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CHAPTER 1: INTRODUCTION 

Clubfoot is a congenital foot disorder that, left untreated, can limit a person’s mobility 

by making it difficult and painful to walk [1].  Although inexpensive and reliable treatment 

exists, clubfoot often goes untreated in the developing world, where 80% of cases occur [2].  

Untreated clubfoot can have a lasting impact on an individual’s life; lack of mobility limits 

job prospects and clubfoot can carry a negative social stigma. 

Many nonprofit and non-governmental organizations are partnering with hospitals and 

clinics in the developing world to provide treatment for patients with clubfoot, and to train 

medical personnel in the use of the Ponseti Method, the non-surgical serial casting method 

widely used as treatment for clubfoot [3]. 

Many, if not most, of the clubfoot hospitals and clinics working with these 

organizations function with limited infrastructure that is often taken for granted in 

developed nations.  Clinics and hospitals may have limited or no access to high-speed 

internet, they may have unreliable power sources, and there may be few medical personnel 

[4; 5].  Civil infrastructure such as road quality or access to bridges may also be prohibitive 

for patients, who must travel (sometimes for many hours) to a hospital or clinic each week 

for treatment. 

As a component of these partnerships, clinics and hospitals are collecting patient 

information with a web-based application that also has offline capabilities [6].  Some of this 

patient information, such as photographs, requires expert quality assessment.  Such 

assessment may occur at a later date by a staff member in the hospital, or it may occur in a 

completely different location through the web interface. 
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Photographs capture the state of a patient at a specific point in time.  If a photograph is 

not taken correctly, and as a result, has no clinical utility, the photograph cannot be recreated 

because that moment in time has passed. 

These observations have motivated the desire to perform real-time classification of 

clubfoot images as they are being captured in a possibly remote and challenging 

environment.  In the short term, successful classification could provide immediate feedback 

to those taking patient photos, helping to ensure that the image is of good quality and the 

foot is oriented correctly at the time of image capture.  In the long term, this classification 

could be the basis for automated image analysis that could reduce the workload of a busy 

staff, and enable broader provision of treatment. 

After two years of work on this classification problem, a greatly enhanced 

understanding of the challenges associated with clubfoot image classification has been 

acquired.  Furthermore, modest success in orientation classification of this highly variable 

data set has been achieved.  The methodology and results for this classification are outlined 

in the following chapters.  
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CHAPTER 2: BACKGROUND 

This chapter provides basic definitions of terms and concepts used throughout the 

thesis.  It also serves as a brief introduction to a number of algorithms and tools.  These 

tools were used in the software development and data analyses outlined in chapter 3.  

2.1 Clubfoot  

As clubfoot is the subject of this research, it is important to understand what clubfoot 

is, how it is treated, the barriers to treatment, and the work that has been done to eliminate 

these barriers. 

2.1.1 Defini t ions and History o f  Clubfoot  

Clubfoot is a congenital foot disorder that affects approximately 1 in every 1,000 

children worldwide [7].  Individuals with clubfoot experience bone and soft tissue 

deformation in at least one foot, which inhibits their ability walk [1]. 

 

 

Figure 1: Clubfoot is a congenital foot disorder that affects approximately 1 in every 1000 
children worldwide.  Individuals with clubfoot experience bone and soft tissue deformation 

in at least one foot, which inhibits their ability walk. 
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If left untreated, clubfoot can prohibit individuals from being productive members 

of society by limiting their mobility and causing social stigma [2].  This is especially 

pronounced in the developing world, where 80% of clubfoot occurs, and access to treatment 

is limited. 

Although little is known about the causes of clubfoot, an inexpensive and effective 

treatment is available.  The Ponseti Method, developed by Dr. Ignacio Ponseti at the 

University of Iowa Hospitals and Clinics, is a serial casting treatment in which the foot is 

manipulated into the correct position over a period of several weeks [8].  It is analogous to 

the process of straightening teeth in the field of orthodontics.  Each week, the foot is 

manipulated and held in place with a cast.  The casting stage of treatment takes about five to 

eight weeks.  Following manipulation, the child wears a brace for several years so the feet do 

not relapse. 

 

 

Figure 2: Clubfoot can be treated with the Ponseti Method.  This method uses serial casting 
over a period of several weeks to gradually correct the foot. 

 

2.1.2 Internat ional  Clubfoot  Regis try  

Many organizations and groups exist to reduce the prevalence of clubfoot by 

increasing the availability of treatment and by training medical personnel in the Ponseti 

Method.  In collaboration with miraclefeet and the Ponseti International Association, the 

International Clubfoot Registry was developed [6; 9; 10].  This online tool collects patient 
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information and supports clinical, training, and research needs.  In response to the limited 

infrastructure resources available in the developing world, an offline application was further 

developed.  Now, with the growing prevalence of mobile devices in all parts of the world, 

the development of a mobile application has been proposed [11]. 

2.1.3 Clubfoot  Image Uti l i ty  

One of the important functionalities of the International Clubfoot Registry is the 

ability for clinics to upload photographs of their patients’ feet before, during, and after 

treatment.  Photographs are important because they can be used to make a diagnosis, 

monitor the progression of a patient’s treatment, and evaluate the ability of medical 

personnel to successfully treat the disorder. 

2.2 Tools and Techniques 

In an effort to classify clubfoot photos, a number of tools and techniques in the fields 

of image processing, machine vision, and machine learning were used.  First, characteristic 

elements, or image features, had to be extracted from the digital images.  Then the computer 

“learned” relationships between these features and properties of the image.  As a result, 

features could be used to infer information about novel images.  This section will present a 

broad overview of the tools and techniques that were used for feature extraction and 

machine learning as part of this research. 

2.2.1 Image Feature Extract ion 

Digital images are represented as an array of numbers that correspond to color and 

intensity.  There are many methods for manipulating these numerical arrays to find points of 

interest in an image.  MATLAB is a computer application that provides a powerful set of 

array-based tools that facilitate, or even implement, these methods [12].  VLFeat is an open-

source library that integrates with MATLAB and implements many common machine vision 
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methods [13].  This section will present an overview of feature extraction methods relevant 

to this thesis. 

2.2.1.1 Scale Invariant Feature Transform 

Scale Invariant Feature Transform (SIFT) descriptors were described by David Lowe 

in 1999 and the methodology for extracting SIFT descriptors was patented in 2004 by The 

University of British Columbia [14; 15].  Descriptors are found by convolving an image with 

Gaussian filters at different image scales.  At each scale, the differences between the 

Gaussian images are calculated, and then key points are detected.   

 

 

Figure 3: Scale Invariant Feature Transform (SIFT) descriptors are found by convolving an 
image with Gaussian filters at different image scales.  At each scale, the differences between 
the Gaussian images are calculated.  Key points are detected by finding local maxima and 

minima.  SIFT features are scale and rotation invariant. 

 

Key points are local maxima and minima found by comparing each pixel’s value to 

the value of each of its neighbors within an image scale.  Key points are filtered to remove 

those with low contrast and those found along edges, while keeping key points located at 

corners.  Each key point is assigned a gradient magnitude and orientation. 

There are many publicly-available implementations of Lowe’s SIFT, for example, 

VLFeat’s MATLAB-based implementation, which was used in this analysis.  In the VLFeat 
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implementation, SIFT features are stored and referenced using a different format than that 

used in Lowe’s implementation, but the resulting key points and descriptors are nearly 

equivalent. 

SIFT features were chosen for this analysis due to their robustness.  The clubfoot 

data set has a high degree of variability; photographs were taken with different cameras, 

under different lighting conditions, at different angles, with young, mobile children.  SIFT 

descriptors’ invariance to image scale and rotation, and robust performance with changes to 

illumination and noise made it an excellent candidate. 

2.2.1.2 K-Means Clustering 

K-means clustering is an algorithm used to group data points into K clusters based on 

similarity [17].  The algorithm was introduced by Stuart Lloyd and has four basic steps. 

1) K initial “centroids” are generated within the domain of the data. 

2) Data points are mapped to the nearest centroid, creating K clusters of data points. 

3) The centroid of each cluster is calculated, and the centroid values are updated 

accordingly. 

4) Steps 2 and 3 are repeated until convergence. 

 

 

 

Figure 4: K-means clustering is an algorithm used to group data points into k clusters based 
on similarity.   Centroids are represented as colored circles and data points are represented as 

dark circles. 
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K-means clustering is used to group clubfoot image features; VLFeat implements 

Elkan k-means clustering for faster performance compared to Euclidean k-means clustering 

[18; 19]. 

2.2.1.3 Bag-of-Words 

Bag-of-words (BOW) is a technique that was originally developed for analysis of 

textual data, but it can also be applied to visual data by treating descriptors as words [20].  

Using this technique, image feature vectors are expressed by a histogram of the occurrences 

of representative descriptors within the image [21]. 

