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ABSTRACT 

Glaucoma is a leading cause of blindness throughout the world and is estimated to 

affect 80 million by 2020. This disease causes progressive loss of vision and, left 

untreated, can lead to complete blindness. With treatment, however, disease progression 

can be slowed dramatically. This makes early detection and intervention crucial in 

preserving the vision of affected individuals. 

Onset and progression of glaucoma are associated with structural changes to an 

anatomical feature known as the optic nerve head (ONH). The ONH is the site of 

attachment between the retina and the optic nerve that carries all visual information to the 

brain. As glaucoma progresses, characteristic changes related to cell death and loss of 

vision can be observed in the three-dimensional structure of the ONH. A common 

modality used to observe these changes is stereo fundus imaging. This modality captures 

three-dimensional information via stereo imaging and is commonly used in clinical 

settings to diagnose and monitor glaucoma. A limitation of using stereo fundus images is 

the need for review by glaucoma specialists to identify disease related features of ONH 

structure. Further, even when expert evaluation is possible, the subjective nature of the 

process can lead due large discrepancies in the evaluations and resultant clinical 

decisions. The work presented here seeks address these concerns by providing automated, 

computational tools that can be used to characterize ONH structure. 

Specifically, this thesis outlines the development of computational methods for 

inferring three-dimensional information from stereo fundus images and identifying 

objective, quantitative measurements of ONH structure. The resulting computational 

tools were applied to image and clinical data collected from a large cohort of individuals 

to identify hidden relationships between ONH structure, clinical measurements, and 

glaucoma. These tools were then applied to develop methods for estimating the impact of 

individual genetic factors on the ONH. Finally, using a longitudinal dataset collected over 
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more than a decade, computational analysis was used to investigate how ONH structure 

changes over time in response to aging, other disease-related factors, and glaucoma 

progression.  
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PUBLIC ABSTRACT 

Early detection is a crucial aspect of care in the treatment of glaucoma. This 

progressive disease causes irreversible loss of vision and can lead to complete blindness. 

However, with early intervention, disease progression can be dramatically slowed and 

vision can be retained. This work presents data-driven methods to identify structural 

changes associated with glaucoma and aid in early detection of the disease. 

The focus of the methods presented here is to analyze the three-dimensional shape 

of an anatomical structure known as the optic nerve head (ONH). The ONH is the 

attachment site of the optic nerve to the retina with a characteristic shape that often 

undergoes changes during the development and progression of glaucoma. Observation of 

the ONH is a standard part of clinical assessments for glaucoma. By applying statistical 

and computational techniques to a large dataset of medical images and clinical 

measurements, biologically and clinically important features of ONH structure were 

identified. 

Specifically, methods for quantifying ONH structure based on medical images 

were developed and the resulting measurements were found to significantly increase 

accuracy in predicting development of glaucoma. Further methods that incorporated 

genetic information were developed and used to identify significant relationships between 

ONH shape and genetics. Finally, longitudinal data captured over several years was 

analyzed to identify time-dependent ONH changes associated with disease. 
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CHAPTER 1 

INTRODUCTION 

Glaucoma is a leading cause of blindness, both in the U.S. and around the world. 

It is associated with death of retinal ganglion cells, optic nerve damage, and progressive 

loss of vision.[1] The most common form, primary open angle glaucoma (POAG), is a 

complex disease with numerous genetic contributors. Over the last few decades, several 

POAG-related genes have been discovered.[2] Despite this progress, much of the genetic 

basis of POAG remains unknown.[3]  

A relatively recent approach for studying POAG and other complex diseases is to 

investigate the genetics of disease-related quantitative traits. The goal of this approach is 

to use the additional information added by quantitative phenotype measurements to 

identify previously hidden genetic contributions to disease. In the case of POAG, 

genome-wide association studies (GWAS) of traits such as intraocular pressure, central 

corneal thickness, and optic nerve head (ONH) structural measurements have been used 

with some success.[4, 5] In particular, studies using ONH structural measurements have 

not only strengthened evidence for genes previously associated with POAG, but have 

also suggested new lines of research by uncovering novel genetic associations.[4] 

Using stereo fundus images, previous work has presented computational methods 

for the identification of ONH structural features.[6] These computationally-identified 

structural endophenotypes (STEPs) have been shown to capture hereditable components 

of ONH structure and associate with POAG-related demographic variables.[6, 7] In this 

thesis, the use of STEPs as quantitative measurements to characterize the variation 

observed ONH structure, estimate the impact of genetics, and predict disease onset prior 

to loss of vision will be evaluated. 

This work is organized into the following six chapters based on topic. Chapter 2 

will provide necessary context for POAG and its relationship to the ONH. An overview 
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of methods commonly used to analyze structural data collected from the eye is also 

presented. Finally, a summary of research into the genetics of POAG is provided. 

Chapter 3 summarizes two important fundus processing algorithms presented in 

previous publications that were adapted and implemented for the research described here. 

The first is an algorithm for locating the ONH region within a fundus image. The second 

is the depth inference algorithm used to extract depth information from stereo fundus 

images. This important algorithm is the tool used to extract the dense, quantitative maps 

of ONH structure that are used for all other analyses.  

Chapter 4 describes the analysis of a large participant cohort at risk for 

developing POAG. Using depth inferred from stereo fundus images, features that 

describe the types of variation observed within ONH structure were identified 

computationally. These features were compared to commonly used clinical measurements 

and evaluated based on their ability to predict future development of POAG. These 

features were also compared to qualitative evaluations of stereo fundus images performed 

by glaucoma specialists. 

Chapter 5 describes an analysis that compares computationally identified ONH 

structural features to genetic data. Standard genetic association approaches are used to 

detect significant relationships between genetic factors and ONH structure. In addition to 

the standard approaches, a novel method for estimating the impact of individual genetic 

factors on ONH structure is presented and evaluated. 

Chapter 6 describes the longitudinal analysis of ONH structure that was 

performed to identify time-dependent structural changes and evaluate their use in 

predicting POAG. The methods developed in previous chapters were applied to images 

collected over the course of several years from a large participant cohort to measure ONH 

structural features and quantify the changes occurring over time. Alternative 

methodologies for detecting and predicting POAG using these longitudinal features were 

developed and evaluated.  
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Finally, Chapter 7 contains a brief summary of the work presented here and 

comments on the research described here. This work closes by suggesting possible 

directions for future research. 
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CHAPTER 2  

BACKGROUND 

Primary Open Angle Glaucoma 

Glaucoma is a degenerative disease of nerve tissue in the eye that is characterized 

by the progressive loss of retinal cells and damage to the optic nerve. Left untreated, this 

damage leads to irreversible vision loss and, often, complete blindness.[1] Glaucoma is a 

leading cause of blindness both in the U.S. and worldwide. It was estimated to effect 60 

million people globally in 2010, with the number of affected estimated to rise to 80 

million by 2020[8]. Glaucoma occurs in several different forms that include both acute 

and chronic types. The most common form, and the focus of this work, is primary open 

angle glaucoma (POAG). This is an adult-onset, chronic form of glaucoma that lacks 

secondary cause of disease. Currently, treatment options for POAG can drastically slow 

disease progression, but this requires early intervention to prevent loss of vision.  

POAG and other forms of glaucoma have long been associated with elevated 

levels of intra-ocular pressure (IOP). IOP is a measurement of the fluid pressure of the 

aqueous and vitreous humor contained within the anterior and posterior portions of the 

eye, respectively. IOP is largely controlled by anterior eye structures that govern the 

inflow and outflow of aqueous humor. Blockage or breakdown of these structures as well 

as an increase blood pressure can cause IOP to rise. In addition, POAG has been 

associated with central corneal thickness (CCT), in which lower thicknesses are 

associated with an increasing the risk of disease.[9] Demographics also have an effect on 

POAG risk. While the effect of sex seems to be low, ethnicity can greatly affect POAG 

risk. Studies have found an increased risk of POAG as well as reduced CCT in 

individuals with African American ancestry compared with those of European 

ancestry.[10] Risk of POAG in individuals with East Asian ancestry seems to lower, 
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though, more recent work suggests this difference may not be as large as previously 

thought.[11] 

Traditional models of glaucoma suggest that increased IOP exerts pressure on the 

retina causing physical damage to retinal cells and connective tissues. The result of this 

damage is loss of cells that are critical to visual function, especially retinal ganglion cells. 

These cells serve to process the visual signals originating from photoreceptor cells and 

pass on this signal for further processing in the visual cortex via the optic nerve. As 

retinal cell death occurs, corresponding functional damage also progresses. This typically 

manifests as areas of lost acuity within an individual’s visual field. Often, this functional 

loss is first apparent in the periphery and can progress for long periods of times unnoticed 

by affected individuals. Because this loss of visual function is irreversible, early detection 

and treatment is critical so that damage can be prevented.[12] 

Clinical assessment of POAG is performed using evaluation of multiple features 

related to visual function and structure. IOP is regularly measured during clinical visits 

and is used a screening measurement to determine individuals who are at risk for POAG 

development. Commonly, a threshold value of ~22 mmHg is used to distinguish between 

individuals within the normal range and those with ocular hypertension.[13] Though the 

association between IOP and POAG has been confirmed in multiple populations across 

many years, it is far from a perfect predictor of disease.[1] Some estimates have indicated 

that individuals with IOP within the normal range can account for up to 50% of observed 

POAG cases.[14, 15] Similarly, elevated IOP does significantly increase the risk of 

POAG, but longitudinal studies have shown that a majority of people exhibiting elevated 

IOP at baseline still do not develop the disease within several years of follow up.[9] 

Functional assessment of POAG is performed using perimetry in which the visual 

function across a large area of the retina can be evaluated. In these tests, a stimulus is 

repeatedly presented across multiple locations corresponding to a pre-defined region of 

the visual field. Generalized loss of function as well as characteristic patterns of loss in 
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standardized visual field testing are associated with disease progression.[16] The ability 

of perimetry to detect loss of function after damage has occurred makes it important in 

monitoring progression in POAG patients, but a poor choice for use in screening 

programs to detect the disease before vision loss occurs. 

Structural measurements are also commonly used in clinical settings to diagnose 

and monitor POAG. Most commonly, inspection of the optic nerve head (ONH) is used 

to assess glaucomatous progression. The ONH is the site where the optic nerve connects 

to the retina and also serves as the opening through which retinal vasculature passes. All 

visual information traveling to the visual cortex from the retina passes through the ONH. 

The ONH has a characteristic three-dimensional structure that is, in part, determined by 

the axons passing through it. While the direction of causality remains uncertain, the loss 

of retinal cells and corresponding axons is associated with changes in the structure of the 

ONH. This makes structural evaluation of the ONH an important tool in detecting and 

tracking POAG. 

Optic Nerve Head Structure 

Normative ONH structure can be described with reference to the optic disc that 

encompasses the entire ONH region and its subdivisions, the neuroretinal rim and cup 

regions. The rim and cup are so-called because the cup forms a concave shape separated 

from the plane of the nearby retinal surface, while the rim surrounds the cup and fills the 

remainder of the optic disc area.[17] A standardized coordinate system is used to describe 

quadrants of the circular ONH region including the superior, inferior, nasal, and temporal 

quadrants. In normal eyes, the cup region usually has a somewhat ovoid shape with a 

larger horizontal than vertical diameter though variation away from this rule of thumb is 

common.[16] Clinicians can view the ONH region directly through the use of specialized 

tools such as an ophthalmoscope or slit lamp. Images of the retina and ONH region can 

be captured using specialized fundus cameras. This includes both singular images of the 
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ONH region and stereo photography in which stereo image pairs are captured (see 

Chapter 3 for a more detailed discussion of stereo photography). Figure 2.1 provides an 

illustration of overall eye structure and the appearance of a normal ONH region 

visualized using fundus photography. 

Qualitative assessment of the ONH structure is by clinicians is a standard practice 

in screening for and tracking POAG. In this assessment, clinicians search for changes 

from normal ONH structure in the neuroretinal rim, cup, and the region surrounding the 

optic disc. See Figure 2.2 for examples of some of these POAG-associated changes. 

Typical ONH changes associated that are evaluated by clinicians include the following: 

• Thinning of the neuroretinal rim - Thinning of the rim is associated with 

glaucomatous damage. It can occur over the entire rim (diffuse) or only affect 

isolated regions (notching).[16] 

• Increased depth of the cup – Deepening of the cup is associated with loss of the 

neuroretinal rim and progression of POAG.[18] 

• Steepening of the cup slope – Increases in the steepness of the sides of the cup are 

associated with larger cups and glaucomatous damage.[19] 

• Increased optic disc size/area – Overall size of the disc area varies among 

different ethnic populations and affects evaluation of other ONH structural 

parameters.[20]  

• Peripapillary atrophy – Visible changes to pigment in the region surrounding the 

ONH are cause by degradation of the retinal pigmented epithelium and occur at 

higher rates in POAG cases. Categorized as into mild (zone alpha) and severe 

forms (zone beta).[16]  

• Changes to optic disc vasculature – POAG-associated structural changes to the 

rim and cup regions can cause changes to the position or angle of retinal 

vasculature. In some cases, hemorrhaging can occur in the ONH region.[16] 
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Figure 2.1:	
  (A) Cross-section of the human eye with the location of the ONH highlighted 
(inset). Illustration courtesy of National Eye Institute 
(https://nei.nih.gov/photo/). (B) The ONH as it appears in fundus images with 
the nasal (N), temporal (T), superior (S), and inferior (I) directions labeled. 
(C) A three-dimensional rendering of the ONH illustrating typical structure. 
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ONH structure is also evaluated using quantitative structural parameters in 

clinical settings. Most commonly, cup-to-disc ratio (CDR) is used as the primary 

quantitative feature used to describe ONH structure. This measurement is the ratio of the 

cup diameter to the overall disc diameter. Its value rises when cup size increases and 

neuroretinal rim thinning occurs. Abundant evidence exists to show increases in CDR are 

associated with glaucomatous damage.[13, 21] CDR can be measured in the superior-

inferior direction, termed vertical CDR (VCDR), or in the nasal-temporal direction, 

horizontal CDR (HCDR). Though several of the have shown significant associations with 

disease and are used in clinical evaluation of POAG, they are limited by measurement 

variability and the need for subjective evaluation. Determination of the presence/absence 

of disc features and the measured values of quantitative disc features can vary 

substantially between different observers and imaging set ups.[22-24]  

 

Figure 2.2: Example of a healthy ONH and some common abnormalities. (A) A normal 
ONH region with the cup (blue circle) and disc (red circle) outlined. The ratio 
of the diameters of these circles corresponds to the CDR. (B) An ONH region 
exhibiting localized thinning (notching) in the superior quadrant (blue arrow). 
(C) An example of peripapillary atrophy altering the pigment around the ONH 
(red arrow). 

The ONH structural measurements mentioned above can be assessed either 

through direct observation of the retina or through examination of monocular and stereo 
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fundus images. One of the first technologies to allow direct depth measurement of the 

retinal surface was Heidelberg retinal tomography (HRT). This is an imaging technique 

based on a scanning laser that can be used to map the retinal surface structure. More 

recently, the imaging technology optical coherence tomography (OCT) has become an 

important tool in clinical and research settings. The rise of spectral-domain OCT within 

the past decade has allowed large amounts of structural image data to be captured from 

both normal and diseased individuals. Using this modality, both the retinal surface as 

well as deep structure of the retina can be interrogated. Of particular interest in 

glaucoma-related research is the ability of OCT to capture data from the retinal ganglion 

cell and nerve fiber layers and sub-surface structure of the ONH region. These deeper 

retinal structures are not available through traditional fundus imaging techniques. 

