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ABSTRACT 
 

Rapid development of domain specialized medical imaging tools is essential 

for deploying medical imaging technologies to advance clinical research and clinical 

practice.  This work describes the development process, deployment method, and 

evaluation of modules constructed within the 3D Slicer environment.  These tools 

address critical problems encountered in four different clinical domains: quality 

control review of large repositories of medical images, rule-based automated label 

map cleaning, quantification of calcification in the heart using low-dose radiation 

scanning, and waist circumference measurement from abdominal scans.  Each of these 

modules enables and accelerates clinical research by incorporating medical imaging 

technologies that minimize manual human effort.  They are distributed within the 

multi-platform 3D Slicer Extension Manager environment for use in the computational 

environment most convenient to the clinician scientist. 
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PUBLIC ABSTRACT 
 

Rapidly creating specialized medical imaging tools is essential for distributing 

medical imaging tools to advance clinical research and clinical practice.  This work 

describes the development process, deployment method, and evaluation of modules 

constructed within the free image viewing software called 3D Slicer.  These tools 

address critical problems encountered in four different clinical areas: quality 

assessment of large numbers of medical images, automatic corrections of three-

dimensional computer representations of the brain, quantification of calcification in the 

heart using low-dose radiation scanning, and waist circumference measurement from 

abdominal scans.  Each of these applications enables and accelerates clinical research 

by including medical imaging technologies that minimize manual human effort. 
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CHAPTER 1: INTRODUCTION 

Rapid development of domain specialized medical imaging tools is essential for 

deploying medical imaging technologies to advance clinical research and clinical 

practice.  To accelerate medical image analysis and review in several fields, four semi-

automated graphical user interfaces (GUI) were developed within the open-source image 

viewing software 3D Slicer.  This work describes the development process, deployment 

method, and evaluation of these modules.  These tools address critical problems 

encountered in four different clinical domains: quality control review of large repositories 

of medical images, rule-based automated label map cleaning, quantification of 

calcification in the heart using low-dose radiation scanning, and waist circumference 

measurement from abdominal scans. 

The first tool described is the ImageEval 3D Slicer module for assessing the 

quality of large repositories of anatomical magnetic resonance imaging (MRI) scans.  The 

module requests a list of unevaluated scans from the specified database server, 

automatically loads a scan for review, populates a questionnaire based on an input 

configuration file, and pushes the review results to the database server.  This module 

is a redesign of the stand-alone, quality control software tool called BRAINSImageEval 

to a Python Slicer module with the same functionality. 

The next module described in this work, LabelAtlasEditor, was produced 

as a label atlas correction tool.  LabelAtlasEditor incorporates several 3D Slicer widgets 

into one consistent interface and provides label-specific correction tools, allowing for 

rapid identification, navigation, and modification of the small, disconnected erroneous 
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labels within an atlas.  This project offers an efficient process to drastically reduce the 

time necessary for manual revision in order to improve atlas label quality. 

The third tool calculates the Cardiac Agatston Score (CAS) from cardiac 

computed tomography (CT) scans.  This score is used to estimate the subject’s chances of 

experiencing a cardiac event in the future and aids physicians in deciding on an 

appropriate course of action.  Previous tools for calculating the CAS were developed 

specifically for CT scans taken at radiation levels of 120 kVp.  Part of this work involved 

mapping the CAS scores to a lower radiation level of 80 kVp.  The new tool calculates 

the scores for both 120 kVp and 80 kVp images to encourage research with lower levels 

of radiation exposure.  This is a semi-automated process wherein the tool separates 

calcium plaques into one of four main arteries with minimal user interaction.   

The final tool described, Waist Circumference, quickly and efficiently estimates 

patient waist circumference from large numbers of abdominal CT scans.  It was designed 

to advance the use of this measurement as an indicator of obesity and aid in investigating 

the association between obesity and surgical outcomes.  Results from the tool were 

compared to hand measurements obtained by clinicians using a measuring tape.  The 

results indicated that the two methods were not statistically different. 

3D Slicer Environment Description 

This section describes the 3D Slicer environment and several useful features for 

developing medical image analysis tools.  3D Slicer is an extensively used and well-

maintained open-source, multi-platform tool for image visualization and computing 

(Fedorov et al., 2012).  Each application described in this work uses the built-in Python 

programming environment and the QT application framework for developing interfaces. 
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Images, called label maps, can easily be created and manipulated to segment an 

image into multiple objects within the packaged Editor widget.  Three of the modules 

developed in this work utilize Editor to create and edit label maps.  In these cases, a 

modified version of the Editor widget was included in the interface to provide specific 

tools useful for each application.  Similarly, a modified version of the packaged Label 

Statistics widget was included in two modules to provide label summary statistics. 

The QUIs utilize the packaged image processing toolkit SimpleITK (Lowekamp 

et al., 2013) for processing images.  SimpleITK is a simplified layer built on top of the 

Insight Segmentation and Registration Toolkit (ITK) (Kitware, 2016).  ITK is an open-

source, cross-platform system that provides developers with an extensive suite of 

software tools for image analysis.  Several tools described in this work utilize the Label 

Shape Statistics SimpleITK filter to identify objects in label maps and provide label 

summary statistics.  This filter was used to retrieve the maximum intensity value and the 

number of voxels in cardiac calcium plaques.  It was also used to calculate a perimeter of 

a waist object in an abdominal CT scan. 

3D Slicer uses the Medical Reality Modeling Language (MRML) Library API to 

manage medical image data types including Volumes, Models, Transforms, and Fiducials 

(Slicer, 2015b).  The data types are each stored in a specific MRML node and a collection 

of MRML nodes comprises the MRML Scene.  The MRML Scene manages the nodes via 

add, delete, find, etc. and provides persistence of the MRML nodes by reading and 

writing to and from an Extensible Markup Language (XML) file.  The MRML XML file 

was used in these applications to save and later to reconstruct the scene with the included 

references to the 3D datasets and scene properties. 
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3D Slicer also has a package distribution system called the Extension Manager 

that provides modules, including three of the modules described here, to users for easy 

installation.  These features allow for easy creation and distribution of tools to the 

medical imaging community.  3D Slicer has a large and active development community 

that continually introduces advancements in medical imaging analysis to the application.  

The framework for each scripted module described in this work was created and 

published to the Extension Manager using the 3D Slicer Extension Wizard tool (Slicer, 

2015a). 
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CHAPTER 2: QUALITY CONTROL OF LARGE MEDICAL IMAGING 
REPOSITORIES WITH IMAGE EVAL 

Introduction 

Visual inspection is essential to properly assess the usability of anatomical MRI 

for image processing.  Poor quality images need to be identified and excluded from 

further processing.  Previously, the anatomical images for two Huntingtons Disease 

studies, PREDICT-HD and TRACK, were reviewed in a stand-alone, quality control tool 

called BRAINSImageEval.  This chapter contains a description of the redesign of this 

C++ tool as a Python 3D Slicer module called ImageEval with the same functionality. 

Rewriting the tool allowed for a dramatic reduction in code complexity due to the 

availability of the built-in QT functionality and user-interface available in 3D Slicer.  A 

large part of BRAINSImageEval code was dedicated to creating QT buttons, designing 

QT windows, and interacting with the database management system XNAT.  The Python 

tool is more streamlined, more flexible, and easier to edit than the C++ version.  It was 

developed with the potential to build an imaging analysis suite that could be consistent 

and reuse Python components and interfaces.  As such, the tool will also allow for the 

reuse of components of this module for other quality control (QC) modules.  This 

document contains images and descriptions of the user interface for both the stand-alone 

BRAINSImageEval and 3D Slicer ImageEval.  It also displays use case diagrams to 

explain the interaction of the different users of the software.  

Methods 

This section describes the user characteristics, communication interfaces, and the 

inputs employed in the Python module.  The ImageEval 3D Slicer module is used to 
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easily assess the quality of T1, T2, and PD MRI scans.  The module requests a list of all 

scans from a database server, creates a list of unevaluated scans, automatically loads a 

scan for review in the 3D Slicer module, populates a questionnaire, and saves the review 

results to a database server.   

User Characteristics 

The users of the QC 3D Slicer module are trained Reviewers that interact only 

with the 3D Slicer interface to review scans.  The reliability of the image quality 

assessment will be maintained by requiring that the reviewers complete the QC tutorial 

developed by Kathy Jones and Jacquie Marietta (Jones and Marietta, 2012).  This tutorial 

pictorially describes example assessments at various levels of quality.  The user must also 

have access to the database server used to query and save image information.  A Database 

Administrator will interact with the database to update scan information. 

Communications Interfaces 

XNAT is the database management system used to query and store image review 

information.  XNAT is an open source imaging informatics platform that enables 

management, data storage, and organization of medical images.  The XNAT server 

requires a user account and password to view and access data.  Upon opening the module, 

the pop-up box displayed in Figure 1 will request a username and password.  The 

reviewers are required to have an XNAT account and permission to push reviews to 

XNAT.  



 
 

7

 

Figure 1: The pop-up box requesting 

the user’s username and password to 

access the requested database. 

Inputs 

The reviewer must specify on the terminal command line which of the two 

Huntingtons Disease datasets, PREDICT-HD or TRACK, to review.  To do this, the 

variable “IMAGEEVALGRANT” variable must be set to “TRACK” or “PREDICT” 

before opening 3D Slicer in the terminal.  This is accomplished by typing one of the two 

following command lines: 

 $ export IMAGEEVALGRANT="TRACK" 

 $ export IMAGEEVALGRANT="PREDICT" 

Input Configuration File 

Given that there are two datasets with images and QC reports that are stored in 

separate locations, an input configuration file must be provided to specify paths.  The 

configuration file should contain the path to the input configuration XML file, the 

“basePath” location of the images, the database containing the images, and an optional 

input path to a file containing the specific session and series pairs to review.  The variable 

“IMAGEEVALGRANT” (set to either "TRACK" or “PREDICT”) is used to open either 
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the input configuration file in the current directory named 

TRACKImageEvalConfigurationFile.csv or PREDICTImageEvalConfigurationFile.csv.  

The paths listed in this file, seen in Table 1, can be changed to specify an alternative 

questionnaire or image location.  When specific images need to be reviewed, the 

reviewSessionListPath should point to a simple comma separated values (CSV) file with 

each row containing a session and series number separated by a comma.  

Table 1: Description of the input configuration file. 

ID Example 

imageEvalQuestionnaireFilePath {PATH}/ImageEvalQuestionnaire.xml 

basePath {DIR/FOR/IMAGES} 

dataBase https://xnat.hdni.org OR https://www.predict-hd.net

reviewSessionListPath {PATH}/reviewSessionList.csv 

Input Questionnaire XML 

The input questionnaire XML file used to create the questionnaire in the stand-

alone BRAINSImageEval tool was reused in the 3D Slicer module.  This file can be 

found in the Github source code file ImageEvalQuestionnaire.xml (Williams, 2012) and 

is displayed in Appendix A of this document.  It includes yes/no questions pertaining to 

whether the image contains normal variants, lesions, full brain coverage, misalignment, 

wrap around artifacts, ghosting, inhomogeneity, susceptibility, flow artifacts, and 

truncation artifacts.  It also includes a range score of 0-10 (0=bad, 10=good) for the 

signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and the overall quality 

assessment.  The questionnaire displayed in Figure 2 was populated based on this input 

questionnaire XML.  
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Figure 2: Display of anatomical image QA questionnaire within the 3D Slicer 

module. 

Input Scan Information 

Communication between the application and XNAT is facilitated through the use 

of representational state transfer (REST) to both query for unevaluated scans and send 

QC results to XNAT.  The REST uniform resource locator (URL) below is used to 
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retrieve QC information from XNAT to identify unevaluated scans.  There are two 

XNAT databases identified with their HostURL in Table 2.  This REST command 

retrieves scan information including the subject, session, date of scan, review status, and 

quality.  A condensed example of scan information retrieved utilizing this URL can be 

seen in Appendix B. 

