
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2016

Development of metrics to describe cerebral
aneurysm morphology
Benjamin Micah Berkowitz
University of Iowa

Copyright © 2016 Benjamin Micah Berkowitz

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/2181

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
Berkowitz, Benjamin Micah. "Development of metrics to describe cerebral aneurysm morphology." PhD (Doctor of Philosophy)
thesis, University of Iowa, 2016.
http://ir.uiowa.edu/etd/2181.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F2181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2181&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=ir.uiowa.edu%2Fetd%2F2181&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

 

 

DEVELOPMENT OF METRICS TO DESCRIBE CEREBRAL ANEURYSM 
MORPHOLOGY 

  
 
 
 
 
 
 
 

by 
 

Benjamin Micah Berkowitz 
 
 
 
 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the Doctor of Philosophy 

degree in Biomedical Engineering in the  
Graduate College of 

The University of Iowa 
 

December 2016 
 

Thesis Supervisor:  Professor Suresh M.L. Raghavan 
 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Copyright by 

 
Benjamin Berkowitz 

 
2016 

 
All Rights Reserved 

 
  



 

Graduate College 
The University of Iowa 

Iowa City, Iowa 
 
 
 
 
 

CERTIFICATE OF APPROVAL 
 

____________________________ 
 
 

PH.D. THESIS 
 

_________________ 
 

This is to certify that the Ph.D. thesis of 
 

 
Benjamin Berkowitz 

 
has been approved by the Examining Committee for  
the thesis requirement for the Doctor of Philosophy degree  
in Biomedical Engineering at the December 2016 graduation. 
 
 
Thesis Committee: ____________________________________________ 
 Suresh M.L. Raghavan, Thesis Supervisor 
 
 
 ____________________________________________ 
 Joseph Reinhardt 
 
 
 ____________________________________________ 
 Sarah Vigmostad 
 
 
 ____________________________________________ 
 Gary Christensen 
 
 
 ____________________________________________ 
 David Hasan



 
 

ii 

ACKNOWLEDGEMENTS 
 

I would like to thank my advisor, Professor Suresh M.L. Raghavan, for his 

mentorship. While Dr. Raghavan is clearly an accomplished researcher, he also holds the 

education and success of his students above all else. I am very happy to have spent my 

undergraduate and graduate education under his guidance. 

Thank you to my committee members for serving on my committee. A special 

thanks goes to Dr. David Hasan for his additional work with several of my side projects.  

Thank you to Dr. Hasan and Dr. Bob Harbaugh for their assistance with the 

collection of the selection bias patient data. Thank you to Dr. Manasi Ramachandran, Dr. 

Rohini Retarekar, Steve Lin, Ben Dickerhoff and Tatiana Correa whose efforts and results 

from previous studies were built upon in this work. 

Tatiana Correa, Kevin Johnson and Elizabeth Niedert made significant 

contributions to my dissertation research. Tatiana assisted with data collection for the 

selection bias study, Kevin assisted with data processing of the BioMOST study data, and 

Elizabeth assisted with performing the protocol, as well as with the inter-user variability 

and sensitivity studies. I would like to thank them for their hard work and assistance. 

Thank you to Luca Antiga, Marina Piccinelli and the VMTK community, whose 

work this dissertation builds upon, in addition to the work of Ma et al. 2004, Raghavan et 

al. 2005, Dhar et al. 2008, Lauric et al. 2011, Piccinelli 2012 and Ramachandran et al. 

2016. 

I would like to thank my fellow BioMOST Lab students for their support and 

friendship over the years. Each has given me a new perspective on scientific research and 

shown me the possibilities of where my career could take me. 



 
 

iii 

I would also like to thank my family. My wife, Becky, for her strength, support 

and flexibility throughout my time as a graduate student. She has been a great partner 

throughout school, pushing me to enjoy life when I worked too hard, and to work harder 

when I needed the motivation. My sister, Shelly, for her friendship. And most of all, my 

parents, Dan and Holly, for providing me with the guidance and opportunity to attain what 

I have.  



 
 

iv 

ABSTRACT 
 

Cerebral aneurysm is a pathology of the circulatory system in the brain in which 

an arterial wall balloons into a blood-filled sac. If the aneurysm ruptures, stroke can occur 

and has a high probability of causing permanent disability or death. Aneurysm surgery 

carries a high rate of morbidity and mortality compared to the natural rate of aneurysm 

rupture, so physicians must take care in recommending surgery for an aneurysm patient. 

However, very little is known about the etiology of brain aneurysm rupture and what 

prognostics exist. The International Study for Intracranial Aneurysms suggested that large 

aneurysm size and posterior location are important factors in identifying high rupture 

risk. However, many small aneurysms and aneurysms in other portions of the circulation 

still rupture. Many studies have assessed morphological traits, identified from aneurysm 

appearance on diagnostic medical images, and found such traits to be different in 

aneurysms that ruptured and aneurysms that did not rupture. In fact, more than 50 such 

morphological indices have been introduced in the literature, and many of them 

redundantly quantify particular morphological characteristics. In order to demonstrate the 

prognostic ability of morphology as an indicator of rupture risk, however, a large 

longitudinal cohort study must be carried out. A study such as this is time-consuming and 

expensive, and each additional hypothesis that a particular morphological index is 

predictive of rupture risk would require increasing the study population size in order to 

fulfill the necessary statistical power requirements for a rigorous test. Thus, a minimal set 

of physically meaningful, independent metrics that fully describe the aneurysm 

morphology is needed.  
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In this dissertation an automated protocol was developed to process segmented 

medical images and extract an exhaustive set of morphological indices that quantify all 

relevant morphological features. Each morphological index was then analyzed for 

robustness to inter-user variability and for sensitivity to the particular morphological 

characteristic that it was designed to quantify. A factor analysis was then performed using 

the most robust, sensitive metrics on a population of unruptured aneurysms from five data 

centers and 276 patient-specific aneurysms. The results from the factor analysis were 

utilized to ascertain what morphological features those metrics truly described, if there 

were any redundancies in definition, and the variance each morphological trait described 

in the population. Four underlying morphological constructs were uncovered through the 

factor analysis. The first factor, sac size, was highly aligned with morphological indices 

that measured volume and one-dimensional size measurements. Sac size described 50% 

of the variance in the data set. The second factor, sac irregularity, was highly aligned with 

morphological indices that described various aspects of irregular shape.  A set of 

variables that all were implicated in causing irregular shape, but in reality measured sac-

neck size relation, also merited inclusion of a second metric to describe the variance seen 

in the second factor. Sac irregularity described 20% of the variance in the data set. The 

third factor, sac ellipticity, aligned highly with morphological indices that described the 

overarching ellipticity of the aneurysm sac independent of other non-spherical 

characteristics. Sac ellipticity described 13% of the variance in the data set. The fourth 

factor, sac-vessel size relation, aligned highly with morphological indices that described 

the size of the aneurysm sac in relation to its parent vessel. Sac-vessel size relation 

described 7% of the variance in the data set. All four of these factors in combination 
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described 91% of the variance in the data set. Five morphological indices – non-planar 

isolation sac volume (Vnp), Voronoi diagram core evolution irregularity index (IRRvdc), 

tissue stretch ratio (TSR), Voronoi diagram core evolution ellipticity index (EIvdc) and 

size ratio (SRang) were determined to be the key indices for describing aneurysm 

morphology. Finally, the proposed metrics were used to test the hypothesis that 

aneurysms that are chosen for untreated observation are morphologically different than 

those that are treated – commonly referred to as selection bias. Study population was 27 

patient-specific aneurysms that were placed on untreated observation (observation group) 

and 27 patient specific aneurysms that were size- and location-matched but were chosen 

for treatment (treated group). A significant difference was found in the morphological 

index that measured ellipticity between the two groups, indicating that physicians already 

commonly select highly elliptical aneurysms for treatment. This result may give insight 

into physicians’ choices, and merits further investigation with a larger data set for 

confirmation. Additionally, because the same result was replicated in both of the metrics 

chosen to quantify ellipticity (for both manual and automated methods), this highlighted 

the use of the morphological factors in determining an minimal set of independent, robust 

morphological indices.  
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PUBLIC ABSTRACT 
 

Brain aneurysm is a disease in which a blood vessel in the brain weakens and 

balloons into a blood-filled sac. In the US alone, sixteen million people are estimated to 

have aneurysms, and if one of these aneurysms ruptures a part of the brain can lose its 

blood supply and die. An aneurysm is like a ticking time bomb, but it is impossible for a 

physician to know whether or not an aneurysm will rupture. Aneurysms are treatable with 

brain surgery, but because brain surgery is so risky and aneurysm rupture rate is so low, 

physicians need a way to tell how likely an aneurysm is to rupture. Currently, little is 

known about how to tell whether an aneurysm will be one of the 98% that never rupture, 

or one of the 2% that will cause severe brain injury. This dissertation introduced software 

that was developed to automatically assess aneurysms on medical images to quantify their 

appearance. The software was then tested to see if it was robust, and then the software in 

combination with statistics was used to tell future researchers what characteristics of an 

aneurysm’s appearance to look for on medical images. Lastly, the software was utilized 

to test whether physicians are already choosing to treat aneurysms with these appearance 

characteristics, or if they can be used to improve doctors’ abilities to make the right 

treatment decision. 
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INTRODUCTION 

Cerebral aneurysm 

Cerebral aneurysm is a pathology of the arterial wall that is characterized by an 

outward bulging of the lumen. Approximately 90 percent of all cerebral aneurysms occur 

in a saccular form (Vega et al. 2002), and more rarely in a fusiform or dissecting manner, 

as shown in Figure 1. Saccular aneurysms form as a consequence of a weakening of the 

internal elastic lamina.  The exact etiology of any particular cerebral aneurysm’s 

formation varies from case to case.  However, hereditary traits (including Marfan 

syndrome, previous familial occurrence, and female gender) and acquired risk factors 

(such as age over 50 years, tobacco use, and hypertension) may indicate a higher risk for 

aneurysm manifestation (Vega et al. 2002). 

 

Figure 1. Types of cerebral aneurysms. 
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Cerebral aneurysm is a relatively common condition with an estimated prevalence 

of 3.6 to 6 percent in the general population.  Aneurysm rupture is a major cause of death 

and disability. It occurs in approximately 1.9% for those patients presenting with an 

aneurysm (Rinkel et al. 1998). The risk of short term death from the hemorrhage 

associated with rupture is high (10 to 20%), and an additional number (12 to 30%) of 

patients never recover from the initial bleed (Hop et al. 1997).  

Treatment options 

Traditionally, the most common cerebral aneurysm treatment procedure has been 

surgical clipping of the aneurysm neck, which involves a craniotomy to access the 

affected vessel.  Complication risk is a concern because of the invasiveness of the 

surgery.  However, given an eligible patient the surgery is generally very effective, with 

complete occlusion rates reported around 93% (Raftopoulos et al. 2003). 

The growing treatment of choice in recent years is endovascular coil 

embolization. This is an outpatient procedure that has relatively low associated 

complication risk and a short recovery period. The first endovascular coiling device 

approved by the FDA for general use was the Guglielmi detachable coil in 1991 

(Guglielmi et al. 1991). The International Subarachnoid Aneurysm Trial (ISAT), a 

European study involving 2,143 patients across 42 neurosurgical centers, found that 

endovascular coiling provided absolute risk reduction of 6.9% and relative reduction in 

risk death or dependence of 22.6% over surgical clipping (van den Berg et al. 2003). 

However, endovascular coiling outcomes are highly dependent on aneurysm sac 

geometry.  Studies have shown that initial treatment and aneurysm sac recanalization and 
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continued growth occurs in 22-42% of endovascular coil-treated cases (Grunwald et al. 

2007; Sluzewski et al. 2003).  

Flow diverters are a more recent development for cerebral aneurysm treatment.  

Arterial stents, such as those used in conjunction with cerebral aneurysm coils or to 

maintain patency of an atherosclerotic artery had previously been observed to occlude 

aneurysms by diverting flow away from the aneurysm sac (Wakhloo et al. 1994). Flow 

diverters take this idea beyond the observation of this phenomenon and bring it to clinical 

use.  A flow diverter’s mesh porosity is optimized for use specifically to occlude cerebral 

aneurysms over time, while maintaining long-term patency of perforating and branching 

arteries that may be covered by the device.  Flow diverters are very new to the market 

having been approved in mid-2011, and are only indicated for the treatment of large or 

giant aneurysms located on specific portions of the internal carotid artery (ICA). This, 

unfortunately, precludes treatment of a large number of patients. 

All surgical treatment of the brain carries a large inherent risk. One site-specific 

study found that as much as many as 25% of surgical clipping patients and 10% of 

endovascular coiling patients experienced an adverse event (Johnston et al. 2001). For 

many cerebral aneurysm patients this risk is amplified by their age and co-morbidities. 

Because 98% of patients will never experience a rupture, only patients with a high risk of 

rupture will be recommended for surgery. In other patients, for those whom risk of 

rupture is lower than risk from treatment (Wiebers et al. 2003), the treating physician will 

recommend that a patient not undergo treatment, and instead return periodically for 

follow-up observation. These patients will return on a semi-annual or annual basis for 
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clinical follow-up and image-based evaluation to assess the aneurysm for signs of 

growth, which might indicate aneurysm instability. 

Current prognostic assessment techniques 

In order to determine an effective treatment plan for a patient, a physician must 

first assess a patient’s relative likelihood of aneurysm rupture. While it is hypothesized 

that aneurysm rupture occurs due to a gradual thinning and weakening of the vessel wall 

this phenomenon is impossible to discern non-invasively because the tissue thickness of 

an aneurysm dome ranges from 16 to 400 µm (Kadasi et al. 2012), well below the 

resolution of modern medical imaging modalities. Furthermore, because even the thickest 

tissue in this range is on the order of only one voxel with standard computed tomography 

(CT) and magnetic resonance imaging (MRI), which are conventional medical imaging 

techniques; therefore, it is unlikely that any information about the thickness of an 

aneurysm sac can be measured in-vivo. This is a limitation in evaluating aneurysm 

rupture risk in large clinical studies (Ramachandran et al. 2016).  

The only large-scale, prospective longitudinal study to evaluate cerebral aneurysm 

rupture risk is the International Study of Unruptured Intracranial Aneurysms (ISUIA), 

which indicated that rupture risk increases with size, and therefore suggests aneurysms 

larger than 10mm should be treated (Wiebers et al. 2003). The ISUIA study also found 

that aneurysms in the posterior vasculature of the brain are more likely to rupture than 

those in other locations. For aneurysms smaller than the 10mm threshold and outside the 

posterior communication, there is a smaller chance of rupture than larger aneurysms, but 

ruptures do occur, and there is very little known about what factors contribute to rupture 
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in these aneurysms. As a result, there is a lack of consensus in the field, and there is a 

great range of strategies neurosurgeons employ to assess rupture risk with small 

aneurysms.  