There are three main steps for a bag-of-words implementation.  First, descriptors are 

obtained from the entire data set, or a representative subset of the data.  From this set of 

descriptors, a representative sample is chosen to create an unordered bag-of-words.  This 

can be achieved using an algorithm such as k-means clustering.  Finally, all of the descriptors 

in an image are found and mapped to the bag-of-words features using a distance metric.  

This results in a histogram showing the prevalence of each bag-of-words feature within the 

sample space [22].  

 

 

Figure 5: Using a bag-of-words model, image feature vectors are expressed by a histogram of 
the occurrences of representative descriptors within the image.  Different levels of descriptor 

occurrence can provide information about the contents of an image. 
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A bag-of-words was generated for the clubfoot data set using VLFeat implemented 

in MATLAB. 

2.2.1.4 Pyramid Histogram Of Visual Words 

Pyramid Histogram of Visual Words (PHOW) feature vectors are spatial pyramid 

representations of SIFT bag-of-word descriptors [23]. 

 

 

Figure 6: Pyramid Histogram of Visual Words (PHOW) feature vectors are spatial pyramid 
representations of SIFT bag-of-word descriptors. 

 

Images are segmented with grids of varying sizes (1x1, 2x2, 4x4, etc.) and a bag-of-

words histogram is constructed for each image space.  The histograms are appended 

together to create a PHOW feature vector.  By computing histograms at different levels, 

PHOW feature vectors are able to provide location information at varying granularities. 

VLFeat implements PHOW feature extraction according to the methodology outlined by 

Bosch et al.  The PHOW feature vectors extracted using this implementation were used to 

classify images in the clubfoot data set. 

2.2.1.5 Blind Image Quality Indices 

Blind Image Quality Indices (BIQI) are numerical values that represent image 

degradation [24].  The BIQI value ranges from 0 to 100, with 0 representing the best quality 
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and 100 representing the worst.  BIQI uses a no-reference image quality assessment 

algorithm that estimates the amount of distortion in an image.  Types of distortion estimated 

by BIQI are image compression, white noise, Gaussian blur, and Fast fading.  The degree of 

computed distortion determines the overall score assigned to an image.  

BIQI scores were calculated for the images in the clubfoot data set in an effort to 

measure the images’ degradation and overall quality. 

2.2.1.6 Edge Detection 

Edge detection is a technique used in image processing that is aimed at finding edges 

within an image.  Typically, these techniques find edges by searching for intensity changes, or 

gradients, within an image [25].  This is achieved by convolving an image with one or more 

matrices, called “filters” or “kernels” [26].  Convolution assigns areas of continuity low 

values while areas with variation are assigned high values.  Thus, edges are found. 

Sobel edge detection, implemented in MATLAB was used to find edges in the 

clubfoot data set.  The Sobel operator uses two 3x3 filters to find gradients in two directions. 

 

-1 0 +1  +1 +2 +1 
-2 0 +2  0 0 0 
-1 0 +1  -1 -2 -1 

Figure 7: Sobel edge detection uses two filters to find gradients along the x and y axes of an 
image. 

 

2.2.1.7 Procrustes Analysis 

Procrustes analysis is a statistical methodology used for comparing the similarity of 

shapes [27].  It achieves this in two steps.  First, a test shape and template shape are 

superimposed using linear translation, scaling, and rotation.  The second step is to determine 
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the Procrustes distance between the superimposed images.  This is calculated by finding the 

sum of squared distances between points in the shapes. 

 

Equation 1: The Procrustes distance is calculated by finding the sum of squared distances 
between points in two superimposed shapes. 

𝑑 =    (𝑥!! − 𝑥!!)! + (𝑦!! − 𝑦!!)!
!

!!!

 

 

 
Procrustes distance is built-in functionality of MATLAB, and it was collected as a 

numerical measure of an image’s orientation. 

2.2.2 Machine Learning 

Machine Learning has been one of the fastest growing fields, and widely deployed 

methods, for a large array of problems which require extraction of knowledge from many 

instances or examples, due to a lack of more traditional analytic modeling techniques. This 

research deployed a machine learning approach that can be used to automatically judge the 

acceptability of photos taken of the feet of children being treated in a remote, off-line 

situation – usually with a smart phone camera.  

The “learning” process is complex, but at its core is the need to determine the 

distinguishing features embedded in an image, and then partition images based on the most 

distinguishing features. Once features have been extracted from an image or set of images, 

the computer must “learn” how these features relate to image properties.  Learning these 

relationships allows the computer to predict properties of novel images. 

Waikato Environment for Knowledge Analysis (WEKA) is a software tool that aids 

in data analysis and classification by providing implementations of many different types of 



 

 

12 

classifiers [28].  This section will provide a cursory overview of the field of machine learning 

as it applies to the specific classification problem being addressed in this thesis. 

2.2.2.1 General principles 

Machine learning has fundamental building blocks that are used for data 

classification [29].  The process starts with obtaining examples, or a data set from a real-

world set of data.  Each instance in a data set will have a set of features, or attributes.  One 

of these attributes is the class attribute.  The class attribute is the property that needs to be 

predicted, and is the “answer” to the classification. 

The data set is used to train a classifier so it is able to predict the class attribute given 

the set of features.  Once a classifier has been built, it can be used to predict the class of 

novel data. 

 

 

Figure 8: Machine learning is a process that builds a classifier trained on examples of real-
world data.  The classifier learns relationships between the data set’s features and class 

attribute.  It can then predict the class of novel data. 
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Data that is used to train a classifier should not be input to the classifier as a novel 

example for testing or prediction purposes. This is because the classifier has seen both the 

features and the class attributes of all the examples it was trained on, so it “knows” the 

answer to the classification problem.  Predicting the class of an instance used for training is 

called overtraining, and inhibits the most valuable attribute of powerful predictors – 

generalization. 

2.2.2.2 Classifiers 

There are many types of classifiers that can be used in machine learning.  Naïve 

Bayes and Support Vector Machine classifiers were found to perform well on the data set 

used in this research, and their performance was compared to that of a majority classifier. 

2.2.2.2.1 Naïve Bayes Classifier  

The Naïve Bayes classifier is a core methodology that has been used for at least 55 

years [30].  It assumes the independence of attributes to calculate the probability that, given a 

set of attribute values, a condition occurs.  This is summarized as Baye’s Rule: 

 

Equation 2: Naive Bayes classification makes predictions using Baye's Rule. 

𝑃 𝑐! 𝑥 =
𝑃 𝑥 𝑐! 𝑃(𝑐!)

𝑃(𝑥)  

 

 
WEKA implements a Naïve Bayes classifier following the methodology described by 

George H. John et al [31]. 

2.2.2.2.2 Support Vector Machine Classifier 

A support vector machine constructs a set of hyperplanes that maximally separates a 

data set, allowing for classification [32].  Support vectors, or data points, are found along the 
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margin surrounding the hyperplane.  Data points falling on opposite sides of the hyperplane 

have different predicted classes. 

 

 

Figure 9: A support vector machine constructs a set of hyperplanes that maximally separates 
a data set, allowing for classification. 

 

A SVM can be extended to higher-dimension spaces, and can take advantage of non-

linear projections [33].  WEKA achieves this using the sequential minimal optimization 

algorithm presented by John C. Platt [34]. 

2.2.2.2.3 Majority Classifier 

A majority classifier predicts the probability of the majority class in the data set.  In 

WEKA’s implementation, the majority class is found by taking the mean or mode of the 

data.  Since the clubfoot data set used in this analysis has nominal class labels, the classifier 

predicts the mode.  The accuracy of a majority classifier can be used as a baseline to measure 

the success of other classification types. 
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2.2.2.3 Classification Schemes 

Multiple classifiers have been shown to improve classification results when trying to 

group images into meaningful categories [35].  Multiple classifiers are organized in a 

hierarchical fashion, which can be fixed or determined automatically [36; 37]. 

Classifiers in a hierarchical structure often have binary predictions, but it is not a 

requirement and some classification schemes take advantage of multi-class classifiers.   

Hierarchies are organized according to the nature of the data set being classified, and as a 

result, there are no standardized organization schemes for multiple classifiers.  Several 

hierarchical classification schemes were developed and analyzed to predict the orientation 

and quality of images in the clubfoot data set. 

2.2.2.4 10-Fold Cross Validation 

Different classifiers and classification schemes will have better or worse performance 

on different sets of data.  To find the classifier and classification scheme that works best on 

a particular data set, testing needs to be performed in a way that most accurately reflects the 

real environment for the deployed classifier among unknown instances, and that prevents 

overtraining. 

10-fold cross validation breaks the data into 10 equal-sized, random, and stratified 

subsets of data [38]. The classifier is first trained on subsets 1-9, and then tested with subset 

10.  The process is repeated, building a total of 10 classifiers, where each subset serves as the 

testing set a single time.   Classification of images in the clubfoot data set was tested using 

10-fold cross validation. 
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Figure 10: 10-fold cross validation breaks the data into 10 equal-sized, random, and stratified 
subsets of data.  In ten rounds of classification, a classifier is trained with nine of the subsets 

and tested with the remaining subset. 
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CHAPTER 3: METHODS AND RESULTS 

3.1 Dataset 

Dr. Jose Morcuende provided a set of 2,791 photos of clubfoot patients.  These 

photos were taken by medical personnel in the University of Iowa Children’s Hospital 

Clubfoot Clinic and by family members in the patients’ homes.  The dataset was organized 

for use by clinicians in the clinic, and needed to be “cleaned” and reorganized for analysis. 