HostURL + "/xnat/REST/custom/scans?type=(T1|T2|PD|PDT2)-(15|30)&format=xml" 

Table 2: Grant identifier and the HostURL for the 

XNAT server. 

Grant Identifier HostURL 

PREDICT https://www.predict-hd.net 
TRACK https://xnat.hdni.org 

 

The functions put, pull, and delete within the Python library requests are used to 

put, get, and delete data for a specified REST URL.  The delete function is called to 

delete a previous review before the put function is called to send the completed review to 

the database.  Since multiple users can review scans from the same database at the same 

time, a random unevaluated scan is selected from the list of unevaluated scans with the 

Python library random. 

Results 

Software Interfaces 

As illustrated in Figure 3 the previous stand-alone interface displayed the axial, 

sagittal, and coronal views of a scan in three separate panels.  The user scrolled through 

slices of the image via a scroll bar above each panel.  He/she could change the contrast of 
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the image by holding the left mouse button down and moving over the image.  A 

questionnaire was populated in the left panel for the reviewer to complete.  Once the user 

completed the questionnaire, he/she selected the “Finish Evaluation” button.  That would 

save the results to XNAT, clear the current scene, and automatically load the next image 

for review.  The user did not have any contact with the database and was not required to 

manually load images to review.   

 

Figure 3: The user interface for the stand-alone version of BRAINSImageEval. 

As pictured in Figure 4, the 3D Slicer interface also displays the axial, sagittal, 

and coronal view of a scan in three separate panels.  The user can scroll through slices of 

the image via a scroll bar in the red, yellow, and green bars above each panel.  The user 

can change the contrast of the image with the use of a range scroll bar in the left panel 

under “Display” or by holding the left mouse button down and moving over the image.  
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There is a questionnaire populated in the left panel for the reviewer to complete.  Once 

the user has completed the questionnaire, the “Next” button saves the results to a 

database, clears the current Slicer scene, and automatically loads the next image for 

review.  The user does not have any contact with the database and is not required to load 

images to review.   

 

Figure 4: The interface for the Slicer module version of ImageEval. 
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Use Cases 

System Environment 

 

Figure 5:  System Environment. 

The ImageEval System has three active actors.  The Developer and the Reviewer 

access the ImageEval module through 3D Slicer.  Any communication between 3D Slicer 

and the Database Server is done through a REST URL.  The Database Administrator will 

be able to make changes to the scan information via communication with the Database 

Server.  
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Reviewer Use Case 

 

 Figure 6:  Reviewer Use Case. 

Before this use case can be initiated, the Reviewer must open 3D Slicer and the 

ImageEval module file path must be added to “Additional modules path” in the 

“Modules” tab of “Settings.”  The Reviewer then opens the ImageEval module in 3D 

Slicer where a scan is automatically loaded.  Then the Reviewer scrolls through the scan 

to answer quality assessment questions.  Once the review is complete, he/she selects the 

“Next” button to save the results and load the next scan for review. 
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Database Administrator Use Case 

 

 

Figure 7:  Database Administrator Use Case. 

The Database Administrator interacts with the Database in order to upload scan 

information, update information as needed, and download scan data.  The Database 

Administrator does not have direct contact with the 3D Slicer module, the Reviewer, or 

the Software Developer. 
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Software Developer Use Case 

 

Figure 8:  Software Developer Use Case. 

The Software Developer will interact with the Slicer module if an update is 

needed.  He/she may also change the input configuration XML file used to generate the 

module questionnaire.  The Software Developer will not have direct contact with the 

Database, the Reviewer, or the Database Administrator. 
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Sequence Diagrams 

As seen in Figure 9, there are six objects utilized in the 3D Slicer Module.  The 

“SlicerInstance” is the main object that initiates the cascade of events necessary to review 

images.  Upon opening the module, the “SlicerInstance” initiates the creation of the QC 

questionnaire panel.  This is based on an input template XML file that is parsed by the 

“XMLSession” object. 

 

Figure 9:  Sequence Diagram for the ImageEval Slicer Module. 

Once the questionnaire is generated in the 3D Slicer display panel, a request from 

the “ImageDatabase” to the “DatabaseSession” object retrieves review information for all 

sessions.  Before the information is returned, user clearance must be obtained from the 

“Security System” object.  Subsequently, a list is created in “DatabaseSession” to store 

the review information for all scans.  This list is then queried in the next call 
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getUnreviewedScanSessionID to find an unreviewed scan.  Once an unreviewed scan is 

identified, the sessionID is put through the “Image Review Loop” displayed in Figure 10. 

 

Figure 10:  Sequence Diagram of the Image Review Loop. 

Figure 10 describes the inner “Image Review Loop” introduced in Figure 9.  

Before the loop is initiated, a check is performed to ensure the sessionID variable has 

been set to the session ID of an unevaluated scan.  Then, the first step in the loop is to 

determine the scan file path from the “FileSystem.”  The scan is then opened in the 

“SlicerInstance.”  
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Once the “Next” button is selected by the user, the “SlicerInstance” checks if all 

QC questions are answered.  If all questions are not answered an error message is 

returned specifying the questions that need to be addressed.  Otherwise, the 

“SlicerInstance” will request the final review XML from the “XMLSession.”  Then the 

final review XML is sent to the “ImageDatabase” via the “DatabaseSession.” 

In preparation for the next review instance, the current scan is closed and the 

XML questionnaire panel is refreshed.  The sessionID variable is set to “reviewed” in the 

“DatabaseSession” and the sessionID variable is set to “None” in the “SlicerInstance.”  

The final step is to query the “DatabaseSession” for the next unreviewed scan.  If there is 

another scan to review, sessionID will be set to this new scan’s session ID.  If all scans 

have been reviewed, the sessionID variable will remain set to “None” and the 

“SlicerInstance” will break out of this loop to end the review process. 

Data Flow Diagram 

In the data flow diagram illustrated in Figure 11, there are two external entities 

called the Database Manager and the Reviewer.  The Database Manager can update scan 

information located in the “Review Database” data store.  The Reviewer can review a 

scan and later update the scan information in the “Review Database” data store with the 

finished scan review results.  Process 2 initiates Process 3 to create the “All Sessions” 

data store with information from the “Review Database” data store.  The “All Sessions” 

data store is used by Process 4 to create the “Current Session Information” data store.  

Then the “Current Session Information” data store is utilized to return information about 

the current session to Process 4 and Process 5. 
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Figure 11:  Data Flow Diagram for the ImageEval Slicer module. 

Discussion 

The 3D Slicer module has the same functionality as the stand-alone 

BRAINSImageEval and serves as its replacement.  The ImageEval module is compatible 

with several platforms, including Windows, Linux, and Mac Os X, whereas the 

BRAINSImageEval was designed for use only on Mac Os X and Linux.  This allows for 

greater versatility.  The program, rewritten in Python, is more streamlined and more 

flexible than the C++ version.  It will also allow for the reuse of components of this 

module for other QC modules in an imaging analysis suite.  The ImageEval module is 

stored in a public Github repository and is available to the reviewers (Forbes, 2015).  It 

has been used to review several hundred T1 and T2 images in the PREDICT-HD and 

TRACK cohorts.  
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CHAPTER 3: AN OPEN-SOURCE LABEL ATLAS CORRECTION TOOL AND 
DEMONSTRATION ON HUNTINGTONS DISEASE WHOLE-BRAIN MRI 

ATLASES 

Abstract 

The creation of high-quality medical imaging reference atlas datasets with 

consistent dense anatomical labels is a challenging task.  Reference atlases have many 

uses in medical image applications and are essential components of atlas-based 

segmentation tools commonly used for producing personalized anatomical measurements 

for individual subjects.  The process of manual identification of anatomical regions by 

experts is regarded as a gold standard.  However, manual identification is usually 

impractical due to its labor-intensive nature.  Further, as the number of regions of interest 

increases, manually created atlases often contain many small, inconsistently labeled or 

disconnected regions that need to be identified and/or corrected.  

This project proposes an efficient process to drastically reduce the time necessary 

for manual revision with the goal of improving atlas label quality.  LabelAtlasEditor, a 

SimpleITK-based open-source label atlas correction tool is introduced.  This tool is 

distributed within the image visualization software 3D Slicer and incorporates several 3D 

Slicer widgets into one consistent interface.  It provides label-specific correction tools, 

allowing for rapid identification, navigation, and modification of the small, disconnected 

erroneous labels within an atlas.  The performance of LabelAtlasEditor is demonstrated 

through its application to the task of improving a set of 20 Huntingtons Disease-specific 

multi-modal brain atlases.  After the correction of atlas inconsistencies and small, 

disconnected regions, the number of unidentified voxels for each dataset was reduced on 
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average by 68.48%.  Additionally, the advantages and limitations of automatic atlas 

correction are presented. 

Introduction 

The study of human brain anatomy is important in clinical studies of normal 

brains as well as in studies of neurodegenerative disorders such as Huntingtons Disease 

(HD), Alzheimer’s disease, and Parkinson’s disease.  A precise assessment of the 

volumetric characteristics of brain structures may provide a non-invasive means to 

monitor the treatment effects of clinical intervention.  During the last decade, many 

studies have collected series of imaging data to better understand the brain.  These studies 

of structural brain magnetic resonance imaging (MRI) have provided important 

understanding of healthy development (Herting et al., 2014; Sullivan et al., 2011; Treit et 

al., 2013), normal aging (Mungas et al., 2005; Resnick et al., 2003; Risacher et al., 2010; 

Scahill et al., 2003; Tang et al., 2001), and disease progression (Ahdidan et al., 2011; Li 

et al., 2015; Tabrizi et al., 2012; Takahashi et al., 2012; Weiner et al., 2012). 

Atlas-based segmentation is a commonly used approach (Cabezas et al., 2011) 

that identifies regions of interests (ROI) by propagating atlas labeling to a target image.  

More recently, multi-atlas labeling approaches, instead of single-atlas labeling, have 

gained popularity for their superiority in segmentation quality (Kim et al., 2015).  

Naturally, the performance of this atlas-based segmentation largely depends on how well 

the atlas structures are defined and the similarity between the atlas and the research 

population.  

Currently, there are limited atlas labels available in the field (Mori et al., 2005; 

Tzourio-Mazoyer et al., 2002).  While manual identification of brain structures from MRI 
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is considered the gold standard, the creation of a population or research-specific atlas is 

limited by its labor-intensive and time-consuming nature.  Furthermore, if one chooses to 

use multi-atlas labeling approaches, which show increasing evidence of improved 

segmentation quality (Kim et al., 2015), manual approaches for label atlas creation are 

almost always impractical for ongoing research.  The choice of atlases for brain research 

is therefore often limited to what is already available, despite that there is a danger of bias 

when using unrepresentative atlases for the study of interest. 

There has been a concern about the accuracy and consistency of manual traces for 

brain MRI structures in the neuroimaging community.  Via a collection of open-source 

tools called Open Atlas (Lorensen, 2015), it has been recognized that manually identified 

brain structures can be inaccurate due to the large numbers of small, disconnected regions 

(islands) that are biologically invalid.  These inaccuracies of manually identified 

structures are mainly a result of the current limitations of the tracing environment, 

wherein experts segment convoluted three-dimensional structures within two-

dimensional planes.  These label atlas errors may have been underestimated previously 

since they are difficult to recognize in a two-dimensional display. 

This chapter proposes a prototype application for creating and/or improving a set 

of MRI label atlases by incorporating prior information as well as spatial heuristics with 

highly automated procedures.  The primary goal of this project is to provide an efficient 

procedure that reduces the editing time to a few hours while providing valid segmentation 

results.  This proposed application, LabelAtlasEditor, is freely distributed with 3D Slicer, 

and the proposed approach is expected to require less time for manual intervention in 

creating and/or improving MRI label atlases.  
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The label atlas correction approach is demonstrated by using a dataset of 20 

subjects spanning a range of Huntingtons Disease progression.  These subjects were 

selected from the PREDICT-HD dataset that contains pre-symptomatic gene-positive 

subjects collected during a 10-year time period (Paulsen et al., 2006).  This article walks 

through the steps used for identifying the regions of interest with a semi-automated tool, 

details the method used for automatically removing small disconnected regions of voxels, 

and demonstrates a technique for cleaning the regions of interest with prior probability 

maps. 

