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Abstract 

 

Tracheobronchial malacia results in a weakening of the tracheal walls, leading to 

increased difficulty breathing. Stents are used to reopen the lumen of the trachea, however, 

current models are not personalized to each patient, leading to migration, inflammation, 

and breakage of the stents. In order to successfully test novel stent designs, a ventilation 

chamber is needed to recreate the breathing conditions of the body. 

The following describes the iterative development of a ventilation chamber, which 

allows inflation and deflation of lungs via negative pressure ventilation, as representative 

of an actual body undergoing respiration. Previous work shows that lungs are not generally 

used as the testing medium, as only excised portions of trachea are used. The chamber 

presented here would allow testing to the primary and secondary bronchi, which is 

beneficial to medical practitioners. This chamber would be utilized for simulating an in 

vivo environment, in which, tracheal and bronchial stents may be tested and analyzed. The 

chamber described is of simple, replicative design, with attachment of a bladder acting as 

a diaphragm, which is expanded and reduced to recreate representative pressures of the 

chest cavity. A trachea and lungs, porcine in nature for testing purposes, are attached at the 

opposite end of the chamber, via a conduit allowing them to remain open to atmosphere, 

allowing the lungs to inflate via negative pressure. 

An appropriately sized chamber was developed, as well as estimation of appropriate 

applied pressure to achieve ventilation. 
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Chapter 1: Literature Review of Existing Pulmonary Stent Designs, Inflammatory 

Response, and Current Chamber Designs

 

As rapidly as healthcare evolves, one aspect, pulmonary stent design and 

administration, remains fairly rudimentary. Pulmonary (airway) stents have been in use for 

approximately 100 years, yet among the numerous types of stents which have been 

developed in the subsequent years, the efficacy of placement continues to prove 

complicated (Chin et al. 2008). Bioactive and bioabsorbable stents which integrate and 

improve the tracheal tissue are yet to be perfected. The following provides a discussion of 

the existing stent designs, as well as an introduction to animal testing methods, ex vivo 

lung chambers for preliminary testing, and using computerized tomography to aid in the 

personalization of stents. 

1.1 Existing Pulmonary Stents 

 

 Pulmonary (or airway) stents are hollow tubular prostheses, which allow for air 

passage through the lumen in the event of a weak or damaged bronchial tree. These stents 

are often used to re-establish lumens by holding them open; this can be due to 

bronchomalacia, which is a weakening or collapse of the cartilage supporting the trachea; 

in response to tumor in-growth; or as a treatment against fistulas (abnormal connection 

between tissue) and dehiscences (rupture of a previously closed wound) to the esophagus 

or pleural cavity (Chin et al. 2008; Freitag 2000). In order to provide the best results for 

the patient, type, width, and length must be thoroughly examined and selected, as there are 
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a multitude of possible stent choices, which can be grouped to include silicone or balloon 

dilated, covered, and self-expanding metal stents (Chin et al. 2008; Freitag 2000).  

Silicone stents, such as Dumon, Hood, and Polyflex, are disadvantageous in many 

situations as they do not allow for cilia penetration, and are often slightly loose in the 

trachea, causing migration and discomfort for the patient. However, silicone stents do resist 

compression and are more easily removed than their metal counterparts, although 

realignment can be difficult (Chin et al. 2008). Metal stents, such as Strecker and Palmaz 

in the balloon dilated category, Ultraflex and Gianturco Z in the self-expanding category, 

and Wallstent and Alveolus as covered self-expanding examples, are prone to fracture, as 

external pressure wears them down over time, and they also have the potential to cause 

necrosis of the mucosa, and fistula formation, making them difficult to remove (Chin et al. 

2008). The beneficial aspects of metal stents include their thinner frame, which allows for 

more clearance through the lumen; they experience less migration; have less interference 

with cilia; and in the case of covered metal stents, can block tumor growth along the length 

of the stent (Chin et al. 2008).  

It is important for mucus clearance to occur, which is generally at a rate of less than 

5 mL a day; however, in the event of inflammation and/or irritation, excessive secretions 

considered sputum, become problematic and must be cleared by coughing, which can lead 

to even more irritation within the airway (Freitag 2000). Another downfall of the majority 

of stents produced is that they are mostly circular, which does not directly correlate to the 

anatomy of the trachea, as it could be described as more “D” shaped, as it is semicircular, 

with a flat side that lies against the esophagus. Figure 1.1 provides a visual overview of the 

vast array of available airway stents.  
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Figure 1.1. Overview of currently available stents (Freitag 2000). The Dynamic stent is 

listed as piece 29, also, the Dumon (3-4, 28), Polyflex (5-7), Hood (9), Gianturco (10), and 

Palmaz (11) which were some of those previously mentioned. 

 

The Freitag dynamic stent is the only current “D” shaped airway stent on the 

market, which was developed through analysis of CT-scans of various patients. This stent 

consists of steel horseshoe shaped struts enveloped in silicone, with a silicone face without 

struts that makes up the flat side that lies against the esophagus. These steel struts are useful 

in maintaining the lumen against external compression, whereas the silicone face without 

struts allows for compression during cough (Freitag et al. 1994). The struts are also spaced 

at intervals similar to those of the cartilaginous rings surrounding the trachea, which helps 

to prevent migration, as the struts should fit snugly between the rings. In addition, the 

length can also be cut to fit more appropriately to each patient (Freitag et al. 1994). This 

design can be observed more closely in Figure 1.2, which also shows the slight increase in 

diameter towards the bifurcation point. 

1. Montgomery T-tubes 

2. Orlowski tracheal stent 

3. Dumon tracheal stent 

4. Dumon bronchial stent 
5. Polyflex tracheal stent 

6. Polyflex bronchial stent 

7. Polyflex stump stent 

8. Noppen tracheal stent 

9. Hood bronchial stent 

10. Gianturco stent 

11. Palmaz stent 

12. Tantalum Strecker stent 
13. Uncovered Ultraflex stent 

14. Covered Ultraflex stent 

15. Uncovered Wallstent 

16. Covered Wallstent 

17-24. Prototypes of metal stents 

and compound stents 

currently tested preclinically 

and clinically 
25. Westaby stent 

26. Bifurcated Orlowski stent 

27. Hood Y-stent 

28. Bifurcated Dumon stent 

29. Dynamic stent 
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Figure 1.2. Examples of Freitag stent, in three different sizes (Freitag et al. 1994). To the 

left is a representation of the increase in size towards the bifurcation point. The steel struts 

can be seen, which are horseshoe shaped, and do not interfere with the solid silicone back 

wall. 

 

Freitag et al., described the importance of a dynamic stent after analyzing CT-scans 

of tracheas, and finding that they are not uniformly structured throughout (Freitag et al. 

1994). As such, they were also able to model the effects of normal airway breathing and 

coughing when stents of different types were in place. Unlike the Freitag stent, most stents 

do not allow for a cross-sectional change in lumen diameter during coughing and forced 

exhalation, the critical velocity of airflow to move mucus is not reached; this can cause 

mucus buildup and blockage, which can be just as problematic as a weak walled trachea. 

Freitag et al. approximates that fifteen percent of patients with airway stents develop 

clinically significant obstruction due to inspissated secretions, since the cilia, which would 

typically help push mucus and sputum upwards, are blocked (Freitag et al. 1994). This led 

to their design that incorporates the flat membrane to allow for dynamic motion in the 

trachea through reduction of cross-sectional area, which would help sputum clearance. 
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Unfortunately, this stent is often skipped by medical professionals at times as it is difficult 

to deploy and remove, even though it is most similar to natural trachea shape. 

Preliminary data produced by Freitag et al. describes the changes in diameter that 

the trachea undergoes when rigid and dynamic stents are present, and their ability to 

respond to coughing, to show that a “D” shaped stent would be most effective. The results 

of coughing can be seen in Figure 1.3, which illustrates the velocity of air through the 

lumen, which is lowest in the rigid stent model. In addition, these tests showed that an ideal 

stent should be able to change in regard to cough pressures; this is accomplished by the 

flexible membrane on the posterior side of the stent, which allows for reversible reduction 

of cross-sectional area. The use of a silicone flexible membrane also counteracts the 

tendency of metal stents to induce disproportionate granulation formation when exerting 

high localized pressures (Freitag et al. 1994). 

In the design of the Freitag stent, one hundred and fifty patients’ airways were 

modeled using computed tomography (CT) to determine shape profiles which include the 

average and standard deviation for the regions one centimeter below the vocal cords, the 

middle of the trachea, and one centimeter above the carina, and is presented in Figure 1.3 

as well (Freitag et al. 1994). This image also shows how the models depict the flattening 

of the trachea as one progresses up cephalically from the carina towards the cricoid. By 

reproducing this information through computer-aided design (CAD) software, models were 

made that determined the average branching angles at the carina from the main bronchus 

to be 144.7±4° to the right and 133.3±3° to the left, depicted in Figure 1.4 (Freitag et al. 

1994).  
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(a)  (b)  

Figure 1.3. Shape profile of trachea. (a) Depiction of tracheal diameter change subjected 

to rigid and dynamic stents. When flow is equal through the lumen, the velocity in the rigid 

stent is the lowest (Freitag et al. 1994). (b) Average shape of trachea determined through 

CT-scans of 150 patients (Freitag et al. 1994). Bars indicate variance of the standard 

deviation at each point. 

 

 
Figure 1.4. Branching angles at the carina from the main bronchus.  

 

1.2 Animal Testing 

 

Piglets and adult mini-pigs that weigh 23 ± 6 kilograms on average, have been 

found to have tracheas of similar size to humans between 45 and 60 kilograms (99 - 132 

pounds), making them a good representative model for stent testing, as the same size 
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instruments can be used for both species (Marquette et al. 1995). As such, Marquette et al. 

describe in detail methods for inducing malacia in pigs, which is improved upon by 

Saueressig et al. After induction of malacia and stent deployment, inflammatory response 

can be analyzed through tests such as reverse-transcriptase polymerase chain reaction (RT-

PCR) and enzyme linked immunosorbent assays (ELISA).  

 Before inducing malacia, the animals must be placed under general anesthesia, after 

8 hours of fasting from food and water (Saueressig et al. 2011), and in the case of Marquette 

et al., intravenous propofol was used at 2 to 3 mg/kg to begin, with a continuous infusion 

at 10 mg/kg·hr (Marquette et al. 1995). Ventilation was also provided during surgery either 

by a cannula at the proximal port of endotracheal tube, or to the rigid bronchoscope. To 

create the malacia, extramucosal resection of approximately 50% of the circumference of 

three consecutive cartilaginous arches is performed, then, beginning two weeks later, a 

23% solution of NaOH at pH 14 was applied to the mucosal area (inside the trachea) at the 

level of the resected cartilaginous arches via cotton swab (Marquette et al. 1995). As 

determined by Marquette et al., and confirmed by Saueressig et al., the best technique for 

NaOH application is to restrict the application to two thirds of the bronchial circumference, 

or avoid the posterior wall, because the caustic properties of the solution will become too 

severe if the entire circumference is treated (Marquette et al. 1995; Saueressig et al. 2011). 

Subsequent application of the solution was carried out during weekly bronchoscopies, as 

needed, to remove necrotic tissue after stenosis of greater than 50% was found, although 

three applications was typical (Marquette et al. 1995; Saueressig et al. 2011). 

 Stent deployment of an uncovered Palmaz stent into these porcine tracheas induced 

granulation formation which reached its peak after the 7th day, and resolved itself by day 
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21; however, after day 21, the stent was no longer molded to the bronchial wall due to 

moderate to severe crushing of greater than 50% (Marquette et al. 1995). Dacron covered 

Palmaz stents migrated distally, and thus blocked the left upper lobe bronchus, resulting in 

pneumonia; and two tests with covered self-expanding stents were deemed inconclusive 

overall as one stent was expectorated, and in the other case, the pig died due to respiratory 

obstruction 4 days after the operation, though it was determined the stent did migrate 

proximally during that short amount of time (Marquette et al. 1995). 

 Fibrosis and necrosis were found to occur in the region of the excised cartilaginous 

arches, mainly in the submucosal and adventitious layers (Saueressig et al. 2011). In order 

to determine the latero-lateral and anteroposterior diameters of the tracheal lumen, the 

program Sigmascan Demo-Image Analyser by Sigma, was utilized, which uses the 

equation: 

𝐴𝑟𝑒𝑎 (𝑚𝑚2) = 𝜋 ∙  
𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑚𝑚)

2
∙  

𝑐𝑜𝑟𝑜𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑚𝑚)

2
 eq.1 

to calculate the area of the tracheal lumen (Saueressig et al. 2011).  Tracheal inflammatory 

stenosis (narrowing) and malacia are caused by trauma and ischemia, a restriction of blood 

supply, to the mucosa, therefore calculating the area proves valuable to quantify the 

presence of inflammation and fibrosis (Saueressig et al. 2011). 

