containing 400,000 cells following 3-D culture. Quantification of 

HIF-1α by western blot displayed higher intensity bands in 3-D than 2-D at 1% O2 at 

each of the time points (Figure 3.4A). At 20% O2, there were no bands for HIF-1α in 2-D 

at any time points.  Some HIF-1α was detected in 3-D cultures (Figure 3.4B). Figure 4C 

shows the % IOD fold difference in HIF-1α protein expression. Detection of HIF-1α by 

immunocytochemistry should not produce significantly different results from detection 

by western blotting and the two matched up quite well for 2-D studies.  The lack of 
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correlation within the scaffold highlights the utility of the HRE Ds Red DR marker as it 

did not exhibit the same issues and matched the trend seen with the western blot results. 

The cellular response to HIF-1 is not homogeneous across cell types, with 

degree of stabilization and upregulated target genes varying between and within tissues 

[Bracken 2006, Lendahl 2009]. In this respect, the amount of HIF-1α does not necessarily 

correlate with HIF-1 activity. If this was occurring with our ASCs, a difference would be 

expected between the signal from the marker and both methods used to detect HIF-1α 

quantity instead of just 3-D immunocytochemical results. 

Extended exposure to hypoxia can affect the viability of cells. Our results 

showed that more than 95 percent of cells were viable at 1% O2 in both 2-D and 3-D 

through 4 days of culture, suggesting that the low oxygen environment triggered HIF-1 

activity but not a large drop in viability. This could be explained by the low metabolic 

activity of ASCs and that stabilization of HIF-1α protects cells against necrosis helping 

them to survive under acute or chronic hypoxia [Ginouves 2008]. 

As stated in the introduction, our goal was to establish whether the HRE 

Ds Red DR marker virus could be used to track HIF-1 activity in encapsulated ASCs and 

whether expression of the red fluorescent protein correlated with HIF-1α detected by 

traditional methods.  The marker measures HIF activity rather than the amount of HIF-1α 

protein as measured with western blotting and immunocytochemical detection.  A lag 

was expected between the stabilization of the transcription factor and expression of the 

fluorescent protein but it proved to be brief as the fluorescent signal was observed as 

early as 4 hr after exposure to hypoxic conditions. Our results show that detection of the 

signal is certainly possible and that image capture conditions can be established which 
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allow the observed signal to correlate with HIF-1α  levels.  These image capture 

conditions did not lead to background signal in cells when no HIF-1α was detected by 

other methods. We can monitor HIF activity in the same population of cells over time and 

this can be done in a 3-D culture environment without disruption of the scaffold. 

The majority of cell culture studies have been performed on 2-D surfaces 

such as tissue culture plates/flasks because of the ease, convenience, and high cell 

viability of 2-D culture. These traditional 2-D cultures cannot be used to faithfully mimic 

the microenvironment of the particular tissue of interest. The combination of three-

dimensional scaffolds and living cells is used to fill defect sites and support the 

transplanted cells. The material(s) selected for the scaffold and how it is synthesized 

influence the diffusion of oxygen and nutrients to the cells and this is a major limitation 

in tissue engineering [Volkmer 2008]. Gradients of oxygen concentration can form within 

materials and this will affect cellular differentiation or cell fate decisions [Malladi 2006, 

Grayson 2007, Mohyeldin 2010]. This marker system was developed to identify hypoxic 

signaling within these environments and to track this response at a cellular level without 

the need to disrupt the integrity of the scaffold or cells. 

It is clear from previous studies that oxygen concentration and the cell 

response to the local oxygen tension are important parameters to track when devising 

novel, stem cell-based therapeutic systems. Our marker does not measure the oxygen 

concentration, but more importantly helps in the identification of a cellular response at 

low oxygen conditions. Several techniques have been applied to measure the spatial 

distribution of oxygen within tissues using blood-gas analyzers, dissolved oxygen probes 

and fluorescent/luminescent particles [Revsbech 1983, Krihak 1996, Zhao 2005, Butt 
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2007, Acosta 2009]. These systems offer high levels of sensitivity and specificity, but do 

not show how the cells respond to their local oxygen environment. The marker system 

described here can complement such techniques and offers great potential as a tool to 

track biological responses in tissue engineering studies. 

Studies have shown that there may be a strong dependence of cellular 

metabolic activity and oxygen consumption rate on the scaffolding material and 

geometry, presumably due to altered cell-material interactions in the scaffold [Cukierman 

2002, Malda 2004]. Therefore in the future, it would be interesting to evaluate the effect 

on the prevalence and onset of the marker signal within different scaffold materials for a 

range of cell densities. Due to the link between local oxygen levels and cell behavior, 

these gradients can cause heterogeneous differentiation of cells within tissue engineering 

scaffolds if steps are not taken to address the creation of these gradients. Future studies 

will take advantage of the versatility of our responsive hypoxia marker to show dynamic 

correlations between cell fate and function with oxygen concentration in engineered 

tissues in two-dimensional as well as three-dimensional environments. 
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CHAPTER 4 

OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED STEM CELLS IS HIF-1 

INDEPENDENT 

4.1 INTRODUCTION 

Critical-size bone defects (CSDs), which can result from trauma, infection, 

genetic abnormalities and tumors, represent a challenge to the medical community. 

Tissue engineers seek to address this through implantation of cell-seeded scaffolds to fill 

these defects and accelerate formation of new bone [Chaikof 2002, Dupont 2010, 

Chimutengwende-Gordon 2012, Gamic 2012]. Adipose-derived, mesenchymal stem cells 

(ASCs) represent a potential source of cells for these strategies as they are more easily 

harvested than bone marrow-derived mesenchymal stem cells (BMSCs) and can 

differentiate into chondrocytes, osteoblasts and vascular cell phenotypes [Zuk 2002, 

Gimble 2003, Katz 2005]. 

The loss of vasculature at CSD sites creates a hypoxic environment with 

oxygen concentrations of approximately 0-3% [Heppenstall 1975, Schmitz and Hollinger 

1986, Rodriguez-Merchan 2004, Kneser 2006]. Many stem cells are found in hypoxic 

environments in the body (defined as less than 5% oxygen) and HIF activity is critical in 

embryonic development [Dunwoodie 2009, Provot 2007, Ma 2009]. The important role 

HIF-1 plays in bone formation and repair has been discussed in a number of prior reviews 

[Tower 2008, Schipani 2009, Wan 2010]. 
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Formation of new, vascularized bone to repair a CSD is a complex process 

involving numerous cell types and interplay of biochemical, mechanical and 

environmental stimuli. This contributes to the difficulty in interpreting results regarding 

the importance of hypoxia and HIF signaling in these processes. Studies conducted in 

vivo have shown the importance of HIF signaling on bone formation and repair but it is 

difficult to decouple osteogenesis from angiogenesis [Wan 2008, Zou 2011]. Hypoxic 

signaling is a major driving force for angiogenesis and VEGF is a critical target of HIF 

activity [Ferrara 2001, Dai 2007]. HIF-1 plays a key role in blood vessel formation and 

blocking HIF-1 activity will impair vascular growth and bone repair.  

HIF-1 activity is also involved in chondrogenesis and maintenance of 

chondrocyte viability that are essential steps in endochondral bone formation [Malladi 

2007, Pfander 2007, Araldi 2010]. The steps towards bone formation are difficult to track 

and isolate in in vivo and while HIF activity seems to be essential for bone formation in 

general, its impact on osteogenesis is less clear. The majority of the literature indicates an 

inhibitory role for hypoxia on osteogenesis of mesenchymal stem cells in vitro [Lennon 

2001, D'Ippolito 2006, Malladi 2006, Fehrer 2007, Potier 2007, Holzwarth 2010]. A few 

studies, however, have shown the opposite effect [Grayson 2006, Ren 2006]. This could 

be due to varied cell sources, a range of oxygen conditions used to represent hypoxic 

conditions and the timing of hypoxic exposure [Volkmer 2010].  

Bone formation strategies taking place ex vivo can occur in a wide range 

of possible oxygen concentrations and many utilize atmospheric conditions (20% 

oxygen). However, when differentiation takes place at a CSD, the environment will be 

hypoxic. Determination of whether HIF-1α represents a therapeutic target with respect to 
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osteogenesis would enhance bone tissue engineering efforts. Our studies were designed to 

provide information about the impact of hypoxia on osteogenesis of ASCs in both 2-D 

and 3-D culture conditions and whether blocking HIF-1 activity would alter this effect. 

