
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2013

Cuda K-Nn: application to the segmentation of the
retinal vasculature within SD-OCT volumes of
mice
Wenxiang Deng
University of Iowa

Copyright 2013 Wenxiang Deng

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/4962

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
Deng, Wenxiang. "Cuda K-Nn: application to the segmentation of the retinal vasculature within SD-OCT volumes of mice." MS
(Master of Science) thesis, University of Iowa, 2013.
http://ir.uiowa.edu/etd/4962.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F4962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F4962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F4962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=ir.uiowa.edu%2Fetd%2F4962&utm_medium=PDF&utm_campaign=PDFCoverPages

CUDA K-NN: APPLICATION TO THE SEGMENTATION OF THE RETINAL

VASCULATURE WITHIN SD-OCT VOLUMES OF MICE

by

Wenxiang Deng

A thesis submitted in partial fulfillment of the
requirements for the Master of Science degree

in Biomedical Engineering
in the Graduate College of

The University of Iowa

December 2013

Thesis Supervisor: Assistant Professor Mona K. Garvin

Copyright by

WENXIANG DENG

2013

All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the Master’s thesis of

Wenxiang Deng

has been approved by the Examining Committee for the thesis requirement for the
Master of Science degree in Biomedical Engineering at the December 2013 graduation.

Thesis Committee:
Mona K. Garvin, Thesis Supervisor

David G. Wilder

Michael D. Abràmoff

Joseph M. Reinhardt

Todd E. Scheetz

ACKNOWLEDGEMENTS

First, I would first like to thank my thesis advisor, Dr. Mona Garvin for her

guidance and support for me in this work. I would also like to thank Dr. Michael

D. Abràmoff, Dr. Joseph Reinhardt, Dr. Todd E. Scheetz, and Dr. David Wilder for

being on my committee and for their helpful feedback.

This work was supported by a grant from the Veterans Administration.

ii

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND AND PRIOR WORK 6

2.1 k-NN for medical image analysis 6
2.2 k-NN optimization approaches 7

2.2.1 Instance reduction . 7
2.2.2 Preprocessing data structure and approximation 7
2.2.3 CUDA-based approaches 8

2.3 Retinal layers . 9
2.4 Retinal vessel segmentation . 10

3 COMPARISON OF CUDA K-NN WITH ANN LIBRARY FOR MED-
ICAL IMAGING . 13

3.1 Motivation . 13
3.2 CUDA k-NN approach . 13
3.3 Experimental methods . 14
3.4 Results . 15
3.5 Discussion . 18

4 MOUSE RETINAL VESSEL SEGMENTATION 21

4.1 Motivation . 21
4.2 Methods . 21

4.2.1 Intraretinal layer segmentation 22
4.2.2 Projection image creation 23
4.2.3 Feature generation . 25
4.2.4 Feature selection and pixel classification 27

4.3 Experimental methods . 28
4.4 Results . 30
4.5 Discussion . 31

5 CONCLUSION . 35

REFERENCES . 36

iii

LIST OF TABLES

Table

3.1 Speed up from ANN to CUDA k-NN implement where k = 21. 17

3.2 Number of dimensions to explain 99% of variance in each testing dataset 19

4.1 First 10 features selected in feature selection for single projection and all
layers approach . 30

4.2 Comparison of AUC for three approaches. 31

iv

LIST OF FIGURES

Figure

1.1 Comparison of mouse and human retinal images. (a) and (c) are example
projection images in a mouse (a) and human (c) retinal SD-OCT volumes.
(b) and (d) are examples of fundus image of mouse (b) and human (d). . 2

1.2 A typical mouse OCT volume and an example b-scan slice of the image. 3

1.3 Example of k-NN search where k = 5. Blue circles and red crosses are
reference points of two classes. The green triangle is a query point. In this
case, it should be assigned to class red. 4

2.1 A simple programming model of CUDA framework. CPU host dispatches
kernel task to GPU device, and dual level structure of blocks and threads
can be used for better performance. 9

2.2 Example of a b-scan slice and its corresponding layers in mouse SD-OCT
volume. 11

3.1 Speed performance of ANN and CUDA k-NN implementation tested on
different data size and dimensions. In the figures, horizontal coordinates
are different dimensional features used for test, and vertical coordinates are
running time or speed different ratio in (c), (f), and (i). Different colors of
plot lines stand for different size of sampled training data points. (a), (b),
and (c) are ANN, CUDA k-NN and speed comparison using bifurcation
data. (d), (e), and (f) are the corresponding for cup & rim data. (g), (h),
and (i) are for surface segmentation data. 16

3.2 Speed of ANN and CUDA k-NN implementation on surface segmentation
data. (a), (b), and (c) are ANN, CUDA k-NN and speed up. 18

4.1 Schematic overview of the methods proposed. It includes layer segmen-
tation using the graph-theoretic method and three approaches for pixel
classification to find blood vessels. 22

4.2 Simple illustration of intraretinal layer segmentation. (a) A sample b-scan
from mouse SD-OCT volume. (b) Same scan with segmented surfaces
marked. 23

4.3 Projection image creation for baseline approach. (a) Layers used for cre-
ating projection image are between red marked surfaces. (b) Projection
image generated from layers marked in (a). 24

v

4.4 Projection image creation for single projection approach. (a) Layers used
for creating projection image are between red marked surfaces. (b) Pro-
jection image generated from layers marked in (a). 24

4.5 Example of all the layer projection images obtained for all layers approach.
(h) shows the overall layout of them. 26

4.6 Example segmentation results using all obtained features. 28

4.7 The cross-validation model. 29

4.8 Comparison of ROC curves for baseline, single projection, and all layers
approach. 32

4.9 Example results of the three proposed approaches. (a) and (d) are the
projection image and result from baseline approach. (b) and (e) are the
corresponding for single projection approach. (c) and (f) are for all layers
approach. 33

vi

1

CHAPTER 1
INTRODUCTION

Blood vessels in the retina supply retinal tissues with nutrition and oxygen and

can change their appearance in diseases such as diabetic retinopathy. The automated

segmentation of retinal vessels using ophthalmic imaging modalities, such as color

fundus photography and optical coherence tomography (OCT), is important not only

for the measurement of vasculature properties (such as vessel widths and tortuosity),

but also to enable image intrasubject image registration (e.g., fundus-to-fundus, OCT-

to-OCT, fundus-to-OCT, etc.). With human data, the automated segmentation of

retinal blood vessels in fundus and OCT images is a well understood problem and

has many published papers [1–12]. Amongst these, some approaches adopted optical

coherence tomography (OCT) images for vessel segmentations [9–12]. OCT is a widely

adopted noninvasive modality for retinal imaging introduced in 1991 [13]. Newly

available spectral-domain (SD-OCT) scanners can further provide 3D structure of

retina and present detailed 3D images of the eye. In SD-OCT images, blood vessels

are not distinguishable, since the vessels absorb the wavelengths used in the scanner.

There are silhouettes below vessels caused by the absorption. As proposed by Webhe

et al. [14], such shadows can be used for detection of the vessels in 2D projection

images of OCT volumes.

For further understanding of the eye diseases, retinal vasculature studies of mice

can be useful because of their anatomical similarity to humans and relatively inex-

pensive experimental cost. Also, rapid reproduction rate and short lifespan of mice

could make longitudinal studies easier. Fig. 1.1(b) and Fig. 1.1(d) are examples of

2D fundus images of a mouse and human.

SD-OCT imaging is also used in mouse retinal studies [15–17] apart from human.

Fig. 1.2 shows an example of mouse SD-OCT volumes. However, for mouse SD-OCT

images, there has been no approach for vasculature segmentation.

2

(a) (b)

(c) (d)

Figure 1.1: Comparison of mouse and human retinal images. (a) and (c) are example
projection images in a mouse (a) and human (c) retinal SD-OCT volumes. (b) and
(d) are examples of fundus image of mouse (b) and human (d).

3

Figure 1.2: A typical mouse OCT volume and an example b-scan slice of the image.