Duplicate images were found using the freeware tool, VisiPics [39].  With a strict filter 

setting, 662 images were found to have one or more duplicates.  672 images were removed 

from the set to eliminate all copies of these images. 

Some images contained patient identifying information within the photo, such as 

names, date of birth, or faces.  A total of 61 images with identifying information were 

manually removed from the dataset. 

These filters reduced the data set to 2,058 photos, which were renamed using a shell 

script. 

3.2 Assigning Orientation Scores 

Orientation refers to the orientation of the foot within the photo.  Photos with 

different orientations of the feet provide different clinical utility.  Being able to automatically 

detect orientation could help ensure photos’ utility. 

3.2.1 Nominal Orientat ion Assignment 

Photos were manually assigned an orientation attribute representing the orientation 

of the feet in the image.  An image could be assigned one of six orientation attributes: 

“front”, “back”, “side”, “front floor”, “back floor”, or “other”.   

 

 



 

 

18 

   
Front Back Side 

   
Front Floor Back Floor Other 

Figure 11: Images were be assigned one of six orientation attributes: “front”, “back”, “side”, 
“front floor”, “back floor”, or “other”. 

 

 

 

Table 1: Orientation assignments of 
2,058 clubfoot images. 

Orientation Number of Images 
Front 582 
Back 380 
Side 168 
Front Floor 216 
Back Floor 197 
Other 515 
Total 2058 

 

 

 

Maria Miller, Clinic Nurse Coordinator at the University of Iowa Hospitals and 

Clinics, helped to define these categories by providing the instructions that are given to 

medical personnel and family members who are responsible for taking photographs of the 

feet. 
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3.2.2 Numeric  Procrustes  Values  

Procrustes distance measures the difference between two shapes [27].  Images from 

the clubfoot data set were converted into shapes by applying MATLAB’s Sobel edge 

detector to each image [12]. 

One image from each of the orientation categories “front”, “back”, “side”, “front 

floor”, and “back floor” was selected to be used as a template photo representing an 

orientation category.  Template photos were selected for low background noise and clear, 

distinct lines outlining the feet. 

 

 

 

Table 2: Template images for Procrustes 
analysis. 

Orientation Template Photo Number 
Front 938 
Back 164 
Side 2685 
Front Floor 1482 
Back Floor 498 

 

 

 

 

Each of the remaining images in the data set was mapped to each of the template 

images using Procrustes analysis.  This generated five distance measures for each image, 

corresponding to the degree of difference between the image and each of the orientation 

category templates.  Higher scores corresponded to a greater difference between the image 

and the template. 
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Table 3: Average Procrustes distances for matching image type to template. 

Image Type 
Average Procrustes Value For Matching Image Type to Template 

Template 
Front Back Side Front Floor Back Floor 

Front .57 .58 .61 .67 .60 
Back .58 .57 .59 .68 .59 
Side .64 .62 .59 .73 .62 
Front Floor .63 .60 .60 .69 .60 
Back Floor .63 .61 .61 .69 .61 
Other .62 .60 .62 .72 .59 

 

 

It was expected that the average Procrustes distance measure for each image type 

would be minimized when calculated using the template of the same image type.  This was 

true for two of the five orientations: front and side.  Although back images that were 

matched with a back template yielded an average Procrustes distance measure lower than the 

measure generated when compared to other templates, the distance measure was not 

significantly different from the average distance measure of back images matched with the 

front template. 

The Procrustes distance measures were not used as features for machine learning 

classification. 

3.3 Assigning Quality Scores 

Quality of an image in this project has two components.  The first is the degree of 

image degradation, which can be the result of many factors including noise, artifacts, and 

blur.  The second component of image quality is the clinical utility of the photo. 

3.3.1 Numeric  Values 

In order to numerically represent an image’s quality, a scoring system was developed.  

Two undergraduate students, Emily McDougall and Ashley Home, and one graduate student 
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used this system to rate each image’s quality according to several features representing both 

image and diagnostic quality.  Six criteria that could affect the quality of an image were 

defined.   Each photo received a score ranging from (low) 1-5 (high) for each of the criteria.  

Example images were provided, along with a table for entering scores. 

 

Table 4: Criteria for scoring quality of images. 

Criteria Good (5) Average (3) Poor (1) 
Background Solid Not solid; Good 

contrast 
Not solid; Poor 
contrast 

Hands/Objects None or minimal 
hands 

Minimal hands Hands or other 
objects 

Exposure Good Good Low/High 
Noise Low Moderate High 
Blur Low Moderate High 
Percent of photo 
containing 
hands/legs 

65-85% 55-65% <55% or >85% 

 

 
Pearson product-moment correlation coefficients showed that the scores assigned by 

the three individuals had medium to large positive correlation for all but the exposure and 

noise categories, which had low positive correlation [40]. 

 

Table 5: Pearson product-moment correlation coefficients of scorers’ quality 
assignments. 

 Pearson Product-Moment Correlation Coefficients 
Emily-Ashley Emily-Amanda Ashley-Amanda 

Background .66 .61 .83 
Hands/Objects .65 .62 .71 
Exposure .47 .47 .40 
Noise .34 .33 .35 
Blur .62 .68 .69 
Percent of photo 
containing hands/legs 

.55 .42 .56 

Total .59 .58 .72 
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3.3.2 Aggregate  Value 

Two of the three students provided an aggregate, or nominal quality score of 

“good”, “average”, or “poor” for each image.  This value represented their overall 

(somewhat subjective) opinion of the image’s quality taking into consideration all of the 

numerical quality criteria with an unspecified weighting of the various underlying quality 

parameters. 

Because one student did not provide a nominal quality assignment, a Naïve Bayes 

classifier was used to predict what their assignment would have been given their numeric 

quality scores and the mapping of underlying to overall scores of the other two students.  

This classifier was built using a training set consisting of the scores generated by the other 

two students.  It used numeric quality scores as attributes and the nominal quality 

assignment as the class. 

To assess the performance of the classifier, 10-fold cross validation was performed 

and was found to have an accuracy of 77%. 

Steps were not taken to improve this classification because these predicted nominal 

scores were not directly used in future data analysis or classification. They were only used to 

judge quality classification performance against a pseudo-gold standard. 

3.3.3 Nominal Quali ty  Assignment 

When predicting image quality in subsequent analyses, the nominal quality 

assignment was used as the class attribute.  It was important to choose the most accurate and 

robust nominal quality assignments since they would serve as the class definition.  Several 

methods were considered. 
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3.3.3.1 Appending 

The dataset could be duplicated to reflect both students’ nominal quality 

assignments.  This would preserve their assignments, but could lead to classifier overtraining. 

3.3.3.2 Averaging 

Students’ nominal assignments could be assigned a numerical value, allowing for the 

two scores to be averaged.  This method was not chosen because rounding in either 

direction would create a bias in the data and diminish the value of each student’s score. 

3.3.3.3 2-Matching 

The data set could be reduced to only include images where the two student’s 

assigned nominal scores matched.  This would preserve the nominal assignments while 

eliminating the concern of overtraining. 

3.3.3.4 3-Matching 

This is a more stringent extension of 2-matching.  In this case, the data set could be 

reduced to only include images where the two student’s assigned nominal scores and the 

third student’s predicted nominal scores matched.  This again preserved nominal 

assignments while eliminating the concern of overtraining.  Furthermore, it reinforced that 

the nominal quality metric was accurate because the numeric scores of many images were 

considered in the prediction of the final student’s scores. 

The subset of data in which the three nominal quality scores matched was ultimately 

used in subsequent analysis of classifiers. 
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Table 6: The distribution of orientation assignments with respect to appended quality 
assignments. 

 Front Back Side Front Floor Back Floor Other  
Good 306 188 21 31 19 93 658 
Average 582 405 150 176 170 397 1880 
Poor 276 167 165 225 205 540 1578 
 1164 760 336 432 394 1030 4116 
 

 

 

Table 7: The distribution of orientation assignments with respect to 2-matching quality 
assignments. 

 Front Back Side Front Floor Back Floor Other  
Good 92 8 51 3 7 30 191 
Average 180 44 129 50 46 116 565 
Poor 80 75 43 69 57 200 524 
 352 127 223 122 110 346 1280 
 

 

 

Table 8: The distribution of orientation assignments with respect to 3-matching quality 
assignments. 

 Front Back Side Front Floor Back Floor Other  
Good 90 7 39 3 7 24 170 
Average 81 22 75 12 26 61 277 
Poor 38 20 39 18 30 110 225 
 209 49 153 33 63 195 702 
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3.3.4 Blind Image Quali ty  Indices  

The Blind Image Quality Indices were calculated for each image in an effort to 

measure image degradation [24; 41].  The BIQI value ranges from 0 to 100, with 0 

representing the best quality and 100 representing the worst. 