VEGF secretion from ASCs in identical conditions was also monitored as coupling of 

osteogenesis and angiogenesis is essential to recreate endochondral bone formation. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Cell culture 

Human ASCs were purchased from Invitrogen and cell culture was 

performed according to the supplier’s specifications. Cells were cultured in proprietary 

MesenPRO RSTM basal medium supplemented with MesenPRO RSTM Growth 

Supplement, 1% penicillin/streptomycin (Mediatech, Manassas, VA) and 2 mM L-

glutamine (MP Biomedicals, Irvine, CA, USA). Culture conditions for passaging were 

maintained at 95% air and 5% CO2 at 37°C. For experiments, cells between passages 2 

and 7 were used as recommended by the supplier. 

 

4.2.2 Hypoxic culture conditions 

Nitrogen-purged, programmable incubators were used to maintain a 

constant 1% or 2% oxygen level for hypoxic studies (Napco Series 8000 WJ, Thermo 

Electron). For 1% or 2% oxygen experiments, all media, buffered salt solutions, and 

fixatives to be used with cells were kept in vented tubes in the hypoxic incubator for 24 

hours prior to use so as to equilibrate the solutions to the appropriate dissolved oxygen 

concentration. Previous studies in our lab have shown this period to be sufficient to 
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equilibrate the dissolved oxygen concentration [Skiles 2011]. Media changes and 

imaging procedures were kept under 10 minutes per day to limit exposure to atmospheric 

conditions. Dissolved oxygen concentration studies conducted in our lab showed that 

levels rose from 0.3 mg/L to 0.4 mg/L during a 10 minute atmospheric exposure (which 

correlates to a 1% oxygen to 1.5% oxygen environment).  The 1% or 2% oxygen levels 

are reestablished within 10 minutes of return to the incubator. 

 

4.2.3 Cell encapsulation for 3-D experiments 

PEG with an average molecular weight of 10,000 Da (Sigma-Aldrich, St. 

Louis, MO) was functionalized by addition of methacrylate end groups resulting in 

PEGDM using a previously published method [Lin-Gibson 2004]. ASCs were 

trypsinized, counted using a hemocytometer and spun down in a microcentrifuge tube 

prior to removal of the media. Cells were then re-suspended in a solution of 10 wt% 

PEGDM and 0.025 wt% 2-hydoxy-1-[4-(2-hydroxyethoxy)-phenyl-2-methyl-1-

propanone (Irgacure 2959) (Ciba, Tarrytown, NY) which is a photoinitiator in Hank’s 

balanced salt solution (HBSS) (Mediatech Inc, Manassas, VA). ASCs were suspended in 

PEGDM to create a concentration of 10,000 cells/µl. For each gel, 40 µl of this 

ASC/PEGDM suspension was added to a 1 ml syringe and exposed to a 365 nm light 

source at an intensity of 7 mW cm−2 for 10 min under sterile conditions. The resulting 

gels were transferred to a 24 well plate, washed in HBSS and placed in 1 ml of media. 

The plates were cultured in the varied oxygen conditions on orbital shakers set to 

continuous rotation at 100 rpm. The encapsulation process is shown in a previously 

published video [Skiles 2011]. 
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4.2.4 Osteogenic differentiation 

Osteogenic differentiation was induced by culture in StemPro® 

Osteocyte⁄Chondrocyte Differentiation Basal Medium and StemPro® Osteogenesis 

Supplement (Invitrogen, USA). These experiments were carried out for ASCs in 2-D 

(100,000 ASCs seeded per well of 12-well culture plates) as well as 3-D environments 

(encapsulated ASCs as detailed in the previous section). The cells were monitored over a 

period of 28 days in 1%, 2% and 20% oxygen with the osteogenic medium replenished 

every 3 days.  

 

4.2.5 HIF-1 inhibition 

To inhibit the activity of HIF-1, a HIF-1 inhibitor [3-(2-(4-Adamantan-1-

yl-phenoxy)-acetylamino)-4-hydroxybenzoic acid methyl ester)] (Calbiochem, USA) was 

used. It is a cell-permeable amidophenolic compound that inhibits hypoxia-induced HIF-

1 transcription activity. The inhibitor selectively blocks the hypoxia-induced 

accumulation of cellular HIF-1α protein, while exhibiting no apparent effect on the 

cellular level of HIF-1α mRNA or that of HIF-1β protein. For both 1% and 2% O2 

samples, a concentration of 60µM of this inhibitor was sufficient to reduce accumulation 

of HIF-1α to levels below detection in western blotting. Toxicity tests showed no loss of 

viability of ASCs exposed to the inhibitor at concentrations up to 100µM (data not 

shown). 
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4.2.6 Alkaline phosphatase (ALP) activity and DNA quantification 

Measurements of ALP activity in the media of ASCs were taken on days 

7, 14, 21 and 28. The activity was determined using an ALP colorimetric assay kit 

(Abcam, USA) with p-nitrophenyl phosphate as substrate. The ALP activities were 

normalized to the cellular DNA content using a PicoGreen dsDNA quantitation kit 

(Molecular Probes, USA) according to the manufacturer’s instructions. Alkaline 

phosphatase activity is quantified on days 7, 14, 21 and 28 and is expressed in 

µmol/ml/min/mg DNA. The values included represent the mean of three independent 

studies. 

 

4.2.7 Alizarin Red staining for mineralization 

Mineral deposition was quantified on days 14 and 28 using the Alizarin 

Red S staining procedure. The cells were rinsed with calcium and phosphate-free HBSS, 

and fixed with ice-cold 70% ethanol for 1 h. After a brief wash with HBSS, the cells were 

stained for 20 min with 40mM Alizarin Red solution (pH 4.2) at room temperature. The 

cells were rinsed two times for 15 min with HBSS (on an orbital shaker) to reduce 

nonspecific Alizarin Red staining. A 10% acetic acid was then added to the samples for 

30 min on a shaker. Samples were collected by scraping (2-D) or vortex (3-D) and heated 

at 80°C for 10 min. The extracts are then centrifuged at 8000 rpm for 20 min and 

quantified spectrophotometrically with a microplate reader (Biotek, USA) at 570 nm. The 

calcium concentration was calculated from the standard curve generated from a serial 

dilution of a calcium standard solution and the values were normalized to DNA contents 



	
   49	
  

(expressed in mg mineral/mg DNA). Values included represent the mean of three 

independent studies. 

 

4.2.8 Protein expression 

Total cell lysates were collected from the 2-D and 3-D samples with RIPA 

lysis buffer containing a protease and phosphatase inhibitor cocktail (Thermo Scientific, 

Rockford, IL), stirred on ice for 10 min and sonicated for 15 min. The mixtures were then 

centrifuged at 14000 rpm at 4°C for 15 min. The supernatants were collected and protein 

concentration was quantified using a Coomassie Plus Bradford Assay kit (Thermo 

Scientific, Rockford, IL) according to the manufacturers’ instructions.  

Western blotting was performed by SDS-PAGE with 50 µg of protein 

lysate loaded per lane of 4-20% gradient gels followed by transfer to PVDF membranes 

(Millipore, Billerica, MA). The membrane was first incubated in 5% dry milk, 1% bovine 

serum albumin (BSA) diluted in HBSS for 1 h at room temperature. The membrane was 

then washed twice for 10 min each in “wash 1” (0.1% Tween-20, 0.1% dry milk, 0.1% 

BSA in HBSS). The membrane was then incubated with rabbit anti-HIF-1α antibody (1 : 

1000) (Santa Cruz Biotechnology, Santa Cruz, CA), rabbit anti-osteonectin/SPARC 

antibody (1 : 1000), anti-osteopontin (OPN) (1: 1000) or rabbit anti-β-actin antibody (1 : 

1000) (Santa Cruz Biotechnology, Santa Cruz, CA) for 2 h at room temperature (RT). 

The membrane was then washed three times for 10 min each in “wash 1”. Membranes 

were then incubated with peroxidase-conjugated, goat, anti-rabbit IgG (1 : 5000) 

(Rockland Immunochemicals, Gilbertsville, PA) for 2 h at RT. Membranes were then 

washed 3 times for 10 minutes each in “wash 2” (0.1% Tween-20 in HBSS). Protein 
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detection was achieved by 5 min incubation in a chemiluminescence reagent, SuperSignal 

West Pico Substrate (Thermo Scientific, Rockford, IL). Bands were then detected using 

ChemiDoc™ XRS+ System with Image Lab™ image acquisition and analysis software 

(Bio-Rad, Hercules. CA). With densitometry analysis, the expression of proteins was 

normalized to β-actin and multiplied by 100 to generate a % IOD (intensity optical 

density) fold difference of protein expression. All incubation steps and washes were 

performed on an orbital shaker set to continuous rotation at 100 rpm. The statistics shown 

represent results obtained from three independent studies. 