Measurements derived from OCT imaging and their use in aiding the detection and study 

of glaucoma have been widely published on.[25-28] 

Statistical Shape Modeling of Retinal Structures 

The analysis of biological forms has long been used by researchers to describe, 

evaluate, and classify organs and organisms. In traditional applications, this has involved 

the capture of physical measurements of biological forms. Depending on the structure 

under consideration, this has usually meant manual recording of length, area, or angle 

measurements. Reliance on a manual evaluation of structure has continued even with 

widespread use of high-resolution and three-dimensional imaging techniques. These 

techniques capture large amounts of structural data that can be lost by representing a 

complex structure using only a few manually measured parameters. For instance in the 

case of ONH structure, the commonly used metrics of CDR, cup depth, or disc area can 

easily fail to capture important structural markers of disease such as localized notching in 

the neuroretinal rim. 
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Within the field of ophthalmology, automated and semi-automated techniques 

have been developed to address the limitations of relying on manual evaluation of the 

ONH. Applied to fundus images, these computational techniques can be used to expedite 

and expand the process of capturing ONH parameters. This can include aiding or 

automating the process of segmenting the optic disc, rim, and cup. Once these regions are 

segmented, automated computation of total disc area, cup size, rim size, and CDR can be 

performed.[29-31] Other simple metrics such as measuring the similarity of the cup 

outline to a circle or oval been evaluated as well.[19, 32, 33] 

While the data provided by OCT images provides the ability to describe deeper 

retinal structures, it is accompanied by increased complexity when visualizing and 

analyzing three-dimensional structural data. Numerous software tools have been 

developed to help both clinicians and researchers analyze retinal structure using OCT 

data. These include the proprietary software provided by the maker of OCT devices that 

produce reports highlighting areas of interest in the images and summary statistics 

describing structure. They also include tools developed by both clinical and 

computational researchers that can extract ONH structure from OCT images. Using the 

volumetric OCT scans, volumetric measurements of ONH structure such as rim and cup 

volume can be measured. Further, OCT allows examination of underlying anatomical 

structures and is commonly used to identify the boundaries between retinal layers and 

segment the retina into distinct layers related to biological function. The thicknesses of 

various layers identified using OCT have been evaluated and associated with several eye 

diseases.[34-36] One such layer, the retinal ganglion cell layer, has been used to produce 

estimates of the extent of ganglion cell loss. Overall thickness of this layer as well as 

localized thinning have been used to assess the extent of glaucomatous damage and 

evaluated as predictors for POAG.[37-39] 

The relatively simple structural metrics that are currently used to measure ONH 

structure or ganglion cell layer thicknesses are associated with disease and have some 
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ability to predict conversion to POAG. These metrics are limited, though, because they 

reduce complex three-dimensional structures into a small set quantitative features 

meaning there is a substantial loss of structural information. Researchers have used these 

metrics not because they are particularly useful for representing the complex biological 

structures under consideration, but because these measurements can be interpreted based 

on prior knowledge. Many of these automated or semi-automated image-based metrics 

mimic standard clinical measurements (CDR, optic disc size, etc.) or at least seem to 

have a straightforward biological interpretation (e.g. thinning of the OCT layers 

indicating cell loss). While these metrics are certainly useful in detecting and, in some 

cases, predicting POAG, they can be limited in their ability to discover novel associations 

or motifs in the structures they measure.[40] 

To address this limitation of the simple shape metrics, more sophisticated 

techniques inspired by mathematical and statistical modeling have been developed. One 

of the simplest techniques is to fit a curve to structural measurement data and to use the 

best-fit parameters represent shape. The general form of the curve (e.g. polynomial, 

spline, Gaussian) and number of parameters can be chosen based on the shapes and type 

of variability observed in the data. This technique requires human experts to decide on 

the type of curve that is used and, based on that choice, can lead to errors when 

observations vary greatly from the expected shape. Even so, this technique can be used to 

effectively represent shape even when applied to noisy data.[41] A more sophisticated 

class of techniques relies on the use of structural landmarks that indicate homologous 

points across the set observations. The location of each landmark in each observation is 

then determined (either through manual or automated detection). Differences between 

observations can be computed by comparing corresponding landmarks. The training of 

active shape models (ASM) rely on using landmarks in this way to iteratively estimate a 

template structure to which the observations are compared. After training, each 

observation is represented by its deviations from the template.[42] The final class of 
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techniques considered here makes use of frequency-based representations of structure. 

One example, elliptical Fourier analysis (EFA) fits a set of sinusoidal functions 

parameterized by frequency to structural observations. Similarly to standard Fourier 

analysis, each observation can be represented as a set of coefficients corresponding to 

contributions each frequency. The number of coefficients considered can be determined 

via reconstruction error or some application-specific metric.[40] Another commonly used 

frequency decomposition technique, the wavelet transform, has been applied to structural 

observations. Again in the wavelet case, frequency-dependent models are fit to 

observations to estimate the frequency contributions to structure. Additionally, spatial 

information is retained in the wavelet transform so that localized frequency contributions 

to structure can be quantified.[43] 

Recently, researchers have applied these techniques to retinal and ONH structure 

and have typically evaluated model performance based on agreement with expert review 

of images or associations with disease. Sanfilippo et al., for example, extracted shape 

measurements by manually tracing the rim and cup outlines from 30 individuals using 

stereoscopic fundus images.[44] Using landmarks sampled along these outlines, an ASM-

like model was used to identify common modes of variation cup shape features were 

identified. The resulting features showed better accuracy in discriminating normal from 

POAG individuals than single measurements such as CDR. The requirement of manual 

fundus image evaluation by experts limited the sample sizes in this study, leaving the 

generalizability and power for early POAG prediction in question. Using the three-

dimensional surface data provided by HRT, Zhu et al. learned the parameters needed to 

compute a shape score based on a wavelet representation of ONH structure.[45] This 

learned score outperformed standard clinical measurements in detecting POAG. 

Statistical shape modeling techniques are also being applied to deep retinal structure 

captured via OCT. Modeling of the overall structure of the retinal nerve fiber layer rather 

than relying solely on thickness measurements has increased in power to detect loss of 



 

 

14 

14 

function in several studies.[46-48] Here, a common approach has been to model retinal 

nerve fibers as two-dimensional curves traveling across the retina. Features extracted 

from OCT data can be used to fit curve parameters which are then used to make 

predictions about structure or function. Shape modeling of the lamina cribrosa, a porous 

connective tissue structure underlying the ONH, has also revealed that EFA and other 

techniques can reveal features that may be associated with IOP and disease.[49-51] 

Application of statistical shape modeling techniques to retinal and ONH structure is 

relatively new within the literature, but has produced promising results. More conclusive 

results, though, may require analysis of larger participant cohorts for model training and 

longitudinal data to evaluate changes as POAG progresses within individuals. 

Genetic Associations with POAG 

The search for genetic contributors to POAG has been under investigation for 

several decades.[4, 52-56] Taken as a whole, this work indicates two important 

characteristics of POAG – it has a strong hereditary component and it is a genetically 

complex disease.[57] Studies comparing first-degree relatives (siblings, parents, children) 

of POAG-affected individuals to the general population estimate up to a 10-fold increase 

in the POAG risk.[58] Despite this strong heritability, only a small proportion of 

observed POAG prevalence can be explained by identified genetic contributions. This is 

a result of the genetic complexity of POAG. Genetically complex diseases are 

characterized by genetic heterogeneity, incomplete penetrance, and multifactor 

interactions. Basically, many genetic factors may act independently or in concert to 

increase disease risk or confer protective effects.[2] Effectively, this means that POAG is 

not a single disease explained by Mendelian inheritance of a single allele or a small 

number of alleles. Instead, it can be thought of as a group of diseases that present 

similarly enough in clinical settings that they have been traditionally classified as a single 

condition.  
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Despite this complexity, mutations in several genes have been found to act 

independently in causing POAG. Traditional Mendelian inheritance of these mutations 

can explain only a small subset of observed POAG.[59, 60] The first definitive disease-

causing mutations were discovered in the gene MYOC by Stone et al. in a study 

comparing the pedigrees of families affected by an early onset form of POAG.[52] 

Subsequent work has estimated that related mutations in this gene may occur in 3-4% of 

observed POAG cases.[61] POAG-causing mutations in the gene OPTN were also 

discovered by examining large family pedigrees that displayed dominant inheritance of 

POAG.[54] The identified mutations seem to be primarily associated with the 

development of POAG in individuals with normal IOP.[62] Mutations in the region of the 

gene WDR36 have been identified in some POAG pedigrees.[63] Subsequent work, 

though, has sometimes failed to replicate these results and the relationship between 

WDR36 and POAG is less clear than in the cases MYOC and OPTN.[64, 65] Finally, 

copy number mutations of the TBK1 have been identified as a cause of POAG. 

Specifically, duplications of the TBK1 gene region seem to cause POAG especially in 

normal IOP cases.[66] Together, these disease-causing mutations are estimated to be 

associated with roughly 5% of observed POAG cases.[59, 60] 

In order to explain a larger proportion of POAG, genome-wide association studies 

have been applied over the last decade to investigate contributions from more common 

genetic variants. In a typical study, POAG cases are compared to normal controls across a 

large number (~1,000,000) of genetic loci. Because of the genetic heterogeneity of 

POAG and the need to overcome multiple hypothesis testing issues, large cohorts of 

cases and controls are needed to obtain statistically significant results indicating a genetic 

association with disease. Nevertheless, a number of novel associations have been 

indicated via GWAS over the past several years. These include variants near the genes 

CAV1 and CAV2[67, 68], SIX1 and SIX6[69], SRBD1[70], CDKN2B[71], TMCO1[69, 

71], and ELOVL5.[70] Although several of the results have been replicated in follow-up 
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cohorts, the effect sizes of these variants seem to be relatively small (much, much lower 

than MYOC or OPTN) and they explain only very small amounts of observed POAG.[3, 

60] 

To further address the genetic complexity of POAG, case-control GWAS work 

has been supplemented with the use of endophenotypes. Endophenotypes are 

quantitatively measured biological markers with two important characteristics: they are 

hereditary and are related to the disease of interest.[3] Each of these endophenotypes may 

serve as a less complex trait with identifiable genetic components that acts as only one 

aspect of the overall disease process. Also, because endophenotypes are quantitative 

traits, they can provide more information than the binary disease classification[2, 3, 72]. 

Endophenotypes have successfully been used identify genetic contributors to other 

complex diseases such as heart disease[73], diabetes[74], and psychiatric disorders.[75] 

In the case of POAG, both ONH structural measurements (CDR, rim area, cup area, and 

total disc area) and other risk factors (IOP, CCT) have been employed extensively as 

disease endophenotypes.[4, 68, 76-79] Significant genetic contributors to ONH structural 

measurements include CDKN2B[79], SIX1/6[77], ATOH7[4], CDC7[4], and CHEK2.[80] 

IOP has been linked to genetic factors near the genes TMCO1[81], CAV1[81], CAV2[82], 

FNDC3B[81], and GAS7.[83] Finally, CCT has been associated with FOXO1[84], 

ZNF469[85], COL5A[86], and FNDC3B.[86] Recent meta-analyses of large, combined 

cohorts have replicated many of these results and provided some evidence for additional 

genetic associations.[80, 87] This is not an exhaustive list of discovered associations, 

rather a subset of those that have been replicated multiple times are have been associated 

with multiple endophenotypes or POAG. As in the case of POAG, the endophenotypes 

(IOP, CCT, and ONH measurements) are strongly hereditary with estimates of genetic 

factors being responsible for >50% of the observed variability in these 

measurements.[88-90] Since the discovered factors fail to explain much of this 
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variability, there are likely many as-of-yet undiscovered genetic contributors to these 

endophenotypes.  

Several of the genes associated with these endophenotypes (TMCO1, CAV1/2, 

SIX1/6, CDKN2B) have been previously associated with POAG suggesting that, at least 

in part, disease risk is conferred by these factors via modulation of their corresponding 

endophenotypes. The remaining endophenotypic genetic factors suggest possible lines of 

inquiry for further discovery of POAG genes and molecular experiments to elucidate the 

biological processes underlying disease etiology.  

The identification of novel POAG-related measurements that are both objective 

and quantitative could help not only in screening or disease detection settings, but could 

also serve as POAG endophenotypes. Endophenotypes that could help reveal more of the 

unknown genetic basis of POAG.  
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CHAPTER 3 

FUNDUS IMAGE PROCESSING 

Processing and analysis of fundus images has been a staple in both ophthalmic 

clinical and research settings for decades.[91] The eye provides unique imaging 

opportunities because the structure must allow light to reach the retina for proper 

functioning. This means that much of the vital anatomy of the eye can be imaged directly 

using specialized camera set-ups. The ease-of-imaging and usefulness in diagnostic 

applications has lead to the collection of large-scale fundus image datasets which can be 

exploited to develop automated disease detection techniques.[13, 92] Researchers have 

done just that in developing a plethora of techniques to automate the process of analyzing 

and extracting clinically important information from these images.[93-96] This includes 

techniques meant to detect not only glaucoma, but other blinding diseases such as age-

related macular degeneration and diabetic retinopathy as well.[97, 98] The imaging 

window provided by the eye also allows researchers to study systemic diseases. The clear 

view of vasculature and neural tissue has been especially useful for investigating 

cardiovascular disease and muscular dystrophy.[99, 100] 

Before any of these important clinical applications can be performed, though, 

preprocessing steps must typically be applied to the raw fundus images. Preprocessing 

can serve to remove noise or artifacts, highlight image features of interest, identify 

specific anatomical features, or align images to one another. The following sections will 

detail two important preprocessing steps applied to fundus images for this work. These 

steps were required to (1) identify the ONH region and (2) extract three-dimensional 

information from the stereo images. In both cases, the methods were implemented in C++ 

using the Insight Toolkit (http://www.itk.org/).[101] 
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Optic Nerve Head Localization 

The analyzed fundus images were collected at multiple sites using differing 

cameras and imaging setups. The resulting images were not standardized in their framing 

of the ONH region or field of view. To perform comparisons across this set of images, 

the ONH region was identified in each image and a standardized region was extracted. 

While this is a straightforward task for human observers, the scale of the datasets 

considered here (10,000’s of images) made manual annotation of ONH regions 

impractical. Instead, an automated approach for locating the ONH was implemented and 

applied to the fundus images. Localization of the ONH region in fundus images has been 

widely published on.[102-106] Rather than develop a brand new technique to a problem 

that has been so well studied, an existing approach was adapted, implemented, and 

evaluated for use on the dataset. The method described in the following sections was 

adapted from the pixel classification approach proposed by Niemeijer et al.[107] 

Algorithm Description 

The algorithm employed here took a pixel classification approach. This means 

that to identify the ONH location within an image, a trained classification model is 

applied to each pixel within the image. For each pixel, the model produces an estimate of 

the pixel’s distance from the center of the optic disc. Selecting the pixel location 

estimated to be nearest to the optic disc center generates the final estimate of ONH 

location.  

A standard k nearest neighbor classifier was used to produce these estimates. In 

this model, a prediction for a query is made by averaging the k most similar known 

examples. Specifically, each pixel is described by a set of d predictor features arranged 

into a feature vector. A trained model consists of a set of example d-dimensional feature 

vectors along with their corresponding true distances from the optic disc center (i.e. the 

training set). To apply the model to a new pixel, the feature vector for the new pixel is 
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computed and the set of k nearest neighbors is determined. The estimate of distance from 

optic disc center is the average distance of these k neighbors. 

Selecting an informative set of predictor features is vitally important to producing 

accurate estimates of the ONH location. In the work by Niemeijer et al., a segmented, 

circular window was used to compute features at each pixel location. The window was 

segmented into four equally sized quadrants corresponding to the superior, inferior, 

temporal, and nasal directions. The use of these segments aids in capturing information 

related to highly oriented structures, such as the vessels that extend from the optic disc. 

See Figure 3.1 for an illustration of the segmented window. The size of this window is a 

parameter to the method and is chosen so that the window is roughly the optic disc size. 

For this analysis, the window radius was selected at 75 pixels based and manual 

annotations of optic disc size.  

