
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2013

Clubfoot Image Classification
Amanda Marie De Hoedt
University of Iowa

Copyright 2013 Amanda Marie De Hoedt

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/4836

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
De Hoedt, Amanda Marie. "Clubfoot Image Classification." MS (Master of Science) thesis, University of Iowa, 2013.
http://ir.uiowa.edu/etd/4836.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F4836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F4836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F4836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=ir.uiowa.edu%2Fetd%2F4836&utm_medium=PDF&utm_campaign=PDFCoverPages

CLUBFOOT IMAGE CLASSIFICATION

by

Amanda Marie De Hoedt

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science degree in Biomedical Engineering
in the Graduate College at

The University of Iowa

August 2013

Thesis Supervisor: Professor Thomas Casavant

Copyright by

AMANDA MARIE DE HOEDT

2013

All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the Master’s thesis of

Amanda Marie De Hoedt

has been approved by the Examining Committee
for the thesis requirement for the Master of Science
degree in Biomedical Engineering at the August 2013 graduation.

Thesis Committee:
Thomas Casavant, Thesis Supervisor

Terry Braun

Jose Morcuende

Todd Scheetz

 ii

TABLE OF CONTENTS

LIST OF TABLES .. iv	

LIST OF FIGURES ... vi	

LIST OF EQUATIONS .. viii	

CHAPTER 1: INTRODUCTION ... 1	

CHAPTER 2: BACKGROUND .. 3	

2.1	
 Clubfoot .. 3	

2.1.1	
 Definitions and History of Clubfoot ... 3	

2.1.2	
 International Clubfoot Registry ... 4	

2.1.3	
 Clubfoot Image Utility ... 5	

2.2	
 Tools and Techniques ... 5	

2.2.1	
 Image Feature Extraction ... 5	

2.2.2	
 Machine Learning ... 11	

CHAPTER 3: METHODS AND RESULTS ... 17	

3.1	
 Dataset ... 17	

3.2	
 Assigning Orientation Scores ... 17	

3.2.1	
 Nominal Orientation Assignment ... 17	

3.2.2	
 Numeric Procrustes Values .. 19	

3.3	
 Assigning Quality Scores .. 20	

3.3.1	
 Numeric Values .. 20	

3.3.2	
 Aggregate Value .. 22	

3.3.3	
 Nominal Quality Assignment ... 22	

3.3.4	
 Blind Image Quality Indices ... 25	

3.4	
 Feature Extraction ... 25	

3.4.1	
 Bag-of-Words Size ... 27	

3.5	
 Classifiers ... 28	

3.5.1	
 Optimal Classifier Selection .. 28	

3.6	
 Classification Schemes .. 29	

3.6.1	
 Basic Orientation and Quality .. 30	

3.6.2	
 Quality on All .. 32	

3.6.3	
 Quality on Quality .. 34	

3.6.4	
 Quality-Based .. 38	

3.6.5	
 Voting ... 40	

CHAPTER 4: CONCLUSION ... 44	

APPENDIX A: PROCRUSTES SCORE .. 46	

APPENDIX B: CLASSIFICATION SCHEMES .. 49	

 iii

REFERENCES .. 72	

 iv

LIST OF TABLES

Table 1: Orientation assignments of 2,058 clubfoot images. .. 18	

Table 2: Template images for Procrustes analysis. .. 19	

Table 3: Average Procrustes distances for matching image type to template. 20	

Table 4: Criteria for scoring quality of images. .. 21	

Table 5: Pearson product-moment correlation coefficients of scorers’ quality assignments. 21	

Table 6: The distribution of orientation assignments with respect to appended quality
assignments. ... 24	

Table 7: The distribution of orientation assignments with respect to 2-matching quality
assignments. ... 24	

Table 8: The distribution of orientation assignments with respect to 3-matching quality
assignments. ... 24	

Table 9: Average Blind Image Quality Indices (BIQI) scores for images of different qualities.
 .. 25	

Table 10: Performance of orientation and quality classification using feature vectors built
from a bag-of-words containing 150 and 600 words. .. 27	

Table 11: Classifier types implemented in the WEKA software application. 28	

Table 12: The performance of different classifiers with respect to orientation and quality
prediction. ... 29	

Table 13: A Naïve Bayes classifier was used in the basic classification scheme to predict an
image’s quality and orientation given a PHOW feature vector that was generated
with a bag-of-words containing 600 features. ... 31	

Table 14: A SMO classifier was used in the basic classification scheme to predict an image’s
quality and orientation given a PHOW feature vector that was generated with a
bag-of-words containing 600 features. ... 31	

Table 15: Three Naïve Bayes classifiers were used in the Quality on All classification scheme
to predict an image’s orientation given a PHOW feature vector that was generated
with a bag-of-words containing 600 features. ... 33	

Table 16: Three SMO classifiers were used in the Quality on All classification scheme to
predict an image’s orientation given a PHOW feature vector that was generated
with a bag-of-words containing 600 features. ... 33	

 v

Table 17: Three majority classifiers were used in the Quality on Quality classification scheme
to predict an image’s orientation. .. 36	

Table 18: Three Naïve Bayes classifiers were used in the Quality on Quality classification
scheme to predict an image’s orientation given a PHOW feature vector that was
generated with a bag-of-words containing 600 features. ... 36	

Table 19: Three SMO classifiers were used in the Quality on Quality classification scheme to
predict an image’s orientation given a PHOW feature vector that was generated
with a bag-of-words containing 600 features. ... 37	

Table 20: Naïve Bayes classifiers were used in the quality-based classification scheme to
predict an image’s quality and orientation given a PHOW feature vector that was
generated with a bag-of-words containing 600 features. ... 39	

Table 21: SMO classifiers were used in the quality-based classification scheme to predict an
image’s quality and orientation given a PHOW feature vector that was generated
with a bag-of-words containing 600 features. ... 39	

Table 22: Quality assignments of the voting mechanism, given all possible combinations of
binary classifier outputs. ... 41	

Table 23: Three majority classifiers were used in the voting classification scheme to predict
an image’s quality and orientation. ... 42	

Table 24: Naïve Bayes classifiers were used in the voting classification scheme to predict an
image’s quality and orientation given a PHOW feature vector that was generated
with a bag-of-words containing 600 features. ... 42	

Table 25: SMO classifiers were used in the voting classification scheme to predict an image’s
quality and orientation given a PHOW feature vector that was generated with a
bag-of-words containing 600 features. ... 43	

Table 26: The performance of Naïve Bayes and SMO quality and orientation classification
using different classification schemes. ... 44

 vi

LIST OF FIGURES

Figure 1: Clubfoot is a congenital foot disorder that affects approximately 1 in every 1000
children worldwide. Individuals with clubfoot experience bone and soft tissue
deformation in at least one foot, which inhibits their ability walk. 3	

Figure 2: Clubfoot can be treated with the Ponseti Method. This method uses serial casting
over a period of several weeks to gradually correct the foot. 4	

Figure 3: Scale Invariant Feature Transform (SIFT) descriptors are found by convolving an
image with Gaussian filters at different image scales. At each scale, the
differences between the Gaussian images are calculated. Key points are detected
by finding local maxima and minima. SIFT features are scale and rotation
invariant. ... 6	

Figure 4: K-means clustering is an algorithm used to group data points into k clusters based
on similarity. Centroids are represented as colored circles and data points are
represented as dark circles. .. 7	

Figure 5: Using a bag-of-words model, image feature vectors are expressed by a histogram of
the occurrences of representative descriptors within the image. Different levels
of descriptor occurrence can provide information about the contents of an image.
 .. 8	

Figure 6: Pyramid Histogram of Visual Words (PHOW) feature vectors are spatial pyramid
representations of SIFT bag-of-word descriptors. ... 9	

Figure 7: Sobel edge detection uses two filters to find gradients along the x and y axes of an
image. .. 10	

Figure 8: Machine learning is a process that builds a classifier trained on examples of real-
world data. The classifier learns relationships between the data set’s features and
class attribute. It can then predict the class of novel data. 12	

Figure 9: A support vector machine constructs a set of hyperplanes that maximally separates
a data set, allowing for classification. ... 14	

Figure 10: 10-fold cross validation breaks the data into 10 equal-sized, random, and stratified
subsets of data. In ten rounds of classification, a classifier is trained with nine of
the subsets and tested with the remaining subset. ... 16	

Figure 11: Images were be assigned one of six orientation attributes: “front”, “back”, “side”,
“front floor”, “back floor”, or “other”. ... 18	

Figure 12: For each image, PHOW features were mapped to a bag-of-words. Histograms of
word frequency were generated at 2x2 and 4x4 scales. An image’s feature vector
was comprised of the appended histograms. .. 26	

 vii

Figure 13: The basic quality classification scheme predicted an image’s nominal quality value
given a PHOW feature vector. .. 30	

Figure 14: The basic orientation classification scheme predicted an image’s orientation given
a PHOW feature vector. .. 30	

Figure 15: The quality-based classifier was used to classify all images in the data set using a
classifier trained only on images of a certain quality. The results of this classifier
would show if features from images of a certain quality (good, average, or poor)
were generally better at classifying all image types. .. 32	

Figure 16: A Quality on Quality classification scheme built three orientation classifiers using
images of a certain quality (good, average, poor). The classifiers were used to
classify only images of the same quality. The results of this classifier would show
if features from images of a certain quality (good, average, or poor) were generally
better at classifying images of the same type. ... 35	

Figure 17: The hierarchical quality-based classification scheme was developed to first classify
images according to quality, and then classify images’ orientation based on the
predicted quality. This classification scheme consists of four classifiers: one basic
quality classifier and three quality-based orientation classifiers. 38	

Figure 18: A voting classification scheme first classified images according to quality, and then
classified images’ orientation based on the predicted quality. It performed quality
classification using three binary quality classifiers that predicted whether or not an
image was of a certain quality (good, average, poor) and a voting mechanism to
average the output of the binary classifiers. Orientation was then predicted using
three quality-based orientation classifiers. ... 41	

 viii

LIST OF EQUATIONS

Equation 1: The Procrustes distance is calculated by finding the sum of squared distances
between points in two superimposed shapes. .. 11	

Equation 2: Naive Bayes classification makes predictions using Baye's Rule. 13	

Equation 3: A voting mechanism was used to determine an image’s quality based on the
output of three binary quality classifiers. It converted each nominal quality
value into a numerical value, or weight. It then used these weights to average
the output of the three binary quality classifiers. ... 40	

1

CHAPTER 1: INTRODUCTION

Clubfoot is a congenital foot disorder that, left untreated, can limit a person’s mobility

by making it difficult and painful to walk [1]. Although inexpensive and reliable treatment

exists, clubfoot often goes untreated in the developing world, where 80% of cases occur [2].

Untreated clubfoot can have a lasting impact on an individual’s life; lack of mobility limits

job prospects and clubfoot can carry a negative social stigma.

Many nonprofit and non-governmental organizations are partnering with hospitals and

clinics in the developing world to provide treatment for patients with clubfoot, and to train

medical personnel in the use of the Ponseti Method, the non-surgical serial casting method

widely used as treatment for clubfoot [3].

Many, if not most, of the clubfoot hospitals and clinics working with these

organizations function with limited infrastructure that is often taken for granted in

developed nations. Clinics and hospitals may have limited or no access to high-speed

internet, they may have unreliable power sources, and there may be few medical personnel

[4; 5]. Civil infrastructure such as road quality or access to bridges may also be prohibitive

for patients, who must travel (sometimes for many hours) to a hospital or clinic each week

for treatment.

As a component of these partnerships, clinics and hospitals are collecting patient

information with a web-based application that also has offline capabilities [6]. Some of this

patient information, such as photographs, requires expert quality assessment. Such

assessment may occur at a later date by a staff member in the hospital, or it may occur in a

completely different location through the web interface.

2

Photographs capture the state of a patient at a specific point in time. If a photograph is

not taken correctly, and as a result, has no clinical utility, the photograph cannot be recreated

because that moment in time has passed.

These observations have motivated the desire to perform real-time classification of

clubfoot images as they are being captured in a possibly remote and challenging

environment. In the short term, successful classification could provide immediate feedback

to those taking patient photos, helping to ensure that the image is of good quality and the

foot is oriented correctly at the time of image capture. In the long term, this classification

could be the basis for automated image analysis that could reduce the workload of a busy

staff, and enable broader provision of treatment.

After two years of work on this classification problem, a greatly enhanced

understanding of the challenges associated with clubfoot image classification has been

acquired. Furthermore, modest success in orientation classification of this highly variable

data set has been achieved. The methodology and results for this classification are outlined

in the following chapters.

3

CHAPTER 2: BACKGROUND

This chapter provides basic definitions of terms and concepts used throughout the

thesis. It also serves as a brief introduction to a number of algorithms and tools. These

tools were used in the software development and data analyses outlined in chapter 3.

2.1 Clubfoot

As clubfoot is the subject of this research, it is important to understand what clubfoot

is, how it is treated, the barriers to treatment, and the work that has been done to eliminate

these barriers.

2.1.1 Defini t ions and History o f Clubfoot

Clubfoot is a congenital foot disorder that affects approximately 1 in every 1,000

children worldwide [7]. Individuals with clubfoot experience bone and soft tissue

deformation in at least one foot, which inhibits their ability walk [1].

Figure 1: Clubfoot is a congenital foot disorder that affects approximately 1 in every 1000
children worldwide. Individuals with clubfoot experience bone and soft tissue deformation

in at least one foot, which inhibits their ability walk.

4

If left untreated, clubfoot can prohibit individuals from being productive members

of society by limiting their mobility and causing social stigma [2]. This is especially

pronounced in the developing world, where 80% of clubfoot occurs, and access to treatment

is limited.