 It is most typical for granulation tissue to form as a result of impaired mucosal 

blood supply (Freitag et al. 1994); therefore, with regard to inflammatory response in live 

models, testing of an array of cytokines can be performed to quantify immune response. 

The body houses a multitude of cytokines, which is a broad term that describes factors that 

regulate cell activity, and if they become too numerous, tissue damage or death can occur 

(Costa et al. 2013); these can range from interleukins (IL), to tumor necrosis factors (TNF), 
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or transforming growth factors (TGF),  and interferons (IFN), etc. As each regulating factor 

has different activity and targets, these can be used to develop an overall understanding of 

the immune response to a particular “intruder” through assays such as the previously 

mentioned RT-PCR and ELISA.  

These processes are different in that ELISA utilizes antibody specificity to test for 

the presence of an antigen in the sample, which is generally displayed through a color 

change, whereas RT-PCR is a process that allows for the formation and amplification of 

complementary DNA strands, which are analyzed for gene expression through the 

quantification of fluorescent probes linked to the cDNA (Thanawongnuwech et al. 2004). 

This quantification has taken the place of northern blotting, which was previously the 

standard used to separate RNA based on applying a charge to an agarose gel stained with 

an UV fluorescent material such as ethidium bromide, the gel acts to trap the molecules 

based on their size and structure (Thanawongnuwech et al. 2004).  

Previously, Dozois et al., provided the basis for targeting and evaluating porcine 

cytokine expression through the determination of the oligonucleotide sequences necessary 

for gene specificity through RT-PCR. In addition, Dozois et al. was able to determine the 

optimal range of PCR amplification cycles to be between 27 and 38, as well as detect the 

presence of two housekeeping genes that are useful during RT-PCR, β-actin and 

cyclophilin (Dozois et al. 1997). However, one of the most important things to remember 

about RT-PCR is that it does not allow for comparison of the amount of mRNA between 

cytokines, as the quantitative amounts are in relation to the whole (Dozois et al. 1997). 

Also, protein levels must be separately tested as mRNA levels are not necessarily reflective 
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of the amount of protein being produced (Dozois et al. 1997). Both tests are useful as they 

can be completed fairly quickly, and only small amounts of starting material is needed.  

During testing of the live animal models, bronchoalveolar lavage (BAL) can be 

used to collect epithelial lining fluid and bronchoalveolar cells, after flushing the cells with 

phosphate buffered saline (PBS) (Costa et al. 2013). This fluid may then be tested for 

cytokines such as IL-1α, IL-1β, IL-2, IL-4 Il-6, IL-8, IL-10, IL-12, TNF-α, TGF-β1, and 

IFN-γ which are all classified as proinflammatory cytokines, which essentially means an 

increase in their production leads to an increase in inflammatory response 

(Thanawongnuwech et al. 2004). TNF-α and TGF-β1 are considered integral in the 

formation of granulation tissue and fibrosis accumulation as the former acts as a trigger for 

fibrosis occurrence, and the latter is a direct growth factor for fibroblast proliferation and 

extracellular matrix production (Xing et al. 1997). In pigs infected with Mycoplasma 

hyopneumoniae, the levels of IL-1, Il-6, and TNF-α are seen to increase; however, in pigs 

infected with swine influenza, IL-1 and TNF-α levels are decreased (Thanawongnuwech 

et al. 2004). This shows the variability of response, which is why blanket testing of 

numerous cytokines is important, as thus far, the cytokine responses in pigs is not as well 

outlined as in humans.  

In the experiments performed by Thanawongnuwech et al., levels of cytokine 

response and the correlating protein production were evaluated at 10, 28, and 42 days after 

initial infection with M. hyopneumoniae to determine if specific cytokines could be 

associated with certain acts (Thanawongnuwech et al. 2004). It was determined that 

although many of the cytokines expressed increased levels, IL-10 was most likely 

responsible for ongoing persistence of the infection, as it is an inhibitor of macrophage 
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function (Thanawongnuwech et al. 2004). As the concentration was dramatically 

increased, it is thought that it was able to alter the targets of the host immune response 

away from a Th1-type response, which should have cleared the infection 

(Thanawongnuwech et al. 2004). In addition, IL-12 levels remained high over the course 

of the 42 days, leading to increased production of interferon-γ, which when over-produced 

may lead to autoimmune disorders. RT-PCR was used with all of the previously listed 

cytokines to determine density, and ELISA assay was used to measure the levels of IL-1β, 

IL-8, IL-10, and TNF-α at undiluted concentrations (Thanawongnuwech et al. 2004).  

1.3 Existing Lung Chambers  

 

Prior to animal testing, it is important to determine the viability of stent design 

through the use of excised lungs in a chamber that replicates breathing, so as to reduce the 

probability of injury to a live animal. As porcine lungs are relatively easy to acquire, one 

does not need to be euthanized for the sole purpose of performing viability tests.  

Freitag et al. placed excised tracheas in a Plexiglas chamber with the distal ends of 

the trachea attached to a 10 L tank, which acted as a lung proxy, in order to study the 

behavior of deployed stents during forced expiration, cough, and extrinsic compression. 

Negative and positive pressures were applied to the chamber via a vacuum and pressure 

source which alternated between +5 and -9 kPa (0.725 to -1.305 psi). In these experiments, 

a cough was replicated through the attachment of a computer-controlled vibration device, 

which produced quick pressure swings between +3 and -9 kPa (0.435 to -1.305 psi) (Freitag 

et al. 1994). A comparison between the natural tracheal peak flow velocity to the peak flow 

velocity with a rigid stent in place illustrates the importance of a dynamic stent design in 

that the rigid stent only allowed for approximately half of the natural maximum velocity 
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with values of 87 m/s and 50 m/s, respectively (Freitag et al. 1994). Testing of compliance 

also demonstrated that even with large variations of natural tracheas (opposite effects of 

patient with emphysema vs. patient with heart failure and no pulmonary disease), 

deployment of a dynamic stent led to similar mechanical behavior between the cases when 

comparing cross-sectional area to pleural pressure (Freitag et al. 1994).  

Research conducted by Lilburn et al., used rodents to investigate airway responses 

by performing ex vivo negative pressure lung ventilation, which included a right ventricle 

catheter insertion to allow for flushing of the remaining pulmonary blood after excision 

with heparin-saline solution and Dublecco’s PBS (Lilburn et al. 2013). The heart and lungs 

were then moved together into an acrylic ventilation chamber with the trachea pointed 

downwards and suspended in 5% w/v glucose solution, which helped to curtail dehydration 

and edema of the tissues (Lilburn et al. 2013). The researchers used the suction properties 

of negative pressure ventilation to fill the lungs with air, then released the pressure to allow 

for exhalation. A water bell was used to determine the volume of exhaled air by measuring 

the volume of displaced water (Lilburn et al. 2013). 

Patents filed by Burt B Orden (US 4,167,070 A) and Robert H Estetter, et al. (US 

6,874,501 B1) both describe techniques of chamber construction using rigid, translucent 

materials, to create the overall housing, which describe chambers similar to the goal of the 

present research (both depicted in Appendix A). The patent filed by Orden, was published 

in 1979 and consisted of three air filled chambers, two of which housed single bladder 

flexible membranes to represent lungs, which could be in communication with each other 

by a conduit, while also isolating the air flow from the chambers to the interior of the lung 

simulating structures on each side (Orden 1979). In this design, two sets of bellows are 
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present. One set is used to replicate the pressures caused by the muscles within the chest 

when the arms are lifted and lowered; whereas the other represents the diaphragm. Both 

sets of bellows work in similar manners, by increasing the pressure surrounding the lungs 

when the corresponding bellows is collapsed, and decreasing the pressure when the bellows 

are expanded, which provides the negative pressure needed for inspiration (Orden 1979). 

For this schematic, the chambers are filled with air around the lungs, and each bellow works 

independently of the others. To alter the pressure within the flexible simulated lung, a 

pump, such as an alternating piston pump in this rendering, is used. Mass elements are 

added to ensure that the position of the housing does not affect the simulated lung; these 

work by applying pressure to the lung(s) to recreate various lung conditions for illustration 

in erect, supine, and prone positions (Orden 1979). 

US patent number 6,874,501 B1, filed by Robert H Estetter et al. in 2002, looked 

to improve upon the existing design proposed by Orden by introducing liquid around the 

lungs, as well as modifying the design to better represent lungs in the human body. As 

liquid is known to normally surround the lungs, this change enables a more realistic 

simulation. In addition, Estetter et al., described that Orden’s mass elements were not 

symmetrically placed, his simulated lungs only consisted of single bladders surrounded by 

air, that his terminology was backwards to his depiction, and that these discrepancies would 

lead to results that do not accurately replicate the activity of the lungs (Estetter et al. 2005). 

In order to address these disparities, Estetter et al. first increased the amount of lung 

bladders to match the amount of lobes a human has, of three on the right, and two 

bladders/lobes on the left side. Each bladder is connected to a valve, which allows for not 

only both sides to work independently, but also each bladder. In addition, a rigid plate was 
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mounted to be fluid tight between the left and right lungs, to represent the mediastinum, 

which is described as the area between the lungs, normally filled by the heart, trachea, 

bronchi, and esophagus. As the simulator houses materials meant to act as replicas of the 

organs, to simulate their separation, this plate was added, to further the ability of each side 

to act independently of the other. It is the opinion of Estetter et al. that the use of fluid 

surrounding the lungs is a better method than rigid mass elements on the lung surface to 

simulate gravitational effects of chamber rotation, so they chose to dismiss this aspect of 

design from Orden’s chamber (Estetter et al. 2005).  

Both designs choose to include a bladder in representation of the heart as well; 

however, both place the heart at opposite ends of their design from the trachea, which does 

not correlate with anatomical correctness. Orden and Estetter et al. both describe the 

inclusion of the heart bladder as a way to show how hyperinflation, as a representation of 

an enlarged heart, will affect lung compliance. Orden accomplishes this by having the 

flexible bladder representing the heart adjacent to a flexible portion of the otherwise rigid 

wall separating the heart and lung cavities (Orden 1979). The heart and flexible portion of 

wall are on the opposite end of the chamber from the simulated trachea, and therefore not 

nestled in the lung, as in an actual person, it is unclear if this affects the outcome of 

simulations to a high enough degree to be problematic. Estetter et al. also use a flexible 

bladder to show how an enlarged heart can affect the lungs, but surprisingly do not place 

theirs next to the left lobes of the lungs either, although it is again unclear if this is an issue. 

Estetter et al. attach their heart bladder to the opposite end of the mediastinum, away from 

the simulated trachea, in a placement that allows the diaphragm to be displaced upon 
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inflation, thereby affecting the effect of the diaphragm on the cavity and lung (Estetter et 

al. 2005). 

1.4 Stent Customization 

 

Ongoing research in the development of new stents mainly includes the availability 

of customization, but there are also prototypes of nitinol stents that are temperature 

dependent with the ability to be adjusted in vivo, as well as the possibility of inclusion of 

phosphorus-32 , which would prevent the development of granulation tissue (Freitag et al. 

1994; Tripuraneni et al. 2012). One case of customization came out of desperation for a 

patient of low socioeconomic standing, who could not afford a prefabricated device. 

Therefore, it was determined cost-effective to develop a heat polymerized acrylic stent, as 

biocompatibility was already proven (Tripuraneni et al. 2012). Polyether was used as an 

impression material, with an incorporated stainless steel wire to stabilize the mold 

(Tripuraneni et al. 2012). Another approach to the custom route is being taken by Melgoza 

et al., as they develop a program that integrates CAD to build custom stents.  

 The use of CAD allows the researchers to utilize the theory of inventive problem 

solving with the process of quality function deployment which helps solve physical 

contradictions related to geometry and material, to develop designs that will decrease the 

product development cycle and costs, and increase the quality of individual designs 

(Melgoza et al. 2012). The product design has the goals of “necessities” which include 

biocompatibility, where no cytotoxicity is displayed by the prostheses; low migration rate, 

with hopes of avoiding greater than 4 mm of vertical displacement; easy insertion and 

removal, which is obtained by striving to match an elastic modulus between 1 and 15 MPa; 

and lastly, the dynamic property which will come from a reduced wall thickness (Melgoza 
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et al. 2012). CT-scans were used to configure stent design with the manufacturing device 

“Fab@Home” which can translate files of stereolithography format into three-dimensional 

silicone product. The final design does contain a flat posterior portion, with a diameter of 

1 mm, with a wavy vertical pattern (diameter = 2 mm) that is meant to fit between the 

cartilaginous rings, spaced 10 mm apart (Melgoza et al. 2012). The future of this work 

requires streamlining the printing process, as well as developing ways to ensure sterility 

and most importantly, viability in the patient. 