One study sought to characterize the factors that physicians take into account 

when determining treatment decisions, and found that physicians view size, irregular and 

elongated geometry, vessel location, growth over time, de novo formation and 

contralateral steno-occlusive vessel disease as factors that are thought to be important in 

determining the risk of aneurysm rupture risk (Etminan et al. 2014). However, this study 

merely reveals neurosurgeons’ opinions formed from their own experiences, which form 

the current basis for treatment. Further scientific research into markers that identify high-

risk aneurysms could improve outcomes for patients who would otherwise not be treated, 

and allow doctors to avoid performing invasive cranial surgery for those patients who do 

not need it. 

Current research on the determination of rupture risk from medical images 

While the ISUIA study is currently the only large study that has sought to 

determine the indicators of rupture risk, it is clear that there is more to learn about the risk 

factors for aneurysms outside the highest-risk categories determined by ISUIA. Although 

ISUIA concluded that large aneurysms and aneurysms on the posterior circulation present 

the highest risk of rupture, many small aneurysms on other areas of circulation do rupture 

as well (Raghavan et al. 2005; Dhar et al. 2008). Therefore, researchers have focused on 

determining aneurysm rupture indicators from medical image analysis. Some research 

groups have performed computational fluid simulations on the arterial models obtained 
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from patient scans (Sforza et al. 2009; Cebral et al. 2009; Cebral et al. 2011; Retarekar et 

al. 2014). However, because of the lack of patient-specific information for fluid inlet 

parameters and material properties, some have argued that these simulations are purely 

reflective of the shape of the arterial models (Ramachandran et al. 2016; Retarekar et al. 

2014). In order to analyze large datasets, it would therefore be ideal to reduce the 

complexity of the analysis by simply reducing it to a direct analysis of the morphology of 

the aneurysm and its surrounding vasculature. Analyzing the morphology of aneurysm 

sacs in isolation from the vasculature could also give insight into bulging of weakened 

tissue, continued growth, or other factors that could contribute to increased rupture 

propensity.  

Many research groups have found differences in various morphological factors 

between ruptured and unruptured aneurysms. Many of these studies have followed a 

similar format in which a novel morphological index or set of indices is introduced, 

which are then compared between a small subset of ruptured and unruptured aneurysms. 

This type of study is quick to perform and gives some insight into whether there may be 

morphological differences between ruptured and unruptured aneurysms. 

In 2005 Raghavan et al. introduced novel morphological indices and found that 

several of them stratified a small population of ruptured and unruptured aneurysms.  

Undulation Index (UI) was introduced as a descriptor of the undulation present in the 

dome of the aneurysm. It is computed by comparing the volume of the aneurysm to the 

volume of its convex hull (a similar geometry from which the concavities are removed). 

The thinking is that these undulations could represent stress concentrations and weakened 

inhomogeneous regions within the aneurysm dome; therefore, their presence could be an 
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indicator of increased rupture risk. Raghavan et al. also introduced Aspect Ratio (AR) as 

an index to describe the ratio of the aneurysm neck to its height as measured 

perpendicularly from the neck plane (Ujiie et al. 2001). This was intended as one measure 

of an aneurysm’s similarity of a shape to an elliptical geometry, which would indicate an 

inhomogeneous stress distribution leading to generally higher peak stresses than a 

spherical geometry. Therefore, more elliptical aneurysms are thought to be prone to 

rupture. Ellipticity Index (EI) was introduced as another index seeking to measure the 

ellipticity of an aneurysm. It was measured from a ratio of the surface area to the volume, 

for which a hemisphere would produce a value of 0, and an elliptically shaped aneurysm 

would produce an indicial value near 1. Non-sphericity Index (NSI) was introduced to 

describe the overall deviation from a hemispherical geometry. Similar to EI it was 

measured from a ratio of surface area to volume, but differed in that these values were 

calculated from the aneurysm geometry directly. In this way, it combined non-spherical 

characteristics from elliptical shape as well as surface undulation. Conicity parameter 

(CP) was introduced to describe a potential measure of the location of growth of an 

aneurysm. The location of the cross-section of largest diameter was compared to the 

midpoint from the neck to the maximal height. In this way if an aneurysm’s largest cross 

section was located near to the neck, the growth would be assumed to be near to the neck; 

if the cross section were located near the top of the dome, the growth would be assumed 

to be near the top of the dome. Bottleneck factor (BF) was introduced as a potential 

indicator for increased hemodynamic abnormalities. It was calculated as the ratio of the 

maximum diameter of the aneurysm to the diameter of the neck. The surface curvature-

based indices Mean Curvature Norm (MLN) and Gaussian Curvature Norm (GLN) were 
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also introduced.  A study of 9 ruptured and 18 unruptured aneurysms found NSI, UI, EI, 

AR, and MLN values to be significantly different between the ruptured and unruptured 

groups. 

 

Figure 2. Definitions of Raghavan et al. shape indices (Raghavan et al. 2005). 

In 2007 Millán et al. demonstrated the use of geometric and Zernike moment 

invariants to characterize the geometry of aneurysms. A database of 31 ruptured and 24 

unruptured aneurysms was examined.  It was shown that the Zernike moment invariants 

were able to classify ruptured and unruptured aneurysms (given the particular training 

set) with an accuracy of approximately 80%. 
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Figure 3. Example of a reconstruction of an aneurysm surface model using 
increasing orders of Zernike moments (Millán et al. 2007). 

In 2008 Dhar et al. introduced vessel angle (the angle between the afferent vessel 

and the aneurysm clipping plane), aneurysm angle (the angle between the neck plane and 

the vector point from the center of the neck to the point of maximum height), and 

aneurysm-to-vessel size ratio.  Differences in the morphology values between ruptured 

and unruptured aneurysms were statistically significant not only for aneurysm angle and 

size ratio, but also undulation index, non-sphericity index, ellipticity index, and aspect 

ratio.  In 2010 the same research group published the results of prospective studies that 

again found size ratio to correlate with rupture status (Rahman 2010).  
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Figure 4. Illustration of vessel angle and aneurysm angle (Dhar et al. 2008). 

In 2009 Piccinelli et al. introduced and demonstrated methods for characterizing 

the geometric analysis of vasculature with application to cerebral aneurysms (Piccinelli et 

al. 2009).  An entire computational framework was built around the Vascular Modeling 

Toolkit (VMTK) (Antiga et al. 2008) to compute characteristics of a vessel centerline 

such as tube function, curvature, torsion, tortuosity, and bifurcation angle.  A study was 

published in 2011 that analyzed the geometry of the internal carotid artery (ICA) of 17 

ruptured and 37 unruptured aneurysms.  The vessel geometry metrics curvature, torsion, 

length, and radius for each ICA bend and aneurysm position and orientation with respect 

to the parent vessel, angles between portions of the parent artery afferent and efferent to 

the aneurysm and to the aneurysm ostium were measured.  Many of these metrics 

demonstrated statistically significant differences between the ruptured and un-ruptured 

aneurysm groups (Piccinelli et al. 2011). 
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Figure 5. Definition of vessel centerline curvature using the osculating plane and 
osculating circle tangent to the curve (Piccinelli et al. 2011). 

In 2011 Yasuda et al. introduced a metric of the aneurysm volume-to-ostium area 

ratio.  The values of this metric were compared between groups of 62 ruptured and 93 

unruptured aneurysms (Yasuda et al. 2011).  Later that year Ryu et al. also published a 

study that evaluated the metric in 105 ruptured and 109 unruptured aneurysms.  Both 

groups found that the trait was significantly higher in ruptured aneurysms than 

unruptured aneurysms (Ryu et al. 2011). 

In 2011 Lauric et al. described a method for shape characterization called the 

centroid-radii model. The centroid-radii model computes the distance from an aneurysm 

model’s centroid to the points on its surface mesh, and subsequently computes the 

entropy of the histogram of the normalized radii.  A subsequent study of 73 ruptured and 

81 unruptured aneurysms also found a significantly higher entropy value for ruptured 

aneurysms. 
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Figure 6. Normalized centroid radii model parameter plotted on surface of an 
unruptured aneurysm and corresponding histogram (Lauric et al. 2011). 

In 2012 Piccinelli et al. explored several novel methods for computationally 

obtaining measurements from aneurysm sacs, including the introduction of the Voronoi 

diagram core – a hypothetical representation of the largest and most stable portions of the 

aneurysm sac, a centerline-based sac diameter measurement, and best-fit ellipsoid. This 

study utilized a subset of the Aneurisk database.  The Aneurisk database was a project 

carried out from 2005-2008 in order to develop tools for the biomechanical and 

morphological analysis of cerebral aneurysms.  It contains data from 153 consecutive 

patients who underwent 3D rotational angiogram (3DRA) at Niguardia Hospital in Milan, 

Italy between 2002 and 2006 (Piccinelli et al. 2012).   
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Figure 7. Comparison of convex hull (light grey), Voronoi diagram core (red), 
and aneurysm (dark grey) surfaces. (Piccinelli et al. 2012) 

These studies have each examined a different morphological metric and 

demonstrated a difference in shape between ruptured and unruptured aneurysms. But 

while they do indicate that there is a discernible difference in shape between the two 

groups, they do not demonstrate the predictive ability of morphology as an indicator of 

rupture. The primary reason why these case-control type studies do not elucidate this 

predictive ability is because the time point of shape change in the aneurysm’s 

development is unknown. They give no indication of whether this difference in 

morphology would be present early in the aneurysm’s development and be visible at the 

time of diagnosis, whether it would appear very late in the aneurysm’s development just 

prior to rupture, or whether morphological features appear only after rupture occurs. 

There is some evidence that there is not a morphological difference pre- and post-rupture, 

although there is not a strong consensus in the field (Kataoka et al. 2000).  Because it is 
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very unlikely that an aneurysm would be imaged immediately prior to rupture this is 

likely to remain unknown outside of a few anecdotal cases.  

The ultimate goal of aneurysm researchers is ultimately not simply to determine if 

aneurysm morphology is different in patients that ruptured, but rather to determine if, at 

an earlier time point, physicians could discern whether an aneurysm is benign or likely to 

go on to rupture. Longitudinal cohort studies, like the ISUIA study, directly measure the 

prognostic ability of biomarkers such as aneurysm morphology. However, because of the 

amount of time and the large cohorts needed to see disease presence, no large studies 

have been performed to study aneurysm morphology.  

In a study much smaller than the ISUIA, Ramachandran et al. published a study 

that followed 198 aneurysms in a longitudinal cohort and examined morphology as an 

indicator of rupture risk (Ramachandran et al. 2016). It found that the morphological 

indices were not different between the group of aneurysms that grew and the group of 

aneurysms that did not grow. None ruptured. While this study is on too small of a scale to 

draw any sweeping conclusions about the predictive ability of morphology, it does give 

an indication that if there is any morphological difference between rupture resistant and 

rupture-prone aneurysms it may be subtle, or it is in morphological traits that were not 

measured. Researchers therefore must be careful to observe the morphological features 

that are present in aneurysms, and that the morphological indices that we use to observe 

these morphological features must be sensitive enough to discern a difference. This is 

especially important when studying the mainly small aneurysms that are placed under 

observational follow-up. It is also possible that physicians are already selecting 

aneurysms with these particular morphologies for treatment, which was an exclusionary 



 
 

15 

criteria for the Ramachandran et al. study. A study published by Etminan et al. suggests 

that physicians do already look at morphology as an indicator of rupture risk, and that this 

selection preference likely varies by clinical site (Etminan et al. 2014). If physicians do, 

in fact, select aneurysms with certain morphological traits for treatment, then the 

morphological features of the study populations of untreated aneurysms could differ from 

the full population of aneurysms that doctors would see at diagnosis. A measurement of 

this selection bias would be helpful in constructing future studies. 

Objectives 

The current state of research on aneurysm rupture risk assessment from medical 

images lacks a minimal set of physically meaningful, independent metrics that 

exhaustively describe the aneurysm morphology. Development of such a set of metrics 

requires that the myriad collection of morphological indices reported in the literature and 

any newly developed metrics are consolidated into a single collection, and assessed for 

robustness and common variance in a single study population database. Future studies 

that aim to evaluate hypotheses relating to the role of aneurysm morphology in clinical 

outcome (be that rupture or treatment complication) may then use these metrics. This 

precisely, is the overall goal of this project accomplished through three specific aims. 

Specific aim 1 is the development of the ability to exhaustively quantify the 

aneurysm morphology. To that end, the aim is to a) consolidate and categorize all the 

reported metrics in the literature and develop new metrics where needed, in order to 

quantify all relevant morphological features; and b) develop algorithms for computing all 

these morphological metrics. 
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Specific aim 2 is to identify an optimal collection of meaningful metrics to 

describe aneurysm morphology. To that end, the aim is to use idealized aneurysm models 

for a sensitivity analysis, user variability studies and patient-specific aneurysm models 

from two large study populations totaling N=286 subjects to a) identify the metrics that 

best capture specific morphological features; and b) to employ statistical techniques to 

ascertain the features and their respective metrics that most uniquely describe the largest 

amount of variance among the relevant patient populations of unruptured cerebral 

aneurysms. 

Specific aim 3 is to demonstrate the use of the optimal collection of metrics in 

testing clinically relevant hypotheses on the role of aneurysm morphology. Specifically, 

to test the hypotheses that the morphological characteristics of aneurysms that are chosen 

for treatment differ from those that are chosen for untreated observation – the so-called 

selection bias – in a human subjects population. 
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SPECIFIC AIM 1: 

DEVELOPMENT OF ALL MORPHOLOGICAL INDICES  

Morphological indices are metrics that quantify the measure of a morphological 

feature. A morphological index may be dimensional or non-dimensional, and it is 

intended to be utilized for comparative means among a set of geometric data. In applying 

this concept to aneurysm morphology the morphological indices are developed to 

describe morphological characteristics that potentially have implications on the fluid 

dynamics, wall tension, or shape features that indicate propensity for aneurysm growth or 

rupture.  

Methods for obtaining geometric data 

 Diagnostic imaging for cerebral aneurysms is generally obtained at the time of 

original diagnosis. Because diagnosis is mainly incidental, the modality of the images can 

be diverse. Depending on the size, location and quality of the diagnostic scan, a follow-

up scan may be performed. The modalities of these images include Computed 

Tomography Angiography (CTA), Contrast-Enhanced Magnetic Resonance Angiography 

(CE-MRA), Time-of-Flight Magnetic Resonance Angiography (ToF-MRA), and 3D 

rotational angiography (3DRA). The resolution in these images typically ranges from 0.4 

to 0.6mm in CT and MRA to 0.2mm in 3DRA (Ramachandran et al. 2016; Larrabide et 

al. 2011). In order to obtain a 3D aneurysm geometry from these images they are 

generally segmented using semi-automated methods. Once the aneurysm and its 

contiguous vasculature is segmented from the image, a surface mesh is created from the 
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segmentation boundary (Antiga et al. 2008). The aneurysm geometry is then isolated 

from the contiguous vasculature using a planar or non-planar isolation scheme. 