Although little is known about the causes of clubfoot, an inexpensive and effective

treatment is available. The Ponseti Method, developed by Dr. Ignacio Ponseti at the

University of Iowa Hospitals and Clinics, is a serial casting treatment in which the foot is

manipulated into the correct position over a period of several weeks [8]. It is analogous to

the process of straightening teeth in the field of orthodontics. Each week, the foot is

manipulated and held in place with a cast. The casting stage of treatment takes about five to

eight weeks. Following manipulation, the child wears a brace for several years so the feet do

not relapse.

Figure 2: Clubfoot can be treated with the Ponseti Method. This method uses serial casting
over a period of several weeks to gradually correct the foot.

2.1.2 Internat ional Clubfoot Regis try

Many organizations and groups exist to reduce the prevalence of clubfoot by

increasing the availability of treatment and by training medical personnel in the Ponseti

Method. In collaboration with miraclefeet and the Ponseti International Association, the

International Clubfoot Registry was developed [6; 9; 10]. This online tool collects patient

5

information and supports clinical, training, and research needs. In response to the limited

infrastructure resources available in the developing world, an offline application was further

developed. Now, with the growing prevalence of mobile devices in all parts of the world,

the development of a mobile application has been proposed [11].

2.1.3 Clubfoot Image Uti l i ty

One of the important functionalities of the International Clubfoot Registry is the

ability for clinics to upload photographs of their patients’ feet before, during, and after

treatment. Photographs are important because they can be used to make a diagnosis,

monitor the progression of a patient’s treatment, and evaluate the ability of medical

personnel to successfully treat the disorder.

2.2 Tools and Techniques

In an effort to classify clubfoot photos, a number of tools and techniques in the fields

of image processing, machine vision, and machine learning were used. First, characteristic

elements, or image features, had to be extracted from the digital images. Then the computer

“learned” relationships between these features and properties of the image. As a result,

features could be used to infer information about novel images. This section will present a

broad overview of the tools and techniques that were used for feature extraction and

machine learning as part of this research.

2.2.1 Image Feature Extract ion

Digital images are represented as an array of numbers that correspond to color and

intensity. There are many methods for manipulating these numerical arrays to find points of

interest in an image. MATLAB is a computer application that provides a powerful set of

array-based tools that facilitate, or even implement, these methods [12]. VLFeat is an open-

source library that integrates with MATLAB and implements many common machine vision

6

methods [13]. This section will present an overview of feature extraction methods relevant

to this thesis.

2.2.1.1 Scale Invariant Feature Transform

Scale Invariant Feature Transform (SIFT) descriptors were described by David Lowe

in 1999 and the methodology for extracting SIFT descriptors was patented in 2004 by The

University of British Columbia [14; 15]. Descriptors are found by convolving an image with

Gaussian filters at different image scales. At each scale, the differences between the

Gaussian images are calculated, and then key points are detected.

Figure 3: Scale Invariant Feature Transform (SIFT) descriptors are found by convolving an
image with Gaussian filters at different image scales. At each scale, the differences between
the Gaussian images are calculated. Key points are detected by finding local maxima and

minima. SIFT features are scale and rotation invariant.

Key points are local maxima and minima found by comparing each pixel’s value to

the value of each of its neighbors within an image scale. Key points are filtered to remove

those with low contrast and those found along edges, while keeping key points located at

corners. Each key point is assigned a gradient magnitude and orientation.

There are many publicly-available implementations of Lowe’s SIFT, for example,

VLFeat’s MATLAB-based implementation, which was used in this analysis. In the VLFeat

7

implementation, SIFT features are stored and referenced using a different format than that

used in Lowe’s implementation, but the resulting key points and descriptors are nearly

equivalent.

SIFT features were chosen for this analysis due to their robustness. The clubfoot

data set has a high degree of variability; photographs were taken with different cameras,

under different lighting conditions, at different angles, with young, mobile children. SIFT

descriptors’ invariance to image scale and rotation, and robust performance with changes to

illumination and noise made it an excellent candidate.

2.2.1.2 K-Means Clustering

K-means clustering is an algorithm used to group data points into K clusters based on

similarity [17]. The algorithm was introduced by Stuart Lloyd and has four basic steps.

1) K initial “centroids” are generated within the domain of the data.

2) Data points are mapped to the nearest centroid, creating K clusters of data points.

3) The centroid of each cluster is calculated, and the centroid values are updated

accordingly.

4) Steps 2 and 3 are repeated until convergence.

Figure 4: K-means clustering is an algorithm used to group data points into k clusters based
on similarity. Centroids are represented as colored circles and data points are represented as

dark circles.

8

K-means clustering is used to group clubfoot image features; VLFeat implements

Elkan k-means clustering for faster performance compared to Euclidean k-means clustering

[18; 19].

2.2.1.3 Bag-of-Words

Bag-of-words (BOW) is a technique that was originally developed for analysis of

textual data, but it can also be applied to visual data by treating descriptors as words [20].

Using this technique, image feature vectors are expressed by a histogram of the occurrences

of representative descriptors within the image [21].

There are three main steps for a bag-of-words implementation. First, descriptors are

obtained from the entire data set, or a representative subset of the data. From this set of

descriptors, a representative sample is chosen to create an unordered bag-of-words. This

can be achieved using an algorithm such as k-means clustering. Finally, all of the descriptors

in an image are found and mapped to the bag-of-words features using a distance metric.

This results in a histogram showing the prevalence of each bag-of-words feature within the

sample space [22].

Figure 5: Using a bag-of-words model, image feature vectors are expressed by a histogram of
the occurrences of representative descriptors within the image. Different levels of descriptor

occurrence can provide information about the contents of an image.

9

A bag-of-words was generated for the clubfoot data set using VLFeat implemented

in MATLAB.

2.2.1.4 Pyramid Histogram Of Visual Words

Pyramid Histogram of Visual Words (PHOW) feature vectors are spatial pyramid

representations of SIFT bag-of-word descriptors [23].

Figure 6: Pyramid Histogram of Visual Words (PHOW) feature vectors are spatial pyramid
representations of SIFT bag-of-word descriptors.

Images are segmented with grids of varying sizes (1x1, 2x2, 4x4, etc.) and a bag-of-

words histogram is constructed for each image space. The histograms are appended

together to create a PHOW feature vector. By computing histograms at different levels,

PHOW feature vectors are able to provide location information at varying granularities.

VLFeat implements PHOW feature extraction according to the methodology outlined by

Bosch et al. The PHOW feature vectors extracted using this implementation were used to

classify images in the clubfoot data set.

2.2.1.5 Blind Image Quality Indices

Blind Image Quality Indices (BIQI) are numerical values that represent image

degradation [24]. The BIQI value ranges from 0 to 100, with 0 representing the best quality

10

and 100 representing the worst. BIQI uses a no-reference image quality assessment

algorithm that estimates the amount of distortion in an image. Types of distortion estimated

by BIQI are image compression, white noise, Gaussian blur, and Fast fading. The degree of

computed distortion determines the overall score assigned to an image.

BIQI scores were calculated for the images in the clubfoot data set in an effort to

measure the images’ degradation and overall quality.

2.2.1.6 Edge Detection

Edge detection is a technique used in image processing that is aimed at finding edges

within an image. Typically, these techniques find edges by searching for intensity changes, or

gradients, within an image [25]. This is achieved by convolving an image with one or more

matrices, called “filters” or “kernels” [26]. Convolution assigns areas of continuity low

values while areas with variation are assigned high values. Thus, edges are found.

Sobel edge detection, implemented in MATLAB was used to find edges in the

clubfoot data set. The Sobel operator uses two 3x3 filters to find gradients in two directions.

-1 0 +1 +1 +2 +1
-2 0 +2 0 0 0
-1 0 +1 -1 -2 -1

Figure 7: Sobel edge detection uses two filters to find gradients along the x and y axes of an
image.

2.2.1.7 Procrustes Analysis

Procrustes analysis is a statistical methodology used for comparing the similarity of

shapes [27]. It achieves this in two steps. First, a test shape and template shape are

superimposed using linear translation, scaling, and rotation. The second step is to determine

11

the Procrustes distance between the superimposed images. This is calculated by finding the

sum of squared distances between points in the shapes.

Equation 1: The Procrustes distance is calculated by finding the sum of squared distances
between points in two superimposed shapes.

𝑑 = (𝑥!! − 𝑥!!)! + (𝑦!! − 𝑦!!)!
!

!!!

Procrustes distance is built-in functionality of MATLAB, and it was collected as a

numerical measure of an image’s orientation.

2.2.2 Machine Learning

Machine Learning has been one of the fastest growing fields, and widely deployed

methods, for a large array of problems which require extraction of knowledge from many

instances or examples, due to a lack of more traditional analytic modeling techniques. This

research deployed a machine learning approach that can be used to automatically judge the

acceptability of photos taken of the feet of children being treated in a remote, off-line

situation – usually with a smart phone camera.

The “learning” process is complex, but at its core is the need to determine the

distinguishing features embedded in an image, and then partition images based on the most

distinguishing features. Once features have been extracted from an image or set of images,

the computer must “learn” how these features relate to image properties. Learning these

relationships allows the computer to predict properties of novel images.

Waikato Environment for Knowledge Analysis (WEKA) is a software tool that aids

in data analysis and classification by providing implementations of many different types of

12

classifiers [28]. This section will provide a cursory overview of the field of machine learning

as it applies to the specific classification problem being addressed in this thesis.

2.2.2.1 General principles

Machine learning has fundamental building blocks that are used for data

classification [29]. The process starts with obtaining examples, or a data set from a real-

world set of data. Each instance in a data set will have a set of features, or attributes. One

of these attributes is the class attribute. The class attribute is the property that needs to be

predicted, and is the “answer” to the classification.

The data set is used to train a classifier so it is able to predict the class attribute given

the set of features. Once a classifier has been built, it can be used to predict the class of

novel data.

Figure 8: Machine learning is a process that builds a classifier trained on examples of real-
world data. The classifier learns relationships between the data set’s features and class

attribute. It can then predict the class of novel data.

13

Data that is used to train a classifier should not be input to the classifier as a novel

example for testing or prediction purposes. This is because the classifier has seen both the

features and the class attributes of all the examples it was trained on, so it “knows” the

answer to the classification problem. Predicting the class of an instance used for training is

called overtraining, and inhibits the most valuable attribute of powerful predictors –

generalization.

2.2.2.2 Classifiers

There are many types of classifiers that can be used in machine learning. Naïve

Bayes and Support Vector Machine classifiers were found to perform well on the data set

used in this research, and their performance was compared to that of a majority classifier.

2.2.2.2.1 Naïve Bayes Classifier

The Naïve Bayes classifier is a core methodology that has been used for at least 55

years [30]. It assumes the independence of attributes to calculate the probability that, given a

set of attribute values, a condition occurs. This is summarized as Baye’s Rule:

Equation 2: Naive Bayes classification makes predictions using Baye's Rule.

𝑃 𝑐! 𝑥 =
𝑃 𝑥 𝑐! 𝑃(𝑐!)

𝑃(𝑥)

WEKA implements a Naïve Bayes classifier following the methodology described by

George H. John et al [31].

2.2.2.2.2 Support Vector Machine Classifier

A support vector machine constructs a set of hyperplanes that maximally separates a

data set, allowing for classification [32]. Support vectors, or data points, are found along the

14

margin surrounding the hyperplane. Data points falling on opposite sides of the hyperplane

have different predicted classes.

Figure 9: A support vector machine constructs a set of hyperplanes that maximally separates
a data set, allowing for classification.

A SVM can be extended to higher-dimension spaces, and can take advantage of non-

linear projections [33]. WEKA achieves this using the sequential minimal optimization

algorithm presented by John C. Platt [34].

2.2.2.2.3 Majority Classifier

A majority classifier predicts the probability of the majority class in the data set. In

WEKA’s implementation, the majority class is found by taking the mean or mode of the

data. Since the clubfoot data set used in this analysis has nominal class labels, the classifier

predicts the mode. The accuracy of a majority classifier can be used as a baseline to measure

the success of other classification types.

15

2.2.2.3 Classification Schemes

Multiple classifiers have been shown to improve classification results when trying to

group images into meaningful categories [35]. Multiple classifiers are organized in a

hierarchical fashion, which can be fixed or determined automatically [36; 37].

Classifiers in a hierarchical structure often have binary predictions, but it is not a

requirement and some classification schemes take advantage of multi-class classifiers.

Hierarchies are organized according to the nature of the data set being classified, and as a

result, there are no standardized organization schemes for multiple classifiers. Several

hierarchical classification schemes were developed and analyzed to predict the orientation

and quality of images in the clubfoot data set.

2.2.2.4 10-Fold Cross Validation

Different classifiers and classification schemes will have better or worse performance

on different sets of data. To find the classifier and classification scheme that works best on

a particular data set, testing needs to be performed in a way that most accurately reflects the

real environment for the deployed classifier among unknown instances, and that prevents

overtraining.

10-fold cross validation breaks the data into 10 equal-sized, random, and stratified

subsets of data [38]. The classifier is first trained on subsets 1-9, and then tested with subset

10. The process is repeated, building a total of 10 classifiers, where each subset serves as the

testing set a single time. Classification of images in the clubfoot data set was tested using

10-fold cross validation.

16

Figure 10: 10-fold cross validation breaks the data into 10 equal-sized, random, and stratified
subsets of data. In ten rounds of classification, a classifier is trained with nine of the subsets

and tested with the remaining subset.

17

CHAPTER 3: METHODS AND RESULTS

3.1 Dataset

Dr. Jose Morcuende provided a set of 2,791 photos of clubfoot patients. These

photos were taken by medical personnel in the University of Iowa Children’s Hospital

Clubfoot Clinic and by family members in the patients’ homes. The dataset was organized

for use by clinicians in the clinic, and needed to be “cleaned” and reorganized for analysis.