Through the stepwise process of developing a feasible design, which succeeds in 

isolated tests through the pressure chamber, and then the live model, the desired result is a 

biocompatible model that does not induce great inflammatory response. Due to the existing 

knowledge of porcine cytokinetic responses, the applicable assays will help to validate 

success. 
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Chapter 2: Design Development 

 

An appropriate ventilation chamber to house actual lungs is necessary for recreating 

the conditions of the chest cavity, as a method to test novel stents, which have the goal of 

being designed uniquely for individual malacias. To replicate conditions within the chest 

cavity, an ideal chamber should be able to undergo negative pressure, as the lungs rely on 

negative pressure ventilation for respiration.  

Normal respiration occurs through the involuntary muscle control of the diaphragm 

lifting and lowering at the bottom of the rib cage, as the rib cage expands and contracts. 

The physiological action of inhalation is described by Grotberg (2009) as air being pulled 

into the lungs through a vacuum created by the diaphragm contracting downward, also 

pulling the lungs downward, in conjunction with the contraction of the external intercostal 

muscles lifting the lower six ribs; this vacuum causes negative pressure in the lungs. 

Exhalation acts in the reverse manner, reversing the vacuum as the diaphragm and external 

intercostal muscles relax, allowing air to leave the lungs (Grotberg 2009).  

Negative pressure ventilation also allows for regular hyperinflations to occur, to 

overcome decreasing lung compliance due to decreasing surfactant levels during normal 

respiration (Uhlig & Wollin 1994). During hyperinflation, which occurs in the body 

approximately every five minutes as a deep breath, surfactant levels are regenerated, which 

helps the alveoli remain open as they overcome a lower surface tension with the help of 

surfactant, therefore avoiding atelectasis, a complete or partial collapse of the lung (Uhlig 

& Wollin 1994).  
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Some testing methods, such as those stated by Freitag et al. (1994) do implement 

the use of actual human tracheal tissue, although, only a section of a single trachea was 

obtained from the donor to measure how well a variety of stents hold open the lumen, with 

a tank attached at one end to act as a lung. In this case, stents are deployed and removed 

from the same sample successively, which is not ideal for later deployments which are 

subjected to progressively worsening conditions, as deterioration occurs inside the lumen. 

Since Freitag et al. only used a section of trachea, this was not ideal for the purposes of the 

Tracheobronchial Stent Design (TSD) team due to the desire to target the primary, and 

potentially, secondary bronchial region of the lungs. In addition, this methodology was not 

repeated here because of the use of positive pressure ventilation, which occurs when air is 

forced into the lungs, and is not ideal for testing with lungs as this sort of ventilation can 

lead to over-inflation and edema formation, causing damage to the lung (Uhlig & Wollin 

1994). Most simulation devices on the market use plastic and silicone lungs or sacs, and 

even more rely on positive pressure ventilation, therefore, a new chamber needed to be 

designed.  

Because negative pressure ventilation is preferred, it was the goal of this research 

to design a chamber that would meet the aforementioned conditions of housing lungs and 

performing ventilation by negative pressure. If successful, the chamber would provide a 

method to test novel stents beyond the main tracheal region to the primary and secondary 

bronchi of the respiratory tree. Therefore, there is a need for the use of actual lungs, and 

porcine lungs were chosen due to their similarity in size and ease of access to obtain. By 

performing tests with porcine lungs, measurements are more accurate and realistic than 

those performed with synthetic materials. The following schematic depicts the needs of the 
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system, which includes the chamber itself; a way to monitor pressure changes; a conduit to 

attach the trachea to the chamber, allowing it to be open to atmosphere; lungs; diaphragm; 

and control mechanism of diaphragm to adjust pressure similarly to the mechanism used 

in the body. 

 
Figure 2.1. Schematic of design constraints. Proposed design needs to house lungs in rigid 

container, which has air tight seal (a), a pressure monitor (b), lung attachment (c), lungs 

(d), diaphragm (e), and contain a method for adjusting pressure in diaphragm (f). 

 

2.1 Dismissal of Need for Tissue Fixation 

 

Design of the needed ventilation chamber began by attempting to recreate the 

conditions of the chest cavity. One of the first considerations included discussion of tissue 

fixation, and whether or not it was necessary or optimal for testing. Fixation is used to 

preserve tissues after removal, in a life-like state which stops decomposition so that cellular 

processes that were underway just prior to removal can be viewed (Klatt 2014).  

It was decided not to attempt fixation of the lungs for numerous reasons. First, the 

amount of tissue present would require a fixation procedure that could last for weeks, and 

as a ratio of 10:1 of fixative to tissue is recommended for ideal fixation, the amount of 

fixative needed would be immense (Klatt 2014). Typically, the optimum tissue size for 
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fixation would be no more than 5 mm thick, and no larger than a postage stamp 

(approximately 2 cm). In addition, fixing at this size can still take three to seven days 

(Randolph-Habecker 2012). Second, the process would undoubtedly end with uneven 

fixation as the outermost tissue would become fixed early in the process, making it difficult 

to judge progress of the interior tissue, and making it more difficult for the chemicals to 

reach the innermost tissue (Trachsel et al. 2011). Third, fixation would decrease the 

compliance of the tissue, therefore, the tracheal tissue would become stiffer than untreated 

tissue, and would not retain the same characteristics of tissue that stents would be in contact 

with after implantation.  

There are protocols in “plastination” of tissue, but these would not be considered 

for these purposes, as this process solidifies the tissue, replacing water and fat with 

polymers such as silicone and epoxy, resulting in a solid piece that would not contract and 

expand with ventilation (von Hagens et al. 1987). In addition, with plastination, the tissue 

would become less likely to be damaged; whereas this is an important variable to consider 

during stent deployment, as if tearing of the tissues occurs with an excised lung, damage 

in live tissue would definitely be expected. Because this damage leads to granulation, 

which can advance to the point of blocking air flow into the lungs, potential to damage 

tissue would remain an important variable to consider. As porcine lungs can be obtained 

fairly cheaply from a slaughterhouse, it was accepted that fresh lungs would be purchased 

as needed for measurement and testing.  

2.2 Proof of Concept and Material Selection 

 

To begin the design process, many types of chambers were researched and 

considered. The first step of the design process required a proof of concept that negative 
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pressure could be obtained in a rigid chamber; a square box was obtained, not large enough 

for testing with actual lungs, made of acrylic with 12.7 mm (0.5 in) diameter, and pressure 

was applied to a rubber diaphragm sealed to the top of the chamber. Pressure was applied 

via a compressor, which immediately indicated that a smoother, steady, and slower 

application of pressure would be necessary to replicate breathing. At the time, a vacuum 

was not available, although the sides of the chamber and lid noticeably bowed, indicating 

the chamber was under pressure.  

Research was conducted to find a suitable chamber already on the market, which 

would be an appropriate size to fit snugly around porcine lungs and a diaphragm to provide 

minimum volume around the lungs, rigid as a rib cage would be, would be cost effective, 

and able to be sealed to prevent leakage of water or air when pressure was applied. A 

suitable chamber already on the market was not found. Therefore, it was determined that 

Lexan™ (polycarbonate), a rigid material, would be preferable to Plexiglas® (acrylic) as 

acrylic is more prone to shatter, although acrylic is less likely to scratch. In addition, 

polycarbonate is able to undergo a higher number of cycles in an autoclave, and better 

withstands the application of pressure, as it is virtually unbreakable. Both materials are 

able to undergo a process similar to welding, where methylene chloride is used to fuse the 

material together (Gore et al. 2014). Glass was also considered as a potential material, 

however, it would be likely to shatter easily in comparison, as acrylic is four to eight times 

stronger than glass, and polycarbonate is 200 times stronger. Additionally, glass would 

prove much more difficult for the Machine Shop to manipulate.  
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2.3 Evaluation of Early Design Concepts  

 

Initially, a cylinder was desired for the body of the chamber, but there was difficulty 

finding a cylinder of ample size, to fit around the porcine lungs, which were found to have 

average dimensions of 45.72 cm (18 in) from the superior end of the trachea to the inferior 

portion of the lungs, 20.32 cm (8 in) of total lateral distance of both sets of left and right 

lobes, with a depth of 7.62 cm (3 in) across the frontal plane from ventral to dorsal. These 

averages were provided by the slaughterhouse, and verified once acquired. In addition to a 

cylindrical body, a lid that screwed onto the chamber was desired, to further ensure air and 

water leakage would be blocked. Many cylinders widely available were not large enough 

to house porcine lungs, were significantly more expensive than their sheet-made 

counterparts, or were made of flimsy materials, which did not follow the recommendations 

given to the Tracheobronchial Stent Design (TSD) team. 

One early design, devised by Dr. Kolok and depicted in Figure 2.2, consisted of the 

use of a six and a half gallon glass carboy, with the bottom cut off, to allow for the 

diaphragm to be adhered. This design was rejected due to the difficulty cutting the bottom 

edge away, worry of sharp edges tearing the diaphragm and being dangerous to the 

operator, as well as difficulty adhering the diaphragm well enough to maintain a sufficient 

seal. In addition, the size seven stopper that the carboy uses, would not provide a 

sufficiently large surface for the addition of a barb to attach the lungs to. As the stopper 

has a top diameter of 37 mm (1.46 in) and bottom diameter of 30 mm (1.18 in), attaching 

a barb would have left little material in the stopper for support or other ports. The tracheal 

attachment barb would require approximately half of the bottom diameter to be drilled out, 
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as the base of the barb has a diameter of 27.15 mm (1.06 in). Also, adding ports to the 

chamber could be dangerous and more difficult than desired.  

 

Figure 2.2. Ventilation Chamber Concept 1. Representation of glass carboy, cut at flat end 

to allow for attachment of diaphragm. Trachea proposed to be attached to rubber stopper, 

size 7.  

 

The second concept design, depicted in Figure 2.3, had a large body for the lungs, 

with an angled side that narrowed to follow the form of the trachea. A plate surrounded by 

a gasket, with a cutout on the bottom that fit around the trachea, was proposed as a method 

to prevent fluid from leaving the body of the chamber, so that the trachea would not become 

filled with liquid. The advantages of this chamber included that it would be shaped to fit 

around the lungs and trachea, providing a tighter fit, as experienced in the ventral cavity; 

the chamber would be able to accommodate numerous ports, such as inlets and outlets for 

air or fluid; the diaphragm could be attached below the lungs, as shown, or attached to the 

lid, which could lift off for placement of the lungs in the chamber.  

Additionally, the tracheal end of the chamber could be constructed at a downwards 

angle, which would follow the suggestions of previous work performed on rodents by von 

Bethmann et al. and Lilburn et al., which describe chamber placement on a 20° angle, 

creating 1 cm of height difference between top and bottom of chamber, and a design as 

“lung with orifice pointed down”, respectively (von Bethmann et al. 1998; Lilburn et al. 

2013). The disadvantages of this design include: complicated, unnecessary angles; also, 
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the plate cutout around the trachea would be hard to standardize, even with a strong yet 

compliant gasket to accommodate varying trachea dimensions, leading to leakage; and if 

the diaphragm was attached to the lid, in parallel with the lungs, this would interfere with 

the inflation of both the diaphragm and the lungs, as not much space would remain, 

although with diaphragm placement at the inferior end of the lungs, it would be more 

difficult to seal the diaphragm sheeting to the wall. Due to the over-complexity of this 

design, it was rejected with the goal of defining a simpler design.  

 

 
Figure 2.3. Ventilation Chamber Concept 2. Chamber with many angled portions, and 

removable plate that fits around trachea to block fluid. 

 

 A third design was devised with the assistance of Dr. Kolok, to be a square chamber, 

separated by a plate with holes at the bottom, with a plunger on one side, to act as a 

diaphragm, which is used to move fluid through the holes, while the lung sits on the 

opposite of the plate. An illustration of this design can be seen in Figure 2.4, below. This 

design would require an adherence area for the lungs, such as a barb that is open to 

atmosphere to be installed on the detachable lid, which would be simple to accomplish. 

Other ports could be added to the lid or walls easily as well, as it would be constructed of 

polycarbonate.  