The BIQI average scores were calculated for the set of 702 good, average, and poor 

images that had three matching nominal values. 

 

 

Table 9: Average Blind Image 
Quality Indices (BIQI) scores 

for images of different qualities. 

 Average BIQI 
Good 48.5 
Average 47.8 
Poor 46.9 

 

 

Performing a Student’s t-test revealed that the mean BIQI scores were not 

significantly different. Thus, BIQI was not used as a determinant of quality. 

3.4 Feature Extraction 

Bag-of-words (BOW) feature extraction was implemented in MATLAB using the 

VLFeat toolbox  [12; 19]. A bag of words was created by extracting Pyramid Histogram of 

Visual Words (PHOW) descriptors [23] from 50 randomly selected images and using k-

means clustering to find K centroids that represent the extracted features.  For each image, 

the PHOW features were mapped to this bag-of-words.  Histograms of word frequency 

were generated at 2x2 and 4x4 scales.  An image’s feature vector was comprised of the 

appended histograms. 
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Figure 12: For each image, PHOW features were mapped to a bag-of-words.  Histograms of 
word frequency were generated at 2x2 and 4x4 scales.  An image’s feature vector was 

comprised of the appended histograms. 
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3.4.1 Bag-of -Words Size 

Features were calculated with a bag-of-words size of K=150 and K=600.  Because 

PHOW features are multi-scale, this results in a feature vector that is 3,000 and 12,000 units 

long, respectively. 

To compare the relative effectiveness of these two different sizes, a Naïve Bayes 

classifier was built to predict image orientation and quality using PHOW feature vector 

attributes.  The classifier was assessed using 10 runs of 10-fold cross validation.   

 

 

Table 10: Performance of orientation and quality classification 
using feature vectors built from a bag-of-words containing 150 

and 600 words. 

 Orientation Accuracy (%) Quality Accuracy (%) 
Run 150 BOW 600 BOW 150 BOW 600 BOW 
1 38.2 42.7 35.9 34.2 
2 38.5 43 34.8 35.9 
3 37.7 41.9 37.3 37.2 
4 37.2 39.5 36.2 36.6 
5 37.9 43.3 37.7 37.7 
6 37.9 42.2 36.2 35.8 
7 37.5 41.2 37.7 37.7 
8 38 41.5 36.1 37.2 
9 37 42.6 34.4 34.9 
10 38.2 42.2 36.3 37 
Average 37.81 42.01 36.26 36.42 

 

 

 

Comparing the accuracy of the two classifications using a Student’s t-test, it was found 

that orientation performance was significantly better when k=600 (p=1.6E-9).  Performance 

of quality prediction was not significantly different. 
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3.5 Classifiers 

Waikato Environment for Knowledge Analysis (WEKA) is a software tool that aids in 

data analysis and classification by providing implementations of many different types of 

classifiers [28].  Classifier types implemented in WEKA include Naïve Bayes, decision trees, 

nearest neighbor, logistic regression, support vector machine, ensemble, and majority 

classifiers [31; 34; 42-46].   

 

Table 11: Classifier types implemented in the WEKA software 
application. 

Classifier Type WEKA Implementation 
Naïve Bayes: Naïve Bayes 

Decision Tree: J48 
Nearest Neighbor: IBk 

Logistic Regression: Logistic 
Support Vector Machine: SMO 

Ensemble: Random Forest 
 JRip 

Majority: ZeroR 
 

 

Different types of classifiers may be more or less successful than others at 

classification, depending on the nature of the data set, and the different capabilities of each 

classifier. 

3.5.1 Optimal Class i f i er  Selec t ion 

To compare the performance of different types of classifiers, orientation and quality 

classifiers were built using orientation and nominal quality scores as class variables, and using 

PHOW feature vectors generated with a k=150 bag-of-words.  The classifiers’ accuracies 

were assessed with 10 runs of 10-fold cross validation. 
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Table 12: The performance of different classifiers with respect to orientation 
and quality prediction. 

Classifier Orientation Accuracy (%) Quality Accuracy (%) 
Naïve Bayes 37.8 36.3 
J48 30.2 34.9 
Ibk, k=10 33.7 38.3 
Logistic 25.5 36.9 
SMO 41.6 39 
Random Forest, I=10 36.5 37.2 
JRip 33.2 37.2 
Majority 29.8 39.5 

 

 
The support vector machine (SMO) had the best performance, and Naïve Bayes 

classification was also a top performer. 

3.6 Classification Schemes 

While predicting image orientation was the initial goal of this project, predicting 

quality became a significant focus of this research as the nature of the difficulties in 

classifying orientation appeared to be dependent on image quality.  Image quality was 

believed to have an effect upon a classifier’s ability to classify orientation. Thus several 

hierarchical schemes were developed to address these considerations. 

Classification was implemented in Java using the WEKA plugin.  Each was assessed 

with 10 runs of 10-fold cross validation.  Results were then compared to a majority classifier. 

Based on the results of BOW size and classifier testing, images were classified using a k=600 

BOW PHOW feature vector, and an orientation or nominal quality score as the class 

variable.  SMO and Naïve Bayes classifiers were used in this analysis. 
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3.6.1 Basic  Orientat ion and Quali ty 

Two basic orientation classifiers were developed to predict quality and classification.  

These classifiers function independently of each other.  These simply predicted the quality or 

orientation class using a PHOW feature vector. 

Both the Naïve Bayes and SMO classifiers in the basic orientation scheme performed 

better than a majority classifier.  The SMO basic quality classifier also performed better than 

the majority classifier (p=0.007), although it did not have substantially better performance. 

 

 

 

Figure 13: The basic quality classification scheme predicted an image’s nominal quality value 
given a PHOW feature vector. 

 

 

 

Figure 14: The basic orientation classification scheme predicted an image’s orientation given 
a PHOW feature vector. 
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Table 13: A Naïve Bayes classifier was used in the basic 
classification scheme to predict an image’s quality and 

orientation given a PHOW feature vector that was 
generated with a bag-of-words containing 600 features. 

Naïve Bayes 600 BOW Basic Classification Scheme 
Run Orientation Accuracy (%) Quality Accuracy (%) 
1 42.7 34.2 
2 43.0 35.9 
3 41.9 37.3 
4 39.5 36.6 
5 43.3 37.7 
6 42.2 35.8 
7 41.2 37.7 
8 41.5 37.2 
9 42.6 34.9 
10 42.2 37.0 
Average 42.0 36.4 

 

 

Table 14: A SMO classifier was used in the basic 
classification scheme to predict an image’s quality and 

orientation given a PHOW feature vector that was 
generated with a bag-of-words containing 600 features. 

SMO 600 BOW Basic Classification Scheme 
Run Orientation Accuracy (%) Quality Accuracy (%) 
1 47.6 40.9 
2 47.9 40.7 
3 45.9 41.5 
4 48.3 40.0 
5 47.0 40.2 
6 45.0 38.9 
7 47.4 41.2 
8 46.7 41.2 
9 47.3 40.0 
10 48.3 39.5 
Average 47.1 40.4 
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3.6.2 Quali ty  on All 

Three quality-on-all classifiers were built to determine whether features from images 

of a certain quality (good, average, or poor) were generally better at classifying all image 

types.  It was hypothesized that building a classifier with feature vectors from either good or 

poor images may have better performance.  Good images might have this result because 

there may be fewer “noisy” features.  Poor images might have this result because the most 

important features would have to be distilled during training. 

Three different classifiers were built using the PHOW feature vectors of images 

within a single nominal quality class (good, average, or poor).  Each classifier was used to 

classify every image in the data set.  This classification scheme shows the performance of 

classifiers built with certain quality images.  

 

 

Figure 15: The quality-based classifier was used to classify all images in the data set using a 
classifier trained only on images of a certain quality.  The results of this classifier would show 
if features from images of a certain quality (good, average, or poor) were generally better at 

classifying all image types. 
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Table 15: Three Naïve Bayes classifiers were used in the Quality on All 
classification scheme to predict an image’s orientation given a PHOW 

feature vector that was generated with a bag-of-words containing 
600 features. 

Naïve Bayes 600 BOW Quality on All Classification Scheme 
Run Good Orientation 

Accuracy (%) 
Average Orientation 
Accuracy (%) 

Poor Orientation 
Accuracy (%) 

1 35.5 38.9 34.5 
2 36.8 38.9 35.6 
3 34.3 38.2 34.8 
4 35.6 38.6 35.5 
5 35.5 37.7 35.6 
6 34.2 38.7 35.3 
7 33.3 39.9 35.6 
8 35.2 38.5 35.8 
9 34.5 38.6 34.9 
10 35.2 37.6 35.3 
Average 35.0 38.6 35.3 

 

 

Table 16: Three SMO classifiers were used in the Quality on All 
classification scheme to predict an image’s orientation given a PHOW 

feature vector that was generated with a bag-of-words containing 
600 features. 