Figure 3.1: The segmented window overlaid onto an example fundus image. This window 
was used to compute features at each pixel location. Features were computed 
based on each quadrant (I – IV) individually as well as the entire window. 
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The original method used features based on both pixel intensity and vessel 

structure. In this version, the vessel features were excluded and replaced with a new set 

of features. These new features extracted information about location and circular patterns 

within the images. The list below details the features that were considered. In 1 – 3, 

features were computed for each window segment (I – IV) separately and the entire 

window (whole). In 4 – 6, the window was not needed. This generated a set of 18 total 

features: 

1. Mean intensity of the green channel. 

2. Variance of the green channel. 

3. Average value of Hough circular transform of green channel.[108]  

4. X coordinate of pixel location. 

5. Y coordinate of pixel location. 

6. Radial location of pixel (distance from image center). 

Additionally, this set of features was augmented by the use of image filters. The 

filters were generated by applying principal component analysis (PCA) to a set of 

example image patches containing optic discs extracted from manually annotated fundus 

images. Briefly, applying PCA to optic disc image patches can reveal the average optic 

disc and the major modes in which their appearance varies. See Chapter 4 for an 

expanded discussion of PCA.[109] Five of these filters were generated and each was 

resampled to three different scales (128, 256, and 512 pixels) to help account for differing 

optic disc size. Each feature was applied to fundus images via a standard image 

correlation operation. See Figure 3.2 for an illustration of these filters. This brought the 

total number of features to 33. With the set of features in place, the k nearest neighbor 

model could be constructed and evaluated.  
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Figure 3.2: The set of PCA-derived filters that were used to augment optic disc predictive 
features. Each of these filters was applied at three different scales to compute 
features used to estimate ONH location. 

Algorithm Evaluation 

Evaluation of the algorithm was performed using comparisons to manually 

annotated optic disc center locations. For this evaluation, a set of 3270 images was 

manually annotated for optic disc centers and a random subset of pixels (n = 100,000) 

were chosen from across these images. These pixels were further divided into training 

and testing sets using an 80/20 percent split. The complete set of features was computed 

and feature vectors constructed for each of these pixels. This dataset was used for feature 

selection, parameter selection, and model evaluation. 

Feature selection was performed because the complete set of 33 features may not 

provide the best feature space to perform prediction. In fact, choosing a high-performing 

subset of features may serve to both increase performance and efficiency by reducing the 

need to compute unhelpful features. Evaluating the exponential number of possible 

feature subsets, though, is impossible so a heuristic method was used. For this selection, a 

greedy, forward selection procedure was applied. Selection consisted of evaluating a 

model built with each feature individually. The best individual feature was chosen and 

added to the working feature set. At each subsequent step, models individually 

incorporating each remaining feature were evaluated to determine which would be added. 

This process was continued iteratively until performance of the overall model stopped 
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increasing by adding new features. The selected set consisted of 19 features: mean 

intensity (whole), intensity variance (I – IV, whole), x location, y location, radial 

location, PC Filter #1 (256, 512 pixels), PC Filter #2 (512 pixels), PC Filter #3 (128, 256, 

512 pixels), PC Filter #4 (128, 256 pixels), and PC Filter #5 (256, 512 pixels). This 

selected set outperformed all others that were evaluated including the full set features. 

Figure 3.3 shows an example input image and the corresponding feature image for each 

of the selected features. 

The model performance was further improved by optimizing the parameter k, 

which controls the number of nearest neighbors used by the model to estimates. This 

optimization was performed by building and evaluating models with varying values of k. 

Figure 3.4 illustrates the effect of varying values of k on the model error. Based on this 

evaluation, a value of 11 was chosen for k. 

After feature and k selection, the model estimated the optic disc center with an 

average absolute error of 11.1 pixels corresponding to 7.8% of the average optic disc 

diameter. Figure 3.5 shows several example input images, predictions generated by the 

model, and comparisons to the human annotated truth. 

Depth Inference 

The primary modality for capturing three-dimensional structural measurements of 

the ONH for this work was the use of stereo fundus photography. Development of 

algorithms to estimate three-dimensional information from stereo pair has been an active 

area of research for many years.[110-112] At the heart of this depth inference problem is 

the need to compute the correspondence of points within one image of the pair to points 

within the other image. The correspondence identifies the points in each image that 

represent the same point in the photographed scene. From the correspondence, the 

magnitude and direction of the offset between corresponding points in the images 

(disparity) can be computed. The depth at each point within the scene can be estimated  
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Figure 3.3: An example input image is shown along with images illustrating the selected 
features used in the automated ONH localization method. The features are 
shown in the order that they were chosen in during greedy forward feature 
selection. 
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Figure 3.4: The effect varying the number of nearest neighbors, k, on model performance. 
The lowest observed error was achieved by setting k equal to 11.  
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Figure 3.5: The ONH localization model applied to example fundus images. The input 
images (left) are shown along model output (right). Final point estimations 
(blue) and human annotated truth (red) is also shown.  
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Figure 3.6: In stereo photography, the disparity (the difference between the position of a 
point in each image) is inversely proportional to the points three-dimensional 
depth. The scene points P1 and P2 differ only in depth (d1 > d2). Dashed lines 
indicate the projection of each point onto the images I1 and I2. Their 
disparities are given by x1 and x2. Note that as depth decreases from d1 to d2, 
the corresponding disparity increases from x1 to x2. 

directly from these disparity values.[113] See Figure 3.6 for an illustration of the 

relationship between disparity and depth. 

Broadly, the depth inference algorithms must generate some estimate of point 

correspondences, compute a the cost associated with the correspondence, and then refine 

the estimated solution.[110] Algorithms have applied a variety of approaches in 

performing these tasks including the use of both local and global cost functions, multi-

scale image representations, iterative disparity refinement, smoothness constraints, object 

segmentation, and many other techniques.[114-117] Regardless of the specific techniques 

employed, estimation of point correspondences is made more difficult by image pair 

differences caused by the imaging setup and imaging artifacts such as differences in 
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illumination, surface reflectance, and focus.[118, 119] Additionally, different viewing 

angles induce a perspective change leading to changes in apparent shape or 

occlusions.[115] An algorithm for determining the correspondence mappings must be 

robust for these issues. Standardized datasets (such as the Middlebury dataset) have been 

generated so that algorithm performance can be compared directly and reports of top 

performing algorithms have been released periodically.[110, 120]  

The problem of inferring depth from fundus images is made more difficult by 

limitations on illumination and imaging geometries related to patient safety/comfort that 

are specific to stereo fundus imaging. The resulting images have low contrast, limited 

spatial spectrum, and more noise than regular stereo pairs typically evaluated with 

standard stereo correspondence algorithms.[121] Because these limitations, many 

generalized depth inference algorithms, even those with the highest performance on the 

Middelbury dataset, fail to correctly estimate depth from fundus images.[121] Therefore, 

the algorithm developed by Li et al. used to infer ONH structure from stereo in this work 

has been optimized for handling the particular challenges of stereo fundus images.[121]  

Because OCT data provides more direct measurements of depth, algorithm 

performance was evaluated by comparing inferred depth to OCT-derived depth values.  

Algorithm Description 

The algorithm employed here uses a multi-scale image representation and a 

localized search window to find correspondence at each image point. Following a 

standard scale space approach, the coarser scales are generated by convolution with a 

Gaussian kernel followed by subsampling of pixel intensities.[122] This generates a 

pyramidal image representation with the highest resolution version of the image at the 

base and each subsequent level corresponding to a coarser representation of the image. 

See Figure 3.7 for a visualization of the pyramidal image representation.  
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Figure 3.7: The depth inference algorithm uses a multi-scale image representation. In this 
representation, the scale dimension extends from coarse (down-sampled, 
Gaussian-blurred) to fine (full resolution, un-blurred) images. 

Using this representation, locations in each image of the pair (image I1 and I2) are 

given by the pixel location (x, y) and a scale value, s, specifying the location with the 

scale pyramid. The goal of the algorithm is generate a correspondence mapping, D(x, y, 

s), that maps out disparity (and depth) at each location and scale.  

In addition to this multi-scale representation, a pixel descriptor function is used to 

extract useful features from an image location. The features are then compared across the 

stereo pair to determine similarities between pixel locations in the images. The descriptor 

function chosen here uses both pixel intensity values and gradient information sampled 

from a defined window surrounding the pixel (neighborhood N) to generate a feature 

vector describing the local neighborhood. Specifically, the intensity portion of the 

descriptor, FI, at point pixel location (x, y) and scale s is given by Eq. 3.1: 
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 𝐹! = 𝐼 𝑥 − 𝑛! , 𝑦 − 𝑛! , s     ∀  𝑛! , 𝑛!   ∈ 𝑁  (3.1) 

In this equation, I(x – nx, y – ny, s) is the image intensity at the specified location. 

The values nx and ny serve as offsets for each pixel in the neighborhood N. Basically, this 

portion extracts the intensity values around the target pixel. The gradient portion of the 

descriptor, FG, is given by Eq. 3.2: 

 𝐹! = 𝐺! 𝑥 − 𝑛! , 𝑦 − 𝑛! , s ∗   𝐺! 𝑥 − 𝑛! , 𝑦 − 𝑛! , s     ∀  𝑛! , 𝑛!   ∈ 𝑁  (3.2) 

Here, GM(x – nx, y – ny, s) and GD(x – nx, y – ny, s) give the gradient magnitude 

and direction of the image at the corresponding location, respectively. This portion of the 

descriptor is the product of the image gradient magnitude and direction in the 

neighborhood N. The final descriptor is obtained by concatenating FI and FG. 

Given the pixel descriptor vector, the matching score is defined so that 

maximizing this score for each pixel provides an estimation of correspondence and, 

therefore, depth. In this case, normalized correlation was used as the matching score.  

With these pieces in place, the algorithm proceeds by iterating through each scale, 

going from the coarsest to the finest. Within each scale, a correspondence map is built by 

comparing every pixel location in I1 to pixel locations within its corresponding 

neighborhood in I2. For each pixel, the location with the maximum matching score is 

chosen as the corresponding pixel. After determining correspondence for each pixel at 

scale s, a disparity map indicating the x and y offsets that map pixels in I1 to I2 is 

constructed. At scale s + 1, the correspondence search is offset by the scale s disparity 

estimate. In this way, correspondence estimates at coarser scales serve as initial estimates 

for finer scales. The disparity map constructed at the finest scale is used to compute the 

final depth map indicating ONH structure.[121] The resulting depth maps are represented 

as gray-scale images with pixel values indicating depth. Figure 3.8 shows an example 

input image along with the depth maps estimated at each scale. Figure 3.9 shows some 

example final depth maps and renderings of the ONH structure represented by each map.  
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Figure 3.8: Depth inference is performed iteratively using multi-scale fundus image pairs 
(left) to generate depth estimates (right) at each scale. Depth computed at each 
scale is used as a starting point for the subsequent scale. 

Algorithm Evaluation 

The algorithm was evaluated by comparing depth inferred from stereo fundus to 

depth measurements captured via OCT. The more direct measurements of retinal 

structure depth capture by OCT allow a reference standard to be constructed from these 

images. 

The evaluation dataset consisted of images captured from 10 normal individuals. 

Both stereo fundus images and an ONH-centered OCT scans were collected from each 

participant on the same day. OCT data were acquired using a Cirrus HD-OCT scanner 

(Carl Zeiss Meditec, Dublin, CA). To derive a reference standard, layer segmentation 
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performed on the volumetric OCT images and the surface depth of the most anterior 

retinal layer (inner limiting membrane) was converted to a gray-scale image similar to the  
 

Figure 3.9: Example depth maps inferred from stereo (top) and renderings of the 
corresponding ONH structure (bottom). 

depth map format.[38, 123] Stereo inferred depth maps were generated using the 

algorithm described above. Prior to evaluation, a Gaussian smoothing filter was applied 

to reduce noise in the depth maps.  

For comparison across image types, the ONH regions from both the OCT-derived 

and stereo inferred depth maps were extracted.  The fundus image pairs and stereo depth 

maps were manually registered to the OCT images. Once registered, the inferred and 

OCT-derived depth maps were compared to one another using Pearson’s correlation 

coefficient as a metric. Combining data from all 10 images, a correlation of 0.646 (95% 

CI: 0.641 – 0.650) was achieved. Figure 3.10 shows the stereo fundus, inferred depth, and 

OCT depth used for this comparison.  
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Figure 3.10: Comparisons of ONH region depth inferred from stereo fundus images to depth measured via OCT. 
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Conclusion 

The methods described here can be used to identify important anatomical features 

and extract quantitative measurements from fundus images. Identifying these features is 

often a necessary preprocessing step before biologically important measurements or 

disease status information can be extracted from fundus images. This makes methods like 

those described here useful tools in both research and clinical applications. 

The ONH localization algorithm uses a pixel classification approach in which 

features are computed using an anatomically inspired window. The resulting model 

estimated the center of the optic disc with an average error equal to 7.8% of the optic disc 

diameter. This accuracy was computed using annotations of the disc center made by a 

human observer. A limitation of this approach is that the optic disc center is not a 

precisely defined anatomical point, rather, an estimate of the center point of the 

approximately circular disc area. Differences between human observers annotating disc 

centers can affect the training of automated methods and the ability to evaluate the 

accuracy of these methods. However, even given this imprecision, the level of accuracy 

achieved here did result in the ONH being localized correctly (within 1.0 optic disc 

diameter) in >95% of cases.  

To accomplish depth inference from the stereo fundus images, an existing 

algorithm was adapted, implemented, and evaluated. This algorithm produces dense, 

quantitative depth measurements that map out ONH structure. Comparisons to direct 

measurements of depth via OCT achieved a correlation of 0.646 indicating a high level of 

agreement between these methods. This result indicates that depth inference algorithm 

captures the majority of variance observed in OCT measurements of ONH surface 

structure. Large errors in depth inference occurred most often in cases where pronounced 

differences between images within a stereo pair. Differences in focus, illumination, and 

artifacts are the most common sources of these larges errors.  
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With these automated methods established, analysis of fundus image datasets can 

be undertaken without the need for costly and time-consuming human annotation. This 

allows for the use of datasets that are orders of magnitude greater in size. Use of these 

large-scale datasets does more than just incrementally improve existing models, it allows 

for the application of data-driven techniques to build entirely new models of ONH 

structure. These techniques can also exploit the power granted by large sample sizes to 

perform a more complete characterization of the variation observed within ONH 

structure. Finally, these large-scale analyses increase power and aid in the discovery of 

novel associations between ONH structure, clinical measurements, genetics, and disease. 
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CHAPTER 4 

BASELINE ANALYSIS OF ONH STRUCTURE 

Assessment of ONH structure is crucial to diagnosis of POAG and tracking 

disease progression. The use of standard structural measurements (e.g. CDR) is 

complicated by the large variability observed of these measurements in both normal and 

glaucomatous individuals.[124] In addition to the biological variability, measurement 

variability is also introduced by the subjective nature of ONH evaluation performed by 

clinicians.[22] The result of these complications is that, despite extensive work 

identifying associations between ONH structural measurements and disease, the 

sensitivity and specificity of these measurements in predicting future development of 

POAG is limited.[125, 126] This suggests that objective, quantitative measurements of 

ONH structure may help avoid these limitations and increase accuracy in predicting 

future development of POAG. To address this need, a data-driven approach to 

computationally identify ONH structural features is presented and evaluated based on 

associations with POAG-related clinical measurements and the ability to predict disease 

outcomes. 