Geometric data preparation protocol 

The following studies utilized pre-segmented data and focused on aneurysm 

isolation techniques and morphological analyses. The algorithms described were 

programmed in Python 2.7, and they utilized the VMTK 1.2 and VTK 5.10 libraries 

(Schroeder et al. 2006; Antiga 2002). The following protocol, demonstrated in Figure 8, 

was used in order to prepare a given aneurysm geometry in a consistent manner: 

1. First, a pre-segmented model of a patient’s aneurysm and contiguous vasculature 

should be obtained. The model should be a surface model composed of triangular 

elements. It should contain enough upstream and downstream contiguous 

vasculature to successfully perform the following steps. If it does not contain 

enough contiguous vasculature, it should be excluded from the study. 

2. Second, the aneurysm should be digitally removed from the surface model to 

obtain a parent vessel reconstruction (Ford et al. 2009). This process should 

utilize the code included as part of the VMTK Apps. 

3. The aneurysm parent vessel reconstruction and the original surface model should 

both be re-meshed and optimized using triangular elements. 

4. The aneurysm should be isolated from the parent vessel using the automatic 

clipping plane technique (Piccinelli et al. 2012). If the automated clipping plane 

isolation fails due to algorithmic error the clipping plane should be manually 

placed by an expert user. 



 
 

19 

5. The aneurysm should also be isolated from the parent vessel using a non-planar 

technique. This technique should be similar to the approach outlined by 

Berkowitz 2012. However, instead of performing a direct Boolean operation of 

the mesh, a Boolean operation should instead be performed by converting the 

Voronoi diagram polyballs to image space, performing a Boolean subtraction in 

image space, and converting the resulting isolated aneurysm back to a surface 

mesh from image space. 

6. The ostium and dome of both planar and non-planar isolated aneurysm geometries 

should be delineated.  
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Figure 8. Visual demonstration of the data preparation protocol. The aneurysm 
geometry was first obtained as a segmented surface model (top left). The parent vessel 
was reconstructed, blue, from the segmented surface model, grey (top right). The surface 
meshes were optimized using triangular elements with the VMTK surface re-meshing 
algorithm (middle left). The aneurysm was next isolated using a planar isolation (middle 
right). The aneurysm was then isolated using a non-planar isolation, red, utilizing the 
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parent vessel reconstruction, blue (bottom left). The dome, blue, was then isolated from 
the ostium, red, on both models (bottom right). 

After the aneurysm geometry was obtained via the protocol, a set of 

morphological indices was automatically measured by novel software that was developed 

for the purpose of this dissertation. This set of morphological indices contained a large 

portion of the morphological indices described in the literature. After a gestalt assessment 

of the remaining shape characteristics of cerebral aneurysms that had not yet been 

described in the literature several novel morphological indices were also developed. The 

non-planar isolation method more fully captures aneurysm geometry, especially in 

partially fusiform and terminal aneurysms; therefore, whenever possible the non-planar 

isolation method was utilized for the definition of the morphological indices.  

Morphological indices from literature 

Volume 

Aneurysm volume is commonly assessed in the literature (Raghavan et al. 2005; 

Ryu et al. 2011; Ramachandran et al. 2016). In this study, three volume measurements 

were taken from each aneurysm geometry. First, denoted as V, was the volume of the 

planar isolation of the aneurysm geometry in mm3. Second, denoted as Vnp, was the 

volume of the non-planar isolation of the aneurysm geometry in mm3. Third, denoted as 

Vvdc, was the volume of the Voronoi Diagram Core (VDC) in mm3 (Piccinelli et al. 

2012). It should be noted that in this instance the VDC was taken of the non-planar 

isolation of the aneurysm geometry in order to more fully capture the aneurysm’s full 

volume in cases of fusiform or terminal aneurysms. 



 
 

22 

 

Figure 9. Planar isolation volume (red) overlaid on aneurysm geometry (gray) on 
left, non-planar isolation (red) overlaid with parent vessel reconstruction (blue) on parent 
vasculature (gray) in middle, and Voronoi diagram core volume (red) overlaid on parent 
vasculature (gray) on right. 

Height 

The height of an aneurysm has been used in the literature to describe the 

dimension of an aneurysm that is generally measured from the ostium to the top of the 

aneurysm dome. Raghavan et al., for example, defined height measurement as the 

maximum perpendicular distance from the ostium plane to the point of intersection with 

the dome (Raghavan et al. 2005). Piccinelli et al. defined height as the distance from the 

center of the ostium, along the medial axis of the aneurysm sac, plus the last maximal 

inscribed sphere radius of the centerline (Piccinelli et al. 2012). This method would 

hypothetically capture height from shape features that could be missed by the Raghavan 

et al. definition, but it is not as easily derived from an angiographic measurement in the 

clinic. Dhar et al. proposed an alternative definition as the straight-line distance from the 

ostium center to the furthest point on the surface of the aneurysm dome (Dhar et al. 

2008). For this work, Raghavan et al. definition will be referred to as Hperp, the 

Piccinelli et al. definition will be referred to as Hmed, and the Dhar et al. definition will 

be referred to as Hang. The differences between the definitions is illustrated in Figure 10. 
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The quantity Hperp was computed using the planar isolation of the aneurysm, and 

the quantities Hmed and Hang were computed using the non-planar isolation of the 

aneurysm.  

 

Figure 10. Different definitions for the measurement of cerebral aneurysm height. 

Diameter 

Diameter in the literature is often described as the dimension of the aneurysm 

perpendicular to the height. The same three definitions of height as defined above also 

define corresponding definitions of height. Raghavan et al. define diameter by extracting 

the cross-section of largest area parallel to the planar ostium, and using the hydraulic 

diameter ! " #$%&, where A is the area of the largest cross-section, and P is the 

perimeter of the largest cross-section, to estimate the aneurysm diameter (Raghavan et al. 

2005). Dhar et al. do not define diameter with relation to their Hang metric, however for 

consistency in this work Dang will be defined as the hydraulic diameter of the cross-

section of largest area that is perpendicular to the axis of measurement Hang. Similarly, 

Piccinelli et al. do not define diameter with relation to their Hmed metric, however for 

consistency in this work Dmed will be defined as the hydraulic diameter of the cross-

Hperp Hmed Hang 
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section of largest area that is perpendicular to the medial axis of measurement Hmed, as 

shown in Figure 11. 

 

Figure 11. Different definitions for the measurement of diameter (black) overlaid 
on the corresponding measurements of height (gray). 

Neck Diameter 

The neck diameter of an aneurysm is a one-dimensional measurement of the 

ostium. Raghavan et al. proposed neck diameter, here referred to as NDhydraulic, that is 

defined as the hydraulic diameter of the planar ostium. In order to accommodate for a 

non-planar ostium, a measurement method similar to that proposed by Dhar et al. was 

used in which the value NDavg was calculated as twice the average distance from the 

ostium centroid to each point on the ostium edge (Dhar et al. 2008). 

Height 
measurement 

Dperp Dmed Dang 

Diameter 
measurement 
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Figure 12. NDavg is calculated using the average distance from the ostium 
centroid (black circle) to the ostium boundary (grey line). NDhydraulic is calculated from 
the area of the ostium (blue). 

Vessel Diameter 

Piccinelli et al. proposed a method for the measurement of vessel diameter, here 

defined as VD, as shown in Figure 13, in which the average maximum-inscribed sphere 

diameter along the centerline at each clipping point was measured (Ford et al. 2009).  

 

Figure 13. Demonstration of vessel diameter, VD, with the maximum inscribed 
spheres, red, and centerline, blue, of a terminal (left) and lateral aneurysm (right) 

 

NDavg NDhydraulic 
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Size Ratio 

Size ratio was proposed by Dhar et al. as the ratio of aneurysm height to vessel 

diameter, VD (Dhar et al. 2008). Piccinelli et al. proposed an alternate definition for size 

ratio using Hmed (Piccinelli et al. 2012). In regards to this work, size ratio was defined 

using Hperp, Hmed and Hang. These correspond, respectively, to the quantities Srperp, 

SRmed and SRang. 

Aspect Ratio 

Aspect ratio was first proposed by Ujiie et al. as the ratio between the aneurysm 

height to aneurysm neck width (Ujiie et al. 2001). Raghavan et al. further refined the 

definition using perpendicular height, Hperp, and the planar neck diameter. (Raghavan et 

al. 2005). Piccinelli et al. proposed an alternative definition in which aspect ratio was 

defined using the measurement of Hmed as a height measurement (Piccinelli et al. 2012). 

Additionally, this work proposes a third definition for aspect ratio in which the 

measurement of Hang is used as the height measurement. Therefore, ARperp is defined 

as the ratio of Hperp to NDhydraulic, Armed is defined as the ratio of Hmed to NDavg, 

and ARang is defined as the ratio of Hang to NDavg. 

Bottleneck Factor 

Bottleneck factor was first proposed by Raghavan et al., and referred to here as 

BF, as the ratio between the diameter of an aneurysm sac and its planar ostium 

(Raghavan et al. 2005). Piccinelli et al. proposed an alternative definition, here referred to 

as BFarea, in which bottleneck factor was defined using the ratio of the area of the largest 

cross section perpendicular to the medial axis, to the area of the planar ostium (Piccinelli 

et al. 2012). BF and BFarea are illustrated in Figure 14. 
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Figure 14. Illustration of the derivation of bottleneck factor metrics. BFarea (left) 
uses a planar ostium, red plane, medial axis, red line, and its perpendicular max contour, 
blue line. BF (right) uses the maximum height, red dot, from the planar ostium, red plane, 
and its parallel max contour, blue line. 

Bulge Location 

Bulge location, sometimes referred to as conicity parameter, was first defined by 

Raghavan et al. as the quantity '() * +,
+-./-

, where Hb is the distance perpendicular from 

the planar ostium to the largest cross-section.  In order to avoid negative values, the bulge 

location, Blperp, is defined as simply the ratio of Hb to Hperp. Similarly, metrics Blang 

and Blmed were defined using the angled height, Hang, and the medial-axis height, 

Hmed, respectively. 

Centroid-Radii Model Normalized Entropy 

The centroid-radii model was proposed by Lauric et al. in order to describe the 

shape of an aneurysm (Lauric et al. 2011). It quantifies the entropy of the probability 

density function of the distances from the aneurysm’s centroid to each point on its 

surface. The distances are either normalized or non-normalized. This work will utilize the 

entropy of the normalized centroid-radii model, Crhnorm. 
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Non-Sphericity Index 

Non-sphericity index (NSI) was proposed by Raghavan et al. in order to describe 

the deviations of an aneurysm from a spherical shape (Raghavan et al. 2005). These 

deviations were based on the principle that aneurysms were most often similar to 

hemispherical shapes, and related the surface area-to-volume ratio of the aneurysm to that 

of a perfect hemisphere. However, a truly saccular aneurysm would be more similar to a 

perfect sphere, and would therefore have a higher NSI value under this definition than a 

hemisphere. To address this, definitions for both non-sphericity, 𝑁𝑆𝐼36 = 1 −

(36𝜋)9 : ;
< =

>?@
 where V is the volume of the aneurysm and Snp is the surface area of the 

non-planar isolation, and non-hemisphericity, 𝑁𝑆𝐼18 = 1 − (18𝜋)9 : ;
< =

>BCDE
 where Sdome 

is the surface area of the aneurysm dome, were utilized in this work.  

 An alternate definition for NSI was proposed by Berkowitz, in which the volume 

of the largest maximally-inscribed sphere, Vlmis, is compared to the volume of the non-

planar isolated aneurysm, Vnp (Berkowitz 2012). It is defined as 𝑁𝑆𝐼𝑙𝑚𝑖𝑠 = 1 − ;JKLM
;N-

 

and is illustrated in Figure 15. 
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Figure 15. Largest maximally inscribed sphere (blue) and non-planar ostium (red). 

Ellipticity Index 

Ellipticity index (EI) was proposed by Raghavan et al. and is similar to NSI in 

that it describes the deviations of an aneurysm from a spherical shape, but by utilizing a 

convex hull it removes all concavities and only measures convex deviations from a 

spherical shape (Raghavan et al. 2005). Again in this work it was defined for both non-

spherical ellipticity, O234 " 5 * 634789 : ;PQ
< =

>PQ
 where Vch is the volume of the convex 

hull of the planar isolated aneurysm, and Sch is the surface area of the convex hull of the 

planar aneurysm; and non-hemispherical ellipticity, O25A " 5 * 65A789 : ;RS
< =

>PQBCDE
 where 

Schdome is the surface area of the dome of the convex hull of the planar aneurysm. 

 An alternate definition for EI was proposed by Berkowitz, in which the volume of 

the convex hull of the non-planar aneurysm, Vch, is compared to its largest maximally-

inscribed sphere, Vchlmis, and the non-planar isolated aneurysm, Vnp (Berkowitz 2012). 
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It is defined as O2FGHI " 5 * ;RSJKLM
;RS

. This alternative definition by Berkowitz is 

illustrated in Figure 16. 

 

Figure 16. Parent vessel (light blue), non-planar convex hull (grey), non-planar 
ostium (red), and largest maximally-inscribed sphere of the non-planar convex hull (dark 
blue) 

Undulation Index 

Undulation index (UI) was proposed by Raghavan et al. to characterize 

irregularities in an aneurysm (Raghavan et al. 2005). It is defined as T2 " 5 * ;
;PQ

, where 

V is the volume of the planar-isolated aneurysm and Vch is the volume of the convex hull 

of the planar-isolated aneurysm. 
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Figure 17. Planar isolation of an aneurysm (red) with convex hull overlaid (grey). 

Tissue Stretch Ratio 

Tissue stretch ratio (TSR) was introduced by Berkowitz to quantify the extent of 

tissue deformation undergone by the aneurysm (Berkowitz 2012). It was defined as 

U1V " W >BCDE
>CXYZ[D

, where Sdome is the surface area of the dome of the non-planar isolated 

aneurysm, and Sostium is the surface area of the ostium of the non-planar isolated 

aneurysm. 