Methods 

This section first describes the dataset used for this study.  This is then followed 

by an illustration of the MRI pre-processing method applied.  The section is concluded 

with a description of the set of developed label atlas correction applications and the 

proposed procedure for developing a reliable set of label atlases. 

Dataset 

The HD label atlas candidates were carefully selected from the PREDICT-HD 

database.  The 20 MRI subjects selected consisted of 10 males and 10 females between 

the ages of 28.4 and 68.1 years.  These subjects span the HD disease index of CAG repeat 

lengths: control, low, medium, and high.  Scans were collected from three types of 

scanners: GE, Siemens, and Phillips.  All datasets are multi-modal with most containing 

multiple T1-weighted (T1-w) and T2-weighted (T2-w) images from repeated data 

sessions.  Demographic variables (gender, age, and CAG repeat length) are reported in 

Table 3 and the imaging acquisition parameters for the scans are reported in Table 4. 
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Table 3: HD Atlas set demographics 

Manufacturer Gender CAP Age Summary 

GE F Med 28.4  

GE F Med 46.5 Manufacturer 

GE F High 56.4 GE 7 

GE F High 58.0 Philips 6 

GE M Low 31.3 Siemens 7 

GE M Cont 36.0 Total  20 

GE M High 40.5  

Phillips F Med 36.0  

Phillips F High 44.7 Gender 

Phillips F Cont 47.3 Male 10 

Philips F High 59.2 Female 10 

Phillips M Cont 43.6 Total 20 

Phillips M High 46.8  

SIEMENS F Low 36.4  

SIEMENS F Med 39.9 CAP 

SIEMENS M High 41.6 Control 4 

SIEMENS M Med 41.9 Low 2 

SIEMENS M High 51.6 Med 5 

SIEMENS M High 55.6 High 9 

SIEMENS M Cont 68.1  
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Table 4 HD Atlas MRI Imaging parameter summary (the magnetic field strength 

for all scans is 3T). Mod: Modality, Manufact: Manufacturer, TR: Repetition Time, 

TE: Echo Time, TI: Inversion Time, Acq. Matrix: Acquisition Matrix. 

 

Mod Manufact TR (ms) TE (ms) TI (ms)
Thickness 

(mm) Acq. Matrix 

T1 

GE 6.524-7.816 
2.796-
3.004 

450 1.0 0, 256, 256, 0 

Philips 7.313-7.7 
3.271-
3.501 

 0.63, 1.1 
0, 256, 256, 0 
0, 220, 218, 0 

SIEMENS 2300 2.67-2.98 900 
0.7, 0.75, 

1.1 
0, 256, 256, 0 
0, 320, 320, 0 

T2 

GE 3000-15000 
39.6-

100.128 
 

1.1, 1.4, 
1.8 

0, 256, 256, 0 
0, 288, 288, 0 

Philips 2500 
181.29-
185.97 

 1.1 220, 0, 0, 218 

SIEMENS 4800 354-433  0.7, 1.4 
0, 256, 248, 0 
0, 256, 250, 0 
0, 256, 254, 0 

 

Preprocessing 

All repeated scans in one MRI session were processed together, i.e., repeated T1-

w and T2-w MRI using the BRAINSTools suite (BRAINSia, 2015; Pierson et al., 2011).  

Experts rated the quality of each MRI to determine its suitability for further processing 

and then ordered the scans from high to low quality.  MRI scans were then preprocessed 

using tools from the BRAINSTools suite.  The preprocessing of MRIs consists of an AC–

PC spatial alignment (Ghayoor et al., 2013; Lu, 2010), co-registration between T1-w and 

T2-w images, and multimodal bias-field correction (Kim and Johnson, 2013).  
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To create an initial set of label atlases for these 20 HD atlas candidates, label 

atlases were first automatically segmented with the ANTs joint fusion algorithm (Wang 

and Yushkevich, 2013; Wang et al., 2012).  The joint fusion algorithm was applied on the 

HD MRI atlas candidates by using 20 T1-w MRI with whole brain label atlases already 

available from Neuromorphometrics Inc.  Note that white matter sub-parcellation was 

further incorporated with the inclusion of FreeSurfer automatic segmentations.  After 

undergoing ANTs joint fusion and sub-parcellation, the data were ready for the label atlas 

correction procedure. 

LabelAtlasEditor 

To visualize and efficiently edit label atlases, a user interface was developed 

within the infrastructure of the imaging software 3D Slicer.  The open-source image 

processing toolkit SimpleITK (Lowekamp et al., 2013) was used for processing the label 

atlases.  This section describes the custom user interfaces (widgets) that were developed 

for correcting these brain structures.  The Label Merge widget allows a user to utilize a 

mask or a posterior probability map while merging the voxels of different labels in order 

to ensure that a voxel meets a user-defined minimum probability for a specific type, e.g., 

white matter or cerebrospinal fluid.  The Label Suggestion widget provides a list of 

candidate labels for a questionable group of voxels based on the neighborhood 

information attained from intensity images.  The Automatic Dust Cleanup widget 

automatically merges large amounts of small, disconnected regions to the most similar 

bordering label via the process employed in the Label Suggestion widget. 

The 3D Slicer widgets Editor and Markups were included within this all-in-one 

module to expedite the manual cleaning process when required.  Assuming that one label 
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represents a single biological structure or densely packed structures, small isolated 

regions should be examined for validity.  The open-source software OpenAtlas can be 

used for providing an excellent three-dimensional (3D) visualization of the disconnected 

ROIs.  This tool identifies errors that are difficult to visually recognize in two-

dimensional slices, by placing a fiducial point on each disconnected region.  Within the 

Markups widget, the user selects a target region from the fiducial points and then can 

view and easily modify the region by using Editor or one of the custom widgets 

developed. 

Label Merge widget 

The Label Merge widget is useful for reassigning incorrectly defined islands 

surrounding well-defined structures.  It automatically corrects voxels from a source label 

to a target label at locations where the two are connected.  Initially, a combined mask of 

the source and the target labels is created.  Then, islands of connected voxels are 

identified.  As shown in Figure 12 the user can choose to reassign the source voxels 

contained within the largest island of connected voxels or within all islands of connected 

voxels.  A mask or a probability label map image for a specific type can be used to 

restrict the merging of voxels that do not meet the user-defined minimum value. 

In Figure 12, “input_label” voxels from the source label “999” (unsegmented) are 

merged with the target label “24” (cerebrospinal fluid-CSF) if they are within the largest 

connected island and have a corresponding value in “csf_probility_map” that is larger 

than the user-defined minimum value of “0.10”. The resulting label map is saved to 

“output_label”. 
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Figure 12: Merge widget graphical user interface within LabelAtlasEditor. The 

input parameters include: (1) Input Label Map Volume specifying the label 

image, (2) Target Label specifying the identification number of the target label 

to which new voxels are reassigned, (3) Suspicious Label specifying the 

identification number of the source label from which voxels are reassigned, (4) 

a check box to either reassign the source voxels contained within the largest 

island of connected voxels or within all islands of connected voxels, (5) Posterior 

Volume providing optional apriority information via a mask or a probability 

label map image for a specific type, (6) Minimum Threshold used for restricting 

the merging of voxels that do not meet this value in the Posterior Volume image, 

and (7) Output Label Map Volume specifying the output label image. 

Label Suggestion widget 

The Label Suggestion widget suggests candidate labels for a questionable region. 

Even for experts, it is often difficult to visually assign a label for an ambiguous voxel 

such as the one illustrated in Figure 13.  The Label Suggestion widget provides a 

quantitative measure for each neighboring label to remove ambiguity for small regions, 

such as those identified by OpenAtlas.  As shown in Figure 14 the label candidate list is 
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ordered by a similarity criterion computed for each label on the target region’s border.  

The similarity metric used in this study is a distance measurement of the mean intensity 

per region per modality given by 

݀ ൌ ඨ ෍ ሺ ௜ܶ െ ௜ሻଶܤ

ி௢௥	௔௟௟	௜௠௔௚௘	௜

			 ,	

where Ti is the mean intensity value of the target region for image modality i and Bi is the 

mean intensity value of a border label region for image modality i.  The border label with 

the smallest similarity metric has the closest average intensity to the target region.  Figure 

14 displays an example use-case in which a fiducial point was placed at the suspicious 

voxel (pink) displayed in Figure 13.  The label “2129” (green) has been selected as the 

most similar adjacent region for the ambiguous region.  The voxels within the ambiguous 

region are reassigned to the selected label in the Output Label Map via the Relabel 

button. 

 

Figure 13: (Left) Example of an undefined pixel (shown in orange) at a border 

between two regions of interest illustrated by the green and dark gray labels.  

(Middle) Illustration of the T1-w pixel intensity values of the undefined pixel and 

the bordering labels. (Right) Illustration of the T2-w pixel intensity values of the 

undefined pixel and the bordering labels. 
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Figure 14: Label Suggest widget’s graphical user interface within LabelAtlasEditor.  

The input parameters include: (1) Input Intensity Volume 1 specifying the T1-w 

image, (2) Input Intensity Volume 2 specifying the T2-w image, (3) Input Label Map 

Volume, and (4) Output Label Map Volume. 

Automatic Dust Cleanup widget 

The Automatic Dust Cleanup widget was developed to further expedite the 

correction process and reduce manual interaction.  This widget utilizes an automated 

process that reassigns small, disconnected islands of voxels, called dust, by using the 

underlying process described in the Label Suggestion widget.  As illustrated in Figure 15, 

the user may define a list of labels to include or exclude from the correction. The 

algorithm will review all labels if either list was omitted.  It proceeds through the label 

list by correcting the label image one label at a time.  Within each label l, the island size s 

is increased from 1 to S, the user-defined maximum island voxel count.  All islands of 

size s are named sequentially from ݏଵ to ݏே	and are reviewed individually.  In the 
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example illustrated in Figure 15, islands consisting of “5” or fewer voxels in the labels 

“999” and “15000” will be reassigned to the most similar adjacent label.  Islands will be 

built using face connectivity and islands in densely packed groups will be reassigned 

given that the mask is not dilated. 

Since it is possible for a label to consist of several densely packed islands of 

voxels, the proposed algorithm accounts for the proximity of a questionable island to the 

other bodies within that label.  The goal is to correct islands in each label that are 

spatially isolated and therefore, more likely to be incorrectly identified.  To identify 

isolated islands larger than one voxel, the binary mask of label l is dilated with a kernel 

radius calculated from the current island size.  Dilation is not performed on islands 

containing only one voxel so that they remain isolated and are subsequently removed.  

The kernel radius, r, was set to the radius of a sphere with volume s, the current island 

voxel count.  That is, 

ݎ ൌ 	 ආඨ
ݏ

4
3	∗ ߨ	

య ඊ			. 

Islands are built from the resulting binary mask for label l on the basis of the user-

specified option for either four-neighbor (face) connectivity or eight-neighbor (face + 

edge + vertex full) connectivity.  If the island size s is greater than one, the resulting 

image identifying islands is then masked by the original non-dilated mask for label l in 

order to create a label map based on the dilated label mask connections.  Each island of 

size s is then merged with the neighboring label containing the most similar average pixel 

intensity values from the provided intensity images, as described in the Label Suggestion 
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widget.  The user can choose to change the island label even if it is most similar to its 

own label.  This cleaning process can also be performed on the command line with the 

same input parameters. 

