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ABSTRACT 

Exome sequencing, the process of sequencing the set of all known exons 

simultaneously using next-generation sequencing technology, has dramatically changed 

the landscape of genetic research and genetic testing. The incredible volume of data 

produced by these experiments creates challenges in:  1) annotating the effects of 

observed variants, 2) filtering to remove noise, 3) identifying plausible disease-causing 

variants, and 4) validating experimental results. Here we will present a series of 

bioinformatic tools and techniques intended to address these challenges with exome 

sequencing and associated validation experiments. 

First, we will present the Automated Sequence Analysis Pipeline (ASAP), a tool 

for the efficient and automated management, detection and annotation of Sanger 

sequencing data. This tool enables large-scale Sanger sequencing based genetic testing 

and variant validation efforts.  

This pipeline has also been extended to annotate variants discovered by exome 

sequencing. The ASAP NGS annotation system predicts the effects of a variant observed 

in genomic sequence on the amino acid sequence, and annotates these changes in the 

standard nomenclature expected in a clinical setting.  

Exome sequencing experiments produce a great number of variants that do not 

cause a patient’s disease. One of the biggest challenges in exome sequencing experiments 

is sorting through these false positives to discover the true disease-causing variants. We 

have developed several techniques to aid in the reduction of these errors. The techniques 

described include:  1) the construction of a catalog of systematic errors by reprocessing 

thousands of publically available exomes, 2) a tool for the filtering of variants based on 

family structure and disease assumptions, and 3) a tool for discovering regions of 

autozygosity from the exomes of several affected patients in consanguineous pedigrees.  
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Classes of variants that are undiscoverable using current analysis techniques gives 

rise to false negatives in exome sequencing experiments. We will present a tool, the 

Retrotransposon Insertion Detector for Exomes (RIDE) that uses the characteristic 

anomalies present in sequence alignments to detect the insertion of repetitive elements.  

The process of identifying the cause of a patient’s disease using exome 

sequencing data has been equated to finding a needle in a stack of needles. Only through 

the proper annotation of variants and the reduction of the error rates associated with 

exome sequencing experiments can this task be achieved in an efficient manner.  
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CHAPTER I 

EXOME SEQUENCING AND ANALYSIS 

1.1. Introduction 

Exome sequencing is the high-throughput sequencing of every exon in the human 

genome. This technique provides the unprecedented ability to perform a standardized 

experimental procedure for patients suffering from many diseases, and then 

informatically discover the cause of a patient’s disease. However, this ability is balanced 

by the challenge of properly calling variants, annotating the affects of the change, 

filtering to remove noise, identifying plausible variants and experimental validation of 

results.  

The process of genetic testing and exome sequencing will be discussed over the 

next four chapters. This chapter will introduce the concepts of exome sequencing and 

genetic testing. Chapter 2 contains a discussion of genetic testing prior to the advent of 

exome sequencing and presents the Automated Sequence Analysis Pipeline (ASAP), a 

tool for the efficient and automated management, detection and annotation of Sanger 

sequencing-based genetic testing. Sanger sequencing remains relevant despite the advent 

of next-generation sequencing because of the need for validation on a per-variant basis. 

Chapter 3 contains a discussion of annotation of exome sequencing variants, and presents 

an addition to ASAP to allow for the annotation of exome-sequencing derived variants. 

Chapter 4 is a discussion of false-positives in exome sequencing experiments, and 

includes several techniques to aid in the reduction of these errors. The techniques 

described are: 1) the construction of a database of systematic errors by reprocessing 

thousands of publically available exomes, 2) a tool for the filtering of variants based on 

family structure and disease assumptions, and 3) a tool for discovering regions of 

autozygosity from the exomes of several affected patients in consanguineous pedigrees. 

Finally, Chapter 5 is a discussion of how classes of variants that are undiscoverable using 
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current analysis techniques gives rise to false negatives in exome sequencing 

experiments. Specifically, a tool will be presented to detect the insertions of 

retrotransposons in exome sequence data.  

1.1.1. Efficient Genetic Testing Using Sanger Sequencing 

Prior to next-generation sequencing, Sanger sequencing was the primary 

technology for genetic testing. Genetic testing results are used by physicians and genetic 

councilors to provide prognostic information, family planning advice, and treatment 

recommendations to patients. In this context, it is critical that Sanger sequencing-based 

genetic testing results are highly accurate. The cost and volume of data produced by 

Sanger sequencing lends to manual inspection of sequence traces by trained experts, a 

process that is difficult to scale to large volumes of sequencing. To this end we have 

implemented the Automated Sequence Analysis Pipeline (ASAP)1, a system that provides 

automated calls on Sanger sequencing reads in addition to tools to aid in the manual 

review of sequence and the resolution calls when they differ between several sequence 

readers. This will be described in more detail in Chapter 2. 

1.1.2. Variant Annotation 

Variant annotation is the process of predicting the impact of a genomic change on 

the amino-acid sequence of a protein, and to give sufficient context to a variant to allow 

the identification of a disease-causing variant among tens of thousands of changes 

identified in a next-generation sequencing experiment. In Chapter 3 I will present a tool, 

the ASAP NGS annotation system2, that can calculate the effect of a variant based on 

gene structure information. Accurate variant annotation is critical to the success of a next-

generation sequencing experiment because the experiments produce too much data for 

manual inspection of results to be practical. Therefore a failed annotation represents a 

false negative in the experiment. 
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1.1.3. Reduction of False Positives in Exome Sequencing 

Exome sequencing experiments produce many variants that can potentially cause 

a patient’s disease. The vast majority of these variants are either benign polymorphisms, 

variants unrelated to the disease under study, or artifacts of sequence alignment and 

variant calling. Chapter 4 contains a discussion of ways to reduce false-positive rates in 

these experiments using a variety of methods.  

To identify artifacts of sequence alignment and variant calling, a large set of 

publically available exomes has been processed using the exact techniques used in local 

exome sequencing. This produces a catalog of variants containing both common 

polymorphisms in addition to common artifactual variants. Because neither of these 

classes is of interest in an exome sequencing study attempting to identify the cause of a 

patient’s rare disease, removing common variants in this catalog from a patient’s exome 

data reduces the false positive rate. This reduction is greater that the reduction that can be 

achieved by removing variants using publically available variant catalogs derived from 

the same input data, because the local catalog captures common errors specific to a 

particular method of sequence alignment and variant calling. 

1.1.4. Reduction of False Negatives in Exome Sequencing 

A false negative in an exome sequencing experiment is also costly, not because of 

the wasted cost of the exome experiment itself, but because of the cost of the necessary 

validation experiments. False negatives arise in exome experiments from 1) incomplete 

capture design, 2) regions of insufficient coverage, 3) overly strict filtering when 

attempting to reduce false positives, and 4) variant types that bioinformatic tools are not 

designed to detect. In Tucker et. al. 2011, we discovered that an insertion of an ALU 

element into an exon of the MAK gene was a major cause of Retinitis Pigmentosa in the 

Jewish population3. This mutation was discovered because of experimental validation 

attempts of artificial mismatches. To close this analytical hole and reduce false positives I 
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have developed a Retrotransposon Insertion Detector for Exomes (RIDE). RIDE uses the 

distribution of discordant read pairs surrounding the site of an insertion, and the soft 

clipping of sequence at the breakpoint to detect these insertions. In simulations, RIDE 

achieved a sensitivity of 89.1% with a false discovery rate of 16.1% at detecting ALU 

insertions near exons with at least 20x coverage. Validation efforts are underway to 

evaluate the tool on real world datasets.  

1.2. Background 

1.2.1. Sequencing Technology 

New sequencing technologies (often called “next-generation sequencing” in the 

literature) have been developed that have revolutionized how DNA sequencing studies 

and clinical genetic testing is performed4,5. This section is not intended as a detailed 

description of the technology behind each of these sequencing technologies, but rather is 

an introduction to provide appropriate context for the bioinformatic methods and tools 

described later. 

1.2.1.1. Automated Capillary Sequencing – ABI 3730xl 

Prior to the introduction of these technologies, genetic testing was performed by 

sequencing a single exon at a time using a capillary electrophoresis sequencer like that 

shown as A in Figure 1. The Applied Biosystems (ABI) (now Life Technologies) 3730xl 

sequencer has 96 individual capillaries that can each be used to perform a Sanger 

sequencing reaction by using four different florescent labels for each nucleotide. A PCR 

reaction is used to generate fragments at one base-pair increments each ending in a 

fluorescent-labeled base. The size of these fragments is measured using gel 

electrophoresis inside the capillaries. Labeled bases are identified as they pass the 

imaging window pictured on the left. Each capillary yields 300-500bp of sequence for a 

total yield of 48kB of sequence per run. 
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Figure 1. A comparison of sequencing consumables from various sequencing machines. 
(A). The terminal end of a 96 capillary sequencing array from an ABI 3730xl 
Sanger sequencing machine.  
(B). A sequencing plate from a 454 GS FLX sequencer, the earliest of the 
next-generation sequencing technologies. 
(C). A sequencing plate from an ABI SOLiD 4 sequencer. Note the four 
‘quads’ to support the simultaneous sequencing of several samples. 
(D). Two sequencing flow cells from Illumina sequencers. An eight lane flow 
cell from a HiSeq 2000 sequencer is shown left, and the single lane flow cell 
from a MiSeq is shown on the right. 
(E). A ‘318’ sequencing chip from a Life Technologies Ion PGM.    

A. 

B. 

C. 

D. 

E. 
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1.2.1.2. 454 Pyrosequencing 

The first of the next-generation sequencing machines to enter the market was the 

Roche 454 GS FLX sequencer4. This machine represented a radical departure from 

previous sequencing machines by doing away with individual reaction vessels. It employs 

an oil and water emulsion PCR to generate many sequencing-ready molecules from the 

same sample in a single reaction vessel. DNA molecules are bound to beads in the 

emulsion PCR, and these beads are physically isolated by settling into nano-scale wells in 

the surface of the plate depicted as B in Figure 1. Each well holds a single bead, so as 

fluorescently-labeled bases are incorporated, an imaging system can be used to capture 

the fluorescence from a single source molecule. Current versions of the 454 sequencer 

allow the imaging of up to a million beads and a read length of approximately 700bp, 

yielding approximately 700MB of sequence per run. 

1.2.1.3. SOLiD Sequencing 

Life Technologies’s SOLiD sequencing uses a ligation-based chemistry to 

perform massively-parallel sequencing. Like 454 sequencing, SOLiD sequencing uses an 

emulsion PCR to generate fragments for sequencing. During each cycle of sequencing, an 

eight-base oligonucleotide interrogating two bases is incorporated onto the growing 

sequence. After the whole length of the sequence has been achieved, the process is 

repeated four more times so that each position has been interrogated by two overlapping 

octamers. Octamers representing the sixteen possible interrogated dinucleotides are 

tagged with four different fluorophores. Since fluorophores are reused, the nucleotide 

sequence must be reconstructed using the entire sequence of fluorophores. Bead-bound 

fragments are physically isolated for imaging on the surface of the slide shown as C of 

Figure 1 by randomly depositing the beads in a carefully controlled low-concentration 

solution on a flow cell, the disposable glass plate where the sequencing reaction takes 

place. Beads that randomly deposit too close to each other to be separable by the imaging 
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software are discarded. Current versions of the SOLiD sequencer produce 700 million 

paired end sequences of 50 base pairs forward and 25 base pairs reverse, yielding 

approximately 50GB per flow cell per run.  

1.2.1.4. Illumina Sequencing 

Illumina sequencing was the second next-generation sequencing system to enter 

the market and is currently the most popular. Illumina sequencing combines the steps of 

isolating fragments during PCR for colony generation with the physical isolation of the 

colonies for imaging by using a bridge-PCR technique. Figure 1 shows two different 

Illumina flow cells in line D, at left is the flow cell from a HiSeq 2000, at right the flow 

cell from a MiSeq. The MiSeq consists of a single lane per flow cell, the HiSeq has eight 

lanes per flow cell. In bridge-PCR the flow cell has sequencing primers bound to the 

surface of the lane. Template molecules are bound to the primers and a PCR reaction is 

performed where after each round the fragment bends to reach another primer on the 

surface of the plate.  This forms a colony derived from a single template bound to the 

surface of the flow cell. Sequencing is performed by incorporating a single base at a time 

and imaging the resulting fluorescently tagged colonies. In contrast to 454 and Ion 

Torrent, homopolymeric stretches of DNA are sequenced one base at a time leading to a 

lower insertion/deletion error rate. The current HiSeq 2500 Illumina sequencer produces 

approximately 1.5 billion pairs of 100bp reads for a yield of approximately 300 GB per 

flow cell.  

1.2.1.5. Ion Torrent Sequencing 

Ion Torrent sequencing differs from the other technologies listed here in the way 

raw sequencing data is captured. In the 454, SOLiD and Illumina systems the raw 

sequence data is captured by a camera imaging fluorescence emitted by labeled 

molecules. In contrast, the Ion Torrent system works by using a semiconductor array of 

millions of pH meters to detect the release of H+ ions as bases are incorporated. Fragment 
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preparation uses an emulsion PCR technique very similar to that employed by the 454 

sequencing machine. An advantage of this system is that the entire detector assembly is 

part of the consumable chip pictured as E in Figure 1, meaning upgrades to the system 

are possible by providing new versions of the chips. The first version of the chip, the 314, 

produced approximately 100,000 reads of a length of 200 base pairs for a yield of 20MB. 

The 318 chip pictured in Figure 1 produces around 2.5 million reads of 400 base pairs for 

a yield of approximately 1GB. 

1.2.2. Targeted Exon Sequencing 

Even with the capabilities of next-generation sequencers, sequencing the entire 

genome of a patient is still cost-prohibitive because of:  1) the cost of sequencing, 2) the 

cost of analyzing the data, 3) the cost of storing the data, and 4) gross deficiencies in our 

ability to interpret non-coding variations. This led to the advent of technologies that allow 

the enrichment of regions of interest above the background level of the rest of the 

genome. These experiments initially targeted the exons of a few genes of interest, or a 

small genomic interval and quickly grew to capture every exon of every known gene, the 

exome. It is important to note that there is not a single definition of the exome because 

differences in gene annotations exist between databases and new genes and exons are 

being discovered and added to new versions of the capture definitions. 

1.2.2.1. Array-Based Exon Capture 

The first targeted exon captures were performed using technology very similar to 

a microarray6. Microarrays consist of a set of DNA probes bound to the surface of a slide. 