Duplicate images were found using the freeware tool, VisiPics [39]. With a strict filter

setting, 662 images were found to have one or more duplicates. 672 images were removed

from the set to eliminate all copies of these images.

Some images contained patient identifying information within the photo, such as

names, date of birth, or faces. A total of 61 images with identifying information were

manually removed from the dataset.

These filters reduced the data set to 2,058 photos, which were renamed using a shell

script.

3.2 Assigning Orientation Scores

Orientation refers to the orientation of the foot within the photo. Photos with

different orientations of the feet provide different clinical utility. Being able to automatically

detect orientation could help ensure photos’ utility.

3.2.1 Nominal Orientat ion Assignment

Photos were manually assigned an orientation attribute representing the orientation

of the feet in the image. An image could be assigned one of six orientation attributes:

“front”, “back”, “side”, “front floor”, “back floor”, or “other”.

18

Front Back Side

Front Floor Back Floor Other

Figure 11: Images were be assigned one of six orientation attributes: “front”, “back”, “side”,
“front floor”, “back floor”, or “other”.

Table 1: Orientation assignments of
2,058 clubfoot images.

Orientation Number of Images
Front 582
Back 380
Side 168
Front Floor 216
Back Floor 197
Other 515
Total 2058

Maria Miller, Clinic Nurse Coordinator at the University of Iowa Hospitals and

Clinics, helped to define these categories by providing the instructions that are given to

medical personnel and family members who are responsible for taking photographs of the

feet.

19

3.2.2 Numeric Procrustes Values

Procrustes distance measures the difference between two shapes [27]. Images from

the clubfoot data set were converted into shapes by applying MATLAB’s Sobel edge

detector to each image [12].

One image from each of the orientation categories “front”, “back”, “side”, “front

floor”, and “back floor” was selected to be used as a template photo representing an

orientation category. Template photos were selected for low background noise and clear,

distinct lines outlining the feet.

Table 2: Template images for Procrustes
analysis.

Orientation Template Photo Number
Front 938
Back 164
Side 2685
Front Floor 1482
Back Floor 498

Each of the remaining images in the data set was mapped to each of the template

images using Procrustes analysis. This generated five distance measures for each image,

corresponding to the degree of difference between the image and each of the orientation

category templates. Higher scores corresponded to a greater difference between the image

and the template.

20

Table 3: Average Procrustes distances for matching image type to template.

Image Type
Average Procrustes Value For Matching Image Type to Template

Template
Front Back Side Front Floor Back Floor

Front .57 .58 .61 .67 .60
Back .58 .57 .59 .68 .59
Side .64 .62 .59 .73 .62
Front Floor .63 .60 .60 .69 .60
Back Floor .63 .61 .61 .69 .61
Other .62 .60 .62 .72 .59

It was expected that the average Procrustes distance measure for each image type

would be minimized when calculated using the template of the same image type. This was

true for two of the five orientations: front and side. Although back images that were

matched with a back template yielded an average Procrustes distance measure lower than the

measure generated when compared to other templates, the distance measure was not

significantly different from the average distance measure of back images matched with the

front template.

The Procrustes distance measures were not used as features for machine learning

classification.

3.3 Assigning Quality Scores

Quality of an image in this project has two components. The first is the degree of

image degradation, which can be the result of many factors including noise, artifacts, and

blur. The second component of image quality is the clinical utility of the photo.

3.3.1 Numeric Values

In order to numerically represent an image’s quality, a scoring system was developed.

Two undergraduate students, Emily McDougall and Ashley Home, and one graduate student

21

used this system to rate each image’s quality according to several features representing both

image and diagnostic quality. Six criteria that could affect the quality of an image were

defined. Each photo received a score ranging from (low) 1-5 (high) for each of the criteria.

Example images were provided, along with a table for entering scores.

Table 4: Criteria for scoring quality of images.

Criteria Good (5) Average (3) Poor (1)
Background Solid Not solid; Good

contrast
Not solid; Poor
contrast

Hands/Objects None or minimal
hands

Minimal hands Hands or other
objects

Exposure Good Good Low/High
Noise Low Moderate High
Blur Low Moderate High
Percent of photo
containing
hands/legs

65-85% 55-65% <55% or >85%

Pearson product-moment correlation coefficients showed that the scores assigned by

the three individuals had medium to large positive correlation for all but the exposure and

noise categories, which had low positive correlation [40].

Table 5: Pearson product-moment correlation coefficients of scorers’ quality
assignments.

 Pearson Product-Moment Correlation Coefficients
Emily-Ashley Emily-Amanda Ashley-Amanda

Background .66 .61 .83
Hands/Objects .65 .62 .71
Exposure .47 .47 .40
Noise .34 .33 .35
Blur .62 .68 .69
Percent of photo
containing hands/legs

.55 .42 .56

Total .59 .58 .72

22

3.3.2 Aggregate Value

Two of the three students provided an aggregate, or nominal quality score of

“good”, “average”, or “poor” for each image. This value represented their overall

(somewhat subjective) opinion of the image’s quality taking into consideration all of the

numerical quality criteria with an unspecified weighting of the various underlying quality

parameters.

Because one student did not provide a nominal quality assignment, a Naïve Bayes

classifier was used to predict what their assignment would have been given their numeric

quality scores and the mapping of underlying to overall scores of the other two students.

This classifier was built using a training set consisting of the scores generated by the other

two students. It used numeric quality scores as attributes and the nominal quality

assignment as the class.

To assess the performance of the classifier, 10-fold cross validation was performed

and was found to have an accuracy of 77%.

Steps were not taken to improve this classification because these predicted nominal

scores were not directly used in future data analysis or classification. They were only used to

judge quality classification performance against a pseudo-gold standard.

3.3.3 Nominal Quali ty Assignment

When predicting image quality in subsequent analyses, the nominal quality

assignment was used as the class attribute. It was important to choose the most accurate and

robust nominal quality assignments since they would serve as the class definition. Several

methods were considered.

23

3.3.3.1 Appending

The dataset could be duplicated to reflect both students’ nominal quality

assignments. This would preserve their assignments, but could lead to classifier overtraining.

3.3.3.2 Averaging

Students’ nominal assignments could be assigned a numerical value, allowing for the

two scores to be averaged. This method was not chosen because rounding in either

direction would create a bias in the data and diminish the value of each student’s score.

3.3.3.3 2-Matching

The data set could be reduced to only include images where the two student’s

assigned nominal scores matched. This would preserve the nominal assignments while

eliminating the concern of overtraining.

3.3.3.4 3-Matching

This is a more stringent extension of 2-matching. In this case, the data set could be

reduced to only include images where the two student’s assigned nominal scores and the

third student’s predicted nominal scores matched. This again preserved nominal

assignments while eliminating the concern of overtraining. Furthermore, it reinforced that

the nominal quality metric was accurate because the numeric scores of many images were

considered in the prediction of the final student’s scores.

The subset of data in which the three nominal quality scores matched was ultimately

used in subsequent analysis of classifiers.

24

Table 6: The distribution of orientation assignments with respect to appended quality
assignments.

 Front Back Side Front Floor Back Floor Other
Good 306 188 21 31 19 93 658
Average 582 405 150 176 170 397 1880
Poor 276 167 165 225 205 540 1578
 1164 760 336 432 394 1030 4116

Table 7: The distribution of orientation assignments with respect to 2-matching quality
assignments.

 Front Back Side Front Floor Back Floor Other
Good 92 8 51 3 7 30 191
Average 180 44 129 50 46 116 565
Poor 80 75 43 69 57 200 524
 352 127 223 122 110 346 1280

Table 8: The distribution of orientation assignments with respect to 3-matching quality
assignments.

 Front Back Side Front Floor Back Floor Other
Good 90 7 39 3 7 24 170
Average 81 22 75 12 26 61 277
Poor 38 20 39 18 30 110 225
 209 49 153 33 63 195 702

25

3.3.4 Blind Image Quali ty Indices

The Blind Image Quality Indices were calculated for each image in an effort to

measure image degradation [24; 41]. The BIQI value ranges from 0 to 100, with 0

representing the best quality and 100 representing the worst.

The BIQI average scores were calculated for the set of 702 good, average, and poor

images that had three matching nominal values.

Table 9: Average Blind Image
Quality Indices (BIQI) scores

for images of different qualities.

 Average BIQI
Good 48.5
Average 47.8
Poor 46.9

Performing a Student’s t-test revealed that the mean BIQI scores were not

significantly different. Thus, BIQI was not used as a determinant of quality.

3.4 Feature Extraction

Bag-of-words (BOW) feature extraction was implemented in MATLAB using the

VLFeat toolbox [12; 19]. A bag of words was created by extracting Pyramid Histogram of

Visual Words (PHOW) descriptors [23] from 50 randomly selected images and using k-

means clustering to find K centroids that represent the extracted features. For each image,

the PHOW features were mapped to this bag-of-words. Histograms of word frequency

were generated at 2x2 and 4x4 scales. An image’s feature vector was comprised of the

appended histograms.

26

Figure 12: For each image, PHOW features were mapped to a bag-of-words. Histograms of
word frequency were generated at 2x2 and 4x4 scales. An image’s feature vector was

comprised of the appended histograms.

27

3.4.1 Bag-of -Words Size

Features were calculated with a bag-of-words size of K=150 and K=600. Because

PHOW features are multi-scale, this results in a feature vector that is 3,000 and 12,000 units

long, respectively.

To compare the relative effectiveness of these two different sizes, a Naïve Bayes

classifier was built to predict image orientation and quality using PHOW feature vector

attributes. The classifier was assessed using 10 runs of 10-fold cross validation.

Table 10: Performance of orientation and quality classification
using feature vectors built from a bag-of-words containing 150

and 600 words.

 Orientation Accuracy (%) Quality Accuracy (%)
Run 150 BOW 600 BOW 150 BOW 600 BOW
1 38.2 42.7 35.9 34.2
2 38.5 43 34.8 35.9
3 37.7 41.9 37.3 37.2
4 37.2 39.5 36.2 36.6
5 37.9 43.3 37.7 37.7
6 37.9 42.2 36.2 35.8
7 37.5 41.2 37.7 37.7
8 38 41.5 36.1 37.2
9 37 42.6 34.4 34.9
10 38.2 42.2 36.3 37
Average 37.81 42.01 36.26 36.42

Comparing the accuracy of the two classifications using a Student’s t-test, it was found

that orientation performance was significantly better when k=600 (p=1.6E-9). Performance

of quality prediction was not significantly different.

28

3.5 Classifiers

Waikato Environment for Knowledge Analysis (WEKA) is a software tool that aids in

data analysis and classification by providing implementations of many different types of

classifiers [28]. Classifier types implemented in WEKA include Naïve Bayes, decision trees,

nearest neighbor, logistic regression, support vector machine, ensemble, and majority

classifiers [31; 34; 42-46].

Table 11: Classifier types implemented in the WEKA software
application.

Classifier Type WEKA Implementation
Naïve Bayes: Naïve Bayes

Decision Tree: J48
Nearest Neighbor: IBk

Logistic Regression: Logistic
Support Vector Machine: SMO

Ensemble: Random Forest
 JRip

Majority: ZeroR

Different types of classifiers may be more or less successful than others at

classification, depending on the nature of the data set, and the different capabilities of each

classifier.

3.5.1 Optimal Class i f i er Selec t ion

To compare the performance of different types of classifiers, orientation and quality

classifiers were built using orientation and nominal quality scores as class variables, and using

PHOW feature vectors generated with a k=150 bag-of-words. The classifiers’ accuracies

were assessed with 10 runs of 10-fold cross validation.

29

Table 12: The performance of different classifiers with respect to orientation
and quality prediction.

Classifier Orientation Accuracy (%) Quality Accuracy (%)
Naïve Bayes 37.8 36.3
J48 30.2 34.9
Ibk, k=10 33.7 38.3
Logistic 25.5 36.9
SMO 41.6 39
Random Forest, I=10 36.5 37.2
JRip 33.2 37.2
Majority 29.8 39.5

The support vector machine (SMO) had the best performance, and Naïve Bayes

classification was also a top performer.

3.6 Classification Schemes

While predicting image orientation was the initial goal of this project, predicting

quality became a significant focus of this research as the nature of the difficulties in

classifying orientation appeared to be dependent on image quality. Image quality was

believed to have an effect upon a classifier’s ability to classify orientation. Thus several

hierarchical schemes were developed to address these considerations.

Classification was implemented in Java using the WEKA plugin. Each was assessed

with 10 runs of 10-fold cross validation. Results were then compared to a majority classifier.

Based on the results of BOW size and classifier testing, images were classified using a k=600

BOW PHOW feature vector, and an orientation or nominal quality score as the class

variable. SMO and Naïve Bayes classifiers were used in this analysis.

30

3.6.1 Basic Orientat ion and Quali ty

Two basic orientation classifiers were developed to predict quality and classification.

These classifiers function independently of each other. These simply predicted the quality or

orientation class using a PHOW feature vector.

Both the Naïve Bayes and SMO classifiers in the basic orientation scheme performed

better than a majority classifier. The SMO basic quality classifier also performed better than

the majority classifier (p=0.007), although it did not have substantially better performance.

Figure 13: The basic quality classification scheme predicted an image’s nominal quality value
given a PHOW feature vector.

Figure 14: The basic orientation classification scheme predicted an image’s orientation given
a PHOW feature vector.

31

Table 13: A Naïve Bayes classifier was used in the basic
classification scheme to predict an image’s quality and

orientation given a PHOW feature vector that was
generated with a bag-of-words containing 600 features.