This chapter will first describe the computational methods developed to extract 

three-dimensional information and identify building blocks of ONH structure using a 

large set of stereo fundus images. Evaluation of the computational features was 

performed by comparing them to standard clinical measurements used to monitor POAG 

and to qualitative, expert assessments of ONH structure. Finally, the results of using 

clinical measurements and ONH structure to predict future development of POAG are 

presented.[127] 

Dataset Description 

The Ocular Hypertension Treatment Study (OHTS) was a longitudinal, multi-

center study conducted to study the development and progression of POAG in a large 
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cohort of participants. This study considered a set of participants with increased risk of 

POAG development based on elevated IOP. The set of inclusion criteria required that 

each participant meet the following criteria at enrollment:[13]  

• IOP ≥24 mm Hg in one eye and IOP ≥21 in the other 

• Aged between 40 and 80 years 

• Normal ONH in both eyes based on clinical evaluation 

• Normal Humphrey 30-2 visual field in both eyes based on clinical evaluation 

• Best corrected visual acuity better than 20/40 

• No secondary causes of IOP elevation such as anterior chamber damage or IOP-

elevating medication 

• No previous intraocular surgeries 

• No other diseases causing visual field loss or changes to the ONH 

• No life-threatening diseases or pregnancy 

Using these criteria, 1636 participants were recruited at 22 study sites. Each of 

these participants was at an increased risk of developing POAG, but was not diagnosed 

with the disease and displayed no evidence of glaucomatous damage. At enrollment 

baseline data that included demographic information (age, sex, self-reported ethnicity), 

clinical measurements (IOP, CCT, CDR, spherical equivalent), visual field testing, and 

stereo fundus images was collected from all participants. HCDR and VCDR were 

assessed using stereo photos by two independent, trained technicians and the average 

assessment was recorded.[13] 

The OHTS cohort was followed for up to 14 years (10.7 years follow-up on 

average) that included semi-annual clinical evaluations and data collection. Data 

collected at these follow-up included IOP, CDR, POAG evaluation, and (in some cases) 

stereo fundus images and visual field testing. OHTS defined a specific procedure for 

determining if and when a participant developed POAG. Specifically, conversion to 

POAG could be determined either through the use of visual field testing, ONH 
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evaluation, or both. For visual field testing, two consecutive abnormal visual field test 

results had to be obtained. If this criterion were met, a final retest was performed and, if 

also abnormal, the participant was considered to have progressive visual field damage. 

For ONH evaluation, graders evaluated baseline and follow-up stereo images for 

hallmarks of POAG damage. Graders were masked to the order of the images (baseline 

vs. follow-up) and were required to correctly order them for a determination of 

progressive ONH damage to be made. In both cases, the determination had to be 

confirmed by two independent graders. Upon confirmation, the case was referred to a 

committee of clinician for final determination of POAG status. For the purposes of this 

work, the term “incident POAG” will be used to describe POAG developed by 

participants during the course of OHTS follow-up.[12, 13, 22] 

Capture of stereo fundus photographs was performed with several different 

imaging systems including specialized cameras that allowed simultaneous capture of a 

stereo pair and more standard fundus cameras that required sequential capture with the 

camera/participant adjusting position during pair acquisition. In all cases, the quality of 

captured images was evaluated based on two criteria: clarity and stereo quality. Clarity 

referred to overall image quality, illumination, focus, and presence of obscuring artifacts. 

Stereo quality was determined by the ability of the trained graders to visualize three-

dimensional ONH structure using the stereo photos. If the graders disagreed on either 

quality metric, a third grader was used to make the final determination. Any images that 

failed to meet minimum quality standards were excluded and the participant was re-

imaged. Digitization was performed at the OHTS Optic Disc Reading Center at Bascom 

Palmer by digital scanning of 35 mm film slides resulting in high-resolution (~ 

6000x4000 pixels) TIFF images. Figure 4.1 illustrates the diversity of stereo fundus 

images considered here.[22] 

A combined dataset of participant demographics, baseline clinical measurements, 

and disease outcomes from 1635 participants were considered alongside quantitative 
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ONH structural measurements for all analyses described in this chapter. In the case of 

visual field test results, a single summary score, pattern standard deviation (PSD), was 

considered. Table 4.1 provides a summary the non-image baseline data for all 

participants. 
 
Table 4.1: Summary of baseline data and POAG outcomes for the OHTS cohort. 

Structural Endophenotype Identification 

With such a large participant cohort to analyze, a methodology to learn the 

building blocks of ONH structure from the data was applied. The resulting features are 

referred to as structural endophenotypes (STEPs). The ONH structure for each individual 

was then represented using this set of objective, quantitative STEPs rather than the small 

number currently employed clinical features (CDR, disc size, etc.) or the full, high-

dimensional depth maps. In order for the stereo fundus images to be analyzed, though, 

preprocessing of these images was required to allow direct comparisons between 

participants.  

Measurement Distribution Description 

Age 55.9 ± 9.3 years Age at baseline measurements 

HCDR 0.36 ± 0.19 Horizontal cup-to-disc ratio 

VCDR 0.38 ± 0.21 Vertical cup-to-disc ratio  

CCT 573 ± 38 µm Central corneal thickness  

Refraction -0.65 ± 2.3 diopters Refractive index of best corrected visual 
acuity 

IOP 25.0 ± 3.1 mmHg Intraocular pressure  

PSD 1.95 ± 0.30 dB Average pattern standard deviation of 
visual field testing 

Sex 56.4 % female - 

Ethnicity 71.2% white,  
23.5% African American, 5.3% 
other 

Self-reported participant ethnicity 

POAG 83.0 % Non-POAG Determination of incident POAG  
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Figure 4.1: Example baseline stereo fundus images from the OHTS dataset. The format 
differences between different pairs are a result of the different camera types 
that were used. Despite quality assurance several possible sources of error can 
be observed with the images. These include over/under illumination, the 
presence of bright glare artifacts, and differences in focus within an image 
pair.   
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Fundus Processing 

Although there was a standard imaging protocol for the study, the different 

imaging set-ups used at the OHTS study sites resulted in inconsistencies across images 

collected at different sites. The resulting fundus images did not have a standard field of 

view, imaging mask, or ONH location. This meant that the ONH region had to be 

identified and extracted individually for each image. To estimate ONH center, the 

automated method described in Chapter 3 was used. To ensure accurate extraction from 

the baseline images, output from this method was manually reviewed and updated when 

necessary.  

The different fundus camera also produced images at different levels of 

magnification. The large differences in apparent ONH size would prevent direct 

comparisons across participants and greatly hamper any attempt to derive descriptive 

ONH structural features. To account for these size differences without affecting relevant 

ONH structure, images were manually reviewed and, based on appearance, grouped by 

camera type used to capture them. Optic disc diameter was manually annotated for each 

image and the mean diameter for each group was computed. Images were then scaled in 

size so that all groups had equal mean optic disc diameters. These two steps (ONH 

localization and camera scaling) essentially acted as a semi-automated registration 

procedure that brought all ONH images into a standard format. 

ONH regions were then extracted from all baseline images. In order to ensure that 

the entire ONH region was captured from each image, a square region with a width of 1.5 

* mean optic diameters centered on the ONH was extracted from each image. This 

parameter value was varied and 1.5 was chosen based on empirical results (see Appendix 

A for details). Finally, all extracted ONH regions were down-sampled to a size of 

512x512 pixels. 
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Depth Processing 

The standard-sized, ONH centered stereo pairs resulting from the fundus 

preprocessing steps were used directly as input to the depth inference methodology 

described in Chapter 3. The result for each stereo pair was a single gray-scale depth map 

of size 512x512 with each pixel indicating relative depth at the corresponding ONH 

location.  

Noise reduction procedures were applied to the raw depth output in in order to 

increase the signal-to-noise ratio. Errors in depth tend occur near the edges of the depth 

map where there is no overlap in the image pair fields of view. To remove these errors, a 

standard border of 25 pixels along each edge was cropped out of the depth maps. Errors 

in the correspondence computation can also occur in areas of the image with little texture 

or structure where exact pixel correspondence is unclear.  This can lead to random noise 

in the resulting depth estimates. This noise was addressed by applying a Gaussian 

smoothing filter and down-sampling the depth maps to a size of 50x50. The down-

sampling also served to reduce the dimensionality of the depth maps, making 

computation of STEPs more efficient.  

Figure 4.2 illustrates the preprocessing procedures applied to the raw fundus and 

depth data. 

Feature Identification 

Once depth maps were computed and preprocessed as described above, the entire 

set of maps was used to identify STEPs. The depth map inferred from each stereo pair 

was vectorized by mapping each pixel location to a corresponding vector component. 

Using this representation, each depth map consisted of a 2500 (50x50) component vector. 

Finally, because pixel disparities (and depth) computed on different participants with 

differing imaging set-ups did not all have the same range of values, a normalization 

procedure was applied. Specifically, the depth values were adjusted by first computing 
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Figure 4.2: Illustration of the fundus and depth processing procedure. (A) Input stereo 
images. (B) The extracted ONH region stereo pair. (C) The raw depth map, 
the edge-cropped map, and the smoothed map. (D) Renderings of the ONH 
structure corresponding to the depth map. 
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the mean and variance at each pixel location. Standardization was performed so that 

inferred depth had a zero mean and unit variance across all participants. 

STEPs were identified by applying principal component analysis (PCA) to the 

depth maps. PCA is a technique commonly used to reduce the dimensionality of high 

dimensional data sets. In general, PCA can greatly reduce the number of dimensions 

needed to represent a dataset by taking advantage of relationships between input 

dimensions of the data. This results in a linear transformation onto smaller set of 

dimensions that explain the majority of the variance observed in the data. The new set of 

dimensions also possess a natural ordering based on how much of the variance that each 

explains - the first explains the greatest amount of variance and each subsequent feature 

explains a smaller amount. By applying this technique to the depth measurements, 

dimensions (STEPs) that correspond to the common types of variation to ONH structure 

were identified. In addition, the amount of variance explained each STEP could be 

estimated. The STEPs provided a new representation for the depths maps in which each 

was a weighted sum of STEPs. For a single map, the weight associated with each STEP 

indicates the amount that the corresponding STEP contributes to ONH structure. 

Beyond characterizing the major types of variation, the STEPs were used to 

explicitly model the relationship between ONH and other variables related to POAG. 

Participant demographics (age, sex, ethnicity), clinical measurements (VCDR, HCDR, 

IOP, CCT, PSD, refraction), and disease outcome were included in joint models along 

with STEPs computed from stereo. The relationships between STEPs and other variables 

were modeled using linear regression and linear discriminant analysis (LDA) based 

approaches. These differing approaches were applied to account for the different types of 

phenotypic variables. In the case of binary or categorical measurements (gender, 

ethnicity, incident POAG), LDA was used to model the relationship between the variable 

and ONH structure. LDA is an approach that can be applied to high dimensional data in 

order to estimate relationships between the dimensions and a categorical variable that 
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assigns a class to each data point. Specifically, LDA finds the linear combination of 

dimensions that provides the greatest separation between data points of different 

classes.[128] In the case of quantitative measurements (age, IOP, CCT, HCDR, VCDR, 

PSD, refraction), multiple linear regression models were used to model the relationship. 

This type of linear model is well understood and common statistics can be used to 

evaluate their suitability for modeling a given relationship. In both cases, the STEP 

representation of depth maps was used to model each variable of interest. In this 

approach, the relationship between each variable and the STEPs estimated the 

contribution of that variable to ONH structure. 

Structural Endophenotype Evaluation 

The STEPs identified via PCA applied to the baseline depth maps are shown in 

Figure 4.3. The first ten STEPs are shown here and they explained >95% of the variance 

observed in the depth maps.  

The STEPs were evaluated based on the strength of statistical association with the 

demographics, clinical measurements, and disease outcomes. The STEPs were also used 

to build machine learning models that predicted incident POAG from baseline stereo 

photos. In addition to this quantitative evaluation, a more qualitative characterization of 

the STEPs was performed by comparing them to comprehensive examinations of ONH 

structure performed by clinical glaucoma experts. 

Clinical Measurement Associations 

The STEPs were first evaluated based on statistical associations with OHTS 

baseline measurements. To test for significant associations, one-way analysis of variance 

(categorical measurements) and student’s t-tests (quantitative measurements) were used.
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Figure 4.3: Gray-scale representation of the ten PCA-based STEPs used to model ONH structure shown with the percent of variance 
in depth data explained by each. Collectively, these features accounted for 95% of the variance observed.
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Bonferroni correction with an adjusted p-value cutoff of 0.05 was used to account for 

multiple hypothesis testing issues.  

Significant associations were discovered between STEPs and several of the OHTS 

variables. These include significant associations with age, ethnicity, CCT, refraction, and 

both HCDR and VCDR. The associations with IOP and PSD were not significant. In the 

case of the HCDR and VCDR, the resulting phenotype-based STEPs explained roughly 

60% of the observed variance in HCDR and VCDR (r2 = 0.62 and 0.59, respectively). 

Table 4.2 details the results of this association testing. Each association here was 

significant after multiple hypothesis correction. These relationships between each 

variable and ONH structure were also modeled using LDA and linear regression. Figure 

4.4 illustrates the estimated contribution of each variable to ONH structure. 

Table 4.2: Significant associations between OHTS baseline measurements and STEPs.  

 

Disease Prediction 

The STEPs were further evaluated based on their utility in building predictive 

models for incident POAG. For this evaluation, a baseline set of features consisting of 

only demographic information (age, gender, and ethnicity) was used. This baseline set of  

Measurement Significant STEP associations  
Age 3 
HCDR 1, 2, 3, 4, 5, 6, 7, 8 
VCDR 1, 2, 3, 4, 5, 7  
CCT 4 
Refraction 3, 4 
Ethnicity 3, 4, 8, 10 
POAG 4, 5 
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Figure 4.4: STEP features estimating the contribution of demographic and clinical 
variables to ONH structure. 
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features was augmented first by adding in the remainder of the OHTS features (see Table 

4.1 for the list of features) and then additionally augmented by adding the STEP features. 

The target in all cases was to discriminate between participants that developed incident 

POAG and those that did not.  

 

Figure 4.5: Area under receiver operating characteristic curves for incident POAG 
prediction using combinations of demographic (age, sex, ethnicity), clinical 
(HCDR, VCDR, IOP, CCT, PSD, refraction), and STEP features. 

Based on empirical testing, the predictive model used for this evaluation was a k-

nearest neighbor classifier. See Appendix B for a summary of alternative machine 

learning models that were evaluated. Area under the receiver operating characteristic 

curves (AUC) was computed for each feature set. The performance of the features were 

compared internally to each other as well as to previously published results predicting 
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POAG in the OHTS dataset. Some previously published results built and evaluated 

POAG predictive models using the entire OHTS dataset.[129, 130] To allow direct 

comparisons in these cases, AUC of STEP-based models were evaluated on the training 

data. Because these estimates tend to overestimate performance, a 10-fold cross 

validation approach was also used to estimate performance on unseen data. 

The set of OHTS measurements and STEP features were evaluated based on their 

ability to predict which OHTS participants would develop POAG. Using only the 

baseline (demographic) features resulted in an AUC of 0.720. Adding the remainder of 

the OHTS measurements led to an AUC of 0.793. Finally, incorporating STEP features 

boosted AUC to 0.806. The cross validation approach to estimate performance of STEP 

features on unseen data resulted in an AUC of 0.722 compared to 0.701 using the OHTS  

measurements and 0.599 using only demographic features. Figure 4.5 shows AUC curves 

for the different feature sets. 

The variations in ONH structure associated with the STEPs were visualized by 

generating the median ONH structure and then altering it by increasing the individual 

contribution of a single STEP. The changes to ONH structure induced using this 

technique are shown in Figure 4.5. 