Molecules of interest are fluorescently labeled and then allowed to hybridize to the 

probes bound to the surface of the array. The array is then imaged, and the intensity of 

the fluorescence is proportional to the quantity of targeted molecules bound to a given 

probe. This technology has been used to perform genotyping, measure expression, locate 

binding sites of transcription factors, and many others. 
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Microarrays can be used to enrich a DNA library for regions of interest by 

designing probes to tile across the regions of interest. Targeted fragments from the library 

bind to the probes and are thus anchored to the surface of the slide as non-targeted 

fragments are washed away. The targeted fragments are then eluted from the surface to 

yield a library enriched for the regions of interest. During this capture process the array is 

never imaged as it would be for a microarray experiment, the array is simply a substrate 

to physically separate the targeted and non-targeted fragments. 

1.2.2.2. Solution-Based Exon Capture 

Array-based exon capture has been superseded by captures performed entirely in 

solution. In-solution captures start by designing a set of biotin-labeled RNA or DNA 

capture oligonucleotides often called baits7. A DNA library is allowed to hybridize to the 

baits. Streptavidin-coated magnetic beads are then added to the solution. The biotin-

labeled baits and targeted fragment complexes bind to the streptavidin-coated beads. A 

magnet is used to pull the beads to the bottom of the tube as the excess solution 

containing the untargeted fragments is drawn off the top. The targeted fragments are then 

eluted off of the beads to yield an enriched library.  

Solution-based capture have several advantages over array-based captures, most 

notably, the production of targeting oligonucleotides can take place on a large scale and 

the resulting bait pool can be divided to perform many captures. This has lowered the 

costs for commonly performed captures requiring a great number of baits, like an exome 

sequencing experiment. Solution-based captures have become the predominant form of 

targeted exome capture. 

1.3. Exome Sequencing and Analysis Overview 

This is an overview of the exome-sequencing process employed at the 

Coordinated Laboratory for Computational Genomics at the University of Iowa. For 

every stage of this pipeline there are dozens of publically available tools. Because of this 
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huge diversity of tools there are innumerable resulting pipelines to perform exome 

sequencing. This is intended to provide a point of reference for discussions in later 

chapters, not a survey of exome analysis techniques. 

1.3.1. Sequence Generation 

Exome libraries are generated using commercially-available exome sequencing 

kits from Agilent and Nimblegen. Libraries are sequenced using an Illumina HiSeq 2000 

to obtain a depth of at least 20x over the approximately 90% of the targeted regions.  

1.3.2. Sequence Alignment and Processing 

Sequence is aligned to the genome using the Burrows-Wheeler Aligner8. 

Duplicate sequences, likely artifacts of the PCR used in the library preparation, are 

removed using the MarkDuplicates utility included in the Picard 

(http://picard.sourceforge.net) package. Indel realignment and base quality score 

recalibration are performed using GATK9. 

1.3.3. Calling Variants 

Variants are called using the GATK Unified Genotyper9. This tool takes input in 

the BAM10 file format produced by the sequence alignment tool and produces output in 

the VCF file format11. Variants are typically only called over targeted regions to save 

computational time, however due to a wide range of commercially available exome 

sequencing kits; the management of the target files becomes cumbersome. To prevent 

this variants are called over a target file derived from the union of the target spaces of all 

commercially available exome-sequencing kits. This eases operational complexities at the 

cost of computational efficiency. 

1.3.4. Annotating Variants 

Allele frequencies from the 1000 genomes project12, the Exome Sequencing 

Project, dbSNP13 and local sequencing efforts are annotated to variants. Allele 
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frequencies from a set of over 1200 exomes sequenced as part of the 1000 genomes 

project that were analyzed using identical methods to that of the local sequencing effort 

are also incorporated (see Chapter 4). Additional information, such as RNAseq-derived 

expression data in relevant tissue, and CHiPseq binding peaks from relevant transcription 

factors are often incorporated into the variant file. The effect of variant on the amino-acid 

sequence is predicted using the ASAP NGS annotation system presented in detail in 

Chapter 3.   

1.3.5. Variant Filtering 

Exome sequencing experiments yield tens of thousands of variants. A reduction in 

this number is necessary to make experimental follow-up possible. A detailed discussion 

of filtering strategies can be found in Chapter 4. Variant filters fall into four broad 

categories. These categories are:  1) filters intended to reduce false positives by removing 

low quality variants, 2) filters intended to remove variants that are too common to cause 

disease in a patient with a rare disease, 3) filters that remove variants that are not 

predicted to have an affect on the amino-acid sequence of a protein or variants that fall in 

splice sites, and 4) filters based on sequencing multiple individuals in the same family, 

removing variants that are inconsistent with disease segregation within the family.  

Quality-based filtering is intended to reduce false positives by partially 

eliminating artifactual variant calls produced by sequence alignment and variant calling 

algorithms. Variants containing a GATK quality score of less than 25, or a quality by 

depth score of less than one are removed. In high sequencing-depth studies a minimum 

percentage of observations is set for a variant. 

Allele frequency-based filters are intended to remove variants that are too 

common in the general population to cause a rare disease. Obviously the value of this 

filter depends greatly on the population prevalence of the disease and the size of the 

sampled population. For studies involving rare, genetically heterogeneous Mendelian 
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diseases a frequency cutoff of 0.6% is used for the populations in the exome sequencing 

project, and a cutoff of 1% is used for the 1000 genomes project. Variants representing 

more than 10% of alleles in a database of local sequencing efforts containing a few dozen 

patients are removed as well. 

Positional filters remove variants unlikely to cause disease based on their 

predicted affects on amino-acid sequence and splice sites. This filtration process is highly 

dependent on the accuracy of variant annotation tools. Variants falling within 10 bases of 

a splice site, and variants falling within coding exons that are predicted to cause a change 

in amino acid sequence are retained. 

Finally, family-based filtering is used to remove variants that are not consistent 

with disease segregation. These filtering rules are highly dependent on the family 

members that were available for sequencing and the assumed disease inheritance patterns. 

As such the filtering rules are developed on a case-by-case basis. 

1.3.6. Experimental Confirmation and Validation  

When used for genetic testing, an exome sequencing experiment is not complete 

when variants are annotated and filtered. Variants discovered by exome sequencing must 

be:  1) confirmed to exist in the proband, 2) confirmed to segregate with disease in the 

family, 3) found to not occur in ethnically-matched control individuals, and 4) variants 

must functionally impair normal processes, or when functional data is unavailable 

plausible disease-causing variants in the same gene must be identified in a statistically 

significant number of additional families. Sanger sequencing is used to confirm that a 

variant exists in a proband and that the variant properly segregates with disease in the 

family. Sequencing large numbers of controls and additional patients is accomplished 

using the Fluidigm Access Array. The Access Array is a microfluidics device that allows 

the simultaneous PCR amplification of 48 PCR reactions in 48 individuals, and applies 

barcodes and sequencing adapters that allow sequencing by an Illumina sequencer. 
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CHAPTER II 

EFFICIENT GENETIC TESTING 

2.1. Introduction 

While next-generation sequencing is rapidly displacing Sanger sequencing for 

genetic testing, Sanger sequencing is still widely used to test small genes and as a 

confirmation of next-generation sequencing-based tests. Therefore it is important to 

efficiently manage Sanger-sequencing based genetic testing. Discussed here is the 

Automated Sequence Analysis Pipeline (ASAP), a system designed to speed the process 

of Sanger sequencing-based clinical genetic testing, through automation of file handling, 

variant calling and variant identification.  

This chapter is intended as an overview of the genetic testing and validation 

exome sequencing results using Sanger sequencing and ASAP and to describe their roles 

relative to exome sequencing. A more detailed description of the ASAP testing process 

and interfaces can be found in the Master’s thesis: “ASAP – An Automated Sequence 

Analysis Pipeline for Clinical Genetic Testing1.” 

2.2. Background 

2.2.1. Mutation Density Probability Distribution 

Sanger sequencing based genetic testing requires the individual amplification and 

sequencing of each exon of a set of genes. Because testing can stop once causative 

mutations have been found, the order in which tests are performed can greatly change the 

overall cost of the genetic test. The Mutation Density Probability Distribution (MDPD) is 

a sequencing strategy where the amplimers that make up the genetic test are ordered by 

the frequency that they harbor a disease-causing mutation in the population14. This is 

conceptually similar to a majority class predictor in the machine-learning field. By 

screening the amplimers that frequently cause disease first, the causative mutations in 
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patients will often be discovered before all the amplimers in the test need to be 

sequenced. MDPD can therefore reduce the cost of Sanger sequencing-based genetic 

testing. 

In a dominant disease, testing continues until a single causative variant is 

identified. In a recessive disease, once a single causative heterozygous variant is 

identified, screening continues on a gene-specific MDPD until a second causative 

mutation has been identified. 

Because of the serial nature of the MDPD strategy, the time needed to sequence 

and interpret the results of each amplimer quickly compounds to create impractically long 

test turn-around times. Therefore, reducing the time needed to interpret the results of each 

amplimer is critical to creating a practical genetic test. Automation in the quality control, 

file handling, variant identification, and variant annotation will therefore reduce the costs 

of genetic testing. 

2.2.2. Standardizing Mutation Names 

Causative mutations and polymorphisms need to be reported to physicians using a 

consistent and standardized nomenclature. The Human Genome Variation Society 

(HGVS) has established a standardized nomenclature for describing the effects of 

genomic changes on genes, both at the nucleotide level, and at the amino-acid level15. 

According to the HGVS nomenclature standard, the variant 

NM_000180.2:c.[154G>T]+[=], would be a heterozygous variant of a “G” changed to a 

“T” found 154 translated bases 3’ of the translation start site in the GUCY2D gene 

(RefSeq number NM_000180, revision 2). In addition to the nucleotide-level HGVS 

name, variants can also be annotated at the amino-acid level. On the amino-acid level, the 

above example would be written as: NM_000180.2:c.[Ala52Ser]+[=]. 
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2.2.3. Software and File Formats 

2.2.3.1. BLAT 

The BLAST-Like Alignment Tool (BLAT) is a sequence alignment program16. 

BLAT is useful for aligning long, highly homologous DNA sequence to the genome. 

While the performance of the algorithm is too poor for use with next-generation sequence 

data like exome sequencing, the tool is still very useful at aligning Sanger-sequencing 

read-derived contigs to the genome. 

2.2.3.2. Phred, Phrap, and Consed 

Phred is a base-caller for automated capillary Sanger sequencers17,18. In addition 

to producing base calls, Phred assigns quality scores to each assessed base. Phrap is an 

assembly tool for Sanger-sequencing reads. Consed is a tool for visualizing the Phrap-

assembled sequence contigs19. 

2.2.3.3. PolyPhred 

PolyPhred is a mutation detection software package that allows the discovery of 

mutations in Sanger sequencing data20,21. PolyPhred is capable of detecting both single 

nucleotide variants and small insertions and deletions. Because Sanger sequencing 

simultaneously assesses both alleles of a gene, PolyPhred lacks the ability to identify the 

content of the insertion or deletion, but can reliably detect its presence.   

2.2.3.4. UCSC Annotation Database 

The UCSC annotation database is a widely used collection of genome annotation 

that is available via both the UCSC genome browser, and as a MySQL database22. 

Included in this database are the ‘refFlat’ and ‘refSeqAli’ tables that contain 

gene structure annotation including genomic coordinates and exon structure23. 
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2.3. Approach 

Large-scale genetic testing using Sanger sequencing requires the coordination of 

many people and software systems. This level of collaboration requires not only the 

automation of sequence analysis, but also workflow and file management tools.  

Because Sanger sequencing-based genetic testing is considered the gold standard 

for reporting result to patients, and because Sanger sequencing is often used to confirm 

the results of next-generation sequencing based genetic testing, the experiment requires 

both high sensitivity and specificity. To maximize sensitivity and specificity we have 

devised an approach that combines manual and automated calling. Each amplimer is 

screened automatically using a Phred/Phrap/PolyPhred derived analysis pipeline in 

addition to being called manually by an expert technician. Both sets of calls are entered 

into a database and a second expert resolves conflicting calls. During this process, these 

experts can also identify problematic sequences for further scrutiny or re-sequencing. 

ASAP provides not only the automated calling pipeline, but also the workflow and file 

management tools needed to manually read Sanger sequences efficiently. Overall, this 

process assures that results reported to patients are based on high-quality and consistently 

annotated sequence2. 

2.4. Methods 

2.4.1. Automated Variant Calling 

Following automated capillary sequencing, base calling is performed using 

Phred17,18. Forward and reverse reads from a patient are combined with forward and 

reverse reads from a control individual. This set of reads is assembled using Phrap. 

Variants are called using PolyPhred20,21. 
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2.4.2. Alignment 

The consensus sequence from the assembled contig is aligned to the genome 

using BLAT16. The location of variants called by PolyPhred translated into genomic 

coordinates using this alignment in addition to the information provided by the Phrap-

based assembly. 

2.4.3. Annotating Variants 

Variants annotated in genomic coordinates are translated into nucleotide-space 

coordinates based on annotation present in the ‘refSeqAli’ and ‘refFlat’ tables 

of the UCSC genome annotation database22,23. These variants are then annotated using 

the HGVS variation nomenclature standard15. 

2.4.4. Manual Variant Calling 

In order to increase the diagnostic sensitivity and specificity of Sanger 

sequencing-based genetic tests, manual variant calling is performed in parallel with the 

automated variant calling. This interface can be seen in Figure 2. Assembled contigs are 

transferred to the local machine where they can be viewed using the Consed19 or 

Sequencher(Gene Codes Corporation) trace viewers. To avoid bias, technicians do not 

have access to the automatically generated calls. An interface is presented to the user that 

assists in the entry of variants by providing tools to translate variants into HGVS 

nomenclature and a list of variants previously observed in the region. 
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Figure 2. ASAP interface that allows manual calling of variants. This interface does not 
expose variant calls made by the PolyPhred-based pipeline. The interface 
provides the ability to launch trace viewer application, and enter variants 
using either form-based entry or list of previously observed variants in the 
region. 

2.4.5. Resolving Conflicting Calls 

Genotype calls in conflict between automated and manual reading are resolved by 

a second technician manually reading the sequence. This second reader is presented with 

both the annotated calls from both the automated and manual callers via an interface 

shown in Figure 3. Sequence viewers can be launched to resolve these conflicting calls. 

Once conflicting calls are resolved, and calls in agreement are confirmed, the reader can 

send sequencing results to the laboratory information management system. 
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Figure 3. ASAP interface that allows users to resolve conflicting calls produced by 
manual and automated variant calling. Variants shown in green show 
genotype calls that were concordant between the software calls and technician 
calls. Purple shows where a single caller produced a call. The second reader 
can mark sequence quality, launch trace viewers, and enter new variation 
calls. 