Naïve Bayes 600 BOW Basic Classification Scheme
Run Orientation Accuracy (%) Quality Accuracy (%)
1 42.7 34.2
2 43.0 35.9
3 41.9 37.3
4 39.5 36.6
5 43.3 37.7
6 42.2 35.8
7 41.2 37.7
8 41.5 37.2
9 42.6 34.9
10 42.2 37.0
Average 42.0 36.4

Table 14: A SMO classifier was used in the basic
classification scheme to predict an image’s quality and

orientation given a PHOW feature vector that was
generated with a bag-of-words containing 600 features.

SMO 600 BOW Basic Classification Scheme
Run Orientation Accuracy (%) Quality Accuracy (%)
1 47.6 40.9
2 47.9 40.7
3 45.9 41.5
4 48.3 40.0
5 47.0 40.2
6 45.0 38.9
7 47.4 41.2
8 46.7 41.2
9 47.3 40.0
10 48.3 39.5
Average 47.1 40.4

32

3.6.2 Quali ty on All

Three quality-on-all classifiers were built to determine whether features from images

of a certain quality (good, average, or poor) were generally better at classifying all image

types. It was hypothesized that building a classifier with feature vectors from either good or

poor images may have better performance. Good images might have this result because

there may be fewer “noisy” features. Poor images might have this result because the most

important features would have to be distilled during training.

Three different classifiers were built using the PHOW feature vectors of images

within a single nominal quality class (good, average, or poor). Each classifier was used to

classify every image in the data set. This classification scheme shows the performance of

classifiers built with certain quality images.

Figure 15: The quality-based classifier was used to classify all images in the data set using a
classifier trained only on images of a certain quality. The results of this classifier would show
if features from images of a certain quality (good, average, or poor) were generally better at

classifying all image types.

33

Table 15: Three Naïve Bayes classifiers were used in the Quality on All
classification scheme to predict an image’s orientation given a PHOW

feature vector that was generated with a bag-of-words containing
600 features.

Naïve Bayes 600 BOW Quality on All Classification Scheme
Run Good Orientation

Accuracy (%)
Average Orientation
Accuracy (%)

Poor Orientation
Accuracy (%)

1 35.5 38.9 34.5
2 36.8 38.9 35.6
3 34.3 38.2 34.8
4 35.6 38.6 35.5
5 35.5 37.7 35.6
6 34.2 38.7 35.3
7 33.3 39.9 35.6
8 35.2 38.5 35.8
9 34.5 38.6 34.9
10 35.2 37.6 35.3
Average 35.0 38.6 35.3

Table 16: Three SMO classifiers were used in the Quality on All
classification scheme to predict an image’s orientation given a PHOW

feature vector that was generated with a bag-of-words containing
600 features.

SMO 600 BOW Quality on All Classification Scheme
Run Good Orientation

Accuracy (%)
Average Orientation
Accuracy (%)

Poor Orientation
Accuracy (%)

1 36.9 41.2 37.5
2 36.8 41.7 37.9
3 36.3 40.6 38.3
4 37.0 41.9 39.3
5 34.9 40.7 37.9
6 35.9 41.9 37.7
7 35.6 41.6 38.9
8 36.6 41.0 38.2
9 35.5 40.7 38.7
10 37.2 41.2 38.0
Average 36.3 41.3 38.2

34

Although the overall performance of all three classifiers was better than a majority

classification, they also performed worse than the basic classification scheme.

The classifiers’ performance corresponded to the number of photos available for

training. There were 170 good quality images, 277 average quality images, and 255 poor

quality images. The lower performance of all classifiers reflects the diminished size of the

training set.

These results do not support the argument that a using a classifier built with feature

vectors of only high or low-quality images is better at classifying all types of images.

3.6.3 Quali ty on Quali ty

Three quality-on-quality classifiers were built to determine if features from images of

a certain quality (good, average, or poor) were generally better at classifying images of the

same type. If this were true, it would motivate hierarchical classification where images were

first classified according to quality and then classified according to orientation based on

those results.

Three different classifiers, good, average, and poor, were built with PHOW feature

vectors from only good, average, or poor images. Each classifier was used to classify only

images of the same quality.

35

Figure 16: A Quality on Quality classification scheme built three orientation classifiers using
images of a certain quality (good, average, poor). The classifiers were used to classify only

images of the same quality. The results of this classifier would show if features from images
of a certain quality (good, average, or poor) were generally better at classifying images of the

same type.

36

Table 17: Three majority classifiers were used in the
Quality on Quality classification scheme to predict an image’s

orientation.

Majority Quality on Quality Classification Scheme
Overall
Orientation
Accuracy (%)

Good
Orientation
Accuracy (%)

Average
Orientation
Accuracy (%)

Poor
Orientation
Accuracy (%)

29.8 52.9 29.2 43.1

Table 18: Three Naïve Bayes classifiers were used in the Quality on Quality
classification scheme to predict an image’s orientation given a PHOW

feature vector that was generated with a bag-of-words containing 600 features.

Naïve Bayes 600 BOW Quality on Quality Classification Scheme
Run Overall

Orientation
Accuracy (%)

Good
Orientation
Accuracy (%)

Average
Orientation
Accuracy (%)

Poor
Orientation
Accuracy (%)

1 44.2 42.4 40.4 52.9
2 46.0 45.1 40.4 56.5
3 44.0 42.0 39.0 55.3
4 45.3 43.1 40.1 57.1
5 45.3 44.7 39.4 55.9
6 45.9 41.6 41.2 60.0
7 46.3 42.0 41.9 60.0
8 45.7 42.7 41.2 57.6
9 44.2 41.6 39.0 56.5
10 45.4 44.7 40.1 55.3
Average 45.2 43.0 40.3 56.7

37

Table 19: Three SMO classifiers were used in the Quality on Quality
classification scheme to predict an image’s orientation given a PHOW

feature vector that was generated with a bag-of-words containing 600 features.

SMO 600 BOW Quality on Quality Classification Scheme
Run Overall

Orientation
Accuracy (%)

Good
Orientation
Accuracy (%)

Average
Orientation
Accuracy (%)

Poor
Orientation
Accuracy (%)

1 46.7 46.3 41.5 55.9
2 45.3 44.3 41.2 53.5
3 45.9 44.3 40.4 57.1
4 47.3 45.1 43.3 57.1
5 45.4 44.7 39.0 57.1
6 45.7 43.9 41.9 54.7
7 45.9 43.5 42.6 54.7
8 45.4 43.1 40.8 56.5
9 44.9 45.5 37.9 55.3
10 46.7 46.7 41.9 54.7
Average 45.9 44.7 41.1 55.7

Using a quality-on-quality classification scheme, overall performance of both the

Naïve Bayes and SMO classifiers was better than a majority classifier. Using this scheme, the

Naïve Bayes classifiers performed better than if using a basic classification scheme

(p=1.07E-6). On the other hand, the SMO classifiers performed better under a basic

classification scheme (p=0.009).

Looking at the performance of the individual classifiers compared to a majority

classification, it appears that classifying images with a classifier built with images of the same

quality is only advantageous for images of average and poor quality. It is possible that the

diminished training set size of the good image class contributed to its poor performance.

38

The results of this classification scheme show how a quality-based orientation

classifier would perform if quality could be accurately predicted every time. The results of

the Naïve Bayes classifier motivate the development of a hierarchical classification scheme.

3.6.4 Quali ty-Based

A hierarchical classification scheme was developed to first classify images according

to quality, and then classify images’ orientation based on the predicted quality. This

classification scheme consists of four classifiers built using PHOW feature vectors. There is

one basic quality classifier and three quality-based orientation classifiers.

Figure 17: The hierarchical quality-based classification scheme was developed to first classify
images according to quality, and then classify images’ orientation based on the predicted

quality. This classification scheme consists of four classifiers: one basic quality classifier and
three quality-based orientation classifiers.

39

Table 20: Naïve Bayes classifiers were used in the quality-based classification scheme
to predict an image’s quality and orientation given a PHOW feature vector that was

generated with a bag-of-words containing 600 features.

Naïve Bayes 600 BOW Quality-Based Classification Scheme
Run Quality

Accuracy
(%)

Overall
Orientation
Accuracy (%)

Good
Orientation
Accuracy
(%)

Average
Orientation
Accuracy
(%)

Poor
Orientation
Accuracy
(%)

1 34.2 40.2 42.8 37.2 40.9
2 35.9 41.2 44.8 35.7 43.9
3 37.3 38.6 39.3 36.8 40.0
4 36.6 39.6 41.4 33.7 44.6
5 37.7 39.7 39.5 34.8 46.6
6 35.8 40.3 39.7 38.5 43.6
7 37.7 41.3 39.5 41.9 43.1
8 37.2 41.2 42.2 38.0 43.8
9 34.9 40.2 40.6 36.3 44.9
10 37.0 41.5 44.7 34.7 46.3
Ave. 36.4 40.4 41.5 36.8 43.8

Table 21: SMO classifiers were used in the quality-based classification scheme to predict an
image’s quality and orientation given a PHOW feature vector that was generated with a bag-

of-words containing 600 features.

SMO 600 BOW Quality-Based Classification Scheme
Run Quality

Accuracy (%)
Overall
Orientation
Accuracy (%)

Good
Orientation
Accuracy (%)

Average
Orientation
Accuracy (%)

Poor
Orientation
Accuracy (%)

1 40.9 43.2 40.2 43.9 47.2
2 40.7 43.9 41.0 44.6 47.3
3 41.5 42.9 41.4 40.9 51.2
4 40.0 45.0 41.2 44.3 54.5
5 40.2 43.3 40.3 42.1 53.4
6 38.9 43.2 40.9 41.3 51.9
7 41.2 44.3 42.0 43.8 50.4
8 41.2 43.9 42.0 43.6 49.1
9 40.0 41.3 38.0 41.0 48.5
10 39.5 43.6 40.3 42.9 51.9
Ave. 40.4 43.5 40.7 42.8 50.5

40

Both the SMO and Naïve Bayes classifiers performed better than a majority

classifier, but did not have better performance than did a basic classification scheme. This is

because of the relatively poor performance of the quality classifier. If the performance of

the quality classifier was better, it is expected that the Naïve Bayes classifier would have

better performance, based on the quality-on-quality analysis.

3.6.5 Voting

The poor performance of the basic quality classifier resulted in less-than-optimal

performance of a quality-based classification scheme. Rather than using the basic quality

classifier, the voting classification scheme used three binary quality classifiers that predicted

whether or not an image was of a certain quality (good, average, poor). The binary quality

classifiers were trained using PHOW features of all the images and a boolean class label.

A voting mechanism was then used to determine an image’s quality based on the

output of the three binary quality classifiers. The voting mechanism worked in a similar way

as a grade point average calculation. It converted each nominal quality value into a

numerical value, or weight. It then used these weights to average the output of the three

binary quality classifiers.

Equation 3: A voting mechanism was used to determine an image’s quality based on the
output of three binary quality classifiers. It converted each nominal quality value into a

numerical value, or weight. It then used these weights to average the output of the three
binary quality classifiers.

𝑤! = 3
𝑤! = 2
𝑤! = 1

𝑐! = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟
𝑖𝑓 𝑐! + 𝑐! + 𝑐! = 0, vote = 1
𝑖𝑓 𝑐! + 𝑐! + 𝑐! ≠ 0,

vote = 𝐹𝑙𝑜𝑜𝑟
𝑐!×𝑤! + 𝑐!×𝑤! + 𝑐!×𝑤!

𝑐! + 𝑐! + 𝑐!

41

Table 22: Quality assignments of the voting
 mechanism, given all possible combinations

of binary classifier outputs.

Good Average Poor Vote Quality
0 0 0 1 Poor
0 0 1 1 Poor
0 1 0 2 Average
1 0 0 3 Good
0 1 1 1 Poor
1 1 0 2 Average
1 0 1 2 Average
1 1 1 2 Average

Figure 18: A voting classification scheme first classified images according to quality, and then
classified images’ orientation based on the predicted quality. It performed quality

classification using three binary quality classifiers that predicted whether or not an image was
of a certain quality (good, average, poor) and a voting mechanism to average the output of
the binary classifiers. Orientation was then predicted using three quality-based orientation

classifiers.

42

Table 23: Three majority classifiers were used in the voting classification scheme to predict
an image’s quality and orientation.

Majority Voting Classification Scheme
Binary Quality Accuracy (%) Quality Accuracy (%) Orientation Accuracy (%)
59.6 39.5 29.8

Table 24: Naïve Bayes classifiers were used in the voting classification scheme to predict an
image’s quality and orientation given a PHOW feature vector that was generated with a bag-

of-words containing 600 features.

Naïve Bayes 600 BOW Voting Classification Scheme
Run Binary Quality Accuracy (%) Quality Accuracy (%) Orientation Accuracy (%)
1 57.8 12.0 34.3
2 57.5 12.4 34.3
3 58.6 11.4 34.3
4 58.4 11.3 34.6
5 58.1 13.1 34.9
6 57.6 11.8 33.3
7 59.4 12.1 35.3
8 58.9 11.7 34.2
9 57.7 11.3 33.2
10 59.1 11.1 33.8
Ave. 58.3 11.8 34.2

43

Table 25: SMO classifiers were used in the voting classification scheme to predict an image’s
quality and orientation given a PHOW feature vector that was generated with a bag-of-

words containing 600 features.

SMO 600 BOW Voting Classification Scheme
Run Binary Quality Accuracy (%) Quality Accuracy (%) Orientation Accuracy (%)
1 62.5 17.1 36.5
2 63.1 15.0 37.9
3 62.9 14.5 37.0
4 62.3 12.4 37.2
5 61.6 13.1 36.0
6 61.5 13.4 36.5
7 63.2 14.5 38.0
8 62.8 13.1 37.0
9 62.3 15.2 37.0
10 62.1 13.2 36.3
Ave. 62.4 14.2 36.9

The binary classifiers have an overall majority classification accuracy of 59.6%. The

Naïve Bayes classifier did not perform better than the majority classifier, but the SMO

classifier did perform better (p=0.002). Meanwhile, both the Naïve Bayes and SMO

classifiers have very poor performance with nominal classification. This indicates that the

voting mechanism used did not combine the output of the binary quality classifiers in a

meaningful way.