Diaphragm 
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In the middle plate, holes would need to be drilled at the bottom to allow for fluid 

to be pushed and pulled by suction into and out of the side with the lung, causing the 

pressure difference. In favor of this design would be a simple to construct chamber, which 

allows for attachment of the trachea in a manner to prevent fluid from entering the lungs, 

and the use of a plunger which can be manually or mechanically controlled. The downsides 

of this design include difficulty ensuring the plunger can easily move enough in both 

directions to provide the needed pressure difference, as well as the difficulty continuing to 

control the plunger if it was deemed necessary to invert the chamber, as suggested 

previously. Additionally, the plunger would likely leak, as the corners would be difficult 

to seal, causing them to be susceptible to leakage. A permanently attached diaphragm 

would not be optimal, as this blocks the ability to clean the chamber. The idea was proposed 

to place pressure marks on the side of the wall, so that the displacement of fluid could be 

monitored, but it was decided that this would not provide an accurate gauge due to different 

lung sizes. This design was also rejected.  

 
Figure 2.4. Ventilation Chamber Concept 3. Square chamber divided by wall, with holes 

in the bottom, to allow fluid flow between sections. Plunger would move to create pressure 

difference, and lungs would be open to atmosphere through attachment to lid.  
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 In Ventilation Chamber Concept 4, the diaphragm is vertical, just as the lungs are, 

which does not fully mimic the body, but the chamber could potentially be rotated to lay 

with the trachea and lungs horizontal. With this particular design, the diaphragm would be 

attached on one side near the opening and closing of the lid, and also would be expanding 

beside the lungs, which both could potentially cause interference, as also discussed with 

Concept 2. The top lid would require a gasket, and would need to be clamped. In addition, 

without a release for fluid, the chamber could not be filled to capacity, although a port 

could be added if necessary. Optimally, a pump would control the diaphragm, which could 

be achieved by attaching a rod to the diaphragm, or by filling the diaphragm with fluid. 

Attaching a rod to the diaphragm presents more problems, as the most secure fit would 

likely result in having a hole in the diaphragm, which would lead to sealing issues.  

 
Figure 2.5. Ventilation Chamber Concept 4. Diaphragm placed parallel beside lungs, which 

are attached to lid and open to atmosphere. Gasket and clamps required around lid.  

 

 

Diaphragm 
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2.4 Choosing a Diaphragm 

 

 As the body uses a diaphragm to control the movement of air, a method of adding 

one to a ventilation chamber was needed. The diaphragm needs to meet the criteria of being 

air tight, water tight, and have a high compliance and tensile strength. Numerous materials 

were considered, before settling on a two tube latex bladder that is typically used in 

sphygmomanometers, more commonly referred to as blood pressure cuffs. Two sizes were 

obtained, with the specifications of: 20.32 cm by 6.35 cm (8.0 in by 2.5 in) for the smaller 

bladder, and 38.1 cm by 11.43 cm (15 in by 4.5 in) for the larger bladder when fully 

inflated. The bladders were estimated to be cylindrical when filled completely, and 

therefore, volume was estimated as: 

𝑉𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 𝜋𝑟2ℎ eq. 2 

Estimated volumes of 643.36 mL (39.26 in3) and 3,778.20 mL (230.56 in3) were calculated. 

The thickness of material was measured to be 0.82 mm (0.03 in) of both bladders. Figure 

2.6 represents the chosen bladder used as a diaphragm. The two tubes were attached to the 

chamber via barb fittings, for inflation and deflation by pumps connected inline, on the 

exterior of the chamber. 

A sheet of 1.5875 mm (1/16 in) ultra-strength silicone rubber was obtained from 

McMaster-Carr, and used in the initial testing. Although this material was compliant, for 

simplicity, further iterations of the design required a diaphragm such as the bladder. 

Problems sealing a rubber sheet to the chamber in a manner that would allow leak-proof, 

controlled air flow, which was also easily adjustable, showed that a sac-like diaphragm 

would be a better choice. 
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The smaller bladder was unable to provide pressure differences needed to replicate 

breathing in the lung. The larger bladder fared better, as it did affect the pressure of the 

chamber enough to allow the porcine lungs to inflate and deflate to accepted values similar 

to those experienced in humans, these results are further discussed in Chapter 5. 

 
Figure 2.6. Two Tube Bladder Used as Diaphragm Substitute. Attached to pumps through 

barb fittings in the lid for inflation and deflation. 

 

 Other diaphragm materials were considered, such as an inner tube from a tire, a 

balloon, and 1/16” ultra-strength silicone rubber sheeting. An inner tube was purchased, 

but found to be much too rigid of a material, with very little flexibility. In addition, the 

material would not be pliable enough to allow itself to be easily manipulated in the 

chamber. A balloon was dismissed as a diaphragm due to doubts in the strength and 

durability of the balloon, and the nature of having to overcome the tensile properties of the 

balloon at rest before it expands; in addition to inconsistent elasticity over the course of 

many trials. Also, the bladder obtained allowed the greatest amount of flexibility in 

placement and adherence inside the chamber, which proved useful during testing of 

chamber prototypes.  

 

15 in 

4.5 in 



29 

2.5 Pressure Monitoring 

 

 In order to monitor the flow of air into and out of the lung, a spirometer was attached 

to the lid of the chamber, opposite the trachea. This setup allowed the trachea to remain 

open to atmosphere, as the mouthpiece allows gas to pass through a filament between the 

trachea and atmosphere. Spirometers calculate the volume of air inspired and expired by 

the lungs, so this is a useful test to determine if enough negative pressure is being applied 

by the diaphragm. A PASPORT Spirometer (PS-2152, Roseville, CA) by PASCO was 

used, with disposable mouthpieces of the Lilly type.  

Lilly spirometers, also known as pneumotachometers, measure the difference in 

pressure before and after a membrane with known resistance. The Fleisch version is 

generally accepted to be more reliable, as they measure the difference in pressure through 

a series of parallel capillaries, though for the data required to monitor flow into and out of 

the trachea and lungs to atmosphere, as desired by the project sponsor, the Lilly type is 

acceptable. Both types rely on the Venturi principle that gas particles accelerate as their 

flow zone is reduced (Brown et al. 1986; MacIntyre et al. 2005).  

 The preliminary designs contained methods to monitor the pressure inside the 

chamber, which was not incorporated into the final design, as the spirometer was able to 

distinguish flow into and out of the trachea, which is valuable. One such method was for a 

water column, for example, by attaching stackable manometer tubes from a lumbar 

puncture kit or a flexible tube, but as the size of the chamber grew, this method was 

discarded, as the focus moved to measuring the volume of flow into and out of the lung. 

Also, the original goal of the water column was to replicate the amount of pressure change 

that the body undergoes, which would be commensurate to 10 mL of fluid moved in the 
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body (McGuire et al. 2014). However, as the ventilation chamber does not hold the lungs 

as closely as the rib cage of the same body, the volume around the lungs would not be 

comparable between the two systems.  

 In the body, the pleural space normally contains approximately 0.1 mL kg-1 of fluid, 

such that greater than 7 to 14 mL is considered abnormal in humans. Additionally, the 

pleural sac is generally only 10 to 20 μm in width, which would not be achievable in the 

proposed designs (Sriram et al. 2008).



31 

Chapter 3: Design Prototypes 

 

The first and second constructed prototypes were developed from 6.35 mm (0.25 

in) Lexan™ polycarbonate as rectangular chambers with a removable lid, held in place by 

two and four vertical hold-down toggle locking clamps (DE-STA-CO® 317-U), 

respectively, with an added rubber gasket to help seal the chamber. The first edition of the 

chamber, Prototype 1, pictured in Figure 3.1, proved to be oversized, with inner dimensions 

of 59.69 cm x 36.83 cm x 19.05 cm (23.5 in x 14.5 in x 7.5 in). Prototype 1 also contained 

a plate on the interior to adjust the usable space of the lung compartment. This design was 

quickly deemed too large, as the lungs had no support, and the bladder was unable to 

provide enough pressure difference to ventilate the lungs.  

 
Figure 3.1 Image of Prototype 1. Balloons present to fill excess space. 



32 

A smaller chamber was subsequently constructed, Prototype 2, with inner 

dimensions of 36.83 cm x 25.40 cm x 8.89 cm (14.5 in x 10.0 in x 3.5 in), which fit much 

more tightly around the lungs, particularly in the smallest dimension. The lid of both 

Prototype 1 and Prototype 2 housed three ports: conduit for connection of trachea to 

chamber, and two fittings to attach the two tubes of the diaphragm on the inside of the lid, 

and for connection to the pumps on the outside of the chamber. The ports utilized plumber’s 

tape and aquarium grade silicone to deter leakage.  

Figure 3.2 is an image of Prototype 2 with the proposed plate, clamps, bladder, and 

tracheal barb visible. A valve was also added to allow for addition of fluid when lid is 

already in place. This is particularly useful when the chamber is tilted horizontally. These 

features are discussed in more detail following the image.  

 
Figure 3.2. Image of Prototype 2. (a) Spirometer attachment piece, (b) fittings for pump 

attachment and tube attachment from bladder, (c) trachea attachment barb, (d) clamp to 

close chamber, (e) bladder, (f) valve to allow adjustment of fluid inside chamber. 

a 

d 

c 

b 

e 

f 
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The barb fitting for the trachea had dimensions of 3.37 cm (1.32 in) in length, and 

14.28 mm (0.56 in) in width, which allowed for attachment with minimal restriction to the 

potential for air flow into and out of the trachea to atmosphere, as the larynx was removed 

from the lung sets. Opposite the tracheal barb, the spirometer was attached, with the 

outflow side of the mouthpiece attached to the lid, and the side normally reserved to be 

sealed by the lips, which is slightly smaller, left open to atmosphere. This direction was 

important and kept consistent so the sensor would not report values opposite to the actual 

flow, and would replicate normal use of the sensor.  

Additionally, the rubber diaphragm was positioned and adhered to the chamber in 

a few different ways, for optimization of the design. For one iteration, the bladder was 

adhered to one of the large sides of the chamber, at the bottom. In another iteration, the 

bladder was adhered only to the short edges of the chamber, in an effort to allow one lobe 

of the lung on either side of the bladder, as the lobes appeared to be weighing down the 

bladder in the previous arrangement. As the bladder would occasionally not return to its 

natural shape, a horizontal plate was proposed to separate the bladder from the lungs. 

Prototype 2 was not large enough to allow for this configuration with a lung in place, so 

the design was tested with a balloon, and showed great promise. The next prototype was 

developed with the addition of the plate as a consideration. 

For Prototype 2, the DE-STA-CO clamps were added to the middle of the two short 

edges, as well as on the long edges, offset, with one on either side of the centered trachea 

attachment piece. The clamps on the long edge could not be centered due to interference 

with the spirometer and the horizontal arms of the clamps. These clamps were unable to 

apply pressure evenly on the lid and gasket, therefore, leakage remained a problem with 
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this design. In addition, the clamps would cause the walls of the chamber to bow outwards 

when pressure was applied, further disrupting the seal. As the goal of this design was to 

have the ability to invert the chamber when desired, similarly to the previous work by von 

Bethmann et al. and Lilburn et al., any leakage was not an acceptable solution. A second 

gasket was added around the edge in an effort to reduce leakage, which did help to reduce 

leakage, however, fluid from the lungs began escaping through the spirometer, which 

negates the potential to retrieve results, as the spirometer filament would become 

contaminated. 

3.1 Final Prototype Design 

 

Prototype 3 was developed based on the shortcomings of the prior two prototypes. 

First, the dimensions in the x and y planes became 54.61 cm x 34.29 cm (21.5 in x 13.5 

in), which were more similar to Prototype 1; however, the depth was more similar to 

Prototype 2, at 10.16 cm (4.0 in), a half inch increase over its predecessor. Table 3.1 

displays the progression of sizing for the three chambers.  