 

4.2.9 VEGF release 

VEGF release was monitored in 2-D and 3-D samples with and without 

the HIF-1 inhibitor over 28 days. The supernatant was collected on Days 1, 4, 7 and 28 

and VEGF levels were determined using a colorimetric VEGF ELISA kit according to 

manufacturer’s instructions (Invitrogen, USA). The absorbance was measured at 450 nm 

and VEGF standards are used to calculate a VEGF concentration. These values are 

multiplied by the volume used during the release studies, normalized relative to the viable 

cell number and expressed as (fg/cell). The data represent three independent studies and 

release over a 24 hour period for all time points. 

 

4.2.10 Viability of ASCs 

A Live/Dead® staining kit (Invitrogen, USA) was used to test the viability 

of the samples over 28 days. Fluorescent dyes indicate esterase activity (observed as 

green signal in live cells) or loss of nuclear membrane integrity (observed as red signal in 
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dead cells). The 2-D and 3-D samples were kept in culture conditions identical to the 

previous experiments and the staining was performed in accordance with the 

manufacturer’s guidelines. Results are given as a percentage of viable cells based on 

analysis of three independent studies. 

 

4.2.11 Statistical analysis 

Statistical analysis was performed using Graphpad Prism 4.01 (GraphPad 

Software Inc., San Diego, CA). Experimental results were expressed as the mean ± 

standard deviation. All the collected data were analyzed by two-way ANOVA for 

comparisons and p-values < 0.05 were defined as statistically significant differences. 

 

4.3 RESULTS 

4.3.1 ALP Activity 

In 2-D, the ALP activity at 20% O2 without the HIF inhibitor was 9.15± 

0.93, 22.11± 3.14, 32.01±3.14 and 33.98± 2.34 µmol/ml/min/mg DNA on days 7, 14, 21 

and 28 respectively. With the HIF inhibitor, the ALP levels were 8.43±2.76, 20.21±2.47, 

28.73±2.31 and 31.79±3.12 µmol/ml/min/mg DNA on days 7, 14, 21 and 28 respectively. 

At 2% O2, the ALP levels without the inhibitor were 9.42±0.72, 20.35±3.31, 21.82±3.32 

and 23.21±1.68 µmol/ml/min/mg DNA on days 7, 14, 21 and 28 respectively. With the 

inhibitor, the ALP levels were 6.45±1.43, 18.75±2.36, 22.36±1.92 and 24.42±2.67 

µmol/ml/min/mg DNA on days 7, 14, 21 and 28 respectively. At 1% O2, ALP levels 

without the inhibitor were 8.11±0.91, 19.43±1.87, 23.13±1.21 and 23.89±1.62 

µmol/ml/min/mg DNA on days 7, 14, 21 and 28 respectively. With the HIF inhibitor, the 
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ALP levels were 10.1±1.32, 16.23±2.42, 19.87±1.91 and 21.42±2.63 µmol/ml/min/mg 

DNA. These results are shown in Figure 4.1a. 

In 3-D, ALP levels at 20% O2 without the HIF inhibitor were 7.75±0.76, 

19.11±1.34, 28.17±2.53 and 35.39±3.25 µmol/ml/min/mg DNA on days 7, 14, 21 and 28 

respectively. With the inhibitor, the ALP levels were 8.91±1.65, 21.45±2.41, 27.81±3.11 

and 38.21±3.22 µmol/ml/min/mg DNA on days 7, 14, 21 and 28 respectively. At 2% O2, 

the ALP levels without the inhibitor were 7.51±0.75, 20.73±1.45, 23.26±3.62 and 

24.32±2.33 µmol/ml/min/mg DNA on days 7, 14, 21 and 28 respectively. With the 

inhibitor, the ALP levels were 8.13±1.23, 17.53±2.62, 22.81±2.14 and 22.87±4.54 

µmol/ml/min/mg DNA on days 7, 14, 21 and 28 respectively. At 1% O2, the ALP levels 

without the inhibitor were 6.22±0.87, 16.95±1.52, 23.42±1.89 and 23.84±1.28 

µmol/ml/min/mg DNA on days 7, 14, 21 and 28 respectively. With the inhibitor, the ALP 

levels were 9.65±1.54, 17.57±2.34, 21.42±3.73 and 22.13±2.51 µmol/ml/min/mg DNA 

on days 7, 14, 21 and 28 respectively. These results are shown in Figure 4.1b. 

 
 
Figure 4.1: ALP activity of ASCs at 1%, 2% and 20% oxygen with and without the HIF-1 
inhibitor in (A) 2-D and (B) 3-D culture conditions over a period of four weeks. The 
values have been normalized by total DNA and represent the mean±standard deviations. 
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4.3.2 Mineralization 

In 2-D, at 20% O2 and without the inhibitor, mineral deposition was 

observed to be 33.04±1.61 and 55.28±3.66 mg mineral/mg DNA on days 14 and 28 

respectively. With the inhibitor, the mineral deposition levels were 31.13±1.52 and 

54.21±3.54 mg mineral/mg DNA on days 14 and 28 respectively. At 2% O2, the mineral 

deposition levels without the inhibitor were 11.34±1.34 and 34.87±2.76 mg mineral/mg 

DNA on days 14 and 28 respectively. With the HIF inhibitor, the mineral deposition levels 

were 9.83±3.16 and 32.45±2.710 mg mineral/mg DNA on days 14 and 28 respectively. At 

1% O2, the mineral deposition levels without the inhibitor were 8.85±0.63 and 32.04±2.04 

mg mineral/mg DNA on days 14 and 28 respectively. Without the inhibitor, the mineral 

deposition levels were 12.26±2.17 and 31.52±2.64 mg mineral/mg DNA on days 14 and 28 

respectively. These results are shown in Figure 4.2a. 

In 3-D samples, at 20% O2 and without the inhibitor, mineral deposition 

was observed to be 32.07±2.86 and 68.55±3.19 mg mineral/mg DNA on days 14 and 28. 

With the inhibitor the mineral deposition levels were 35.15±3.23 and 65.42±4.16 mg 

mineral/mg DNA on days 14 and 28 respectively. At 2% O2, mineral deposition levels 

without the inhibitor were 28.56±3.72 and 54.23±4.28 mg mineral/mg DNA on days 14 

and 28 respectively. With the inhibitor, the mineral deposition levels were 30.24±2.23 

and 51.92±3.54 mg mineral/mg DNA on days 14 and 28 respectively. At 1% O2, mineral 

deposition levels without the inhibitor were 33.04±1.52 and 51.77±1.36 mg mineral/mg 

DNA on days 14 and 28. With the inhibitor, the mineral deposition levels were 35.71±1.72 

and 48.98±3.41 mg mineral/mg DNA on days 14 and 28 respectively. These results are 

shown in Figure 4.2b. 
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Figure 4.2: Quantification of Alizarin red staining of ASCs cultured in 1%, 2% and 20% 
oxygen with and without the HIF-1 inhibitor in (A) 2-D and (B) 3-D culture condition. 
The values have been normalized by total DNA and represent the mean± standard 
deviations. Statistically significant difference (p<0.05) is marked by (*) indicating higher 
absorbance at 20% oxygen in comparison to 1% and 2% oxygen. 
 

4.3.3 HIF-1α protein expression 

No HIF-1α protein was observed in 2-D studies when the inhibitor was 

present. In the absence of the inhibitor, no HIF-1α was observed at 20% oxygen. In the 

absence of the inhibitor, HIF-1α expression of 6.31±2.03 and 6.63±2.32 %IOD fold 

difference was observed in 2% and 1% oxygen environments respectively. A 

representative image of a gel and the collective results are shown in Figure 4.3 (A & B).  

No HIF-1α protein was observed in 3-D studies when the inhibitor was 

present. In the absence of the inhibitor, HIF-1α expression of 1.14±0.34, 5.12±1.63 and 

6.47±1.91 %IOD fold difference was observed in 20%, 2% and 1% oxygen environments 

respectively. A representative image of a gel and the collective results are shown in 

Figure 4.4 (A & B). 
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4.3.4 OPN protein expression 

For 2-D studies in the absence of the inhibitor, OPN expression of 

6.38±0.73, 1.82±0.72 and 1.92±0.61 %IOD fold difference was observed in 20%, 2% and 

1% oxygen environments respectively. When the inhibitor was present, OPN expression 

of 7.21±1.37, 1.71±0.57 and 2.15±0.43 %IOD fold difference was observed in 20%, 2% 

and 1% oxygen environments respectively. A representative image of a gel and the 

collective results are shown in Figure 4.3 (A & C). 