As a result of poor quality classification, the accuracy of the orientation classifiers is

lower than expected for both the Naïve Bayes and SMO classifiers.

44

CHAPTER 4: CONCLUSION

Clubfoot is a congenital foot disorder that is prevalent in the developing world, and can

be treated with an inexpensive, non-surgical method called the Ponseti Method [2].

Treatment providers collect patient photos for diagnosis, patient monitoring, and physician

quality assessment. Classification of patient photos could provide immediate feedback to

those taking patient photos, helping to ensure that the image is of good quality and the foot

is oriented correctly at the time of image capture. Classification could also serve as the basis

for automated image analysis that could reduce the workload of a busy staff. Methodology

was developed for such a classification using image processing and machine learning

techniques.

Pyramid Histogram of Visual Words (PHOW) feature vectors were extracted from a set

of clubfoot images, and were used to classify the data set according to image quality and foot

orientation [23]. Different classifier types and classification schemes were systematically

tested to achieve the best possible classification results.

Using two independent SMO quality and orientation classifiers yielded the best results,

with significantly better performance than a majority classifier (pquality=0.007, porientation=1.72E-

12). Naïve Bayes hierarchical classification could also yield similar performance if quality

could be better predicted, as evidenced by the results of the quality-on-quality classification.

Table 26: The performance of Naïve Bayes and SMO quality and orientation
classification using different classification schemes.

 Quality Accuracy (%) Orientation Accuracy (%)
Classification Scheme Naïve Bayes SMO Naïve Bayes SMO
Basic 36.4 40.4 42 47.6
Quality on Quality N/A N/A 45.2 45.9
Quality-Based 36.4 40.4 40.4 43.5
Voting 11.8 14.2 34.2 36.9

45

The success of the independent SMO classifiers is modest; respective classification

accuracies of 40.4% and 47.6% for quality and orientation prediction are 0.9% and 17.8%

higher than the majority classifier’s performance of 39.5% and 29.8%. Still, this level of

performance is not robust enough for clinical use.

It is possible that other feature types may perform better or worse at quality and

orientation classification of clubfoot images. The methodology and classification framework

outlined in this thesis provides a sound way for testing such future hypothesis.

46

APPENDIX A: PROCRUSTES SCORE

% ---
function scores = procrustes_scores(path)
% ---

%Get image location
files = dir(path);

%get number of files
num_images = numel(files) - 3;

%get the templates
f = getTemplate(path, 'front');
ff = getTemplate(path, 'front_floor');
b = getTemplate(path, 'back');
bf = getTemplate(path, 'back_floor');
s = getTemplate(path, 'side');

%template_min = minimum(size(f,2), size(ff,2), size(b,2), size(bf,2),
size(s,2));

%initialize score array
scores = zeros(num_images, 6);

for i = 4:numel(files)
 filename = files(i).name
 filepath = strcat(path, '/', filename);

 %get image number
 filenumber = strrep(filename, 'quality', '');
 filenumber = strrep(filenumber, '.JPG', '');
 number = str2num(filenumber);

 %Perform edge detection
 BW = getEdges(filepath);

 %Convert to double
 im = im2double(BW);

 %compare image to templates
 if size(im,2) > size(f,2)
 d_f = procrustes(im,f);

 else
 d_f = procrustes(f,im);
 end

 if size(im,2) > size(ff,2)
 d_ff = procrustes(im,ff);
 else
 d_ff = procrustes(ff,im);
 end

 if size(im,2) > size(b,2)
 d_b = procrustes(im,b);
 else
 d_b = procrustes(b,im);
 end

47

 if size(im,2) > size(bf,2)
 d_bf = procrustes(im,bf);
 else
 d_bf = procrustes(bf,im);
 end

 if size(im,2) > size(s,2)
 d_s = procrustes(im,s);
 else
 d_s = procrustes(s,im);
 end

 %set scores
 scores(i-3, 1) = number;
 scores(i-3, 2) = d_f;
 scores(i-3, 3) = d_ff;
 scores(i-3, 4) = d_b;
 scores(i-3, 5) = d_bf;
 scores(i-3, 6) = d_s;

end

xlswrite('procrustesScores', scores);

% ---
function im = standarizeImage(im)
% ---

im = im2single(im) ;
if size(im,1) > 220, im = imresize(im, [220 NaN]) ; end

% ---
function im = getGrayscaleImage(im)
% ---

s = size(im);

%convert to grayscale
if(size(s,2) == 3)
 im = rgb2gray(im);
else
 %do nothing
end

% ---
function im = getEdges(filepath)
% ---
 %load image
 image = imread(filepath);

 %standardize image
 image = standarizeImage(image);

 %convert to black and white
 image = getGrayscaleImage(image);

 %perform edge detection
 im = edge(image);
 %BW = edge(image, 'canny');

% ---

48

function im = getTemplate(path, orientation)
% ---

%load image file
 if(strcmp(orientation, 'front'))
 filename = 'quality938.JPG';
 elseif(strcmp(orientation, 'front_floor'))
 filename = 'quality1482.JPG';
 elseif(strcmp(orientation, 'back'))
 filename = 'quality164.JPG';
 elseif(strcmp(orientation, 'back_floor'))
 filename = 'quality498.JPG';
 elseif(strcmp(orientation, 'side'))
 filename = 'quality2685.JPG';
 else
 filename = '';
 end

 filepath = strcat(path, '/', filename);

%Perform edge detection
 BW = getEdges(filepath);

%Convert to double
 im = im2double(BW);

49

APPENDIX B: CLASSIFICATION SCHEMES

/**
 * Name: ClubfootClassification
 * Author: Amanda De Hoedt
 * Description: Classifies clubfoot image data
 * Input: args[0] = name of data set
 * args[1] = classification scheme
 * args[3] = classifier type
 ***/

import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;

public class ClubfootClassification {

 Instances originalData;
 DataSource source;

 public static void main(String[] args) throws Exception{

 //Load original data file
 DataSet originalData = new DataSet();

 if(args[0] != ""){
 //set the data set according to the value
 String filename = getFileName(args[0]);
 originalData.setDataSource(filename);
 }

 else
 {
 String filename = "";
 //filename = getFileName("Average600");
 //filename = getFileName("Three150");
 //filename = getFileName("Three600");
 //filename = getFileName("Two600");
 //filename = getFileName("600");
 //filename = getFileName("350");

 originalData.setDataSource(filename);
 }

 originalData.loadFile();
 originalData.setAttribute("Type");

 Instances data = new Instances(originalData.getDataSet());

 //Remove the numerical quality attributes
 Instances preProcessedData = filterNumbericalQualityAttributes(data);
 data = null;

 if(args[1].equals("QualityOnQuality")){
 QualityClassifierOnQualityData qualityClassifier = new
QualityClassifierOnQualityData(preProcessedData, args[2]);
 qualityClassifier.run();
 qualityClassifier = null;
 }
 if(args[1].equals("QualityOnAll")){
 QualityBasedOrientationClassifier cbClassifier = new

50

QualityBasedOrientationClassifier(preProcessedData, args[2]);
 cbClassifier.run();
 cbClassifier = null;
 }
 //BASIC CLASSIFICATION
 if(args[1].equals("Basic")){
 BasicClassifier basic = new BasicClassifier(preProcessedData, args[2]);
 basic.run();
 basic = null;
 }
 //BASIC ORIENTATION CLASSIFICATION
 if(args[1].equals("BasicOrientation")){
 BasicOrientationClassifier basicOrientation = new
BasicOrientationClassifier(preProcessedData, args[2]);
 basicOrientation.run();
 basicOrientation = null;
 }
 //QUALITY-BASED CLASSIFICATION
 if(args[1].equals("QualityBased")){
 QualityBasedClassifier qualityBased = new
QualityBasedClassifier(preProcessedData, args[2]);
 qualityBased.run();
 qualityBased = null;
 }
 //VOTING CLASSIFICATION
 if(args[1].equals("Voting")){
 VotingClassifier voting = new VotingClassifier(preProcessedData,
args[2]);
 voting.run();
 voting = null;
 }

 }//end main

 private static Instances filterNumbericalQualityAttributes(Instances d)
throws Exception{
 Remove remove = new Remove();
 String[] options = new String[2];
 options[0] = "-R"; // "range"
 options[1] = "1-7"; //range of attributes
 remove.setOptions(options);
 remove.setInputFormat(d);
 Instances preProcessedData = Filter.useFilter(d, remove);

 return preProcessedData;

 }

 private static String getFileName(String s){
 if(s.equals("Average600")){
 //Quality metric averaged across 2 users + 1 predicted
 return "qualityScoresSiftLongAveragedQualityAllNoDupsWeka.arff";
 }
 else if(s.equals("Three150")){
 //Quality metric same across 2 users + 1 predicted 150 BOW Size
 return "qualityScores150WordSiftLongThreeSameQualityAllNoDupsWeka.arff";
 }
 else if(s.equals("Three600")){
 //Quality metric same across 2 users + 1 predicted
 return "qualityScoresSiftLongThreeSameQualityAllNoDupsWeka.arff";
 }
 else if(s.equals("Two600"))
 {

51

 //Quality metric same across 2 users
 return "qualityScoresSiftLongTwoSameQualityAllNoDupsWeka.arff";
 }
 else if(s.equals("600")){
 //Individual Quality metrics
 return "qualityScoresSiftLongAllNoDupsWeka.arff";
 }
 else if(s.equals("350")){
 //Individual Quality metrics + short SIFT features
 return "qualityScoresSiftAllNoDupsWeka.arff";
 }
 return "";
 }

}//end class

/**
 * Name: DataSet
 * Author: Amanda De Hoedt
 * Description: Performs functions related to data sets
 ***/
import weka.core.Attribute;
 import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;

public class DataSet {
DataSource source;
Instances data;

public static void main(String[] args)
{
 //do main stuff here
}

public void setDataSource(String path) throws Exception{
 source = new DataSource(path);
 System.out.print("Data Source Set." + '\n');
}

public void loadFile() throws Exception {
 //Load data file
 System.out.print("Loading data file." + '\n');
 data = source.getDataSet();
 System.out.print("Data file loaded successfully." + '\n');
}

public void setAttribute(String attributeName) {
 if (data.classIndex() == -1){
 Attribute classAttribute = data.attribute(attributeName);
 data.setClassIndex(classAttribute.index());
 }
}

public void createDataSetFromExisting(Instances oldData){
 data = new Instances(oldData);
}

public Instances getDataSet(){
 return data;
}

52

}

/**
 * Name: ClassificationScheme
 * Author: Amanda De Hoedt
 * Description: Defines common elements of
 * classification scheme
 * functionality. Performs functions
 * related to data classification
 ***/
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.NaiveBayes;
import weka.classifiers.functions.Logistic;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.classifiers.functions.SMO;
import weka.classifiers.functions.SimpleLinearRegression;
import weka.classifiers.lazy.IBk;
import weka.classifiers.rules.JRip;
import weka.classifiers.rules.ZeroR;
import weka.classifiers.trees.J48;
import weka.classifiers.trees.RandomForest;
import weka.core.Attribute;
import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;
import weka.filters.unsupervised.instance.RemoveWithValues;

public abstract class ClassificationScheme {
 private Instances data;
 private Attribute subjectiveQualityAttribute;
 private Attribute orientationAttribute;
 private int runs;
 private String type;

 public ClassificationScheme(Instances d){
 setRuns(10);
 setData(new Instances(d));
 setClassAttributes(d);
 }

 public void setClassificationType(String s)
 {
 type = s;
 }

 public String getClassificationType()
 {
 return type;
 }

 public Classifier getClassifier() throws Exception
 {
 Classifier classifier = null;

 if(type.equals("NaieveBayes")){
 classifier = (Classifier) new NaiveBayes();
 }
 else if(type.equals("MultilayerPerceptron")){

53

 classifier = (Classifier) new MultilayerPerceptron();
 }
 else if(type.equals("J48")){
 classifier = (Classifier) new J48();
 }
 else if(type.equals("Logistic")){
 classifier = (Classifier) new Logistic();
 }
 else if(type.equals("SMO")){
 classifier = (Classifier) new SMO();
 }
 else if(type.equals("RandomForest")){
 classifier = (Classifier) new RandomForest();
 }
 else if(type.equals("JRip")){
 classifier = (Classifier) new JRip();
 }
 else if(type.equals("SimpleLinearRegression")){
 classifier = (Classifier) new SimpleLinearRegression();
 }
 else if(type.equals("ZeroR")){
 classifier = (Classifier) new ZeroR();
 }
 else if(type.equals("IBk")){
 classifier = (Classifier) new IBk();
 String[] ibkOptions = new String[2];
 ibkOptions[0] = "-K"; // "range"
 ibkOptions[1] = "10"; //range of attributes
 classifier.setOptions(ibkOptions);
 }

 return classifier;
 }

 public Instances removeBinaryQuality(String quality, Instances d) throws
Exception{

 Attribute rAttribute = d.attribute(quality);

 Remove remove = new Remove();
 String[] options = new String[2];
 options[0] = "-R"; // "range"
 options[1] = String.valueOf(rAttribute.index()+1); //range of attributes
 remove.setOptions(options);
 remove.setInputFormat(d);
 Instances preProcessedData = Filter.useFilter(d, remove);

 return preProcessedData;
 }

 public void setClassAttributes(Instances d){
 setSubjectiveQualityAttribute(d.attribute("Subjective"));
 setOrientationAttribute(d.attribute("Type"));
 }

 public void setClassAttributes(Instances s, Instances o){
 setSubjectiveQualityAttribute(s.attribute("Subjective"));
 setOrientationAttribute(o.attribute("Type"));
 }

 public void printResults(Evaluation e){
 String strSummaryQuality = e.toSummaryString();
 System.out.print(strSummaryQuality);