Comparison to Expert ONH Review 

An extensive review of the stereo fundus images was performed to grade the 

images for several additional clinically-relevant image and structural characteristics. A 

subset of the baseline images (n = 1053) were independently evaluated by two glaucoma 

experts for a set 16 different characteristics that describe image quality, rim/cup 

appearance, pigment loss, and vascular abnormalities. All of these characteristics were 

encoded as binary grades (present or absent) by each expert. The two sets of grades were 

combined by into a single numeric grade by encoding expert agreement on absence of a 

characteristic as 0, disagreement as 0.5, and agreement on presence as 1.0. The agreement 
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Figure 4.6: Variations to ONH structure capture by STEPs. (A) Gray-scale 
representations of the first five STEPs. (B) Illustration of the change to ONH 
structure induced by increasing the contribution of a single STEP. The median 
structure (left) is shown along with the median altered to exhibit an extreme 
value of the STEP. (C) The same figure shown as heat maps to indicate depth. 

between graders was evaluated using the κ statistic. This statistic is bound to the range of 

-1.0 (complete disagreement) to 1.0 (complete agreement) with a value of 0 indicating no 

correlation between graders.[131] 

The relationships between STEP features and the graded characteristics were 

evaluated using one-way analysis of variance (ANOVA) testing to compare the 

contributions of STEPs to participants at each grade level. This test was applied for each 

STEP-characteristic pair to determine those with significant associations. A Bonferroni 
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corrected p-value of 0.05 was used to determine significance. STEPs were found to be 

significantly associated with stereo image quality, presence of an unusually deep cup, cup 

tilting, and rim notching in the superior and temporal quadrants. Table 4.3 summarizes 

the characteristics considered, the resulting grades, and significant associations. 

Conclusion 

Computational methods for identifying three-dimensional structural features of 

the ONH were applied to a large cohort of participants at risk for developing POAG. 

These methods simultaneously incorporate both imaging and demographic/phenotypic 

variables to model ONH structure. The identified STEPs serve as objective, quantitative 

predictive features for POAG and as endophenotypes that can be used to investigate 

contributors to ONH structure and disease. 

Extensive work has been published regarding both diagnosis and early prediction 

of POAG. This includes methods that that rely on a variety of clinical and imaging-based 

measurements. In particular, POAG predictive models incorporating age, IOP, CCT, 

CDR, and PSD have been built and evaluated using data from the OHTS cohort. These 

models achieved AUCs ranging from 0.74 to 0.77 in predicting future conversion to 

POAG, depending on the parameters used construct the models.[129, 130] This can be 

compared to the AUC of 0.806 achieved when incorporating STEPs to predict conversion 

to POAG in the OHTS dataset. External validation of these models on independent 

datasets led to AUCs ranging from 0.69 to 0.83, with a median performance across all 

surveyed cohorts of 0.71.[132] These can be compared to the AUC of 0.722 achieved in 

cross validation testing of models incorporating STEP features. Although STEP-based 

prediction fell short of the highest reported AUCs when applying existing models to 

independent datasets, STEPs did increase AUC when included in models predicting 

POAG in the OHTS cohort. Incorporation of STEPs into prediction of these independent  
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Table 4.3: Summary of expert grading and comparisons to STEPs. 

Image/Structural Feature 
Grade  

Distribution 
Expert 

Agreement Significant STEP 
Associations 

0 0.5 1 κ 

Image Quality 
   

 
 

Unacceptable clarity 1031 20 2 0.16  

Unacceptable stereo 1049 4 0 0.30 4, 8 

Unacceptable scaling 1042 9 2 0.0  

Rim/Cup Appearance 
   

 

 

Deep cup 648 192 202 0.55 3, 4, 5, 6, 8, 9, 10 

Pit-like cup 1039 2 0 0.00  

Sloping margin 922 111 8 0.10  

Tilted disc 986 47 8 0.24 4 

Vertical elongation of the 
cup 

959 74 8 0.15  

Peripapillary Atrophy 
   

 

 

Zone Alpha 21 266 737 0.09  

Zone Beta 924 85 18 0.26  

Vascular Abnormality 
   

 

 

Cilioretinal abnormality 948 94 0 0.00  

Radial abnormality 1039 2 0 0.00  

Notching 
   

 

 

Inferior 1003 39 0 -0.02  

Nasal 1030 12 0 -0.01  

Superior 907 122 13 0.13 4, 10 

Temporal 983 53 4 0.11 4, 6, 10 
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datasets is needed to determine if STEPs can likewise aid in POAG prediction in those 

cohorts. 

Recently, more attention has been focused on using ONH structural features 

measured using several imaging modalities to describe and diagnose POAG. More 

traditional measurements of ONH structure such as CDR, rim width, optic disc and rim 

area, and localized rim notching measured using stereo fundus or HRT images have been 

augmented by internal structural measurements from OCT, especially retinal nerve fiber 

layer thickness. The resulting diagnostic models have shown higher performance in 

distinguishing between normal and glaucomatous individuals than previous attempts that 

fail to incorporate any ONH structure.[25, 133, 134] Work by Sanfilippo et al. took a 

more sophisticated approach to modeling shape and, using methods similar to our STEP 

methodology, identified optic cup shape features by examining manual tracings of the 

optic disc and cup from fundus images.[44] Their resulting features achieved high 

accuracy in discriminating normal and glaucomatous subjects. Though not focused on 

glaucoma, similar techniques have been applied to retinal pigmented epithelium shape 

measured using OCT and identified significant associations with disease.[135, 136] The 

work described here attempts to apply shape modeling techniques to the large OHTS 

dataset in order to identify features helpful in POAG prediction. This work is limited, 

though, in that only surface ONH structure could be observed using the available stereo 

photos and none of the internal structure captured by OCT is available. Ideally, similar 

methods would be applied to OCT data to computationally identify informative features 

of internal structure, especially glaucoma-related structures such as the retinal nerve fiber 

layer. We have considered only stereo-based measurements of ONH surface structure 

because large-scale, longitudinal datasets (such as OHTS) that include OCT imaging are 

not currently available. 

Using the graphical representations and illustrations of changes associated with 

the STEPs (Figure 4.6) can allow for some qualitative assessment of these features. For 
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instance STEP 1 seems to capture structural aspects related to overall size of the cup and 

rim. STEP 2, on the other hand, demonstrates slope in the vertical (superior-inferior) 

direction, while STEP 3 captures a similar slope in the horizontal (nasal-temporal) 

direction. A portion of these observed slopes may be capturing biological variation in cup 

tilt and retinal surface angle, but some may also be caused by variations in the orientation 

of the camera with respect to the optic disc. These STEPs helps illustrate a limitation of 

the proposed methodology – the identified STEPs depend on the quality of the input 

stereo fundus images. Poor imaging conditions or camera orientation could lead to poor 

quality stereo images and resulting depth maps. The OHTS images used here were 

screened for overall image and stereo quality so further experiments are needed to 

determine the robustness of this methodology to image quality. 

Several of the other STEPs encode structural features that are plausibly relevant to 

POAG progression. STEP 4 appears to encode a feature modulating the depth of the cup, 

whereas STEPs 5, 6 and 8 appear to encode features denoting notching of the neuro-

retinal rim at specific positions (inferonasal, superior, and nasal respectively). Other 

STEPs that were identified by our approach are not easily related to such characteristic 

ONH features recognized by clinicians. A rim feature that seems to be missing is thinning 

in the inferotemporal region. Previous work has shown thinning in this region to be an 

early hallmark of glaucomatous damage.[137-139] The lack of inferotemporal thinning 

features may be due to the population considered here. Because inferotemporal thinning 

is considered a hallmark of glaucomatous damage, individuals exhibiting this thinning 

may have been excluded from the OHTS cohort based on the criterion that participants 

exhibited no POAG at baseline. The missing inferotemporal thinning is only one example 

- there could be additional informative features that were not identified because of the 

characteristics of the OHTS cohort used here. Further study is needed to apply these 

methods to cohorts drawn from other populations (normal, glaucomatous, etc.) to 

discover differences and similarities in identified STEPs. Further ONH structural 
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modeling including longitudinal evaluation of the STEPs, relevant phenotypes, and 

comparisons to expert evaluations of ONH shape may reveal additional informative 

relationships. 

The aspects of ONH structure represented by each STEP were also evaluated 

using comparisons to expert grading of the images. The grades provided by the experts in 

several of the categories (stereo quality, vascular abnormalities, pit-like cup appearance, 

nasal notching) had only a small number of observed occurrences, which limited the 

ability to estimate expert agreement and associations with STEPs. For the remainder, 

expert agreement was generally low. The highest observed value (κ = 0.55) indicated 

moderate agreement between experts when grading for an abnormally deep cup. Other 

values clustered around 0 (no correlation between experts) or in the range of 0.10 – 0.30 

(slight agreement). This overall low level of agreement between experts suggests that 

evaluation of fundus images for POAG-related features is substantially subjective. The 

comparisons to STEP features also seemed result in significant associations preferentially 

in cases of high observer agreement. This suggests the analysis was limited by the low 

agreement further underscores the need for objective measurements of ONH structure to 

use in both clinical and research settings.  

Significant associations between STEP features and the following characteristics 

were identified: stereo quality, abnormally deep cup, tilted disc, and notching in the 

superior and temporal quadrants. Despite the statistically significant result, the small 

number of images categorized as having unacceptable stereo quality limits confidence in 

its association with any of the STEPs. The other significant cases were not so limited by 

the number of observations. Of particular note is STEP 4, which exhibited significant 

associations with having a deep cup, tilted disc, and notching. This feature was also 

associated with development of incident POAG. These results indicate that STEP 4 may 

capture some of the early markers of POAG that clinicians look for during evaluation of 

stereo fundus images.  
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Previous publications on the use of computational methods for modeling ONH 

structure found that the methods described here can be used to identify features with 

significant heritable components and associations with POAG risk factors in smaller 

cohorts.[6, 7, 140] The results here support and extend those preliminary findings. Using 

the STEP structural modeling methods, the basic building blocks of ONH structure can 

be estimated. Evaluation of the resulting STEPs revealed that a small number (10) 

explained the majority (>95%) of observed variance in ONH structure and significant 

associations with clinical measurements as well as with POAG. Significant associations 

of ONH structure with CCT and (as expected) both HCDR and VCDR should be noted, 

in particular. Given that these have been successfully used as quantitative 

endophenotypes to investigate genetic contributions to POAG, the results indicate that 

STEPs can also be used as a tool to investigate POAG and its genetic risk factors.[3, 5] 

Many of the STEPs showed multiple associations with several different clinical 

measurements. The presence of so many multiple associations could indicate that some 

standard clinical measurements may actually be a superposition of basic ONH structural 

building blocks. Accurate estimates of these structural building blocks will yield new 

ways to measure ONH structure in both normal and disease cases. Further ONH 

structural modeling based on large datasets needs to be performed to improve and 

validate the estimates.  

The results presented here showed that incorporation of STEPs led to significant 

increases in predictive power for future development of POAG over the use of 

demographic and commonly-used clinical measurements (IOP, CCT, and refraction). 

Additionally, using STEPs increase predictive power to the level achieved when clinical 

measurements that require expensive, specialized equipment (PSD) or training (HCDR, 

VCDR) are used. The speed, low cost, and ease of application make the computational 

STEP measurements an attractive option for large-scale screening programs because they 

can be easily and quickly applied to captured images to extract POAG-related features. 
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Confounding the study and development of treatments for POAG is the fact that it 

is a genetically complex disease. Some cases of glaucoma are caused primarily by defects 

in a single gene, while others cases are caused by the combined actions of many genetic 

and environmental risk factors.[60] Family-based studies have identified at least several 

genes that are capable of causing POAG at elevated IOP (myocilin[141]) and at normal 

IOP (OPTN and  TBK1).[54, 66] Population-based genome-wide association studies 

(GWAS) have detected some of the genetic risk factors that contribute to more complex 

forms of POAG.[2, 71, 142-144] Despite these discoveries, most of the observed 

hereditability of POAG remains unexplained.[2, 3] Untangling the complexity requires 

examining genotypic and phenotypic data using new methodologies. In recent years, the 

use of quantitative endophenotypes to study genetically complex disease, including 

POAG, has become popular.[2, 145] Many population-based studies have searched for 

and discovered risk factors for quantitative endophenotypes of glaucoma (IOP, CCT, and 

CDR).[4, 76, 80, 146-148] Further study of additional quantitative endophenotypes (i.e. 

ONH STEPs) has the potential to identify more genetic contributors to ONH structure 

and risk factors for POAG. 

In conclusion, the STEP methodology was shown to be a powerful tool for 

investigating POAG and related clinical variables. These methods can extract 

informative, disease-related ONH structural features from a commonly used and non-

invasive imaging modality (stereo fundus). The objective nature and clinically relevant 

associations of STEPS indicate that they can serve to expand and augment the biomarkers 

currently used to study POAG. 
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CHAPTER 5 

DISCOVERY OF GENETIC ASSOCIATIONS WITH BASELINE ONH 

STRUCTURE 

As a means to better understand the biological processes underlying the ganglion 

cell death and loss of vision that resulting from POAG, the genetics of not only the 

disease, but also related structural changes have been investigated. As outlined in Chapter 

2, measurements of ONH structure such as CDR, cup area, and overall disc size have 

been used as endophenotypes in an attempt to reveal the genetic basis for ONH structural 

features that may affect susceptibility to and progression of POAG. While these studies 

have been successful in identifying a number of genes that are associated with ONH 

structural changes, they have not managed to explain all of the observed heredity in ONH 

structure. The STEP features presented here provide more comprehensive measurements 

of ONH structure and may be useful in uncovering additional genetic influences. 

Previous work has revealed a strong hereditary component to STEP-like 

measurements derived from stereo fundus images.[149] To uncover the specific genetic 

factors that account for the hereditary aspects of ONH structure, a combined analysis 

including both STEP features and genetic data was performed. Two primary approaches 

were adopted to reveal these relationships.  First, genetic loci known to be associated 

POAG were analyzed to characterize their impact on ONH structure. Second, a broad 

search that considered loci from across the genome was performed to identify novel 

genetic associations with ONH structure. 

This chapter will detail the methods and results of estimating the impact of 

individual genetic factors as well as those interrogating the entire genome for genes that 

influence ONH structure. 
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Dataset Description 

For the analysis described in this chapter, both phenotypic and genotypic 

information collected from the OHTS cohort was considered. The phenotypic data of 

interest consisted of baseline stereo photos and POAG outcome status determined 

through a series of follow-up visits for the entire OHTS cohort (n = 1635). The stereo 

photos were the source of quantitative ONH structural measurements. The POAG status 

of each participant at the end of the study was encoded as a binary variable and used for 

evaluation purposes. In this cohort, 19.7% of the participants developed POAG by the 

end of the study. 

Genotyping data was only collected for a subset of the participants (n = 1054). 

The genotyping was performed by the Center for Inherited Disease Research using the 

array-based Illumina 1M genotyping platform. This platform captured genetic status at 

nearly a million different loci across the genome for each participant. The full set of 1054 

OHTS participants for which both phenotypic and genotypic information was available 

were used for all analyses described below. 

Genetic Contributions of Known Glaucoma 

Polymorphisms 

To begin characterizing the effect of genetic factors on ONH structure, an 

approach that directly modeled the relationship between structure and participant 

genotype was adopted. The goal of this approach was to estimate the individual impact of 

each genetic factor on ONH structure using STEP features measured from OHTS 

baseline stereo photos. A problem with this approach, though, is that only a small number 

of the roughly 1,000,000 assayed genetic factors are likely to have a measurable impact 

on ONH structure.  To help address this issue, a limited set of genetic loci previously 

reported to have POAG associations were identified and only these were considered 

when modeling genetic impact on the ONH. The loci were selected based on the strength 
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of published evidence for associations with POAG or commonly used POAG 

endophenotypes (IOP, CCT, CDR, etc.) evaluated through review of related literature. 

Based on the published evidence, these were considered more likely to have an impact on 

ONH structure that could be identified using STEP features. 

Known Glaucoma Polymorphism Identification 

Research into the genetic basis of POAG has yielded numerous discoveries over 

the last several decades. Overall, the results of this body of work indicate that POAG is a 

hereditary and genetically complex disease. This means that while development of POAG 

is largely governed by genetic factors, the observed prevalence of POAG is the result of 

many different genes contributing to the risk of disease. This complexity makes it 

difficult to untangle the various genetic factors contributing to POAG.[150]  

In recent years, development of GWAS platforms has made large-scale, high-

throughput experiments possible. In these experiments, hundreds of thousands of genetic 

loci known as single nucleotide polymorphisms (SNPs) are simultaneously evaluated. 