Table 3.1 Inner Dimensions of Prototypes in Relation to Average Lung Size 

 Height (X) Width (Y) Depth (Z) 

Average Size of Lungs 45.72 cm (18.0 in) 20.32 cm (8.0 in) 7.62 cm (3.0 in) 

Prototype 1 59.69 cm (23.5 in) 36.83 cm (14.5 in) 19.05 cm (7.5 in) 

Prototype 2 36.83 cm (14.5 in) 25.40 cm (10.0 in) 8.89 cm (3.5 in) 

Prototype 3 54.61 cm (21.5 in) 34.29 cm (13.5 in) 10.16 cm (4.0 in) 

 

Prototype 3, depicted in Figure 3.2, was developed to include a lid with an O-ring, 

which provided a more consistent seal than the previous design, as it fit the chamber 

similarly to a shoe box lid. In addition, smaller pull action latch clamps (DE-STA-CO® 
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323) were utilized, and placed evenly around the chamber, which held the lid in place 

securely. A plate was added 15.87 cm (6.25 in) from the bottom of the chamber, to separate 

the diaphragm from the lungs, and the diaphragm tubes were attached to the wall below 

the plate. The plate is screwed in place to maintain each compartment, and prevent it from 

moving should the chamber be tilted or inverted. Attaching the tubes and pump hoses at 

the level of the diaphragm, below the plate, allows for increased maneuverability of the 

chamber, as the pump hoses do not become detached accidentally between trials as the lid 

is removed and replaced; also, they do not cause any interference if the chamber is inverted, 

which was observed in testing of Prototype 2. Additionally, the spirometer was attached 

by a 3D printed connector, attached to the exterior of the lid, opposite the tracheal barb.  

 
Figure 3.3. Prototype 3: Final Chamber Design. Clamps present, spirometer attached, 

gasket, bladder attached to box to act as diaphragm below shelf to protect diaphragm from 

interference by lungs, which are present. 
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Prototype 3 was constructed of thicker material than the previous two prototypes, 

to reduce flexing and bowing of the sides, as it is inherently more rigid. The polycarbonate 

chosen for this prototype is 9.52 mm (0.375 in) thick, whereas the previous chambers were 

constructed of 6.25 mm (0.25 in) thick material.  
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Chapter 4: Testing Procedures

 

 Tests were first conducted of six human subjects to determine tidal volumes of real 

subjects, in an effort to verify similar volumes were achievable in the chamber (outlined in 

Section 4.1). Successful trials of box design were determined first by visual inspection, and 

secondly, by the total flow of oxygen into and out of the unobstructed lung, as measured 

by spirometer. In addition, flow rate data was obtained as obstructions were introduced to 

the excised porcine lung, to quantify the reduction of air flow in the presence of a stent or 

exterior force on the trachea. 

Data was initially collected from a balloon acting as a lung proxy, as this provided 

a simple method to verify success without being wasteful with porcine lungs. Once 

reasonable success was obtained with the balloon, porcine lungs collected from 

Caughman’s Meat’n Place in Lexington, SC were used for testing, and data was collected 

via the methodology discussed in Section 4.2. 

4.1 Human Testing Methodology 

 

The average tidal volume was calculated of six subjects, by use of a PASCO® 

PASPORT Spirometer with disposable mouthpiece, connected to the software PASCO® 

SPARKvue® (Roseville, CA). The spirometer was automatically detected, and the “build” 

option was used to create a graph that displayed time, in seconds, on the X-axis and Total 

Flow (L) on the Y-axis. A sampling rate of 50 Hz was chosen, and testing began.  

The subject was asked to sit or stand comfortably, as well as, hold their nose during 

testing, so that all air exchange would pass through the filament of the spirometer. The 
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spirometer is held away from the mouth until the indicator lights on the sensor change from 

“Wait” (blinking red) to “Ready” (steady green). At this point, the subject places the 

spirometer in the mouth, and begins breathing normal, quiet breaths. The device should be 

between the teeth, with lips creating a seal around it. Each trial was one minute in length, 

after which, data collection was stopped, and exported for analysis. For accurate tidal 

volume estimation, the average of at least six breaths should be used (Quanjer et al. 1993); 

one minute trials provided more than enough breaths for estimation.  

If the filament of the spirometer was contaminated during a trial, it was replaced 

for the subsequent trial, as contamination can increase resistance to air flow. Resistance 

could cause unrealistically high readings of flow rate and total volume. 

4.2 Chamber Testing Methodology 

 

Prior to testing and placement of the lungs in the chamber, the diaphragm must be 

connected by its two tubes to the ports in the chamber, and the diaphragm should be 

arranged so that it is stretched across the width of the chamber. Once the diaphragm is in 

place, the perforated plate should be screwed into place above it, so that the plate does not 

become displaced. In addition, the pumps are attached to the chamber. 

Lungs were obtained from Caughman’s Meat’n Place, which were requested with 

the trachea, heart, lungs, and diaphragm intact, and kept cool until ready for use. Before 

attaching the lungs to the chamber lid, the larynx was removed, as well as excess 

esophageal tissue attached to the trachea. The trachea was attached to the barb in the lid 

via a hose clamp, which was tightened around the outside of the trachea to keep it in place. 

The barb was also wrapped in silicone tape prior to lung attachment. Next, the lungs were 

lowered into the chamber, and petroleum jelly was added around the edge of the chamber 
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to help ensure a complete seal. Air was pushed directly into the lungs by a single bellows 

pump for two cycles of 0.5 L of positive pressure in an attempt to open the air passages, 

since surfactant was no longer being produced. The pump was not allowed to vacuum from 

the lungs for these two cycles, to keep the passages open. In normal breathing and forced 

exhalation, a subject would never fully empty their lungs of air, so the volume that remains 

is considered residual volume, and can be calculated by subtraction of the inspiratory vital 

capacity from the total lung capacity (Quanjer et al. 1993). 

The chamber was then held open as the diaphragm (of the chamber) was inflated 

by two bellows pumps, each rated to displace 0.5 liters of air per depression of the pump. 

Once the diaphragm is inflated, initially to 1.0 L, the chamber lid is lowered and clamped 

in place. It is important to fill the diaphragm prior to sealing the chamber as the lung is 

initially in a resting position that is not considered inflated. Sealing the chamber prior to 

inflation of the diaphragm would cause the lung to decrease in volume further, limiting the 

potential for inflation as the alveoli collapse in an environment without surfactant 

production.  

The spirometer mouthpiece is then placed into its connector on the lid, and 

measurement can begin; SPARKvue® software was used for data collection with the same 

set-up as for human testing. Breathing cycles were simulated by simultaneously pulling the 

pumps open, then pushing them closed, repeatedly, for one minute trials. As the pumps 

were pulled open by force, a vacuum is created in the chamber, causing the lungs to fill 

with air. Expanding the bellows also refilled the pumps with the air that would be used to 

re-inflate the diaphragm in the next cycle. Between trials, the hose was unscrewed from 
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the bellows in order to maximize the beginning capacity of the bellows, as they did tend to 

lose capacity throughout the trials.  

Obstructions were recreated by either tightening a second hose clamp around the 

exterior of the trachea below the level of the barb, or by inserting a stent with a narrowed 

diameter. Stents were placed and removed by forceps. Images of these may be found in 

Section 5.2.3. 
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Chapter 5: Evaluation of Prototypes 

 

Prototype 1 was deemed too large on visual merit, due to the difficulty of setting 

the adjustable plate and having an excess of space in the chamber. In addition, the lid did 

not stop leakage of air from the chamber, and the lungs were suspended without support, 

which is not representative of the body. It was determined the best course of action would 

be to scale down the chamber, resulting in decreased volume surrounding the lungs, which 

would better represent the thoracic cavity. 

Prototype 2 was built to resemble the previous iteration, with the decreased 

dimensions discussed in Chapter 3. Preliminary trials were conducted with this chamber 

and a balloon attached as lung proxy, in an effort to determine if average flow rate increased 

in the presence of a high or low fluid filled environment. From visual tests, it was easily 

determined that the lung proxy performed better in a low fluid environment. Data collected 

from lungs in this prototype produced negligible flow into and out of the lungs, discussed 

in Section 5.2.1, therefore, it was necessary to construct the third prototype. 

Successful trials were achieved with the third prototype, of unobstructed and 

obstructed flow by stent placement and external compression. As seen in the following 

figures, it was difficult to maintain flow throughout the course of each trial, which is due 

to the rudimentary nature of the pumps used. As the bellows ability to vacuum was reliant 

on the operator’s strength and speed of pulling the bellows open, there was an overall 

decrease in pressure as trials progressed. Because the bellows failed to vacuum completely, 

each subsequent cycle was likely to have a reduced amount of flow into and out of the 
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diaphragm. Nonetheless, successful trials were still achieved, and average tidal volumes 

were determined, and compared to the human subjects.  

5.1 Results of Human Respiration Tests 

 

Tidal volume (TV) is considered a static volume, although it can be affected by 

numerous factors, including level of physical activity, disease processes, and even 

measuring conditions such as rest and posture; 500 mL is typically used as the starting rate 

for an adult male (Quanjer et al. 1993; Grotberg 2009). Artificial ventilation often aims to 

recreate the necessary pressures for optimal gas exchange, and clinical practitioners will 

often ventilate based on a range determined by the patient’s ideal body weight (IBW). 

Before a normal ventilation range can be predicted, the IBW must be determined from the 

subject’s height. The Robinson equation for estimation of IBW was used for these trials, 

as it has been shown to provide a better estimation of healthy weight for men than other 

equations such as the Broca, Hamwi, Devine, and etc, described in Appendix B.1 (Shah et 

al. 2006). The listed formulas do not provide exceptional estimates for women, therefore, 

for simplicity, the Robinson equation for women was chosen to estimate IBW of the female 

subjects as well (Shah et al. 2006).  

Robinson Equations: 

𝐼𝐵𝑊 (𝑚𝑒𝑛) = 52 𝑘𝑔 + 1.9 
𝑘𝑔

𝑖𝑛𝑐ℎ 𝑜𝑣𝑒𝑟 5 𝑓𝑒𝑒𝑡
 eq. 3 

𝐼𝐵𝑊 (𝑤𝑜𝑚𝑒𝑛) = 49 𝑘𝑔 + 1.7 
𝑘𝑔

𝑖𝑛𝑐ℎ 𝑜𝑣𝑒𝑟 5 𝑓𝑒𝑒𝑡
 eq. 4 

Estimates for TV were then calculated based on the subject’s IBW. There is 

discrepancy between medical practitioners on the best estimation tactic, so estimates were 

taken by multiplying the IBW by seven and ten to create a range that many practitioners 

would find acceptable (Ricard 2003; Deakin et al. 2010). Table 5.1 describes the tidal 
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ranges established based on the six subjects’ heights, as well as the values calculated for 

each subject.  

Table 5.1. Ideal body weight and tidal volume range estimation of six volunteer subjects. 

Subject 
 

Height  
(in) 

inches over  
5ft 

IBW  
(kg) 

x 7  
(mL) 

x 10  
(mL) 

Calculated  
TV (mL) 

F1 60 0 49.0 343 490 484 

F2 62 2 52.5 370 520 692 

F3 63 4 56.6 396 566 566 

M1 72 12 74.8 524 748 632 

M2 73 13 76.7 537 767 612 

M3 76 16 82.4 577 824 1,887 

 

Tidal volumes were then calculated from the volunteers from the data collected by 

the method described in Section 4.1. In order to determine the TV, the maximum and 

minimum values of each expiration were obtained, and the difference was averaged. 

Representative graphs of each subject may be found in Figure 5.1, with graphs of each trial 

visible for all subjects in Appendix C. It was common for trials taken from a single subject 

to trend in different directions, as the subjects may inhale a consistently larger amount than 

exhaled for one trial, resulting in a positive trending graph, and do the opposite in the next 

trial. In this case, a larger exhale would have taken place than inhalation, resulting in a 

negatively trending graph. Of course for more even breathing, the graph appeared to stretch 

out horizontally without trending upwards or downwards too far. For the trials depicted in 

Figure 5.1, most trials trend down as the exhalation was larger than inspiration, but this 

was not the case for all trials.  

Subjects were asked to perform three trials, and to ensure that the average volumes 

were consistent between these trials, statistical analyses were performed. TVs of each trial 

were first compared by analysis of variance (ANOVA), and if the p-value was found to be
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Figure 5.1. Representative charts of total flow (L) for quiet breathing of six subjects. 

Vertical axis of all is measuring total flow in liters, and horizontal axis is time in seconds. 

(a – c) F1, F2, F3; (d - f) M1, M2, M3. 