Volume to Ostium Ratio 

Volume-to-ostium ratio was first introduced by Yasuda et al., and was intended to 

assess the morphological features of an aneurysm that could lead to slow or stagnant 

hemodynamics (Yasuda et al. 2011). It is defined in this work using the planar isolated 
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aneurysm volume as 𝑉𝑂𝑅 = 	 ;
>^

, where V is the planar isolation aneurysm volume and SO 

is the surface area of the planar ostium. Piccinelli et al. introduced an alternative 

definition utilizing Vvdc, and this is defined as 𝑉𝑂𝑅 = 	 ;_`R
>^

 (Piccinelli et al. 2012). 

Aneurysm, Neck and Vessel Angulation 

Dhar et al. proposed the measurement of the angle at which blood-flow enters an 

aneurysm sac and at which blood-flow impinges upon the dome (Dhar et al. 2008), as 

shown in Figure 18. Piccinelli et al. utilized these concepts to define θsac-vessel, the angle 

between the inflow artery centerline tangent at its clipping point and the unit vector of the 

measurement of Hang; and θneck-vessel, the angle between the inflow artery centerline 

tangent at its clipping point and the aneurysm planar ostium normal vector. The 

calculation of these angles was incorporated into the dissertation’s software. However, 

they were not included in the following analyses because the true inflow vessel was not 

identified as part of the geometric data protocol. Because of this the angles were not truly 

associated with the flow of blood and render the values meaningless for this application. 

This step was inadvertently omitted and should be included in a future protocol. 



 
 

33 

 

Figure 18. Planar ostium (red), sac unit vector (green), vessel centerline (blue), 
and vessel unit vector (yellow). 

Novel Indices 

After identifying all relevant morphological indices from literature and assessing 

the morphological characteristics they described, the morphological characteristics not 

yet described were identified. Once identified, morphological indices were developed to 

describe the morphological characteristics. 

Extra-Sac Dilation Index 

Extra-Sac Dilation Index (ESDI) was introduced in this study to quantify the 

fusiform nature of an aneurysm. A fusiform aneurysm is defined as an aneurysm whose 

dilation is symmetrically centered along the centerline of its parent vessel. Most brain 

aneurysms are considered to be saccular, and few are considered to be fusiform. 

However, most have geometries that are not fully saccular, meaning they do not have a 

pronounced narrowing that delineates the boundary between the sac and the parent vessel 
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and yet are not fully fusiform, or their dilation is not symmetrically centered along the 

centerline of their parent vessels. ESDI was developed in order to describe the degree to 

which an aneurysm may exhibit properties that would be considered partially fusiform. 

This index was defined as O1!2 " W ;N-a;
;N-

, where Vnp is the volume of the non-planar 

isolation and V is the volume of the planar isolation. A planar isolation of a saccular 

aneurysm is able to fully isolate the same amount of volume as a non-planar isolation of 

the same aneurysm. However, for a fusiform aneurysm a non-planar isolation would be 

able to fully isolate the aneurysm volume from the parent vessel, while a single planar 

isolation would leave at least a portion of the residual volume of the aneurysm un-

isolated from its parent vessel.  

 

Figure 19. ESDI uses measurements for the volume of the aneurysm geometry 
(grey) isolated by the planar ostium (blue) and the non-planar ostium (red). This figure 
displays front and side views of this hypothetical idealized aneurysm geometry. For this 
moderately fusiform hypothetical idealized model the ESDI value was 0.22. 

Maximum Dimensions 
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Diameter and height of an aneurysm have frequently been used as one-

dimensional metrics of aneurysm size. As previously discussed, there are several 

different definitions in literature of both diameter and height so as to best capture the size 

characteristics of an aneurysm. However, these dimensions are constrained by the 

location of the ostium, and could therefore lead to inaccurate measurements of the true 

dimensions of an aneurysm. Therefore a set of three maximum dimension measurements 

that is unconstrained by the ostium, was developed. The first maximum dimension 

measurement, MaxD1, is defined by surveying all points on the surface mesh of an 

aneurysm for the largest distance between any two points. The second maximum 

dimension measurement is subsequently measured by first defining cross-sectional 

contours perpendicular to the line between the points used to define MaxD1. The 

contours of largest area is next determined, and this contour’s centroid is computed. The 

distance between all points on this contour with a connecting line that passes through its 

centroid is measured. The largest distance that is measured in such a manner is defined as 

MaxD2. On the same cross-sectional contour, MaxD3 is defined as the distance between 

the points on the contour at the intersection of a line passing through its centroid and 

perpendicular to the line between the points that define MaxD2. This is demonstrated in 

Figure 20. 
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Figure 20. The two points of maximum distance and the line between them 
(green) are found for the aneurysm (grey) isolated by the nonplanar ostium (red plane). A 
contour perpendicular to the line between the two points of maximum distance is 
progressed from the first to second point. The contour of largest area (blue) is found. The 
centroid of that contour is found (red dot). A line passing through that point along the 
contour is rotated until the two points of maximum distance are found (purple). Finally, a 
line perpendicular to that line is used to find the two nearest points on the contour 
(orange).  

Covariance-Fit Ellipsoid Dimensions 

In reviewing the morphological indices in literature, it was recognized that all 

one-dimensional size measurements – height, diameter, and even the novel maximum 

dimension metrics defined above – were subjective to measurement error due to 

potentially irrelevant focal irregularities, imaging artifacts or meshing artifacts. Because 

of this a more gestalt size metric was necessary. Piccinelli et al. introduced a maximally-
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inscribed ellipsoid, but this too is subject to similar insignificant irregularities –

particularly small concavities. One solution to this problem is to prescribe an ellipsoid fit 

by using a covariance-fit ellipsoid. 

The ellipsoid is first defined by extracting the covariance matrix of the X, Y and Z 

dimensions using the formula 𝐶𝑂𝑉 = 	 (cZad)(eZaf)?
Zgh

Na9
, to fill in the covariance matrix 

𝐶 = 	
𝐶𝑂𝑉(𝑋, 𝑋) 𝐶𝑂𝑉(𝑋, 𝑌) 𝐶𝑂𝑉(𝑋, 𝑍)
𝐶𝑂𝑉(𝑌, 𝑋) 𝐶𝑂𝑉(𝑌, 𝑌) 𝐶𝑂𝑉(𝑌, 𝑍)
𝐶𝑂𝑉(𝑍, 𝑋) 𝐶𝑂𝑉(𝑍, 𝑌) 𝐶𝑂𝑉(𝑍, 𝑍)

, where (X,Y,Z) is the position of a 

respective surface point i (NIST/SEMATECH 2003). The square-root eigenvalues of this 

matrix were then calculated, and scaled such that the volume of an ellipsoid with 

diameters equivalent to the square-root of the resulting eigenvalues was equivalent to the 

volume of the non-planar aneurysm volume. The values of the scaled eigenvalues were 

then used to form an ellipsoid. The resulting ellipsoid could then be centered at the 

aneurysm’s centroid, and oriented such that its axes aligned with the eigenvectors of the 

covariance matrix for a best-fit ellipsoid, as illustrated in Figure 22. 
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Figure 21. Examples of covariance ellipse (blue) fit to an aneurysm (grey) 
isolated using a non-planar ostium (red). 

Prolaticity and Oblate Elipticity 

Prolate and oblate ellipticity describe the nature of an ellipsoid’s appearance, and 

could have implications on the path of blood-flow within an aneurysm sac. Aspect ratio, 

the ratio of height to neck size, was also intended to be an indicator of prolate and oblate 

ellipticity. In hemispherical aneurysms a low aspect ratio value would indicate an oblate 

geometry, while a high aspect ratio value would indicate a prolate geometry. However, 

this is not necessarily the case for spherical aneurysms. In order to measure the extent to 

which an aneurysm was prolate or oblate two new indices were introduced. Utilizing the 

covariance matrix best-fit ellipsoid axis ratios allows for a more universal estimate of the 

extent of oblate or prolate ellipticity. By analyzing the ratio of covariance best-fit 

ellipsoid axes 1 to 2 (Cov12), a value of greater than 1 would indicate increased prolate 

ellipsoidal shape. By analyzing the ratio of covariance best-fit ellipsoid axes 2 to 3 

(Cov23), a value of greater than 1 would indicate increased oblate ellipsoidal shape. In 
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order to capture the extent to which an aneurysm is prolate and/or oblate, rather than 

spherical, a magnitude function could be applied between Cov12 and Cov23, such that 

𝐶𝑜𝑣𝑅𝑎𝑡𝑖𝑜𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 	 𝐶𝑜𝑣12x + 𝐶𝑜𝑣23x. 

A similar approach was defined using MaxD1, MaxD2, and MaxD3 in the same 

manner as the covariance best-fit ellipsoid axes to define MaxDRatio12, MaxDRatio23 

and MaxDRatioMagnitude. 

Voronoi Diagram Core Evolution-Based Non-Sphericity, Ellipticity and Undulation 

The surface area of a surface mesh is inherently a somewhat unreliable quantity. 

Meshing or imaging artifacts, as well as small differences in isolation plane placement, 

may cause large differences in surface area with very little difference in volume. To 

demonstrate this, a sphere of radius 1 cm was created in Rhinoceros 3D, as shown in 

Figure 22.  Small undulations of a radius 5% of the sphere radius were then added to 

simulate surface noise. No change in volume was observed despite a 4% change in 

surface area as a result of the undulations. While this example illustrates a minor 

difference in surface area, it would be common to see surface area values much different 

due to meshing imaging artifacts. Similarly, Figure 23 demonstrates how two slightly 

different cutting planes could produce differing measurements that could cause 

significant errors in a surface area-to-volume comparison as a means of determining non-

sphericity. Using the red cutting plane to isolate the aneurysm produces a surface area of 

90.3 mm2 and a volume of 62.9 mm3. Using the blue cutting plane to isolate the 

aneurysm produces a surface area of 94.8 mm2 (5% increase) yet a volume of 62.3 mm3 

(1% decrease). Again, this discrepancy could manifest itself to higher degrees in certain 

situations. In order to avoid problems such as this and provide a more robust 
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measurement of non-sphericity a more volume-focused approach is necessary. 

Berkowitz’s NSIlmis and EIlmis are a step in the right direction, but because, similar to 

Piccinelli et al.’s maximally inscribed ellipsoid, it could experience large discrepancies 

from small concave irregularities, another more robust metric would be ideal. 

 

Figure 22. Demonstration of surface area measurements obtained before (left) and 
after (right) the introduction of small surface undulations. No volume change was 
observed despite a 4% change in surface area. 
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Figure 23. Demonstration of how two slight differences in cutting plane angle 
(red and blue) could give a misleading representation of aneurysm size based on surface 
area alone. 

 Piccinelli et al. proposed a volume metric called the Voronoi Diagram Core 

(VDC), which utilizes the Voronoi diagram inscribed spheres of radius 75% or greater of 

the largest inscribed sphere. This essentially produces a smoothed surface that eliminates 

small shape features, as seen in Figure 9. The cutoff of 75% was “chosen empirically as a 

reasonable level of smoothness” (Piccinelli et al. 2012).  

However, one could envision the effects of perturbing this cutoff. On one end of 

the spectrum, a cutoff of inclusion for Voronoi spheres close to 0% or greater of the 

radius of the largest Voronoi sphere would produce a shape that would not smooth out 

any small shape features, and would be essentially the same shape as the input. On the 

other end of the spectrum, a cutoff of inclusion for Voronoi spheres slightly less than 
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100% (e.g. 99%) or greater of the radius of the largest Voronoi sphere would smooth out 

nearly all shape features and leave only a sphere that is the size of the largest Voronoi 

sphere. So by slowly incrementing this cutoff value, shape features of increasing sizes 

would sequentially be smoothed out, as demonstrated in Figure 24.  

 

Figure 24. The aneurysm and vasculature is shown in gray, non-planar ostium in 
blue, and the VDC in red. By increasing the cutoff value of the inclusion radius of the 
Voronoi spheres from 0% of the largest Voronoi sphere (left), 75% of the largest Voronoi 
sphere (center), and 99% of the largest Voronoi sphere (right), progressively larger shape 
features can be smoothed out from the VDC.  

By concurrently measuring the volume of the Voronoi diagram core at each 

sphere inclusion cutoff, a measure of the portion of the aneurysm’s volume encompassed 

by a particular size of shape feature can be determined. If an aneurysm’s volume is 

largely composed of small irregularities, its predominant volume would be high at low 

cutoff values and low at high cutoff values. For instance, the VDC volumes for those 

cutoff values shown in Figure 24 are 100% of the aneurysm’s Vnp for a Voronoi sphere 

cutoff of 0% of the largest Voronoi sphere, 66% of the aneurysm’s Vnp for a Voronoi 

sphere cutoff of 75% of the largest Voronoi sphere, and 38% of the aneurysm’s Vnp for a 

Voronoi sphere cutoff of 99% of the largest Voronoi sphere.  
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In the previous example the Voronoi sphere inclusion cutoff is framed as a 

percentage of the largest Voronoi sphere. However, to gain insight into how much of the 

aneurysm’s volume is part of a particular size of morphological characteristic, the 

Voronoi sphere cutoff should rather be framed as a percentage of the aneurysm volume, 

Vnp, instead of the largest Voronoi sphere. Plotting the fraction of Vnp filled by the VDC 

against the fraction of Vnp of the current Voronoi sphere cutoff results in Figure 25. This 

aneurysm, for instance, has a daughter sac that begins to be smoothed out once Voronoi 

spheres below approximately 9% of the Vnp are cut out. 
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Figure 25. Plot of the VDC evolution. The same VDC cutoff values from Figure 
24 are demonstrated along the curve. 
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This same type of plot could also be generated for the aneurysm’s covariance-fit 

ellipse, as shown in Figure 26, where Vnp is replaced with the volume of the ellipsoid. 

 

Figure 26. VDC evolution curve for aneurysm (grey in photo, blue on plot) and 
covariance-fit ellipsoid (red in photo, orange on plot). 
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An ellipsoid that was completely spherical would produce a VDC evolution curve 

with an area under the curve (AUC) of 1.0, and an ellipsoid that were very prolate or 

oblate (one or two very large axes compared to the third) would produce a VDC 

evolution curve with an area under the curve (AUC) that asymptotes towards 0 as the axis 

ratio becomes larger, as shown in Figure 27. 

 

Figure 27. VDC evolution curves of a spherical shape and a prolate shape with 
major- to minor-axis ratio of 1.66 to 1. 

Similarly, a spherical shape with added surface irregularities would also produce a 

VDC evolution curve that trends toward 0, as shown in Figure 28. 
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Figure 28. VDC evolution curve of a spherical shape and an otherwise spherical 
shape with concave irregularities. 