These SNPs are variations in base pair sequence at (typically) a single position within the 

genome. The different bases observed at one of these locations are known as the alleles of 

the SNP and an individual’s genotype describes the alleles carried by that person. 

Because each person carries two copies of their genome, that person’s genotype for a 

SNP with alleles A and B can have one of three states:  homozygous A (AA), 

heterozygous (AB), or homozygous B (BB). Genetic influence can be identified by testing 

the genotype for association with a disease or other phenotypic measurements of interest. 

A significant association can indicate that either the tested SNP or a genetic factor in the 

nearby genomic region influences the phenotype. In a GWAS approach, a large number 

of SNPs from across the genome are tested to help identify as many of the genomic 

regions of influence as possible. This large number of hypothesis tests, though, can limit 

the ability of GWAS methodologies to identify significant associations. With so many 
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tests, stringent multiple hypothesis correction needs to be applied to limit the number of 

false positives. However, with sufficiently large cohorts, statistically significant 

associations between specific SNPs and POAG can be discovered.  

Application of GWAS techniques to POAG has revealed numerous SNPs 

associated with the disease. These POAG risk SNPs can be found across the genome 

within numerous different genes. A sampling of POAG risk SNPs and the genes in which 

they occur can be found in Table 5.1.[4, 67, 71, 76-79, 143, 144] This is a list of SNPs for 

which there is strong published evidence of association with POAG and not an 

exhaustive list of all POAG risk SNPs since many of the genetic factors influencing 

POAG remain undiscovered.[3]  

Table 5.1: Set of SNPs previously associated with POAG. 

Gene(s) SNP Identifier 

ATOH7 rs7916697 

CAV1, CAV2 rs2024211 

CDC7, TGFBR3 rs1192419 

CDKN2B rs1063192, rs4977756, SNP9-22023366 

CHEK2 rs1547014 

DCLK1 rs9575267 

ELOV5 rs735860 

chr8q22 region* rs284489 

SALL1 rs1345467 

SCYL1, LTBP3 rs17146964 

SIX1, SIX6 rs10483727 

SRBD1 rs17033801 

TLR4 rs1554973, rs1927911, rs10759930, rs1360094 

TMCO1 rs4656461 

*: There are no known genes near the SNPs in this region 
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Structural Endophenotype Identification 

In order to model the effect of POAG risk SNPs, ONH structure was represented 

using STEP features. Briefly, STEPs were identified using baseline stereo fundus images 

taken of the right (OD) eye for each genotyped OHTS participant. The ONH region was 

extracted from each stereo image and images were scaled in size to account for 

differences in magnification across different fundus cameras. The resulting images were a 

standard 512x512 view centered on the ONH. A custom depth inference algorithm was 

applied to all image pairs to compute depth maps that describe ONH surface structure. 

The PCA-based STEP identification methodology was applied to compute the STEP 

representation of each ONH structure. Figure 5.1 displays gray-scale representations of 

the resulting STEPs. See Chapter 4 for a more detailed discussion of the depth inference 

and STEP identification methodologies that were applied. 

Genetic Feature Estimation 

The STEP identification process computes features that are optimal in terms of 

capturing variance observed in ONH structure, these do not necessarily capture the most 

biologically relevant information. In particular, the computation of STEPs does not 

consider any information regarding disease state, clinical measurements, or genetics. To 

address this limitation, linear discriminant analysis (LDA) was used to build models 

incorporating both STEP features and genotypes. LDA is a technique that can be applied 

to high-dimensional data that includes class labels associated with each data point. This 

technique identifies a linear combination of the predictive features that generates a new 

dimension along which the classes are maximally separable assuming a Gaussian 

distribution for each group.[128]  

In the application of LDA to estimate the effect on ONH structure from each 

SNP, genotype was mapped to a class variable while STEPs computed from the depth 

maps were used as the predictive features. Genotypes were mapped to class labels using  
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Figure 5.1: STEP features identified using PCA applied to the genotyped subset of the OHTS cohort (n = 1054).  
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an additive genetic model. That is, for a SNP with two alleles (A and B), the class was 

determined by counting the number of B alleles observed for each participant. This 

resulted in three possible classes for each participant at each SNP: class 0 – AA, class 1 – 

AB, and class 2 – BB. An independent application of LDA was performed for each of 

POAG risk SNPs. In each case, LDA was used to estimate a feature that provided 

maximum separability of the participants based on their genotypes. Figure 5.2 illustrates 

the features resulting from the LDA-based procedure. 

Genetic Feature Evaluation 

The genetic features that were learned based on POAG risk SNPs were first 

evaluated based on associations with their corresponding SNP genotypes. In 17 of the 19 

cases, the learned feature exhibited a significant association with genotype. Figure 5.2 

shows the resulting features and indicates the p-values of the STEP-SNP associations. 

Further evaluation was performed to determine if these genetic features were useful in 

predicting POAG. Of the 19 features evaluated, 12 exhibited significant associations with 

later development of POAG. Figure 5.3 summarizes these results and illustrates the effect 

on ONH structure for a few of these features. Finally, the genetic features were 

incorporated into a nearest neighbor classification model that also included STEPs 

features and baseline clinical measurements (see Chapter 4 for more details of this 

model). Adding the genetic features did not significantly change the model performance 

as measured by AUC. 

Genome-Wide Structural Endophenotype Associations 

Further investigation into genetic factors influencing ONH structure was 

performed using more traditional techniques. Specifically, a GWAS approach was 

applied to identify associations between STEPs that measure ONH structure and SNP 

genotypes from across the genome. In this analysis, the STEPs served as quantitative 

traits and standard GWAS techniques to identify genetic associations were applied. Once  
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Figure 5.2: Gray-scale representations of the estimated effect of 19 POAG-related SNPs 
on ONH structure. Each is shown along with the gene in which the SNPs 
occur. The * indicates the relationship between the estimated effect and SNP 
genotype is significant. 

 

 
  



 

 

67 

67 

 

Figure 5.3: Summary of the associations between genetic ONH structural features and 
POAG. (A) The full list of identified genetic features associated with POAG. 
(B) The effect on ONH structure for some of the most significantly associated 
features. The gray-scale feature is along with the effect on structure that 
results from increasing the influence of the feature. 

identified, SNPs with significant associations to ONH structure were annotated to 

determine nearby protein-coding genes, known gene function, and previously published 

associations. These results serve to provide potential target genes for further research into 

the genetic contributors to ONH structure and POAG. 



 

 

68 

68 

Preprocessing and Quality Control 

The raw genotyping data consisted of genotypes 905,636 SNPs collected for 1054 

individuals using the Illumina 1M platform. Prior to any analysis, suggested best 

practices for quality control and data screening procedures were applied.[151] This 

included removing data from low quality SNPs and participant samples. SNPs were 

judged to be of low quality, and therefore removed from further analysis if they exhibited 

a genotyping rate of less than 98%. In addition, SNPs with a minor allele frequency of 

less than 5% in the genotyped OHTS cohort were also filtered out. A filter to exclude 

participants with low genotyping rates (<98%) was also applied, however, no participants 

were excluded based on this criterion. All participants also passed quality control filters 

that excluded those with a mismatch between annotated and genotyped sex, those falling 

outside of the reported ethnic groups, and those related to another participant. After this 

preprocessing, a set of 778,246 SNPs and 1054 participants remained. The quality control 

filtration and screening procedures were performed using the software PLINK.[152]  

Structural Endophenotype Association Testing 

The first 10 STEPs that explained >95% of ONH structural variance were tested 

for association with each of the remaining SNPs. These associations were detected using 

ANOVA tests comparing STEPs to genotypes coded using an additive genetic model. For 

this analysis, ethnicity was controlled for by inclusion in the ANOVA test models.  

Multiple hypothesis correction was applied to help filter out spurious associations. 

In addition to the standard GWAS issues with multiple hypothesis testing, the multiple 

phenotypic measurements (STEPs) under consideration further increased the number of 

tested hypotheses. Bonferroni correction is particularly conservative and can often lead to 

an unacceptable false negative rate in cases where the number of tests is extremely large. 

Instead, the commonly used false discovery rate (FDR) approach was employed to 

determine significance of associations between SNPs and STEPs.[153, 154] Under this 
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approach, significance is not determined with a p-value threshold intended to control the 

false positive rate, but by thresholding the q-value, the expected proportion of loci 

reported as significant that are truly unassociated (i.e. the FDR). For this analysis, the q-

value threshold was set at 0.05, a level comparable those used in recent similar 

works.[155, 156] 

Significant associations were identified with three of the STEPs (4, 6, and 8). 

Figure 5.4 illustrates the genome-wide significance of associations with these three 

STEPs. For STEP 4, significant results were observed at genomic regions near the SNPs 

rs6039368 (p = 5.99 x 10-9), rs13261938 (p = 3.10 x 10-8), rs765556 (p = 3.75 x 10-8) and 

rs4974155 (p = 3.88 x 10-8). Significant regions for STEP 6 were observed around the 

SNPs rs3181362 (p = 2.48 x 10-9), rs10512474 (p = 8.27 x 10-9), rs9518555 (p = 1.04 x 

10-8), rs2068621 (p = 2.76 x 10-8), rs3774146 (p = 3.15 x 10-8), rs955868 (p = 3.35 x 10-

8), rs2130628 (p = 3.88 x 10-8), and rs7005971 (p = 4.63 x 10-8). Finally, STEP 8 

exhibited significant associations with regions near rs12323080 (p = 3.71 x 10-9) and 

rs627530 (p = 4.77 x 10-9). Table 5.2 lists the full set of significantly associated SNPs and 

nearby genes.  

Conclusions 

The influence of genetic factors on ONH structure was investigated using two 

different approaches. The approaches included both directly modeling the impact of a 

small set of SNPs on the ONH as well as standard GWAS techniques. Applying both 

approaches helped provide depth to characterize specific changes in ONH structure 

imparted by individual loci and the breadth needed to discover associations from across 

the genome. 

The use of STEP features and LDA-based modeling of genotype influence was 

able to identify a significant impact on ONH structure in 17 of the 19 SNPs considered 

here. The enrichment of these SNPs for associations with ONH structure is not surprising  
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Figure 5.4: Manhattan plots summarizing the genome-wide significance of three STEPs. 
The blue and red lines indicate suggestive and significant associations, 
respectively. Significant results are also highlighted in green.  
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Table 5.2: Significant associations between STEPs and SNPs from across the genome. 

STEP – SNP Association Chr Position P value Gene 

STEP 4   
 

 

rs765556 1 232,874,306 3.75 x 10-8 - 

rs4974155 3 55,978,949 3.88 x 10-8 ERC2 

rs13261938 8 137,313,032 3.10 x 10-8  - 

rs6039368 20 977,236 5.99 x 10-9 RSPO4 

STEP 6   

 

 

rs2130628 1 210,118,130 3.88 x 10-8 SYT14 

rs10127635 1 210,121,138 3.94 x 10-8  SYT14 

rs3774146 3 10,419,478 3.15 x 10-8 ATP2B2  

rs955868 4 37,788,636 3.35 x 10-8 - 

rs2068621 7 23,114,681 2.76 x 10-8 KLHL7 

rs7005971 8 144,047,401 4.63 x 10-8 SMPD5 

rs1265891 9 114,347,831 2.72 x 10-8 TNFSF8 

rs3181362 9 114,905,162 2.48 x 10-9 TNFSF8 

rs3789882 9 114,907,418 5.36 x 10-9 TNFSF8 

rs7028089 9 114,915,544 1.14 x 10-8 TNFSF8 

rs3181360 9 114,929,277 7.32 x 10-9 TNFSF8 

rs3181192 9 114,932,813 3.45 x 10-8  TNFSF8 

rs846826 9 120,343,695 1.58 x 10-8 - 

rs9518555 13 101,796,939 1.04 x 10-8 FGF14 

rs6502352 17 14,402,972 2.68 x 10-8 - 

rs6607303 17 37,848,767 1.15 x 10-8 - 

rs10512474 17 37,863,708 8.27 x 10-9 - 

STEP 8   
 

 

rs681747 2 219,597,917 6.17 x 10-9 STK11IP 

rs627530 2 219,611,720 4.77 x 10-9 STK11IP 

rs12323080 13 101,391,223 3.71 x 10-9 -  
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given that they have all exhibited strong evidence of association with POAG risk in 

previously published works. Importantly, though, the associations with POAG and any of 

these SNPs were not reproduced in the OHTS cohort, with only one (rs4656461 in the 

gene TMCO1) nearing the level of significance. Even lacking these SNP-POAG 

associations within the dataset, the structural features learned from the SNPs were 

associated with POAG in 12 of 19 cases. This is especially useful because, once trained, 

these features can be measured directly using only stereo fundus images. With only these 

image-derived measurements, information about both disease and the underlying genetics 

can be determined. 

Modeling the impact of individual genetic loci has the potential to aid POAG 

research and treatment in several important ways. First, it allows the magnitude and type 

of structural impact of each locus to be determined, helping to characterize the expected 

genetic variation in structure. Second, with this impact identified, the structural of effects 

of individual genetic loci could be controlled for to help eliminate confounding factors in 

researching environmental and disease-related changes to ONH structure. Finally, the loci 

that cause large or disease-related changes to the ONH potential may serve as therapeutic 

targets for POAG treatments. 

Applying standard GWAS procedures to determine genetic associations to stereo 

fundus derived STEPs resulted in a number of significant results, the most convincing of 

which was an association between STEP 6 and SNPs near the gene TNFSF8. This gene 

codes for a membrane protein that plays an important role in the apoptosis (programmed 

cell death) pathway and has previously implicated in multiple cancer types. Expression 

experiments indicate that this gene is expressed in many ocular tissues including the optic 

nerve, however, its presence in any specific retinal cell type and its function therein 

remains unclear. Significant associations with TNFSF8 and the other genes provide 

potential future gene targets for POAG research, evaluation in independent cohorts is 

needed to confirm these results.  
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Incorporation of additional cohorts may also help to reveal still hidden STEP-SNP 

associations. The significant results observed here did not overlap with previously 

published SNPs affecting POAG risk or ONH structural measurements. Suggestive (not 

significant) associations did exist in some of these cases, though, including STEP 

associations with ATOH7 (rs7916697), TLR4 (rs1360094), SIX1/SIX6 (rs10483727), and 

CDKN2B (rs1063192). The relatively small size of the OHTS cohort relative to other 

GWAS experiments, which often incorporate more than 10,000 participants, may limit 

the ability to detect these associations at a statistically significant level. 

While the techniques applied here were able to detect significant genetic effects 

on ONH structure, they were limited in that they only considered structural 

measurements derived from images taken at a single point in time. The ONH, of course, 

is not a static structure. It changes not only as a result of disease progression, but also as a 

function of age and possibly other as-of-yet undiscovered influences. Incorporating 

longitudinal measurements that capture this change over time may help to improve not 

only POAG prediction, but also reveal how genetic factor influence the effect of aging 

and disease progression on the ONH. 
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CHAPTER 6 

LONGITUDINAL ANALYSIS OF ONH STRUCTURE 

The analyses described up to this point have focused on clinical measurements 

and images collected at a single time point. These approaches are useful in identifying the 

types of variation observed with ONH structure and helped uncover associations with 

clinical measurements, genetic factors, and POAG. However, they lack the ability to 

capture time-dependent changes to ONH structure. In clinical settings, these changes are 

extremely important. A typical evaluation by a physician often includes comparisons of 

current ONH structure to previous measurements to identify any progressive changes 

indicating POAG. Computational analysis of these progressive changes could help 

uncover additional latent relationships between ONH structure and disease.  

The OHTS dataset under consideration here contains an extensive longitudinal 

component that includes image collected at regular intervals as well as expert 

determinations of conversion to disease. This provides a unique opportunity to measure 

time-dependent changes in ONH structure and characterize those changes that are 

associated with POAG. This data can also be utilized to build and evaluate early 

prediction models to identify likely POAG cases before the onset of disease. Because 

early detection is crucial to preserving vision, these prediction models have the potential 

to make a large translational impact. 