2.5. Results 

As of February 2013, more than six hundred thousand Sanger sequencing reads 

have been processed through ASAP. Figure 4 shows that the cumulative sequencing 

output of the Carver Non-profit Genetic Testing Laboratory (CNGTL) at the University 

of Iowa. From these reads, automated and manual readers have called over 220,000 

variants. Over this set, PolyPhred achieved an accuracy of 91.65%, manual sequence 

readers achieved an accuracy of 98.78%. This difference is significant (chi-squared: 

p<2.2x10-16). 
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Figure 4. Cumulative count of Sanger sequencing reads processed by ASAP. Note that by 
2013, more than 600,000 reads have been processed by ASAP at the Carver 
Non-profit Genetic Testing Laboratory. 

2.6. Discussion 

Even with the advent of next-generation sequencing, there is still a need for 

Sanger sequencing in clinical genetic testing. Diseases that can only be caused by 

variants in a small number of exons, a small footprint, are still more efficient to test using 

Sanger sequencing. The number of exons a genetic test must interrogate before it is more 

cost effective to perform the test using next-generation sequencing is decreasing as 

technology advances. However, the rapidly decreasing costs of next-generation 

sequencing are mainly due to increasing the number of reads produced by an experiment 

rather than reducing the cost of a single experiment. The only way for these advances to 
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reduce sequencing costs in small footprint genetic tests is to barcode and pool many 

samples in a single experiment. Cost effective pooled next-generation sequencing 

experiments of small footprint genetic testing currently requires simultaneous testing of 

hundreds of samples. This large number of required samples can quickly exhaust the pool 

of people requiring testing for a rare disease. 

A way to overcome this limitation is to create a standardized test that can be used 

for multiple diseases. Such a test allows enough samples to be gathered in a clinically-

useful time period to take advantage of the ever increasing read count produced by next-

generation sequencers. An example of this approach is the OtoSCOPE® genetic test 

offered at the University of Iowa24. This test is a targeted capture of exonic regions of 

approximately 60 genes known to cause hereditary hearing loss and phenocopies such as 

Pendred Syndrome and Usher Syndrome. Genetic testing for one disease covered by this 

panel, Autosomal Dominant Non-Syndromic Hearing Loss (ADNSHL), can be 

accomplished efficiently by using a system called AudioGene to prioritize genes for 

screening using Sanger sequencing using phenotypic information25-27. However, the 

operational efficiencies gained by performing the same test on many patients, and cost 

efficiencies of using next-generation sequencing make OtoSCOPE® a more cost 

effective genetic test than Sanger sequencing exons prioritized by AudioGene24,28.  

In the same manor as the targeted capture employed by the OtoSCOPE® genetic 

test provides cost effective testing for hereditary deafness-related diseases, whole exome 

and whole genome sequencing can be employed to perform genetic testing for a number 

of diseases. While this requires a great deal more sequencing than a targeted capture test, 

with the costs of next-generation sequencing rapidly falling, these large scale tests will 

continue to grow in popularity for testing diseases that can be caused by variants in many 

exons. But until exome or whole genome sequencing is a part of most medical records, it 

will remain cost effective to perform small footprint genetic tests using Sanger 

sequencing. 
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2.7. Conclusion 

ASAP provides the tools necessary to perform genetic testing efficiently using 

Sanger sequencing. This includes automated base-calling, assembly, alignment and 

variation calling and variant annotation in addition to tools to manage files and results. 

Software like ASAP is still crucial to the operation of a large-scale genetic testing lab 

even as next-generation sequencing based genetic testing such as exome sequencing 

becomes more popular because results still need to be validated. In addition, Sanger 

sequencing-based genetic testing is currently more cost effective than exome sequencing 

for diseases that are only caused by variants in a small number of exons. Additionally, as 

will be discussed in Chapter 4, the same software used to annotate variants using the 

HGVS standard nomenclature can be applied to annotate variants discovered by next-

generation sequencing. 
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CHAPTER III 

VARIANT ANNOTATION 

3.1. Introduction 

Variant annotation is the process of predicting the amino acid changes that would 

result from genomic variants in addition to attaching annotations of population 

prevalence of the variant and other information that help in making a determination of the 

effect of a variant. Presented here is a discussion of publically available variant 

annotation systems including an annotation system based on the Automated Sequence 

Analysis Pipeline (ASAP). The goal of the ASAP NGS annotation system is to provide 

consistent annotations with those produced by Sanger sequencing confirmation efforts by 

using a common collection of software. 

The ASAP NGS annotation system predicts changes to amino acid sequence 

based on gene structure information from the RefSeq gene set in the UCSC annotation 

database22 and the reference genome. These amino acid sequences are annotated 

according to the Human Genome Variation Society (HGVS) nomenclature standard15. 

Additionally the positions of variants relative to splice sites are reported. 

3.2. Background 

3.2.1. Variant Annotation Programs 

There are many existing next-generation sequencing variant annotation programs. 

Presented here is not a comprehensive list, but a survey of programs used in the literature 

to highlight common features of variant annotation programs and identify some of the 

shortcomings.  Institutional knowledge of variant annotation programs and integration 

with existing sequencing pipelines appears to be a major reason for selecting an 

annotation tool despite the particular merits of a tool.  
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Two common features that help in the integration of theses tools with sequencing 

pipelines are accepting input in VCF file format, and annotations of changes in transcript 

space using HGVS nomenclature. VCF files11 have become the de facto standard for 

next-generation sequencing variant calling programs due in large part to its use in large-

scale projects like the 1000 genomes project. 

3.2.1.1. ANNOVAR 

ANNOVAR29 is a variant annotation program written in Perl. ANNOVAR uses 

General Feature Format (GFF) based gene structure annotation. In addition to predicting 

effects of base substitutions and small insertions and deletions on amino-acid sequence, 

ANNOVAR will attach annotations of conserved regions, allele frequencies of known 

variants, and pathogenicity prediction scores. Known variants are available from dbSNP, 

1000 genomes, and the Exome Sequencing Project. ANNOVAR can annotate variants 

with pathogenicity prediction scores from SIFT30-33, Polyphen234, LRT35, 

MutationTaster36, and MutationAssessor37,38 that have been pre-calculated for every base 

position in the CCDS gene set by dbNSFP39. 

ANNOVAR uses a custom tab-delimited input file format that is similar to a BED 

file. Tools are provided to covert the VCF-formatted output of standard variation calling 

programs to the ANNOVAR input format. A similar custom output file format is also 

used. ANNOVAR-produced annotations can be added back to the original VCF format 

using VCFTools11. 

3.2.1.2. AnnTools 

AnnTools40 is a variant annotation program written in python that can annotate 

changes to amino acid sequence in addition to annotating variants that fall in putative 

promoter regions. Input and outputs are in VCF format. Annotations are made based on 

gene structure information contained in a custom MySQL annotation database based on 

data from the UCSC annotation database22. 
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3.2.1.3. MU2A 

MU2A41is a web-based variant annotation program written in Java. Gene 

structure information and other source annotation is obtained from a custom database. 

Input and output are given using custom file formats. 

3.2.1.4. SeqAnt 

SeqAnt42 is a Perl-based sequence variant annotation program. Variants are 

annotated by SeqAnt relative to refSeq transcripts available from the UCSC genome 

browser database22. Input and output formats are custom file formats. Importantly, 

SeqAnt does not provide annotation of variations affecting amino acid sequence in 

nomenclature standardized by HGVS15. 

3.2.1.5. SnpEff 

SnpEff43 is a widely-used variant annotation program written in Java. SnpEff has 

achieved wide spread use through integration with commonly-used analysis tools such as 

GATK9 and GALAXY44,45. SnpEff uses VCF files for input and output. Annotation 

databases can be built from a variety of sources including GFF files, UCSC database 

files, and GenBank files.  

3.2.1.6. SVA 

SVA is a variant annotation tool written in Java46. SVA uses the Ensembl 

database for gene structure information. Input files are given in the VCF format. In 

addition to variant annotation, SVA provides a graphical interface that allows users to 

dynamically adjust filters and visualize the context around variants. 

3.2.1.7. VAAST 

VAAST47,48 is a suite of programs for variant annotation, filtering and 

prioritization. Included in the suite is the Variant Annotation Tool (VAT) that annotates 
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the functional impact of variants in transcript-space. The VAAST tool VAT should not be 

confused with another Variant Annotation Tool, VAT49 of the same name. 

3.2.1.8. VARIANT 

VARIANT50 is a variant annotation web site. The site takes VCF input files and 

outputs data in tabular files and VCF format. Variants are not annotated in standard 

HGVS nomenclature, limiting the utility of the tool.  

3.2.1.9. VEP 

The Variant Effect Predictor51 is a tool available from Ensembl for annotating the 

effects of genomic changes on Ensembl transcripts. Inputs are allowed in several formats 

including VCF, and the output contains variant annotation using HGVS nomenclature. 

3.2.2. Software and File Formats 

3.2.2.1. GFF 

The General Feature Format (GFF)52 is a file format used to store gene structure 

information. GFF files are commonly used as input to variant annotation programs. The 

gene structure information is necessary to annotate amino acid changes. GFF files of gene 

structure can be obtained from the UCSC genome browser, Ensembl, the NCBI, and 

other sources. 

3.2.2.2. PSL 

PSL files are the default output of the BLAT16 sequence alignment program. The 

format presents start positions in zero-based coordinates, and end positions in one-based 

coordinates.  

3.2.2.3. VCF 

The Variant Call Format (VCF)11 has become the de facto standard for storing 

variants produced by next-generation sequencing variant callers40. The format is 
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extensible and importantly allows sparse representation of annotations that may not be 

present for all variants. Because VCF files have become the standard for file output from 

variant callers, it is a commonly used input file format for variant annotation programs. 

However, because of the sparse representation of annotation data, the VCF file format is 

rarely presented to clinical end users.  

3.2.3. Sources of Gene Structure Data 

3.3. Approach 

3.3.1. Value of Consistent Annotation 

The ASAP NGS annotation system uses the same software as the Sanger 

sequencing ASAP presented in Chapter 2 to annotate variants. This reuse of software has 

the advantage of allowing easy comparisons between variants discovered in next-

generation sequencing projects and the validation of those variants by Sanger sequencing. 

The Sanger sequencing pipeline uses Phred, Phrap, and Polyphred20 to call variants 

relative to sequenced controls, then uses BLAT16 to align these contigs to the genome 1. 

Next-generation sequencing experiments are aligned to the genome using short read 

aligners like BWA8, Bowtie53, or BFAST54, variants are called using tools like the GATK 

Unified Genotyper9. ASAP provides different input and output formats to handle the very 

different experimental procedures and still provide consistent variant annotation.  

3.3.2. Annotating Multiple Transcripts 

In exome sequencing projects, variants are discovered in genomic sequence. 

Because several transcripts can overlap a given site, properly predicting the effects of 

these variants on amino acid sequences requires annotating variants against multiple 

transcripts of the same gene. The ASAP NGS annotation system handles multiple 

transcripts by annotating a variant against every possible transcript, then prioritizing 

variant effects to identify a primary interpretation. The primary interpretation is the 
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variant interpretation that has the greatest impact on the resulting amino acid sequence.  

For example an exonic variant causing a non-synonymous amino acid change is 

considered more deleterious than an intronic change in a different transcript. The 

spectrum of these interpretations is shown in Figure 5. Annotations based on other 

transcripts are reported as alternate interpretations in the output file. 

  

Figure 5. The spectrum of variant interpretations when annotating against multiple 
transcripts. The most deleterious interpretation is considered primary and 
others are retained as alternate interpretations in the resulting output file. 

3.4. Methods 

3.4.1. Input Files 

VCF files have become the de facto community standard for the output of variant 

annotation programs11. The ASAP NGS annotation system allows the input of variant 

files in VCF format using a companion utility written in Perl. The companion utility uses 
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the Perl VCF file API provided by the VCFtools project11. The output of the companion 

utility is a file containing variants in an ASAP-compatible tabular format. This utility can 

handle VCF files containing multiple samples. In addition the utility recalls zygosity 

based on a simple rule of <25% allele frequency as homozygous-reference, 25-75% allele 

frequency as a heterozygote, and >75% as a homozygous variant. This simple rule can 

correctly identify homozygous variant alleles that are sometimes called heterozygous by 

the GATK Unified Genotyper. 

The ASAP tabular format is an extensible tab-delimited file format where a single 

variant is given per row. The first column of each row is the only mandatory field. The 

field consists of the one-based genomic position the reference sequence at that site, and 

the variant sequence. As an example, “chr1:100000:C>T”, The 100,000th base of 

chromosome 1, a C in the reference is mutated to a T. Insertions and deletions are 

described in a similar fashion.  For example, “chr1:100000:C>-”, is a deletion of the C at 

position 100,000 in the reference genome. Additional columns present in the input file 

will be retained in the output files. ASAP annotations are added as additional columns on 

the end of each row. 

3.4.2. Obtaining Reference Data 

Genomic reference sequence is obtained using a faidx-indexed FASTA file of the 

reference genome. Faidx indexed FASTA files are produced by samtools10, and allow 

random access of sequence stored in the indexed FASTA file. This same indexed 

reference genome file is used by the GATK9. Picard is a Java package of command line 

tools and APIs for accessing and manipulating SAM/BAM files, and faidx-indexed 

FASTA files. The Picard API is used by the ASAP NGS annotation system to retrieve 

genomic sequence from the reference genome. 

Gene structure information derived from the RefSeq23 gene set is obtained from 

the UCSC annotation database22. Gene structure information from the ‘refFlat’ table 
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is used in concert with the BLAT16-derived gene alignments of the reference sequences to 

the genome provided in PSL format via the ‘refSeqAli’ table. ASAP can read these 

datasets via two different mechanisms, first the datasets can be queried from a MySQL 

database, or the flat files database download files can be directly loaded into memory. 

Using queries from the database allows quick response times, and allows the use of a 

standard resource, but the database becomes a bottleneck when simultaneously 

annotating many files. The flat file option requires users to specify both the 

‘genepred’ formatted ‘refFlat‘ file in addition to the PSL-formatted  

‘refSeqAli’ file. The flat file option is significantly faster than database queries, and 

scales to many annotation processes running simultaneously.  

3.4.2.1. Mitochondrial Genes 

Mitochondrial genes are not annotated as part of the regular RefSeq dataset. To 

properly annotate mitochondrial genes, annotations and alignments equivalent to the 

entries in the ‘refFlat’ and ‘refSeqAli’ tables of the UCSC annotation database 

must be generated. Mitochondrial gene structure was obtained from the UCSC annotation 

database ‘ensGene’ table representing Ensembl transcripts. The sequence of each of 

these genes was obtained using the UCSC Table Browser55. The sequences were aligned 

to the genome using BLAT16 to obtain PSL formatted output that corresponds to the 

entries in the ‘refSeqAli’ table. Finally, these newly generated entries for the 

mitochondrial genes were added to the flat files used as reference data for the ASAP 

NGS annotation system. 