Therefore, an aneurysm’s VDC evolution curve will have a lower AUC the more 

irregular and the more ellipsoidal its surface is, as shown in Figure 29. By comparing the 

aneurysm to the VDC evolution curve of its best fit ellipsoid the aneurysm’s irregular 

shape properties can be isolated from its ellipsoidal shape properties. 
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Figure 29. VDC evolution curve comparison of an ellipsoidal shape (grey), and 
the same shape with hemispherical concave irregularities (red). In the 3D surface model 
above the ellipsoidal shape is transparently overlaid onto the ellipsoidal-irregular shape. 

By isolating the ellipticity from the irregularity as demonstrated in Figure 30, the 

VDC evolution curve’s AUC values can serve as an indicator for undulation, ellipticity, 

and non-sphericity as a whole. Ellipticity can be quantified by observing the AUC of the 

covariance-fit ellipsoid VDC evolution curve. Undulation can be quantified by observing 

the AUC difference between the covariance fit VDC evolution curve and the aneurysm 

VDC evolution curve, as discussed above. Non-sphericity can be quantified by observing 

the AUC of the aneurysm VDC evolution curve. These quantities are demonstrated in 

Figure 30. The formulae for the quantities EIvdc (Ellipticity Index calculated from the 
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VDC evolution curve), IRRvdc (Undulation Index calculated from the VDC evolution) 

and NSIvdc (Non-Sphericity Index calculated from the VDC evolution) are, then: 

O2nuz " 5 * $Tb.JJL-M{L` 

2VVnuz "
$Tb.JJL-M{L` * $Tb|N.}/fMK

$Tb.JJL-M{L`
 

012nuz " 5 *W$Tb|N.}/fMK 

    

Figure 30. VDC evolution curve from which ideal sphere AUC of 1.0 (red + 
orange + blue), covariance-fit ellipsoid AUC (orange + blue), and aneurysm AUC (blue) 
are calculated. 

Summary of indices calculated by automated protocol 
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All of the morphological indices described above were developed into software 

that isolates the aneurysm from its parent vessel and calculates each index. The software 

was written in Python 2.7 and utilizes VMTK and VTK Python libraries. Table 1 

summarizes the output of this script. 

Table 1. Listing and description of each index and its source. 

Index Name Source 

Vnp Non-planar isolated aneurysm 
volume 

(Berkowitz 2012) 

V Planar isolated aneurysm volume (Raghavan et al. 2005) 

Vvdc Voronoi diagram core volume (Piccinelli et al. 2012) 

Hperp Height perpendicular to planar 
ostium 

(Raghavan et al. 2005) 

Hmed Height along medial axis (Piccinelli et al. 2012) 

Hang Height to most distal point from 
ostium centroid 

(Dhar et al. 2008) 

Dperp Diameter perpendicular to Hperp (Raghavan et al. 2005) 

Dmed Diameter perpendicular to Hmed (Piccinelli et al. 2012) 

Dang Diameter perpendicular to Hang Novel 

NDhydraulic Neck diameter using hydraulic 
diameter of planar ostium 

(Raghavan et al. 2005) 

NDavg Neck diameter using average 
distance to ostium centroid 

(Dhar et al. 2008) 

VD Vessel diameter (Piccinelli et al. 2012) 

SRperp Size ratio using Hperp (Dhar et al. 2008) 

SRmed Size ratio using Hmed (Piccinelli et al. 2012) 

SRang Size ratio using Hang Novel 

ARperp Aspect ratio using Hperp (Raghavan et al. 2005) 
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ARmed Aspect ratio using Hmed (Piccinelli et al. 2012) 

ARang Aspect ratio using Hang  Novel 

BF Bottleneck factor (Raghavan et al. 2005) 

BFarea Bottleneck factor using areas (Piccinelli et al. 2012) 

BLperp Bulge location using Hperp (Raghavan et al. 2005) 

BLmed Bulge location using Hmed (Piccinelli et al. 2012) 

BLang Bulge location using Hang Novel 

Cov12 Covariance ellipsoid prolateness Novel 

Cov23 Covariance ellipsoid oblateness Novel 

CovRatioMagnitude Magnitude of prolate and oblate 
ellipticity using covariance ellipsoid 

Novel 

CRhnorm Centroid-radii model normalized 
entropy 

(Lauric et al. 2011) 

MaxD1 Maximum dimension 1 Novel 

MaxD2 Maximum dimension 2 Novel 

MaxD3 Maximum Dimension 3 Novel 

MaxDRatio12 Prolateness using MaxD1 and 
MaxD2 

Novel 

MaxDRatio23 Oblateness using MaxD2 and 
MaxD3 

Novel 

MaxDRatioMagnitude Magnitude of prolate and oblate 
ellipticity using max dimensions 

Novel 

NSI18 Hemispherical non-sphericity index (Raghavan et al. 2005) 

NSI36 Spherical non-sphericity index Novel 

NSIlmis Non-sphericity index using the 
largest maximally inscribed sphere 

(Berkowitz 2012) 

NSIvdc Non-sphericity index using Voronoi 
diagram core evolution 

Novel 

EI18 Hemispherical ellipticity index (Raghavan et al. 2005) 

EI36 Spherical ellipticity index Novel 

Table 1 – continued 
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EIlmis Ellipticity index using the largest 
maximally inscribed sphere 

(Berkowitz 2012) 

EIvdc Ellipticity index using Voronoi 
diagram core evolution 

Novel 

UI Undulation index (Raghavan et al. 2005) 

IRRvdc Undulation index using Voronoi 
diagram core evolution 

Novel 

TSR Tissue stretch ratio (Berkowitz 2012) 

VOR Volume-to-ostium ratio (Yasuda et al. 2011) 

VORvdc Volume-to-ostium ratio using Vvdc (Piccinelli et al. 2012) 

ESDI Extra-sac dilation index Novel 

 

  

Table 1 – continued 
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SPECIFIC AIM 2: 

IDENTIFICATION OF OPTIMAL SET OF MORPHOLOGICAL 

INDICES 

Background 

There have been many studies that introduce novel morphological indices and 

successfully demonstrate the indices’ ability to discern between ruptured and unruptured 

aneurysms. However, a comprehensive, large-scale longitudinal study is still needed. 

Examining every single metric in combination with all others would provide a thorough 

description of morphological traits for such a study, but it would not lend itself well to 

assessing the hypothesis that aneurysm morphology is an indicator of rupture risk. Since 

testing each metric itself constitutes a hypothesis, each additional metric requires 

increased study population size to keep up statistical power, presumably achieved from 

recruiting a larger number of patients in an already expensive and time-consuming 

endeavor. In order to effectively test this hypothesis, the fewest number of metrics that 

exhaustively describe aneurysm morphology should be used. Many morphological 

indices are redundant with others and equivalently measure the same morphological 

characteristic, some describe morphological characteristics that are similar enough to 

others that measuring both morphological indices is not necessary, some are not sensitive 

to the kinds of morphological differences that are present in the cerebral aneurysm 

population, and some are so sensitive to inter-user variability they do not produce 

meaningful results. By assessing which metrics uniquely and robustly describe the largest 

amount of morphological variance among several populations of unruptured, untreated 
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cerebral aneurysms the groundwork can be laid for a future large-scale, longitudinal 

study. 

Study data 

Three data sets were used for the following studies. The first data set used for this 

study was described in Ramachandran et al. 2016. It consisted of 178 patients with 198 

unruptured aneurysms that were recommended for observational follow-up rather than 

treatment, and corresponding image sets were collected in a consecutive, longitudinal 

manner from 4 data centers. Institutional review board approvals were obtained at all 

participating clinical centers and the data analysis center. The image modalities consisted 

of 132 CTA, 7 CE-MRA and 30 TOF-MRA datasets. The data was pre-segmented as part 

of the Ramachandran et al. study. The second data set consisted of an additional 27 

unruptured aneurysms that were chosen for treatment and were collected under the same 

IRB protocol as the Ramachandran et al. 2016 study. These images were not pre-

segmented, and were segmented for this study under the same protocol as the 

Ramachandran et al. study, which used the level-set segmentation technique within 

VMTK. Further detail on this data set is elaborated upon in Specific Aim 3. In order to 

expand the breadth of the study population a third data set consisting of an additional 59 

unruptured aneurysms were utilized from the Aneurisk study. The Aneurisk study 

collected aneurysm diagnostic medical images between 2005 and 2008 in order to 

perform analyses on geometry and hemodynamic conditions that might correlate with 

aneurysm rupture (Emory University Department of Math and Computer Science 2012). 

The Aneurisk data sets include aneurysms that were chosen both for treatment and for 

follow-up. The Aneurisk data sets were collected from 3DRA images and were pre-
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segmented and meshed using VMTK by the Aneurisk research group. The data are 

summarized in Table 2. 

Table 2. Summary of the data utilized for Specific Aim 2. 

Research 
Group 

Data center(s) N Treatment 
status 

Imaging 
modalities 

Used in 

BioMOST University of Iowa; 
Thomas Jefferson 
University; Mass. 
General Hospital; 
Penn. St. University-
Hershey 

198 Untreated CTA, CE-
MRA, TOF-
MRA 

Aim 2, 
Aim 3 

Aneurisk Niguardia Hospital 
Milan 

59 Untreated 
and treated 

3DRA Aim 2 

BioMOST University of Iowa; 
Thomas Jefferson 
University; Mass. 
General Hospital; 
Penn. St. University-
Hershey 

27 Treated CTA, CE-
MRA 

Aim2, 
Aim 3 

 

The Specific Aim 1 protocol was performed for all cases. There were 5 cases of 

the 198 original BioMOST data sets (2.5%), 1 case of the 29 newly collected BioMOST 

cases (3.4%) and 2 cases of the 59 Aneurisk data sets (3.4%) that experienced errors 

during the protocol that prevented a successful completion of the protocol. One case 

failed during calculation of Hang metric in the protocol algorithm, and seven cases failed 

during the non-planar isolation section of the protocol algorithm. These cases were 

discarded, and the remaining 276 cases successfully completed the protocol. Of those 276 

cases, 30 failed to automatically define a suitable clipping plane and had to use a 

manually-positioned planar isolation, but otherwise successfully completed the protocol. 
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The average time to run one data set through the protocol (not including parent 

vessel reconstruction) was 9 minutes 43 seconds, and the large majority of this time was 

spent in the computation of the VDC evolution. Run time generally increased with 

volume, as shown in Figure 31. Because the focus of this work was not on computational 

efficiency there is likely a good amount of room for improvement in computational time. 

 

Figure 31. Computational time to isolate aneurysm and calculate morphological 
indices generally increased with volume. 

Procedure to determine an optimal set of morphological indices 

The Specific Aim 1 study protocol was performed on all data and compiled into a 

database. Using this data, the first step in determining which metrics were most robust 

was an analysis of its sensitivity to differences in the prescribed morphological 

characteristic that it was defined to measure. This was followed by an analysis of each 

indices’ robustness to inter-user variability. Next the definitions of the metrics were 

examined for clear problems in the definition or application of each metric, with 

0

500

1000

1500

2000

2500

00:00.0 10:00.0 20:00.0 30:00.0 40:00.0 50:00.0 00:00.0 10:00.0

V
np

 (m
m

3)

Time (MM:SS)

Computational time vs volume across all cases



 
 

57 

sensitivity and user-variability taken into account.  This was followed by a factor analysis 

of the metrics that were determined to be sufficiently robust in order to determine which 

metrics were highly inter-correlated, and which morphological characteristics described 

the most variance in the given populations. All statistics were performed using the R 

statistical package. The results of this process were then used to adjudicate as to which 

variables most uniquely and robustly described the largest amount of morphological 

variance and should therefore be used in future longitudinal cohort studies.  

Study on robustness of morphological indices to inter-user variability 

Motivation 

Any computerized algorithm that utilizes user feedback as part of its processes is 

subject to inter-user variability. Depending on the robustness of the algorithm it could be 

highly sensitive to small changes in user input for an otherwise similar dataset. A study of 

user variability was performed in order to determine the robustness of the study protocol 

and morphological indices. 

Study data 

A subset of 8 aneurysms from this dataset was selected, by random selection, such 

that one aneurysm was within a size category of every 2mm from 0mm up to the largest 

collected aneurysm size of greater than 14mm, as measured using the definition of Dperp 

by the Ramachandran et al. group. 
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Procedure 

Two users performed the entirety of the Aim 1 morphological index extraction 

protocol on the data subset of 8 aneurysms using both the automatic and manual clipping 

plane isolation techniques. The automatic clipping plane was inspected for errors, and as 

specified by the protocol, the manual clipping plane isolation technique was only utilized 

if an error was present. The results from the analysis of User 1, the expert user, and User 

2, the novice user, were plotted against one another for each index. The slope of a 

regression line and the Pearson correlation coefficient were also calculated for each 

index. All statistics were performed using the R statistical package. 

Results 

All of the morphological indices were calculated and the results compared 

between the two users. Three of the eight cases experienced errors within the calculation 

of the automatic clipping plane isolation, and as such the results were taken from the 

manual clipping plane isolation. User 1-User 2 scatter plots can be seen in Appendix B, 

and renderings of the planar and non-planar ostia can be seen in Appendix C. 

The inter-user variability was assessed using a combination of the plots from 

Appendix B, the regression line slope, and the Pearson coefficient. This variability is 

outlined in Table 3. 
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Table 3. Inter-user variability statistics, regression line slope and Pearson 
coefficient, for each morphological index. 

Index Regression line slope Pearson coefficient 

Vnp 1.1 1.0 

V 1.0 1.0 

Vvdc 1.1 1.0 

Hperp 1.0 1.0 

Hmed 1.1 0.9 

Hang 1.0 1.0 

Dperp 1.0 1.0 

Dmed 0.9 1.0 

Dang 1.1 0.9 

SRperp 0.9 1.0 

SRmed 0.9 0.9 

SRang 0.9 1.0 

ARperp 0.8 1.0 

Armed 0.9 0.9 

ARang 1.0 1.0 

BF 0.6 0.8 

BFarea 0.7 1.0 

BLperp 1.0 1.0 

BLmed 0.4 0.4 

BLang 0.5 0.8 
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Cov12 0.8 1.0 

Cov23 1.1 0.9 

CovRatioMagnitude 0.9 1.0 

CRhnorm 0.9 1.0 

MaxD1 1.0 1.0 

MaxD2 1.0 1.0 

MaxD3 1.1 0.9 

MaxDRatio12 0.8 1.0 

MaxDRatio23 0.4 0.5 

MaxDRatioMagnitude 0.4 0.4 

NSI18 1.0 1.0 

NSI36 1.0 1.0 

NSIlmis 0.9 1.0 

NSIvdc 1.0 1.0 

EI18 1.0 1.0 

EI36 1.0 1.0 

EIlmis 0.9 1.0 

EIvdc 1.1 1.0 

UI 0.9 1.0 

IRRvdc 1.1 1.0 

TSR 1.0 1.0 

VOR 0.8 1.0 

VORvdc 0.7 1.0 

Table 3 – continued 
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ESDI 0.9 0.9 

 

Discussion 

As evidenced by the results in Table 3, while most user variability metrics trended 

towards 1.0 for both regression line slope and Pearson correlation coefficient there were 

some indices that were less robust to inter-user variability. For instance, BLang, BLmed, 

MaxDRatio23 and MaxDRatioMagnitude showed both poor Pearson inter-correlation 

coefficients and a poor regression line slope. The MaxDRatioMagnitude metric likely 

only displayed poor inter-user variability robustness because of its direct calculation from 

MaxDRatio23. MaxDRatio23 itself is likely sensitive to inter-user variability because of 

its dependence upon the perpendicular orientation of MaxD2 and MaxD3 to the MaxD1 

orientation axis. Depending on a small variation in orientation of MaxD1, MaxD2 and 

MaxD3 may experience highly different measurements depending on the geometry of the 

aneurysm, as demonstrated in Figure 32.  