Segmenting vessels in mouse SD-OCT data need different approaches than in the

human case, because of the differences between mice and human retinal images. More

specifically, differences can be seen in example projection images created from near the

retinal pigment epithelium (RPE) layers in SD-OCT volumes, shown in Fig. 1.1(c)

and Fig. 1.1(a). Fig. 1.1(c) is an example projection image obtained from human

retinal OCT volume. It has a high contrast between vessels and background, which

makes segmentation of vessels easier. Fig. 1.1(a) shows a projection of mouse OCT

image. This is a different scenario. The neural canal opening (NCO) boundary is

small and there is less interaction between the NCO and vessels. Also, vessels in the

image are vaguely identifiable. In order to segment vessels under highly successful

pixel classification methods [18], a better set of features images are needed. In this

thesis, we apply a widely used k-nearest-neighbor (k-NN) approach for segmentation

of mouse retinal vessels. In order to process more features using k-NN approach with

less computation time, we first explore two fast k-NN implementations for ophthalmic

image data.

k-NN is a simple and widely used machine learning method [19]. It uses a labeled

reference set and assigns each query point the most common label of its k closest

neighbors. Fig. 1.3 shows an example of k-NN search, with the number of neighbors

4

k = 5

Figure 1.3: Example of k-NN search where k = 5. Blue circles and red crosses are
reference points of two classes. The green triangle is a query point. In this case, it
should be assigned to class red.

k = 5. Although the approach itself is sensitive to noise, with better selection of

features, k-NN would generate satisfying results. Therefore, k-NN has been widely

used in medical image processing [9, 20–27].

Behind its simplicity, however, using brute force (BF) search for k-NN approach

is time consuming. As an instance-based learning approach, each test of finding k

nearest neighbor would take O(kdn), where n is the number of points in training

set, d is the dimension of the dataset, and k is the number of neighbors to search.

Approaches including preprocessing the training data into data structures such as

tree structure [28, 29] or using a graphic processing unit (GPU) to parallelize the

algorithm [30] have been proposed to reduce computation time.

There are two purposes of this thesis. We first explore the speed performance of a

GPU-based parallel k-NN approach [30] against the commonly used ANN library [29]

for ophthalmic image data. Three datasets are used in the test, including data from

2D and 3D images. We test the running time of each data under different settings

5

(i.e, number of reference data points, number of features used, different ks). For the

second aim, we establish three approaches built on k-NN to solve vessel segmentation

problem in mouse retinal data. Our work adopts ideas from the pixel classification

method for human SD-OCT data by Niemeijer et al. [9], partially because of its high

reported accuracy of 0.97 area under Receiver Operating Characteristic (ROC) curve

(AUC), but with modifications to specifically deal with the challenges of SD-OCT

data of mice.

The rest of the thesis is organized as follows. In Chapter 2, we describe prior

work done to enhance the running speed of k-NN approach. We also review methods

proposed to segment human retinal vessels in fundus and OCT images. Chapter 3

includes our work to test GPU-based k-NN [30] in ophthalmic images against the

ANN implementation [29]. In Chapter 4, we describe our novel approaches for mouse

vessel segmentation in SD-OCT images. And finally conclusions and future work are

provided in Chapter 5.

6

CHAPTER 2
BACKGROUND AND PRIOR WORK

2.1 k-NN for medical image analysis

Machine learning is an important part in many medical image analysis approaches

for segmentation and computer-aid diagnosis. As a non-parametric method in ma-

chine learning, k-NN requires no prior knowledge of data characteristic structure and

is easy to configure. It’s been widely applied to various types of images for image

analysis. For example, de Bruijne et al. [21] presented a general approach in 3D

image segmentation using k-NN to improve grey level appearance models in Active

Shape Models (ASM) for segmentation of tubular structure in medical data. In their

work, k-NN gave a probability profile for aneurysm boundaries. However, it was also

mentioned in the work that a k-NN based approach would take much more time than

the baseline approach. For MR images, k-NN algorithm can be used for segmenting

lesion [22] or brain tumors [23]. It has also been used in CT images for detection of

pathological tissue [31, 32]. In terms of microscopic images, k-NN is often used for

automatic segmentation of cells and tissues. For instance, [20] used a k-NN classi-

fier with wavelets and densitometric features to distinguish different classes of breast

tissue nuclei. And in [24], it was used for identifying cell phase.

Of particular relevance to this thesis, k-NN is widely used to process fundus and

OCT images in ophthalmology [6, 9, 10, 12]. Use of k-NN for vessel segmentation is

discussed further as part of Section 2.4 (which serves as a foundation for Chapter

4). Three additional ophthalmic applications that use k-NN are highlighted in the

experiments of Chapter 3. In particular, in the work by Miri et al. [26], after abstract-

ing features from fundus and 2D projection of SD-OCT images, k-NN was used for

classifying neuroretinal cup and rim structure. Antony et al. used k-NN for classify-

ing texture features from SD-OCT data [25], in order to generate cost functions for

layer segmentations. In the work by Qiao et al. [27], 2D fundus images were used to

7

identify bifurcation points in blood vessel trees in the images. Principle component

analysis (PCA) based features were extracted in fundus images. A k-NN classifier

was then used to determine vessel bifurcations.

2.2 k-NN optimization approaches

Slow execution time is a major drawback of instance-based methods such as k-

NN. One main reason for time consumption is that it compares a query point with

all training data points. There have been efforts to minimize the running time. Here

we review three types of approaches to reduce the running time.

2.2.1 Instance reduction

Since the nearest-neighbor algorithm stores all reference instances, this not only

uses large memory, but also causes speed issues. One category of methods is to remove

some reference instances in the algorithm. These approaches mostly use a subset of

the original training set, and aim to increase noise tolerance of k-NN algorithm, as

well as reduce running time. Most of them primarily focused on k = 1, and could

be modified for k > 1. A collection of such approaches are reviewed by Wilson et

al. [33].

2.2.2 Preprocessing data structure and approximation

Other techniques like k-d trees [28, 34], quadtrees [35], or box-decomposition

trees [29] use data structures to preprocess and store the training set. This would

decrease the number of instances that would need to be compared with each query

point. For instance, k-d tree approach by Friedman et al. [34] preprocesses data into

a data structure where queries can run nearest neighbor searches within sublinear

(logarithmic) time. In practice, such approaches have very good performance in low

dimensions, but running time would grow rapidly with increasing dimension d.

On the other hand, approximate nearest neighbor (ANN) approach by Arya et al.

8

[29] managed to achieve efficient performance query time with some loss of precision.

For constant ε > 0, each of the nearest neighbors from ANN approach would have a

smaller than (1 + ε) difference to the precise distance. A balanced box-decomposition

(BBD) tree was also introduced as a variation of k-d tree to store the reference

instances. The algorithm first preprocesses training data and builds them into a tree

data structure. For the neighbor search, given a query point q, the leaf cell that

contains the point is located. Then a priority search is conducted by computing the

distance between the q and nearby cells and reference points in the cells. The process

terminates when the distance dist(q, nextcell) > dist(q, p)/(1 + ε), where p is the

current kth nearest point and nextcell is the next nearest cell to be examined.

As one of the fastest k-NN approach of its kind, ANN also has an implemented

library [29]. Therefore, we use it as one approach for time comparison in Chapter 3.

2.2.3 CUDA-based approaches

However, for the high-dimensional nearest neighbor problem, approaches involv-

ing preprocessed data structures may still require too much processing time [29].

Approaches using GPU framework can be used for the problem. As a relatively

new platform for computation, general purpose computation of GPU (GPGPU) can

parallelize BF k-NN and greatly increase the speed performance of k-NN approach.

Under CUDA (Compute Unified Device Architecture) framework by NVIDIA, there

are implementations of BF k-NN approaches developed on GPU [30,36,37].

Fig. 2.1 shows a simple CUDA programming model. This is a heterogeneous

process. Within the model, a CPU-based program accesses the GPU as a device via

kernel functions. When execution finishes, the device callbacks to CPU part of the

program. Also, in the device, there are dual level of parallelization, block and thread.

With a highly parallelized hardware and dual level of parallelization in CUDA, up

to two orders of magnitude of speed up compared with ANN implementation [29] for

synthesized data was reported by Garcia et al. [30].