3.4.3. Calculating Transcript-Space Coordinates 

Input variants are in genomic coordinates. Predicting the effects of variants on 

amino acid sequences requires calculating the position of the variant in transcript-space 

coordinates. The required gene structure information is obtained from the UCSC 

annotation database22. The ‘refFlat’ table contains information on the position of the 
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transcript in addition to the position of splice sites. The ‘refSeqAli’ table contains 

the output of a BLAT alignment of the transcript reference sequence to the genome. It is 

necessary to have alignment information in addition to the gene structure annotation 

because there are cases where the reference transcript does not align perfectly to the 

genome due to insertions or deletions present in the reference sequence. 

To calculate the position of a variant given to the annotation system in genomic 

coordinate space, the first step is to find the transcripts overlapping that position. The 

position is then located within the BLAT16 alignment of the transcript provided in the 

‘refSeqAli’ table. This gives the position as an offset from the transcription start site 

of the transcript. This offset is then used to calculate the position of the variant relative to 

the intron/exon structure of the gene provided in the ‘refFlat’ table. Cases arise 

where the position variant itself, the translation start site, or a relevant splice site falls 

within an alignment gap between the transcript sequence and the genome. In these cases, 

the transcript-space coordinates of the variant cannot be unambiguously calculated, and 

the ASAP NGS annotation system therefore throws an error specifying a reference 

sequence alignment gap. These errors tend to occur in genes with multiple transcripts. 

3.4.4. Generating HGVS Nomenclature 

Effects of changes on amino acid sequence are annotated using the HGVS 

Nomenclature standard15. Each variant is annotated against every transcript it overlaps 

producing multiple interpretations. The most deleterious mutation interpretation is 

retained as the primary interpretation, and other interpretations are kept in a comma-

separated field as alternate interpretations. 
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Figure 6. A diagram showing the notional exon structure of a gene to illustrate how 
HGVS standard nomenclature is generated. The bottom of this diagram is the 
5’ end of the transcript, and translation and transcription starts and stops are 
marked. Case A shows coordinates in the 5’ UTR, cases B, D and E show 
coordinates in introns, case C shows a coding exon variation, and case F is in 
the 3’ UTR. Intronic coordinates are annotated relative to the closest exonic 
base. Note the lack of a zero coordinate at the translation start site.  

HGVS nomenclature is based on the position of the variant relative to the 

translation start site, translation stop site, and splice sites depending on the exact position 

of the variant. These coordinates are illustrated in Figure 6. The positions of coding, 

exonic changes are given as the number of exonic bases 3’ of the translation start site as 

shown in case C. Exonic changes in the 5’ untranslated region have a negative position as 

shown in case A. The first base of the start codon has a position of 1, and the exonic base 

immediately preceding it – the last base of the 5’ untranslated region has a coordinate of -

1. The positions of intronic changes are given relative to the position of the closest exonic 

base as is shown in cases B, D, and E. Finally, positions in the 3’ UTR are given by the 

distance from the stop codon as is shown in cases E and F. 

3.4.4.1. Mitochondrial Variants 

The mitochondrial genome uses a different genetic code than the nuclear genome. 

Because variants in mitochondrial genes have been shown to cause disease, it is 

important to be able to annotate mitochondrial mutations properly. The ASAP NGS 
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annotation system incorporates the alternate codon table required for variants on chrM, 

and will automatically use this table when appropriate. 

3.4.5. Annotations Generated 

The ASAP NGS annotation system provides annotations of predicted transcript 

effects of a variant in HGVS standard nomenclature, both at the nucleotide level and at 

the amino acid. Alternate interpretations are provided at both the nucleotide and amino 

acid levels when a variant falls in multiple transcripts. Additionally context information 

is provided such as gene name, exon/intron number, the distance from the closest splice 

site, and a description of the variant’s overlap with the splice site. Finally, for single 

nucleotide variants, a BLOSUM6256 score is provided.  

3.5. Results 

3.5.1. Current Use of ASAP NGS Annotation System 

The ASAP NGS annotation system has been successfully applied to exome and 

targeted exon experiments in a number of publications3,24,57-59. The system was also used 

as part of the University of Iowa’s prize-winning submission to the CLARITY challenge, 

an international competition on the interpretation of clinical genomic sequencing. In 

addition the system is currently in use in several CLIA-approved genetic testing 

laboratories at the University of Iowa. 

3.5.2. Limitations of the ASAP NGS Annotation System 

There are several limitations of the ASAP NGS annotation system as currently 

implemented. First, variants that fall within alignment gaps between the reference 

transcripts and the genome cannot be annotated because the position of the variant in 

transcript-space coordinate cannot be unambiguously calculated. Similarly, if the 

translation start site or relevant splice sites fall within these gaps, the variants cannot be 
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mapped. Additionally the ASAP NGS annotation system cannot annotate multi-base 

substitutions or a simultaneous insertion and deletion (indel). 

3.5.3. Performance of ASAP NGS Annotation System 

The ASAP NGS annotation system using the flat file references annotates variants 

at a rate in excess of 850 variants per second using a single core of an Intel Xeon E3-

1270 processor and using at peak of approximately 1GB of memory. This rate allows a 

whole exome VCF file of ~150,000 variants to be annotated in approximately 3 minutes. 

Because this process uses no shared database connections, the performance scales 

roughly linearly as many samples are annotated.  

Using the database connection option, variants are annotated at a rate of 

approximately 50 variants per second on the same test system. Because a shared database 

is used the performance of this system does not scale well when many samples are 

simultaneously annotated.  

3.6. Discussion and Conclusion 

Annotation of variants is one of the last steps in the complicated process of 

analyzing human sequence data from next-generation sequencing experiments. 

Importantly, it is variant annotation that allows experts to interpret variants and identify 

causative variants among tens of thousands of exomic variants, derived from alignment 

data based on millions of sequencing reads. Conceptually, variant annotation is not a 

difficult problem, given an input variant calculate the position of the variant within a 

known gene structure. Because variant annotation is such an essential step in next-

generation sequencing experiments, ideally, a common standard and tool for variant 

annotation would emerge. Such a common tool would produce consistent results between 

laboratories, and allow greater interoperability between downstream analysis tools.   
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However, differing needs and preferences of end users has driven a proliferation of 

variant annotation tools. Until a clearly superior method for inferring pathogenicity 

emerges, it is likely that there will continue to be a range of tools for variant annotation.  
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CHAPTER IV 

REDUCTION OF FALSE POSITIVES IN EXOME SEQUENCING 

4.1. Introduction 

The high false-positive rate of exome-sequencing experiments is a driving factor 

in the costs of exome sequencing experiments by increasing the need for validation 

experiments. Discussed here are methods to reduce the false positive rate through more 

effective filtering. First, typical filters that are used to reduce false positives based on 

quality, predicted amino acid impact, and prevalence in common variation databases will 

be discussed. Second, a database built from observed variations from locally analyzed 

exomes will be shown to be a useful filter even after removing common polymorphisms 

based on thousands of previously analyzed exomes. Further, this filter will be improved 

by calling publically available datasets with the exact analysis techniques used for a 

disease study. Third, a tool will be presented that can reduce the false positive rate by 

sequencing multiple individuals in a family and removing variants inconsistent with 

segregation of the disease allele. A tool that allows this filtering to be performed on 

arbitrary family structures will be presented. Finally, a technique will be presented to 

identify and filter based on regions of autozygosity in multiple affected individuals in a 

consanguineous pedigree. These filtering techniques are then applied to a large, 

publically available exome dataset of consanguineous ciliopathy pedigrees. 

4.1.1. Cost of a false positive 

The cost of a false positive in an exome sequencing experiment is the cost of the 

required validation experiment needed to assess if the variant allele was truly disease 

causing. Experiment design drives the validation requirements. Experiments designed to 

detect polymorphisms or common disease-associated alleles require less validation than 

experiments that seek to implicate a rare variant as a highly penetrant disease causing 

mutation. 
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4.1.2. Sources of false positives 

A false positive in an exome sequencing experiment is a variant that requires 

additional observation to determine if the variant contributes to the patient’s disease. 

Several sources introduce false-positives into exome sequencing experiments; sequencing 

errors leading to low quality variants, polymorphisms that are too common to cause 

disease, regions including introns and intergenic regions that are less likely to harbor 

disease-causing variants, and variants or regions that are inconsistent with segregation of 

disease in a family. Various filtering techniques can be applied to each of these sources to 

combat false positives. Care must be taken, however, to avoid overly strict filtering that 

will lead to false negatives. 

4.1.2.1. Low Quality Variants 

False positives can result from artifacts in library preparation, sequencing, 

genomic alignment or in variant calling. These artifacts often lead to low quality base 

scores from the alignment algorithms and/or low quality variant scores from the variant 

calling algorithms. Filtering is accomplished by setting appropriate quality score 

thresholds. Additionally, systematic errors can be detected by processing many samples 

using identical methods to those employed in local sequencing efforts. 

4.1.2.2. Common Polymorphisms 

Highly penetrant mutations that cause genetic disease are rare in a normal 

population. Removing variants that are too common to cause disease based on 

assumptions made about the disease prevalence and the penetrance of the mutation is a 

powerful filter for reducing false positives. Databases containing variant calls and/or raw 

data from tens of thousands of individuals are publically available. 
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4.1.2.3. Regions Unlikely to Harbor Disease-Causing Mutations 

Positional filters are used in reducing the false-positive rate by only considering 

variants predicted to affect amino acid sequence or RNA splicing. These filters are highly 

dependent on accurate annotation, and are discussed in more depth in Chapter 3. These 

filters will often remove intronic variants that could be involved in disease by activating a 

cryptic splice site, and variants in affecting the function of promoters, thus leading to 

false negatives. These positional filters will improve as better tools to predict non-exonic 

variants are developed.  

4.1.2.4. Variants Inconsistent with Disease Segregation 

There are several ways that pedigree-based information can be used to improve 

exome sequencing studies. The first way is sequencing a single individual as a follow-up 

to a region that was mapped genetically using traditional means such as linkage analysis. 

Second is sequencing multiple individuals from the same pedigree and removing variants 

that are inconsistent with the assumed inheritance pattern.  

  

Figure 7. A dominant pedigree too small to perform traditional linkage analysis. With 
exome sequencing from only a parent and a child a 50% reduction in the 
number of variant is possible. Another 50% reduction can be achieved by 
sequencing an unaffected sibling. 

Parent 

Child 
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Sequencing multiple individuals in the same pedigree allows the study of families 

that are too small to perform genetic linkage. This method has been employed to discover 

disease genes60. As an example, consider a dominant pedigree with an affected parent and 

child and no other available individuals as shown in Figure 7. In traditional linkage 

analysis this would yield a maximum LOD score of ~0.3, so no findings can be 

statistically significant. However sequencing the exomes of both individuals still provides 

great utility. The child would be expected to share half of the correctly genotyped 

variants for which the parent was heterozygous. A simple rule of “both samples must be 

heterozygous for the variation” would represent a 50% filter (assuming the disease allele 

is rare and is only one allele in one parent). An additional unaffected sibling would 

similarly provide an additional 50% filter. In this simple example, all else being equal, a 

parent-child combination is superior to two siblings because observing the parent ensures 

that you will observe at least one additional allele (two parental alleles in the child, and 

two alleles in the parent).  With two siblings, you may unluckily observe only two alleles 

if the siblings share the same alleles. 

In a real-world clinical setting the individuals available for sequencing will vary 

widely from family to family. Any procedure to handle filtering in these situations must 

be able to accommodate a wide range of family structures and disease inheritance 

assumptions to be able to maximally reduce false positives based on available samples.  

4.1.2.5. Variants Outside of Regions of Autozygosity 

Studying recessive disease in families with known consanguinity allows 

additional filtering beyond testing if the causative variant is consistent with segregation. 

In these families it is assumed that the same causative variant is inherited from both 

parents, and further that these alleles are inherited from a recent common ancestor of the 

parents. This homozygous variant from a common source is referred to as autozygous. 

Because of the common source of the variant and the small number of meiosis that took 
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place, the causative variant will be inherited in a large region of autozygosity. In affected 

individuals, this region will contain only autozygous variants and sequencing artifacts. 

The traditional approach to identify these regions is homozygosity mapping, where 

several polymorphic markers are genotyped to identify regions where affected family 

members are homozygous for the variant and unaffected family members are 

heterozygotes61. A similar approach can be followed using exome or whole genome 

sequencing by sequencing multiple family members, identifying variants, and using the 

identified variants to calculate regions of autozygosity. Variants that fall outside the 

identified regions of autozygosity are inconsistent with the hypothesis of a recessive 

disease in a consanguineous family and are therefore false positives that can be safely 

removed.  

4.1.3. Variation Discovery vs. Disease Gene Discovery 

Variation discovery and disease gene discovery efforts based on high throughput 

sequencing are similar in methods but have some important differences in goals. In a 

variation discovery effort like the 1000 Genomes Project, the goal is to catalog all 

common variations in a set of populations. In this context the cost of missing a mutation 

(a false negative) in a single individual is low, if the variant is truly common in the 

population, sequencing additional individuals will discover it. The cost of falsely 

reporting a variation (a false positive) is higher as it will lead to wasted validation efforts. 

Because of this the 1000 Genomes project employs a variation-calling scheme where 

several different analytical methods are used to call variants, and then a voting scheme is 

used to select the consensus call12. This has the effect of increasing specificity at the cost 

of sensitivity.  

Disease gene discovery efforts differ from variation discovery efforts in the 

relative cost of the error modalities. A false negative in a disease gene discovery method 

means the causative mutation in the patient was missed, this means all effort and expense 
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spent on the experiment and subsequent validation are wasted. The cost of a false positive 

is lower as it requires only a single accurate validation sequencing experiment to reveal 

the false discovery. Given these costs it is logical to increase sensitivity at the expense of 

specificity.  

As an example of how this difference in focus can lead to false positives, consider 

the case of chr1:144852476:T>C. This variant occurs heterozygously in 14 of the local 

exomes and in 1232/1237 analyzed exomes from the 1000 Genomes Project. Given the 

high proportion of heterozygous individuals, and that the region contains many mapping 

quality zero reads, the variant is likely an artifact caused by mapping reads from several 

regions onto a single locus. Variants are filtered from the 1000 genomes calls based on 

Hardy-Weinberg equilibrium. Because the 1000-genomes release calls do not contain 

chr1:144852476:T>C, the variant is not filtered out based on minor allele frequency, and 

thus becomes a false positive in a local exome sequencing experiment. 