For 3-D studies in the absence of the inhibitor, OPN expression of 

8.16±1.12, 2.15±0.83 and 1.79±0.82 %IOD fold difference was observed in 20%, 2% and 

1% oxygen environments respectively. When the inhibitor was present, OPN expression 

of 9.34±0.54, 1.43±0.61 and 1.23±0.25 %IOD fold difference was observed in 20%, 2% 

and 1% oxygen environments respectively. A representative image of a gel and the 

collective results are shown in Figure 4.4 (A & C). 

 

4.3.5 ON protein expression 

For 2-D studies in the absence of the inhibitor, ON expression of 

5.97±0.81, 2.13±1.01 and 3.23±1.27 %IOD fold difference was observed in 20%, 2% and 

1% oxygen environments respectively. When the inhibitor was present, ON expression of 

5.41±1.13, 2.67±1.34 and 2.93±1.09 %IOD fold difference was observed in 20%, 2% and 

1% oxygen environments respectively. A representative image of a gel and the collective 

results are shown in Figure 4.3 (A & D). 

For 3-D studies in the absence of the inhibitor, ON expression of 

6.88±0.34, 2.33±1.03 and 3.41±1.65 %IOD fold difference was observed in 20%, 2% and 
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1% oxygen environments respectively. When the inhibitor was present, ON expression of 

7.21±0.87, 3.67±1.24 and 2.45±1.19 %IOD fold difference was observed in 20%, 2% and 

1% oxygen environments respectively. A representative image of a gel and the collective 

results are shown in Figure 4.4 (A & D). 

 
 
Figure 4.3: Protein expression of HIF-1α, Osteopontin (OPN) and Osteonectin (ON) on 
day 28 at 1%, 2% and 20% oxygen with and without the HIF-1 inhibitor in 2-D culture. 
A representative gel is shown in (A). Results of three independent studies are quantified 
in (B) HIF-1α, (C) OPN and (D) ON. The values have been normalized to β-actin and 
represent the mean±standard deviations. When a statistically significant difference 
(p<0.05) is observed between 20% oxygen in comparison to 1% and 2% oxygen it is 
marked (*). 
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Figure 4.4: Protein expression of HIF-1α, Osteopontin (OPN) and Osteonectin (ON) on 
day 28 at 1%, 2% and 20% oxygen with and without the HIF-1 inhibitor in 3-D culture. 
A representative gel is shown in (A). Results of three independent studies are quantified 
in (B) HIF-1α, (C) OPN and (D) ON. The values have been normalized to β-actin and 
represent the mean±standard deviations. When a statistically significant difference 
(p<0.05) is observed between 20% oxygen in comparison to 1% and 2% oxygen it is 
marked (*). 
 

4.3.6 VEGF release 

For 2-D studies at 20% O2 in the absence of the inhibitor, VEGF secretion 

was 1.52±0.21, 1.39±0.12, 1.63±0.16 and 1.78±0.23 fg/cell on days 1, 4, 7 and 28 

respectively. With the HIF inhibitor, VEGF secretion was 1.81±0.55, 1.09±0.30, 

1.61±0.25 and 2.08±0.15 fg/cell on days 1, 4, 7 and 28 respectively. At 2% O2 in the 

absence of the inhibitor, VEGF secretion was 23.51±2.13, 15.07±1.29, 12.82±0.84 and 

5.21±0.94 fg/cell on days 1, 4, 7 and 28 respectively. With the HIF inhibitor, VEGF 

secretion was 4.51±1.38, 1.77±0.28, 1.64±0.08 and 1.88±0.30 fg/cell on days 1, 4, 7 and 

28 respectively. At 1% O2 in the absence of the inhibitor, VEGF secretion was 
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31.26±1.24, 15.14±1.13, 12.55±0.92 and 7.57±0.48 fg/cell on days 1, 4, 7 and 28 

respectively. With the HIF inhibitor, VEGF secretion was 5.78±0.82, 2.30±0.31, 

2.48±0.47 and 1.67±0.25 fg/cell on days 1, 4, 7 and 28 respectively. The results are 

shown in Figure 4.5a. 

For 3-D studies at 20% O2 in the absence of the inhibitor, VEGF secretion 

was 0.80±0.33, 0.40±0.23, 0.41±0.10 and 0.51±0.22 fg/cell on days 1, 4, 7 and 28 

respectively. With the HIF inhibitor, VEGF secretion was 1.2±0.18, 0.68±0.10, 

0.60±0.08, and 0.54±0.12 fg/cell on days 1, 4, 7 and 28 respectively. At 2% O2 in the 

absence of the inhibitor, VEGF secretion was 14.86±0.71, 6.91±0.46, 7.18±0.36 and 

4.82±0.23 fg/cell on days 1, 4, 7 and 28 respectively. With the HIF inhibitor, VEGF 

secretion was 1.61±0.11, 0.74±0.065, 0.61±0.23 and 1.19±0.06 fg/cell on days 1, 4, 7 and 

28 respectively. At 1% O2 in the absence of the inhibitor, VEGF secretion was 

15.43±0.41, 8.32±0.26, 7.00±0.41 and 4.42±0.28 fg/cell on days 1, 4, 7 and 28 

respectively. With the HIF inhibitor, VEGF secretion was 1.80±0.15, 1.04±0.16, 

0.71±0.08 and 1.13±0.20 fg/cell on days 1, 4, 7 and 28 respectively. The results are 

shown in Figure 4.5b 
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Figure 4.5: VEGF release of ASCs at 1%, 2% and 20% oxygen with and without the HIF-
1 inhibitor in (A) 2-D and (B) 3-D culture conditions over a period of four weeks. The 
values have been normalized by viable cell number and represent the mean±standard 
deviation. 
 

4.3.7 ASC viability 

In 2-D, at 20% O2 and without the inhibitor, the percent viability was 

99±1%, 97±1%, 91±2%, 84±4% and 81±6% on days 1, 7, 14, 21, 28 respectively. With 

the HIF inhibitor, the percent viability was 99±1%, 98±1%, 93±2%, 85±6% and 78±4% 

on days 1, 7, 14, 21, 28 respectively. At 2% O2, the percent viability without the inhibitor 

were 99±1%, 96±2%, 84±5%, 72±3% and 64±5% on days 1, 7, 14, 21, 28 respectively. 

With the inhibitor, the percent viability was 99±1%, 98±1%, 82±3%, 64±7% and 59±5% 

with the inhibitor on days 1, 7, 14, 21, 28 respectively. At 1% O2, percent viability with 

the inhibitor was 99±1%, 96±2%, 84±3%, 69±4% and 66±4% on days 1, 7, 14, 21, 28 

respectively. With the inhibitor, the percent viability was 99±1%, 98±1%, 85±7%, 

73±5% and 61±7% on days 1, 7, 14, 21, 28 respectively. These results are shown in 

Figure 4.6a. 

In 3-D culture, at 20% O2 and without the inhibitor, percent viability was 
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99±1%, 94±4, 75±4%, 61±4% and 47±6% on days 1, 7, 14, 21, 28 respectively. With the 

HIF inhibitor, the percent viability was 99±1%, 89±6, 76±7%, 58±6% and 44±3% on 

days 1, 7, 14, 21, 28 respectively. At 2% O2, percent viability without the inhibitor was 

99±1%, 92±4%, 66±5%, 46±3% and 33±5% on days 1, 7, 14, 21, 28 respectively. With 

the inhibitor, the percent viability was 99±1%, 89±3%, 71±4%, 43±7% and 36±6% with 

the inhibitor on days 1, 7, 14, 21, 28 respectively. At 1% O2, percent viability without the 

inhibitor was 99±1%, 88±5%, 63±6%, 42±3% and 29±5% on days 1, 7, 14, 21, 28 

respectively. With the inhibitor, the percent viability was 99±1%, 92±3%, 55±4%, 

38±6% and 27±3% on days 1, 7, 14, 21, 28 respectively. These results are shown in 

Figure 4.6b. 