 

Figure 15: Automatic Dust Cleanup widget’s graphical user interface within 

LabelAtlasEditor. The input parameters include: (1) Input Intensity Volume 1 

providing the T1-w image, (2) Input Intensity Volume 2 providing the T2-w image, 

(3) Input Label Map Volume, (4) Output Label Map Volume, (5) the Maximum Island 

Voxel Count specifying the largest island size to correct, (6) List of Labels to Review 

identifying labels to correct, (7) List of Labels to Exclude identifying labels to exclude 

from correction, (8) a check box to dilate or not dilate islands when determining 

connectivity, (9) a check box to build islands with full or face connectivity, and (10) 

a check box to reassign an island label even if it is most similar to its own label. 
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Procedure used for label atlas correction 

This section demonstrates the application of LabelAtlasEditor and describes the 

process used to clean atlases in the PREDICT-HD dataset.  The tools utilized in this study 

are available in the 3D Slicer Extensions Manager. 

Stage 1: Addition of new regions using Editor 

New regions of interest were identified and added to label maps by using the 

semi-automated Editor tool within 3D Slicer.  The new regions of interest included the 

optic chiasm, Dura, and pineal gland.  Obvious issues such as islands located outside of 

the brain region were then identified and corrected with Editor. 

Stage 2: Automatic cleanup of unidentified dust using the Automatic Dust Cleanup 

widget 

One of the goals of the atlas cleanup process is to reduce the number of 

unidentified voxels.  To assign appropriate labels to the dust in the “unidentified” label, 

the Automatic Dust Cleanup widget was used to change the islands of six voxels or less 

to the most similar bordering label.  It was noted that islands greater than six voxels often 

needed to be split into more than one label and were therefore excluded from this process.  

In order to break the unidentified voxels into smaller groups, the four-neighbor (instead 

of the eight-neighbor) connectivity option was used when building islands.  To remove 

all unidentified dust particles, the option to force label reassignment was selected.  This 

was performed without dilation in order to maximize the number of islands cleaned.  

Since ideally one would like to remove all islands of suspicious pixels, the mask was not 
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dilated.  This allowed the widget to change small islands that were spatially close to other 

unidentified islands.  

Stage 3: Semi-automated cleanup with the Merge widget and Editor tools 

In this stage, larger unidentified islands were reassigned to the correct label with 

the Editor tools.  Further, some label atlases contained excess venous blood beyond the 

brain region.  To correct this, the Merge widget was used with a venous blood mask 

based on intensity ranges from both the T1-w and the T2-w images.  This process 

efficiently reassigned those voxels to the background label. 

Stage 4: Reassign isolated dust particles for most labels using the Automatic Dust 

Cleanup widget 

The Automatic Dust Cleanup widget was used to change the islands of five voxels 

or less to the most similar bordering label.  In this stage, the goal was to automatically 

reassign the isolated dust particles observed in many brain structures.  Labels with viable 

isolated islands, such as the cerebrospinal fluid (CSF), were excluded from this stage.  

The options to build islands with eight-neighbor connectivity and to force label 

reassignment were selected.  The process was performed with dilation to limit automatic 

label reassignment of viable island clusters. 

Results 

The proposed atlas generation approach successfully identified large numbers of 

undefined and isolated islands and the reassigned them to proper structures based on 

available prior information and morphometric operations.  The dust removal process 

successfully decreased the plethora of small, isolated islands scattered throughout most 
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images.  As illustrated in Figure 16 the overall brain structure definitions were 

maintained.  The top left zoomed-in views in A and B, display the reassignment of 

unsegmented voxels (pink) to the superior frontal label (teal).  The right zoomed-in 

views in A and B, display the reassignment of unsegmented voxels (pink) to the 

brainstem label (blue).  The bottom left zoomed-in views in A and B, display the 

reassignment of unsegmented voxels (pink) to a new, manually identified label for the 

optic chiasm (yellow). 

Figure 17 shows the progress of our approach for undefined regions.  It can be 

seen for the three datasets that a range of unidentified voxels can occur at the initial stage.  

Many of the voxels occur on borders between two labels due to a partial volume effect. 

Figure 17 illustrates the removal of most unidentified voxels as the procedure progresses. 

Figure 18 demonstrates the results of the automatic assignment of small, 

disconnected islands of voxels for three labels in the atlas.  In the top image, it can be 

seen that many voxels along the border of the brainstem (green) are added to that label.  

These voxels were likely previously unidentified due to partial volume effects.  The 

middle and bottom image illustrate the removal of several disconnected islands displayed 

in red.  Those islands were automatically reassigned to the most similar neighbor label. 
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Figure 16: Before (A) and after (B) representation of the whole 

brain atlas and zoomed-in views of atlas corrections. (A) 

Thousands of undefined voxels occur at label borders (pink) 

because of partial volume effects. (B) The automatic dust removal 

process assigned previously undefined voxels and isolated islands.   
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Figure 17: The change in the unidentified voxels through the first three correction 

stages (Base-1, 1-2, and 2-3) and the change from the base to Stage 3 (Base-3). Scans 

A, B, and C are examples of datasets containing low, average, and high amounts of 

unidentified voxels.  For each image, the red voxels in the left half of the image 

(brown) indicate the voxels removed in this stage.  The voxels shown in blue in the 

right half of the image (blue) are the remaining unidentified voxels at each stage. 
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Figure 18: Before (left) and after (right) the automatic dust cleaning process. 

Voxels that are added (green) and removed (red) are color-coded using 

OpenAtlas. (Top) Example of voxels spatially adjacent to the brainstem 

(green) reassigned to the brainstem label. (Middle) Example of isolated voxels 

(red) removed from part of the inferior frontal gyrus. (Bottom) Example of 

isolated voxels (red) removed from the lingual label. 
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 The average number of undefined voxels was reduced at each stage of the 

correction procedure as seen in Figure 19.  The median counts of undefined voxels in the 

stages Base, 1, 2, and 3 were 16364, 10608, 5639, and 4305 respectively. There is one 

large outlier in the Base stage with 175,715 undefined voxels.  This number was reduced 

to 13,498 after Stage 1, near the median count of 10,608 for label atlases in Stage 1.  The 

majority of voxels for this outlier were merged with the background label because they 

were outside of the brain region.  The average percent reduction in undefined voxels for 

each dataset from the initial atlas (Base) to the final cleaning stage (Stage 4) was 68.49% 

with a standard deviation of 14%.  The maximum percent reduction in undefined voxels 

was 95.67% (this reduction occurred for the outlier) and the minimum percent reduction 

was 46.76%. 
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Figure 19: Boxplots of the count of undefined voxels remaining during 

each stage of correction for the 20 HD datasets.  Each of the 20 datasets 

is represented by a consistently colored dot in each stage of correction. 
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Analysis of unidentified voxel reassignment (Base – Stage 1) 

In the Stage 1 cleaning process, the Editor tool was used to manually and semi-

automatically reassign unidentified voxels to new or existing labels.  In addition, large 

segmentation failures were addressed to remove non-brain tissues (i.e. reassign voxels to 

the Background label) or other obvious failures.  The volume in mm3 of unidentified 

voxels reassigned to another label and the percentage increase of the label’s volume are 

listed in Table 5.  The number of unidentified voxels remaining at the end of Stage 1 

ranged from 7.7% to 92.6%, and was 68.8% on average. 

Four new labels (Dura, Nerve, Optic Chiasm, and the Pineal Gland) were 

manually added to the label atlases.  First the Editor ChangeIslandEffect tool was used to 

assign unsegmented voxels connected in three-dimensions (to a user selected seed point) 

to the new label.  Then an expert reviewed and cleaned each of the new label 

segmentations.  On average 5502.9 mm3, 654.3 mm3, 461.0 mm3, and 43.2 mm3 were 

reassigned to these labels, respectively.   

In addition, an average of 6108.8 mm3 of the unidentified label’s volume was 

reassigned to the Background label to exclude non-brain tissues incorrectly included due 

to segmentation failures.  This resulted in an average 0.08% increase in the Background 

label’s volume.  The maximum volume of unidentified voxels reassigned to the 

Background label (122,017 mm3) occurred for the outlier dataset containing a large 

number of unidentified voxels outside the brain region. 

Analysis of unidentified voxel reassignment (Stage 1 – Stage 2) 

In the Stage 2 cleaning process, the Automatic Dust Cleanup tool was used to 

automatically reassign unidentified small islands of voxels to the most similar adjacent 
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region.  This method was only run on islands containing six voxels or less, and larger 

islands were left for manual editing.  The unidentified voxels were reassigned throughout 

the brain and not limited to a particular region.  Many of the voxel reassignments 

occurred at the border of two or more tissue types and most likely resulted from partial 

volume effects.  The twenty datasets contained between 1,102 and 6,202 unsegmented 

islands with an average of 3,416 islands.  The Automatic Dust Cleanup tool reassigned 

between 93.2% and 95.9% of these islands in each dataset.  These small, reassigned 

islands accounted for an average of 41.0% of the unsegmented voxels and greatly 

reduced the number of unidentified islands requiring manual revision. 

 The volume in mm3 of unidentified voxels reassigned to another label and the 

percentage increase of the label’s volume are listed in Table 6.  The percentage of 

unidentified voxels present at the end of Stage 1 that remained at the end of Stage 2 

ranged from 44.4% to 74.0% and was 59.0% on average (7854.3 mm3).  The Gray Matter 

and the CSF labels were reassigned an average of 2671.9 mm3 and 1114.5 mm3 of the 

unidentified voxels (ranging from 880 mm3 to 4592 mm3 and from 110 mm3 to 3626 

mm3, respectively).  Venous Blood, Dura, and the Brainstem were reassigned the next 

highest averages of unidentified label volumes at 416.0 mm3, 220.6 mm3, and 152.7 mm3, 

respectively.  Other labels were reassigned less than 1.3% of the unidentified voxels each 

on average.   

Analysis of unidentified voxel reassignment (Stage 2 – Stage 3) 

 In the Stage 3 cleaning process, the Merge and Editor tools were used by a 

reviewer to reassign larger islands of unidentified voxels to the correct regions.  The 

volume in mm3 of unidentified voxels reassigned to another label and the percentage 
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increase of the label’s volume are listed in Table 7.  On average, 23.7% of unidentified 

voxels present at the end of Stage 2 were reassigned during this stage.  The Background 

label volume was increased by 432.8 mm3 on average, which accounted for a 0.01% 

average increase in volume.  The Gray Matter, Brainstem, Nerve, Cerebrospinal Fluid, 

and the Cerebellum Cortex were assigned average volumes from the unidentified label of 

381.2 mm3, 297.9 mm3, and 107.4 mm3, respectively.  An additional 92.8 mm3 in voxels 

were manually added to the Nerve label, increasing the label’s volume by an average of 

22.7%.  Other labels were reassigned on average less than 0.9% of the unidentified 

voxels each. 

Analysis of unidentified voxel reassignment (Base – Final Stage) 

 In the overall cleaning process, the Editor and Merge tools were used to manually 

and semi-automatically reassign unidentified voxels to new or existing labels and the 

Automatic Dust Cleanup widget was used to automatically reassign small islands.  In 

addition, large segmentation failures were addressed to remove non-brain tissues (i.e. 

reassign voxels to the Background label) or other obvious failures.  The volume in mm3 

of unidentified voxels reassigned to another label and the percentage increase of the 

label’s volume are listed in Table 8.  The percentage of unidentified voxels remaining at 

the end of the final cleaning stage ranged from 4.3% to 53.2% and was 31.5% on 

average. 

 The Background label was reassigned the largest volume of the unidentified label 

with an average of 6663.8 mm3.  This occurred due to the reassignment of unidentified 

voxels located outside the brain region.  The maximum volume reassignment (122,451 

mm3) of unidentified voxels reassigned to the background occurred for the outlier dataset 
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containing a large number of voxels outside the brain region.  In addition, four new labels 

(Dura, Nerve, Optic Chiasm, and the Pineal Gland) were manually added to the label 

atlases.  On average, these accounted for the reassignment of 5597.9 mm3, 779.2 mm3, 

471.1 mm3, and 49.7 mm3 of the initial unidentified label’s volume.  Gray Matters labels 

and Cerebrospinal Fluid (CSF) received 3051.2 mm3 and 1486.1 mm3 of the initial 

unidentified label’s volume. 
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Table 5: Stage 1 (1st Manual cleaning): Volumetric distribution in mm3 of previously unidentified (Suspicious) 

voxels and the percent increase in volume for each label.  The average, standard deviation, minimum, and 

maximum for both measures are reported.  Note that the “Suspicious” row represents remaining unidentified 

voxels and the Dura, Nerve, Optic Chiasm, and Pineal Gland are new labels. 