 

lower than the alpha level of α = 0.05 (95% confidence), then t-tests were performed 

between two trials at a time to determine which trial should be discarded from the overall 

average. P-values taken from these t-tests were analyzed according to the Bonferroni 

correction, which reduces the alpha level by the number of comparisons in order to avoid 

a Type I error of rejecting the null hypothesis when it is true (Information Technology 

Laboratory 2012). Therefore, because three trials were being compared, the p-value of each 

two mean comparison by t-test were compared to α = 0.016 instead of α = 0.05.  
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ANOVA analysis showed that F2, F3, and M2 produced trials that were similar 

enough to be considered equal at α = 0.05, with p-values of 0.197, 0.705, and 0.080, 

respectively. The trials of F1, M1, and M3 produced p-values less than α = 0.05, therefore, 

the null hypothesis that all average tidal volumes were equal was rejected. The ANOVA 

p-values of these subjects were 1.56E-13, 1.00E-3, and 1.93E-11, respectively. To 

determine which trial should be discarded, t-tests were conducted of these subjects’ trials 

using the Bonferroni correction. For F1, Trial 2 vs Trial 3 was the only combination to 

produce a p-value above 0.016, with a two tailed p = 0.416. Because comparisons including 

the first trial produced p-values less than the alpha value, it was made clear that Trial 1 

should be removed from further calculations. T-test comparison for M1 showed that Trial 

1 should be removed as Trial 2 vs Trial 3 produced a p-value of 0.178, the only comparison 

larger than 0.016. For M3, the calculated p-value of Trial 1 vs Trial 3 was 0.023, the only 

combination of trials to produce a p-value larger than the alpha level. Due to this, Trial 2 

was excluded from further comparison. A snapshot of p-values can be seen in Table 5.2, 

with full ANOVA and t-test results (as needed) located in Appendix D. 

Table 5.2. Trial comparison p-values of each subject. ANOVA p-values are compared to 

α=0.05, whereas t-test p-values are compared to α=0.016, due to Bonferroni correction. 

Subject ANOVA P-Value Trial 1 vs Trial 2 Trial 1 vs Trial 3 Trial 2 vs Trial 3 

F1 1.56E-13 6.93E-7 2.66E-7 0.416 

F2 0.081 x x x 

F3 0.705 x x x 

M1 0.004 3.13E-4 0.006 0.178 

M2 0.063 x x x 

M3 0.001 0.286 0.006 .001 

 

Average calculated TV for all subjects is presented in Table 5.1; the average TV of 

F1, F3, M1 and M2 fell within their expected ranges, at 465 mL, 566 mL, 618 mL and 596 

mL, respectively. Subject M3 displayed an average TV of 1,887 mL, which was 1,063 mL 
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higher than the larger expected value, a 129% increase. The average TV value of F2 was 

larger than expected as well, with a value of 692 mL, which is 172 mL larger than the 

expected range, or, 33% larger than the highest expected value.  

5.2 Porcine Lung Testing 

 

As lungs obtained are likely to have varying dimensions and levels of deterioration 

due to the slaughtering process, the amount of volume change per set of lungs is difficult 

to standardize. Although, TV estimation for pigs is accepted to be within the range of 5.9 

– 14.5 ml kg-1 (Hannon et al. 1989; Wiklund et al. 2010). Therefore, controlling the other 

variables, such as how the lungs, spirometer, and diaphragm are readied, as well as keeping 

the same pump operators, is the best action for creating a consistent testing environment. 

The possibility of obscure cuts obtained during lung retrieval is also a concern, as these 

will affect respiration attempts. 

5.2.1 Prototype 2: Evaluation of Performance 

 

As previously stated, the lungs were inflated via positive pressure for two cycles, 

prior to experimentation with negative pressure to help open some air passages. The 

opening of the airways helped to create residual volume in the lung, so that the lung would 

be more accepting of passive inflation since the passages were more recently opened, with 

the goal of replicating the effects of surfactant production to some extent. The following 

figure (5.2) is a representation of the flow rate into and out of a lung in Prototype 2. The 

first trial produced some pressure difference, with a maximum flow rate of 0.25 L s-1, 

resulting in a maximum tidal swing of 0.27 L, depicted in Figure 5.3. However, it was 

determined that the chamber was leaking, and the data was not able to be reproduced in 

later trials. In Trial 2, acting as a representative of further testing, taken once the chamber 
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was sealed, only negligible flow rates were obtained, with a maximum flow rate of 0.06 L 

s-1. In addition, there was no evidence of tidal waves as a result of the negligible flow. As 

the chamber was sealed at this point, it was clear that this prototype would not produce 

results comparable to human respiration. 

 
Figure 5.2. Flow rate of lungs in Prototype 2. Trial 1 produced flow rates as large as 0.25 

L s-1, although leakage was evident in the chamber. Trial 2, which was conducted after seal 

was improved, resulted in nearly negligible flow, with amplitudes averaging 0.06 L s-1.

 
Figure 5.3. Total flow into and out of lungs in Prototype 2. Trial 1 does display tidal swings, 

with a maximum amplitude of 0.27 L. However, the chamber was found to leak. Trial 2 

underwent negligible increases and decreases in flow, while the chamber was sealed. 

-0.25

-0.15

-0.05

0.05

0.15

0.25

0 10 20 30 40 50 60

Fl
o

w
 R

at
e 

(L
/s

)

Time (s)

Trial 1 Trial 2



48 

5.2.2 Prototype 3: Evaluation of Ventilation without Obstruction 

 

With lungs placed in Prototype 3 from a pig of between 90.72 – 136.07 kg (200 – 

300 lbs), an average unobstructed TV of 982 mL was obtained from three trials, after 

ANOVA analysis to verify similarity between trials (p = 0.608 obtained). The TV produced 

also reached and exceeded a range similar to that of most people, therefore, Prototype 3 is 

considered successful in meeting the goal of reproducing human like pressure differences 

in the lung by negative pressure ventilation. Additionally, the TV achieved falls within the 

range expected based on the approximate weight of the pig and the multiplication factors 

of seven and ten. The lowest expected volume based on 90.72 kg equals 635 mL; whereas 

the highest expected volume based on 136.07 kg is 1,360 mL. Figure 5.4 presents total 

flow for the third trial, which also produced the largest tidal volume of the three trials. 

Figures for all trials may be found in Appendix E. 

 
Figure 5.4. Trial 3 of unobstructed large lung in Prototype 3. Average tidal volume 

achieved of 1,013 mL for this trial.  

 

A second set of unobstructed trials were also conducted of lungs obtained from a 

pig weighing approximately 77 kg (170 lbs). Using the method previously described to 
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estimate an acceptable TV range, volumes between 539 mL and 770 mL would be 

expected. Three trials were conducted, and an average TV was obtained of 579 mL from 

the first two trials, as Trial 3 was shown to be significantly different from the first two trials 

through ANOVA and t-testing. Table 5.3 provides p-values of all trials conducted with pig 

lungs, to include open airways and intentionally restricted airways. Figure 5.5 depicts the 

flow for the first trial, which produced the greatest TV of this set at 587 mL. Additional 

figures are located in Appendix E. 

Table 5.3 Trial comparison p-values of porcine lungs. ANOVA p-values are compared to 

α=0.05, whereas t-test p-values are compared to α=0.016, due to Bonferroni correction. 

Subject ANOVA P-Value 
Trial 1 vs  

Trial 2 
Trial 1 vs  

Trial 3 
Trial 2 vs  

Trial 3 

Pig 1 (200-300 lbs) 0.608 x x x 

Pig 2 (170 lbs) 1.64E-05 0.508 3.17E-05 3.59E-04 

Pig 2 Open Stent 0.058 x x x 

Pig 2 Clamped 7.30E-07 0.229 0.001 1.06E-06 

Pig 2 Restrictive Stent 0.569 x x x 

 

 
Figure 5.5. Trial 1 of unobstructed smaller lung in Prototype 3. Average tidal volume 

achieved of 587 mL for this trial. 
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Additionally, a stent with a wall thickness of 2.0 mm was 3D printed of VisiJet® 

SL Tough material, and placed in the trachea of the lungs harvested from the 77 kg (170 

lb) pig to determine if its presence would affect respiration. In practice, this material would 

not be chosen for deployment in a human airway, as it does not exhibit properties conducive 

to implantation, in part due to its rigid nature. The piece was 50 mm (1.97 in) in length, 

with an inner diameter of 17 mm (0.66 in). The outer diameter of 19 mm (0.75 in) was 

slightly larger than the interior of the trachea, so once in place (possible due to the elasticity 

of the trachea), it fit snugly and ensured the trachea remained open. An average TV of 716 

mL was obtained from three trials (p = 0.058), which resulted in an increase of 137 mL, or 

23.7% over the same lung without the stent in place.  

The estimated average number of breaths per minute for adults is generally listed 

to fall within the range of 8 to 20 breaths per minute (Dugdale III et al. 2013; American 

College of Emergency Physicians Foundation 2015), and all volunteers fell in this range. 

Between the two sets of porcine lungs, an average respiration rate of 7.2 breaths per minute 

was achieved, meaning that currently, the chamber is capable of producing flow rates 

similar to humans, although it does remain right outside the lower range. A more efficient 

pumping system would likely be able to increase the respiratory rate to fall within the range.  

5.2.3 Prototype 3: Evaluation of Ventilation with Introduced Obstruction 

 

Next, trials were conducted of the lung with obstruction, which was caused by two 

separate mechanisms: exterior compression due to clamp placement, and insertion of 

restrictive stent into the airway.  

To create exterior compression on the trachea and reduce the inner diameter, a hose 

clamp was tightened around the trachea, to create a reduction of approximately 30% of the 
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outer diameter, resulting in a decrease to nearly 12.6 mm (0.49 in) from 18.0 mm (0.71 in). 

Figure 5.6 depicts the second hose clamp tightened around the trachea below the barb. 

Three trials were conducted, and the average TV fell to 467 mL based on Trial 1 and 2, as 

Trial 3 was seen to be significantly different (p = 7.30E-7), from an unobstructed TV of 

579 mL from the same set of lungs, a 19.3% reduction in flow. The total flow of these tests 

maintained similar structure as the unobstructed tests, albeit with reduced magnitude. 

Graphical representation may be found in Appendix G.  

 
Figure 5.6. Image of hose clamp tightened around trachea. Clamp reduced the diameter by 

30% due to external compression. 

 

The interior obstruction was created by a stent inserted in the trachea, also printed 

with VisiJet® SL Tough material, which narrowed the inner diameter from the superior to 

inferior end to establish a 30% reduction within the stent. With this design, the inner 

diameter shrank to 13.0 mm (0.51 in) at the inferior end from 18.8 mm (0.74 in) at the 
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superior end, within a length of 50 mm. The following images show the reduction caused 

by the stent in the trachea, as it was excised after testing.  

 
Figure 5.7. Trachea with 3D printed stent inserted to cause reduction by 30%. (a) Side view 

of trachea and stent. (b) Direct view of stent inside trachea. 

 

Initially during testing, flow increased into and out of the lung, though the 

magnitude dropped off after the halfway point. The overall tidal volume for the three trials 

(p = 0.569) was 1,022 mL, though this does not reflect the sharp decline observed during 

the last breaths of each trial. For the first trial, a decline of 24% from the fourth to fifth 

peak was observed, and the reduced rate was maintained for the subsequent three breaths. 

For Trial 2, flow also began with an elevated flow, before a sudden decrease of 28% and 

47% marked the final two breaths of the test. Trial 3 reacted similarly, showing four 

elevated breaths, which are followed by three breaths decreasing in amplitude by 30%, 

11%, and finally, 13%, from each previous breath. Figure 5.7 (a) provides a graphical 

display of total flow for Trial 3.  

The increase in flow for the first few breaths of each trial can be attributed to the 

increase in pressure that the stent caused by reducing, and essentially funneling air into the 

lung. This increased pressure helped to force open the airways more so than the passive 

intake of air experienced in an unobstructed airway, thus more air was able to initially fill 

(a) (b) 



53 

the lung with the stent in place. However, through the course of the trial, the pumps could 

not continue to produce the vacuum needed to remove air from the diaphragm due to air 

not escaping the lungs as easily. Hence, the pumps were unable to refill with air, so there 

was less air to push back into the diaphragm. Data depicting the flow rate (Figure 5.7 (b)), 

which was collected simultaneously with total flow, shows that later in the trials, the pumps 

were unable to achieve the flow rate seen earlier in the trial, which is consistent with the 

pumps being unable to push and pull air due to the restriction in the trachea. Had the trials 

continued, it is reasonable to assume that the pumps would eventually not be able to move 

enough air to cause any flow in the lungs, therefore, the total flow and flow rates would 

continue to shrink. Graphs of Trials 1 and 2 are located in Appendix G. 

 
Figure 5.8. Reduction in magnitude of flow due to insertion of 3D printed stent designed 

with 30% reduction of inner diameter. (a) Total flow, (b) Flow rate.  