 
 
Figure 4.6: Viability of ASCs in 1%, 2% and 20% oxygen with and without the HIF-1 
inhibitor in (A) 2-D and (B) 3-D culture conditions over a period of four weeks. The 
values shown represent the mean±standard deviations from three independent 
experiments. When a statistically significant difference (p<0.05) is observed between 
20% oxygen in comparison to 1% and 2% oxygen it is marked (*) for both 2-D and 3-D 
studies. 
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4.4 DISCUSSION 

Our results demonstrate a reduced capacity for ASCs to differentiate into 

osteoblasts in hypoxic conditions when compared with atmospheric conditions. ASCs in 

1 and 2% oxygen environments displayed reduced ALP activity, mineralization and 

expression of ON and OPN in 2-D and 3-D culture geometries compared with ASCs in 

20% oxygen environments. HIF-1 activity does not appear to be an essential component 

of the varied response of ASCs in hypoxic conditions. For all oxygen concentrations and 

in both 2-D and 3-D cultures, pharmacologically-induced inhibition of HIF-1α had no 

impact on any of these markers of osteogenesis. 

Viability of ASCs dropped over the course of our differentiation 

experiment but our data are normalized to total DNA or β-actin to account for this. The 

viability decrease in 3-D was more pronounced than for 2-D cultures and this was 

probably a result of using an unmodified PEG gel. Previous work has shown that 

integrating integrin-binding sequences into the scaffold or genetic modification of cells 

can extend survival of MSCs in these materials by preventing anoikis [Benoit 2007]. We 

utilized a blank PEG gel to remove the impact of peptide modification on osteogenic 

differentiation but future studies could evaluate peptide-modified PEG gels in 

combination with varied oxygen concentration. 

As mentioned earlier, the literature shows mixed results concerning the 

impact of hypoxic conditions on osteogenesis and healing of CSDs. Given the large 

number of variables in play, this is not surprising. Different research groups utilize a 

range of cell types and hypoxic conditions vary across the entire range from below 1% up 

to 5% oxygen. When 3-D studies are conducted, oxygen levels and the state of hypoxic 



	
   62	
  

signaling can vary widely for cells depending on experimental conditions (size of 

scaffolds, scaffold material(s) and cell density within scaffolds for example). All of these 

factors make it difficult to draw definitive conclusions regarding the impact of hypoxia 

on bone formation that will hold regardless of cell type employed and oxygen 

concentration used.  

Previous studies that have examined the role of HIF-1 through genetic 

engineering, have demonstrated how changes in experimental procedure can impact the 

results. Three factors stand out in addition to those mentioned above. First, the role of 

HIF-1 may be impacted by whether the studies are investigating intramembranous or 

endochondral bone formation. Our studies are an in vitro model of intramembranous 

bone formation as mesenchymal stem cells are directly differentiated into osteoblasts. 

Our results are in agreement with a previous study that showed no impact on HIF-1α 

deletion on osteogenic differentiation of ASCs [Malladi 2007]. Mice lacking HIF-1α 

showed impaired formation of long bones (endochondral) but no impact on bone 

formation in the skull (intramembranous) [Wan 2008]. HIF-1 activity has been linked to 

chondrogenesis so whether this step is necessary could explain the varied results 

[Schipani 2005, Pfander 2007]. 

Second, HIF-1 activity has also been shown to impact angiogenesis 

[Tower 2008, Schipani 2009]. Our in vitro work included studies to look at VEGF 

release, which correlated with the oxygen concentrations. Inhibition of HIF-1 also 

inhibited the release profile of VEGF. Release of VEGF at 1 and 2% oxygen was 

significantly higher than at 20% or when the inhibitor was used for all time points 

(p<0.01). Our studies are in agreement with previous studies that have shown that VEGF 
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is HIF-1 regulated [Ferrara 2001, Dai 2007, Brahimi-Horn 2005, Schipani 2009, Tang 

2004, Carroll 2006, Yamazaki 2003].  Our in vitro analysis does not include studies 

looking at the role of HIF-1 in vascularizing bone but this is a critical process that would 

need to occur in vivo. Blocking vascular growth and maturation will lead to formation of 

thin, weak bone and this has been demonstrated by previous studies [Wan 2008, Zou 

2011]. Bone formation in vivo requires a coupling of osteogenesis and angiogenesis, 

making it difficult to evaluate the impact of HIF-1 on each process individually.  

Finally, the timing of hypoxic exposure to cells plays a role in this 

process. A recent study showed the impact of conditioning human MSCs in 2% oxygen 

prior to osteogenic differentiation in such an environment [Volkmer 2010]. The 

inhibitory effect of low oxygen on osteogenic differentiation (relative to culture in 20% 

oxygen) was mitigated when the cells were conditioned to this environment prior to 

differentiation.  

Our results indicate that low oxygen culture reduces osteogenic 

differentiation of ASCs compared with atmospheric conditions in a HIF-1 independent 

manner. However, differentiation will never occur in atmospheric conditions if this event 

is to take place in vivo. Efforts to accelerate bone formation at CSD sites could 

potentially look at HIF-1 as a therapeutic target but for modification of processes other 

than osteogenic differentiation of ASCs. There are numerous strategies to track HIF-1 

activity at the cellular level [Zhou 2011, Sahai 2012]. These systems show how the cells 

respond to their local oxygen environment and can guide future work that targets HIF-1. 

In general, HIF-1 activity should be beneficial for repair of CSDs but this effect is not 

necessarily observed for all processes involved in bone formation. 
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CHAPTER 5 

VARIED ISCHEMIC PRECONDITIONING PROTOCOLS TO ENHANCE 

ENGRAFTMENT AND DIFFERENTIATION OF ADIPOSE-DERIVED STEM CELLS 

 

5.1 INTRODUCTION 

Stem cell therapy is one of the most promising techniques to treat a defect 

in an organ. Massive cell death occurs after transplantation which significantly lowers the 

efficiency and efficacy of the therapy [Martin 1998, Sortwell 2000, Manoonkitiwongsa 

2001, Thum 2005]. Hence it is imperative to reinforce the donor cells to withstand the 

rigors of the microenvironment of the injury site from ischemia, inflammatory response, 

and pro-apoptotic factors in order to develop cell therapy into an effective therapeutic 

modality. 

Several anti-death strategies have been explored to promote the survival of 

transplanted cells. These strategies include continous infusion of neurotrophic factors, 

genetic manipulation by overexpressing anti-apoptotic and growth factor genes, and 

knocking down pro-apoptotic genes [Zawada 1998, Park 2003, Wei 2005]. However, 

there are multiple limitations with each of these current approaches, including safety 

issues associated with permanent gene alterations, and in addition to being clinically 

unfeasible. Ischemic preconditioning (IPC) which is a transient phenomenon induced by 

brief episodes of sublethal hypoxia that activates endogeneous trophic signals, has been 

suggested as a strategy to improve ischemic tolerance [Samoilov 2003, Sharp 2004]. 
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The beneficial effects of IPC have been most widely studied in cardiac 

tissue with the first demonstration over 25 years ago [Murry 1986]. Its application was 

further tested on cells transplanted into ischemic limb and ischemic brain [Akita 2003, 

Rosova 2008, Theus 2008]. IPC alters gene expression and activates different 

intracellular signaling pathways in a time dependent manner. These findings have also 

been correlated with improved functional recovery of the ischemic tissues.  

In the previous chapter we observed that the osteogenic differentiation of 

ASCs is impaired in hypoxic environments and how to accelerate the process will address 

a critical barrier in the field. An important recent study showed that MSCs cultured in 2% 

oxygen showed superior, subsequent osteogenic differentiation in 2% oxygen [Volkmer 

2010].  The central hypothesis is that IPC can be used to create ASCs more resistant to 

apoptosis and display increased osteogenic potential in physiological oxygen levels. 

Studies on cardiac tissue have shown two phases of protection resulting from IPC. The 

first occurs within minutes and lasts for a few hours. A second window apprears upto 24 

hours later and lasts approximately 48 hours. This second protective window is thought to 

result from changes in gene expression possibly mediated by HIF-1 activity [Cai 2003, 

Hausenloy 2010].  Mechanistic evaluation of the cytoprotective effect of IPC suggests the 

expression of pAKT and the ratio of Bcl-2/Bax (anti-apoptotic/ pro-apoptotic) should be 

increased following IPC, and this will serve as our success criteria, and this will be one of 

our success criteria. 