Label 
Avg. Vol. 

(mm3) 

St. Dev. 
Vol. 

(mm3) 

Min. 
Vol. 

(mm3) 

Max. Vol. 
(mm3) 

Avg. 
(%) 

St. Dev. 
(%) 

Min. 
(%) 

Max. 
(%) 

Suspicious 12735.0 7073.4 4188 26495 68.78 19.83 7.68 92.64
Background 6108.8 27282.0 0 122017 0.08 0.38 0.00 1.69
Dura 5502.9 8679.7 0 37901 100.00 0.00 100.00 100.00
Nerve 654.3 480.3 244 2396 100.00 0.00 100.00 100.00
Optic Chiasm 461.0 313.3 147 1658 100.00 0.00 100.00 100.00
CSF 271.5 1196.9 0 5356 0.19 0.86 0.00 3.83
Brainstem 71.3 184.0 0 684 0.44 1.18 0.00 4.66
Pineal Gland 43.2 32.5 0 124 100.00 0.00 100.00 100.00
Gray Matter 2.7 8.4 0 31 0.00 0.00 0.00 0.01
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Table 6: Stage 2 (Automated run on unidentified): Volumetric distribution in mm3 of previously unidentified 

(Suspicious) voxels and the percent increase in volume for each label. The average, standard deviation, minimum, and 

maximum for both measures are reported.  Note that the “Suspicious” row represents remaining unidentified voxels. 

Label 
Avg. Vol. 

(mm3) 

St. Dev. 
Vol. 

(mm3) 

Min. 
Vol. 

(mm3) 

Max. 
Vol. 

(mm3) 

Avg. 
(%) 

St. Dev. 
(%) 

Min. 
(%) 

Max. 
(%) 

Suspicious 7854.3 5185.9 2282 19111 58.97 7.79 44.40 74.04
Gray Matter 2671.9 1030.3 880 4592 0.48 0.17 0.15 0.81
CSF 1114.5 814.9 110 3626 0.76 0.42 0.08 1.51
Venous Blood 416.0 461.8 24 1984 1.64 1.68 0.09 6.13
Dura 220.6 176.4 0 771 12.42 21.13 0.66 100.00
Brainstem 152.7 64.0 71 299 0.83 0.40 0.37 1.82
Cerebellum Cortex 134.4 64.9 50 316 0.13 0.06 0.04 0.30
Background 45.9 61.3 0 221 0.00 0.00 0.00 0.00
Nerve 32.0 38.5 3 147 4.46 3.63 0.71 12.55
Inferior Frontal Gyrus 27.1 18.9 2 65 0.61 0.44 0.04 1.35
Cerebellar Vermal Lobules 19.2 17.6 1 88 0.19 0.17 0.01 0.84
Right Subcortical Gray Matter 10.2 9.2 0 39 0.08 0.07 0.00 0.33
Optic Chiasm 9.6 7.7 1 28 1.70 1.78 0.12 7.91
Pineal Gland 6.5 9.7 0 30 25.78 35.92 0.00 100.00
Ventral DC 5.8 5.8 0 17 0.06 0.07 0.00 0.20
Cerebellum White Matter 5.3 5.1 0 19 0.02 0.02 0.00 0.07
Left Subcortical Gray Matter 5.2 5.6 1 20 0.04 0.05 0.01 0.19
Right Thalamus Proper 2.5 4.4 0 18 0.03 0.06 0.00 0.26
Left Thalamus Proper 1.4 2.0 0 7 0.02 0.03 0.00 0.09
White Matter 0.7 1.1 0 4 0.00 0.00 0.00 0.00
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Table 7: Stage 3 (2nd Manual cleaning): Volumetric distribution in mm3 of previously unidentified (Suspicious) voxels 

and the percent increase in volume for each label.  The average, standard deviation, minimum, and maximum for both 

measures are reported.  Note that the “Suspicious” row represents remaining unidentified voxels. 

Label 
Avg. Vol. 

(mm3) 

St. Dev. 
Vol. 

(mm3) 

Min. 
Vol. 

(mm3) 

Max. 
Vol. 

(mm3) 

Avg. 
(%) 

St. Dev. 
(%) 

Min. 
(%) 

Max. 
(%) 

Suspicious 6363.7 4718.3 828 16095 76.29 19.88 31.71 100.00
Background 432.8 424.1 0 1602 0.01 0.01 0.00 0.03
Gray Matter 381.2 1154.1 0 5231 0.06 0.18 0.00 0.80
Brainstem 297.9 369.9 0 1250 1.63 2.02 0.00 6.49
CSF 107.4 149.4 0 446 0.08 0.11 0.00 0.34
Nerve 92.8 179.7 0 788 22.74 53.45 0.00 241.72
Cerebellum Cortex 72.9 189.6 0 835 0.07 0.18 0.00 0.74
Dura 58.7 164.4 0 728 6.03 22.18 0.00 100.00
Venous Blood 42.2 73.6 0 239 0.19 0.36 0.00 1.37
Inferior Frontal Gyrus 1.7 6.1 0 27 0.05 0.18 0.00 0.82
Cerebellar Vermal Lobules 0.9 2.8 0 11 0.01 0.03 0.00 0.14
Cerebellum White Matter 0.8 3.1 0 14 0.00 0.01 0.00 0.06
Optic Chiasm 0.5 2.2 0 10 0.10 0.43 0.00 1.93
White Matter 0.5 2.2 0 10 0.00 0.00 0.00 0.00
Ventral DC 0.4 1.8 0 8 0.00 0.02 0.00 0.08

 
 
 
 



 
 

49

Table 8: Final Cumulative change: Volumetric distribution in mm3 of previously unidentified (Suspicious) voxels and 

the percent increase in volume for each label after all cleaning stages.  The average, standard deviation, minimum, and 

maximum for both measures are reported.  Note that the “Suspicious” row represents remaining unidentified voxels. 

Label 
Avg. Vol. 

(mm3) 

St. Dev. 
Vol. 

(mm3) 

Min. 
Vol. 

(mm3) 

Max. 
Vol. 

(mm3) 

Avg. 
(%) 

St. Dev. 
(%) 

Min. 
(%) 

Max. 
(%) 

Background 6663.8 27257.5 1 122451 0.09 0.38 0.00 1.70
Suspicious 6361.7 4719.4 828 16094 31.51 13.97 4.33 53.24
Dura 5597.9 8591.7 0 38156 100.00 0.00 100.00 100.00
Gray Matter 3051.2 1857.3 1227 9809 0.54 0.29 0.21 1.52
CSF 1486.1 1216.5 180 5369 1.04 0.79 0.22 3.84
Nerve 779.2 500.6 362 2543 100.00 0.00 100.00 100.00
Venous Blood 563.0 875.5 24 4036 2.79 6.25 0.12 28.95
Brainstem 522.3 389.6 76 1498 2.92 2.26 0.42 7.36
Optic Chiasm 471.1 312.8 151 1669 100.00 0.00 100.00 100.00
Cerebellum Cortex 206.1 177.2 84 885 0.20 0.16 0.09 0.79
Pineal Gland 49.7 37.9 0 134 100.00 0.00 100.00 100.00
Inferior Frontal Gyrus 28.8 20.4 2 66 0.66 0.52 0.04 2.02
Cerebellar Vermal Lobules 20.1 17.6 1 88 0.20 0.17 0.01 0.84
Right Subcortical Gray Matter 10.2 9.2 0 39 0.08 0.07 0.00 0.33
Ventral DC 6.2 5.9 0 17 0.07 0.07 0.00 0.20
Cerebellum White Matter 6.1 5.5 0 19 0.02 0.02 0.00 0.07
Left Subcortical Gray Matter 5.2 5.6 1 20 0.04 0.05 0.01 0.19
Right Thalamus Proper 2.5 4.4 0 18 0.03 0.06 0.00 0.26
Left Thalamus Proper 1.4 2.0 0 7 0.02 0.03 0.00 0.09
White Matter 1.2 2.4 0 10 0.00 0.00 0.00 0.00
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Atlas Correction and Processing Time 

 The semi-automatic reassignment of unidentified voxels to new labels and the 

correction of atlas issues in Stage 1 took between 30 minutes and 1.5 hours depending on 

the quality of the initial atlas segmentations.  On a quad-core Intel Xeon machine, the 

automatic cleaning process for the undefined voxels in Stage 2 took an average of 20.2 

minutes to complete with a standard deviation of 7.7 minutes.  Then, the semi-automatic 

reassignment of larger unidentified islands to the correct label and further correction of 

atlas inconsistencies took between 30 minutes and 1.5 hours depending on the quality of 

the atlas segmentation.  Finally, the automatic cleaning process for most labels in Stage 4 

took an average of 12.2 minutes to complete with a standard deviation of 1.3 minutes.  

The total time for the cleaning process (including all stages) ranged from 1.5 to 4 

hours per dataset.  Considering there are thousands of islands in a dataset and manual 

reassignment of each island takes approximately 45 seconds, the automatic cleaning 

process substantially improved editing time.  The manual and semi-automatic revision 

stages are optional, but recommended if the datasets will be used as template atlases. No 

effort was made to optimize computational time for the Python implementation of the 

automatic cleaning tool.  

Discussion 

This work described the creation of a multi-atlas dataset for the entire brain region 

that spans a range of HD progression and MRI scanners.  These atlases are expected to 

improve the future atlas-based MRI analysis on HD.  The tool was demonstrated to 

decrease the editing time for the 20 considered atlases by providing automatic and semi-

automatic reassignment of islands.  After the correction of atlas inconsistencies and 
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small, disconnected regions, the number of unidentified voxels for each dataset was 

reduced on average by 68.48%.  Additionally, new regions of interest were efficiently 

identified and included in the atlases.  The Background label was reassigned the most 

unidentified voxel volume on average at 6663.8 mm3.  This occurred due to the 

reassignment of non-brain tissue previously assigned to the unidentified label due to 

segmentation failures.   

The Automatic Dust Clean Up widget was designed for use in correcting small, 

disconnected islands and may not be accurate when applied to larger islands.  As the 

islands increase in size, the probability of the voxels belonging to more than one label 

increases and it is more appropriate to examine the islands voxel by voxel.  To reduce the 

number of unidentified islands requiring manual revision, this method was only run on 

islands containing six voxels or less.  Larger islands were left for manual editing.  Many 

of the voxel reassignments occurred at the border of two or more tissue types and most 

likely resulted from partial volume effects.  The twenty datasets contained between 1,102 

and 6,202 unsegmented islands with an average of 3,416 islands.  The Automatic Dust 

Cleanup tool reassigned between 93.2% and 95.9% of these islands in each dataset.  

These small, reassigned islands accounted for an average of 41.0% of the unsegmented 

voxels remaining after the first manual cleaning process. 

The LabelAtlasEditor offers an efficient, user-friendly method for editing label 

segmentations.  The relative ease of atlas manipulation simplifies the correction of atlases 

and the tool is flexible enough to be used for anatomical regions other than the brain.  

LabelAtlasEditor has broad potential applications and is available for free download in 

the Extension Manager and for use as part of 3D Slicer.  
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CHAPTER 4: ULTRA-LOW RADIATION CORONARY CALCIUM SCANNING 
WITH AN ENERGY-MODIFIED AGATSTON SCORE 

Introduction 

Cardiovascular disease (CVD) is the leading cause of death globally according to 

the World Health Organization (WHO, 2015).  In the United States, 640 thousand people 

die of heart disease every year, representing one in every four deaths (CDC, 2015).  Of 

the men who die suddenly of coronary heart disease, half of them have no previous 

symptoms (CDC, 2015).  It is therefore important to identify asymptomatic patients at 

risk of coronary events. 