54

 try {
 String strClassDetails = e.toClassDetailsString();
 System.out.println();
 System.out.print(strClassDetails);
 System.out.println();
 } catch (Exception e1) {
 // TODO Auto-generated catch block
 //e1.printStackTrace();
 }

 // Get the confusion matrix
 double[][] cmMatrixQuality = e.confusionMatrix();
 for(int row_i=0; row_i<cmMatrixQuality.length; row_i++){
 for(int col_i=0; col_i<cmMatrixQuality.length; col_i++){
 System.out.print(cmMatrixQuality[row_i][col_i]);
 System.out.print("|");
 }
 System.out.println();
 }
 }

 public static String getQualityFromInt(int i){
 if(i == 1){
 return "average";
 }
 else if(i == 2){
 return "poor";
 }
 else if(i == 3){
 return "good";
 }
 return null;
 } //end getQualityFromInt

 public static Integer getIntFromQuality(String s){
 if(s == "average"){
 return 1;
 }
 else if(s == "poor"){
 return 2;
 }
 else if(s == "good"){
 return 3;
 }
 return null;
 } //end getQualityFromInt

 public Instances filterOnQuality(String q, Instances train) throws Exception{

 setClassAttributes(train);

 String[] optionsSelectGood = new String[4];
 optionsSelectGood[0] = "-C"; // "attribute"
 optionsSelectGood[1] =
String.valueOf(subjectiveQualityAttribute.index()+1); //subjective attribute
 optionsSelectGood[2] = "-L"; // "label"
 optionsSelectGood[3] = Integer.toString(getIntFromQuality(q));

 RemoveWithValues selectGood = new RemoveWithValues();
 selectGood.setOptions(optionsSelectGood);
 selectGood.setInvertSelection(true);
 selectGood.setInputFormat(train);

55

 Instances filteredTrain = Filter.useFilter(train, selectGood);

 return filteredTrain;
 }

 public Instances getData() {
 return data;
 }

 public void setData(Instances data) {
 this.data = data;
 }

 public int getRuns() {
 return runs;
 }

 public void setRuns(int runs) {
 this.runs = runs;
 }

 public Attribute getOrientationAttribute() {
 return orientationAttribute;
 }

 public void setOrientationAttribute(Attribute orientationAttribute) {
 this.orientationAttribute = orientationAttribute;
 }

 public Attribute getSubjectiveQualityAttribute() {
 return subjectiveQualityAttribute;
 }

 public void setSubjectiveQualityAttribute(Attribute
subjectiveQualityAttribute) {
 this.subjectiveQualityAttribute = subjectiveQualityAttribute;
 }

}

/**
 * Name: QualityBasedOrientationClassifier
 * Author: Amanda De Hoedt
 * Description: Defines the structure of the
 * quality-on-all classification
 * scheme and performs
 * classification
 ***/
import java.util.Random;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.NaiveBayes;
import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.unsupervised.instance.RemoveWithValues;

public class QualityBasedOrientationClassifier extends ClassificationScheme{

public QualityBasedOrientationClassifier(Instances d, String s){
 super(d);

56

 System.out.print("Setting up quality-based orientation classification
scheme." + '\n');

 try {
 d = removeBinaryQuality("Good",d);
 d = removeBinaryQuality("Average",d);
 d = removeBinaryQuality("Poor",d);
 } catch (Exception e) {
 e.printStackTrace();
 }
 setData(new Instances(d));
 setSubjectiveQualityAttribute(d.attribute("Subjective"));
 setClassificationType(s);
}

public void run() throws Exception {
 System.out.print("***RUNNING QUALITY BASED ORIENTATION CLASSIFICATION SCHEME
WITH " + getClassificationType() + " classifier***" + '\n');

 //Define classifier
 Classifier cModel = getClassifier();

 //Run multiple times
 for(int r = 0; r < getRuns(); r++){
 //Print the run
 System.out.println("\n Run: " + (r+1));

 //Create cross-validation folds
 Random rand = new Random(r+1);
 int folds = 10;

 setSubjectiveQualityAttribute(getData().attribute("Subjective"));
 Instances randData = new Instances(getData());
 randData.randomize(rand);
 randData.stratify(folds);

 //for each quality level (good, average, poor)
 for (int m = 1; m <=3; m++){
 Evaluation eTest = new Evaluation(randData);
 for (int n = 0; n < folds; n++){
 //get training and testing sets
 Instances train = randData.trainCV(folds, n);
 Instances test = randData.testCV(folds, n);

 //filter train for images of certain quality
 //Remove the numerical quality attributes
 String[] optionsSelectGood = new String[4];
 optionsSelectGood[0] = "-C"; // "attribute"
 optionsSelectGood[1] = "1"; // first attribute (Subjective)
 optionsSelectGood[2] = "-L"; // "label"
 optionsSelectGood[3] = Integer.toString(m);

 RemoveWithValues selectGood = new RemoveWithValues();
 selectGood.setOptions(optionsSelectGood);
 selectGood.setInvertSelection(true);
 selectGood.setInputFormat(train);
 Instances filteredTrain = Filter.useFilter(train, selectGood);

 //uncomment line below to use all quality levels
 //Instances filteredTrain = new Instances(train);

 //Set class index
 filteredTrain.setClassIndex(1);

57

 //build classifier with filtered training set
 Classifier clsCopy = Classifier.makeCopy(cModel);
 clsCopy.buildClassifier(filteredTrain);

 //predict orientation using classifier
 eTest.evaluateModel(clsCopy, test);

 if(n == 9){
 //print the quality name
 String title = getQualityFromInt(m);
 System.out.println("\n" + title + " quality run: " + (n+1));
 printResults(eTest);

 }
 }
 }
 }
}

}

/**
 * Name: QualityClassifierOnQualityData
 * Author: Amanda De Hoedt
 * Description: Defines the structure of the
 * quality-on-quality classification
 * scheme and performs
 * classification
 ***/
import java.util.Random;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.NaiveBayes;
import weka.core.Instances;

public class QualityClassifierOnQualityData extends ClassificationScheme{

 public QualityClassifierOnQualityData(Instances d, String s){
 super(d);
 System.out.print("Setting up quality classifier on quality data." + '\n');

 try {
 d = removeBinaryQuality("Good",d);
 d = removeBinaryQuality("Average",d);
 d = removeBinaryQuality("Poor",d);
 } catch (Exception e) {
 e.printStackTrace();
 }
 setData(new Instances(d));
 setSubjectiveQualityAttribute(d.attribute("Subjective"));
 setOrientationAttribute(d.attribute("Type"));
 setClassificationType(s);
 }

 public void run() throws Exception {

 System.out.print("***RUNNING QUALITY CLASSIFIER ON QUALITY DATA

58

CLASSIFICATION SCHEME WITH " + getClassificationType() + " classifier***" +
'\n');

 //Define classifier
 //Classifier cModelQuality = (Classifier) new NaiveBayes();
 /*
 Classifier cModelOrientationGood = (Classifier) new NaiveBayes();
 Classifier cModelOrientationAve = (Classifier) new NaiveBayes();
 Classifier cModelOrientationPoor = (Classifier) new NaiveBayes();
 */
 Classifier cModelOrientationGood = getClassifier();
 Classifier cModelOrientationAve = getClassifier();
 Classifier cModelOrientationPoor = getClassifier();

 //Run multiple times
 for(int r = 0; r < getRuns(); r++){
 //Print the run
 System.out.println("\n Run: " + (r+1));

 //Create cross-validation folds
 //int seed = 4;
 Random rand = new Random(r+1);
 int folds = 10;

 Instances randData = new Instances(getData());
 randData.randomize(rand);
 randData.stratify(folds);

 //Define evaluators
 setSubjectiveQualityAttribute(getData().attribute("Subjective"));
 setOrientationAttribute(getData().attribute("Type"));
 randData.setClassIndex(getOrientationAttribute().index());
 Evaluation eTestOrientation = new Evaluation(randData);
 Evaluation eTestOrientationGood = new Evaluation(randData);
 Evaluation eTestOrientationAve = new Evaluation(randData);
 Evaluation eTestOrientationPoor = new Evaluation(randData);
 //randData.setClassIndex(subjectiveQualityAttribute.index());
 //Evaluation eTestQuality = new Evaluation(randData);

 for (int n = 0; n < folds; n++){
 //get training and testing sets
 Instances train = randData.trainCV(folds, n);
 Instances test = randData.testCV(folds, n);

 Instances orientationTesting = new Instances(test);

 setClassAttributes(train);

 //filter to train for images of certain quality
 Instances filteredTrainGood = filterOnQuality("good", train);
 Instances filteredTrainAve = filterOnQuality("average", train);
 Instances filteredTrainPoor = filterOnQuality("poor", train);

 //Set class index
 setClassAttributes(train);
 filteredTrainGood.setClassIndex(getOrientationAttribute().index());
 filteredTrainAve.setClassIndex(getOrientationAttribute().index());
 filteredTrainPoor.setClassIndex(getOrientationAttribute().index());

 //build classifier with filtered training set
 Classifier cModelOrientationGoodCopy =
Classifier.makeCopy(cModelOrientationGood);
 cModelOrientationGoodCopy.buildClassifier(filteredTrainGood);

59

 Classifier cModelOrientationAveCopy =
Classifier.makeCopy(cModelOrientationAve);
 cModelOrientationAveCopy.buildClassifier(filteredTrainAve);
 Classifier cModelOrientationPoorCopy =
Classifier.makeCopy(cModelOrientationPoor);
 cModelOrientationPoorCopy.buildClassifier(filteredTrainPoor);

 //filter to train for images of certain quality
 Instances filteredTestGood = filterOnQuality("good",
orientationTesting);
 Instances filteredTestAve = filterOnQuality("average",
orientationTesting);
 Instances filteredTestPoor = filterOnQuality("poor",
orientationTesting);

 //Set class index
 filteredTestGood.setClassIndex(getOrientationAttribute().index());
 filteredTestAve.setClassIndex(getOrientationAttribute().index());
 filteredTestPoor.setClassIndex(getOrientationAttribute().index());

 //predict quality using classifier
 //eTestQuality.evaluateModel(cModelQualityCopy, qualityTesting);
 eTestOrientation.evaluateModel(cModelOrientationGoodCopy,
filteredTestGood);
 eTestOrientationGood.evaluateModel(cModelOrientationGoodCopy,
filteredTestGood);
 eTestOrientation.evaluateModel(cModelOrientationAveCopy,
filteredTestAve);
 eTestOrientationAve.evaluateModel(cModelOrientationAveCopy,
filteredTestAve);
 eTestOrientation.evaluateModel(cModelOrientationPoorCopy,
filteredTestPoor);
 eTestOrientationPoor.evaluateModel(cModelOrientationPoorCopy,
filteredTestPoor);

 //based on quality prediction, use orientation classifier to predict
orientation

 //Print the Quality results
 //System.out.println("\n Quality run: " + (n+1));
 //printResults(eTestQuality);

 if(n == 9){
 //Print the Quality results
 System.out.println("\n Overall Run: " + (r+1) + " Orientation run: "
+ (n+1));
 printResults(eTestOrientation);

 System.out.println("\n Overall Run: " + (r+1) + " Orientation Good
run: " + (n+1));
 printResults(eTestOrientationGood);

 System.out.println("\n Overall Run: " + (r+1) + " Orientation Ave
run: " + (n+1));
 printResults(eTestOrientationAve);

 System.out.println("\n Overall Run: " + (r+1) + " Orientation Poor
run: " + (n+1));
 printResults(eTestOrientationPoor);
 }

 }

60

 }
 }

}

/**
 * Name: BasicClassifier
 * Author: Amanda De Hoedt
 * Description: Defines the structure of the basic
 * classification scheme and
 * performs classification
 ***/
import java.util.Random;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.NaiveBayes;
import weka.classifiers.functions.LinearRegression;
import weka.classifiers.functions.Logistic;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.classifiers.functions.SMO;
import weka.classifiers.functions.VotedPerceptron;
import weka.classifiers.lazy.IBk;
import weka.classifiers.trees.J48;
import weka.classifiers.trees.RandomForest;
import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;
import weka.filters.unsupervised.instance.RemoveWithValues;
import weka.core.Attribute;

public class BasicClassifier extends ClassificationScheme{

 public BasicClassifier(Instances d, String s){
 super(d);
 System.out.print("Setting up basic classification scheme." + '\n');

 //filter unneeded binary quality columns
 try {
 d = removeBinaryQuality("Good",d);
 d = removeBinaryQuality("Average",d);
 d = removeBinaryQuality("Poor",d);
 } catch (Exception e) {
 e.printStackTrace();
 }
 setData(new Instances(d));
 setClassAttributes(d);
 setClassificationType(s);
 }

 public void run() throws Exception{
 System.out.print("***RUNNING BASIC CLASSIFICATION SCHEME WITH " +
getClassificationType() + " classifier***" + '\n');

 //Define classifier
 Classifier cModelOrientation = getClassifier();
 Classifier cModelQuality = getClassifier();

 //Run multiple times
 for(int r = 0; r < getRuns(); r++){

61

 //Print the run
 System.out.println("\n Run: " + (r+1));

 //Create cross-validation folds
 //int seed = 4;
 Random rand = new Random(r+1);
 int folds = 10;

 Instances randData = new Instances(getData());
 randData.randomize(rand);
 randData.stratify(folds);

 setClassAttributes(randData);
 randData.setClassIndex(getOrientationAttribute().index());
 Evaluation eTestOrientation = new Evaluation(randData);
 randData.setClassIndex(getSubjectiveQualityAttribute().index());
 Evaluation eTestQuality = new Evaluation(randData);