This chapter first describes the image processing and registration techniques that 

were needed to standardize a large image dataset collected over the course of more than a 

decade. Next, the methods and results for predicting the onset of disease and 

characterizing POAG-related changes based on longitudinal measurements of ONH 

structure are summarized. 
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Dataset Description 

The data used to investigate longitudinal changes to ONH structure were collected 

during the OHTS baseline and follow-up visits. Briefly, all participants exhibited 

elevated IOP, but were judged non-glaucomatous at baseline. Clinical measurements 

(IOP, CDR), stereo fundus images, and visual field tests were collected at regular follow-

up visits. Incident POAG (conversion to POAG) was determined at follow-up visits 

based on ONH progression, visual field progression, or both. This OHTS cohort 

contained 1635 participants with imaging occurring at an average of 11.4 follow-up visits 

over 10.7 years. Table 6.1 summarizes the data considered during the analyses described 

in this channel. For a complete description of inclusion criteria, data collection, and 

POAG diagnosis procedures for OHTS, see Chapter 4. 

Table 6.1: OHTS cohort demographics, longitudinal measurements, and disease status. 

Measurement Distribution Description 

Age 62.0 ± 10.1 years Age at imaging 

Sex 56.4 % female - 

Ethnicity 
71.2% white,  
23.5% African American, 5.3% 
other 

Self-reported participant ethnicity 

HCDR 0.41 ± 0.21 Horizontal cup-to-disc ratio 

IOP 20.35 ± 4.59 mmHg Intraocular pressure 

POAG 93.9 % Non-POAG Diagnosed with POAG at time of 
imaging  

POAG Modality 
44.0 % ONH,  
21.2 % visual field,  
34.8 % both 

The method used to diagnose POAG 

 

An important challenge of analyzing this large fundus image dataset was the lack 

of a standardized imaging protocol. A variety of different cameras including those that 

capture stereo images simultaneously and those that capture them sequentially are 
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represented within the dataset. Generally, the fundus camera used to collect images was 

determined by the study center. Because participants tended to return to the same study 

center for all of their follow-up visits, all images for a single participant were collected 

using the same type of fundus camera in most cases. However, this was not the case for 

some participants and differences across fundus cameras needed to be addressed. The 

issues with camera type combined with differences in image quality, illumination, and 

ONH framing necessitated substantial pre-processing before ONH structural features 

could be identified. 

Longitudinal Fundus Image Registration 

Before any analysis of the follow-up images could be performed, significant 

preprocessing was needed to ensure that equivalent measurements of ONH were being 

captured from each stereo image pair. Without these steps, useful comparisons of ONH 

structure within or across participants would be impossible. The following section will 

detail these steps that included a combination human annotation, automated processing, 

image registration. 

Baseline Annotation and Image Preprocessing 

The baseline images for each of the 1635 OHTS participants were used as a 

reference to which later images could be aligned and compared. To this end, the right eye 

baseline image for each participant was manually annotated for ONH location. In 

addition to ONH annotation, the camera type used to capture each baseline image was 

recorded. These different camera types were identified by noting the shape of the mask 

used during capture and the overall image appearance. Review of the images resulted in 

identification of 11 distinct camera types represented in the dataset. For use during 

processing of the follow-up images, each participant was assigned a camera type using 

their baseline image. To help account for magnification differences in images captured 

using different cameras, the mean optic disc diameter was determined for each camera 
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type based on human annotations of disc diameter. These means were used to determine 

image scaling factors that were applied during later processing to ensure that images from 

each camera type had an equal mean optic disc diameter. 

With the baseline images annotated and ready for use as a reference, processing of 

the follow-up images could be performed. The first step in this process was automated 

localization of ONH. Using the methods described in Chapter 3, a machine learning 

model for locating the optic disc was built and applied. The entire set baseline images and 

human annotations of ONH location were used a training set and the resulting model was 

applied to all follow-up images. Figure 6.1 shows an example application of the 

automated ONH localization to longitudinal images. While a region containing the ONH 

was extracted in the majority of cases, the ONH regions were not perfectly aligned. 

Errors in the ONH localization introduced noticeable translational errors across images 

from the same participant as well as across participants. Beyond horizontal and vertical 

translations, rotational and scaling differences also existed between these images. 

Differences in rotation could have been introduced by endo- or exorotation of the 

participant, variation in positioning of the camera, or positioning of the film slide during 

digitization. The magnification levels of the different cameras introduced scaling 

differences even within a single participant when the same camera type was not used for 

all follow-up images. Simple extraction of the ONH region could not account for these 

substantial differences between the images. To address these issues, a more sophisticated 

image registration approach was applied to bring the images into a standard format. 

Image Registration and Evaluation 

Image registration is a wide and widely studied topic that is used in virtually 

every domain in which image data is analyzed. Broadly, image registration is a process in 

which different images of the same (or similar) scene(s) are compared to determine the
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Figure 6.1: Example ONH extraction from longitudinally collected images. Each column illustrates the process for images collected 
from a single participant including the manually extracted ONH from the baseline (far left) and the automatically extracted 
ONH regions from follow-up images. The rows contain the input images (top), the ONH localization either through manual 
extract or probability maps generated automatically (middle), and the final extracted ONH (bottom). Note the vertical and 
horizontal translations associated with automated results and the change in image format resulting from different fundus 
cameras.  
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function by which points in one image can be mapped to points in another image given 

that those points correspond to the same position in the scene. There are a number of 

different approaches employed to address the task of image registration depending on the 

types of images considered and the image processing goals.[157] For the analysis 

described here, rigid image registration can be thought of as a generalized optimization 

procedure that searches through many different possible functions (transformations) that 

globally map one image onto another and attempts to identify the one that maximizes a 

similarity function comparing the two images. This high-level description leaves 

considerable room for customization and parameter selection so that the methods may be 

adapted to best fit the problem under consideration.  

Registration of the OHTS images was performed by aligning images on a per 

participant basis. The baseline image for each participant was used as a reference to 

which each follow-up image was registered. The registration was performed in two steps. 

First, registration that allowed translational and rotational transformations was performed 

to align the ONH regions. Second, registration that allowed scaling transformations was 

applied to help account for differences between camera types. This two-step process was 

selected based on initial results on a few test cases. When a single-step registration that 

included scaling was used, the results contained large errors in aligning ONH regions. 

Because it is difficult to predict exactly what type of registration methods and 

parameters will work best for a particular problem, a variety of different parameters and 

preprocessing steps were evaluated to determine those that worked best for the OHTS 

dataset. Table 6.2 summarizes the parameters and preprocessing steps that were 

evaluated.  

The first evaluated parameter controlled the optimization step in the registration 

process by determining the similarity function used to compare images. Three possible 

similarity metrics including mean square difference, normalized correlation, and mutual 

information were evaluated.[158, 159] The mean square difference metric is computed by 
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averaging the squared differences between pixel values in the images being registered. 

This average difference value can be negated to indicate similarity (rather than distance) 

between two images. Normalized correlation is computed by calculating the Pearson’s 

correlation coefficient between pixel values in the images. Finally, mutual information is 

a measure of statistical dependence between the pixel values of the two images. Similar 

images exhibited high statistical dependence (high mutual information) while dissimilar 

images are more statistically independent (low mutual information).  

Table 6.2: The registration parameters and preprocessing steps that were evaluated. 

Parameter Tested Values Description 

Similarity Metric 
Mean square differences, 
Normalized correlation, 

Mutual information 

The image similarity function that is 
optimized during registration 

Multi-scale Levels 1, 2, 3, 4 

The number of scales in the multi-scale 
image representation. A value of 1 
indicates only the original image is 
considered. 

ONH Initialization Yes, No 
Indicates whether automated ONH 
estimation is used as initial registration 
estimate. 

Threshold Masking Yes, No 
Indicates whether threshold mask is 
used to exclude image regions during 
registration. 

Histogram Matching Yes, No Indicates whether histogram matching is 
used as a preprocessing step. 

Channel 
Red, Green, Blue, 

Luminance, Low-pass, 
Vessel Estimation 

The image channel used to perform 
registration. 

 

The second parameter helped guide the search for the optimal similarity metric 

values. Specifically, it determined if a multi-scale image representation was used to 

perform the registration. Briefly, a multi-scale representation adds an additional 

dimension to the image used to generate smoothed, rescaled versions of the image. This 
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can be useful because it allows the registration process to consider image structures of 

vastly different sizes (e.g. the optic disc vs. small vessels) separately. See Chapter 3 for 

more details regarding multi-scale image representations. 

The automated ONH detection was also incorporated as a preprocessing step in 

the registration. First, an estimate of ONH location was computed for the follow-up 

image using the automated method described in Chapter 3. The horizontal and vertical 

differences between the annotated baseline ONH location and the estimated follow-up 

ONH location were used to compute a translational transform. This translation was then 

used as an initial transformation estimate for the registration process. Both registration 

schemes that included this initial estimate and those that did not were evaluated. 

Several other possible registration preprocessing steps were also considered. The 

first determined whether a binary image mask was applied to help exclude areas outside 

of the fundus region prior further processing and registration. The mask was computed by 

applying an Otsu threshold to the image to determine which pixels fall outside the fundus 

region of the image. After thresholding, a morphological erosion operation was applied to 

the binary mask to help exclude fundus edge pixels and small non-fundus areas missed by 

thresholding. This final binary mask was used to exclude non-fundus areas from 

consideration during registration. Second, the use of histogram matching in which the 

pixel values of the follow-up image are transformed so that their distribution more 

closely matches that of the baseline image pixels was evaluated. This step was applied to 

help address differences in illumination and contrast between images. In both of these 

cases, both inclusion and exclusion of the preprocessing step was evaluated.  

The final possible preprocessing steps determined the image channel that was 

used during registration. For this evaluation, an image channel referred not only to one of 

the standard red, green, or blue (RGB) color channels, but also the results of averaging or 

applying filters to the standard color channels. The additional channels considered 

included a luminance channel indicating overall brightness computed as a weighted 
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average of the RGB channels. Also included was a low pass channel that was computed 

by applying an averaging filter to the green channel. Finally, a vessel estimate channel 

was included. This channel was computed using a bank of Gabor filters to identify strong 

edges and ridge-like structures in the images. Specifically, a number of Gabor filters at 

several different scales and orientations were applied to the green channel of the image. 

At each pixel location, the maximum response across all scales and orientations was 

determined and used as the pixel value in the resulting image. This process emphasizes 

the strong edges associated with vasculature and suppresses flatter areas of the image. 

Figure 6.2 provides examples of each of these channels. Registration using each of these 

channels independently was evaluated to determine the one most suited for fundus 

registration. 

Evaluation of parameter values and preprocessing steps was performed on a 

randomly selected subset of participants. This evaluation dataset consisted of 20 baseline 

and 215 follow-up stereo image pairs from 20 randomly selected participants along with 

human annotations of ONH location and optic disc diameter. Each possible set of 

parameters was used to perform registration on this evaluation set. The performance of 

each combination of parameters was determined by computing the average difference (in 

pixels) between the ONH center location and diameter across each participant. The 

combination resulting in the lowest average error was selected and used to align the full 

set of images. Figure 6.3 illustrates the effect of the tested parameters on the resulting 

registration quality. Based on these evaluations, the final methodology used the 

normalized correlation metric and a single level multi-scale representation during 

registration. Both automated ONH estimation and threshold masking were used as 

preprocessing steps. Finally, the vessel estimate channel was used for the registration. 

Figure 6.4 outlines the preprocessing and registration methods. The final registration 

scheme achieved a mean error corresponding to 4.1% of the average optic disc diameter  
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Figure 6.2: The image channels evaluated for use in registration. These included standard color channels (red, green, blue), a gray-
scale channel (luminance), an average filtered channel (low pass), and a Gabor-based estimate of vasculature (vessel 
estimate).  



 

 

84 

84 

  

Figure 6.3: Effect of the evaluated parameters on registration quality. Providing an initial 
estimate using automated ONH detection made the single largest impact. The 
similarity metric, image channel, and application of a threshold-based mask 
had more modest impacts on performance. Using a multi-scale registration 
and performing histogram matching had little impact on final registration 
quality. 
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Figure 6.4: An outline of the process used to register follow-up to baseline images. (A) A 
flowchart of the major processing steps. (B) The baseline (left) and follow-up 
(right) after each step with the target ONH location highlighted in blue. (C) A 
magnified view of the ONH region after each step. 

when aligning the follow-up fundus images to the baseline. The parameter evaluation and 

registration methods were implemented in C++ using the Insight Toolkit libraries.[101] 

Individual Depth Map Analysis 

With follow-up images registered to their corresponding baseline image, ONH 

structural measurements were computed for the entire OHTS dataset. Using the methods 

developed and evaluated in previous chapters, analyses were expanded to include this 

much larger dataset. The increased power of this sample and allows for previous results 
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to be confirmed and for novel relationships between ONH structure and POAG to be 

identified. 

Depth Inference and Structural Endophenotype 

Identification  

Final input images to the depth inference algorithm were generated by extracting 

the ONH regions from all baseline and registered follow-up images using the annotated 

baseline ONH locations and camera types. This resulted in a set of 18,657 extracted ONH 

stereo pairs for the 1635 participants. All of these images were scaled to a common size 

(512 x 512 pixels) and had depth inference applied. 

STEP identification was performed using the PCA-based methods described in 

Chapter 4. Briefly, each baseline depth map was preprocessed to reduce noise by 

applying Gaussian smoothing filter, cropping out a 25 pixel wide border to remove edge 

effects, and down-sampling to a size of 50 x 50 pixels. Normalization was performed by 

standardizing pixels values across the depth maps to have a zero mean and unit variance. 

Finally, PCA was applied to the entire set of depth maps to identify STEPs. The STEPs 

corresponding to the first 10 principal components are shown in Figure 6.5. The entire set 

of 18,657 depth maps were then projected onto this set of STEPs for further analyses. 

Clinical Measurement Prediction 

The identified STEPs were evaluated based on associations with demographic 

variables (age, sex, ethnicity), clinical measurements (HCDR, IOP), and disease (POAG 

status at time of imaging). VCDR was not included because this measurement is only 

available for the baseline images. To perform association testing, STEP features were 

measured at all imaging time points (baseline and follow-up) for all participants. These 

STEP measurements were compared to all other measurements collected at the time of 

imaging. Tests for statistically significant associations were performed using linear 

regression in the case of quantitative measurements (age, HCDR, IOP) and ANOVA for 
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categorical measurements (sex, ethnicity, POAG status). Bonferroni correction was used 

to account for multiple hypothesis issues. Table 6.3 summarizes the significant results. 

As in the analysis of baseline features, significant associations were discovered between 

STEPs and age, ethnicity, and HCDR. Unlike the baseline analysis, significant 

associations were also detect between STEPs and IOP. Finally, several STEPs were also 

found to be associated with POAG status at the time of imaging. 

Table 6.3: Significant associations between longitudinal measurements and STEPs. 

 

Longitudinal Changes to Structural Endophenotypes 

The previous chapters and sections have considered only clinical or stereo-based 

STEP measurements captured at a single point in time. Of course, the ONH is not a static 

structure, but a dynamic one that changes based on aging, environment, and disease 

progression. Quantifying these time-dependent structural changes allows individuals to 

be characterized not by instantaneous measurements, but by the progressive changes to 

ONH structure observed over time. Given that clinicians often rely on structural changes, 

rather than individual observations, to diagnosis POAG, analyzing longitudinal 

measurements is key in identifying progressive changes associated with glaucomatous 

damage. The following sections will detail the methodologies employed to extract, 

analyze, and evaluate longitudinal structural features. 