9

CUDA Programming Model

Shared Memory

Block(0, 0)

GPU Grid (Device)

Shared Memory

Block(0, 1)

Global Memory

CPU
(Host)

Kernel
Function

Thread
(0, 0)

Thread
(0, 1)

Thread
(0, 0)

Thread
(0, 1)

Figure 2.1: A simple programming model of CUDA framework. CPU host dispatches
kernel task to GPU device, and dual level structure of blocks and threads can be used
for better performance.

In this work, we adopt this CUDA-based approach by Garcia et al. [30] as the

other candidate for speed comparison.

2.3 Retinal layers

The retina inside the eye is a structure of multiple layers. It converts light into

electrical neural impulse for generating vision. Photoreceptor cells, including rods

and cones, respond to light and initiate series of chemical reactions to trigger neural

impulse. Generated impulse are then transmitted to brain to create vision. There are

two main regions in retina, macula and optic nerve head (ONH). The macular region

is responsible for sharp central vision. The ONH is not light sensitive and it is where

optic nerve and blood vessels leave the eye.

Fig. 2.2 shows a typical mouse ONH SD-OCT b-scan slice and the corresponding

layers in a mouse retina. Blue circles represents shadows projected by retinal vessels.

The distinguishable surfaces and layers are briefly illustrated as follows [38,39]:

10

• Inner limiting membrane (ILM) - is the basement membrane as boundary of

vitreous and retina.

• Nerve fiber layer (NFL) - contains axons of ganglion cells.

• Ganglion cell layer (GCL) - contains nuclei of ganglion cells.

• Inner plexiform layer (IPL) - contains synapse between bipolar cell axons and

dendrites of ganglion cells.

• Inner nuclear layer (INL) - contains nuclei and cells bodies of bipolar, horizontal,

Müller, and interplexiform cells.

• Outer plexiform layer (OPL) - contains synapse between rod and cone cells and

dendrites of horizontal and bipolar cells.

• Outer nuclear layer (ONL) - contains cells bodies of rod and cone cells (pho-

toreceptors).

• External limiting membrane (ELM) - is a layer that separates between photore-

ceptor cells and also photoreceptor with Müller cells.

• The outer segments (OS) and inner segments (IS) of photoreceptors - contains

rod and cone cells.

• Retinal pigment epithelium (RPE) - is a single layer of cuboidal cells between

choroid and retina.

• Bruch’s membrane - is the anterior surface of the choroid.

As for mouse retinal image shown in Fig. 2.2, unlike human SD-OCT images,

nerve fiber layer (NFL) is not distinguishable from the ganglion cell layer (GCL) and

Inner Plexiform Layer (IPL). Therefore, we refer to these layers as the NF+GC+IPL.

2.4 Retinal vessel segmentation

In animal retinal studies, no current approach for mouse vessel segmentation has

been proposed. For human case, on the other hand, there are a lot of approaches

available for segmenting human retinal vessels. Most of them are for fundus images,

11

Inner!
Retina

Outer!
Retina

ILM

Bruch’s
Membrane

ELM
ONL
OS
IS
RPE

NF+GC+IPL
INL
OPL

Shadows !
of blood
vessels

Figure 2.2: Example of a b-scan slice and its corresponding layers in mouse SD-OCT
volume.

and many of them can extend naturally to OCT projection images in human retinal

studies. Within current approaches, a most successful category is by using pixel

classification. Pixel classification is an important machine learning category which

uses features for each pixel to decide classes of the pixel in image.

For fundus images, Niemeijer et al. [6] compared a number of approaches on a

publicly available DRIVE (Digital Retinal Images for Vessel Extraction) datasets.

A supervised pixel classification method using k-NN classifier was also proposed.

In the method, 31-dimensional multifeature vectors were generated using Gaussian-

based filter banks of up to 2nd order derivative and 5 scales of σ, as well as a green

channel intensity image. Soares et al. [7] developed a classification method using

Gabor features from different scales. Bayesian classifier with Gaussian mixture model

(GMM) was applied then as pixel classifier. Another supervised classification method

was proposed by Staal et al. [5]. By assuming vessels as elongated structures, ridge-

based features were obtained and the most distinguishing features were selected using

feature selection. A k-NN classifier was then applied for the segmentation. Moreover,

supervised classifier such as neural network [40, 41], support vector machine [42], or

AdaBoost-based methods [43] are applied as well. Other than supervised classifiers

listed above, unsupervised classifiers are also used for the problem. In [44] and [45],

unsupervised classifier c-Means clustering were applied. [44] used texture features

12

extracted by Gabor features for fuzzy c-means clustering. In [45], spatially weighted

fuzzy c-means clustering (SWFCM) was applied after matched filters for the images.

For SD-OCT volumes, there is less published work. Here we focus on approaches

to segment vessels in OCT projection images. A k-NN based approach was brought up

in [9,10], which used segmented retinal layers in SD-OCT for 2D projection image for

vessel classification. This work used a projection image near the RPE layer. Similar

step as [6] was then applied for pixel classifications. This method was modified by Hu

et al. [12] for a better vessel segmentation near the neural canal opening (NCO). This

was done by incorporating presegmented NCO information in the pixel classification.

Another approach using SD-OCT image was by Xu et al. [11]. LogitBoost boosting

algorithm was applied on 2D Gaussian filtered features in OCT projection images

and Haar features on A-scans of 3D images.

Other than pixel classification, methods such as region growing [1], mathemat-

ical morphology [2], or local thresholding [4] are also used for vessel segmentation.

Mart́ınez-Pérez et al. [1] used scale-space and region growing for segmentation of vas-

culature. In the approach, two features were generated using gradient magnitude and

ridge strength in the image. Histograms of them were then used for region growing.

In the approach by Zana et al. [2], general mathematical morphology was applied to

detect vessel like objects in fundus images. Another morphological method by Lam

and Yang [3] applies divergence of vector fields for segmentation of retinal images

with leisures. Centerlines are obtained by morphological operations, and vessels and

non-vessels are decided. Adaptive thresholding was used by X. Jiang et al. [4]. A

series of individual thresholds were applied and skelotonization was used for pruning

the results.

13

CHAPTER 3
COMPARISON OF CUDA K-NN WITH ANN LIBRARY FOR

MEDICAL IMAGING

3.1 Motivation

CUDA framework is a heterogeneous programming model. Host CPU side of the

program calls GPU as a device, and gets a call back when finished. Although CUDA-

based k-NN implementation [30] has been tested with the ANN library [29], it was

mainly on synthetic data. There is need to explore them for more medical data, in

order to better understand the speed performance of CUDA k-NN. Here we test these

two methods on three sets of ophthalmic image data. The first one is fundus image

data for bifurcation identification. The second dataset is from SD-OCT projection

image and fundus image for cup and rim features. And the last dataset is SD-OCT

data for segmenting retinal layers.

3.2 CUDA k-NN approach

In this section, we briefly review the CUDA-based k-NN approach by Garcia et

al. [30].

For brute force k-NN algorithm, let P = {p1, p2, ..., pm} be the training set

and Q = {q1, q2, ..., qn} be the testing set. Within the sets, elements are pi =

(pi1, pi2, ..., pid) and qj = (qj1, qj2, ..., qjd), where d is the dimension of features and

pix or qjy denotes a single feature. Each query point qi ∈ Q goes through the follow-

ing steps to find k nearest neighbors:

• For each qi ∈ Q, compute its distance to every pj ∈ P . The distances can be

measured in Euclidean metric, Manhattan metric, or other metrics.

• Sort distances computed above.

• Output reference points of k lowest distances.

Although brute force k-NN in CPU-based program is not time efficient, it can be

easily parallelizable in CUDA framework. The implementation of BF k-NN in CUDA

14

framework consists of two kernel functions. The first is to compute the distances of all

query points and reference points. This is fully parallelizable. Every thread computes

the distance of one query point qj and one reference point pi. A distance matrix of

size m× n is generated containing distances between m reference points and n query

points.

For the second part, partial sorting is applied to sort the distance matrix. In their

work, a parallel version of insert sort and comb sort were compared. Insert sort was

used in the work because of its faster performance for smaller ks. In more details,

the insert sort are parallelized such that each thread sorts all distances for one query

point. After sorting is finished, the top k elements and the corresponding distances

are selected as k nearest neighbors.