SMO 600 BOW Quality on All Classification Scheme 
Run Good Orientation 

Accuracy (%) 
Average Orientation 
Accuracy (%) 

Poor Orientation 
Accuracy (%) 

1 36.9 41.2 37.5 
2 36.8 41.7 37.9 
3 36.3 40.6 38.3 
4 37.0 41.9 39.3 
5 34.9 40.7 37.9 
6 35.9 41.9 37.7 
7 35.6 41.6 38.9 
8 36.6 41.0 38.2 
9 35.5 40.7 38.7 
10 37.2 41.2 38.0 
Average 36.3 41.3 38.2 
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Although the overall performance of all three classifiers was better than a majority 

classification, they also performed worse than the basic classification scheme.   

The classifiers’ performance corresponded to the number of photos available for 

training.  There were 170 good quality images, 277 average quality images, and 255 poor 

quality images.  The lower performance of all classifiers reflects the diminished size of the 

training set.   

These results do not support the argument that a using a classifier built with feature 

vectors of only high or low-quality images is better at classifying all types of images. 

3.6.3 Quali ty  on Quali ty 

Three quality-on-quality classifiers were built to determine if features from images of 

a certain quality (good, average, or poor) were generally better at classifying images of the 

same type.  If this were true, it would motivate hierarchical classification where images were 

first classified according to quality and then classified according to orientation based on 

those results.   

Three different classifiers, good, average, and poor, were built with PHOW feature 

vectors from only good, average, or poor images.  Each classifier was used to classify only 

images of the same quality.    
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Figure 16: A Quality on Quality classification scheme built three orientation classifiers using 
images of a certain quality (good, average, poor).  The classifiers were used to classify only 

images of the same quality.  The results of this classifier would show if features from images 
of a certain quality (good, average, or poor) were generally better at classifying images of the 

same type.  
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Table 17: Three majority classifiers were used in the 
Quality on Quality classification scheme to predict an image’s 

orientation. 

Majority Quality on Quality Classification Scheme 
Overall 
Orientation 
Accuracy (%) 

Good 
Orientation 
Accuracy (%) 

Average 
Orientation 
Accuracy (%) 

Poor 
Orientation 
Accuracy (%) 

29.8 52.9 29.2 43.1 
 

 

 

Table 18: Three Naïve Bayes classifiers were used in the Quality on Quality 
classification scheme to predict an image’s orientation given a PHOW 

feature vector that was generated with a bag-of-words containing 600 features. 

Naïve Bayes 600 BOW Quality on Quality Classification Scheme 
Run Overall 

Orientation 
Accuracy (%) 

Good 
Orientation 
Accuracy (%) 

Average 
Orientation 
Accuracy (%) 

Poor 
Orientation 
Accuracy (%) 

1 44.2 42.4 40.4 52.9 
2 46.0 45.1 40.4 56.5 
3 44.0 42.0 39.0 55.3 
4 45.3 43.1 40.1 57.1 
5 45.3 44.7 39.4 55.9 
6 45.9 41.6 41.2 60.0 
7 46.3 42.0 41.9 60.0 
8 45.7 42.7 41.2 57.6 
9 44.2 41.6 39.0 56.5 
10 45.4 44.7 40.1 55.3 
Average 45.2 43.0 40.3 56.7 
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Table 19: Three SMO classifiers were used in the Quality on Quality 
classification scheme to predict an image’s orientation given a PHOW 

feature vector that was generated with a bag-of-words containing 600 features. 

SMO 600 BOW Quality on Quality Classification Scheme 
Run Overall 

Orientation 
Accuracy (%) 

Good 
Orientation 
Accuracy (%) 

Average 
Orientation 
Accuracy (%) 

Poor 
Orientation 
Accuracy (%) 

1 46.7 46.3 41.5 55.9 
2 45.3 44.3 41.2 53.5 
3 45.9 44.3 40.4 57.1 
4 47.3 45.1 43.3 57.1 
5 45.4 44.7 39.0 57.1 
6 45.7 43.9 41.9 54.7 
7 45.9 43.5 42.6 54.7 
8 45.4 43.1 40.8 56.5 
9 44.9 45.5 37.9 55.3 
10 46.7 46.7 41.9 54.7 
Average 45.9 44.7 41.1 55.7 

 

 

Using a quality-on-quality classification scheme, overall performance of both the 

Naïve Bayes and SMO classifiers was better than a majority classifier.  Using this scheme, the 

Naïve Bayes classifiers performed better than if using a basic classification scheme 

(p=1.07E-6).  On the other hand, the SMO classifiers performed better under a basic 

classification scheme (p=0.009). 

Looking at the performance of the individual classifiers compared to a majority 

classification, it appears that classifying images with a classifier built with images of the same 

quality is only advantageous for images of average and poor quality.  It is possible that the 

diminished training set size of the good image class contributed to its poor performance. 
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The results of this classification scheme show how a quality-based orientation 

classifier would perform if quality could be accurately predicted every time.  The results of 

the Naïve Bayes classifier motivate the development of a hierarchical classification scheme. 

3.6.4 Quali ty-Based 

A hierarchical classification scheme was developed to first classify images according 

to quality, and then classify images’ orientation based on the predicted quality.  This 

classification scheme consists of four classifiers built using PHOW feature vectors. There is 

one basic quality classifier and three quality-based orientation classifiers. 

 

 

Figure 17: The hierarchical quality-based classification scheme was developed to first classify 
images according to quality, and then classify images’ orientation based on the predicted 

quality.  This classification scheme consists of four classifiers: one basic quality classifier and 
three quality-based orientation classifiers.  
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Table 20: Naïve Bayes classifiers were used in the quality-based classification scheme 
to predict an image’s quality and orientation given a PHOW feature vector that was 

generated with a bag-of-words containing 600 features. 

Naïve Bayes 600 BOW Quality-Based Classification Scheme 
Run Quality 

Accuracy 
(%) 

Overall 
Orientation 
Accuracy (%) 

Good 
Orientation 
Accuracy 
(%) 

Average 
Orientation 
Accuracy 
(%) 

Poor 
Orientation 
Accuracy 
(%) 

1 34.2 40.2 42.8 37.2 40.9 
2 35.9 41.2 44.8 35.7 43.9 
3 37.3 38.6 39.3 36.8 40.0 
4 36.6 39.6 41.4 33.7 44.6 
5 37.7 39.7 39.5 34.8 46.6 
6 35.8 40.3 39.7 38.5 43.6 
7 37.7 41.3 39.5 41.9 43.1 
8 37.2 41.2 42.2 38.0 43.8 
9 34.9 40.2 40.6 36.3 44.9 
10 37.0 41.5 44.7 34.7 46.3 
Ave. 36.4 40.4 41.5 36.8 43.8 

 

 

Table 21: SMO classifiers were used in the quality-based classification scheme to predict an 
image’s quality and orientation given a PHOW feature vector that was generated with a bag-

of-words containing 600 features. 

SMO 600 BOW Quality-Based Classification Scheme 
Run Quality 

Accuracy (%) 
Overall 
Orientation 
Accuracy (%) 

Good 
Orientation 
Accuracy (%) 

Average 
Orientation 
Accuracy (%) 

Poor 
Orientation 
Accuracy (%) 

1 40.9 43.2 40.2 43.9 47.2 
2 40.7 43.9 41.0 44.6 47.3 
3 41.5 42.9 41.4 40.9 51.2 
4 40.0 45.0 41.2 44.3 54.5 
5 40.2 43.3 40.3 42.1 53.4 
6 38.9 43.2 40.9 41.3 51.9 
7 41.2 44.3 42.0 43.8 50.4 
8 41.2 43.9 42.0 43.6 49.1 
9 40.0 41.3 38.0 41.0 48.5 
10 39.5 43.6 40.3 42.9 51.9 
Ave. 40.4 43.5 40.7 42.8 50.5 
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Both the SMO and Naïve Bayes classifiers performed better than a majority 

classifier, but did not have better performance than did a basic classification scheme.  This is 

because of the relatively poor performance of the quality classifier.  If the performance of 

the quality classifier was better, it is expected that the Naïve Bayes classifier would have 

better performance, based on the quality-on-quality analysis. 

3.6.5 Voting 

The poor performance of the basic quality classifier resulted in less-than-optimal 

performance of a quality-based classification scheme.  Rather than using the basic quality 

classifier, the voting classification scheme used three binary quality classifiers that predicted 

whether or not an image was of a certain quality (good, average, poor).  The binary quality 

classifiers were trained using PHOW features of all the images and a boolean class label. 

A voting mechanism was then used to determine an image’s quality based on the 

output of the three binary quality classifiers.  The voting mechanism worked in a similar way 

as a grade point average calculation.  It converted each nominal quality value into a 

numerical value, or weight.  It then used these weights to average the output of the three 

binary quality classifiers. 