4.2. Background 

4.2.1. Standard Filtering Practices 

Exome sequencing projects produce large numbers of false positive variant 

predictions. These false positives fall into two broad categories, sequencing artifacts and 

variants unlikely to cause disease. Both of these categories are termed false positives here 

because neither class contributes to a patient’s disease, and both classes require 

experimental follow-up. An individual variant arising from a sequencing artifact is 

actually less harmful to the overall experiment than a rare variant unrelated to the 

patient’s disease. Both classes of variants require confirmation by Sanger sequencing in 

the patient, but the rare variant also requires validation in the family and control 

individuals. 

Sequencing artifacts are erroneous calls produced by artifacts in the library 

preparation, sequencing, genomic alignment, or variant calling. Reducing these false 
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positives is a matter of assigning quality scores to the alignments and variant calls and 

setting appropriate quality score thresholds to filter out these errors. Because this filtering 

process is highly dependent on the sequencing technology, genomic alignment tool, and 

variant caller in use, a discussion of these quality-based filters is outside the scope of this 

work. 

Variants that fall in intergenic space, in introns not near splice sites, and cause 

synonymous amino acid changes are less likely to cause Mendelian disease, and are 

therefore removed in many standard exome-sequencing pipelines. Because this positional 

filtering process is dependent on accurate annotation, these filters of variants unlikely to 

cause disease are discussed in Chapter 3. Additionally, variants that occur commonly in 

normal populations are unlikely to cause disease. The specific definition of “too 

common” depends both on the sample size of the normal population in addition to the 

prevalence of the disease. 

4.2.2. Common Variant Databases 

There are several sequencing efforts that make exomes publically available. Two 

in particular, the 1000 Genomes Project12 and the Exome Sequencing Project release 

variation calls that are useful in identifying and removing common polymorphisms from 

exome sequencing projects. Variant calls from both of these projects are released in 

Variant Call Format (VCF)11.  

4.2.2.1. 1000 Genomes Project 

The 1000 Genomes project is an effort to identify variants in the population. As of 

June 2012 it consists of exome and low-coverage genome sequencing from 1997 

individuals belonging to 20 different populations. Of these 1997 exomes, 1237 have been 

sequenced on the Illumina exome platform. The project calls variants using a 

combination of three pipelines based on GATK9,62, QCALL63, and MaCH64. Raw 

sequence data from the 1000 genomes project are freely available from several sources. 
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4.2.2.2. Exome Sequencing Project 

The Exome Sequencing Project identifies allele frequencies from unrelated 

individuals that have been sequenced by various disease-based studies. As of June 2012, 

this set consists of approximately 6500 exomes. Variants are called using the UMAKE 

pipeline from the University of Michigan. A subset of the raw sequence data used to 

derive these variant calls is available through dbGaP. It is important to consider that the 

samples that make up the ESP6500 dataset are derived from studies of a range of 

diseases. As the patients in the constitutive studies were selected for affection status of a 

range of mainly heart and lung disease, care must be taken when using the ESP6500 

dataset as a control for related diseases. For unrelated diseases, the set may be considered 

un-enriched for the disease, but should not be considered disease-free. Individuals within 

the population are indeed carriers for known, rare, disease-causing mutations. 

4.2.2.3. dbGaP 

In addition to the variant calls released by the 1000 genomes project and the 

exome sequencing project, tens of thousands of additional exomes are available through 

dbGaP. Datasets in dbGaP are typically diseased samples and a smaller number of 

controls. One dataset available through dbGaP is the ciliopathy exome sequencing 

initiative, containing 1059 exomes from 353 families and additional sporadic individuals. 

Ciliopathies are a group of diseases affecting the primary cilium. The specific clinical 

diagnoses of the families in this dataset are not disclosed via dbGaP. The ciliopathy 

exome sequencing initiative data set contains consanguineous pedigrees with multiple 

individuals with many different pedigree structures and is used here for an example of the 

filtering techniques described in this chapter. 
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4.2.3. Existing Regions of Autozygosity Filtering 

Techniques  

The most common method for filtering exome data to remove variants falling 

outside of regions of autozygosity is to run genotyping microarrays on the family 60,65-74. 

Typically these studies involve exome sequencing in only the proband, and array-based 

genotyping in the entire family. While this strategy has been very successful at 

identifying disease genes in consanguineous lineages, with the costs of exome sequencing 

and whole genome sequencing dropping rapidly, the cost advantage of running a separate 

genotyping experiment instead of sequencing the additional family members is 

disappearing. 

There are several existing bioinformatic tools for identifying regions of 

autozygosity based on exome sequencing of multiple individuals, namely IBD2 and the 

AgileVariantMapper. The difficulty in identifying regions of autozygosity based only on 

exome data is caused by a high false positive rate, the uneven distribution in the genome 

of exons containing polymorphic markers, and the presence of pseudogenes75 and closely 

related gene families that produce artifactual heterozygous calls. 

4.2.3.1. IBD2 

IBD2 is an R package for discovering regions of identity-by-descent using a 

hidden Markov model76,77. Identity-by-descent analysis seeks to discover shared 

haplotypes between affected individuals, and can be used in a similar manner to 

autozygosity mapping to reduce an exome search space. 

4.2.3.2. AgileVariantMapper 

AgileVariantMapper78 is a program written on the .NET framework, that allows 

the manual, visual identification of regions of autozygosity from exome data by 

displaying chromosome-level plots of zygosity. While such a manual process may be 
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useful when studying a small set of families, this, and other manual approaches do not 

scale well to sequencing many families. 

4.2.4. Software and File Formats 

4.2.4.1. BAM file format 

The sequence alignment/map (SAM) file format is used to store sequence data 

and alignment information for short read sequence, including exome sequencing 

experiments10. A binary encoding of a file in the SAM format is referred to as a BAM 

file. The SAM/BAM file formats have become the de facto standard for storing aligned 

reads from next-generation sequencing projects.  

4.2.4.2. BEDTools 

BEDTools is a program useful in looking for overlapping genomic intervals in 

BED or VCF formats79. A BED file is a tab delimited file format used by the UCSC 

genome browser to define genomic intervals22,55. BEDTools is capable of performing 

many conceptually simple operations such as finding intersections between multiple files, 

merging overlapping features, subtraction of features in one file from another, and 

sorting. By combining multiple commands, powerful analyses can be performed. 

4.2.4.3. Burrows-Wheeler Aligner  

The Burrows-Wheeler Aligner (BWA) is a next-generation sequence alignment 

program that uses the Burrows-Wheeler transform to align paired-end short reads to the 

genome8. BWA takes input sequence stored in the FASTQ format and outputs mapped 

sequence in the BAM format. 
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4.2.4.4. Genome Analysis Toolkit 

The Genome Analysis Toolkit (GATK) is a software package used for the 

processing, realignment and variant calling of exome data9. The GATK Unified 

Genotyper is used for calling variants in exome sequencing projects. 

4.2.4.5. FASTQ File Format 

The FASTQ file format is a standard file format containing base calls and quality 

scores from next-generation sequencers80. The exomes referred to in this chapter employ 

paired-end sequencing, in paired-end sequencing the forward and reverse reads are held 

in separate files.  

4.2.4.6. Picard 

Picard is a set of tools written in Java for manipulating SAM and BAM files. 

Included in this toolset is MarkDuplicates, a program that removes redundant reads from 

SAM and BAM files, thereby eliminating apparent PCR artifacts.  

4.2.4.7. PLINK 

PLINK is a widely used software package for the analysis of genome wide 

association study (GWAS) data81. Typically the input data for PLINK are genotypes 

derived from microarray genotyping arrays. In addition to software for association tests 

the package contains software to detect identity by descent, large regions of 

homozygosity and other effects expected in pedigrees.    

4.2.4.8. Tabix and bgzip 

Bgzip is a program for compressing genomic data stored in a number of common 

formats and allows indexing by Tabix82. Once a file is indexed, Tabix can efficiently 

perform random access operations. The Tabix software package also provides APIs in a 

variety of programming languages including Perl.  



 

 

47 

47 

4.2.4.9. VCFTools and VCF File Format 

The variant call format (VCF) is the standard file format used by variant calling 

programs like the GATK Unified Genotyper to report variants discovered in exome 

sequencing projects11. VCF is a sparse and extensible file format that can handle custom 

annotation of variants called in one or multiple samples. The file format is user 

extensible, and allows the addition of arbitrary annotation as a key-value pair in the INFO 

field, and allows arbitrary tags to be added to variants via the FILTER column. 

VCFTools is a software package that allows the creation, filtering, and manipulation of 

VCF files. The VCFTools package provides programmatic interfaces to the VCF file 

format written in Perl and several other languages.  

4.3. Approach 

4.3.1. Common Variant Filtering 

Because of the differing goals of variation discovery and disease gene discovery 

efforts, variant calls produced by variant discovery projects are less than ideal for 

filtering out analytical artifacts from sequencing performed for disease gene discovery 

projects. To address this, a collection of publically available exomes from the 1000 

genomes project and from dbGaP has been downloaded and processed using the same 

procedure as used for the exomes in the disease gene identification effort. This filtering is 

compared to filtering performed based on a Local Variation Database (LVD) of a few 

dozen individuals sequenced locally. Variations are called on samples individually to be 

most similar to the sequencing performed for disease gene identification, and in addition 

all samples are called in a single genotyping run so that the total number of samples 

assessed at a given site can be accurately determined. 
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4.3.2. Disease Segregation Consistency Filtering 

Sequencing multiple family members can be a powerful technique for reducing 

the number of false positives in an exome sequencing experiment. Removing variants 

whose genotypes across the family are inconsistent with the segregation of the disease 

can reduce false positives that arise from errors in the sequencing, alignment, or variant 

calling, in addition to reducing real genomic variants that are not involved in the disease. 

Because of the large cost of validating variants, reducing the number of false positives by 

sequencing multiple family members is often more cost effective than validating 

additional variants. To realize these benefits in as many patients as possible it is 

necessary to be able to handle a wide variety of family structures and disease inheritance 

assumptions. 

 

Figure 8. An example consanguineous pedigree with a recessive disease. In a 
consanguineous lineage the same disease allele is likely inherited through both 
parents from a common ancestor. Therefore the obligate carriers will be 
heterozygotes for the disease allele and the proband with be homozygous. 

 

Affected: 
Homozygous 

Obligate 
Carriers: 
Heterozygous 
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For example, consider the case of a recessive disease in a consanguineous 

pedigree, like that shown in Figure 8 where a trio is sequenced, an affected proband and 

both parents. In this case, the disease-causing variant is likely to have been inherited from 

a common ancestor of both parents. This would require that the affected proband be 

homozygous for the disease-causing allele and each parent to be heterozygous. Variants 

not fitting this pattern do not fit the disease assumption and can be discarded.  

 

Figure 9. A trio sequenced in an outbred population can have disease caused by 
compound heterozygous changes. In this case each disease allele is 
heterozygous in exactly one parent and the affected proband (indicated by the 
arrow). 

If another trio were sequenced in an outbred population like that shown in Figure 

9, the filtering would be different. In this case, a compound heterozygous genotype is 

likely in the proband, thereby requiring two heterozygous variants in the proband that are 

each shared by one of the parents. In addition to the recessive disease inheritance 

assumption, the possibility that the disease allele in a single affected child of unaffected 

parents could have arisen from a de novo dominant mutation must be considered. In this 

case the proband would have a heterozygous variant that was not shared by either parent. 

Affected: 
Compound 
Heterozygote 

Carriers: 
Heterozygous 
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In the case of dominant disease, multiple affected and unaffected family members 

are often sequenced. In this case all affected individuals in the pedigree must share a 

heterozygous mutation that is not shared by any unaffected individual.  

In addition to these traditional family structures, it can still be advantageous to 

sequence unaffected siblings and children of probands. For example a heterozygous 

mutation in the proband will be shared by ½ of their children. When looking for a 

compound heterozygous variant in a gene, phase of the variants can be established by a 

single child ½ of the time.  

While these rules are easily understood to anyone with knowledge in genetics, 

devising a software tool that can cope with the combinatorics of an unlimited number of 

different family structures and any disease assumption would be difficult. In large 

research cohorts only selecting families with the predetermined family structures that the 

software is built to handle can easily overcome this difficulty. Another simple heuristic is 

to only look for either one or two shared alleles in all affected individuals, but this does 

not use all of the information represented by a family structure and inheritance. These are 

not attractive solutions in clinical testing where any conceivable family structure is 

possible. To address this I have developed a rules-based filtering approach that allows 

custom rules to be specified at runtime. This dynamic rules-based approach allows the 

definition of new sets of rules when new family structures and disease inheritance 

structures are encountered.   

4.3.3. Regions of Autozygosity Filtering 

Studying a recessive disease in a consanguineous family allows an additional 

stage of filtering beyond common variant filtering, positional filters and filtering for 

disease consistency in the family. In a consanguineous family a recessive disease is far 

more likely to result from the same disease allele being inherited from both sides of the 

family. This is in contrast to the case of an outbred population where compound 
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heterozygotes are common. Because the same variant is inherited from both sides of the 

family and there are a limited number of meioses separating closely related affected 

individuals, the disease-causing variant will be inherited in a large block of autozygous 

variants.  

The challenge in implementing an algorithm to detect large regions of 

autozygosity in sequence data is creating an algorithm that is tolerant to sequencing 

artifacts that appear to be heterozygotes. Variants are filtered by quality to reduce the 

number of artifactual heterozygous calls. Regions of autozygosity are found using a seed-

and-extend algorithm while allowing for a number of erroneous heterozygous calls within 

the region. Variants that fall within identified regions are annotated to allow for filtering. 

4.4. Methods 

4.4.1. 1000 Genomes Dataset 

Paired-end Illumina exomes from 1053 patients were obtained from the ciliopathy 

exome sequencing project via dbGaP. This dataset represents a near-ideal evaluation set 

for the filtering methods presented here because multiple family members from 

consanguineous pedigrees were sequenced. Provided phenotype data contains affection 

status for all individuals and there are a large number of families. Sequence data was 

aligned to the genome using BWA and variant calling was performed on families 

individually using the GATK Unified Genotyper8,9.   

4.4.2. Common Variant Filtering 

The 1237 paired-end Illumina exomes completed as part of the 1000 genomes 

project were reanalyzed using the exact procedures used locally to call variants in disease 

gene discovery exome sequencing projects (see Chapter 1). Available whole-genome 

data, and exome sequencing based on other platforms was not used for this analysis to 

most closely replicate a large set of samples processed locally. The filtering efficiency of 
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this dataset was compared to a local variation database consisting of a few dozen exomes. 