3.3 Experimental methods

To test the speed performance of CUDA k-NN implementation [30], we compare

it to a widely used fast k-NN implementation: ANN library in C++ [29]. Random

data was well tested in [30], so we only test them on ophthalmic image data. Also,

since speed performance under different data dimensions is a most important aspect,

our tests lean on the speed comparison of the two implementations with different

dimensions of data.

There are three datasets with feature vectors and their corresponding truths used

for validating the CUDA-based k-NN method against ANN library. The datasets we

use are illustrated as follows:

• Principle component analysis (PCA) based features abstracted from green and

red channel in fundus images to determine vessel bifurcations [27].

• 2D features in retinal projection images for classifying neuroretinal cup and rim

using fundus and SD-OCT images [26].

• Most descriptive 2D and 3D Gabor-based features for classifying the cost func-

15

tion for surface segmentations in SD-OCT volumes [25].

All data are normalized with zero mean and unit variance in each feature they

contain. A fixed size of 10,000 testing data points is used for all tests since both imple-

mentations have a linear increase of time for increasing number of testing data points.

Training data and testing data are all randomized then with regard to arrangement

of different features as well as data points.

For each dataset, we first test CUDA [30] and ANN implementation [29] in number

of training data points, dimension of data (i.e., number of features), and measure the

running speed. For the dimensionality of data, ranking of features are first randomized

to make sure adjacent features are not similar. Subset of features are tested from 5dim

to the maximum dimension of given dataset, with 10dim interval. The number k is

fixed as 21. A subset of training data from 1,000 data points up to 250,000 are used

in the test.

Then a comparison of ks is also tested in one of the datasets to find correlation

between choice of k, dimension of data, and running time. For convenience, the

number of training data points is fixed to 200,000 and k = 21, 41, 61, 81 are compared.

To perform the tests, we use a desktop computer with Intel i7-2600k processor,

16GB memory, and NVIDIA GeForce GTX 570 GPU. Both implementations are

compiled in Visual Studio 2010 in 64bit Microsoft Windows 7.

3.4 Results

Fig. 3.1 and Table 3.1 shows the speed performance of each approach. In Fig. 3.1,

it shows the performance of CUDA and ANN implementation for all three datasets.

Fig. 3.1(a), Fig. 3.1(d), and Fig. 3.1(g) are illustrations of ANN library’s speed perfor-

mance. Fig. 3.1(b), Fig. 3.1(e), and Fig. 3.1(h) show the performance of CUDA k-NN

implementation. Then, a speed up comparison of the two are shown in Fig. 3.1(c),

Fig. 3.1(f), and Fig. 3.1(i). In particular, speed up is defined as the running time

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 15 25 35 45 55

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
16000
32000
64000

0

20

40

60

80

100

120

140

5 15 25 35 45 55

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
16000
32000
64000

1

10

100

1000

5 15 25 35 45 55

Sp
ee

d
up

Dimensions

4000
16000
32000
64000

Qiao’s data

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 15 25 35 45 55

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
16000
32000
64000

0

20

40

60

80

100

120

140

5 15 25 35 45 55

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
16000
32000
64000

1

10

100

1000

5 15 25 35 45 55

Sp
ee

d
up

Dimensions

4000
16000
32000
64000

Qiao’s data

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 15 25 35 45 55

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
16000
32000
64000

0

20

40

60

80

100

120

140

5 15 25 35 45 55

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
16000
32000
64000

1

10

100

1000

5 15 25 35 45 55

Sp
ee

d
up

Dimensions

4000
16000
32000
64000

Qiao’s data

(c)

Saleh’s data

0

1

2

3

4

5

6

7

8

9

10

5 15 25 35 45 55 65 75 85 95

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

0.01

0.1

1

10

100

5 15 25 35 45 55 65 75 85 95Sp
ee

d
up

Dimensions

4000
32000
64000
150000
250000

0

10

20

30

40

50

60

70

80

90

5 15 25 35 45 55 65 75 85 95

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

(d)

Saleh’s data

0

1

2

3

4

5

6

7

8

9

10

5 15 25 35 45 55 65 75 85 95

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

0.01

0.1

1

10

100

5 15 25 35 45 55 65 75 85 95Sp
ee

d
up

Dimensions

4000
32000
64000
150000
250000

0

10

20

30

40

50

60

70

80

90

5 15 25 35 45 55 65 75 85 95

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

(e)

Saleh’s data

0

1

2

3

4

5

6

7

8

9

10

5 15 25 35 45 55 65 75 85 95

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

0.01

0.1

1

10

100

5 15 25 35 45 55 65 75 85 95Sp
ee

d
up

Dimensions

4000
32000
64000
150000
250000

0

10

20

30

40

50

60

70

80

90

5 15 25 35 45 55 65 75 85 95

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

(f)

Bhavna’s data

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

0.01

0.1

1
5 10 15 20 25 30 35 40

Dimensions

4000
32000
64000
150000
250000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 15 20 25 30 35 40

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

(g)

Bhavna’s data

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

0.01

0.1

1
5 10 15 20 25 30 35 40

Dimensions

4000
32000
64000
150000
250000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 15 20 25 30 35 40

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

(h)

Bhavna’s data

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

0.01

0.1

1
5 10 15 20 25 30 35 40

Sp
ee

d
up

Dimensions

4000
32000
64000
150000
250000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 15 20 25 30 35 40

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

4000
32000
64000
150000
250000

(i)

Figure 3.1: Speed performance of ANN and CUDA k-NN implementation tested on
different data size and dimensions. In the figures, horizontal coordinates are different
dimensional features used for test, and vertical coordinates are running time or speed
different ratio in (c), (f), and (i). Different colors of plot lines stand for different size
of sampled training data points. (a), (b), and (c) are ANN, CUDA k-NN and speed
comparison using bifurcation data. (d), (e), and (f) are the corresponding for cup &
rim data. (g), (h), and (i) are for surface segmentation data.

17

Table 3.1: Speed up from ANN to CUDA k-NN implement where k = 21. †

Dimension Tested data n = 4000 n = 8000 n = 16000 n = 32000 n = 64000

Bifurcation 2.54 1.94 2.14 1.4 1.13
dim = 5 Cup & rim 1.08 0.79 0.62 0.38 0.21

OCT Surface 0.38 0.27 0.20 0.15 0.11

Bifurcation 10.46 8.24 9.57 7.87 6.97
dim = 15 Cup & rim 4.48 4.42 3.79 2.88 2.28

OCT Surface 0.53 0.41 0.30 0.23 0.17

Bifurcation 26.94 33.29 30.10 37.16 39.26
dim = 25 Cup & rim 7.58 7.17 6.26 5.03 3.81

OCT Surface 0.61 0.40 0.33 0.21 0.18

Bifurcation 49.07 55.25 71.17 113.98 119.27
dim = 35 Cup & rim 10.70 10.41 9.32 8.69 6.77

OCT Surface 0.59 0.38 0.33 0.20 0.18

† Speed up is the comparison of running time between CUDA and ANN implementations.
It is defined as ratio of TimeANN

TimeCUDA
.

of the ANN approach over that of the CUDA-based approach (i.e., T imeANN

T imeCUDA
). One

noticeable result from Table 3.1 is that the three datasets perform differently. Un-

der similar settings (k = 21, number of query points fixed to 10000, and number of

reference points from 1000 to a maximum of 250,000), CUDA k-NN implementation

performs poorly in OCT surface segmentation data, and performs best in bifurcation

data. It is easy to see that with increasing dimensions, running time of CUDA ap-

proach tends to increase slower than that of ANN. Overall, Fig. 3.1 also shows that

the speed up increases with the increasing of dimension, but decreases with more data

points.

In the bifurcation data, we can see that CUDA k-NN has the most speed up. It

has up to two orders of magnitude of speed up compared to ANN implementation.

For cup & rim data, CUDA implementation has a worse speed performance when

the dimension of data is low, but the speed up increases with higher dimensions.

Meanwhile, it also shows that speed up of CUDA implementation gets smaller when

the number of training data points gets bigger.