There are several methods used to identify patients with a high risk of developing 

CVD.  One method uses the Framingham risk score (FRS) which estimates the risk of a 

cardiac event over a 10-year period (NIH, 2016).  The risk scores are divided into three 

levels: low, intermediate, and high.  These levels correspond to the percent likelihood of 

a cardiac event and are defined as less than 10%, 10% to 20%, and greater than 20%, 

respectively.  Since this is a population-based model, it does not account for an 

individual’s actual burden of atherosclerotic disease (Budoff and Gul, 2008).  

The presence of coronary calcium is an indicator of atherosclerosis and its level 

corresponds to the degree of atherosclerotic disease (Budoff and Gul, 2008).  Coronary 

calcium can be measured via cardiac computerized tomography (CT) scans.  Coronary 

artery calcium (CAC) screening may detect individuals who have coronary 

atherosclerosis and would benefit from more aggressive therapy (Budoff and Gul, 2008).  

Studies show that individuals categorized by the FRS in the intermediate risk level may 

benefit the most by further risk stratification via CAC screening (Budoff and Gul, 2008).  
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The Cardiac Agatston Score (CAS) is a measure used to quantify CAC.  The goal of this 

project is to allow the use of ultra low radiation dose CT for measuring CAS. 

Prior to this work, it was hypothesized that the CAS measured with a low energy 

protocol (80 kVp) would be comparable to that obtained by the standard protocol (120 

kVp).  The aim was to develop and validate the low dose, low energy protocol for CAC 

screening using an Energy-Modified Agatston score.  In this work, the design, 

development, and verification of a new semi-automated tool to calculate the CAS for 

both 80 kVp and 120 kVp images is described. 

Methods 

This section starts by describing the method used to calculate the CAS on 

standard 120 kVp scans and the co-registration performed in order to calculate the CAS 

scores on 80 kVp scans.  It then illustrates the Cardiac Agatston Scoring application and 

the proposed procedure for measuring a set of CT images.  It is followed by a description 

of the study dataset.  Finally, two statistical analyses are presented, the first comparing 

the 120 kVp CAS measurements from the 3D Slicer module and a Siemens application, 

and the second comparing the 3D Slicer module measurements of the 80 kVp and 120 

kVp scans. 

Agatston Score Calculation 

The pixels in the CT images are set to the Hounsfield unit (HU) scale where the 

radiodensity of distilled water is 0 HU and the radiodensity of air is -1000 HU.  Calcium-

rich structures, such as calcium plaques or bone, have an HU value greater than or equal 

to 130 in the standard 120 kVp scans.  CT imaging can be performed at various energy 
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(kVp) or current (mAs) levels.  Energy levels range from 80-140 kVp and changes in the 

energy level affect the HU density of the image.  Previous Agatston scoring has been 

performed at 120 kVp. 

To calculate the Agatston score, spots of coronary calcium are selected and each 

spot is scored based on its area and the maximum density of the pixels, known as the 

Peak CT.  A value called the x-factor is used to categorize the intensity levels of each 

spot based on the Peak CT.  An x-factor for each spot is set to the value of 1, 2, 3, or 4 

based on the ranges shown in Table 9.  The area of the spot is then multiplied by the x-

factor to calculate the spot’s score.  The sum of all spot scores is the Agatston score or 

“calcium score”.  

Table 9: X-factor categories for the standard 

CAS method at 120 KEV. 

Categories for 
X-factor 

Lower at 
120 kV 

(Standard) 

Upper at 
120 kV 

(Standard) 

1 130 199 
2 200 299 
3 300 399 
4 400 

 

Figure 20 provides an example score calculated for two calcium spots on separate 

axial slices.  The first spot (left) has an area of 15 mm2 and a Peak CT of 450.  

Referencing the ranges in Table 9, it can be seen that this spot’s x-factor is 4.  Therefore, 

the score for the first spot is 60 (4 x 15).  Similarly, the area for the second spot (right) is 

8 mm2 and this is multiplied by the x-factor 2 because the Peak CT is 290.  The resulting 

score for the second spot is 16 (2 x 8). 
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Figure 20: Example Coronary Calcium Scoring of two calcium 

spots in separate axial slices.  

As the score increases, the risk of coronary heart disease also increases.  Risk is 

divided into four levels based on the CAS: (1) CAS < 10 means that little to no calcium 

was found, (2) 10 <= CAS < 100 indicates a moderate amount of calcification, (3) 100 <= 

CAS < 400 signifies an increased level of calcification, and (4) CAS > 400 implies 

extensive calcification.  A CAS over 1,000 is associated with a 20% chance of suffering a 

myocardial infarction or cardiac death within a year (Hoffmann et al., 2003). 

Voxel to Voxel 3D Co-registration 

Lowering X-ray energy results in a substantial reduction in radiation exposure, 

but also alters the measured HU of the CT image.  Lower energy generally leads to 

higher scoring, and so the scoring categories need to be modified when using lower 

energy.  To calculate x-factor levels for the 80 kVp CT scans, a 3D co-registration was 
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performed on a pair of scans of the same cadaver heart, one at 120 kVp and the other at 

80 kVp.  The voxel to voxel based correlation graph is shown in Figure 21.  

 

Figure 21: Voxel to voxel based correlation graph for 

a 3D co-registration of a cadaver heart image at both 

80 and 120 kVp. 

The linear relationship between the 120 kVp and 80 kVp HU obtained from the 

3D co-registration is represented by  

଴଼ܷܪ ൌ 1.4256 ∗ ܪ ଵܷଶ଴ െ 18.355 

where ଼ܷܪ଴ is the projected HU for a voxel at 80 kVp based on ܪ ଵܷଶ଴, the HU of the 

same voxel at 120 kVp.  Using this equation, the new category limits for the x-factor 

were calculated as listed in Table 10. 
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Table 10: X-factor categories for the standard and new methods at 120 and 80 

kVp, respectively. 

Categories for 
X-factor 

Lower at 
120 kV 

(Standard) 

Upper at 
120 kV 

(Standard) 

New lower 
limit at 80 kV 

New upper 
limit at 80 kV 

1 130 199 167 265 
2 200 299 266 407 
3 300 399 408 550 
4 400 551 

 

Results 

Cardiac Agatston Scoring 3D Slicer Module 

The Cardiac Agatston Scoring application, illustrated in Figure 22, provides the 

user with an efficient, semi-automated method to calculate the CAS.  The interface 

consists of several sections: (1) the Help and Acknowledgements section providing usage 

instructions, (2) the Reload and Test section, (3) the Input Parameters section for the 

required input cardiac CT scan, and (4) the Imaging Viewing area.  
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Figure 22: Display of the Cardiac Agatston Scoring application before a threshold 

has been applied to the Input Image and the Editor module has been populated to 

the panel. 

First the user must set a cardiac CT scan to the Input Volume and select the radial 

button to use the x-factor levels for either 80 kVp or 120 kVp.  Once those values are set, 

the Threshold Volume button can be selected.  This button creates a binary label image 

via the SimpleITK Threshold filter which sets voxels less than the threshold value to 0 

and voxels greater than or equal to the threshold to 1.  The threshold is set to the 

minimum HU value in the lowest x-factor level: 130 HU for 120 kVp and 167 HU for 80 

kVp.   

After the label image is created, a custom lookup table containing seven labels is 

set for the label image.  Label 0 identifies background pixels, label 1 signifies the Default 
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pixels with HU values greater than the threshold level, labels 2-5 identify the four 

arteries, and label 6 is used to display the Total Agatston score.  Table 11 lists the red 

green blue alpha (RGBA) color specifications for the labels.  The label image is then 

pushed to 3D Slicer using the sitkUtils package (Kitware, 2015). 

Table 11: Custom Lookup Table. 

Label Color Name Red Green Blue Alpha

0 Clear __ Background 0 0 0 0 
1 Green __ Default 95 212 45 255 
2 Purple __ Left_Main_(LM) 226 57 241 255 
3 Yellow __ Left_Arterial_Descending_(LAD) 248 242 60 255 
4 Blue __ Left_Circumflex_(LCX) 111 184 210 255 
5 Red __ Right_Coronary_Artery_(RCA) 216 23 49 255 
6 Blue __ Total 14 24 255 255 

Custom Editor Widget 

After the Threshold Volume button is selected, a local version of the Editor 

widget, seen in Figure 23, is populated to the module to provide a suite of label editing 

tools.  To activate these tools, the two Editor inputs Master Volume and Merge Volume 

are automatically set to the input cardiac CT scan and the thresholded label image, 

respectively.  The local Editor object has been modified to display only a few Editor tools 

including: Undo to revert the most recent change, Redo to re-implement the most recent 

change made by Undo, Default to deselect the current Editor tool, and Paint to change 

voxels within the current 2D plane.   
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Figure 23:  Display of the custom Editor widget with five 

new buttons to automatically set the Change Island Effect 

tool. 

To minimize manual human effort in calcium plaque segmentation, five colorful 

custom buttons were added to the Editor widget as displayed in Figure 23.  Selection of 

one of these buttons automatically assigns the Change Island Effect Editor tool to either 

the Default label or one of the four arteries.  Then with the selection of a single seed 

point, all Label Image voxels connected to (in three-dimensions) the seed point and of the 

same label as the seed point are changed to an artery label as seen in Figure 24.  This 

provides an efficient method to assign voxels quickly to one of the four arteries in three-

dimensions.  The island color is changed to the value specified in the Lookup Table, seen 

in Table 11.  Shortcut keys for each of the five buttons were added to the list of Editor 

shortcut keys to make label identification more efficient.  The shortcut keys are the 

integer keys 1, 2, 3, 4, and 5 for Default, LM, LAD, LCX, and RCA, respectively. 
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Figure 24: Display of the Cardiac Agatston Scoring application after a threshold has 

been applied to the input image and two calcium plaques have been identified: a 

small plaque in the LM (pink) and a large plaque in the LAD (yellow). 

Cardiac Agatston Scoring Calculation 

 After the calcium plaques have been identified and assigned to arteries, selection 

of the Apply button calculates the CAS scores for each artery individually and also gives 

the total score.  The button’s text will change from “Apply” to “Working” to indicate that 

the algorithm is running.  To calculate and display the CAS results, a custom Label 

Statistics object was created based on the built-in 3D Slicer widget (Pieper et al., 2014a).  

To process the input and label images with SimpleITK filters, these images were pulled 

from 3D Slicer and stored as SimpleITK image objects using the sitkUtils package.   



 
 

62

A binary mask for each artery label was created using the Binary Threshold filter to 

isolate the pixels that identify that artery.  Then a connected components image 

containing a new label identifier for each island is produced for each binary mask using 

the Connected Components and Relabel Components image filters.   

Since the CAS for a calcium plaque is calculated in the axial plane, 2D images for 

each axial slice are created for both the input image and the connected components 

image.  Then the Label Statistics image filter is used to return the pixel count and 

maximum HU value for each island in the axial plane.  The area of each island is 

calculated by multiplying the pixel count by the product of the image spacing in the “x” 

and “y” coordinates.  The maximum HU value for each island is used to determine the x-

factor by using the ranges defined in Table 10.  The score for each island is then simply 

the product of the area and the x-factor.  These scores are used to calculate the CAS score 

for each artery and the total Agatston score. 

Displaying Agatston Scores 

The Label Statistics widget’s table was adjusted to display the Agatston score and 

voxel count for each artery and all arteries combined.  As seen in Figure 25, the label 

color, index, name, Agatston score, voxel count, volume in mm3, volume in cc, minimum 

HU value, maximum HU value, mean HU value, and standard deviation of the HU values 

in each label are displayed.  Also shown in Figure 25, is the option to create a chart based 

on the tabled statistics.  Figure 26 illustrates the module after the CAS values are 

calculated and presented in a chart. 
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Figure 25: Tabular display of the Agatston scores and label statistics for each artery 

and the combined arteries. 

 

Figure 26: Display of Cardiac Agatston Scoring module with Agatston scores 

displayed in a table and chart for each artery and the combined arteries. 