 

Figure 32. Demonstration of sensitivity of MaxD2 (and MaxD3) to different 
orientations of the MaxD1 measurement axis caused by a slight change in the ostium. 
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Bulge location in general is very sensitive to user variation because of its nature 

of locating the largest cross-section. A small variation in orientation of the angled height 

point and medial axis orientation could significantly affect the measurement of the bulge 

location because of the possibility that multiple locations have similar diameters. 

Study on sensitivity of morphological indices 

Motivation 

The morphological indices introduced in Aim 1 were each designed to measure a 

particular morphological characteristic. However, in order to verify that each metric does 

in fact measure the morphological characteristic that is designed to measure a sensitivity 

analysis was performed. In this experiment hypothetical, idealized aneurysm models were 

developed in which one particular shape characteristic was perturbed. These models were 

then used to verify that a given metric sufficiently measured the morphological 

characteristic that it was designed to measure. These models were designed such that they 

approximately mimicked realistic ranges of the shape characteristics observed in patient-

specific aneurysm geometries. 

Procedure 

Hypothetical idealized models were used for the sensitivity analysis. They were 

designed in order to test the sensitivity of morphological indices by perturbing the 

specific morphological characteristics as listed in Table 4. Each one of the three 

hypothetical idealized models for each morphological characteristic represents either a 

high, medium or low presence of the particular morphological characteristic. In max 

measured dimensions and non-sphericity models there were more than three possible 
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configurations of the morphological characteristic, and those models were represented 

appropriately. All models were created using either PTC Creo 3 or Rhinoceros 5 CAD 

packages, and re-meshed to a surface element target area of 0.1 mm2. Examples of the 

idealized aneurysm models used in these analyses are shown in Figure 33. 

 

 

Figure 33. Examples of prescribed morphological changes in hypothetical 
idealized models. From left to right, the top row contains the models for low, medium 
and high prescribed height, and the bottom row contains the low, medium and high 
prescribed concave surface undulation. 
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Table 4. Description of the idealized aneurysm models used for the sensitivity 
analysis. 

Morphological 
characteristic 

Aneurysm models Vessel models Indices measured 

Height 10x4x4mm, 
8x4x4mm and 
6x4x4mm ellipsoids 
placed 0.5mm below 
vessel surface 

3mm diameter, 
lateral orientation 

Hang, Hmed, Hperp 

Diameter 10mm, 6mm and 
4mm spheres placed 
0.5mm below vessel 
surface 

3mm diameter, 
lateral orientation 

Dang, Dmed, Dperp 

Max measured 
dimensions 

10x10x10mm, 
10x10x6mm, 
10x6x6mm, 
10x6x2mm and 
10x2x2mm, 
6x6x6mm and 
2x2x2mm ellipsoids 
placed 0.5mm below 
vessel surface 

3mm diameter, 
lateral orientation 

MaxD1, MaxD2, 
MaxD3 

Volume 10mm, 6mm and 
2mm spheres placed 
0.5mm below vessel 
surface 

3mm diameter, 
lateral orientation 

V, Vvdc, Vnp 

Size ratio 10mm and 6mm 
spheres placed 
0.5mm below vessel 
surface 

3mm and 4mm 
diameter, lateral 
orientation 

SRang, SRmed, 
SRperp 

Bulge location Rotational surface 
created by splines 
created with points 
(0,1,0), (3,2,0) and 
(0,7,0); and 
(0,1,0),(3,4,0) and 
(0,7,0) placed 0.5mm 
below vessel surface 

3mm diameter, 
lateral orientation 

BLang, BLmed, 
BLperp 
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Bottleneck 10mm, 6mm and 
2mm spheres placed 
0.5mm below vessel 
surface 

3mm diameter, 
lateral orientation 

BF, BFarea 

Neck-sac size 
relation 

10mm, 6mm and 
2mm spheres placed 
0.5mm below vessel 
surface 

3mm diameter, 
lateral orientation 

TSR, VOR, VORvdc, 
ARang, ARmed, 
ARperp 

Prolateness 10x10x10mm, 
10x6x6mm, 
10x2x2mm ellipsoids 
placed 0.5mm below 
vessel surface 

3mm diameter, 
lateral orientation 

MaxDRatio12, Cov12 

Oblateness 10x10x10mm, 
10x10x6mm, 
10x10x2mm 

3mm diameter, 
lateral orientation 

MaxDRatio23, Cov23 

Ellipticity 10x6x6mm, 
8x6x6mm and 
6x6x6mm 

3mm diameter, 
lateral orientation 

EI18, EI36, EIlmis, 
EIvdc, 
CovRatioMagnitude, 
MaxDRatioMagnitude 

Irregularity 6mm spherical with 
divots which decrease 
the volume of the 
aneurysm by 10%, 
25% and 50% 

3mm diameter, 
lateral orientation 

UI, IRRvdc 

Non-sphericity Utilize the same models from both 
ellipticity and irregularity 

NSI18, NSI36, 
NSIlmis, NSIvdc, 
CRhnorm 

Fusiformity 6mm spherical placed 
0.5mm, 1.5mm and 
2.5mm below the 
vessel surface 

3mm diameter, 
lateral orientation 

ESDI 

 

Following the creation of the hypothetical idealized models, each model was 

processed using the Aim 1 protocol in order to calculate all morphological indices. 

Results 

Table 4 – continued 
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The plots show in Figure 34 are representative of the morphological metric values 

measured from each hypothetical idealized model with, in most cases, a high, medium or 

low presence of a morphological characteristic. 
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Figure 34. Plots of the morphological index measurements from hypothetical 
idealized aneurysm models that modulate the morphological characteristic the index is 
designed to measure. Plots for Size Ratio, Neck-Sac Size Relation, Irregularity, Non-
sphericity, Ellipticity, Prolateness, Oblateness and Fusiformity are normalized to the 
initial value of each index. 

 

Discussion 

In analyzing the individual sensitivity of the morphological indices, it should be 

noted that some morphological indices are dimensional measurements and some are non-

dimensional. Of the dimensional measurements, the measurements of height, diameter, 

maximum dimension and volume all accurately represented the prescribed values of the 

models. Because of the similar measurements of height between the height metrics, all of 
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different results than the other two metrics, but the sensitivity appeared to be similar 

within the shape characteristics of the prescribed models. For bottleneck, however, 

BFarea appeared to be much more sensitive to varying shape characteristics than BF. 

This is likely due to its use of two-dimensional rather than one-dimensional 

measurements. In examining the relationship between neck and sac size, VOR and 

VORvdc exhibited higher sensitivity than TSR or the aspect ratio metrics. However, TSR 

and the aspect ratio metrics also did appear to be sufficiently sensitive to the prescribed 

morphological changes. For prolateness and oblateness, the covariance-fit ellipse metrics 

and the MaxDRatio metrics appeared to be sufficiently sensitive to the prescribed 

morphological changes, with MaxDRatio metrics slightly more so. Sensitivity to 

Ellipticity was sufficient in MaxDRatioMagnitude, CovRatioMagnitude and Eivdc. 

However, it appeared as though EI18 and EI36 hardly changed at all with increasing 

prescribed ellipticity, and EIlmis was only sensitive to the lower range of prescribed 

ellipticity, which is likely the range in which most aneurysms will occur. Irregularity was 

sufficiently represented by both metrics, however IRRvdc appeared to be more sensitive 

in the lower ranges of prescribed irregularity, while UI was more sensitive in the higher 

ranges of prescribed irregularity. When examining the measurement of prescribed non-

sphericity two components needed to be examined – the sensitivity of the non-sphericity 

to increasing irregularity and to increasing ellipticity. Non-sphericity metrics were 

intended to capture both morphological characteristics equally, so it is important that a 

metric be sensitive to both. When increasing prescribed irregularity, it appeared that 

NSIvdc and NSIlmis were very sensitive in the lower ranges, CRhnorm was more 

sensitive in the upper ranges, while NSI18 and NSI36 presented more of a linear trend. 
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However, similarly to EI18 and EI36, NSI18 and NSI36, along with CRhnorm, almost 

entirely failed to reflect prescribed changes in ellipticity. NSIlmis was more sensitive, 

while NSIvdc was the most sensitive. Finally, ESDI appeared to be sufficiently sensitive 

to fusiformity. These sensitivity results are summarized in Table 5. 

Table 5. Summary of the sensitivity analysis. 

Morphological 
characteristic 

Index Sensitivity 

Height Hang Good 
Hmed Good 
Hperp Good 

Diameter Dang Good 
Dmed Good 
Dperp Good 

Max measured 
dimensions 

MaxD1 Good 
MaxD2 Good 
MaxD3 Good 

Volume V Good 
Vvdc Good 
Vnp Good 

Size ratio SRang Good 
SRmed Good 
SRperp Good 

Bulge location BLang Good 
BLmed Good 
BLperp Good 

Bottleneck BF Good 
BFarea Good 

Neck-sac size 
relation 

TSR Good 
VOR Good 
VORvdc Good 
ARang Good 
ARmed Good 
ARperp Good 

Prolateness MaxDRatio12 Good 
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Cov12 Good 
Oblateness MaxDRatio23 Good 

Cov23 Good 
Ellipticity EI18 Poor 

EI36 Poor 
EIlmis Good 
EIvdc Good 
CovRatioMagnitude Good 
MaxDRatioMagnitude Good 

Irregularity UI Good 
IRRvdc Good 

Non-sphericity NSI18 Poor 
NSI36 Poor 
NSIlmis Good 
NSIvdc Good 
CRhnorm Poor 

Fusiformity ESDI Good 
 

Discussion of robustness in definition and application 

In examining the morphological indices that were calculated as part of the 

protocol it is clear that, as discussed in Specific Aim 1, metrics that relate surface area to 

volume are often unreliable. For this reason, several metrics were chosen to be eliminated 

as recommendations for future use. Those metrics were NSI18, NSI36, EI18, EI36, VOR 

and VORvdc.  

The bulge location metrics, BLang, BLperp and BLmed, were not recommended 

for use. These metrics are generally non-robust because of their tendency to change 

drastically with small differences in orientation or position of the height measurement 

axis. Because these metrics search the cross-sections along the height measurement axis 

for a single maximum of the cross-sectional area, there are many instances in which one 

Table 5 – continued 
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maximum may be very similar in value to another area in cross-sectional area. With a 

slight change in orientation the cross-sectional area could change very slightly but cause 

a drastic change in the location of the maximum value along the height measurement 

axis. 

The indices for prolateness and oblateness each accomplish this measurement by 

measuring the ratios of the first and second, and second and third axes of either a best-fit 

ellipse or a covariance fit ellipsoid. Practically these do not provide much information on 

their own, but rather would be meaningful in conjunction. This is accomplished by the 

inclusion of MaxDRatioMagnitude, so MaxDRatio12 and MaxDRatio23 were eliminated 

from the analysis. This is also the case for Cov12 and Cov23. 

While reviewing the results for the calculation of ESDI, many of the datasets 

presented a negative value. Ideally there should not ever be a negative value for ESDI, 

which would mean that the planar isolation contained more volume than the non-planar 

isolation. In fact, this was seen frequently throughout the data. It appeared that the planar 

ostium was frequently more deeply inset into the vessel than the non-planar ostium. This 

index was built under the assumption that this would not occur. Because of this faulty 

logic, ESDI was eliminated from the analysis. 

Factor analysis 

Motivation 

A factor analysis was performed in order to understand which morphological 

variables measured similar morphological characteristics, and how much variance each 

variable described. Factor analysis is a statistical method for uncovering underlying 
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structures of associations between variables. Each variable is assumed to be a linear 

function of the factors, in which each variable is loaded to a different extent onto each 

factor (Gie Yong & Pearce 2013). In fields like psychology it may be used for 

understanding how answers to certain survey questions might give insight into general 

personality traits. This study aimed to use factor analysis to uncover how morphological 

indices vary together to describe physical characteristics of aneurysms. 

Procedure 

Prior to performing the factor analysis, the data was ensured to be appropriate for 

a factor analysis. According to Zygmont and Smith, the sample size should be greater 

than 5 times as large as the number of variables (Zygmont & Smith 2014). A sample size 

of 276 data sets and 30 variables per data set yields an acceptable sample-to-variable ratio 

of 9.2. Another consideration is the normality of the variable distributions. In order for a 

reliable factor analysis, each variable must be normally distributed. The normality of the 

distribution affects how the variables group together into factors, and depending on the 

amount of skew could produce incorrect results from a factor analysis. The distributions 

of each variable can be viewed in Appendix A. A Shapiro-Wilk (S-W) test of normality 

was performed for each variable, and depending on the amount and direction of skew a 

transformation was applied (McDonald 2014), as indicated in Table 6, in order to bring 

the distribution into a normal or nearly-normal distribution. 
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Table 6. Normality and transformations of variables. 