18

0

1

2

3

4

5

6

5 10 15 20 25 30 35

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

k = 21
k = 41
k = 61
k = 81

0.01

0.1

1
5 10 15 20 25 30 35

Sp
ee

d
up

Dimensions

k = 21
k = 41
k = 61
k = 81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

k = 21
k = 41
k = 61
k = 81

Bhavna’s data
on different k

(a)

0

1

2

3

4

5

6

5 10 15 20 25 30 35

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

k = 21
k = 41
k = 61
k = 81

0.01

0.1

1
5 10 15 20 25 30 35

Sp
ee

d
up

Dimensions

k = 21
k = 41
k = 61
k = 81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

k = 21
k = 41
k = 61
k = 81

Bhavna’s data
on different k

(b)

0

1

2

3

4

5

6

5 10 15 20 25 30 35

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

k = 21
k = 41
k = 61
k = 81

0.01

0.1

1
5 10 15 20 25 30 35

Sp
ee

d
up

Dimensions

k = 21
k = 41
k = 61
k = 81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35

Ru
nn

in
g

tim
e

(s
ec

)

Dimensions

k = 21
k = 41
k = 61
k = 81

Bhavna’s data
on different k

(c)

Figure 3.2: Speed of ANN and CUDA k-NN implementation on surface segmentation
data. (a), (b), and (c) are ANN, CUDA k-NN and speed up.

In OCT surface segmentation data, however, CUDA k-NN doesn’t show any speed

up compared to ANN. Actually, ANN implementation is up to 10 times faster than

CUDA implementation. On the other hand, there is a clear pattern that with the

increase of dimensions CUDA-based approach tends to get relatively faster. We notice

that the main reason for this is that while the running time in CUDA approach

remains similar, ANN implementation runs much faster in surface segmentation data

than it in the other two datasets. More exploration of this is proposed in discussion

section.

For comparison under different ks, Fig. 3.2 shows that the line patterns for dif-

ferent ks are similar. Also, the overall running time for CUDA k-NN increases faster

than ANN implementation for increase k. Therefore, CUDA k-NN tends to have

lower speed up ratio against ANN for larger ks.

3.5 Discussion

Tests on different ophthalmic image data show that CUDA-based k-NN approach

as up to 2 orders of magnitude speed increase comparing with ANN implementation.

This is similar to random data tested in [30]. We also notice that for different image

data, the speed increase may vary from 2 to -1 orders of magnitude.

Additionally, running time of CUDA k-NN approach increases rapidly with in-

19

Table 3.2: Number of dimensions to explain 99% of vari-
ance in each testing dataset

Surface data Cup & rim data Bifurcation data

Dimensions 1 out of 39 41 out of 96 55 out of 60

creasing size of reference set. Therefore, a resampling process is needed for a larger

reference set. For same reference point size, increasing dimensions only has a small

impact on running time. This gives CUDA k-NN more advantage over ANN imple-

mentation for high dimension data.

As can be seen in Fig. 3.1(i), in some cases ANN could have an up to 10 times

better performance. We assume the cause for this is that after query points are located

in leaf nodes, the distribution of reference points could cause less cells to be visited

in the search process. To explore this further, we do a principle component analysis

(PCA), and find the number of dimensions needed to explain 99% of variance. The

result is shown in Table 3.2. This confirms our assumption. It seems the performance

of ANN library is highly dependent on the distribution of data, even if the given data

is in relatively high dimensions. More future explorations can be done to verify the

assumption.

One main drawback of CUDA-based k-NN technique is that it has large memory

requirements. In our test, a number of approximately 300,000 reference points would

exhaust GPU on board memory. With limited GPU memory, instances in the training

set need to be resampled before copying to GPU memory.

In this work, comparison of training time (i.e. time for preprocessing reference set)

and testing time (i.e. time for finding k closest neighbors) in ANN implementation

are not tested specifically. Also, comparison tests under different ks only involve one

dataset. For future work, more tests on more datasets can be performed.

Potential improvements can also be made in CUDA k-NN approach for better

20

performance. For instance, processes such as pruning the training set [33, 46] can be

adopted. This could not only improve the running speed, but also make k-NN more

robust to noise. Other than this, since the partial sorting used for finding the kth

smallest element is not necessarily the fastest way, there are other selection algorithm

can be used to optimize the speed. We have tried quickselect algorithm, but since it

doesn’t work very well in parallel computation, other faster select algorithm such as

radix select can be used to improve the speed.

21

CHAPTER 4
MOUSE RETINAL VESSEL SEGMENTATION

4.1 Motivation

As a widely used subject for longitudinal studies, mouse models can help with

the understanding and analysis of retinal diseases. Since there is no existing work

proposed on segmenting blood vessels in SD-OCT data of mice, we propose three ap-

proaches for segmenting the mouse vasculature using a CUDA-based k-NN classifier.

The basic idea is to extract features from projection images of SD-OCT volumes and

use a classifier to classify each pixel in the projection images as “vessel” or “non-

vessel”. The first approach uses similar approach by Niemeijer et al. [9] that was

proposed for human SD-OCT images. On the basis of the first approach, the second

one uses more features and a feature selection process for classification. The last one

extracts features from projection images of all segmented retinal layers, instead of

single projection image as in the first two. For convenience, we call these methods by

baseline, single projection, and all layers approaches.

4.2 Methods

An overview of the approaches we propose is illustrated in Fig. 4.1. It consists of

four steps. First, a total of 8 retinal surfaces are segmented using the graph-theoretic

approach proposed by Antony et al. [17] (Section 4.2.1). Second, 2D projection images

are created using intraretinal layers from the segmented surfaces. This is needed

because vessels cannot be readily seen in SD-OCT images, but absorption of light in

blood vessels creates silhouettes in the retinal layers below vessels. Such silhouettes

would represent vessel locations in a projection image. Each of three approaches

adopts a different combination of retinal layers (Section 4.2.2). Third, a collection of

features are generated from projection images using Gaussian, Hessian, and Gabor-

based filters. Each approach uses a different selection of features (Section 4.2.3).

Finally, a greedy feature forward selection is performed to get better feature sets for

22

Input
OCT

Image

Intraretinal
Surface

Segmentation

Segmented
Surfaces

Single
Projection

Image

Projection
Image

Creation

Single Projection Approach

Bottom
Layers

Projection
Image

Baseline Approach

Feature Selection
and Pixel

Classification

Pixel
Classification

Gaussian
Features

Gaussian
& Hessian
& Gabor
Features

Feature
Generation

Feature
Generation

All Layers
Projection

Images

All-Layer Projections Approach

Feature Selection
and Pixel

Classification

Gaussian
& Hessian
Features

Feature
Generation

Figure 4.1: Schematic overview of the methods proposed. It includes layer segmen-
tation using the graph-theoretic method and three approaches for pixel classification
to find blood vessels.

single projection and all layers approaches. Pixel classification of CUDA-based k-NN

is used to create a blood vessel probability map (Section 4.2.4).

4.2.1 Intraretinal layer segmentation

The layer segmentation is performed first using an established approach with a

modified graph-theoretic method for mouse SD-OCT images [17]. Within the ap-

proach, multiple surfaces in SD-OCT scans are segmented using the graph-theoretic

approach [47, 48] for global optimal solution. Similar to human approaches [48–50],

the outer surfaces namely ILM, ELM, the junction of the inner and outer seg-

ments, RPE were segmented first, followed by the segmentation of the inner surfaces,

NF+GC+IPL, INL, and OPL. A multi-resolution approach [49, 50] was also used in

each these steps in order to reduce computation time. Meanwhile, some changes were

made in order to accommodate the differences between human and mouse retinae.

The cost functions used here consisted of on-surface cost term [49, 50] derived from

gradient images computed using Gaussian derivative filters [17].

Fig. 4.2 shows an example result of the layer segmentation.

23

Inner!
Retina

Outer!
Retina

ILM

Bruch’s
Membrane

ELM
ONL
OS
IS
RPE

NF+GC+IPL
INL
OPL

Shadows !
of blood
vessels

(a)

Inner!
Retina

Outer!
Retina

ILM

Bruch’s
Membrane

ELM
ONL
OS
IS
RPE

NF+GC+IPL
INL
OPL

Shadows !
of blood
vessels

(b)

Figure 4.2: Simple illustration of intraretinal layer segmentation. (a) A sample b-scan
from mouse SD-OCT volume. (b) Same scan with segmented surfaces marked.