The Save button saves the information in the table to a comma separated 

formatted file using a function within the local Label Statistics Logic object.  This file can 

be reviewed using a text editor or with the commonly used Excel application.  This also 

saves the MRML scene, label and input images, and charts to a user specified folder with 

the 3D Slicer application logic.  If the saved MRML scene is later opened with 3D Slicer, 
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the volumes are automatically loaded and positioned in the same view as when the 

MRML scene was saved.  This allows for quick and easy review of previous 

measurements. 

Slicer Extension Manager 

The Cardiac Agatston Scoring module was submitted through the 3D Slicer 

Extension Manager.  As seen in Figure 27, the module can be installed and managed with 

a single click.  When the 3D Slicer application is restarted, the module is ready for use. 

 

Figure 27: Display of the 3D Slicer Extension Manager used to install the Cardiac 

Agatston Scoring module. 

Statistical Analysis 

Cardiac CT scans at both 120 kVp and 80 kVp were obtained for a group of 16 

subjects with written informed consent.  The total CAS was calculated for the 120 kVp 
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scans with both the Siemens and 3D Slicer tools, and for the 80 kVp scans using the 

modified Agatston scoring method in the 3D Slicer application. 

Outlier Removal 

It can be seen in Figure 28 that there is an extreme outlier in the dataset where the 

80 kVp (CAS = 3070) was more than twice the value measured using 3D Slicer for the 

120 kVp scan (CAS = 1305).  The QQ plot in Figure 29 shows the outlier (top right) in 

the comparison of 120 and 80 kVp scans measured using 3D Slicer. 

 

Figure 28: CAS scores for 16 subjects with the Siemens (120 kVp) and 3D Slicer 

(120 kVp and 80 kvP) applications. 
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Figure 29: QQ plot for the differences in CAS 

scores between the 3D Slicer measurements of 

120 kVp and 80 kVp scans (n=16). 

ICC And T-Test Results 

Table 12 lists the intraclass correlation coefficients (ICC) and the paired t-test 

comparisons of CAS values to assess the agreement between the tools.  The results 

containing all 16 datasets (n=16) and results after the removal of an extreme outlier 

(n=15) are displayed.  Since the CAS data exhibited right skewed distributions, the data 

were transformed using the natural logarithm before the paired t-tests were conducted to 

satisfy the assumptions of normality.  
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Table 12: ICC values and t-test results for comparisons of the Siemens tool 

for 120 kVp and the 3D Slicer tool for both 80 kVp and 120 kVp scans. 

Scans 

(n) 

Method 1 Method 2 ICC 

value 

t-test  

(p-value) Tool kVp Tool kVp 

16 Siemens 120 3D Slicer 120 0.958 0.0641

16 Siemens 120 3D Slicer 80 0.818 0.0237

16 3D Slicer 120 3D Slicer 80 0.929 0.0235

15 Siemens 120 3D Slicer 120 0.952 0.0784

15 Siemens 120 3D Slicer 80 0.791 0.0414

15 3D Slicer 120 3D Slicer 80 0.922 0.0461

 
 

The ICC values comparing the Siemens 120 kVp and 3D Slicer 120 kVp methods 

before outlier removal (Figure 30 top left) and after (Figure 30 bottom left) are highly 

correlated (ICC=0.958, 0.952).  Similarly the ICC value comparing the CAS 

measurements for the 3D Slicer application at 120 kVp and 80 kVp before outlier 

removal (Figure 30 top right) were highly correlated (ICC=0.929), as well as highly 

correlated (ICC=0.922) after the removal of an outlier (Figure 30 bottom right).  The ICC 

values comparing the Siemens 120 kVp and 3D Slicer 80 kVp methods before outlier 

removal and after were almost perfectly correlated (ICC=0.818, 0.791). 

Paired t-test indicates that the Siemens 120 kVp and 3D Slicer 120 kVp methods 

are not statistically different at a significance level of 0.05 before and after the removal of 

the outlier (p-value=0.0641, 0.0784).  The comparisons between the 120 kVp and 80 kVp 

scans indicate statistical differences at the significance level of 0.05 before outlier 

removal (p-value=0.0237, 0.0235) and after (p-value=0.0414, 0.0461). 
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Figure 30:  CAS comparisons between different methods.  The red line shown in the 

figure depicts a line with an intercept of 0 and a slope of 1.  If the methods gave 

exactly the same results, all data points would be on this line.  (Top left)  Siemens 

versus 3D Slicer at 120 kVp (n=16).  (Top right)  3D Slicer measures for 80 kVp and 

120 kVp (n=16).  (Bottom left)  Siemens versus 3D Slicer at 120 kVp (n=15).  

(Bottom right)  3D Slicer measures for 80 kVp and 120 kVp (n=15).   
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Discussion 

The Cardiac Agatston Scoring application was developed to calculate a low dose, 

low energy protocol for CAC screening.  An Energy-Modified Agatston scoring method 

was developed using energy calibration with 3D co-registration of low energy protocol 

(80 kVp) and the standard protocol (120 kVp).  A statistical analysis of 16 cardiac scans 

indicated that the results from the Siemens 120 kVp values and the 3D Slicer 120 kVp 

values were very highly correlated before and after the removal of an outlier.  Similarly, 

the 16 datasets comparing the Slicer 120 kVp and Slicer 80 kVp methods highly 

correlated before and after the removal of an outlier. 

The paired t-test of the Siemens versus Slicer 120 kVp methods indicated that 

they were not statistically different before or after the removal of an extreme outlier.  

Although, the paired t-test of the Slicer 80 versus 120 kVp methods indicated that the 

methods were statistically different before and after the removal of an extreme outlier, the 

p-values after the removal of the outlier were near the significance level of 0.05 (p-

value=0.0414, 0.0461).  Even though the CAS for the outlier was much larger for the 80 

kVp method than the 120 kVp methods, it was still classified correctly in the highest 

severity category since the CAS value was larger than 400. 

Given that the Siemens and Slicer methods are highly correlated, this application 

was shown to provide an accurate CAS for 120 kVp scans.  The Slicer 120 and 80 kVp 

scans are also highly correlated and show that accurate CAS at 80 kVp can be obtained 

through this tool.  This efficient, semi-automated tool is freely available through the 3D 

Slicer Extension Manager to increase the efficiency and improve the availability of 

Agatston scoring with low radiation in clinical and research areas.  
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CHAPTER 5: WAIST CIRCUMFERENCE MEAUSUREMENTS FROM 
ABDOMINAL SCANS 

Introduction  

 There is increasing interest in the effect of obesity on surgical outcomes in cancer 

patients.  Obesity was identified as a major unrecognized risk factor for cancer by the 

American Society of Clinical Oncology (Ligibel et al., 2014).  There remains a need to 

quantify the risk associated with obesity.  Various methods exist for measuring obesity 

including waist circumference (WC), adipose measurement, and intra-abdominal adipose 

tissue.  Currently there is not a computerized application which optimizes the use of these 

measurements in research and clinical practices (Ciudin et al., 2014; House et al., 2008; 

Snell-Bergeon et al., 2004).  This work offers an application to optimize WC 

measurement. 

Elevated body mass index (BMI=weight divided by height squared) has become 

synonymous with obesity (Arnold et al., 2015) and is available in clinical practice.  

However, BMI is an insensitive measure of abdominal obesity and interestingly a large 

study with self-measured WC found that WC was positively associated with mortality 

within all categories of BMI (Jacobs et al., 2010).  Thus WC is potentially a better 

indicator of mortality. 

WC is typically acquired by manually measuring the circumference of a subject’s 

abdomen just above the navel.  It can also be determined through the use of radiographic 

images such as Computed Tomography (CT) images.  This is particularly attractive in 

patients undergoing surgery for cancer since preoperative abdominal imaging is standard 

for many cancers.  Previously, there was not an optimized and efficient method to 
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measure the WC of patients through radiographic images.  This was inhibiting the 

widespread use of this measurement.  

This chapter describes the development of an efficient tool for rapidly and 

accurately measuring WC in CT scans.  It was created within the 3D Slicer environment 

and is freely distributed by the Extension Manager.  Results from the application were 

compared to hand measurements obtained by using a measuring tape.  There was not a 

statistically significant difference between the measures by the application and the hand 

method.  The two measures were also highly correlated with an ICC value of 0.99.   

The goal of this tool is to increase the efficiency and improve the availability of 

WC in clinical and research areas.  An advantage of the module over clinical methods is 

that large numbers of WCs can be quickly measured in succession by a single reviewer.  

This reduces inter-rater variability due to the differences in measuring technique between 

different clinicians.  It also allows for generation of WC measurements for patients that 

were not hand measured in clinic.  The images and measures resulting from the use of 

this tool are saved and are easily retrieved for future review or training purposes.   

Methods 

This section illustrates the Waist Circumference application and the proposed 

procedure for measuring a set of CT images.  It also contains a description of a test 

dataset and the applied image pre-processing.  Additionally, it contains the results of a 

statistical analysis that was conducted to compare the computer-derived CT based 

measurements to the clinical measurements obtained for the same subjects. 
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Waist Circumference 3D Slicer Module 

The Waist Circumference application, illustrated in Figure 31, provides an 

efficient, semi-automated tool for rapidly measuring WC in large images sets.  The 

interface consists of several sections: (1) Input Parameters for two required files, (2) a 

local version of the Editor widget – a suite of label editing tools packaged with 3D Slicer, 

(3) Measurements containing the tabular WC results, and (4) the Imaging Viewing area. 

 

Figure 31: Interface for the Waist Circumference measurement tool. 

There are two input files selected in the Input Parameters section that are 

required: (1) a Results file to contain the measured WC values for all scans and (2) an 

Image List file containing the absolute file path for each abdominal CT scan on separate 

rows.  An Image List file is utilized to efficiently and automatically load images in 

succession and save results to a common Results file. 
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The Results file is formatted as a comma separated values (CSV) file.  This file 

can be reviewed using a text editor or with the commonly used Excel application.  If this 

file does not exist, the module creates a new file with an appropriate header row.  The 

WC value(s) for each scan will then be appended to the end of this file.  

Once the Image List file is selected, the first scan will automatically open.  A 

label image of the same dimensions as the CT scan is automatically created via the 

Python interface for the Editor widget.  To edit the newly created label image with the 

Editor widget, the input image is automatically set as the Master Volume and the label 

image is set as the Merge Volume. 

 

Figure 32: Display of waist circumference outline (in yellow) 

Editing tools within the Editor module allow the user to create a WC label in the 

axial plane very quickly, often with a single mouse click.  The Level Tracing Editing tool, 

outlined in red in Figure 32, allows the user to select a single point on the boundary of an 
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object and automatically create a border of the pixels with the same intensity value 

(Pieper et al., 2014b).  An example WC outline is shown in yellow in Figure 32. 

In Figure 33, the two red arrows point to the top and bottom of the umbilicus.  

The slice directly superior to the last axial slice in which indentation of the umbilicus is 

visible (indicated by the blue line) was used for measuring the WC.  This corresponds to 

the region measured via the tape measure in clinic. 

 

Figure 33: Sagittal display of an abdominal CT scan.  The 

blue line indicates the axial slice used to measure the WC.  

The red arrows indicate the top and bottom of the navel. 

The user can create labels on different axial slices as illustrated in Figure 34.  

There the red and green objects represent different labels on separate axial slices.  Those 

measurements are displayed in the results table with the corresponding slice identifier and 

label color as seen in Figure 35. 
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Figure 34: Axial, sagittal, and coronal views of an abdominal CT scan.  The red and 

green lines in the sagittal and coronal views show the location of two labels created 

in the axial plane. 

Selection of the "Apply" button calculates the perimeter of the labeled objects in 

each slice.  The algorithm iterates through each axial slice and identifies each label with 

the SimpleITK image filter LabelShapeStatisticsImageFilter.  If there is no label in the 

current axial slice the next slice is examined.  The filter returns the perimeter in 

millimeters for each object in the two-dimensional label image.  This information is then 

printed to the results table, and the circumference is displayed in millimeters and inches 

as seen in Figure 35.  