Filtering efficiency is shown for an exemplar clinical sequencing family, and for 344 

families sequenced as part of the ciliopathy exome-sequencing project. 

4.4.3. Disease Segregation Consistency Filtering 

In order to remove variants inconsistent with disease segregation in the family 

under study, a filtering tool has been implemented. The tool uses the Perl module 

provided by the VCFTools package to read input VCF files. Custom filtering rules are 

specified on the command line using the nomenclature shown below. Variants satisfying 

these rules have a filter tag added to the VCF filter column. Tagged variants can be 

removed from the file using VCFTools, the filter tag can be used as annotation in the 

final file, or further analysis can be done using these tags.  

4.4.3.1. Nomenclature For Specifying Filtering Rules 

A nomenclature has been developed for specifying filtering rules for an arbitrary 

family structure and different disease models. The nomenclature, shown in Figure 10, can 

specify a set of allowable genotypes to be defined for several individuals. If all of the 

logical “and” conditions are met, the specified filter tag is applied. More complicated 

rules requiring a logical “or” can be specified by listing two rules with the same name. 

 

<Filter>=<Sample 1>,<Genotypes>; … ;<Sample N>,<Genotypes> 

Name of Filter 
Sample Identifiers, can use *K 

to specify any K samples 

Genotypes required to pass filter. -1 for 
missing, 0-2 – number of alternate alleles 

Specify an “and” 
requirement 
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Figure 10. Nomenclature for defining custom pedigree-based filtering rules to identify 
specific allele combinations. “And” requirements are specified using multiple 
statements separated by semicolons. “Or” relationships are specified using 
multiple lines. In this way complex statements can be constructed. 

4.4.4. Regions of Autozygosity Filtering 

Regions of autozygosity filtering for consanguineous families with exome 

sequence from multiple affected individuals has been implemented using a combination 

of publically available tools. Variants are filtered by quality to reduce artifactual 

heterozygous variants using GATK, variants with a quality to depth ratio below 10 are 

excluded9. At this threshold many true variants will be removed, this is acceptable since 

the identification of the region means that the variants in the region will be re-examined. 

The variants in VCF format are then converted into the PED and MAP file formats using 

VCFTools11. PLINK is used to identify regions of autozygosity using the “Runs of 

homozygosity” program. This program was designed to detect regions shared by distantly 

related individuals using microarray genotype data81. Regions of at least one million 

bases containing at least 50 non-reference homozygous alleles and no more than ten 

heterozygous variants are considered to potentially harbor disease causing autozygous 

alleles. The original VCF file containing all variants is then annotated with these 

identified regions using a combination of bedtools, Tabix, and VCFTools11,79,82. 

4.4.5. Evaluation with Ciliopathy Exomes 

FASTQ files were obtained from dbGaP for the Ciliopathies Exome Sequencing 

Initiative ( dbGaP Study Accession: phs000288.v1.p1 ). These sequence files are aligned 

to the hg19 reference genome using BWA. Picard was used to remove duplicate 

sequences that likely arose from PCR duplicates. Local realignment and variant score 

recalibration were performed using GATK. Variants were called simultaneously in all 

members of a family with the GATK Unified Genotyper.  
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The ciliopathy data set contains exome sequence data from 353 families. Variants 

from each family were filtered to remove low quality variants, to remove variants too 

common to plausibly cause disease based on the 1000 genomes dataset and the Exome 

Sequencing Project (ESP). Additionally variants found to be too common in the 1000 

genomes-based LVD were removed. Families consisting of multiple affected individuals 

were then filtered using the Regions of Autozygosity procedure described above.  

The selection criteria of the study required each family to have known 

consanguinity, therefore regions of autozygosity filtering is applied to families consisting 

of multiple affected individuals. The common family structures in this dataset are shown 

in Figure 11. Pedigree-based filtering is performed in each family by retaining all variants 

where affected individuals in the family are homozygous alternate, obligate carriers (e.g. 

parents of affected individuals) are heterozygotes, and other unaffected family members 

are either homozygous reference, or heterozygous. 
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Figure 11. Common family structure present in the ciliopathy exome sequencing 
initiative dataset. Because families have known consanguinity, affected 
individuals are expected to be homozygous for a variant and obligate carriers 
are expected to be heterozygous.  

4.4.5.1. Gene List Scoring Metric 

Lists of genes harboring plausible mutations were generated using the filtering 

described above for each of the 353 families in the ciliopathy exome sequencing initiative 

dataset. In an attempt to prioritize genes that could cause disease in several of the 

families, a scoring metric, shown in Figure 12, was developed that attempts to reward 

genes that are present on lists (L) containing few candidate genes (N), and genes that 

occur on many lists.  

Affected Siblings: 
144 families 

Trio: 
97 families 

Parent + Child: 
73 families 
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Figure 12. Scoring metric (S) used in the ciliopathy exome analysis. This simple metric 
rewards genes (i) occurring on multiple lists (L), and genes present on lists 
with fewer genes(N). 

4.5. Results 

4.5.1. Common Variant Filtering 

An exome dataset from a family segregating recessive disease was filtered using 

standard protocols as shown in Table 1. A 1000 genomes-based filtering was applied in 

place of the previously used local variation database consisting of 18 exomes. There were 

10,414 variants present prior to LVD filtering. Removing variants with greater than 3 out 

of 36 variant alleles in the local sequencing caused 588 (5.6%) variants to be removed. 

This cutoff was chosen using a proportion test to find a cutoff representing a true 

population prevalence of less than 1% (p=0.000169). When the 1000 genome-based LVD 

is used for filtering then 6522 (62.6%) variants are removed. It is important to note that 

this filtering takes place after polymorphisms called by the 1000 genomes project had 

been removed, therefore this filtering likely removes analytical artifacts instead of 

polymorphisms. 
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Table 1. Filtering of an example family with Retinitis Pigmentosa, a recessive disease 
under two scenarios, using a local variation catalog derived from several 
dozen locally sequenced exomes, and a local variation catalog derived from 
reprocessing over 1200 exomes originating from the 1000 Genomes Project. 

 Local 
Exomes 

1000 
Genomes 

All Variations 132,187 132,187 

Variant Quality >25 121,736 121,736 

Variant Quality/Depth < 1% 120,912 120,912 

1000 Genomes Allele Frequency < 1% 13,692 13,692 

EVS EA Allele Frequency < 0.6% 10,552 10,552 

EVS AA Allele Frequency < 0.6% 10,414 10,414 

Local Variation Catalog 9,826 3,892 

Retain Exonic and Splice Variants 2,121 1,360 

Remove Synonymous Variations 880 667 

Remove Single Allele Genes 287 139 

Consistent With Segregation 59 23 

 

 

Figure 13. A boxplot showing the distribution of QD scores for variants filtered and 
retained by the 1000 genomes-based LVD filter. 
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Further, the filtering performed by the 1000 genomes-based LVD is not simply a 

filter to remove low quality variants that could have been filtered by other means. Figure 

13 shows for this same family the distribution of the ratio of variant quality scores to 

sequencing depth (QD) for variants both filtered and those retained by the 1000 genomes-

based LVD. The clearly overlapping ranges would make filtering by QD ineffective. 

4.5.2. Disease Segregation Consistency Filtering  

 

Figure 14. A kernel density estimate showing the distribution of variants per family in the 
ciliopathy exome set. Starting with the set of all called variants in blue, the 
variant count is reduced by filtering to remove variants that are inconsistent 
with segregation in the families. Moving from right to left on the horizontal 
axis, the impact of using additional family structure information to filter 
variants shows the substantial reduction of plausible mutations. For clarity, no 
quality, allele frequency, or positional filters have been applied to these data. 
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To evaluate the performance of filtering based on consistency with disease 

segregation in the family, exomes were processed representing the three most common 

pedigree structures from the ciliopathy exome sequencing initiative (see Figure 11). All 

members of a given family were genotyped in a single run of the Unified Genotyper, 

yielding the distribution shown in blue in Figure 14. Note that this filtering is more 

powerful in a family consisting of a proband and an unaffected parent (shown in green), 

than in a family consisting of two affected siblings (shown in magenta). This is due in 

large part to the additional power of an individual expected to be homozygous to remove 

sequencing artifacts and ethnic polymorphisms. The trio families in red show the most 

filtering power of the 3 family structures compared. 

4.5.3. Regions of Autozygosity Filtering 

To evaluate the effectiveness of regions of autozygosity filtering, exomes from 

families with multiple affected individuals from the ciliopathy exome sequencing 

initiative were filtered using the autozygosity-based filter and a filter for consistency with 

segregation of disease. The results of this experiment are summarized by the kernel 

density estimate shown in Figure 15. Each distribution in this plot represents the same set 

of families, but with different filtering rules applied. The regions of autozygosity filter 

(green) is expected to outperform the family filtering (magenta) because both filters 

require all family members to share homozygous variants. The family filtering requires 

just the variant under consideration to be homozygous in all family members, the regions 

of autozygosity filtering requires that a variant fall within a region containing many 

shared homozygous variants. Note that the magenta distributions from Figure 14 and 

Figure 15 are drawn from a nearly identical set of families using the same filtering 

criteria. 
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Figure 15. A kernel density estimation showing the distribution of variants per family in 
the ciliopathy exome set using regions of autozygosity filtering. This shows 
that filter on autozygosity is more effective than filtering on family structure 
alone. Only families with multiple affected individuals are used for this 
processing. Only incremental gains are expected using family filtering in 
addition to the regions of autozygosity analysis because most of the families 
represented here contain only affected individuals. For clarity, no quality, 
allele frequency, or positional filters have been applied to these data. 

4.5.4. Ciliopathy Exome Sequencing Initiative Candidate 

Gene List 

To demonstrate the utility of the filtering strategies shown here, the variants from 

families in the ciliopathy exome sequencing initiative dataset have been filtered to 

remove low quality variants, variants too common to plausibly cause disease, variants 

that fall outside of coding exons and splice sites, variants that are inconsistent with 

disease segregation within the families, and variants that fall outside of identified regions 
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of autozygosity. Genes containing these variants were prioritized using the metric given 

in Figure 12. The top 30 candidate genes are given in Table 2.  

Table 2. Top 30 candidate genes produced using the family filtering and regions of 
autozygosity techniques scored using a metric that rewards genes with 
plausibly disease-causing variants in many families, and also genes that are 
found on lists of fewer genes.  

Score Gene Symbol Score Gene Symbol 

2.5011 MUC4 1.3677 POLDIP2 

2.3570 RSU1 1.3495 HRNR 

2.1373 AHNAK2 1.3307 MICA 

1.9569 HEATR1 1.3141 WDR66 

1.9560 CREB3L1 1.2175 IFNG 

1.7960 MSTO1 1.1849 HLA-DQA1 

1.7614 LDHB 1.1634 LILRB3 

1.6386 IGSF9 1.1323 KRTAP4-7 

1.6205 ACIN1 1.1250 TSEN54 

1.5716 FCGBP 1.1210 AMPD2 

1.5438 RCOR2 1.1082 DARS 

1.4705 HLA-DRB5 1.0869 MAGEC1 

1.4073 FAM131C 1.0771 YEATS2 

1.4027 KLRC3 1.0411 PCDP1 

1.3771 RPL14 1.0368 RALY 

 

4.6. Discussion 

4.6.1. Computation Efficiency Considerations 

To generate the data presented above, 2296 exomes were processed and the total 

size of the input dataset is in excess of 20TB. While sufficient CPU resources were 

available to process hundreds of these samples concurrently the aggregate input-output 
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(IO) bandwidth exceeded the capacity of available file systems. To address this it was 

necessary to develop an optimized job submission protocol that would reduce IO load by 

taking advantage of inter-process streaming. Previous versions of the submission protocol 

involved the following steps: 1) Align forward reads with BWA8, 2) Align reverse reads 

with BWA, 3) Pair reads with BWA, 4) Convert SAM10 file format to binary, 5) Sort 

BAM file. Steps 1 and 2 occurred concurrently on separate nodes taking full advantage of 

the multiprocessing built into BWA. Steps 3-4 followed sequentially and have only 

single-threaded implementations. At each stage, large output files were streamed to the 

file server cluster. The optimized version of the submission algorithm has steps 1-5 

running concurrently on a single node, with Unix pipes used to stream results between 

processes. Buffers between the steps were added and carefully tuned to keep the longest 

running single-threaded portion of the application (Step 3) running as much as possible. 

Overall this optimization provided a 4x reduction in read load, a 6x reduction in writes, 

and an improvement in overall runtime. 

It is anticipated that the ever increasing volume of publically available data will 

continue to stretch the limits of available computing resources that can be allocated to 

improving filtering based on the reanalysis of publically available data. Relying on cloud 

computing resources does not present a solution to this problem as the problem of 

scarcity of computation resources is simply transformed into a problem of the scarcity of 

financial resources. Possible alternatives to address this issue include: 1) Further 

computational optimizations, 2) Limit the total size of the reanalyzed data set when 

adding additional samples until an arbitrary threshold of diminishing returns is reached, 

3) Standardization of exome sequencing workflows between research groups, thereby 

allowing the sharing of reprocessed datasets.  



 

 

63 

63 

4.7. Conclusion 

The false positive rates in exome sequencing-based genetic testing drive the cost 

of the overall experiments. This is because, in contrast to variant discovery projects, each 

result must be validated in the patient, confirmed to segregate with disease in the family, 

and be absent in ethnically matched controls. This confirmation and validation work 

requires many individual Sanger sequencing reactions, and often large scale experiments 

such as amplicon-based sequencing on a Fluidigm Access Array. In all but the simplest 

cases, the cost of these experimental validations exceeds the original costs of sequencing 

the patient’s exome. 

In this chapter, several methods aimed at reducing the false positive rate were 

presented. First, a local catalog of variants was constructed from a reanalysis of over 

1200 exomes using identical methods to local sequencing efforts. This catalog was shown 

to remove more variants than a catalog constructed from a few dozen locally sequenced 

exomes. Second, a rules-based filtering strategy has been developed to remove variants 

that are inconsistent with disease segregation when several members of a family are 

sequenced. Finally, a strategy was described for removing variants that do not fall within 

regions of autozygosity – the autozygous regions being calculated from sequencing data 

from several affected individuals from a consanguineous lineage.  When combined, these 

strategies can substantially reduce the false positive rate in exome sequencing 

experiments.  
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CHAPTER V 

REDUCTION OF FALSE NEGATIVES IN EXOME SEQUENCING 

5.1. Introduction 

False negatives in exome sequencing experiments are variants that cause a 

patient’s disease, but are not discovered by the exome sequencing experiment. False 

negatives in exome sequencing projects originate from several sources. First, regions of 

the genome receive inadequate coverage to call variants because of capture design or the 

efficiency of capture or sequencing. Second, filtering to reduce false positive based on 

quality and positional filters will cause the introduction of false negatives. This effect is 

particularly pronounced on positional filters. These filters remove variants in intergenic 

regions and deep in introns. While these regions harbor disease-causing variants less 

frequently than exons or splice sites, there are still many known examples of disease 

causing mutations in introns and regulatory regions83. Finally, some types of variants are 

not detectable with current sequencing and analysis techniques. These variant types 

include large insertions or deletions, variants occurring in repetitive regions, and certain 

types of genomic rearrangements.    