IPC protocols have not been closely studied or optimized. HIF-1α is an 

important transcription factor that may play a role in mediating its effect. In this study, 

we aim to test different IPC protocols wherein we place the ASCs at specific higher 
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(Step-down IPC) or lower oxygen concentrations (Step-down IPC) in-vitro as compared 

the levels present at the transplantation site, which would stimulate expression of proteins 

that would prevent hypoxia and cytokine-induced apoptosis at the tissue injury site. The 

IPC protocol can then be optimized on the basis of time duration, oxygen concentration 

and HIF-1α levels for the use of hypoxia as a stimulus based on the levels of pro-

apoptotic and anti-apoptotic proteins released. The success criteria of our IPC protocols 

will be based on the expression levels of pAKT (atleast 10 fold higher expression over 

control) and ratio of Bcl-2/Bax (atleast 3-fold over control). The time point that will meet 

our success criteria will be used to precondition the ASCs to examine its effects on 

osteogenic differentiation.  

The experiments are designed in way to give us insights on do oxygen 

concentration and duration affect HIF-1α stability and expression of genes regulating 

apoptosis, and the impact of IPC IPC on stemness of ASCs and osteogenic 

differentiation.  

 

5.2 MATERIALS AND METHODS 

5.2.1 Cell culture 

Human ASCs were purchased from Invitrogen and cell culture was 

performed according to the supplier’s specifications. Cells were cultured in proprietary 

MesenPRO RSTM basal medium supplemented with MesenPRO RSTM Growth 

Supplement, 1% penicillin/streptomycin (Mediatech, Manassas, VA) and 2 mM L-

glutamine (MP Biomedicals, Irvine, CA, USA). Culture conditions for passaging were 
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maintained at 95% air and 5% CO2 at 37°C. For experiments, cells between passages 2 

and 4 were used as recommended by the supplier. 

 

5.2.2. HIF-1 inhibition 

To inhibit the activity of HIF-1, a HIF-1 inhibitor [3-(2-(4-Adamantan-1-

yl-phenoxy)-acetylamino)-4-hydroxybenzoic acid methyl ester)] (Calbiochem, USA) was 

used. It is a cell-permeable amidophenolic compound that inhibits hypoxia-induced HIF-

1 transcription activity. The inhibitor selectively blocks the hypoxia-induced 

accumulation of cellular HIF-1α protein, while exhibiting no apparent effect on the 

cellular level of HIF-1α mRNA or that of HIF-1β protein. For both 1% and 2% O2 

samples, a concentration of 60µM of this inhibitor was sufficient to reduce accumulation 

of HIF-1α to levels below detection in western blotting. Toxicity tests showed no loss of 

viability of ASCs exposed to the inhibitor at concentrations up to 100µM [Sahai 2013]. 

 

5.2.3 Ischemic Preconditioning 

Nitrogen-purged, programmable incubators were used to maintain a 

constant 1%, 2% and 4% oxygen level for hypoxic studies (Napco Series 8000 WJ, 

Thermo Electron). Cells are seeded into a 6-well plate (5,000 cells/cm2) and placed in 

atmospheric oxygen levels for 12 hours to allow attachment. After this period, the plates 

are moved to 1, 2 or 4% oxygen environments for ischemic exposure or left in 

atmospheric conditions. Every 24 hours, a new set of plates is moved from atmospheric 

conditions to ischemic conditions. This continues until 108 hours after plating and creates 

conditions where cells are exposed to 1, 2 or 4% oxygen between 24 and 96 hours. All 
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media, buffered salt solutions, and fixatives to be used with cells were kept in vented 

tubes in the hypoxic incubator for 24 hours prior to use so as to equilibrate the solutions 

to the appropriate dissolved oxygen concentration. Previous studies in our lab have 

shown this period to be sufficient to equilibrate the dissolved oxygen concentration 

[Skiles 2011]. Media changes and imaging procedures were kept under 10 mins per day 

to limit exposure to atmospheric conditions. Dissolved oxygen concentration studies 

conducted in our lab showed that levels rose from 0.3 mg/L to 0.4 mg/L during a 10 

minute exposure (which correlates to a 1% oxygen to 1.5% oxygen environment). The 

oxygen levels are reestablished within 10 minutes of return to the incubator. 

 
 
Figure 5.1: Overview of Ischemic Preconditioning (IPC) 
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5.2.4 Analysis of ASCs Stemness and Apoptosis by Flow Cytometry 

To assess stemness of ASCs, cells were trypsinized and washed using a 

wash buffer. Cells are counted using a hemocytometer and 200,000 cells are added to 

each polystyrene flow cytometry tubes on ice. Cells were analyzed by staining with FITC 

conjugated CD44, PE conjugated CD105 and a combination of both. Both antibodies 

were purchased from BD Biosciences (San Diego, CA, USA). To assess apoptosis of 

ASCs, DeadEndTM Fluorometric TUNEL System was used according to the 

manufacturer’s instructions (Promega, USA). Labeled cells were analyzed by Beckman 

Coulter- Cytomics FC 500 and CXP Analysis software. 

 

5.2.5 Protein extraction and western blotting for pAkt, Bcl-2, Bax, Caspase-3, HIF-1α, 

ON, OPN 

Total cell lysates were collected from samples with RIPA lysis buffer 

(Thermo Scientific, Rockford, IL) containing a protease and phosphatase inhibitor 

cocktail (Thermo Scientific, Rockford, IL), stirred on ice for 10 min and sonicated for 15 

min. The mixtures were then centrifuged at 14000 rpm at 4°C for 15 min. The 

supernatants were collected and protein concentration was quantified using a Coomassie 

Plus Bradford Assay kit (Thermo Scientific, Rockford, IL) according to the 

manufacturers’ instructions. 

Western blotting was performed by SDS-PAGE with 50 µg of protein 

lysate loaded per lane of 4-20% gradient gels followed by transfer to PVDF membranes 

(Millipore, Billerica, MA). The membrane was first incubated in 5% dry milk, 1% bovine 

serum albumin (BSA) diluted in HBSS for 1 h at room temperature. The membrane was 
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then washed twice for 10 min each in “wash 1” (0.1% Tween-20, 0.1% dry milk, 0.1% 

BSA in HBSS). The membrane was then incubated with rabbit anti-HIF-1α antibody (1 : 

1000) (Santa Cruz Biotechnology, Santa Cruz, CA), rabbit anti-bcl-2 antibody (1 : 1000), 

rabbit anti-pAkt (1 : 1000), rabbit anti-bax (1:1000), rabbit anti-active caspase-3 

(1:1000), rabbit anti-osteonectin/SPARC antibody (1 : 1000), anti-osteopontin (OPN) (1: 

1000)  or rabbit anti-b-actin antibody (1 : 1000) (Santa Cruz Biotechnology, Santa Cruz, 

CA) for 2 h at room temperature (RT). The membrane was then washed three times for 

10 min each in “wash 1”. Membranes were then incubated with peroxidase-conjugated, 

goat, anti-rabbit IgG (1 : 5000) (Rockland Immunochemicals, Gilbertsville, PA) for 2 h at 

RT. Membranes were then washed 3 times for 10 minutes each in “wash 2” (0.1% 

Tween-20 in HBSS). Protein detection was achieved by 5 min incubation in a 

chemiluminescence reagent, SuperSignal West Pico Substrate (Thermo Scientific, 

Rockford, IL). Bands were then detected using ChemiDoc™ XRS+ System with Image 

Lab™ image acquisition and analysis software (Bio-Rad, Hercules. CA). With 

densitometry analysis, the expression of proteins was normalized to β-actin to account for 

% IOD (intensity optical density) and expressed as fold difference of protein expression 

compared to 20% oxygen. All incubation steps and washes were performed on an orbital 

shaker set to continuous rotation at 100 rpm. The statistics shown represent results 

obtained from three independent studies. 

 

5.2.6 Osteogenic differentiation 

Osteogenic differentiation was induced by culture in StemPro® 

Osteocyte⁄Chondrocyte Differentiation Basal Medium and StemPro® Osteogenesis 
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Supplement (Invitrogen, USA). The cells were monitored over a period of 28 days at 2% 

O2 with the osteogenic medium replenished every 3 days. All preconditioned cells and 

one set of cells cultured in 20% oxygen will be differentiated in 2% oxygen. 

 

5.2.7 Alkaline phosphatase (ALP) activity and DNA quantification 

Measurements of ALP activity in the media of ASCs were taken on days 

7, 14, 21 and 28. The activity was determined using an ALP colorimetric assay kit 

(Abcam, USA) with p-nitrophenyl phosphate as substrate. The ALP activities were 

normalized to the cellular DNA content using a PicoGreen dsDNA quantitation kit 

(Molecular Probes, USA) according to the manufacturer’s instructions. Alkaline 

phosphatase activity is quantified on days 7, 14, 21 and 28 and is expressed in 

µmol/ml/min/mg DNA. The values included represent the mean of 3 independent studies. 