The user selects "Save and Next" when satisfied with the label selections.  This 

button performs several steps: (1) it appends the data in the results table to the output 

Results file, (2) it creates an Output Folder named after the Master Volume, (3) it saves 

the Master and Merge images to the Output Folder, (4) it saves a CSV file with this 

subject’s WC measures from the results table, (5) it saves the MRML scene containing 

links to the volume files, (6) it closes the current MRML scene to close the current 
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volumes, and then (7) it opens the next scan in the input Image List file.  If the saved 

MRML scene is later opened with 3D Slicer, the volumes are automatically loaded and 

positioned in the same view as when the MRML scene was saved.  This allows for quick 

and easy review or revision of previous measurements. 

  

Figure 35: Illustration of printed waist circumference 

measurements in millimeters and inches for two axial slices.  

Dataset 

The Waist Circumference tool was tested on a set of 14 preoperative cystectomy 

CT scans from the Urology department at the University of Iowa Hospitals and Clinics 

(UIHC).  They are from established UIHC urology cohorts with renal cancer and bladder 

cancer in a method with current IRB approval.  These scans have matching WC data 

measured in clinic with a tape measure by one of three urologists.  In some cases, the 

hand measure did not occur on the same day as the CT scan, but they were close enough 

in time that minimal change in body shape was to be expected. 

Initially the set consisted of 20 CT scans with matching WC values.  Prior to 

statistical analysis, 6 of 20 scans were excluded: 3 because part of the abdomen lies 

outside of the field of view on the CT scan; 2 due to image quality issues which occurred 
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when the images were transferred to a CD by the Radiology department; and 1 due to an 

abdominal implant or foreign body that concealed the umbilicus. 

Image Pre-processing 

All original images were converted from the Digital Imaging and 

Communications in Medicine (DICOM) standard via tools provided by the BRAINSTools 

suite (BRAINSia, 2015).  ConvertBetweenFileFormats was used to convert the 

abdominal CT images from DICOM format to Neuroimaging Informatics Technology 

Initiative (NifTI).  The absolute file paths for the converted images were then stored in a 

file for use with the Waist Circumference module.  The application uses this file to 

automatically read input images, name each scan, and save the results to a folder based 

on the scan’s name.  A simple text file is used as input because it is easy to manipulate 

and works on all platforms. 

Statistical Analysis 

 The WC tool measurements were compared to the hand measurements of the 

same subjects.  The Intraclass Correlation Coefficient (ICC) was calculated to measure 

the reliability of the two methods.  Since one of three urologists measured the WC in 

clinic and were chosen by random, the single raters absolute ICC value was calculated.  

This ICC value is sensitive to differences in means between raters and is a measure of 

absolute agreement.  A two-sided paired t-test was conducted to test if the mean 

difference of the 14 paired “hand-based” and “Slicer-based” WC measurements were 

statistically different than zero.  The null hypothesis was that the mean of the differences 

was equal to zero and the alternative hypothesis was that the mean difference was not 

equal to zero.  The statistical significance level was set to 0.05. 
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Results 

As seen in Figure 36, “hand-based” and “Slicer-based” methods gave very similar 

results.  The red line shown in the figure depicts a line with an intercept of 0 and a slope 

of 1.  If the methods gave exactly the same results, all data points would be on this line.  

The largest difference between measures occurred on the scan with the smallest waist as 

measured by hand. 

 

Figure 36: Displays the WC measures for the 

Hand and Slicer tool methods. The red line has 

an intercept of 0 and slope of 1. 

As shown in the boxplot in Figure 37 the median difference value was 0.1 inches, 

the first quartile was -0.4 inches, the third quartile was 0.65 inches, and the maximum 

difference value was 2.8 inches.  The single raters absolute ICC value of 0.99  (p-

value=3.3e-11) indicates that the two measures are highly correlated. 
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A two-sided paired t-test was performed to determine if the means of the two 

methods were statistically the same.  It revealed that the mean difference was not 

significantly different from zero.  That is, the “hand-based” measures were not 

significantly different from the “Slicer-based” measures (t = -0.70632, df = 13, p-value = 

0.4925).  

 

Figure 37:  A boxplot of the difference in WC 

measures between the Hand and Slicer methods.  

Discussion 

Despite the proliferation of waist circumference as a measurement of obesity in 

the literature, the measurement of this factor was not previously optimized. The prior 

radiographic measurement tools were inefficient and not readily accessible in clinical 

practice.  The 3D Slicer Waist Circumference tool was developed to increase efficiency 
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and improve the availability of WC in clinical and research areas. The application is 

open-source and freely distributed within the 3D Slicer Extension Manager. 

One advantage of using the application compared to clinical measures is the 

potential reduction or elimination of inter-rater variability since an entire dataset could be 

measured very quickly with this tool and the previous WC measures could be reviewed to 

ensure consistency.  Variability of hand measurements in clinic can arise due to multiple 

measurers and methods.  

The application could also be used to stratify subjects into levels of obesity that 

span several inches as seen in Jacobs et al.  In that study, they separated subjects into WC 

categories using 10-cm (3.94 inch) increments.  They identified a clinically defined 

threshold for abdominal obesity of WC as ≥ 88 cm (~35 inches) in women and ≥ 102 cm 

(~ 40 inches) in men (Jacobs et al., 2010).  Due to the large range within each cut-off 

level, the Waist Circumference tool could be used to assign subjects to specific levels 

with a high certainty.  

The single raters absolute ICC value of 0.99 indicated that WC measures of the 

“Slicer-based” and the “hand-based” methods are highly correlated.  Furthermore, the 

two-sided paired t-test indicates that the difference between the paired measurements by 

hand and the application is not statistically significant.  These results show that the Waist 

Circumference tool can be used to measure the WC in an efficient way without 

compromising accuracy.  
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CHAPTER 6: DISCUSSION 

Several modules were developed within the 3D Slicer environment to help 

optimize the review of images, perform rule-based automated label map cleaning, 

identify and quantify calcification in the heart, and measure waist circumference from 

abdominal scans.  Each of these modules enables and accelerates clinical research by 

incorporating medical imaging technologies that minimize manual human effort.  They 

are distributed within the multi-platform 3D Slicer Extension Manager environment that 

allows use in the computational environment most convenient to the clinician scientist. 

The BRAINSImageEval stand-alone software was rewritten as a 3D Slicer 

module with the same functionality as the original tool.  The program, rewritten in 

Python, is more streamlined and more flexible than the C++ version.  The 3D Slicer 

module functions as a more efficient replacement for the stand-alone tool.  It will also 

allow for the reuse of components of this module for other QC modules in an imaging 

analysis suite. 

This work also described the creation of a multi-atlas dataset for the entire brain 

region that spans a range of HD progression and MRI scanners.  These atlases are 

expected to improve the future atlas-based MRI analysis on HD.  The tool was 

demonstrated to decrease the editing time for the 20 considered atlases by providing 

automatic and semi-automatic reassignment of islands.  After the correction of atlas 

inconsistencies and small, disconnected regions, the number of unidentified voxels for 

each dataset was reduced on average by 68.48%.  Additionally, new regions of interest 

were efficiently identified and included in the atlases.  
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The Cardiac Agatston Scoring application was developed to calculate the low 

dose, low energy protocol for CAC screening using a low energy protocol.  An Energy-

Modified Agatston scoring method was developed using energy calibration with 3D co-

registration of low energy protocol (80 kVp) and the standard protocol (120 kVp).  It 

provides a novel method for Agatston scoring with low radiation.  A statistical analysis of 

a set of cardiac scans indicated that the Siemens and 3D Slicer CAS methods for 120 kVp 

scans are highly correlated and the 3D Slicer application provided an accurate CAS for 

120 kVp scans.  The Slicer 120 and 80 kVp scans are also highly correlated and show 

that accurate CAS at 80 kVp can be obtained with this tool. 

The use of waist circumference as a measurement of obesity is rapidly increasing 

in the literature, but the measurement of this factor was not previously optimized. A new 

radiographic measurement tool was developed that is very efficient and readily accessible 

in clinical practice.  In a statistical analysis of 16 WC measures of the “Slicer-based” and 

the “hand-based” methods, the single raters absolute ICC value of 0.99 indicated that the 

two methods are highly correlated.  Furthermore, the two-sided paired t-test indicates that 

the difference between the paired measurements by hand and the application are not 

statistically different.  These results show that the Waist Circumference tool can be used 

to estimate the WC in an efficient and reproducible way. 
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CHAPTER 7: FUTURE WORK 

In a small percentage of WC subject images, an issue arose where the subject was 

too large to be contained within the field of view.  In these cases, one or both sides of the 

subject are not present in the scan.  Future work may include estimating the WC for the 

incomplete data via a semi-automated method where the user selects several points along 

the border of the incomplete image and the missing circumference piece is estimated 

from this information. 

The WC tool may also be modified to measure sarcopenia, the loss of muscle 

mass, via the psoas muscle.  Sarcopenia is used to assess the effect of frailty on adverse 

surgical outcomes and has been identified with increased complications in women after 

cystectomy (Makary et al., 2010; Smith et al., 2014). 
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APPENDIX A 

<?xml version="1.0" encoding="UTF-8"?> 

<phd:ImageReview ID="" project="" label="" > 

<xnat:date></xnat:date> 

<xnat:time></xnat:time> 

<xnat:imageSession_ID></xnat:imageSession_ID> 

<phd:series_number></phd:series_number> 

<phd:formdescriptor> 

<phd:field name="Normal variants" help="Does the image show normal variants?" 
value="" type="YesNo"/> 

<phd:field name="Lesions" help="Does the image show lesions?" value="" 
type="YesNo"/> 

<phd:field name="SNR" help="Overall SNR weighted images 0=bad 10=good" value="" 
type="Range"/> 

<phd:field name="CNR" help="Overall CNR weighted images 0=bad 10=good" 
value="" type="Range"/> 

<phd:field name="Full Brain Coverage" help="Is the whole brain visible in the image?" 
value="" type="YesNo"/> 

<phd:field name="Misalignment" help="Does the image show misalignment?" value="" 
type="YesNo"/> 

<phd:field name="Swap / Wrap Around" help="Does the image show swap / wrap 
around?" value="" type="YesNo"/> 

<phd:field name="Ghosting / Motion" help="Are there motion artifacts in the image?" 
value="" type="YesNo"/> 

<phd:field name="Inhomogeneity" help="Does the image show Inhomgeneity?" 
value="" type="YesNo"/> 

<phd:field name="Susceptibility/Metal" help="Does the image show susceptibility?" 
value="" type="YesNo"/> 

<phd:field name="Flow artifact" help="Does the image show flow artifact?" value="" 
type="YesNo"/> 
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<phd:field name="Truncation artifact" help="Does the image show truncation?" value="" 
type="YesNo"/> 

<phd:field name="overall QA assessment" help="0=bad 10=good" value="" 
type="Range"/> 

<phd:field name="Evaluator" help="Name of person evalating this scan" value="" 
type="String"/> 

<phd:field name="Image File" help="Name of the image file being evaluated" value="" 
type="String"/> 

<phd:field name="Free Form Notes" help="Mention anything unusual or significant 
about the images here" value="" type="TextEditor"/> 

<phd:field name="Evaluation Completed" help="Is the evaluation completed? (No 
implies further evaluation needed)" value="" type="YesNo"/> 

</phd:formdescriptor> 

</phd:ImageReview> 
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APPENDIX B 

<ResultSet totalRecords="5667" title="scans"> 

<results> 

<columns> 

<column>project</column> 

<column>subject_id</column> 

<column>subject</column> 

<column>session_id</column> 

<column>session</column> 

<column>date</column> 

<column>time</column> 

<column>seriesnumber</column> 

<column>type</column> 

<column>quality</column> 

<column>reviewed</column> 

<column>status</column> 

<column>element_name</column> 

<column>type_desc</column> 

<column>insert_date</column> 

<column>activation_date</column> 

<column>last_modified</column> 

</columns> 

</results> 

</ResultSet> 
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