A large insertion of repetitive sequence in next-generation sequence data is a 

particularly difficult variation to detect. Even though these variants are rare, it is still 

important to detect these events as they have been shown to cause disease 3,84. 

Additionally, a large insertion in a coding region is a particularly interesting finding as 

the disease mechanism is immediately apparent without expensive validation 

experiments. 

Proposed here is a tool, RIDE, that reduces the false negative rate in exome 

sequencing experiments by detecting insertions of repetitive sequence. RIDE can detect 

these mutations by taking advantage of characteristic anomalies in the sequence 

alignment near the site of the insertion. As an example, artifactual single nucleotide 
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variants (SNVs) led to the discovery of a new gene (MAK) implicated to cause retinal 

degeneration. 

5.1.1. Cost of a False Negative 

A false negative carries a large cost in an exome sequencing effort. While a false 

positive requires the expenditure to validate a single variant, a false negative will result in 

wasted validation of many false positives as well as the overarching failure to detect the 

disease-causing variant. 

5.1.2. Incidental Detection of an ALU Insertion 

Retinitis Pigmentosa (RP) is an inherited eye disease that displays a high degree 

of locus heterogeneity. While dozens of genes causing RP have been described, a large 

portion of the disease cases remain unexplained. In a recent study, we implicated MAK 

as an RP disease gene by exome sequencing3. The particular mutation discovered was a 

homozygous insertion of an ALU element into the ninth exon. Using induced pluripotent 

stem cells derived from fibroblasts the mutation was shown to disrupt splicing and led to 

the loss of a retina-specific exon. 

The data used to discover the role of MAK in RP was informative and fortunate. 

The insertion of the repetitive element was not discovered by the bioinformatic variant 

calling pipeline, but rather the insertion caused errors in the genomic alignment that 

resulted in several artifactual single nucleotide variants (SNV) being identified near the 

insertion site. These artifactual SNVs were interpreted as a possible compound 

heterozygote by the variant calling algorithm. This led to attempted confirmation by 

Sanger sequencing that instead revealed the repetitive insertion. These artifactual SNVs 

were just above quality threshold, and therefore slight experimental variability may have 

caused this important variant to be missed. 

This exposes the ability to detect large insertions of repetitive elements as a 

serious shortfall in current exome sequencing analyses, like that described in Chapter 1. 
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This is a particularly difficult genomic variant to detect because the insertion will disrupt 

mapping and capture. In addition, the repeat blocking steps used in library preparation 

will selectively remove an allele harboring repetitive elements. Another complication 

includes pairs of chimeric reads that will be induced through mutual priming. 

5.2. Background 

5.2.1. Transposable Elements 

Retrotransposons such as Alus are incorporated into the host genome by a reverse 

transcriptase (RT). An RT makes a single stranded nick in the host genome at a 

recognition site, and then synthesizes DNA based on an RNA template. This requires a 

portion of the RNA molecule to hybridize with the single stranded DNA adjacent to the 

nick. The effect of this is that several bases from the host DNA are duplicated so they 

flank the insert in the same orientation. This target site duplication is typically 4-16 bases 
85. 

5.2.2. Evaluation of Existing Insertion / Deletion Detection 

Tools 

Existing tools such as NovelSeq used to detect insertions use a feature referred to 

as One-End-Aligned (OEA) read pairs86,87.  An OEA pair consists of a single read that 

maps to the reference genome and a read that could not be mapped. Attempts are then 

made to assemble or otherwise characterize the set of unaligned reads at a plausible 

insertion site to detect the insertion. The concept of an OEA read pair does not address 

the case where the inserted sequence is elsewhere in the genome either in a single copy, 

or in many copies (such as for retrotransposons and similar elements). If there is a single 

copy elsewhere in the genome the unmapped reads that should lie in the insertion will 

map to another region of the genome, and therefore will present similar to a translocation. 

If the insertion is of a repetitive element present in many copies in the genome the 



 

 

67 

67 

unmapped reads will instead map to a diverse set of loci. One tool that allows for this 

miss-mapping is PAIR88, however this algorithm fails to model the effects the duplicated 

region will have on the insertion of an Alu element. In addition, because repetitive 

elements are deliberately blocked in the capture the presence of an inserted repetitive 

element can either cause the capture to fail, or can induce the formation of chimeric reads 

by mutual priming of fragments. The sequence of these chimeric reads will have no 

relationship to the sequence of the insert other than to share a region of homology great 

enough to allow the mutual priming. 

5.2.2.1. ClipCrop 

ClipCrop89 is a tool for detecting structural variations using soft-clipping 

information provided by genomic alignment tools such as BWA8. Soft clipping is 

discussed in detail in Section 5.3.2, but briefly, sequence alignment algorithms will 

partially align a sequence to the genome and the remaining portion of the read is 

trimmed. This trimming is encoded in the SAM10 file, so it can be easily calculated. 

Reads overlapping the insertion breakpoint will partially align to the genome, and be 

trimmed past the breakpoint, thus yielding the position of the insertion. 

 While ClipCrop recognizes the multiple breakpoints present in deletions and 

tandem duplications, it fails to model the multiple breakpoints present in insertions of 

transposable elements caused by the insertion-mediated duplication. 

5.2.2.2. CNVator 

CNVator90 is the best-known member of a class of tools designed to detect 

structural variants in next-generation sequencing data using a statistical analysis of read 

mapping density. The algorithm relies on the number of reads sequenced over a region 

being proportional to the copy number at that site. Differences in read depth between 

individuals can indicate deletions or duplications. The authors acknowledge that this 

approach is ill suited to discover copy number variants created by transposable elements. 
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5.2.2.3. NovelSeq 

NovelSeq86 is a bioinformatic tool designed to detect insertions of novel 

sequence. The tool works by preforming a standard paired-end genomic alignment of the 

reads generated by an exome or whole genome experiment, and separating the read pairs 

into three categories. First the pairs where both reads align properly to the genome. These 

pairs do not contain an insert and are discarded. The second category, the read pairs 

where one read aligns properly to the genome and the other does not map are referred to 

as OEA paired-end reads. These OEA pairs may span an insertion breakpoint. The final 

category, called orphan pairs, contains pairs where neither read aligns to the genome. 

These pairs might lye completely within the insert. 

Orphan pairs are processed using the ABySS91 de novo assembly tool to produce 

contigs that may represent inserts. Contamination from non-human species is removed 

using a BLAST search92. OEA pairs are clustered, and the non-mapped reads are 

assembled. The OEA assemblies and the Orphan assemblies are then combined to 

identify the inserts. 

Like its name implies, the NovelSeq tool relies on the inserted sequence not being 

homologous to other regions of the genome. In the case of an insert of repetitive 

sequence, this is not the case. The discordant read pairs are conceptually similar to the 

OEA pairs used by NovelSeq, except the non-anchored read will map to another region 

of the genome instead of failing to map. 

5.2.2.4. PAIR 

PAIR88 is an algorithm for detecting Alu insertion events using discordant reads. 

Inconsistent read pairs are identified by finding reads whose separating distance falls 

outside the typical range for the experiment. The reads from these pairs are then aligned 

to known Alu families to identify pairs with one read in the genome, and the other read 

containing Alu sequence. Sets of these Alu pairs are used to detect the insertion. 
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Unlike OEA-based tools like NovelSeq, PAIR allows for the detection of 

repetitive elements by tolerating discordant read pairs where both reads map to the 

genome. The PAIR model, however, does not allow for the presence of mutual-priming 

derived chimeric read pairs, or the insertion mediated duplication event that occurs at 

point of the Alu insertion. 

5.2.2.5. VariationHunter-CR 

VariationHunter-CR is an algorithm to detect Alu insertions using repeat-

anchored mapping93. Repeat-anchored mapping in VariationHunter-CR works by 

constructing an artificial reference chromosome from the consensus sequences of known 

mobile element families. A genomic mapping is performed using mrsFAST94, a sequence 

alignment tool that maps reads to all matching genomic locations. Discordant read pairs 

where one end read maps to the genome, and the other read maps to the artificial 

chromosome are evidence for an insertion of a repetitive element. Clustering of these 

read pairs is performed to identify insertion sites of repetitive elements. The region of the 

artificial chromosome to which the reads maps identifies the particular repetitive element 

inserted.  

VariationHunter-CR relies on mobile element sequence being the content of 

discordant reads that fail to map, however the insertion event in an exome capture cause 

the creation of fragments that do not contain the insert due to mutual priming. The tool 

also fails to account for the affects of the insertion-mediated duplication present in the 

insertion of transposable elements. 
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5.2.3. Software and File Formats 

5.2.3.1. BAM file format 

The sequence alignment/map (SAM) file format is used to store sequence data 

and alignment information for short read sequence, including exome sequencing 

experiments10. The BAM file format is a compressed, binary SAM file. 

5.2.3.2. Burrows-Wheeler Aligner 

The Burrows-Wheeler Aligner (BWA) is a next-generation sequence alignment 

program that uses the Burrows-Wheeler transform to align paired-end short reads to the 

genome8. When aligning paired-end reads, each read is independently aligned to the 

genome. If one read maps and the other does not, a Smith-Waterman alignment is 

performed to rescue these unmapped reads. Because Smith-Waterman is a local 

alignment, reads that were initially unmapped will be trimmed in the output BAM file to 

only the subsequence aligned to the area surrounding the properly mapped mate. 

5.2.3.3. GATK Framework 

A proof-of-principal algorithm has been implemented inside the Genome 

Analysis Tool Kit (GATK) framework62. The GATK framework provides programmatic 

interfaces to BAM formatted alignment files, reference files, and a convenient 

mechanism to perform computations in parallel. Because other tools implemented inside 

the GATK framework are commonly used in the detection of SNVs and small insertions 

and deletions in exome data, it is convenient to incorporate the tool into existing 

sequencing workflows. 

5.2.3.4. Integrative Genomics Viewer 

The Integrative Genomics Viewer (IGV) is a visualization tool for inspecting 

reads from next-generation sequencing projects in addition to genome annotation 

tracks95. 
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5.2.4. Figure Conventions Used In This Chapter 

 

Figure 16. Conventions used in figures in this chapter to describe characteristic sequence 
anomalies. 
(A). The symbol used to describe an exon. 
(B). The symbol used to describe an insertion-mediated duplicated region. 
(C). The symbol showing the repetitive element insert. 
(D). A paired-end sequencing read pair. An arrow denotes each read with the 
sequencing insert shown with a dashed line. 
(E). By convention, reads or portions of reads that map properly to the 
genome are shown in blue and purple. 
(F). By convention, reads that would fall within the insert are shown in red 
and orange. 

Figures in this chapter use common visual elements to describe characteristic 

alignment anomalies that occur near insertion breakpoints. Some of the insertion 

scenarios have sufficient complexity making it difficult to depict with figure, so for 

clarity these conventions are illustrated in Figure 16. Exons are denoted as a grey box on 

a black bar. A green box labeled “DR” indicates the insertion-mediated duplicated 
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regions. Inserted repetitive elements are illustrated using a red box labeled “Insert.” 

Paired-end sequencing read pairs are shown as arrows with the origin at the start of the 

sequencing read and the tip at the end of the read. The fragment sequence between the 

reads, the sequencing insert, is shown with a dashed line. Blue and purple arrows indicate 

reads that map properly to the genome, red and orange arrows indicate reads that would 

fall within the repetitive element insert.  

5.3. Approach 

 

Figure 17. Position of reads relative to the insertion breakpoint causes a variety of 
characteristic anomalies in the sequencing data.  
(A). The read pair has only a few bases of overlap and produces artifactual 
mismatches.  
(B). The read pair initially fails to map and produces trimming upon local 
alignment.  
(C). The read within the insert from this pair fails to map, and leads to a 
discordant read pair. 
(D). Both reads fail to map, this will lead to a reduction of coverage. 

At the sites of insertions of repetitive sequence, standard genomic alignment tools 

like BWA fail in predictable ways. I will take advantage of these characteristic alignment 

anomalies to detect these insertion events. I have identified five major types of anomalies 

at the insert sites: 1) reads similar to those in Figure 17, case C causes an overabundance 
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of discordant reads pairs where the discordant reads are mapped to many different 

regions of the genome, 2) 5’ read trimming occurring at the insertion breakpoint in reads 

similar to those shown in Figure 17 case B, 3) similar sequence trimmed at insertion 

breakpoint, 4) the loss of mapping of fragments similar to those in Figure 17 case D 

causes decreased coverage relative to a sample lacking the insertion, and 5) low quality 

SNVs occurring within several base pairs of the insertion breakpoint in reads similar to 

those shown in Figure 17 case A. Because all of these features can be calculated on a 

single pass through of the aligned sequence, a tool based on this approach will be 

computationally efficient both in terms of CPU – O(n) where n is the length of the 

exome, and memory – O(m) where m is the size of the window where discordant pairs are 

considered (several hundred base pairs). 

5.3.1. Low Quality Variants near Insertion Breakpoints 

The characteristic anomalies that led to the discovery of the Alu insertion in the 

original MAK patient were several low quality variants near the site of the insertion. As 

depicted by Figure 18, reads that overlap a breakpoint of the insertion by only a few 

bases will still align to the genome.  Mismatches and short insertions/deletions can be 

called at the 5’ extreme end of this read. These variants will be of low quality because of 

the small proportion of reads that will only overlap by a few bases. 

 

Figure 18. Low quality variants near the insertion breakpoint. When 1-2 bases of a read 
overlap the insertion breakpoint, mismatches can be called. This leads to low 
quality mismatches surrounding the insertion breakpoints. 

Insert DR 
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5.3.2. 5’ Trimming at Insertion Breakpoints 

The BWA algorithm is based on a seed-and-extend alignment strategy, by default 

the 32 5’ most bases are used as a seed, where fewer variations are allowed from the 

reference genome. If more than a few of these seed bases are in the inserted sequence, as 

depicted in Figure 19, the read will not be able to align to the reference genome. BWA, 

and other alignment algorithms, attempt to rescue these reads by performing a Smith-

Waterman alignment of the read to the region downstream of its mapped pair. In the case 

where the unmapped read overlaps the insertion breakpoint this high-fidelity rescue 

alignment will align the 3’ portion of the read to the reference genome and trim the 

remaining 5’ portion of the read. Because Smith-Waterman alignments were used to 

perform this trimming, locations of frequent trimming can identify these sites with high 

fidelity. 