 

Equation 3: A voting mechanism was used to determine an image’s quality based on the 
output of three binary quality classifiers.  It converted each nominal quality value into a 

numerical value, or weight.  It then used these weights to average the output of the three 
binary quality classifiers. 

𝑤! = 3 
𝑤! = 2 
𝑤! = 1 

𝑐! = 𝑜𝑢𝑡𝑝𝑢𝑡  𝑜𝑓  𝑏𝑖𝑛𝑎𝑟𝑦  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 
𝑖𝑓  𝑐! + 𝑐! + 𝑐! = 0, vote = 1 
𝑖𝑓  𝑐! + 𝑐! + 𝑐! ≠ 0,   

vote = 𝐹𝑙𝑜𝑜𝑟
𝑐!×𝑤! + 𝑐!×𝑤! + 𝑐!×𝑤!

𝑐! + 𝑐! + 𝑐!
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Table 22: Quality assignments of the voting 
 mechanism, given all possible combinations 

of binary classifier outputs. 

Good Average Poor Vote Quality 
0 0 0 1 Poor 
0 0 1 1 Poor 
0 1 0 2 Average 
1 0 0 3 Good 
0 1 1 1 Poor 
1 1 0 2 Average 
1 0 1 2 Average 
1 1 1 2 Average 

 

 

 

Figure 18: A voting classification scheme first classified images according to quality, and then 
classified images’ orientation based on the predicted quality.  It performed quality 

classification using three binary quality classifiers that predicted whether or not an image was 
of a certain quality (good, average, poor) and a voting mechanism to average the output of 
the binary classifiers.  Orientation was then predicted using three quality-based orientation 

classifiers. 
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Table 23: Three majority classifiers were used in the voting classification scheme to predict 
an image’s quality and orientation. 

Majority Voting Classification Scheme 
Binary Quality Accuracy (%) Quality Accuracy (%) Orientation Accuracy (%) 
59.6 39.5 29.8 

 

 

 

Table 24: Naïve Bayes classifiers were used in the voting classification scheme to predict an 
image’s quality and orientation given a PHOW feature vector that was generated with a bag-

of-words containing 600 features. 

Naïve Bayes 600 BOW Voting Classification Scheme 
Run Binary Quality Accuracy (%) Quality Accuracy (%) Orientation Accuracy (%) 
1 57.8 12.0 34.3 
2 57.5 12.4 34.3 
3 58.6 11.4 34.3 
4 58.4 11.3 34.6 
5 58.1 13.1 34.9 
6 57.6 11.8 33.3 
7 59.4 12.1 35.3 
8 58.9 11.7 34.2 
9 57.7 11.3 33.2 
10 59.1 11.1 33.8 
Ave. 58.3 11.8 34.2 
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Table 25: SMO classifiers were used in the voting classification scheme to predict an image’s 
quality and orientation given a PHOW feature vector that was generated with a bag-of-

words containing 600 features. 

SMO 600 BOW Voting Classification Scheme 
Run Binary Quality Accuracy (%) Quality Accuracy (%) Orientation Accuracy (%) 
1 62.5 17.1 36.5 
2 63.1 15.0 37.9 
3 62.9 14.5 37.0 
4 62.3 12.4 37.2 
5 61.6 13.1 36.0 
6 61.5 13.4 36.5 
7 63.2 14.5 38.0 
8 62.8 13.1 37.0 
9 62.3 15.2 37.0 
10 62.1 13.2 36.3 
Ave. 62.4 14.2 36.9 
 

 

The binary classifiers have an overall majority classification accuracy of 59.6%.  The 

Naïve Bayes classifier did not perform better than the majority classifier, but the SMO 

classifier did perform better (p=0.002).  Meanwhile, both the Naïve Bayes and SMO 

classifiers have very poor performance with nominal classification.  This indicates that the 

voting mechanism used did not combine the output of the binary quality classifiers in a 

meaningful way. 

As a result of poor quality classification, the accuracy of the orientation classifiers is 

lower than expected for both the Naïve Bayes and SMO classifiers. 
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CHAPTER 4: CONCLUSION 

Clubfoot is a congenital foot disorder that is prevalent in the developing world, and can 

be treated with an inexpensive, non-surgical method called the Ponseti Method [2].  

Treatment providers collect patient photos for diagnosis, patient monitoring, and physician 

quality assessment. Classification of patient photos could provide immediate feedback to 

those taking patient photos, helping to ensure that the image is of good quality and the foot 

is oriented correctly at the time of image capture.  Classification could also serve as the basis 

for automated image analysis that could reduce the workload of a busy staff.  Methodology 

was developed for such a classification using image processing and machine learning 

techniques. 

Pyramid Histogram of Visual Words (PHOW) feature vectors were extracted from a set 

of clubfoot images, and were used to classify the data set according to image quality and foot 

orientation [23].  Different classifier types and classification schemes were systematically 

tested to achieve the best possible classification results. 

Using two independent SMO quality and orientation classifiers yielded the best results, 

with significantly better performance than a majority classifier (pquality=0.007, porientation=1.72E-

12).  Naïve Bayes hierarchical classification could also yield similar performance if quality 

could be better predicted, as evidenced by the results of the quality-on-quality classification. 

 

Table 26: The performance of Naïve Bayes and SMO quality and orientation 
classification using different classification schemes. 

 Quality Accuracy (%) Orientation Accuracy (%) 
Classification Scheme Naïve Bayes SMO Naïve Bayes SMO 
Basic 36.4 40.4 42 47.6 
Quality on Quality N/A N/A 45.2 45.9 
Quality-Based 36.4 40.4 40.4 43.5 
Voting 11.8 14.2 34.2 36.9 
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The success of the independent SMO classifiers is modest; respective classification 

accuracies of 40.4% and 47.6% for quality and orientation prediction are 0.9% and 17.8% 

higher than the majority classifier’s performance of 39.5% and 29.8%.  Still, this level of 

performance is not robust enough for clinical use. 

It is possible that other feature types may perform better or worse at quality and 

orientation classification of clubfoot images.  The methodology and classification framework 

outlined in this thesis provides a sound way for testing such future hypothesis. 
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APPENDIX A: PROCRUSTES SCORE 

% ------------------------------------------------------------------------- 
function scores = procrustes_scores(path) 
% ------------------------------------------------------------------------- 
 
%Get image location 
files = dir(path); 
 
%get number of files 
num_images = numel(files) - 3; 
 
%get the templates 
f = getTemplate(path, 'front'); 
ff = getTemplate(path, 'front_floor'); 
b = getTemplate(path, 'back'); 
bf = getTemplate(path, 'back_floor'); 
s = getTemplate(path, 'side'); 
 
%template_min = minimum(size(f,2), size(ff,2), size(b,2), size(bf,2), 
size(s,2)); 
 
%initialize score array 
scores = zeros(num_images, 6); 
 
for i = 4:numel(files) 
 filename = files(i).name 
 filepath = strcat(path, '/', filename); 
  
 %get image number 
 filenumber = strrep(filename, 'quality', ''); 
 filenumber = strrep(filenumber, '.JPG', ''); 
 number = str2num(filenumber); 
  
 %Perform edge detection 
    BW = getEdges(filepath); 
  
 %Convert to double 
 im = im2double(BW); 
  
 %compare image to templates 
 if size(im,2) > size(f,2) 
  d_f = procrustes(im,f); 
 
 else 
  d_f = procrustes(f,im); 
 end 
  
  
 if size(im,2) > size(ff,2) 
  d_ff = procrustes(im,ff); 
 else 
  d_ff = procrustes(ff,im); 
 end 
  
  
 if size(im,2) > size(b,2) 
  d_b = procrustes(im,b); 
 else 
  d_b = procrustes(b,im); 
 end 
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 if size(im,2) > size(bf,2) 
  d_bf = procrustes(im,bf); 
 else 
  d_bf = procrustes(bf,im); 
 end 
  
  
 if size(im,2) > size(s,2) 
  d_s = procrustes(im,s); 
 else 
  d_s = procrustes(s,im); 
 end 
  
 %set scores 
 scores(i-3, 1) = number; 
 scores(i-3, 2) = d_f; 
 scores(i-3, 3) = d_ff; 
 scores(i-3, 4) = d_b; 
 scores(i-3, 5) = d_bf; 
 scores(i-3, 6) = d_s; 
 
end 
 
xlswrite('procrustesScores', scores); 
 
% ------------------------------------------------------------------------- 
function im = standarizeImage(im) 
% ------------------------------------------------------------------------- 
 
im = im2single(im) ; 
if size(im,1) > 220, im = imresize(im, [220 NaN]) ; end 
 
% ------------------------------------------------------------------------- 
function im = getGrayscaleImage(im) 
% ------------------------------------------------------------------------- 
 
s = size(im); 
  
%convert to grayscale 
if(size(s,2) == 3) 
 im = rgb2gray(im);  
else 
 %do nothing 
end 
 
% ------------------------------------------------------------------------- 
function im = getEdges(filepath) 
% ------------------------------------------------------------------------- 
 %load image 
 image = imread(filepath); 
 