Measurement Significant STEP associations  

Age 3, 4, 7, 8, 10 

HCDR 2, 3, 4, 5, 6, 7, 8 

IOP 3, 8 

Ethnicity 3, 4, 7, 8 

POAG 1, 4, 5, 10 
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Figure 6.5: Gray-scale representation of the ten PCA-based STEPs identified using baseline data and applied in the analysis of the 
entire set of 18,657 baseline and follow-up images collected over the course of the OHTS.  
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Longitudinal Measurement Preprocessing 

For the analyses described here, the clinical measurements under consideration 

consisted of age, IOP, and HCDR each captured at baseline and follow-up visits for all 

participants. Stereo images captured at baseline and follow-up visits were also used to 

extract STEP measurements of ONH structure. Here, the measurements of a single 

clinical variable or STEP feature collected at all visits for a single participant will be 

referred to as a time series. The dataset consisted of time series for all clinical and STEP 

measurements for each participant.  

Prior to analysis of the time series data, preprocessing was required to extract a 

standard set of measurements from each participant. While the OHTS data collection 

protocol did call for annual imaging and clinical evaluation, this collection did not control 

for participant age and consistent annual visits were not possible for much of the cohort. 

Participant availability, scheduling issues, and other practical concerns caused many 

annual visits to be delayed for months or missed altogether. Additionally, not all 

individuals continued to participate throughout the entire length of the study. These 

issues meant that the time series for both the clinical and STEP measurements were not 

consistently sampled regular intervals and covered varying lengths of time. 

To account for these inconsistencies, a methodology for extracting data at regular 

intervals over a predetermined length of time was developed. First, an exclusion criterion 

was applied to ensure that data was available across the entire time period for all 

considered participants. Specifically, participants were required to have follow-up 

measurements and images for at least 10 years after baseline. After applying the criteria, 

1246 participants remained under consideration. Second, to address the inconsistent 

sampling intervals, an interpolation and smoothing procedure was applied to estimate 

clinical and STEP measurements at a consistent set of time points. The interpolation 

scheme applied here was the LOESS method.[160] This interpolation fit a local linear 

regression model that estimated interpolated values by considering the closest observed 
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values. Using this interpolation method, the value of each clinical and STEP 

measurement was estimated at time zero (baseline) and at each one year interval for 10 

years in all participants. This resulted in time series data for 1246 participants that were 

sampled at consistent one-year intervals for 10 years. These series included 

measurements of HCDR, IOP, and STEPs 1 through 10.  

With preprocessing of the time series data accomplished, the use of longitudinal 

measurements of ONH structure to capture disease-related changes could be explored. To 

determine if structural changes associated with POAG could be captured using 

longitudinal STEP measurements, the time series data were used to predict disease 

outcomes. In these analyses, POAG modality (see Table 6.1) was mapped to a class 

variable indicating whether each participant was diagnosed with POAG based on expert 

evaluation of the ONH. A total of 101 out of 1246 participants exhibited these POAG-

associated changes to ONH structure. Figure 6.6 illustrates average time series of normal 

and POAG individuals considered here. 

Longitudinal Features in Disease Detection 

The longitudinal clinical and STEP feature were first evaluated based on their 

ability to detect individuals that converted to POAG during the 10-year period covered by 

the time series measurements. To perform this evaluation, time series measurements of 

HCDR, IOP, and STEPs 1 through 10 were mapped to feature vectors that contained the 

measurements at baseline and follow-up visits for 10 years. The time series features were 

augmented with the demographic features of age, sex, and ethnicity leading to a total of 

135 predictive features. This set of annually-sampled features were evaluated based on 

ability to detect individuals that converted to POAG based on expert ONH evaluation 

during 10 years of follow-up visits. 
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Figure 6.6: Longitudinal data collected from the OHTS cohort. Each graph shows 10 years of clinical (HCDR, IOP) or STEP 
measurements measured using stereo images. Each gray line represents the measurements collected from a single 
participant, blue lines indicate average measurements for normal participants, and red lines indicate the average of 
participants diagnosed with POAG based on expert review of stereo photos.
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In addition to the straightforward mapping of each annual measurement to a 

predictive feature, a more sophisticated approach to compute predictive features from 

time series data was evaluated. This mapping used dynamic time warping (DTW), which 

is a technique commonly used in analysis of time series to help account for shifting and 

scaling in the time dimension when comparing two time series.[161] DTW uses a 

dynamic programming approach similar to alignment of biological sequences to align 

time series data and can be used to compute pairwise distances between aligned time 

series.[161] In the OHTS cohort, participants were recruited from a large range of ages 

(40 to 80 years) and, for those eventually progressing to POAG, time to diagnosis varied 

greatly (~1 to ~14 years). These large differences in age and speed of progression limit 

the ability of straightforward comparisons of time series to distinguish between normal 

and POAG individuals. DTW, however, is designed to help address such shifting, 

stretching, or compressing in time. In application to the OHTS data, DTW was used to 

quantify how similarly the measurements of a feature progressed over time across 

participants. For instance, to measure the similarity in IOP progression over time between 

two participants, DTW time warping was applied to align the two IOP time series and 

then quantify the similarity between the aligned time series. Figure 6.7 illustrates an 

example DTW alignment of STEP time series of two OHTS participants. 

To compute predictive features from the OHTS time series data using DTW, it 

was applied to obtain pairwise distances between participants using each longitudinal 

measurement (HCDR, IOP, STEPs 1-10). The resulting pairwise distances were 

normalized to have zero mean and unit variance. To obtain a set of predictive features 

using these distance values, multidimensional scaling was applied. This technique 

computes a feature space in which the Euclidean distances between data points are 

equivalent to those given in an input set of pairwise distances.[162] It has been 

previously used in conjunction with DTW and biological sequence alignment to generate  
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Figure 6.7: An illustration of time series alignment using dynamic time warping. (A) 
Without alignment, quantifying the similarity across time series data relies 
only on the comparing points captured at the same point in time and can be 
confounded by shifting or stretching one series with respect to another. (B) 
Alignment accounts for these differences by identifying similar regions across 
the series regardless of their position in time.  
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features used in visualization, clustering, and classification.[163, 164] For the analyses 

described here, R implementations of DTW and multidimensional scaling were used to 

extract predictive features from time series alignments.[161] The DTW-derived features 

were also augmented with demographic features (age, sex, ethnicity) and evaluated based 

on ability to detect progression to POAG. 

The two feature sets described above (annually-sampled and DTW-derived 

features) were both incorporated into machine learning models used to identify the 

participants who developed POAG during the 10 year period considered here. Testing of 

several classification models including logistic regression, k nearest neighbor, support 

vector machines, and random forests was performed using AUC as the performance 

metric. For this task, random forest classifiers achieved the greatest accuracy. Further 

parameter optimization led to the use of random forests consisting of 100 trees in 

detecting and predicting POAG. Final performance was estimated using 10-fold cross 

validation testing. The annual-sampled features resulted in an AUC of 0.828 in detecting 

individuals that converted to POAG, while the DTW-derived features resulted an AUC of 

0.845.  

Longitudinal Features in Disease Prediction 

Beyond characterizing the ability of longitudinal STEP features to detect POAG 

progression, these features were evaluated based on their ability to predict disease prior to 

any diagnosis. To perform this analysis, the subset of participants (n = 49) that did 

convert to POAG and for which five or more years of data prior to conversion was 

available was identified. The five years of data immediately prior to POAG diagnosis was 

extracted for each and these time series data were used as positive examples of POAG. 

To provide negative examples, a set of non-glaucomatous individuals (n = 555) was 

randomly selected. The time series covering a randomly selected, consecutive five-year 

period for each individual was then extracted. The number of individuals in each group 
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(49 POAG, 555 normal) was chosen to maintain the proportion of POAG participants 

relative to the full longitudinal sample (101 POAG, 1145 normal).  

 

Figure 6.8: ROC curves resulting from time-series data to (A) detect progression to 
POAG using all longitudinal data and (B) predict POAG using only data 
collected prior to diagnosis. 

Using this subset, the annually-sampled and DTW-derived features were 

computed using five years of time series data and then used to predict the POAG 

conversion. As in the analysis described above, random forest models were used to 
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perform prediction. Here, the annually-sampled features resulted in an AUC of 0.738 and 

DTW-derived features resulted in 0.752. Figure 6.8 shows ROC curves the results of 

using longitudinal features for detecting and predicting onset of POAG. 

Conclusions 

Methods for identifying ONH structural features using stereo fundus images were 

applied to a large, longitudinal dataset. The methods presented in this chapter build upon 

the features identified by analysis of baseline data and show that incorporation of 

longitudinal measurements of ONH structural aid in the detection of POAG-related 

structural changes and early prediction of disease. 

To enable the longitudinal analysis of ONH structure, a registration scheme that 

aligned fundus images taken over the course of roughly a decade was developed and 

evaluated. To optimize the performance of this scheme, several parameters and 

preprocessing steps were evaluated based on their impact on registration quality. The 

final methodology was able to register sequential fundus images with a mean error 

equivalent to 4.1% of optic diameter. This level of accuracy allowed for comparable 

structural measurements to be captured from longitudinal images collected over the 

course of more than a decade. The ability to computationally track ONH structural 

changes over time provides a unique opportunity to characterize the type of changes that 

the ONH undergoes during aging and identify those changes that are associated with 

glaucomatous onset and progression. 

The structural measurements identified using the OHTS dataset were evaluated 

based on associations with demographics, clinical measurements, and disease state at the 

time of imaging. Supporting previous results, the STEPs were significantly associated 

with demographic features known to affect POAG risk (age, ethnicity) as well as clinical 

features used to diagnose and track POAG progression (HCDR, IOP). And, importantly, 

STEPs were once again shown to be associated with development on POAG. 
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The progression of clinical and STEP measurements over time was also 

investigated using the longitudinal data. Preprocessing methodologies were developed to 

extract measurements regularly-sampled over the course of a decade from the OHTS 

cohort. Using features derived from the time series data showed promising predictive 

power for detecting conversion to POAG (AUC = 0.845) and for predicting the onset of 

disease prior to diagnosis (AUC = 0.752). Unsurprisingly, the predictions based on these 

longitudinal features outperformed predictions based solely on baseline data (AUC = 

0.722, see Chapter 4), supporting the importance of tracking the progression of ONH 

structural changes rather than relying on a measurements collected at a single point in 

time. 

In conclusion, methods for processing stereo fundus images captured over several 

years were developed and evaluated. These methods allowed computationally-identified 

features of ONH structure to be captured longitudinally and used to predict conversion to 

POAG. The results show that quantifying changes to these features as well was standard 

clinical measurements increases the ability to detect POAG before functional loss has 

occurred. 
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CHAPTER 7 

CONCLUSION 

The work presented in this thesis uses a variety of computational methods to 

quantify ONH structure and uncover relationships that help determine this structure and 

how it changes over time. This included methods from the domains of image analysis, 

statistics, machine learning, genetics, and bioinformatics. Incorporation of such a broad 

array of techniques into the analysis of the uniquely rich OHTS dataset revealed novel 

associations between ONH structure, clinical measurements, genetics, and glaucoma. 

Previous research into POAG suggests that it is a particularly difficult disease to 

study. This difficulty stems from the diverse ways in which this disease can present 

clinically as well as the complexity of the underlying genetics that paly a large role in the 

disease. While there are clear associations between some measurable factors and POAG 

risk (age, IOP), these factors are not sufficient, either alone or in concert, to reliably 

predict the occurrence of disease. Similarly, there are known POAG causing mutations 

within some genes (MYOC, OPTN), but the majority of POAG heritability remains 

unexplained. These continuing difficulties suggest that new approaches to studying 

POAG may help to increase overall understanding of the disease. 

Before any computational analysis of ONH structure could be performed, 

however, the diverse set of stereo fundus images represented within the OHTS dataset 

had to be processed so that consistent measurements of ONH structure could be collected. 

To this end, previously published methods were adapted for use on the data under 

consideration here. First, an automated ONH detection method was implemented to 

eliminate the need for human annotation in identifying the ONH region in fundus images. 

Evaluation of this method showed that it achieved greater than 90% accuracy in 

identifying the center of the optic disc, making it a useful tool for automating ONH 

extraction. 
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The second method adapted and implemented for use here was an algorithm for 

inferring depth information from stereo fundus images. This tool was crucial to all 

analyses presented in this thesis. It is by using this method that quantitative 

measurements of ONH structure in the form of depth maps were able to be collected. 

This method was inspired by general methods used to infer depth from stereo, but 

addresses several issues specific to fundus imaging. Previous works has shown that this 

method outperforms even state-of-the-art depth inference approaches when applied to 

fundus images. Results presented here have also shown that comparisons to OCT images, 

which provide a more direct measurement of ONH structure, exhibited high agreement 

with the measurements inferred from stereo.  

With computational tools for quantifying ONH structure using stereo fundus 

images in hand, an analysis of a large participant cohort at-risk for developing POAG 

could be undertaken. Using stereo fundus images, clinical measurements, and disease 

outcomes, descriptive structural endophenotypes (STEPs) of ONH structure were 

identified and evaluated. These features explained >95% of variance observed in ONH 

features and were significantly associated with several clinical measurements commonly 

used to diagnose and monitor POAG. Further, these features increased the ability to 

POAG development years before diagnosis.  

The quantitative STEPs identified from the OHTS cohort were then used to study 

the impact of genetic factors on ONH structure. In searching genome-wide associations 

with ONH structure, the use of STEPs revealed several novel significant associations. 

When considered in detail, STEPs allowed the impact of individual genetic loci on ONH 

structure to be estimated. The resulting features were significantly associated with both 

the corresponding genetic factors, but also with disease. 

The longitudinal component of the OHTS dataset also allowed for the changes to 

ONH structure that occur within an individual over time to be quantified. A registration 

methodology that enabled sequential fundus images gathered from a single individual 
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over the course of more than decade to be aligned and comparable measurements of ONH 

structure to be captured was developed and evaluated. Using this methodology, the 

longitudinal OHTS data (~18,000 images) could be analyzed. As in the baseline analysis, 

a small number of STEPs were able to effectively capture a vast majority of variance 

observed with ONH structure. Analysis of this much larger dataset supported results 

obtained using on baseline data. STEP measurements computed from stereo images were 

significantly associated with clinical measurements and disease state at the time of 

imaging.  

Methods for quantifying the change in both clinical measurements and STEP 

features occurring within individuals over time were developed and evaluated. These 

methods used longitudinal measurements and images collected from the OHTS cohort to 

describe the progressive changes to ONH structure occurring over the course of a decade. 

Machine learning models built using longitudinal features were able to detect conversion 

to POAG using the full range of available longitudinal data. Further, these models were 

found to be predictive of POAG even when built using only data collected prior to the 

onset of disease and had an increased power to predict POAG compared to models built 

using only baseline data. 

Going beyond the analyses presented here, there are several possible directions 

for future work. For instance, clustering analysis of STEP features could help reveal 

clinically-relevant subtypes of ONH structure. Given the heterogeneity observed in 

POAG, clustering analysis using STEP features may to separate the complex problem of 

characterizing the relationship between ONH structure and POAG into a number of 

simpler tasks. Applying clustering techniques could be useful in identifying motifs in 

ONH structure both using single time-point measurements as well as in characterizing 

longitudinal changes to ONH structure. 

Another possible direction for future work is the incorporation of longitudinal 

features into the identification of genetic contributors to ONH structure. These two 
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analyses were performed independently in Chapters 5 and 6, but a combined analysis 

could reveal how genetics impact the changes that occur to ONH structure over time. The 

results of such an analysis could have important implications for assessing risk of POAG 

and identifying those patients who are likely to exhibit accelerated disease progression. 

The goal of the work presented here was to apply computational methods to 

increase understanding of ONH structure and its relationship with POAG. In applying 

these techniques, novel structural features were identified and used to predict the onset of 

disease. Additionally, the features were shown to be useful characterizing variations in 

ONH structure that occur over time and as a result of genetics. These results suggest that 

the methods presented here could be useful in both clinical settings to identify POAG 

before loss of vision and research settings as a tool to model the impact of related factors 

on ONH structure. 
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