 

Figure 19. 5’ trimming at the insertion breakpoints. When a significant portion of the read 
overlaps a breakpoint of the insertion (red), a read will fail to align. If the 
paired read (blue) aligns properly nearby, the read can be rescued by a local 
alignment performed by BWA. This leads to trimming of the 5’ end of the 
originally unmapped read. 

In the case of exome sequencing, this effect may not be symmetrical around the 

site of the insertion. When an insertion occurs at the edge of an exon there may not be 

targeting oligonucleotides to capture the fragments on one side of the duplicated region. 

Therefore, differences in the number of trimming events that occur on each side of the 

insert should be ignored. 

Insert DR 
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The content of the trimmed sequence can also be informative. Since the sequence 

is removed by this trimming is sequence from the insert, it should therefore be similar 

between reads. This is an important characteristic in distinguishing true inserts from 

background regions because poor quality reads that were trimmed would be expected to 

contain random sequence. Additionally if the insertion is a retrotransposon, a Poly-A tail 

will be present. 

5.3.3. Discordant Read Pairs as a Signature of Insertion 

When one read falls fully inside the insertion and its pair outside as shown in 

Figure 20 a discordant read pair could be formed. A discordant read pair is where the 

ends of the fragment map to different loci. These reads can either be interpreted as either 

an artifact of the library preparation where small fragments with some sequence 

similarity are able to mutually prime and create a biologically meaningless fragment, or 

as evidence of a structural variation. Some references in the literature define a discordant 

read pair as a read pair with a longer than normal insert size96, these can be evidence of 

deletions, but here the term is more broadly defined to mean a pair of reads mapping to 

two distant locations. 

At the site of an insertion of repetitive sequence, there is an abundance of 

discordant read pairs, where one end of the fragment maps to the genomic area 

surrounding the insertion, and the other maps to another occurrence of the repetitive 

element in the genome. For an element such as an Alu that is present in very high copy, 

this will result in discordant read pairs to many chromosomes.  
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Figure 20. Discordant read pairs occur at the site of the retrotransposon insertion when 
one read falls within the insert, and the other falls in genomic sequence. The 
content of these discordant pairs can arise from two different sources.  
(A). The insert (here into chr1) shares homology with a region elsewhere in 
the genome (for example chr2). In this case, while the paired ends of the 
fragment apparently map to different chromosomes, the fragment represents a 
true portion of the genome.  
(B). A portion of the fragment contains an Alu insert, and the library 
preparation procedure blocks repetitive elements. This can lead to the artificial 
enrichment of fragments formed through mutual priming with another region 
of the genome, for instance chr3. 

The model would predict that the average distance of the local reads from the 

insertion point is a function of the insert length, and the orientation of the local reads 

should place the discordant pair in the insertion. The model should not expect to see 

discordant pairs from both sides of the insert as the insertion itself can be expected to 

disrupt the binding of complementary probes used in the exome library preparation. In 

whole-genome sequencing this bias would not be expected. 

In addition to discordant read pairs this same effect can manifest as a poor 

mapping of the paired read. This happens because local alignments are performed when a 

read initially fails to map, or if the read maps in an apparently erroneous way (discord). 

These forced local alignments would have a high frequency of variations, and an 

abundance of trimming on both the 5’ and 3’ ends. It is important to note that this 

mechanism is only possible if the mate of the poorly aligned read is properly aligned to 

the local chromosome to anchor the read. 

chr1 
chr2 

chr3 
chr1 

A. B. 
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5.3.4. Directionality of Sequence Overlap Features 

 

Figure 21. The duplicated genomic region (green) caused by the insertion of the 
retrotransposon (red) creates overlap in the discordant reads.  
(A). This line depicts the region in the patient’s genome. Note the insert 
flanked by insertion-mediated duplicated regions (DR)  
(B). Line depicting the region when aligned to a reference genome that does 
not contain the insert. Note the position of the read pairs relative to the 
duplicated genomic region (green - DR). The red arrows are the mates that fall 
within the inserted sequence. When reads in this area are aligned to the 
genome, these insert reads will not align, leaving the discordant reads shown 
in blue and purple. 

In addition, this discordant read pair effect is directional. As illustrated in Figure 

21, because insertions by a reverse transcriptase are surrounded by a small region of 

duplicated genomic sequence, there will be a region where trimmed reads overlap and 

discordant read pair alignments overlap. In this figure, line A shows the expanded view 

of the insert in red, surrounded by the duplicated sequence in green. Line B shows this 

same region when aligned to the reference genome that does not contain the inserted 

sequence. Note how the blue and purple properly aligned reads overlap in the reference 

genome view.  
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Figure 22. Trimming events and discordant read pairs will flank the duplicated region 
between the two vertical lines. Blue and purple arrows represent the 
discordant reads on the forward and reverse strands respectively. The green 
bar shows the location of forward strand trimming events, the orange bar is 
reverse. The green and orange arrows show the read pairs that lead to the 5’ 
trimming events of the 5’ and 3’ ends of the insert respectively. 

This same effect leads to directionality of the trimming events. Fragments that 

harbor trimming events 5’ of the insert will have a trimming event 3’ of the trimming 

event for the fragments 3’ of the insert. This is depicted graphically in Figure 22 where 

the blue and green show the discordant read and trimming signature respectively for the 

forward strand. Figure 23 shows the duplicate region at the insert site in the MAK 

patient. 

DR 



 

 

79 

79 

  

Figure 23. Screenshot from IGV showing the insert site of an Alu in MAK. The top of the 
figure shows the insert in the patient’s genome, and the lower portion shows 
how the insert aligns to the reference genome. Bases that do not match the 
genome, and were trimmed from the alignments, are shown in the reads. The 
sequence from the 3’ end of the insert is shown on left side of the duplicated 
region. On the right side of the duplicated region is the 5’ end of the insert. 
The arrows depict paired end reads that give rise to trimmed sequence at the 
insertion breakpoints. 

5.3.5. Decreased Coverage at Insertion Breakpoints 

Coverage is reduced near insertions due to two effects. First, reads from 

fragments that overlap an insertion breakpoint similar to those shown schematically in 

red in Figure 24 can fail to map to the reference genome because the insert in which they 

fall is not contained in the reference genome. Second, the insertion (vertical green lines) 

can interrupt the region designed to hybridize with the capture oligonucleotides (purple 

line). This will lead to a reduced capture efficiency, and in the case of exons covered by a 
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single targeting oligonucleotide could lead to the complete loss of sequence from the 

exon. 

 

Figure 24. Upper: Reduced coverage at the insertion breakpoint in an exon. A portion of 
the reads that cross the insertion’s duplicated region breakpoint (vertical green 
lines) will fail to map. Additionally the insertion can disrupt the hybridization 
of the capture oligonucleotide (purple line) further reducing coverage. Lower: 
A graph (black) of the expected coverage. These combined effects can cause a 
loss of coverage (orange dotted) over the insertion breakpoint. Trailing 
coverage after the breakpoint is due to miss mapping. 

5.4. Methods 

5.4.1. RIDE:  Retrotransposon Insertion Detector for 

Exomes 

A tool has been implemented that uses the discordant read pairs and 5’ trimming 

anomalies to detect insertions. Figure 22 shows the assumed model of the sequence 

anomalies in the vicinity of the duplicated region (two vertical lines), consists of 5’ 
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trimming events at the breakpoints (green and orange), surrounded by discordant read 

pairs oriented such that the discordant read would be in the insertion. As shown in Figure 

25, reads aligning to the forward strand (blue) that overlap the region –d to -b are 

rewarded by factor S. Those that overlap +b to +d (these reads do not support an 

insertion at the current locus) are penalized by factor P. Negative strand discordant pairs 

(purple) are scored similarly according to their support of the hypothesis of an insertion at 

the current locus. Note the overlap O caused by the insertion-mediated duplication (DR), 

the typical length of O is 4-16 bases85. 

 

Figure 25. Assumed model of features around the sites of the insertion breakpoints that 
surround the duplicated sequence. Discordant reads within the S regions 
support an insertion and are rewarded, reads in the P regions are penalized. 

This detection algorithm was implemented in the GATK framework62 as a 

subclass of the LocusWalker class. A LocusWalker is a map-reduce based method of 
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accessing the data surrounding each genomic base. The trimming events at each base in 

each orientation are counted, and the presence of low-quality SNVs are assessed during 

the map step. During the reduce step regions containing both a forward and a reverse 

trimming event within the maximum overlap distance O and that exceed a threshold 

(default 20% of expected coverage) are identified. The reads in the surrounding region 

are then scored for the discordant read pair pattern. This evaluation of discordant read 

pairs is computationally expensive, but performing it only at the sites surrounding 5’ 

trimming allows for practical application genome-wide. 

5.4.2. Simulated Dataset 

The approach outlined above was able to discover the homozygous Alu insertion 

in the MAK gene. However, since these insertions are rare events, there has only been a 

single case of discovering a disease-causing retrotransposon insertion via exome 

sequencing, a larger set of know events will be needed to validate the performance of the 

insertion detection tool. This can be partially simulated by removing annotated 

retrotransposons that happen to be near captured exons from the reference genome. Reads 

from a normal individual can then be aligned to this modified reference genome in an 

attempt to find the Alu elements. There are some limitations to this simulation. First, only 

homozygous insertions can be simulated. Second, the duplicated region cannot be 

simulated because of sequence divergence between the two copies present in the genome. 

Finally, it cannot simulate the affects of capture efficiency when a true insertion disrupts 

the hybridization of targeting oligonucleotides. Because of these limitations in the 

simulation, a version of RIDE was modified that that only uses discordant read pairs and 

trimming at the insertion breakpoints as features.  
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5.5. Results 

5.5.1. Simulation Results 

I carried out a simulation by removing AluY elements that were annotated to 

occur in the hg19 RepeatMasker track near exons from the reference genome. Sequence 

reads from several exome samples were then aligned to this modified reference. Possible 

insertions of repetitive sequence were called using a version of RIDE that only took into 

account soft-clipping and discordant pairs without allowing for an insert-mediated 

overlap. Sensitivity and the false discovery rate were calculated considering a prediction 

within 50bp of a simulated insertion to be a true positive, and an unpredicted Alu with 

coverage in the unaltered genome of 20x a false negative. RIDE achieved a sensitivity of 

89.1% with a false discovery rate of 16.1%. 

5.6. Discussion and Conclusion 

False negative results in exome sequencing experiments are extremely costly, not 

only are the efforts for the experiment itself wasted, but also any subsequent validation 

experiments are also futile. False negatives in exome sequencing experiments occur when 

bioinformatic tools designed to detect common types of variants fail to detect a rare type 

of variant that causes a patient’s disease.  

Insertions of repetitive elements are one such class of variants that current tools 

fail to detect. RIDE is a novel bioinformatic tool designed to detect this rare variant type 

using the characteristic anomalies present in genomic alignments surrounding the site of 

the insertion. RIDE will close one analytical hole in current exome sequencing pipelines, 

and thus reduce the overall false negative rate of the experiment. 
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CHAPTER 6 

CONCLUSION 

Exome sequencing provides the ability to simultaneously sequence every known 

exon in the human genome. This technology has enabled the rapid discovery of many 

Mendelian disease genes that would not have been otherwise possible. Additionally, 

genetic testing in genetically heterogeneous diseases that used to require hundreds of 

individual tests to discover a patient’s disease-causing mutations can now be performed 

in a single and standardized experiment.  

Several bioinformatic tools have been presented here to aid in the accurate 

identification, interpretation, and validation of disease causing variants in exome 

sequencing experiments. First the Automated Sequence Analysis Pipeline (ASAP) 

provides automated workflows, variant calling, and variant annotation for the Sanger 

sequencing validation required when performing genetic testing. Second, the ASAP NGS 

annotation system aids in the interpretation of variants that affect amino acid sequence or 

splice sites. Third, tools and strategies to appropriately filter variants to reduce false 

positives due to systematic sequencing artifacts, variants inconsistent with disease 

segregation within a family, and variants that fall outside regions of autozygosity in 

consanguineous lineages were presented. Finally, a Retrotransposon Insertion Detector 

for Exomes (RIDE) was developed that allows the detection of a class of variants that 

were previously undetectable using existing tools. 

Until the error rates of next-generation sequencing-based experiments decreases, 

there will still be a need to perform confirmatory Sanger sequencing of identified 

variants. This confirmatory sequencing is still necessary because genetic testing results 

can only be used to determine prognosis, treatment options, and family planning 

decisions if they are based on accurate data. ASAP provides the tools necessary to 

efficiently perform this confirmatory sequencing. This includes automated base calling, 
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assembly, alignment and variation calling and variant annotation in addition to tools to 

manage files and results.  

Interpreting the many variants discovered by next-generation sequencing 

experiments can be one of the most difficult challenges of this work. This interpretation 

requires both the correct annotation of variants and appropriate filters to reduce the false 

positive rates of these experiments. The ASAP NGS annotation system is a tool that can 

help interpret variants in coding exons by predicting the effect a genomic change would 

have on the amino acid sequence. To interpret coding and non-coding variants also 

requires separating plausible disease-causing variants from the many false positives 

produced by these experiments. The systematic error catalog and the filtering based on 

consistency with disease segregation can help provide this separation. 

Ultimately, all of the best variant annotation, filtering and validation efforts are 

wasted if the variant detection algorithms do not identify the disease-causing mutations. 

RIDE, a Retrotransposon Detector for Exomes is a novel bioinformatic tool to close one 

such analytical shortfall. By using the characteristic anomalies present in the genomic 

sequence alignments of exomes, RIDE can detect the rare retrotransposon insertion 

events that can be major causes of Mendelian disease.  

While these tools enable efficient genetic testing using exome sequencing, much 

work remains. As genetic testing moves from Sanger sequencing to exome sequencing to 

whole genome sequencing, an increasing number of variants are discovered, and the 

interpretation of these variants becomes more challenging. Moving forward, the 

interpretation of variants in introns, UTR, and intergenic space will become increasingly 

important. While efforts like ENCODE are providing invaluable knowledge of the 

normal function of these regions, the affects of variations on the function of these 

regulatory regions is still poorly understood. Genome-scale studies of gene expression, 

alternative splicing, and transcription factor binding in affected patients will be 



 

 

86 

86 

instrumental in building the tools necessary to predict the impact of these non-coding 

changes. 
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