 

It is also of note that the restriction in flow area also led to a slower breathing rate 

as it became more laborious to manipulate the pumps. For the three trials, only seven 

breaths were accomplished per minute; however, if trials were to continue for longer 

periods, it is likely the average would continue to decrease as it becomes more difficult to 

remove air from the diaphragm. An example of this can be seen with the final three breaths 

represented in Figure 5.8, as the average length of the breaths increased from 8.1 seconds 

-0.5

0

0.5

1

1.5

2

0 20 40 60

To
ta

l F
lo

w
 (

L)

Time (s)
-1

-0.5

0

0.5

1

0 20 40 60

Fl
o

w
 R

at
e 

(L
/s

)

Time (s)

(a) (b) 



54 

to 9.28 seconds, continually increasing with each breath. The elongation of breaths was 

present in the other trials obtained from the placement of the restrictive stent as well.  
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Chapter 6: Pump Selection 

 

Currently, two Airhead high volume bellows foot air pumps are used to create the 

pressure needed to ventilate the lungs. Each pump has the ability to inflate and deflate, but 

under normal conditions, would typically only move air in one of those directions at a time. 

Normally, in order to move air in the opposite direction, the hose must be detached and 

screwed into the opposite port. Because the volume of two pumps was required to move 

into and out of the diaphragm at a given time, these pumps were modified to allow for them 

to pump and vacuum cyclically, without the hose being switched from inflate to deflate, 

and back again.  

These pumps contained rubber flaps that would open during use to allow the 

“inflate” port to move air into a space, then the rubber flaps on the “inflate” side would 

close, blocking back flow into the bellows. As this occurred, the “deflate” side opened to 

fill the bellows from atmosphere. In order to allow the pumps to inflate and deflate without 

the need of moving the hose from one port to the other. Therefore, instead of changing 

ports, first, the flaps on the “inflate” side were clamped open, so that they were no longer 

blocking flow back into the bellows. Then, a piece was 3D printed for each pump, which 

screwed into the “deflate” port of the pump, to block the “deflate” port of each pump from 

filling the bellows from atmosphere. Figure 6.1 shows one of these pumps, with the 3D 

printed piece to block flow in place.  

As the current method relies on operators manually opening and closing the 

bellows, an automated set-up is the logical next step in the attempt to produce consistency 
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between breaths and trials, which would also allow longer trials. In order to create the 

needed pressure and vacuum, a pump with a maximum flow of at least 8 liters per minute 

(lpm) should be considered, as each breath requires a flow rate of approximately 1 liter to 

inflate the lungs, as determined by averaging the amplitudes obtained from flow rate data 

of the open trachea porcine trials (average of 1.12 L obtained from three trials of the 170 

lb pig’s lungs without obstruction, figures in Appendix E). A pump with a maximum flow 

rate of at least 8 lpm will allow enough air to be available for each breath, while also 

allowing resources for a greater number of breaths each minute than the manual pumps 

were able to provide. In order to vacuum completely, a vacuum is needed that can meet the 

specifications of the given compressor.  

 
Figure 6.1. Airhead® high volume bellows pump. Shown with 3D printed piece (gray) to 

block flow from “deflate” port.  

 

6.1 Proposed Solution for Future Work 

 

A compressor and vacuum pump were identified from Air Squared, Inc. The 

products suggested are P12H020A-BLDC-C scroll air compressor, and V12H020A-

BLDC-C scroll vacuum pump, as these two are sister products, meaning the vacuum should 
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be able to vacuum at the same rate as the compressor pushes air (Air Squared 2015a; Air 

Squared 2015b).  

The P12 and V12 compressor and vacuum both have variable speed, and have 

maximum flow rates of 20 lpm, which surpasses the minimum suggested of 8 lpm to 

achieve a life-like breathing rate. This pump also matches the maximum breathing rate 

considered normal by doctors, as previously discussed in Section 5.2.2. Additionally, the 

compressor contains a maximum pressure of 25 psi, which should be more than enough 

needed. The bellows pumps each had a peak air pressure of 2 psi, so it is reasonable to 

assume that a pressure in that range would continue to be adequate, although it may need 

to be slightly larger as the rate is increased, which is still within range of the chosen pump. 

Each pump is estimated to cost $1,250.00. 

Because a cyclical flow is necessary, where the pumps are working opposite to each 

other, it is suggested that two controllers will be needed, such as the Moog BDQ-Q2-50-

40 BLDC Controller, which is estimated at $365.00 each (Moog 2015).  
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Chapter 7: Conclusions 

 

Three prototypes were developed in an effort to devise a chamber capable of 

recreating necessary pressure swings in order to ventilate ex vivo lungs by negative 

pressure. The final prototype was successful in ventilating lungs of two sizes in a manner 

that is repeatable and on par with the ventilation rate of humans. More specifically, the 

amplitude of total flow in porcine lung trials often exceeded the baseline set by the human 

trials, though with an automated pump system, these values can be decreased to match that 

of humans. In addition, the frequency of breaths was not statistically different from the 

baseline achieved by the human trials. Again, an automated pump system will allow for 

better control over this rate, and allow for an increase in breaths per minute.  

The first step of testing was to obtain sample data from six human subjects with 

two goals in mind. The first goal was to determine the average tidal volume (TV) of each 

subject, subsequently verifying the accuracy of the estimated TV derived from the 

Robinson equation and multiplication factors of seven and ten, from the calculated ideal 

body weight for each subject. Calculated TV of four of the six subjects fell within the 

estimated range. This test was useful in determining if the lung volumes achieved from 

porcine lungs fell within the range achieved for humans, using the provided estimation 

method, outlined by Hannon et. al and Wiklund et. al. However, the caveat with this method 

of estimation is that ideal body weight of pigs for slaughter can’t be exactly determined, as 

they are bred to be heavy, and lung volume doesn’t change due to being over or under-
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weight. Even so, for the purposes of this experimentation, the estimated TV range was 

based on the actual estimated weight of each pig.  

The second goal was to determine repeatability using the spirometer, which was 

done through human testing. As was seen with the human testing results, there are many 

variables that can affect the output. Statistical tests to analyze similarity between the human 

trials showed that for three of the subjects, there was no similarity between their respective 

trials. Therefore, t-tests were necessary between each combination of trials to determine if 

any two were similar, using the Bonferroni correction. Porcine lung testing was not affected 

by a subject thinking and possibly manipulating their breathing pattern, so this variable 

was not present in the animal tests. Still, ANOVA was used to determine if rates varied 

widely between each set of porcine trials, and it was determined that just like the human 

trials, some cases of porcine trials showed significant difference, and thus could not be 

compared to one another. 

Even with some trials appearing statistically different, the results still show that for 

the open trachea porcine lung trials, ventilation rates comparable to that of humans (which 

considers volume and breaths per minute) can be achieved; and in the restricted tests, 

ventilation does decrease over time. It was unexpected that flow would initially increase, 

however, as there was a decline in the amplitude of each breath towards the end of the 

trials, longer trials would be expected to continue this trend until flow became consistent 

once more, at a lower rate, provided a better pump and vacuum was utilized. The following 

table lists the average breaths per minute and TV achieved by each set of tests.  
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Table 7.1. Average breaths per minute (BPM) and calculated tidal volume (TV) for human 

and Prototype 3 testing. 

Subject BPM 
Calculated TV 

(mL) 
Subject BPM 

Calculated TV  
(mL) 

F1 9.6 484 Pig 1 (200-300 lbs) 9.6 982 

F2 9 692 Pig 2 (170 lbs) 6.6 580 

F3 10.3 565 Pig 2 Open Stent 5.6 716 

M1 17 632 Pig 2 Clamped 6.6 468 

M2 10 612 
Pig 2 Restrictive 

Stent 
7.3 1,022 

M3 12 1,887    

 

Lastly, a compressor air pump and vacuum pump were chosen as appropriate 

pumps to produce the necessary pressures to ventilate the lungs in the chamber. The P12 

and V12 pumps by Air Squared, Inc. allow for a large enough maximum pressure and flow 

for continuing the testing outlined here, in a more precise manner. The pumps have variable 

speeds, with maximum flow rates of 20 liters per minute, which provide a large enough 

flow rate to achieve a breathing rate within the accepted range of 8 – 20 breaths per minute. 

Additionally, a Moog controller was identified which can control the cyclic pattern of 

breathing. Other pumps were considered, such as syringe pumps and bellows pumps, but 

none were identified to produce a large enough flow in the time needed. Syringe pumps 

can be linked, but these are typically responsible for much lower flow rates, and would be 

cumbersome to manipulate, as upwards of ten would likely be needed. 

The final prototype was successful, therefore, it is ready to house lungs for the 

testing of more appropriate stents, as those tested here were either not sized properly, or 

not made of a viable material for insertion into the body. In addition, testing can evolve to 

include removing cartilaginous rings from the trachea, or by applying sodium hydroxide to 

the interior tracheal wall in an effort to recreate malacia, as a restrictive stent or exterior 

clamp would interfere with testing in a more life-like model. Furthermore, a perfusion 
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system could be added to the chamber, so that blood flow is recreated, as it flows through 

the heart and lungs.  
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Appendix A: Patented Chamber Diagrams 

 

 
Figure A.1. Chamber design by Burt Orden, US Patent 4,167,070 (1979). 
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Figure A.2. Chamber design by Estetter et al., US Patent 6,874,501 B1 (2005). 
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Appendix B: Equations Used to Estimate Tidal Volume 

 

Table B.1. Comparison of ideal body weight equations for men and women (Shah et al. 

2006). 
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Appendix C: Figures Pertaining to Human Ventilation Trials 

 

 
Figure C.1. F1 graphical representation of total flow and flow rate for Trial 1. 

 

 

 
Figure C.2. F1 graphical representation of total flow and flow rate for Trial 2. 

 

 

 
Figure C.3. F1 graphical representation of total flow and flow rate for Trial 3. 
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Figure C.4. F2 graphical representation of total flow and flow rate for Trial 1. 

 

 
Figure C.5. F2 graphical representation of total flow and flow rate for Trial 2. 

 

 
Figure C.6. F2 graphical representation of total flow and flow rate for Trial 3. 

 

 
Figure C.7. F3 graphical representation of total flow and flow rate for Trial 1. 
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Figure C.8. F3 graphical representation of total flow and flow rate for Trial 2. 

 

 
Figure C.9. F3 graphical representation of total flow and flow rate for Trial 3. 

 

 
Figure C.10. M1 graphical representation of total flow and flow rate for Trial 1. 

 

 
Figure C.11. M1 graphical representation of total flow and flow rate for Trial 2. 
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Figure C.12. M1 graphical representation of total flow and flow rate for Trial 3. 

 

 
Figure C.13. M2 graphical representation of total flow and flow rate for Trial 1. 

 

 
Figure C.14. M2 graphical representation of total flow and flow rate for Trial 2. 

 

 
Figure C.15. M2 graphical representation of total flow and flow rate for Trial 3. 
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Figure C.16. M3 graphical representation of total flow and flow rate for Trial 1. 

 

 
Figure C.17. M3 graphical representation of total flow and flow rate for Trial 2. 

 

 
Figure C.18. M3 graphical representation of total flow and flow rate for Trial 3. 
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Appendix D: Statistical Analysis of Human Trials

 

Table D.1. ANOVA analysis of tidal volumes obtained from F1. 

Anova: Single Factor      

       

SUMMARY       

Groups Count Sum Average Variance   

Trial 1 9 11.55 1.2833 0.0414   

Trial 2 9 4.49 0.4989 0.0048   

Trial 3 11 5.15 0.4682 0.0091   

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 3.9903 2 1.9952 112.6106 1.56E-13 3.3690 

Within Groups 0.4607 26 0.0177    

       

Total 4.4510 28         

 

 

Table D.2. T-Test comparison between Trial 1 and 2 of F1.  

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 2 

Mean 1.2833 0.4989 

Variance 0.0414 0.0048 

Observations 9 9 

Hypothesized Mean Difference 0  

df 10  

t Stat 10.94146  

P(T<=t) one-tail 3.46E-07  

t Critical one-tail 1.812461  

P(T<=t) two-tail 6.93E-07  

t Critical two-tail 2.228139   
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Table D.3. T-Test comparison between Trial 1 and 3 of F1. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 3 

Mean 1.2833 0.4682 

Variance 0.0414 0.0091 

Observations 9 11 

Hypothesized Mean Difference 0  

df 11  

t Stat 11.06611  

P(T<=t) one-tail 1.33E-07  

t Critical one-tail 1.795885  

P(T<=t) two-tail 2.66E-07  

t Critical two-tail 2.200985   

 

 

Table D.4. T-Test comparison between Trial 2 and 3 of F1.  