 %standardize image 
 image = standarizeImage(image); 
  
 %convert to black and white 
 image = getGrayscaleImage(image); 
  
 %perform edge detection 
 im = edge(image); 
 %BW = edge(image, 'canny'); 
 
% ------------------------------------------------------------------------- 
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function im = getTemplate(path, orientation) 
% ------------------------------------------------------------------------- 
 
%load image file 
 if(strcmp(orientation, 'front')) 
  filename =  'quality938.JPG'; 
 elseif(strcmp(orientation, 'front_floor')) 
  filename =  'quality1482.JPG'; 
 elseif(strcmp(orientation, 'back')) 
  filename =  'quality164.JPG'; 
 elseif(strcmp(orientation, 'back_floor')) 
  filename =  'quality498.JPG'; 
 elseif(strcmp(orientation, 'side')) 
  filename =  'quality2685.JPG'; 
 else 
  filename =  ''; 
 end 
 
 filepath = strcat(path, '/', filename); 
 
%Perform edge detection 
    BW = getEdges(filepath); 
 
%Convert to double 
 im = im2double(BW); 

  



 

 

49 

APPENDIX B: CLASSIFICATION SCHEMES 

/************************************************ 
 * Name: ClubfootClassification 
 * Author: Amanda De Hoedt 
 * Description: Classifies clubfoot image data 
 * Input: args[0] = name of data set 
 *        args[1] = classification scheme 
 *        args[3] = classifier type 
 ***********************************************/ 
 
import weka.core.Instances; 
import weka.core.converters.ConverterUtils.DataSource; 
import weka.filters.Filter; 
import weka.filters.unsupervised.attribute.Remove; 
 
public class ClubfootClassification { 
   
  Instances originalData; 
  DataSource source; 
   
  public static void main(String[] args) throws Exception{ 
     
    //Load original data file 
    DataSet originalData = new DataSet(); 
     
    if(args[0] != ""){ 
      //set the data set according to the value 
      String filename = getFileName(args[0]); 
      originalData.setDataSource(filename); 
    } 
       
    else 
    { 
      String filename = ""; 
      //filename = getFileName("Average600"); 
      //filename = getFileName("Three150"); 
      //filename = getFileName("Three600"); 
      //filename = getFileName("Two600"); 
      //filename = getFileName("600"); 
      //filename = getFileName("350"); 
       
      originalData.setDataSource(filename); 
    } 
     
    originalData.loadFile(); 
    originalData.setAttribute("Type"); 
     
    Instances data = new Instances(originalData.getDataSet()); 
     
    //Remove the numerical quality attributes 
    Instances preProcessedData = filterNumbericalQualityAttributes(data); 
    data = null; 
     
    if(args[1].equals("QualityOnQuality")){ 
      QualityClassifierOnQualityData qualityClassifier = new 
QualityClassifierOnQualityData(preProcessedData, args[2]); 
      qualityClassifier.run(); 
      qualityClassifier = null; 
    } 
    if(args[1].equals("QualityOnAll")){ 
      QualityBasedOrientationClassifier cbClassifier = new 
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QualityBasedOrientationClassifier(preProcessedData, args[2]); 
      cbClassifier.run(); 
      cbClassifier = null; 
    } 
    //BASIC CLASSIFICATION 
    if(args[1].equals("Basic")){ 
      BasicClassifier basic = new BasicClassifier(preProcessedData, args[2]); 
      basic.run(); 
      basic = null; 
    } 
    //BASIC ORIENTATION CLASSIFICATION 
    if(args[1].equals("BasicOrientation")){ 
      BasicOrientationClassifier basicOrientation = new 
BasicOrientationClassifier(preProcessedData, args[2]); 
      basicOrientation.run(); 
      basicOrientation = null; 
    } 
    //QUALITY-BASED CLASSIFICATION 
    if(args[1].equals("QualityBased")){ 
      QualityBasedClassifier qualityBased = new 
QualityBasedClassifier(preProcessedData, args[2]); 
      qualityBased.run(); 
      qualityBased = null; 
    } 
    //VOTING CLASSIFICATION 
    if(args[1].equals("Voting")){ 
      VotingClassifier voting = new VotingClassifier(preProcessedData, 
args[2]); 
      voting.run(); 
      voting = null; 
    } 
     
  }//end main 
   
  private static Instances filterNumbericalQualityAttributes(Instances d) 
throws Exception{ 
    Remove remove = new Remove(); 
    String[] options = new String[2]; 
    options[0] = "-R";  // "range" 
    options[1] = "1-7"; //range of attributes 
    remove.setOptions(options); 
    remove.setInputFormat(d); 
    Instances preProcessedData = Filter.useFilter(d, remove); 
     
    return preProcessedData; 
     
  } 
   
  private static String getFileName(String s){ 
    if(s.equals("Average600")){ 
      //Quality metric averaged across 2 users + 1 predicted 
      return "qualityScoresSiftLongAveragedQualityAllNoDupsWeka.arff"; 
    } 
    else if(s.equals("Three150")){ 
      //Quality metric same across 2 users + 1 predicted 150 BOW Size 
      return "qualityScores150WordSiftLongThreeSameQualityAllNoDupsWeka.arff"; 
    }  
    else if(s.equals("Three600")){ 
      //Quality metric same across 2 users + 1 predicted 
      return "qualityScoresSiftLongThreeSameQualityAllNoDupsWeka.arff"; 
    } 
    else if(s.equals("Two600")) 
    { 
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      //Quality metric same across 2 users 
      return "qualityScoresSiftLongTwoSameQualityAllNoDupsWeka.arff"; 
    } 
    else if(s.equals("600")){ 
      //Individual Quality metrics 
      return "qualityScoresSiftLongAllNoDupsWeka.arff"; 
    } 
    else if(s.equals("350")){ 
      //Individual Quality metrics + short SIFT features 
      return "qualityScoresSiftAllNoDupsWeka.arff"; 
    } 
    return ""; 
  } 
   
}//end class 
 
 
 
/************************************************ 
 * Name: DataSet 
 * Author: Amanda De Hoedt 
 * Description: Performs functions related to data sets 
 ***********************************************/ 
import weka.core.Attribute;   
 import weka.core.Instances;   
import weka.core.converters.ConverterUtils.DataSource;   
 
 
public class DataSet {   
DataSource source;   
Instances data;   
 
public static void main(String[] args)  
{   
  //do main stuff here   
}   
     
public void setDataSource(String path) throws Exception{   
  source = new DataSource(path);   
  System.out.print("Data Source Set." + '\n');   
}   
   
public void loadFile() throws Exception {   
  //Load data file   
  System.out.print("Loading data file." + '\n');   
  data = source.getDataSet();   
  System.out.print("Data file loaded successfully." + '\n');   
}   
  
public void setAttribute(String attributeName) {   
  if (data.classIndex() == -1){   
    Attribute classAttribute = data.attribute(attributeName);   
    data.setClassIndex(classAttribute.index());   
  }   
}   
     
public void createDataSetFromExisting(Instances oldData){   
  data = new Instances(oldData);   
}   
   
public Instances getDataSet(){   
  return data;   
}   
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}     
 
 
 
/************************************************ 
 * Name: ClassificationScheme 
 * Author: Amanda De Hoedt 
 * Description: Defines common elements of 
 *              classification scheme  
 *              functionality. Performs functions  
 *              related to data classification 
 ***********************************************/ 
import weka.classifiers.Classifier; 
import weka.classifiers.Evaluation; 
import weka.classifiers.bayes.NaiveBayes; 
import weka.classifiers.functions.Logistic; 
import weka.classifiers.functions.MultilayerPerceptron; 
import weka.classifiers.functions.SMO; 
import weka.classifiers.functions.SimpleLinearRegression; 
import weka.classifiers.lazy.IBk; 
import weka.classifiers.rules.JRip; 
import weka.classifiers.rules.ZeroR; 
import weka.classifiers.trees.J48; 
import weka.classifiers.trees.RandomForest; 
import weka.core.Attribute; 
import weka.core.Instances; 
import weka.filters.Filter; 
import weka.filters.unsupervised.attribute.Remove; 
import weka.filters.unsupervised.instance.RemoveWithValues; 
 
 
public abstract class ClassificationScheme { 
  private Instances data; 
  private Attribute subjectiveQualityAttribute; 
  private Attribute orientationAttribute; 
  private int runs; 
  private String type; 
   
  public ClassificationScheme(Instances d){ 
    setRuns(10); 
    setData(new Instances(d)); 
    setClassAttributes(d); 
  } 
   
  public void setClassificationType(String s) 
  { 
    type = s; 
  } 
   
  public String getClassificationType() 
  { 
    return type; 
  } 
   
  public Classifier getClassifier() throws Exception 
  { 
    Classifier classifier = null; 
     
    if(type.equals("NaieveBayes")){ 
      classifier = (Classifier) new NaiveBayes(); 
    } 
    else if(type.equals("MultilayerPerceptron")){ 
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      classifier = (Classifier) new MultilayerPerceptron(); 
    } 
    else if(type.equals("J48")){ 
      classifier = (Classifier) new J48(); 
    } 
    else if(type.equals("Logistic")){ 
      classifier = (Classifier) new Logistic(); 
    } 
    else if(type.equals("SMO")){ 
      classifier = (Classifier) new SMO(); 
    } 
    else if(type.equals("RandomForest")){ 
      classifier = (Classifier) new RandomForest(); 
    } 
    else if(type.equals("JRip")){ 
      classifier = (Classifier) new JRip(); 
    } 
    else if(type.equals("SimpleLinearRegression")){ 
      classifier = (Classifier) new SimpleLinearRegression(); 
    } 
    else if(type.equals("ZeroR")){ 
      classifier = (Classifier) new ZeroR(); 
    } 
    else if(type.equals("IBk")){ 
      classifier = (Classifier) new IBk(); 
      String[] ibkOptions = new String[2]; 
      ibkOptions[0] = "-K";  // "range" 
      ibkOptions[1] = "10"; //range of attributes 
      classifier.setOptions(ibkOptions); 
    } 
     
    return classifier; 
  } 
 
  public Instances removeBinaryQuality(String quality, Instances d) throws 
Exception{ 
     