Variable Initial S-W 
p-value 

Direction 
of skew (if 
present) 

Transformation 
applied 

Final S-W p-
value 

ARang 3.65E-14 + Log 0.0003 
ARmed 4.99E-18 + Log 1.59E-05 
ARperp 9.15E-14 + Log 0.0379 
BF 1.01E-21 + Sqrt, Log 3.40E-18 
BFarea 8.52E-26 + Log, Sqrt 1.66E-07 
CovRatioMag 2.22E-09	 + Log, 8rt 0.0005	
Dang 1.76E-10 + Log 0.0516 
Dmed 8.60E-11 + Log 0.2702 
Dperp 6.70E-12 + Log 0.0100 
EIlmis 6.65E-07 + Sqrt 0.0048 
EIvdc 0.1197 None None 0.1197 
Hang 1.37E-10 + Log 0.0180 
Hmed 4.33E-13 + Log 0.0231 
Hperp 3.06E-11 + Log 0.0648 
MaxD1 1.18E-10 + Log 0.0258 
MaxD2 7.41E-12 + Log 0.2871 
MaxD3 4.45E-10 + Log 0.0047 
MaxDRatioMag 7.78E-11	 + Log, 8rt 0.0005	
NSIlmis 2.72E-05 + Sqrt 0.1053 
NSIvdc 0.0066 None None 0.0066 
SRang 6.46E-09 + Log 0.0004 
SRmed 8.64E-11 + Log 0.0128 
SRperp 2.93E-10 + Log 0.0021 
TSR 7.44E-25 + Sqrt, Log 0.1971 
UI 5.13E-19 + Sqrt, Sqrt 0.0227 
IRRvdc 0.0058 None None 0.0058 
V 1.84E-24	 + Log 0.0047	
Vvdc 7.87E-25	 + Log 0.0161	
Vnp 5.39E-25	 + Log 0.0433	
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All of the variables except for NSIvdc, EIvdc and IRRvdc were highly non-

normal and required transformation using a log, square-root or combination thereof. Most 

were successfully transformed to a nearly normal distribution, as shown in Table 6. 

However, ARmed, BF, and BFarea could not successfully be transformed to a normal 

distribution and were excluded from the factor analysis to prevent incorrect factor 

loadings. 
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Next, a preliminary factor analysis was performed with a parallel analysis of 

random normally distributed data generated by the statistical package. 

 

Figure 35. Scree plots with parallel analysis of simulated data. Four factors were 
extracted as a result. 

There are many methods for determining how many factors to extract using a 

scree plot. In the Kaiser method all eigenvalues greater than one are extracted, because an 

eigenvalue of 1 is equivalent to the amount of variance explained by a single variable on 
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its own; however, this method has been shown to often over- or underestimate the 

appropriate number of factors (Zygmont & Smith 2014; Gie Yong & Pearce 2013). 

Alternatively, the scree test involves denoting which factors are above a sharp elbow in 

the scree plot (Gie Yong & Pearce 2013). A third test involves a parallel analysis of a 

number of matrices of simulated data, in this case 100 (Kabacoff 2011). This scree plot 

shown in Figure 35 indicated that four factors were both above the elbow of the scree plot 

and above the simulated data, so four factors were chosen for the factor analysis. Because 

it was not known whether the underlying factors varied orthogonally, with no inter-

correlation, a promax non-orthogonal rotation scheme was used to rotate the factors to 

align with the variance of the variables. 

Results 

The factor analysis produced a pattern matrix, Table 7, that indicates the factor 

score of the variables. This factor score indicates the correlation of the variables with 

each factor (Factor 1, Factor 2, Factor 3 and Factor 4). The communalities indicate the 

amount of variance within each variable that could be explained using the four factors. 

The proportion of variance explained by each factor is presented in Table 8. The 

correlation of each factor with each other factor is presented in the factor correlation 

matrix, Table 6. A visual representation of the alignment of each variable with each 

factor is presented in Figure 37. The factor diagram, Figure 36, presents a visual 

summary of several of the factor analysis tables. This factor diagram indicates the top 

correlation between each variable and factor with an arrow between the two and that 

correlation’s factor loading displayed on the arrow. The inter-correlation between factors 
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is indicated by the arrows between factors, and the correlation values associated with 

each arrow. Values less than |0.3| were considered low and not displayed on the chart. 

 

Figure 36. Factor diagram. The arrows indicating association between a variable 
and its underlying factor associate the variable with its factor of highest loading. 
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Figure 37. Biplots showing the alignment of the variables with each factor. 
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Table 7. Pattern matrix for the factor analysis. 

Variable Factor 1 Factor 2 Factor 3 Factor 4 Communalities 
Dperp         1.08  0.17 -0.05 -0.10 0.96 
V             1.03 -0.01  0.00 -0.06 0.99 
MaxD2         1.02  0.11 -0.07 -0.01 0.97 
Dmed          1.02  0.10 -0.12 -0.07 0.94 
MaxD1         1.01  0.09  0.10  0.03 0.98 
Vnp           1.00  0.05 -0.05  0.01 0.99 
VDCvolume     0.98  0.00 -0.05  0.01 0.99 
Dang          0.94  0.00 -0.17  0.01 0.98 
Hperp         0.92 -0.24  0.08 -0.08 0.94 
Hang          0.92 -0.10  0.09  0.06 0.99 
Hmed          0.91  0.08  0.01  0.13 0.94 
MaxD3         0.91 -0.01 -0.23  0.04 0.98 
IRRvdc         0.30  0.97 -0.16  0.07 0.81 
NSIvdc        0.18  0.94  0.40  0.03 0.95 
EIlmis        0.09  0.93  0.32  0.03 0.92 
NSIlmis       0.15  0.92  0.43  0.03 0.95 
ARperp        0.32 -0.73  0.24 -0.06 0.76 
TSR           0.36 -0.68  0.16  0.05 0.83 
ARang         0.32 -0.65  0.28  0.14 0.87 
CovRatioMag -0.12  0.09  0.90 -0.02 0.87 
MaxDRatioMag -0.13  0.23  0.86  0.00 0.89 
EIvdc        -0.14  0.17  0.85 -0.07 0.86 
UI            0.06 -0.22  0.49  0.01 0.29 
SRmed         0.38  0.16 -0.09  0.75 0.98 
SRang         0.40 -0.01 -0.01  0.68 0.98 
SRperp        0.42 -0.14 -0.02  0.56 0.94 

  

Table 8. Proportion of variance explained by each factor. 

 Factor 1 Factor 2 Factor 3 Factor 3 Total 
Proportion 
of variance 
explained 

50% 20% 13% 7% 91% 
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Table 9. Factor correlation matrix. 

 Factor 1 Factor 2 Factor 3 Factor 4 

Factor 1  1.00 -0.36 -0.14  0.65 

Factor 2 -0.36  1.00  0.04 -0.43 

Factor 3 -0.14  0.04  1.00  0.00 

Factor 4  0.65 -0.43  0.00  1.00 

 

Discussion 

In examining the factor loadings in the factor diagram, Figure 36, there was a 

clear pattern behind the groupings of the variables. The first factor, Factor 1, explained 

the highest portion of the variance. It contained all of the morphological indices that 

measured size alone, and only morphological indices that measure size alone. In 

examining the variables’ factor loadings, it appeared that all of these metrics mainly had 

a strong association exclusively with the first factor. Hperp had a slight factor loading on 

Factor 2. Therefore, this factor can be interpreted as describing sac size. 

The second factor, Factor 2, was associated most highly with variables that, at 

first, appeared to measure a myriad of morphological traits. IRRvdc, NSIvdc, EIlmis and 

NSIlmis all aligned closely and positively, and measured some form of non-sphericity. 

ARperp, TSR and ARang all measured the size relationship between the neck and the sac, 

and aligned less closely and negatively. However, in reviewing the definition for the 

metrics that described non-sphericity this relationship was clear. All of these metrics – 

IRRvdc, NSIvdc, EIlmis, NSIlmis – measured the irregularity of the sac, including the 
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ostium region. Therefore, as the ostium region increased in size with respect to the 

aneurysm dome, the aneurysm shape naturally became more irregular, as demonstrated in 

Figure 38. 

  

Figure 38. Aneurysm with ARang of 4.72 and IRRvdc of 0.36, left; and ARang of 
0.6 and IRRvdc of 0.64, right. The increased IRRvdc in the aneurysm with a lower aspect 
ratio was likely caused by the indentation and sharp-edged regions of the aneurysm 
geometry near the ostium.   

EIlmis, which has strong attachment to Factor 2 and moderate attachment to 

Factor 3, should not logically align with a factor that describes irregularity. However, it is 

possible that while EIlmis does effectively measure ellipticity, as was examined in the 



 
 

91 

Specific Aim 1 sensitivity study, it is also possible that it closely mirrors NSIlmis as well, 

which would be worth examining in a study on its specificity.  

 

Figure 39. Specificity study of EIlmis using a spherical hypothetical idealized 
aneurysm with increasing irregularity (or undulation). Ellipticity should not theoretically 
increase, while non-sphericity should increase. 

 Figure 39 represents a quick examination of the specificity of EIlmis to 

ellipticity. The same 6mm spherical model used in the sensitivity study of non-sphericity 

was used, with increasing concave irregularities of 25% and 50% of the aneurysm’s 

volume. Because the shape was symmetrical and only increased its surface undulation, 

the non-sphericity metrics should have increased, while the ellipticity metrics should not 

have increased. In this case the ellipticity metrics only increased slightly, presumably due 

to an unavoidable slight increase in ellipticity due to the asymmetry near the ostium 

region. It appears that EIlmis did not align more closely to NSIlmis than other ellipticity 

metrics. The explanation above may not explain the alignment of EIlmis to Factor 2, and 

the alignment may have been due to another reason. However, as irregularity increased a 

slight increase in both metrics of ellipticity was present. UI, the only other variable 
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besides EIlmis that utilized the convex hull, had a very low communality of 29%, which 

indicates that the portion of the variable’s variance that the rotated factors are able to 

successfully describe was low. It is possible that the convex hull was simply an 

ineffective measurement tool in specific situations, which lead to both of these 

phenomena. EIlmis and UI should therefore be removed from the list of recommended 

metrics. 

The rest of the metrics that aligned most strongly with Factor 2 – ARperp, TSR 

and ARang – had a negative association. They also aligned moderately with both the size 

(Factor 1) and ellipticity (Factor 3) factors. They were all designed to simply describe the 

size relationship between the neck and the height, although as mentioned earlier 

Raghavan et al. also recognized that they would also indicate prolate/oblate nature for 

hemispherical aneurysms (Raghavan et al. 2005). While it is somewhat unclear why these 

variables were most associated with a factor that otherwise describes non-sphericity, it is 

likely that increased ostium size in relation to height (or lower ostium ratio) also leads to 

higher irregularity values. If this is the case it is most likely due to the interface of the 

ostium and the dome, which the non-sphericity values would view as an irregularity, 

encompassing a larger portion of the aneurysm geometry. Understanding that IRRvdc, 

NSIvdc and NSIlmis all directly measure irregularity in this manner, and that the ostium-

sac size relation inversely affects the likelihood that the aneurysm shape is irregular, it is 

clear that Factor 2 describes sac irregularity. Although the ostium-sac size relation 

metrics most heavily align with Factor 2, it would be most prudent to include both a 

metric for irregularity and a metric for ostium-sac size relation in the final set of metrics 

in order to most fully describe the variance. 
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The third factor, Factor 3, was most highly associated with variables that 

described ellipticity. However, the variable UI, which measures irregularity, also attached 

to this factor. The most plausible explanation is that the communality from Table 7 was 

only 29%. This is in contrast with most other variables that had communalities in the high 

ninety percent-range, and could lead to incorrect factor attachment. It could also be due, 

as discussed above, to the convex hull as a poor measurement tool. 

The fourth factor, Factor 4, was most highly associated with only variables that 

described the relation between the aneurysm size and the vessel size. 

In examining the relationships between the factors themselves in the factor 

correlation matrix in Table 9, there is a decent amount of correlation between Factor 1 

and Factor 1. This is likely the case because as discussed above, many of the variables 

associated with Factor 1 are directly used in the calculation of those in Factor 4. 

As a result of the factor analysis it appears that are four clear factors underlying 

the morphological indices: size (Factor 1), non-sphericity (Factor 2), ellipticity (Factor 3) 

and vessel-sac size relation (Factor 4). 

As an experiment of whether including further factors in the factor analysis would 

alter the interpretation, the number of factors included was increased from 4 factors to 5 

factors. The same procedure was run as earlier, and the resulting factor diagram is shown 

in Figure 40. 



 
 

94 

 

Figure 40. Factor diagram using 5 factors. 

In this analysis the variables that describe the sac-ostium size relation move to a 

new factor, suggesting that they do, in fact, likely describe another aspect for morphology 

that should be analyzed independently. However, all other variables remain grouped as in 

the previous analysis, further reinforcing the conclusions of the factor analysis. 
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Conclusions toward an optimal set of morphological indices 

Table 10. Overall assessment results. 

Morphological 
characteristic 

Index Sensitivity User 
Var. 

Logic & 
Application 

Predominant 
Factor 
Loading 

Height Hang Good Good Good Factor 1 
Hmed Good Good Good Factor 1 
Hperp Good Good Good Factor 1 

Diameter Dang Good Good Good Factor 1 
Dmed Good Good Good Factor 1 
Dperp Good Good Good Factor 1 

Max measured 
dimensions 

MaxD1 Good Good Good Factor 1 
MaxD2 Good Good Good Factor 1 
MaxD3 Good Good Good Factor 1 

Volume V Good Good Good Factor 1 
Vvdc Good Good Good Factor 1 
Vnp Good Good Good Factor 1 

Size ratio SRang Good Good Good Factor 4 
SRmed Good Good Good Factor 4 
SRperp Good Good Good Factor 4 

Bulge location BLang Good Poor Poor - 
BLmed Good Poor Poor - 
BLperp Good Good Poor - 

Bottleneck BF Good Poor Good - 
BFarea Good Good Good - 

Neck-sac size 
relation 

TSR Good Good Good Factor 2 
VOR Good Good Poor - 
VORvdc Good Good Poor - 
ARang Good Good Good Factor 2 
ARmed Good Good Good - 
ARperp Good Good Good Factor 2 

Prolateness MaxDRatio12 Good Good Poor - 
Cov12 Good Good Poor - 

Oblateness MaxDRatio23 Good Poor Poor - 
Cov23 Good Good Poor - 

Ellipticity EI18 Poor Good Poor - 
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EI36 Poor Good Poor - 
EIlmis Good Good Good Factor 2 
EIvdc Good Good Good Factor 3 
CovRatioMag Good Good Good Factor 3 
MaxDRatioMag Good Poor Good Factor 3 

Irregularity UI Good Good Good Factor 3 
IRRvdc Good Good Good Factor 2 

Non-sphericity NSI18 Poor Good Poor - 
NSI36 Poor Good Poor - 
NSIlmis Good Good Good Factor 2 
NSIvdc Good Good Good Factor 2 
CRhnorm Poor Good Good - 

Fusiformity ESDI Good Good Poor - 
 

As a result of the sensitivity analysis, user-variability analysis, and assessment of 

application and definition of the original metrics, the factor analysis assessed the most 

robust morphological indices, as summarized in Table 10. The factor analysis then 

uncovered the underlying constructs of morphology that these indices measured. Using 

this information, an educated decision can be made as to what morphological indices 

should be used in a longitudinal cohort study. In this case, because the factor loadings are 

generally high and some of the variables loaded on a factor by definition measure a very 

similar quantity, the call could be made to reduce the number of metrics in such a study; 

and therefore the number of hypotheses, power and costs; to one or more metrics per 

factor. These choices are summarized in Table 11. Some studies may lack the resources 

or expertise to perform an advanced morphological analysis using the algorithm 

developed as part of Specific Aim 1. Therefore, a surrogate measurement that could be 

performed manually by a clinician using only one-dimensional measurements should also 

Table 10 – continued 
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be provided. These indices should either be a directly measured index, such as Dang, or a 

derived index, such as SRang.  