 //For each fold
 for (int n = 0; n < folds; n++){

 //get training and testing sets
 Instances train = randData.trainCV(folds, n);
 Instances test = randData.testCV(folds, n);

 setClassAttributes(train);

 //Filter to remove the subjective quality attributes
 Remove removeQuality = new Remove();
 String[] qualityOptions = new String[2];
 qualityOptions[0] = "-R"; // "range"
 qualityOptions[1] =
String.valueOf(getSubjectiveQualityAttribute().index()+1); //range of
attributes
 removeQuality.setOptions(qualityOptions);
 removeQuality.setInputFormat(getData());

 //Filter to remove the orientation attributes
 Remove removeOrientation = new Remove();
 String[] orientationOptions = new String[2];
 orientationOptions[0] = "-R"; // "range"
 orientationOptions[1] =
String.valueOf(getOrientationAttribute().index()+1); //range of attributes
 removeOrientation.setOptions(orientationOptions);
 removeOrientation.setInputFormat(getData());

 //Apply the filters
 Instances orientationTraining = Filter.useFilter(train, removeQuality);
 Instances orientationTesting = Filter.useFilter(test, removeQuality);
 Instances qualityTraining = Filter.useFilter(train, removeOrientation);
 Instances qualityTesting = Filter.useFilter(test, removeOrientation);

 //Set class index
 setClassAttributes(qualityTraining, orientationTraining);

 orientationTraining.setClassIndex(getOrientationAttribute().index());
 orientationTesting.setClassIndex(getOrientationAttribute().index());
 qualityTraining.setClassIndex(getSubjectiveQualityAttribute().index());
 qualityTesting.setClassIndex(getSubjectiveQualityAttribute().index());

 //Build classifier with filtered training set
 Classifier cModelOrientationCopy =
Classifier.makeCopy(cModelOrientation);

62

 Classifier cModelQualityCopy = Classifier.makeCopy(cModelQuality);

 cModelOrientationCopy.buildClassifier(orientationTraining);
 cModelQualityCopy.buildClassifier(qualityTraining);

 //Predict orientation using classifier
 eTestOrientation.evaluateModel(cModelOrientationCopy,
orientationTesting);
 eTestQuality.evaluateModel(cModelQualityCopy, qualityTesting);

 //Print the Orientation results
 if(n==9){
 System.out.println("\n Orientation run: " + (n+1));
 printResults(eTestOrientation);
 }

 //Print the Quality results
 if(n==9){
 System.out.println("\n Quality run: " + (n+1));
 printResults(eTestQuality);
 }

 }
 }

 }//end function run

}

/**
 * Name: QualityBasedClassifier
 * Author: Amanda De Hoedt
 * Description: Defines the structure of the
 * quality-based classification
 * scheme and performs
 * classification
 ***/
import java.util.Random;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.NaiveBayes;
import weka.core.Instance;
import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;

public class QualityBasedClassifier extends ClassificationScheme{

 public QualityBasedClassifier(Instances d, String s){
 super(d);
 System.out.print("Setting up quality-based classification scheme." + '\n');
 try {
 d = removeBinaryQuality("Good",d);
 d = removeBinaryQuality("Average",d);
 d = removeBinaryQuality("Poor",d);
 } catch (Exception e) {
 e.printStackTrace();
 }
 setData(new Instances(d));

63

 setSubjectiveQualityAttribute(d.attribute("Subjective"));
 setOrientationAttribute(d.attribute("Type"));
 setClassificationType(s);
 }

 public void run() throws Exception {

 System.out.print("***RUNNING QUALITY-BASED CLASSIFICATION SCHEME WITH " +
getClassificationType() + " classifier***" + '\n');

 //Define classifier
 Classifier cModelQuality = getClassifier();
 Classifier cModelOrientationGood = getClassifier();
 Classifier cModelOrientationAve = getClassifier();
 Classifier cModelOrientationPoor = getClassifier();

 //Run multiple times
 for(int r = 0; r < getRuns(); r++){
 //Print the run
 System.out.println("\n Run: " + (r+1));

 //Create cross-validation folds
 //int seed = 4;
 Random rand = new Random(r+1);
 int folds = 10;

 setSubjectiveQualityAttribute(getData().attribute("Subjective"));
 setOrientationAttribute(getData().attribute("Type"));
 Instances randData = new Instances(getData());
 randData.randomize(rand);
 randData.stratify(folds);

 //Define evaluators
 randData.setClassIndex(getOrientationAttribute().index());
 Evaluation eTestOrientation = new Evaluation(randData);
 Evaluation eTestOrientationGood = new Evaluation(randData);
 Evaluation eTestOrientationAve = new Evaluation(randData);
 Evaluation eTestOrientationPoor = new Evaluation(randData);
 randData.setClassIndex(getSubjectiveQualityAttribute().index());
 Evaluation eTestQuality = new Evaluation(randData);

 for (int n = 0; n < folds; n++){
 //get training and testing sets
 Instances train = randData.trainCV(folds, n);
 Instances test = randData.testCV(folds, n);

 Instances orientationTesting = new Instances(test);

 setClassAttributes(train);

 //Filter to remove the orientation attributes
 Remove removeOrientation = new Remove();
 String[] orientationOptions = new String[2];
 orientationOptions[0] = "-R"; // "range"
 orientationOptions[1] =
String.valueOf(getOrientationAttribute().index()+1); //range of attributes
 removeOrientation.setOptions(orientationOptions);
 removeOrientation.setInputFormat(getData());

 //Apply the filters
 Instances qualityTraining = Filter.useFilter(train, removeOrientation);
 Instances qualityTesting = Filter.useFilter(test, removeOrientation);

64

 //Set class index
 setClassAttributes(qualityTraining);
 qualityTraining.setClassIndex(getSubjectiveQualityAttribute().index());
 qualityTesting.setClassIndex(getSubjectiveQualityAttribute().index());

 //Build classifier with filtered training set
 Classifier cModelQualityCopy = Classifier.makeCopy(cModelQuality);
 cModelQualityCopy.buildClassifier(qualityTraining);

 //filter to train for images of certain quality
 Instances filteredTrainGood = filterOnQuality("good", train);
 Instances filteredTrainAve = filterOnQuality("average", train);
 Instances filteredTrainPoor = filterOnQuality("poor", train);

 //Set class index
 setClassAttributes(train);
 filteredTrainGood.setClassIndex(getOrientationAttribute().index());
 filteredTrainAve.setClassIndex(getOrientationAttribute().index());
 filteredTrainPoor.setClassIndex(getOrientationAttribute().index());

 //build classifier with filtered training set
 Classifier cModelOrientationGoodCopy =
Classifier.makeCopy(cModelOrientationGood);
 cModelOrientationGoodCopy.buildClassifier(filteredTrainGood);
 Classifier cModelOrientationAveCopy =
Classifier.makeCopy(cModelOrientationAve);
 cModelOrientationAveCopy.buildClassifier(filteredTrainAve);
 Classifier cModelOrientationPoorCopy =
Classifier.makeCopy(cModelOrientationPoor);
 cModelOrientationPoorCopy.buildClassifier(filteredTrainPoor);

 setClassAttributes(orientationTesting);
 //for each instance of the testing set, get the quality prediction
 //System.out.println("\n Total Number of instances: " +
qualityTesting.numInstances());
 for(int i = 0; i < qualityTesting.numInstances(); i++){
 Instance inst = qualityTesting.instance(i);
 double result = cModelQualityCopy.classifyInstance(inst);
 //System.out.println("\n Result " + i + " : " + result);

 //set value of corresponding instance in orientation test set

orientationTesting.instance(i).setValue(getSubjectiveQualityAttribute().index()
, result);
 }

 //filter to train for images of certain quality
 Instances filteredTestGood = filterOnQuality("good",
orientationTesting);
 Instances filteredTestAve = filterOnQuality("average",
orientationTesting);
 Instances filteredTestPoor = filterOnQuality("poor",
orientationTesting);

 //Set class index
 filteredTestGood.setClassIndex(getOrientationAttribute().index());
 filteredTestAve.setClassIndex(getOrientationAttribute().index());
 filteredTestPoor.setClassIndex(getOrientationAttribute().index());

 //predict quality using classifier
 eTestQuality.evaluateModel(cModelQualityCopy, qualityTesting);
 eTestOrientation.evaluateModel(cModelOrientationGoodCopy,

65

filteredTestGood);
 eTestOrientationGood.evaluateModel(cModelOrientationGoodCopy,
filteredTestGood);
 eTestOrientation.evaluateModel(cModelOrientationAveCopy,
filteredTestAve);
 eTestOrientationAve.evaluateModel(cModelOrientationAveCopy,
filteredTestAve);
 eTestOrientation.evaluateModel(cModelOrientationPoorCopy,
filteredTestPoor);
 eTestOrientationPoor.evaluateModel(cModelOrientationPoorCopy,
filteredTestPoor);

 //based on quality prediction, use orientation classifier to predict
orientation

 //Print the Quality results
 if(n == 9)
 {
 System.out.println("\n Quality run: " + (n+1));
 printResults(eTestQuality);

 //Print the Quality results
 System.out.println("\n Orientation run: " + (n+1));
 printResults(eTestOrientation);

 System.out.println("\n Orientation Good run: " + (n+1));
 printResults(eTestOrientationGood);

 System.out.println("\n Orientation Ave run: " + (n+1));
 printResults(eTestOrientationAve);

 System.out.println("\n Orientation Poor run: " + (n+1));
 printResults(eTestOrientationPoor);
 }

 }
 }
 }

}

/**
 * Name: VotingClassifier
 * Author: Amanda De Hoedt
 * Description: Defines the structure of the
 * voting classification scheme and
 * performs classification
 ***/
import java.util.Random;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.NaiveBayes;
import weka.core.Attribute;
import weka.core.Instance;
import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;

public class VotingClassifier extends ClassificationScheme{

66

 public VotingClassifier(Instances d, String s){
 super(d);
 System.out.print("Setting up voting classification scheme." + '\n');
 setSubjectiveQualityAttribute(d.attribute("Subjective"));
 setOrientationAttribute(d.attribute("Type"));
 setData(new Instances(d));
 setClassificationType(s);
 }

public void run() throws Exception {

 System.out.print("***RUNNING VOTING CLASSIFICATION SCHEME WITH " +
getClassificationType() + " classifier***" + '\n');

 //Define classifiers
 Classifier cModelQuality = getClassifier();
 Classifier cModelQualityGood = getClassifier();
 Classifier cModelQualityAve = getClassifier();
 Classifier cModelQualityPoor = getClassifier();
 Classifier cModelOrientationGood = getClassifier();
 Classifier cModelOrientationAve = getClassifier();
 Classifier cModelOrientationPoor = getClassifier();

 //Run multiple times
 for(int r = 0; r < getRuns(); r++){
 //Print the run
 System.out.println("\n Run: " + (r+1));

 //Create cross-validation folds
 Random rand = new Random(r+1);
 int folds = 10;

 setSubjectiveQualityAttribute(getData().attribute("Subjective"));
 setOrientationAttribute(getData().attribute("Type"));
 Instances randData = new Instances(getData());
 randData.randomize(rand);
 randData.stratify(folds);

 //Define evaluators
 randData.setClassIndex(getOrientationAttribute().index());
 Evaluation eTestOrientation = new Evaluation(randData);

 randData.setClassIndex(getSubjectiveQualityAttribute().index());
 Evaluation eTestQuality = new Evaluation(randData);

 Attribute binaryQualityAttribute = randData.attribute("Good");
 randData.setClassIndex(binaryQualityAttribute.index());
 Evaluation eTestBinaryQuality = new Evaluation(randData);

 for (int n = 0; n < folds; n++){
 //get training and testing sets
 Instances train = randData.trainCV(folds, n);
 Instances test = randData.testCV(folds, n);

 Instances orientationTraining = removeAllBinaryQuality(train);
 Instances orientationTesting = removeAllBinaryQuality(test);

 Instances votingQualityTraining = removeAllBinaryQuality(train);
 votingQualityTraining =
removeOrientationAttribute(votingQualityTraining);
 Instances votingQualityTesting = removeAllBinaryQuality(test);
 votingQualityTesting = removeOrientationAttribute(votingQualityTesting);
 setClassAttributes(votingQualityTraining);

67

votingQualityTraining.setClassIndex(getSubjectiveQualityAttribute().index());

 setClassAttributes(train);

 //MAKE THREE QUALITY CLASSIFIERS
 Instances qualityGoodTrain = getFilteredQualitySet("Good", train);
 Instances qualityAveTrain = getFilteredQualitySet("Average", train);
 Instances qualityPoorTrain = getFilteredQualitySet("Poor", train);

 Instances qualityGoodTest = getFilteredQualitySet("Good", test);
 Instances qualityAveTest = getFilteredQualitySet("Average", test);
 Instances qualityPoorTest = getFilteredQualitySet("Poor", test);

 //Build classifiers with filtered training set
 Classifier cModelQualityCopy = Classifier.makeCopy(cModelQuality);
 Classifier cModelGoodQualityCopy =
Classifier.makeCopy(cModelQualityGood);
 Classifier cModelAveQualityCopy =
Classifier.makeCopy(cModelQualityAve);
 Classifier cModelPoorQualityCopy =
Classifier.makeCopy(cModelQualityPoor);
 cModelQualityCopy.buildClassifier(votingQualityTraining);
 cModelGoodQualityCopy.buildClassifier(qualityGoodTrain);
 cModelAveQualityCopy.buildClassifier(qualityAveTrain);
 cModelPoorQualityCopy.buildClassifier(qualityPoorTrain);