4.2.2 Projection image creation

Since we are segmenting vessels using shadows of them projected in intraretinal

layers, creating projection image using retinal layers below blood vessels would give a

clearer visualization of vessels in the image. In baseline approach, a projection image

from the volume is created combining IS and RPE layers in accordance to Niemeijer’s

work [9]. Fig. 4.3 shows an example of layers used for generating the projection

image and the corresponding projection image generated from the layers. On the

other hand, for single projection image approach, we create one overall 2D projection

image using all of layers from ONL to RPE in SD-OCT volumes. This combination

of layers was experimentally chosen, as it would create a projection image with best

visually separable vessels. Fig. 4.4 is an example of layers used in single projection

approach and the corresponding projection image.

However, selection of layers for projecting them is fairly subjective. Each voxel

in the retinal part of the SD-OCT image potentially contains information of blood

vessels, no matter if it is a part of the vessel structure or a part of the silhouette

of a vessel. Using 3D features from all related pixels in the retina would ideally

solve the problem. However, 3D feature data generated from the process is too

24

(a) (b)

Figure 4.3: Projection image creation for baseline approach. (a) Layers used for
creating projection image are between red marked surfaces. (b) Projection image
generated from layers marked in (a).

(a) (b)

Figure 4.4: Projection image creation for single projection approach. (a) Layers used
for creating projection image are between red marked surfaces. (b) Projection image
generated from layers marked in (a).

25

large for classification. In order to classify the SD-OCT images without losing more

3D information, we get distinguishable layers in the 3D volumes. From SD-OCT

scans of the image, more than 7 intraretinal layers can be detected using graph-based

surface segmentation. Since the intensity of voxels of the same column (z direction)

in the same layer is likely to be similar, averaging each intraretinal layer into a single

projection image will reduce amount of voxels we need to deal with. As a result,

for all layers approach, we adopt all layers and create 7 projection images for each

location in the 2D projection image. Fig. 4.5 shows the layer projection images we

can get from the mouse SD-OCT images. Fig. 4.5(h) is an alignment of the images.

Conceptually we generate a 400×400×7 volume instead of 400×400×1024 to find

blood vessels.

4.2.3 Feature generation

Given single projection image or set of projection images, different filters are

applied to get a feature vector for each pixel in each projection image. The features

include Gaussian-based features, Hessian analysis based features, and Gabor features

from projection images. For each of three approaches, we use some different features.

How different sets of features are generated are shown below.

Gaussian filter banks including Gaussian derivatives can be used as detecting

vesselness. It is also adopted in the human approach [9]. The Gaussian-based features

would apply Gaussian filters from 0 to 2nd order derivatives (L, Lx, Ly, Lxy, Lxx, Lyy)

with scale σ of 1, 2, 4, 8, 16 to get 30 dimension feature vectors for each projection

image.

For Hessian analysis based features, method based on point detection in [8] is used

for creating filters. 2nd order derivative Gaussian filters are used as Lxy, Lxx, and Lyy

kernels of Hessian matrices. The Hessian-based filters are generated by combining all

three kernels with rotations. A collection of σ of 2, 3, 4, 5 and orientations θ from 0o

to 360o with 15o are used to generate a total of 48 features.

26

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.5: Example of all the layer projection images obtained for all layers approach.
(h) shows the overall layout of them.

27

Texture-based features such as Gabor features can also be used for identifying

vessels [44]. For Gabor features, filters with standard deviation in the filter σ of 1, 2,

4, 6 and orientations θ from 0o to 180o with 15o interval will generate 64 Gabor-energy

features [51]. The mean and variance from symmetric Gabor filters are also used as

features. In total, there will be 192 Gabor features for one projection image.

In the baseline method, only features generated using Gaussian filter banks are

used for the process according to [9]. This gives some very efficient and minimal

number of features. Single projection method, on the other hand, uses all features

from Gaussian, Hessian, and Gabor-based features. A total of 270 features is used

for vessel segmentations. For all layers method, 7 projection images are used for

generating features. Since there are too many features generated from Gabor set,

nearly 2,000 features need to be applied if using them. Hence, we would only apply

Gaussian and Hessian-based filters to generate (30 + 48)× 7 = 546 features.

Each feature obtained is then normalized with zero mean and unit variance before

the next step.

4.2.4 Feature selection and pixel classification

For feature selection and pixel classification, CUDA-based k-NN classifier as de-

scribed in Chapter 3 with soft labels is used for identifying pixels as a part of blood

vessel or background. In the baseline approach, we don’t perform feature selection

because it already has a small enough feature set. For single projection and all layers

set, feature selections are used.

A feature selection approach is used because some features obtained are helpful for

identifying the vessels, while many of them are not or even detrimental. Meanwhile,

k-NN is not able to weigh the features and automatically select more useful ones.

If we use all features for the classification, worse results than baseline approach can

be generated. Fig. 4.6 shows two examples of pixel classification using all obtained

features in single projection approach. Therefore, we use feature selection to select a

28

(a) (b)

Figure 4.6: Example segmentation results using all obtained features.

smaller and more helpful features for classifications. Here we use a simple yet effective

model called sequential forward selection by A. Waynet Whitney [52]. The basic idea

is to perform a “bottom up” greedily search for the best features.

To select the best features, a training set is needed. The training set is first

divided into two subsets, one as training instances and the other as testing. We then

resample them for faster speed. After feature set is selected, training set for classifying

vessels is randomly sampled and only a subset is used because of the limitation in

GPU memory for using CUDA k-NN. k-NN classifier with soft labels is then used to

generate grey-scale probability images.

4.3 Experimental methods

For validation of the method, all procedures involving mice were approved by

the Animal Care and Use Committee at the University of Iowa, and complied with

the ARVO statement for the Use of Animals in Ophthalmic and Vision Research.

Specifically, we use 20 SD-OCT images all from right eyes of 20 mice from Bioptigen

scanner. They are 400×400×1024 in dimension and 3.5×3.5×1.53 µm size per pixel.

29

Pixel classification

Training Testing

Training Testing

Feature selection

Original dataset 20 volumes are divided
into 5 sets with 4 images
in each.

16 images are training set
for classification. The rest
4 are testing.

Each training set in cross
validation is divided into
two equal sets for feature
selection.

4 volumes

Figure 4.7: The cross-validation model.

The 20 images are divided into 5 sets with 4 imagesets in each. Then a cross validation

method is used for the process. In feature selection part, rules of cross validation is

also applied. The same 16 imagesets for training for k-NN are divided into 8 and 8

imagesets to find best features. A total number of 20 features are selected, and they

are applied for k-NN classification in single projection and all layers approaches. An

illustration of the process is shown in Fig. 4.7.

Here we use k = 31 according to the approach in human subjects [9]. Receiver

Operating Characteristic (ROC) curve is obtained using different thresholds (i =

0, 1, 2, ..., k) of soft labeled image to binary image. For the imagesets we test, volumes

are processed using the three methods we proposed earlier. Pixels in the 2D projection

images are manually labeled as “vessel” or “non-vessel”. Information from each of

the layers in the images as well as the overall best single projection image are used

for manually labeling the location of vessels.

We use a subset of 100,000 training and 100,000 testing points in feature selection

for speed performance. For k-NN classifier, a subset of training data of 200,000 points

are used as reference points. Area under curve (AUC) of ROC curves are computed

30

Table 4.1: First 10 features selected in feature selection for single
projection † and all layers approach ‡.

Phase Method used Features selected

1 Single projection 31, 37, 77, 29, 12, 16, 33, 28, 25, 46, 20
All layers 171, 237, 45, 39, 326, 321, 278, 179, 185, 30

2 Single projection 30, 24, 72, 77, 13, 36, 38, 27, 26, 31
All layers 174, 228, 36, 30, 180, 330, 210, 263, 154, 276

3 Single projection 31, 25, 26, 71, 28, 39, 44, 77, 21, 40
All layers 175, 25, 265, 31, 280, 274, 182, 28, 399, 282

4 Single projection 27, 33, 24, 269, 31, 34, 64, 19, 55, 14
All layers 177, 27, 231, 45, 517, 327, 286, 160, 6, 306

5 Single projection 31, 25, 34, 77, 12, 40, 27, 37, 26, 13
All layers 182, 32, 272, 38, 237, 326, 29, 269, 276, 191

† In single projection approach, features with indices of 0 – 47 are Hessian
analysis based features, 48 – 77 are Gaussian-based features, and 78 –
269 are Gabor features.