In order to describe the most prominent latent morphological structure, size, it 

would likely be inadvisable to simply measure MaxD2 or MaxD3 alone in order to 

ascertain aneurysm size. These metrics are constrained in that their measurement such 

that MaxD1 is always representative of the largest dimension, MaxD2 and MaxD3 must 

be equal to or less than MaxD1, and therefore by definition not representative of an 

aneurysm’s full size. However, MaxD1 is unconstrained by any other metric and 

meaningfully represents the size of the aneurysm, and would therefore be acceptable as a 

single representative of size. It is interesting to note, though, that as MaxD1 varies, 

MaxD2 and MaxD3 also vary similarly. In describing aneurysm size, MaxD1, Dang, 

Dperp, Dmed, MaxD1, Hmed, Hperp, Hang, V, Vnp and Vvdc have been shown to be 

robust morphological indices that have strong co-variance. Therefore, it is recommended 

that only one of these indices should be chosen to represent aneurysm size, depending on 

whether a direct 1D measurement will be made by a clinician, or 3D analysis will be 

performed by researchers using the segmentation. MaxD1 gives the closest 

approximation of a physician’s direct measurement of size on an angiogram. Vnp more 

accurately represents the volume in aneurysms that are not fully saccular when compared 

with V. Vvdc, while providing a volume that is less sensitive to blebs or other relatively 

irrelevant morphological features, may not provide a full representation of the volume 

due to the somewhat arbitrary 75% VDC cutoff. Therefore, although it would be valid to 

use any of the recommended size metrics to characterize the sac size morphological 
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characteristic, it is most recommended to use Vnp for automated measurements and 

MaxD1 for manual measurements.  

In assessing sac irregularity, it appears that there are two methods by which this 

shape characteristic should be measured to describe the most variance. IRRvdc, NSIvdc, 

EIlmis and NSIlmis all align very closely to Factor 2. EIlmis, as mentioned in the 

discussion section of the factor analysis, was not recommended for measurement because 

of its use of the convex hull. ARperp, TSR and ARang all align to a lesser extent, and in 

an inverse orientation.  So in order to best describe the variation of the underlying factor 

for sac irregularity one of the factors that aligned most closely should be chosen. 

However, none of these factors are easily measured by hand, so for manual measurement 

a subjective classification of either “irregular” or “not irregular” should be assessed. For 

automatic calculation, although IRRvdc, NSIvdc, and NSIlmis were all valid for 

measurement of the sac irregularity morphological characteristic, IRRvdc is most 

suggested because it logically most directly measures irregularity. 

Because of the logical disconnect between the morphological indices that describe 

the sac-ostium size relation and those that describe sac irregularity, and the results of the 

analysis with the inclusion of a 5th factor, it is recommended to assess these metrics in 

addition to the irregularity metrics. ARang is less sensitive to orientation of the ostium, 

the most likely source of user variability, than ARperp and therefore most recommended, 

although both metrics have been shown to be sufficiently robust. 

Sac ellipticity can be characterized by MaxDRatioMagnitude for manual 

measurements. CovRatioMagnitude and EIvdc can be extracted using automated 
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measurements to describe sac ellipticity. UI has poor alignment with this factor, and poor 

overall communality, so it is not recommended for use. EIvdc is a more thorough 

measurement for ellipticity because it captures ellipticity that may not be aligned with the 

principal axes of a best fit ellipse and compliments nicely to IRRvdc, so it is most highly 

recommended for automated measurements. MaxDRatioMagnitude, while shown to have 

relatively poor inter-user variability, is easily calculated using manual measurements. 

Sac-vessel size relation can be described using any of SRmed, SRang or SRperp. 

All three are very similar in definition and had good alignment with the factor, and would 

all work for either manual or automated measurement. SRang was chosen as the most 

highly recommended metric for sac-vessel size relation because it is less sensitive to 

orientation of the ostium, the most likely source of user variability.  
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Table 11. Recommended choices for morphological indices using either 
automated or manual measurements. The most highly recommended morphological index 
for each morphological factor is highlighted in bold. 

Underlying 
Morphological 
Factor 

Recommended choices for 
morphological indices 
using automated 
measurement 

Recommended choices for 
morphological index using 
manual measurement 

Sac size Vnp MaxD1 
V Dmed 
Vvdc Dperp  
 Dang 

Hmed 
Hperp 
Hang 

Sac Irregularity IRRvdc Subjective visual 
assessment [irregular / not 
irregular] 

NSIvdc  
EIlmis 
NSIlmis 

Sac-ostium size 
relation 

TSR ARang 
 ARperp 

Sac ellipticity EIvdc MaxDRatioMagnitude 
CovRatioMagnitude  

Sac-vessel size 
relation 

SRang SRang 
SRperp SRperp 
SRmed SRmed 

 

Limitations 

As with any study that utilizes imaging data in assessing cerebral aneurysm 

morphology, the extent to which the morphology of an aneurysm can be characterized is 

dependent upon the quality and resolution of the medical images. MR and CT, for 

instance, produce images with resolutions that may be lower than certain morphological 
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features such as small surface irregularities. Additionally, all of these images can only 

capture the portion of the lumen into which blood circulates, so in areas of low flow 

within the aneurysm sac, certain morphologies may be obscured by low contrast. 

In terms of limitations specifically of this study, several morphological 

characteristics remained undescribed because of unforeseen problems. The angle metrics, 

such as θneck-vessel, could not be included because of oversight in the protocol to include 

blood-flow orientation when choosing vessel reconstruction direction. Fusiformity was 

not included because it was discovered that ESDI did a poor job of characterizing the 

morphological characteristic in certain circumstances. Due to the inability to transform 

highly skewed distributions, BF, BFarea and ARmed could not be included in the factor 

analysis.  
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SPECIFIC AIM 3:  

DEMONSTRATION OF USE OF OPTIMAL METRICS TO TEST 

HYPOTHESIS 

Background 

When a patient is diagnosed with a cerebral aneurysm the physician makes his or 

her recommendation to treat or not to treat based on certain characteristics of the patient 

and the aneurysm. Etminan et al. in 2014 suggested that physicians do already look at 

certain aspects of morphology as an indicator of rupture risk, and that selection bias 

likely varies by clinical site. Ramachandran et al. in 2016 hypothesized that in their small 

longitudinal cohort study a selection bias may be present. A measurement of this 

selection bias would be helpful in constructing future studies to determine if study 

populations of unruptured, untreated aneurysms are representative of the total population 

prior to physician treatment selection. 

Study groups 

The study population consisted of 54 unruptured cerebral aneurysms of patients 

presenting at two clinical centers – University of Iowa Hospitals and Clinics (UI) and the 

Pennsylvania State University Hershey Medical Center (PSU). Study subjects were 

placed in one of two groups – observation group and treatment group. Observation group 

consists of unruptured aneurysms that were placed on untreated observation while the 

treatment group consists of unruptured aneurysms that were chosen for treatment. In 

addition, to perform a controlled investigation, the aneurysms in these groups were size 

and location matched. To recruit subjects, a retrospective search was conducted at UI and 
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PSU clinical database. For each aneurysm in the BioMOST database (these are 

observation-only unruptured aneurysms reported in Ramachandran et al. 2006) from each 

of these two centers, size and location matched counterpart unruptured aneurysm that was 

chosen for treatment was identified retrospectively. Size matching allowed for ±1 mm in 

clinically measured sac size.  

The retrospective search yielded 13 matched pairs from the University of Iowa 

Hospitals and Clinics (UI) and 14 matched pairs from the Pennsylvania State University 

Hershey Medical Center (PSU).  

Procedure 

The treatment group data-sets were segmented using the VMTK level-set 

segmentation technique. A surface mesh was then extracted and optimized using an 

element target area of 0.1mm. Each data-set was then processed using the isolation and 

morphological analysis protocol as detailed in Specific Aim 1. The indices chosen as an 

outcome of Specific Aim 2 (except sac size and sac-vessel size relation, which were 

prescribed as part of the enrollment criteria in this study) were analyzed using a paired 

Wilcoxon signed rank test to test each metric for the hypothesis that each would be 

different in the treated group versus the untreated group. This analysis was performed 

using the marquee indices for manual measurement and for automated measurement. All 

statistical analysis was performed using the R statistical package. 

Results 
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The values for each morphological index are plotted with the box plots in Figure 

41 and Figure 42. The statistical results of the Wilcoxon signed rank test are listed in 

Table 12 and Table 13. 

 

Figure 41. Comparison of observational and treatment groups using marquee 
morphological indices for automated measurement. EIvdc showed a significant difference 
between the observational and treatment groups. 
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Figure 42. Comparison of observational and treatment groups using marquee 
morphological indices for manual measurement. MaxDRatioMagnitude was significantly 
different between the observational and treatment groups. 

Table 12. Results from Wilcoxon test between observational and treatment groups 
using the marquee morphological indices derived using automated measurement. EIvdc 
was significantly different between the treated aneurysms and the follow-up aneurysms. 

Morphological 

Index 

Treatment Observational P-Value 

Min Med Max Min Med Max 

IRRvdc 0.26 0.47 0.89 0.26 0.45 0.80 0.485 

TSR 0.39 3.92 13.96 1.52 3.45 14.12 0.953 

EIvdc 0.24 0.42 0.80 0.16 0.34 0.66 0.012 
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Table 13. Results from Wilcoxon test between observational and treatment groups 
using the marquee morphological indices derived using automated measurement. 
MaxDRatioMagnitude was significantly different between the treated aneurysms and the 
follow-up aneurysms. 

Morphological 

Index 

Treatment Observational P-Value 

Min Med Max Min Med Max 

ARang 0.62 1.10 2.78 0.66 1.07 2.44 0.546 

MaxDRatioMag 1.61 1.84 3.36 1.52 1.72 2.52 0.009 

 

Discussion 

This study serves to examine the morphological features that physicians might 

already be selecting as criteria for aneurysm treatment. The morphological index that 

measured irregularity, IRRvdc, was not significantly different between the two groups. 

Neither were morphological indices that measured sac-ostium size relation, ARang and 

SRang. However, the two indices that measured ellipticity, EIvdc and 

MaxDRatioMagnitude, were significantly different between the observational and 

treatment groups. This indicates that physicians might already be accounting for shape 

characteristics such as ellipticity in assessing rupture risk. In fact, in a survey of 

aneurysm clinicians sac ellipticity was listed as one of the factors that was used in 

selecting between treatment and observation, although it was determined to be considered 

of low importance (Etminan et al. 2014). Another interesting finding is the fact that the 

ellipticity metrics were found to be significantly different between the two study groups 

for both manual and automatic measurement, while the other morphological metrics were 

not significantly different between the study groups. This serves to highlight the fact that 
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the morphological indices that are grouped to measure a particular morphological 

characteristic do, in fact, produce similar results, and are independent from indices that 

measure other morphological characteristics. 
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CONCLUSIONS 

Many studies have introduced novel morphological indices. While a large number 

of indices has been developed, there has been no consolidation of such metrics. Some 

indices are poorly defined for their application in measuring their intended morphological 

characteristic, and many redundantly measure similar morphological characteristics. 

Many studies have demonstrated particular morphological differences between ruptured 

and un-ruptured aneurysms, but the field has not yet seen a large longitudinal cohort 

study to sufficiently assess the use of aneurysm morphology in the assessment of 

aneurysm rupture risk. One small longitudinal study has been performed, but was limited 

in that no ruptures occurred, and that the group of morphological indices it analyzed may 

not have been sufficient to fully assess all relevant aspects of cerebral aneurysm 

morphology. 

This dissertation assessed all relevant morphological traits for cerebral aneurysms. 

It then consolidated indices from the literature, and developed novel morphological 

indices to quantify the morphological traits that were not yet been described in the 

literature. Fully automated software was developed using popular open-source platforms, 

and a protocol was developed for efficiently and accurately processing segmented 

medical image data sets and obtaining morphological index measurements. A population 

of 276 unruptured patient specific aneurysms was assessed using these morphological 

index calculations. Each morphological index’s susceptibility to inter-user variability was 

assessed using an 8-aneurysm patient-specific subset. Each morphological index’s 

sensitivity to variations in the morphological trait it was designed to measure was 

assessed using hypothetical idealized aneurysm models. Each morphological index was 
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analyzed logically to ensure that it was defined in a manner that appropriately assessed 

cerebral aneurysm morphology. A factor analysis was then performed using a data set of 

276 unruptured aneurysms. This factor analysis revealed the underlying morphological 

traits that the morphological indices measured, and provided an estimate of the amount of 

variance in the population that those morphological traits described. The morphological 

traits that described the most variance in the data set were interpreted to be size, sac 

irregularity, neck-sac size relation, sac ellipticity, and vessel-sac size relation.  From this 

information an optimal set of morphological indices was defined for studies that would 

use manual measurements of aneurysm morphology and for studies that would use 

automated measurements of aneurysm morphology. A study was then performed as a 

demonstration of the use of this optimal set of morphological indices. It assessed the 

hypothesis that these morphological indices were different in aneurysms that had been 

selected for treatment than those that aneurysms that had been selected for untreated 

observation. The morphological indices that described sac ellipticity were found to be 

different between the treatment and untreated observation groups. It also demonstrated 

that different morphological indices that measured the same morphological factors 

produced similar results when assessing aneurysm morphology in patient populations. 

Ultimately, this dissertation progressed the field by defining methods to fully 

assess the relevant morphological features of aneurysms using an optimal set of 

morphological indices – a necessary step prior to performing the sweeping longitudinal 

cohort study that the field requires. It also suggested to the field that physicians may 

already be recommending aneurysms for treatment or observation based upon certain 

aspects of morphology, which merits further research.  
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APPENDIX A 

DISTRIBUTIONS OF THE MORPHOLOGICAL INDICES 
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Figure A.1. Distribution plots of the morphological indices prior to 
transformation.  
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APPENDIX B 

USER VARIABILITY PLOTS 
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Figure B.1. Comparison of the results of the analysis by User 1 and User 2.  
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APPENDIX C 

USER VARIABILITY ISOLATIONS 
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Figure C.1. Renderings of the non-planar ostium (left) and planar ostium (right) 
from user 1 (red) and user 2 (blue). 
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