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 2 Trial 3 

Mean 0.4989 0.4682 

Variance 0.0048 0.0091 

Observations 9 11 

Hypothesized Mean Difference 0  

df 18  

t Stat 0.832463  

P(T<=t) one-tail 0.208028  

t Critical one-tail 1.734064  

P(T<=t) two-tail 0.416056  

t Critical two-tail 2.100922   
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Table D.5. ANOVA analysis of tidal volumes obtained from F2. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 9 6.72 0.746667 0.017375   

Trial 2 8 5.02 0.6275 0.002764   

Trial 3 10 7.02 0.702 0.01144   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.060964 2 0.030482 2.799621 0.080755 3.402826 

Within Groups 0.26131 24 0.010888    

       

Total 0.322274 26         

 

 

Table D.6. ANOVA analysis of tidal volumes obtained from F3. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 11 6.03 0.548182 0.005696   

Trial 2 11 6.48 0.589091 0.020469   

Trial 3 9 5.04 0.56 0.015125   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.009681 2 0.00484 0.354192 0.704839 3.340386 

Within Groups 0.382655 28 0.013666    

       

Total 0.392335 30         
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Table D.7. ANOVA analysis of tidal volumes obtained from M1. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 16 8.800432 0.550027 0.004731   

Trial 2 18 11.66 0.647778 0.005218   

Trial 3 17 10.48 0.616471 0.003862   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.083385 2 0.041693 9.036377 0.000467 3.190727 

Within Groups 0.221465 48 0.004614    

       

Total 0.30485 50         

 

 

Table D.8. T-Test comparison between Trial 1 and 2 of M1.  

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 2 

Mean 0.550027 0.647778 

Variance 0.004731 0.005218 

Observations 16 18 

Hypothesized Mean Difference 0  

df 32  

t Stat -4.03944  

P(T<=t) one-tail 0.000157  

t Critical one-tail 1.693889  

P(T<=t) two-tail 0.000313  

t Critical two-tail 2.036933   
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Table D.9. T-Test comparison between Trial 1 and 3 of M1. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 3 

Mean 0.550027 0.616471 

Variance 0.004731 0.003862 

Observations 16 17 

Hypothesized Mean Difference 0  

df 30  

t Stat -2.90578  

P(T<=t) one-tail 0.003411  

t Critical one-tail 1.697261  

P(T<=t) two-tail 0.006821  

t Critical two-tail 2.042272   

 

 

Table D.10. T-Test comparison between Trial 2 and 3 of M1. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 2 Trial 3 

Mean 0.647778 0.616471 

Variance 0.005218 0.003862 

Observations 18 17 

Hypothesized Mean Difference 0  

df 33  

t Stat 1.376798  

P(T<=t) one-tail 0.088922  

t Critical one-tail 1.69236  

P(T<=t) two-tail 0.177844  

t Critical two-tail 2.034515   
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Table D.11. ANOVA analysis of tidal volumes obtained from M2. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 11 6.39 0.580909 0.008789   

Trial 2 9 6.05 0.672222 0.009194   

Trial 3 10 5.84 0.584 0.006916   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.0509 2 0.02545 3.071946 0.062801 3.354131 

Within Groups 0.223686 27 0.008285    

       

Total 0.274587 29         

 

 

Table D.12. ANOVA analysis of tidal volumes obtained from M3. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 14 25.59 1.827857 0.073434   

Trial 2 11 21.41 1.946364 0.071245   

Trial 3 11 16.24 1.476364 0.084605   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 1.331055 2 0.665528 8.739015 0.0009 3.284918 

Within Groups 2.513145 33 0.076156    

       

Total 3.8442 35         
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Table D.13. T-Test comparison between Trial 1 and 2 of M3. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 2 

Mean 1.827857 1.946364 

Variance 0.073434 0.071245 

Observations 14 11 

Hypothesized Mean Difference 0  

df 22  

t Stat -1.09456  

P(T<=t) one-tail 0.142775  

t Critical one-tail 1.717144  

P(T<=t) two-tail 0.285549  

t Critical two-tail 2.073873   

 

 

Table D.14. T-Test comparison between Trial 1 and 3 of M3. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 3 

Mean 1.827857 1.476364 

Variance 0.073434 0.084605 

Observations 14 11 

Hypothesized Mean Difference 0  

df 21  

t Stat 3.09034  

P(T<=t) one-tail 0.002773  

t Critical one-tail 1.720743  

P(T<=t) two-tail 0.005545  

t Critical two-tail 2.079614   
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Table D.15. T-Test comparison between Trial 2 and 3 of M3. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 2 Trial 3 

Mean 1.946364 1.476364 

Variance 0.071245 0.084605 

Observations 11 11 

Hypothesized Mean Difference 0  

df 20  

t Stat 3.948567  

P(T<=t) one-tail 0.000397  

t Critical one-tail 1.724718  

P(T<=t) two-tail 0.000793  

t Critical two-tail 2.085963   
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Appendix E: Figures Pertaining to Unrestricted Porcine Lung Ventilation Trials 

 

 
Figure E.1. Graphical representation of total flow and flow rate for Trial 1 of lung taken 

from 200-300 lb pig. 

 

 
Figure E.2. Graphical representation of total flow and flow rate for Trial 2 of lung taken 

from 200-300 lb pig. 

 

 
Figure E.3. Graphical representation of total flow and flow rate for Trial 3 of lung taken 

from 200-300 lb pig. 
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Figure E.4. Graphical representation of total flow and flow rate for Trial 1 of lung taken 

from 170 lb pig. 

 

 
Figure E.5. Graphical representation of total flow and flow rate for Trial 2 of lung taken 

from 170 lb pig. 

 

 
Figure E.6. Graphical representation of total flow and flow rate for Trial 3 of lung taken 

from 170 lb pig. 
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Figure E.7. Graphical representation of total flow and flow rate for Trial 1 of lung taken 

from 170 lb pig with 3D printed open stent in place. 

 

 
Figure E.8. Graphical representation of total flow and flow rate for Trial 2 of lung taken 

from 170 lb pig with 3D printed open stent in place. 

 

 
Figure E.9. Graphical representation of total flow and flow rate for Trial 3 of lung taken 

from 170 lb pig with 3D printed open stent in place. 
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Appendix F: Statistical Analysis of Unrestricted Porcine Lung Trials 

 

Table F.1. ANOVA analysis of tidal volumes obtained from lung taken from 200-300 lb 

pig. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 9 8.77 0.974444 0.031253   

Trial 4 10 9.59 0.959 0.008499   

Trial 5 10 10.13 1.013 0.007601   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.015409 2 0.007704 0.507225 0.608 3.369016 

Within Groups 0.394922 26 0.015189    

       

Total 0.410331 28         

 

 

Table F.2. ANOVA analysis of tidal volumes obtained from lung taken from 170 lb pig. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 6 3.52 0.586667 0.000907   

Trial 2 7 4.01 0.572857 0.00179   

Trial 3 7 3.31 0.472857 0.000724   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.052101 2 0.02605 22.57286 1.64E-05 3.591531 

Within Groups 0.019619 17 0.001154    

       

Total 0.07172 19         
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Table F.3. T-Test comparison between Trial 1 and 2 of lung taken from 170 lb pig. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 2 

Mean 0.586667 0.572857 

Variance 0.000907 0.00179 

Observations 6 7 

Hypothesized Mean Difference 0  

df 11  

t Stat 0.684602  

P(T<=t) one-tail 0.253881  

t Critical one-tail 1.795885  

P(T<=t) two-tail 0.507763  

t Critical two-tail 2.200985   

 

 

Table F.4. T-Test comparison between Trial 1 and 3 of lung taken from 170 lb pig. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 3 

Mean 0.586667 0.472857 

Variance 0.000907 0.000724 

Observations 6 7 

Hypothesized Mean Difference 0  

df 10  

t Stat 7.133852  

P(T<=t) one-tail 1.58E-05  

t Critical one-tail 1.812461  

P(T<=t) two-tail 3.17E-05  

t Critical two-tail 2.228139   
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Table F.5. T-Test comparison between Trial 2 and 3 of lung taken from 170 lb pig. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 2 Trial 3 

Mean 0.572857 0.472857 

Variance 0.00179 0.000724 

Observations 7 7 

Hypothesized Mean Difference 0  

df 10  

t Stat 5.276449  

P(T<=t) one-tail 0.00018  

t Critical one-tail 1.812461  

P(T<=t) two-tail 0.000359  

t Critical two-tail 2.228139   

 

 

Table F.6. ANOVA analysis of tidal volumes obtained from lung taken from 170 lb pig 

with open 3D printed stent in place. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 5 3.43 0.686 0.00428   

Trial 2 6 4.61 0.768333 0.001097   

Trial 3 6 4.17 0.695 0.00487   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.023494 2 0.011747 3.502543 0.058429 3.738892 

Within Groups 0.046953 14 0.003354    

       

Total 0.070447 16         



87 

Appendix G: Figures Pertaining to Restricted Porcine Lung Ventilation Trials 

 

 
Figure G.1. Graphical representation of total flow for Trial 1 of lung taken from 170 lb pig 

with hose clamp causing 30% restriction to outer diameter of trachea. 

 

 
Figure G.2. Graphical representation of total flow for Trial 2 of lung taken from 170 lb pig 

with hose clamp causing 30% restriction to outer diameter of trachea. 

 

 
Figure G.3. Graphical representation of total flow for Trial 3 of lung taken from 170 lb pig 

with hose clamp causing 30% restriction to outer diameter of trachea. 
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Figure G.4. Graphical representation of total flow for Trial 1 of lung taken from 170 lb pig 

with 3D printed stent causing 30% restriction to inner diameter of trachea. 

 

 
Figure G.5. Graphical representation of total flow for Trial 2 of lung taken from 170 lb pig 

with 3D printed stent causing 30% restriction to inner diameter of trachea. 

 

 
Figure G.6. Graphical representation of total flow for Trial 3 of lung taken from 170 lb pig 

with 3D printed stent causing 30% restriction to inner diameter of trachea. 
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Appendix H: Statistical Analysis of Restricted Porcine Lung Trials 

 

Table H.1. ANOVA analysis of tidal volumes obtained from lung taken from 170 lb pig 

with hose clamp causing 30% restriction to outer diameter of trachea. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 6 2.7 0.45 0.00328   

Trial 2 7 3.4 0.485714 0.001429   

Trial 3 7 2.16 0.308571 0.000581   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.121563 2 0.060781 36.31019 7.3E-07 3.591531 

Within Groups 0.028457 17 0.001674    

       

Total 0.15002 19         

 

 

Table H.2. T-Test comparison between Trial 1 and 2 of lung taken from 170 lb pig with 

hose clamp causing 30% restriction to outer diameter of trachea. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 2 

Mean 0.45 0.485714 

Variance 0.00328 0.001429 

Observations 6 7 

Hypothesized Mean Difference 0  

df 8  

t Stat -1.30345  

P(T<=t) one-tail 0.11434  

t Critical one-tail 1.859548  

P(T<=t) two-tail 0.228679  

t Critical two-tail 2.306004   
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Table H.3. T-Test comparison between Trial 1 and 3 of lung taken from 170 lb pig with 

hose clamp causing 30% restriction to outer diameter of trachea. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 1 Trial 3 

Mean 0.45 0.308571 

Variance 0.00328 0.000581 

Observations 6 7 

Hypothesized Mean Difference 0  

df 7  

t Stat 5.636171  

P(T<=t) one-tail 0.000393  

t Critical one-tail 1.894579  

P(T<=t) two-tail 0.000786  

t Critical two-tail 2.364624   

 

 

Table H.4. T-Test comparison between Trial 2 and 3 of lung taken from 170 lb pig with 

hose clamp causing 30% restriction to outer diameter of trachea. 

t-Test: Two-Sample Assuming Unequal Variances 

   

  Trial 2 Trial 3 

Mean 0.485714 0.308571 

Variance 0.001429 0.000581 

Observations 7 7 

Hypothesized Mean Difference 0  

df 10  

t Stat 10.45505  

P(T<=t) one-tail 5.28E-07  

t Critical one-tail 1.812461  

P(T<=t) two-tail 1.06E-06  

t Critical two-tail 2.228139   
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Table H.5. ANOVA analysis of tidal volumes obtained from lung taken from 170 lb pig 

with 3D printed stent causing 30% restriction to inner diameter of trachea. 

Anova: Single Factor     

       

SUMMARY      

Groups Count Sum Average Variance   

Trial 1 7 7.07 1.01 0.016833   

Trial 2 8 7.75 0.96875 0.05567   

Trial 3 7 7.62 1.088571 0.067214   

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.054627 2 0.027313 0.580503 0.569237 3.521893 

Within Groups 0.893973 19 0.047051    

       

Total 0.9486 21         
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