 

5.2.8 Alizarin Red staining for mineralization 

Mineral deposition was quantified on days 14 and 28 using the Alizarin 

Red S staining procedure. The cells were rinsed with calcium and phosphate-free HBSS, 

and fixed with ice-cold 70% ethanol for 1 h. After a brief wash with HBSS, the cells were 

stained for 20 min with 40mM Alizarin Red solution (pH 4.2) at room temperature. The 

cells were rinsed two times for 15 min with HBSS (on an orbital shaker) to reduce 

nonspecific Alizarin Red staining. A 10% acetic acid was then added to the samples for 

30 min on a shaker. Samples were collected by scraping and heated at 80°C for 10 min. 

The extracts are then centrifuged at 8000 rpm for 20 min and quantified 

spectrophotometrically with a microplate reader (Biotek, USA) at 570 nm. The calcium 



	
   72	
  

concentration was calculated from the standard curve generated from a serial dilution of a 

calcium standard solution and the values were normalized to DNA contents (expressed in 

mg mineral/mg DNA). Values included represent the mean of three independent studies. 

 

5.2.9 Statistical analysis 

Statistical analysis was performed using Graphpad Prism 4.01 (GraphPad 

Software Inc., San Diego, CA). Experimental results were expressed as the mean ± 

standard deviation. All the collected data were analyzed by two-way ANOVA for 

comparisons and p-values < 0.05 were defined as statistically significant differences.	
  

5.3 RESULTS 

5.3.1 Stemness Markers 

As shown in Figure 5.2, the percentages of ASC population after 

preconditioning for 96 hours in 1%, 2%, 4% and 20% O2 were 99.5±0.05 %, 99% ±1%, 

98.8%±1% and 99% ±0.8%, respectively. 

 

Figure 5.2: Stemness markers after 96 hrs IPC at 1%, 2% and 4% oxygen environment. 
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5.3.2 pAkt Expression 

In the absence of HIF-1 inhibitor, At 1% oxygen condition, the pAkt 

expression was 7.61±0.43, 8.52±0.61, 12.16±0.56 and 14.13±0.71 %IOD fold difference 

against the samples in 20% oxygen at 24, 48, 72 and 96 hours respectively. In 2% oxygen 

condition, pAkt expression was 6.82±0.32, 10.24.52±0.73, 12.37±0.36 and 12.56±0.66 

%IOD fold difference against the samples in 20% oxygen at 24, 48, 72 and 96 hours 

respectively. In 4% oxygen condition, pAkt expression was 2.31±0.21, 4.61±1.21, 

5.62±1.43 and 7.42±0.97 %IOD fold difference against the samples in 20% oxygen at 24, 

48, 72 and 96 hours respectively. A representative image of a gel and the collective 

results are shown in Figure 5.3. 

 
 
Figure 5.3: Apoptotic Markers in the absence of HIF-1 inhibitor. 
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In the presence of HIF-1 inhibitor, At 1% oxygen condition, the pAkt 

expression was 5.73±0.78, 8.34±0.76, 10.83±0.34 and 11.23±1.31 %IOD fold difference 

against the samples in 20% oxygen at 24, 48, 72 and 96 hours respectively. In 2% oxygen 

condition, pAkt expression was 6.24±0.41, 9.15±1.04, 10.13±0.51 and 11.51±1.27 %IOD 

fold difference against the samples in 20% oxygen at 24, 48, 72 and 96 hours 

respectively. In 4% oxygen condition, pAkt expression was 1.72±0.35, 2.21±0.73, 

6.04±0.59 and 8.28±1.14 %IOD fold difference against the samples in 20% oxygen at 24, 

48, 72 and 96 hours respectively. A representative image of a gel and the collective 

results are shown in Figure 5.4. 

 
 
Figure 5.4: Apoptotic Markers in the presence of HIF-1 inhibitor. 
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5.3.3 Active Caspase-3 Expression 

In the absence of the HIF inhibitor, At 1% oxygen condition, the active 

caspase-3 expression was 0.91±0.52, 12.14±0.81, 8.43±0.96 and 14.54±1.53 %IOD fold 

difference against the samples in 20% oxygen at 24, 48, 72 and 96 hours respectively.  In 

2% oxygen condition, active caspase-3 expression was 0.83±0.31, 0.85±0.24, 4.23±1.32 

and 4.73±1.12 %IOD fold difference against the samples in 20% oxygen at 24, 48, 72 

and 96 hours respectively. In 4% oxygen condition, active caspase-3 expression was 

0.84±0.22, 0.76±0.21, 5.61±0.84 and 6.51±0.73 %IOD fold difference against the 

samples in 20% oxygen at 24, 48, 72 and 96 hours respectively. A representative image 

of a gel and the collective results are shown in Figure 5.3. 

In the presence of the HIF inhibitor, At 1% oxygen condition, the active 

caspase-3 expression was 0.87±0.44, 1.12±0.43, 3.53±1.06 and 13.42±1.86 %IOD fold 

difference against the samples in 20% oxygen at 24, 48, 72 and 96 hours respectively.  In 

2% oxygen condition, active caspase-3 expression was 0.81±0.42, 2.46±1.30, 3.41±0.86 

and 5.92±0.94 %IOD fold difference against the samples in 20% oxygen at 24, 48, 72 

and 96 hours respectively. In 4% oxygen condition, active caspase-3 expression was 

0.83±0.23, 0.77±0.15, 2.65±0.67 and 3.97±1.02 %IOD fold difference against the 

samples in 20% oxygen at 24, 48, 72 and 96 hours respectively. A representative image 

of a gel and the collective results are shown in Figure 5.4. 

 

5.3.4 Bcl-2/Bax ratio expression 

In the absence of the HIF inhibitor, At 1% oxygen condition, the Bcl-

2/Bax ratio expression was 1.34±0.31, 3.15±0.36, 3.41±0.46 and 3.53±0.23 %IOD fold 
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difference against the samples in 20% oxygen at 24, 48, 72 and 96 hours respectively.  In 

2% oxygen condition, the Bcl-2/Bax ratio expression was 2.62±0.43, 3.23±0.27, 

4.36±0.21 and 4.16±0.35 %IOD fold difference against the samples in 20% oxygen at 24, 

48, 72 and 96 hours respectively. In 4% oxygen condition, the Bcl-2/Bax ratio expression 

was 3.10±0.21, 4.15±0.32, 4.26±0.55 and 2.18±0.42 %IOD fold difference against the 

samples in 20% oxygen at 24, 48, 72 and 96 hours respectively.  A representative image 

of a gel and the collective results are shown in Figure 5.3. 

In 1% oxygen condition, the Bcl-2/Bax ratio expression was 1.45±0.27, 

2.81±0.41, 2.98±0.35 and 1.14±0.62 %IOD fold difference against the samples in 20% 

oxygen at 24, 48, 72 and 96 hours respectively.  In 2% oxygen condition, the Bcl-2/Bax 

ratio expression was 1.24±0.51, 2.63±0.43, 2.59±0.31 and 1.23±0.48 %IOD fold 

difference against the samples in 20% oxygen at 24, 48, 72 and 96 hours respectively. In 

4% oxygen condition, the Bcl-2/Bax ratio expression was 2.33±0.65, 1.34±0.58, 

1.15±0.07 and 1.22±0.41 %IOD fold difference against the samples in 20% oxygen at 24, 

48, 72 and 96 hours respectively.  A representative image of a gel and the collective 

results are shown in Figure 5.4. 

 

5.3.5 HIF-1α expression 

In 1% oxygen condition, the HIF-1α expression was 8.92±2.51, 

9.12±1.23, 10.52±1.34 and 14.12±1.46 %IOD fold difference against the samples in 20% 

oxygen at 24, 48, 72 and 96 hours respectively. In 2% oxygen condition, the HIF-1α 

expression was 7.31±1.31, 8.76±0.83, 9.85±1.25 and 14.9±1.37 %IOD fold difference 

against the samples in 20% oxygen at 24, 48, 72 and 96 hours respectively. A 



	
   77	
  

representative image of a gel and the collective results are shown in Figure 5.3. 

Table 5.1: Comparison of Apoptotic markers with and without the HIF-1 inhibitor at 1% 
O2 (** (p<0.01), *p<0.05). 
 