‡ In all layers approach, indices of 0 – 335 are Hessian-based features, and
336 – 545 are Gaussian-based features.

to evaluate the segmentation results. The AUC between pairs of ROC curves of

approaches we use are compared using the bootstrapping method by Carpenter and

Bithell [53]. For the approach, we use pROC package in R [54], and p-values for

significance is set as 0.05.

4.4 Results

For feature selection, it takes around 2 days for finding best feature combination

in single projection method, and 4 days in terms of all layers method. The features

chosen in the process are shown in Table 4.1. Only the first 10 selected features are

shown in the table. As we can see, in cross validation, the features selected are very

different in each fold.

In k-NN method, each of the dataset would take around 20 seconds to segment.

ROC curves of all four methods are plotted in Fig. 4.8. In every set of projection

images, the method using projection images from all layers gets a best result. The

31

Table 4.2: Comparison of AUC for three
approaches.

Baseline Single projection All layers

AUC 0.878 0.908 0.928

AUC results are in Table 4.2. Under bootstrap-based statistical tests, each pair of

the methods have statistically significant difference with p < 0.05.

Example results can be seen in Fig. 4.9. Even without any statistical analysis,

method using all layers generates the best overall vessel image. It has cleaner back-

ground, and segmented blood vessels are clear and continuous. For baseline approach,

not only are more non-vessels segmented in the background, some vessels cannot be

successfully segmented compared with the other two approaches.

4.5 Discussion

There are three approaches proposed in this work for segmenting mouse retinal

vessels. Our results show that with baseline approach adopted from prior work, some

of the vessels cannot be successfully segmented. Using the other two new approaches

results in a significant improvement. In particular, using more layer information

would offer more information from projection images and hence gives better results.

Features selected in cross-validation in feature selection part are not the same; one

of the reason could because of the greedy selection without discarding mechanism.

If different sets of features have been selected in different folds, features selected

afterwards tend to remain different. Also, most selected features are Hessian-based.

We can also apply feature selections to the feature sets and get a satisfying feature

collection within acceptable time (around 10hours×5 for 5 fold cross-validation), using

CUDA-based k-NN.

In future work we could use registration and fundus images of mice to improve the

vessel segmentation. Better cleaning up strategies could be applied, because blob-like

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

All Layers
Single Projection
Baseline

Figure 4.8: Comparison of ROC curves for baseline, single projection, and all layers
approach.

33

(a) (b) (c)

(d) (e) (f)

Figure 4.9: Example results of the three proposed approaches. (a) and (d) are the
projection image and result from baseline approach. (b) and (e) are the corresponding
for single projection approach. (c) and (f) are for all layers approach.

34

structures would affect results. Methods such as in [5] could also give a better result.

35

CHAPTER 5
CONCLUSION

In this work, a speed comparison between GPU-based CUDA k-NN implementa-

tion and the ANN implementation has been tested on three sets of medical imaging

data. The results show that with higher dimensional data, CUDA-based k-NN ap-

proach could have up to two orders of magnitude of speed up. Otherwise, ANN would

be a better implementation to use.

Also, based on the work of CUDA k-NN, we present two new approaches to

segment vasculature in mouse retina using large set of features. They performs better

than directly implementing closest previous OCT-based approach. The method using

all layer projections would show overall best result with more visible vessels and higher

contrast.

36

REFERENCES

[1] M. E. Mart́ınez-Pérez, A. D. Hughes, A. V. Stanton, S. A. Thom, A. A. Bharath,
and K. H. Parker, “Retinal blood vessel segmentation by means of scale-space
analysis and region growing,” in Medical Image Computing and Computer-
Assisted Intervention–MICCAI99. Springer, 1999, pp. 90–97.

[2] F. Zana and J.-C. Klein, “Segmentation of vessel-like patterns using mathemati-
cal morphology and curvature evaluation,” Image Processing, IEEE Transactions
on, vol. 10, no. 7, pp. 1010–1019, 2001.

[3] B. S. Lam and H. Yan, “A novel vessel segmentation algorithm for pathological
retina images based on the divergence of vector fields,” Medical Imaging, IEEE
Transactions on, vol. 27, no. 2, pp. 237–246, 2008.

[4] X. Jiang and D. Mojon, “Adaptive local thresholding by verification-based mul-
tithreshold probing with application to vessel detection in retinal images,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 1,
pp. 131–137, 2003.

[5] J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. van Ginneken,
“Ridge-based vessel segmentation in color images of the retina,” Medical Imaging,
IEEE Transactions on, vol. 23, no. 4, pp. 501–509, 2004.

[6] M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M. D. Abramoff, “Com-
parative study of retinal vessel segmentation methods on a new publicly available
database,” in Medical Imaging 2004. International Society for Optics and Pho-
tonics, 2004, pp. 648–656.

[7] J. V. Soares, J. J. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal
vessel segmentation using the 2-D gabor wavelet and supervised classification,”
Medical Imaging, IEEE Transactions on, vol. 25, no. 9, pp. 1214–1222, 2006.

[8] A. Klein, W. K. Renema, L. J. Oostveen, L. J. S. Kool, and C. H. Slump, “A
segmentation method for stentgrafts in the abdominal aorta from ECG-gated
CTA data,” in Medical Imaging. International Society for Optics and Photonics,
2008, pp. 69 160R–69 160R.

[9] M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff,
“Vessel segmentation in 3D spectral OCT scans of the retina,” in Proc. SPIE,
vol. 6914, 2008, p. 69141R.

[10] M. Niemeijer, M. Sonka, M. Garvin, B. van Ginneken, and M. Abràmoff, “Au-

37

tomated segmentation of the retinal vasculature in 3D optical coherence tomog-
raphy images,” Invest Ophthalmol Vis Sci, 2008.

[11] J. Xu, D. Tolliver, H. Ishikawa, G. Wollstein, and J. S. Schuman, “3D OCT
retinal vessel segmentation based on boosting learning,” in World Congress on
Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich,
Germany. Springer, 2009, pp. 179–182.

[12] Z. Hu, M. Niemeijer, M. D. Abràmoff, K. Lee, and M. K. Garvin, “Automated
segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening
false positive suppression,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2010. Springer, 2010, pp. 33–40.

[13] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang,
M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito et al., “Optical coherence
tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991.

[14] H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, and C. A. Puliafito, “Automatic
retinal blood flow calculation using spectral domain optical coherence tomogra-
phy,” in Biomedical Optics (BiOS) 2008. International Society for Optics and
Photonics, 2008, pp. 68 470I–68 470I.

[15] G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand,
A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer,
“Spectral domain optical coherence tomography in mouse models of retinal de-
generation,” Investigative ophthalmology & visual science, vol. 50, no. 12, pp.
5888–5895, 2009.

[16] M. E. Pennesi, K. V. Michaels, S. S. Magee, A. Maricle, S. P. Davin, A. K. Garg,
M. J. Gale, D. C. Tu, Y. Wen, L. R. Erker et al., “Long-term characterization of
retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence
tomography,” Investigative Ophthalmology & Visual Science, vol. 53, no. 8, pp.
4644–4656, 2012.

[17] B. J. Antony, M. D. Abràmoff, M. M. Harper, W. Jeong, E. H. Sohn, Y. H. Kwon,
R. Kardon, and M. K. Garvin, “A combined machine-learning and graph-based
framework for the segmentation of retinal surfaces in SD-OCT volumes,” Biomed.
Opt. Express, vol. 4, no. 12, pp. 2712–2728, Dec 2013.

[18] M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and image
analysis,” Biomedical Engineering, IEEE Reviews in, vol. 3, pp. 169–208, 2010.

[19] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information
Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–27, 1967.

38

[20] B. Weyn, G. van de Wouwer, A. van Daele, P. Scheunders, D. van Dyck, E. van
Marck, and W. Jacob, “Automated breast tumor diagnosis and grading based
on wavelet chromatin texture description,” Cytometry, vol. 33, no. 1, pp. 32–40,
1998.