 //MAKE THREE ORIENTATION CLASSIFIERS
 //filter to train for images of certain quality
 Instances filteredTrainGood = filterOnQuality("good",
orientationTraining);
 Instances filteredTrainAve = filterOnQuality("average",
orientationTraining);
 Instances filteredTrainPoor = filterOnQuality("poor",
orientationTraining);

 //Set class index
 setClassAttributes(orientationTraining);
 filteredTrainGood.setClassIndex(getOrientationAttribute().index());
 filteredTrainAve.setClassIndex(getOrientationAttribute().index());
 filteredTrainPoor.setClassIndex(getOrientationAttribute().index());

 //build classifier with filtered training set
 Classifier cModelOrientationGoodCopy =
Classifier.makeCopy(cModelOrientationGood);
 Classifier cModelOrientationAveCopy =
Classifier.makeCopy(cModelOrientationAve);
 Classifier cModelOrientationPoorCopy =
Classifier.makeCopy(cModelOrientationPoor);
 cModelOrientationGoodCopy.buildClassifier(filteredTrainGood);
 cModelOrientationAveCopy.buildClassifier(filteredTrainAve);
 cModelOrientationPoorCopy.buildClassifier(filteredTrainPoor);

 setClassAttributes(orientationTesting);
 //for each instance of the testing set, get the quality prediction
 //System.out.println("\n Total Number of instances: " +
test.numInstances());
 for(int i = 0; i < test.numInstances(); i++){

 Instance instG = qualityGoodTest.instance(i);
 Instance instA = qualityAveTest.instance(i);
 Instance instP = qualityPoorTest.instance(i);

68

 //Get scores from good, average, and poor quality classifiers
 double resultG = cModelGoodQualityCopy.classifyInstance(instG);
 double resultA = cModelAveQualityCopy.classifyInstance(instA);
 double resultP = cModelPoorQualityCopy.classifyInstance(instP);

 //get quality prediction from vote
 String result = getVotingResults(resultP, resultA, resultG);
 //System.out.println("\n Result " + i + ": " + "G: " + resultG + " A:
" + resultA + " P: " + resultP + " Vote: " + result);

 double vote = (double)getIntFromVoteQuality(result);

 //set value of corresponding instance in orientation test set
 setClassAttributes(orientationTesting);

orientationTesting.instance(i).setValue(getSubjectiveQualityAttribute().index()
, vote);

 //set value of corresponding instance in quality test set
 setClassAttributes(votingQualityTesting);

votingQualityTesting.instance(i).setValue(getSubjectiveQualityAttribute().index
(), vote);
 }

 //filter to train for images of certain quality
 Instances filteredTestGood = filterOnQuality("good",
orientationTesting);
 Instances filteredTestAve = filterOnQuality("average",
orientationTesting);
 Instances filteredTestPoor = filterOnQuality("poor",
orientationTesting);

 //Set class index
 setClassAttributes(orientationTesting);
 filteredTestGood.setClassIndex(getOrientationAttribute().index());
 filteredTestAve.setClassIndex(getOrientationAttribute().index());
 filteredTestPoor.setClassIndex(getOrientationAttribute().index());

 setClassAttributes(votingQualityTesting);

votingQualityTesting.setClassIndex(getSubjectiveQualityAttribute().index());

 //predict quality using classifier
 eTestQuality.evaluateModel(cModelQualityCopy, votingQualityTesting);
 eTestBinaryQuality.evaluateModel(cModelGoodQualityCopy,
qualityGoodTest);
 eTestBinaryQuality.evaluateModel(cModelAveQualityCopy, qualityAveTest);
 eTestBinaryQuality.evaluateModel(cModelPoorQualityCopy,
qualityPoorTest);
 eTestOrientation.evaluateModel(cModelOrientationGoodCopy,
filteredTestGood);
 eTestOrientation.evaluateModel(cModelOrientationAveCopy,
filteredTestAve);
 eTestOrientation.evaluateModel(cModelOrientationPoorCopy,
filteredTestPoor);

 //based on quality prediction, use orientation classifier to predict
orientation

 if(n == 9){
 //Print the Quality results
 System.out.println("\n Binary Quality run: " + (n+1));

69

 printResults(eTestBinaryQuality);

 //Print the Quality results
 System.out.println("\n Subjective Quality run: " + (n+1));
 printResults(eTestQuality);

 //Print the Quality results
 System.out.println("\n Orientation run: " + (n+1));
 printResults(eTestOrientation);
 }

 }
 }
}

private static String getVotingResults(double resultP, double resultA, double
resultG){
 int pWeight = 1;
 int aWeight = 2;
 int gWeight = 3;
 double result;

 double num = (resultP * pWeight) + (resultA * aWeight) + (resultG * gWeight);
 double denom = resultP + resultA + resultG;

 if(denom == 0)
 {
 result = 1;
 }
 else
 {
 result = Math.floor(num/denom);
 }

 if(result == 1)
 {
 return "poor";
 }
 else if(result == 2)
 {
 return "average";
 }
 else if(result == 3)
 {
 return "good";
 }
 else
 {
 return "void";
 }
}

 private static Integer getIntFromVoteQuality(String s){
 if(s == "average"){
 return 0;
 }
 else if(s == "poor"){
 return 1;
 }
 else if(s == "good"){
 return 2;
 }
 return null;

70

 } //end getQualityFromInt

 private Instances getFilteredQualitySet(String q, Instances train) throws
Exception{
 String[] qualities = new String[3];
 qualities[0] = "Good";
 qualities[1] = "Average";
 qualities[2] = "Poor";

 train = removeOrientationAttribute(train);
 train = removeSubjectiveQualityAttribute(train);

 //Remove binary values for other qualities
 for(int i = 0; i < qualities.length; i++)
 {
 if(qualities[i] != q)
 {
 train = removeBinaryQuality(qualities[i],train);
 }
 }

 //Set class index
 Attribute binaryAttribute = train.attribute(q);
 train.setClassIndex(binaryAttribute.index());

 return train;
 }

 private Instances removeOrientationAttribute(Instances d) throws Exception{
 setOrientationAttribute(d.attribute("Type"));

 //Filter to remove the orientation attributes
 Remove removeOrientation = new Remove();
 String[] orientationOptions = new String[2];
 orientationOptions[0] = "-R"; // "range"
 orientationOptions[1] =
String.valueOf(getOrientationAttribute().index()+1); //range of attributes
 removeOrientation.setOptions(orientationOptions);
 removeOrientation.setInputFormat(d);

 //Apply the filters
 Instances filtered = Filter.useFilter(d, removeOrientation);

 return filtered;
 }

 private Instances removeSubjectiveQualityAttribute(Instances d) throws
Exception{
 setSubjectiveQualityAttribute(d.attribute("Subjective"));

 //Filter to remove the orientation attributes
 Remove removeOrientation = new Remove();
 String[] orientationOptions = new String[2];
 orientationOptions[0] = "-R"; // "range"
 orientationOptions[1] =
String.valueOf(getSubjectiveQualityAttribute().index()+1); //range of
attributes
 removeOrientation.setOptions(orientationOptions);
 removeOrientation.setInputFormat(d);

 //Apply the filters
 Instances filtered = Filter.useFilter(d, removeOrientation);

71

 return filtered;
 }

 private Instances removeAllBinaryQuality(Instances d) throws Exception{
 d = removeBinaryQuality("Good",d);
 d = removeBinaryQuality("Average",d);
 d = removeBinaryQuality("Poor",d);
 return d;
 }

}

72

REFERENCES

1. Foster A. & N. Davis. 2007. Congenital talipes equinovarus (clubfoot). Surgery (Oxford).
25: 171-175.

2. Penny J. N. 2005. The neglected clubfoot. Techniques in orthopaedics. 20: 153-166.

3. Dobbs M. B. & C. A. Gurnett. 2009. Update on clubfoot: etiology and treatment. Clin.
Orthop. 467: 1146-1153.

4. Urdea M., L. A. Penny, S. S. Olmsted et al. 2006. Requirements for high impact diagnostics
in the developing world. Nature. 444: 73-79.

5. Wootton R. 1997. The possible use of telemedicine in developing countries. J. Telemed.
Telecare. 3: 23-26.

6. Coordinated Laboratory for Computational Genomics. 2013. International Clubfoot
Registry.

7. Wynne-Davies R. 1972. Genetic and environmental factors in the etiology of talipes
equinovarus. Clin. Orthop. 84: 9-13.

8. Ponseti I. V. (. 1996. Congenital clubfoot : fundamentals of treatment / Ignacio V.
Ponseti.

9. miraclefeet. 2013. miraclefeet.

10. Ponseti International Association. 2013. The Ponseti International Association.

11. International Telecommunication Union. 2013. The World in 2013: ICT Facts and
Figures. ITU.

12. The MathWorks. 2012. Matlab. R2012a (7.14.0.739).

13. Vedaldi A. & B. Fulkerson. 2010. VLFeat: An open and portable library of computer
vision algorithms. In Proceedings of the International Conference on Multimedia. : 1469-
1472. ACM.

14. Lowe D. G. 1999. Object recognition from local scale-invariant features. In Computer
Vision, 1999. the Proceedings of the Seventh IEEE International Conference On. Vol. 2:
1150-1157. Ieee.

15. Lowe D. G., inventor; The University Of British Columbia, assignee. 2004. Method and
Apparatus for Identifying Scale Invariant Features in an Image and use of Same for Locating
an Object in an Image.

16. Niu P., X. Wang, H. Jin et al. 2011. A feature-based robust digital image watermarking
scheme using bandelet transform. Optics & Laser Technology. 43: 437-450.

73

17. Lloyd S. 1982. Least squares quantization in PCM. Information Theory, IEEE
Transactions on. 28: 129-137.

18. Elkan C. 2003. Using the triangle inequality to accelerate k-means. In Machine Learning-
International Workshop then Conference. Vol. 20: 147.

19. Vedaldi A. & B. Fulkerson. 2008. VLFeat: An open and portable library of computer
vision algorithms. VLFeat: An open and portable library of computer vision algorithms
(2008).

20. Sivic J. & A. Zisserman. 2009. Efficient visual search of videos cast as text retrieval.
Pattern Analysis and Machine Intelligence, IEEE Transactions on. 31: 591-606.

21. Nowak E., F. Jurie & B. Triggs. 2006. Sampling strategies for bag-of-features image
classification. In Computer Vision–ECCV 2006. Anonymous : 490-503. Springer.

22. Fei-Fei L. 2010. Part 1: Bag-of-words models. : 1-69.

23. Bosch A., A. Zisserman & X. Muoz. 2007. Image classification using random forests and
ferns. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference On. : 1-
8. IEEE.

24. Moorthy A. & A. Bovik. 2009. A modular framework for constructing blind universal
quality indices. IEEE Signal Process. Lett.

25. Davis L. S. 1975. A survey of edge detection techniques. Computer graphics and image
processing. 4: 248-270.

26. Maini R. & H. Aggarwal. 2009. Study and comparison of various image edge detection
techniques. International Journal of Image Processing (IJIP). 3: 1-11.

27. Stegmann M. B. & D. D. Gomez. 2002. A brief introduction to statistical shape analysis.
Informatics and Mathematical Modelling, Technical University of Denmark, DTU. : 15.

28. The University of Waikato. 2010. Waikato Environment for Knowledge Analysis.

29. Street N. 2011. Knowledge Discovery: Machine Learning.

30. Lewis D. D. 1998. Naive (Bayes) at forty: The independence assumption in information
retrieval. In Machine Learning: ECML-98. Anonymous : 4-15. Springer.

31. John G. H. & P. Langley. 1995. Estimating continuous distributions in Bayesian
classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence. : 338-345. Morgan Kaufmann Publishers Inc.

32. Cortes C. & V. Vapnik. 1995. Support-vector networks. Mach. Learning. 20: 273-297.

33. Smola A. J. & B. Schölkopf. 2004. A tutorial on support vector regression. Statistics and
computing. 14: 199-222.

74

34. Platt J. 1998. Sequential minimal optimization: A fast algorithm for training support
vector machines.

35. Vailaya A., A. Jain & H. J. Zhang. 1998. On image classification: City images vs.
landscapes. Pattern Recognit. 31: 1921-1935.

36. Huang J., S. R. Kumar & R. Zabih. 1998. An automatic hierarchical image classification
scheme. In Proceedings of the Sixth ACM International Conference on Multimedia. : 219-
228. ACM.

37. Sablatnig R., P. Kammerer & E. Zolda. 1998. Hierarchical classification of paintings
using face-and brush stroke models. In Pattern Recognition, 1998. Proceedings. Fourteenth
International Conference On. Vol. 1: 172-174. IEEE.

38. Street N. 2011. Knowledge Discovery: Training and Testing Methods.

39. Guillaume FOUET. 2013. VisiPics. 1.31.

40. Mukaka M. 2012. A guide to appropriate use of Correlation coefficient in medical
research. Malawi Medical Journal. 24: 69-71.

41. Moorthy A. & A. Bovik. 2009. BIQI software release. URL
{http://live.ece.utexas.edu/research/quality/biqi.zip}.

42. Quinlan J. R. 1993. C4. 5: Programs for Machine Learning. Morgan Kaufmann.

43. Aha D. W., D. Kibler & M. K. Albert. 1991. Instance-based learning algorithms. Mach.
Learning. 6: 37-66.

44. Le Cessie S. & J. Van Houwelingen. 1992. Ridge estimators in logistic regression.
Applied statistics. : 191-201.

45. Breiman L. 2001. Random forests. Mach. Learning. 45: 5-32.

46. Cohen W. W. 1995. Fast effective rule induction. In Machine Learning-International
Workshop then Conference. : 115-123. Morgan Kaufmann Publishers, Inc.

	University of Iowa
	Iowa Research Online
	Summer 2013

	Clubfoot Image Classification
	Amanda Marie De Hoedt
	Recommended Citation

	Microsoft Word - adehoedt_thesis-form-v6.docx