At 1% O2 24h 48h 72h 96h 

HIF-1α ** ** ** ** 

pAKT **   **   

Bcl-2/Bax       * 

Caspase-3   * *   
 
Table 5.2: Comparison of Apoptotic markers with and without the HIF-1 inhibitor at 2% 
O2 (** (p<0.01), *p<0.05). 
 

At 2% O2 24h 48h 72h 96h 

HIF-1α ** ** ** ** 

pAKT     **   

Bcl-2/Bax **   ** * 

Caspase-3         
 
Table 5.3: Comparison of Apoptotic markers with and without the HIF-1 inhibitor at 4% 
O2 (** (p<0.01), *p<0.05). 

At 4% O2 24h 48h 72h 96h 

HIF-1α ** ** ** ** 

pAKT   **   ** 

Bcl-2/Bax   * *   

Caspase-3     * * 
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5.3.6 ALP Activity 

In 2% oxygen condition, the ALP activity of samples not preconditioned, 

step-up (1% O2) preconditioned, standard preconditioned (2% O2) and step-down 

preconditioned (4% O2) was 19.31± 1.23, 24.21± 4.11, 28.21±1.9 and 29.32± 3.14 

µmol/ml/min/mg DNA on day 28 as seen in Figure 5.5. 

 

Figure 5.5: Osteogenic Markers after 72hr IPC. 

 

5.3.7 Mineralization 

In 2% oxygen condition, the mineral deposition of samples not 

preconditioned, step-up (1% O2) preconditioned, standard preconditioned (2% O2) and 

step-down preconditioned (4% O2) was 36.87± 2.76, 42.81± 2.36, 39.72±3.91 and 39.22± 

4.12 mg mineral/mg DNA on day 28 as seen in Figure 5.5. 
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5.3.8 ON Expression 

In 2% oxygen condition, the ON expression of samples not 

preconditioned, step-up (1% O2) preconditioned, standard preconditioned (2% O2) and 

step-down preconditioned (4% O2) was 2.61±0.21, 3.56±0.53, 3.81±0.34 and 3.96±0.57 

%IOD fold difference was observed on day 28 respectively as seen in Figure 5.5. 

 

5.3.9 OPN Expression 

In 2% oxygen condition, the OPN expression of samples not 

preconditioned, step-up (1% O2) preconditioned, standard preconditioned (2% O2) and 

step-down preconditioned (4% O2) was 2.11±0.34, 3.73±0.62, 3.42±0.82 and 3.53±0.31 

%IOD fold difference was observed on day 28 respectively as seen in Figure 5.5. 

 

5.4 DISCUSSION 

The study shows a various ischemic preconditioning strategy that can be 

used to enhance the ability of ASCs to survive under pathological conditions and promote 

their therapeutic effects. The results show that IPC maintained their stemness after 96 

hours of exposure to 1%, 2% and 4% oxygen concentrations. It regulated the anti-

apoptotic and pro-apoptotic markers in a time and oxygen concentration dependent 

manner. In our study we model the CSD environment with a 2% oxygen level and used 

different protocols of IPC (step-up, standard and step-down) to examine the effect on 

osteogenic differentiation of ASCs. The standard and the step-down IPC resulted in 

significantly higher ALP activity, ON and OPN expression but not on mineralization 

compared to the control. The step-up IPC did not have a significant effect on ALP 
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activity and mineralization, but did have a significantly higher expression of ON and 

OPN expression. 

Accounting the underlying mechanism, most of the previous studies using 

IPC have reported that HIF-1α serves as the master regulator of genes responsible for 

survival signaling [Hu 2008, Nanduri 2008, Yuan 2008]. The PI3 kinase pathway, similar 

to HIF-1α, is activated in response to hypoxia [Datta 1999]. Upregulation of pAKT in 

response to PI3 kinase activation also promotes cell survival by either directly targeting 

proteins involved in apoptosis or by modulating cell metabolism when under stress [Datta 

1999]. Our first goal of the study was to examine the effect of IPC on gene expression 

and monitor the role of HIF-1 in the process. HIF-1 expression varied for cells cultured in 

1%, 2% and 4% oxygen. If the cells will be transplanted into a 2% oxygen environment 

within the body, the transition from atmospheric conditions coud trigger oxidative stress 

and apoptosis. Exposure to 4% oxygen conditions (step-down) lead to low levels of HIF-

1 expression to blunt the damage of a subsequent transition to 2% oxygen and may not 

trigger apoptosis. ASCs cultured in 1% oxygen conditions (step-up) triggered higher HIF-

1 expression, potentially providing an increased protective effect in 2% oxygen. We 

observed increased levels of pAKT upon ischemic preconditioning with and without the 

HIF-1 inhibitor compared to the control (20%). We only observed significant different 

expression levels at 72hr (1%), 72hr (2%), and at 48hr and 96hr (4%) in the presence of 

HIF-1α inhibition (Table 2-4). The ratio of Bcl-2/Bax ratio is also upregulated in in 

preconditioned cells and we saw a peak of expression at 72 hours for 1%, 2% and 4% 

with or without the HIF-1 inhibitor. The 10-fold increase in the pAKT levels and the 3-
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fold increase in expression of Bcl-2/Bax ratio at 72 hours in 1%, 2% and 4% oxygen met 

our success criteria as the best candidates to resist apoptosis. 

The 72 hours of exposure for step-up, standard and step-down IPC accelerated the 

expression of osteogenic markers at 2% oxygen when compared to the non-IPC ASCs. 

These results helped us to answer the questions that motivated us to examine the different 

IPC protocols and examine its effects to resist apoptosis and osteogenic potential at 

physiological levels. In conclusion, the IPC protocols represent a clinically feasible 

manipulation of cell preparation for an effective transplantation therapy. 
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CHAPTER 6 

SCIENTIFIC CONTRIBUTIONS OF THIS STUDY 

The results detailed in the previous chapters provide insight and methods to detect several 

factors affecting key developmental characteristics of hASCs. Our first goal was to 

establish whether the HRE DsRed-DR marker virus could be used to track HIF-1 activity 

in encapsulated ADSCs and whether expression of the red fluorescent protein correlated 

with HIF-1α detected by traditional methods. Our results show that detection of the signal 

is certainly possible and that image capture conditions can be established that allow the 

observed signal to correlate with HIF-1α levels. The marker measures HIF activity rather 

than the amount of HIF-1α protein as measured with western blotting and 

immunocytochemical detection. The combination of 3D scaffolds and living cells is used 

to fill defect sites and support the transplanted cells. The material(s) selected for the 

scaffold and how it is synthesized influence the diffusion of oxygen and nutrients to the 

cells and this is a major limitation in tissue engineering. Gradients of oxygen 

concentration can form within materials and this will affect cellular differentiation or cell 

fate decisions. We can monitor HIF activity in the same population of cells over time and 

this can be done in a 3D culture environment without disruption of the scaffold. The 

tissue engineering community can take advantage of the versatility of our responsive 

hypoxia marker to show dynamic correlations between cell fate and function with oxygen 

concentration in engineered tissues in 2D as well as 3D environments. 
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The second goal of our study was to examine the role of hypoxia on the 

osteogenic differentiation of hASCs and establish the role of HIF-1 in mediating that 

effect. Our results demonstrate a reduced capacity for ADSCs to differentiate into 

osteoblasts in hypoxic conditions when compared with atmospheric conditions. HIF-1 

activity does not appear to be an essential component of the varied response of ADSCs in 

hypoxic conditions. Bone formation in vivo requires a coupling of osteogenesis and 

angiogenesis, making it difficult to evaluate the impact of HIF-1 on each process 

individually. Our in vitro analysis does not include studies looking at the role of HIF-1 in 

vascularizing bone but this is a critical process that would need to occur in vivo. Our 

studies are an in vitro model of intramembranous bone formation as mesenchymal stem 

cells are directly differentiated into osteoblasts. However, differentiation will never occur 

in atmospheric conditions if this event is to take place in vivo. Efforts to accelerate bone 

formation at CSD sites could potentially look at HIF-1 as a therapeutic target but for 

modification of processes other than osteogenic differentiation of ADSCs.  

The third goal was to examine different IPC protocols and its effect on 

ASCs phenotype. The characteristic stem cell markers were maintained in all conditions 

and the three IPC protocols (Step-up IPC, Standard IPC, Step-down IPC) introduced, led 

to oxygen and time dependent expression of apoptotic markers. Also, the IPC of ASCs 

led to accelerated osteogenesis in physiological oxygen environment. Thus, IPC seems to 

be a promising strategy and clinically feasible for cell preparation for more effective 

transplantation therapy.  
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