[21] M. de Bruijne, B. van Ginneken, M. A. Viergever, and W. J. Niessen, “Adapt-
ing active shape models for 3D segmentation of tubular structures in medical
images,” in Information Processing in Medical Imaging. Springer, 2003, pp.
136–147.

[22] P. Anbeek, K. L. Vincken, M. J. van Osch, R. H. Bisschops, and J. van der
Grond, “Probabilistic segmentation of white matter lesions in MR imaging,”
NeuroImage, vol. 21, no. 3, pp. 1037–1044, 2004.

[23] G. P. Mazzara, R. P. Velthuizen, J. L. Pearlman, H. M. Greenberg, and H. Wag-
ner, “Brain tumor target volume determination for radiation treatment planning
through automated MRI segmentation,” International Journal of Radiation On-
cology* Biology* Physics, vol. 59, no. 1, pp. 300–312, 2004.

[24] X. Chen, X. Zhou, and S. T. Wong, “Automated segmentation, classification, and
tracking of cancer cell nuclei in time-lapse microscopy,” Biomedical Engineering,
IEEE Transactions on, vol. 53, no. 4, pp. 762–766, 2006.

[25] B. J. Antony, M. D. Abràmoff, M. Sonka, Y. H. Kwon, and M. K. Garvin, “In-
corporation of texture-based features in optimal graph-theoretic approach with
application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes,”
in SPIE Medical Imaging. International Society for Optics and Photonics, 2012,
pp. 83 141G–83 141G.

[26] M. S. Miri, K. Lee, M. Niemeijer, M. D. Abràmoff, Y. H. Kwon, and M. K.
Garvin, “Multimodal segmentation of optic disc and cup from stereo fundus and
SD-OCT images,” in SPIE Medical Imaging. International Society for Optics
and Photonics, 2013, pp. 86 690O–86 690O.

[27] Q. Hu, M. K. Garvin, M. A. Christopher, X. Xu, T. Scheetz, and M. D. Abramoff,
“Optimal filter approach for the detection of vessel bifurcations in color fundus
images,” in SPIE Medical Imaging. International Society for Optics and Pho-
tonics, 2013, pp. 866 920–866 920.

[28] J. L. Bentley, “K-d trees for semidynamic point sets,” in Proceedings of the sixth
annual symposium on Computational geometry. ACM, 1990, pp. 187–197.

[29] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An

39

optimal algorithm for approximate nearest neighbor searching fixed dimensions,”
Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923, 1998.

[30] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using GPU,” in Computer Vision and Pattern Recognition Workshops, 2008.
CVPRW’08. IEEE Computer Society Conference on. IEEE, 2008, pp. 1–6.

[31] H. Yu, C. Caldwell, K. Mah, and D. Mozeg, “Coregistered FDG PET/CT-based
textural characterization of head and neck cancer for radiation treatment plan-
ning,” Medical Imaging, IEEE Transactions on, vol. 28, no. 3, pp. 374–383, 2009.

[32] K. Murphy, B. van Ginneken, A. M. Schilham, B. De Hoop, H. Gietema, and
M. Prokop, “A large-scale evaluation of automatic pulmonary nodule detection
in chest CT using local image features and k-nearest-neighbour classification,”
Medical Image Analysis, vol. 13, no. 5, pp. 757–770, 2009.

[33] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-based
learning algorithms,” Machine learning, vol. 38, no. 3, pp. 257–286, 2000.

[34] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding
best matches in logarithmic expected time,” ACM Transactions on Mathematical
Software (TOMS), vol. 3, no. 3, pp. 209–226, 1977.

[35] M. Bern, “Approximate closest-point queries in high dimensions,” Information
Processing Letters, vol. 45, no. 2, pp. 95–99, 1993.

[36] Q. Kuang and L. Zhao, “A practical GPU based kNN algorithm,” in Interna-
tional Symposium on Computer Science and Computational Technology (ISC-
SCT), 2009, pp. 151–155.

[37] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, “K-nearest neighbor search:
Fast GPU-based implementations and application to high-dimensional feature
matching,” in Image Processing (ICIP), 2010 17th IEEE International Confer-
ence on. IEEE, 2010, pp. 3757–3760.

[38] H. KOLB, “How the retina works,” American scientist, vol. 91, no. 1, pp. 28–35,
2003.

[39] H. Kolb, E. Fernandez, and R. Nelson, “Simple anatomy of the retina,” 2005.

[40] C. Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H. Williamson, “Automated
localisation of the optic disc, fovea, and retinal blood vessels from digital colour

40

fundus images,” British Journal of Ophthalmology, vol. 83, no. 8, pp. 902–910,
1999.

[41] C. Sinthanayothin, J. Boyce, T. Williamson, H. Cook, E. Mensah, S. Lal, and
D. Usher, “Automated detection of diabetic retinopathy on digital fundus im-
ages,” Diabetic Medicine, vol. 19, no. 2, pp. 105–112, 2002.

[42] E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line opera-
tors and support vector classification,” Medical Imaging, IEEE Transactions on,
vol. 26, no. 10, pp. 1357–1365, 2007.

[43] C. A. Lupascu, D. Tegolo, and E. Trucco, “FABC: retinal vessel segmentation
using AdaBoost,” Information Technology in Biomedicine, IEEE Transactions
on, vol. 14, no. 5, pp. 1267–1274, 2010.

[44] A. Bhuiyan, B. Nath, J. Chua, and R. Kotagiri, “Blood vessel segmentation
from color retinal images using unsupervised texture classification,” in Image
Processing, 2007. ICIP 2007. IEEE International Conference on, vol. 5. IEEE,
2007, pp. V–521.

[45] G. Kande, T. Savithri, and P. Subbaiah, “Retinal vessel segmentation using
spatially weighted fuzzy c-means clustering and histogram matching,” in India
Conference, 2008. INDICON 2008. Annual IEEE, vol. 1. IEEE, 2008, pp. 1–6.

[46] D. R. Wilson and T. R. Martinez, “Instance pruning techniques,” in ICML,
vol. 97, 1997, pp. 403–411.

[47] K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in
volumetric images-a graph-theoretic approach,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 28, no. 1, pp. 119–134, 2006.

[48] M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka,
“Automated 3-D intraretinal layer segmentation of macular spectral-domain op-
tical coherence tomography images,” Medical Imaging, IEEE Transactions on,
vol. 28, no. 9, pp. 1436–1447, 2009.

[49] K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff,
“3-D segmentation of the rim and cup in spectral-domain optical coherence to-
mography volumes of the optic nerve head,” in SPIE Medical Imaging. Inter-
national Society for Optics and Photonics, 2009, pp. 72 622D–72 622D.

[50] B. J. Antony, M. D. Abràmoff, K. Lee, P. Sonkova, P. Gupta, Y. Kwon,
M. Niemeijer, Z. Hu, and M. K. Garvin, “Automated 3D segmentation of in-

41

traretinal layers from optic nerve head optical coherence tomography images,”
in SPIE Medical Imaging. International Society for Optics and Photonics, 2010,
pp. 76 260U–76 260U.

[51] P. Kruizinga and N. Petkov, “Nonlinear operator for oriented texture,” Image
Processing, IEEE Transactions on, vol. 8, no. 10, pp. 1395–1407, 1999.

[52] A. W. Whitney, “A direct method of nonparametric measurement selection,”
Computers, IEEE Transactions on, vol. 100, no. 9, pp. 1100–1103, 1971.

[53] J. Carpenter and J. Bithell, “Bootstrap confidence intervals: when, which, what?
A practical guide for medical statisticians,” Statistics in medicine, vol. 19, no. 9,
pp. 1141–1164, 2000.

[54] X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and
M. Müller, “pROC: an open-source package for R and S+ to analyze and compare
ROC curves,” BMC Bioinformatics, vol. 12, no. 1, p. 77, 2011.

	University of Iowa
	Iowa Research Online
	Fall 2013

	Cuda K-Nn: application to the segmentation of the retinal vasculature within SD-OCT volumes of mice
	Wenxiang Deng
	Recommended Citation

	tmp.1391632205.pdf.UmIUl