    Attribute rAttribute = d.attribute(quality); 
     
    Remove remove = new Remove(); 
    String[] options = new String[2]; 
    options[0] = "-R";  // "range" 
    options[1] = String.valueOf(rAttribute.index()+1); //range of attributes 
    remove.setOptions(options); 
    remove.setInputFormat(d); 
    Instances preProcessedData = Filter.useFilter(d, remove); 
     
    return preProcessedData; 
  } 
   
  public void setClassAttributes(Instances d){ 
    setSubjectiveQualityAttribute(d.attribute("Subjective")); 
    setOrientationAttribute(d.attribute("Type")); 
  } 
   
  public void setClassAttributes(Instances s, Instances o){ 
    setSubjectiveQualityAttribute(s.attribute("Subjective")); 
    setOrientationAttribute(o.attribute("Type")); 
  } 
   
  public void printResults(Evaluation e){ 
    String strSummaryQuality = e.toSummaryString(); 
    System.out.print(strSummaryQuality); 
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    try { 
      String strClassDetails = e.toClassDetailsString(); 
      System.out.println(); 
      System.out.print(strClassDetails); 
      System.out.println(); 
    } catch (Exception e1) { 
      // TODO Auto-generated catch block 
      //e1.printStackTrace(); 
    } 
   
     // Get the confusion matrix 
     double[][] cmMatrixQuality = e.confusionMatrix(); 
     for(int row_i=0; row_i<cmMatrixQuality.length; row_i++){ 
       for(int col_i=0; col_i<cmMatrixQuality.length; col_i++){ 
         System.out.print(cmMatrixQuality[row_i][col_i]); 
         System.out.print("|"); 
       } 
       System.out.println(); 
     } 
  } 
   
  public static String getQualityFromInt(int i){ 
    if(i == 1){ 
      return "average"; 
    } 
    else if(i == 2){ 
      return "poor"; 
    } 
    else if(i == 3){ 
      return "good"; 
    } 
    return null; 
  } //end getQualityFromInt 
   
  public static Integer getIntFromQuality(String s){ 
    if(s == "average"){ 
      return 1; 
    } 
    else if(s == "poor"){ 
      return 2; 
    } 
    else if(s == "good"){ 
      return 3; 
    } 
    return null; 
  } //end getQualityFromInt 
   
  public Instances filterOnQuality(String q, Instances train) throws Exception{ 
     
    setClassAttributes(train); 
     
    String[] optionsSelectGood = new String[4]; 
    optionsSelectGood[0] = "-C";  // "attribute" 
    optionsSelectGood[1] = 
String.valueOf(subjectiveQualityAttribute.index()+1); //subjective attribute 
    optionsSelectGood[2] = "-L";  // "label" 
    optionsSelectGood[3] = Integer.toString(getIntFromQuality(q)); 
     
    RemoveWithValues selectGood = new RemoveWithValues(); 
    selectGood.setOptions(optionsSelectGood); 
    selectGood.setInvertSelection(true); 
    selectGood.setInputFormat(train); 
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    Instances filteredTrain = Filter.useFilter(train, selectGood); 
     
    return filteredTrain; 
  } 
 
  public Instances getData() { 
    return data; 
  } 
 
  public void setData(Instances data) { 
    this.data = data; 
  } 
 
  public int getRuns() { 
    return runs; 
  } 
 
  public void setRuns(int runs) { 
    this.runs = runs; 
  } 
 
  public Attribute getOrientationAttribute() { 
    return orientationAttribute; 
  } 
 
  public void setOrientationAttribute(Attribute orientationAttribute) { 
    this.orientationAttribute = orientationAttribute; 
  } 
 
  public Attribute getSubjectiveQualityAttribute() { 
    return subjectiveQualityAttribute; 
  } 
 
  public void setSubjectiveQualityAttribute(Attribute 
subjectiveQualityAttribute) { 
    this.subjectiveQualityAttribute = subjectiveQualityAttribute; 
  } 
 
} 
 
 
/************************************************ 
 * Name: QualityBasedOrientationClassifier 
 * Author: Amanda De Hoedt 
 * Description: Defines the structure of the 
 *              quality-on-all classification 
 *              scheme and performs 
 *              classification 
 ***********************************************/ 
import java.util.Random; 
 
import weka.classifiers.Classifier; 
import weka.classifiers.Evaluation; 
import weka.classifiers.bayes.NaiveBayes; 
import weka.core.Instances; 
import weka.filters.Filter; 
import weka.filters.unsupervised.instance.RemoveWithValues; 
 
 
public class QualityBasedOrientationClassifier extends ClassificationScheme{ 
 
public QualityBasedOrientationClassifier(Instances d, String s){   
  super(d); 
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  System.out.print("Setting up quality-based orientation classification 
scheme." + '\n');  
   
  try { 
    d = removeBinaryQuality("Good",d); 
    d = removeBinaryQuality("Average",d); 
    d = removeBinaryQuality("Poor",d); 
  } catch (Exception e) { 
    e.printStackTrace(); 
  } 
  setData(new Instances(d));   
  setSubjectiveQualityAttribute(d.attribute("Subjective"));   
  setClassificationType(s); 
}   
 
public void run() throws Exception {   
  System.out.print("***RUNNING QUALITY BASED ORIENTATION CLASSIFICATION SCHEME 
WITH " + getClassificationType() + " classifier***" + '\n'); 
   
  //Define classifier   
  Classifier cModel = getClassifier();   
     
  //Run multiple times 
  for(int r = 0; r < getRuns(); r++){ 
    //Print the run 
    System.out.println("\n Run: " + (r+1)); 
     
    //Create cross-validation folds 
    Random rand = new Random(r+1); 
    int folds = 10; 
     
    setSubjectiveQualityAttribute(getData().attribute("Subjective"));   
    Instances randData = new Instances(getData());   
    randData.randomize(rand);   
    randData.stratify(folds);   
       
    //for each quality level (good, average, poor)   
    for (int m = 1; m <=3; m++){   
      Evaluation eTest = new Evaluation(randData);   
      for (int n = 0; n < folds; n++){   
        //get training and testing sets   
        Instances train = randData.trainCV(folds, n);   
        Instances test = randData.testCV(folds, n);   
           
        //filter train for images of certain quality   
        //Remove the numerical quality attributes   
        String[] optionsSelectGood = new String[4];   
        optionsSelectGood[0] = "-C";  // "attribute"   
        optionsSelectGood[1] = "1"; // first attribute (Subjective)   
        optionsSelectGood[2] = "-L";  // "label"   
        optionsSelectGood[3] = Integer.toString(m);   
           
        RemoveWithValues selectGood = new RemoveWithValues();   
        selectGood.setOptions(optionsSelectGood);   
        selectGood.setInvertSelection(true);   
        selectGood.setInputFormat(train);   
        Instances filteredTrain = Filter.useFilter(train, selectGood);   
           
        //uncomment line below to use all quality levels   
        //Instances filteredTrain = new Instances(train);   
            
        //Set class index   
        filteredTrain.setClassIndex(1);   
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        //build classifier with filtered training set   
            Classifier clsCopy = Classifier.makeCopy(cModel);   
            clsCopy.buildClassifier(filteredTrain);   
             
        //predict orientation using classifier   
        eTest.evaluateModel(clsCopy, test);   
         
        if(n == 9){ 
          //print the quality name   
          String title = getQualityFromInt(m);   
          System.out.println("\n" + title + " quality run: " + (n+1)); 
          printResults(eTest); 
             
        } 
      }     
    } 
  } 
}   
 
 
} 
 
 
/************************************************ 
 * Name: QualityClassifierOnQualityData 
 * Author: Amanda De Hoedt 
 * Description: Defines the structure of the  
 *              quality-on-quality classification  
 *              scheme and performs 
 *              classification 
 ***********************************************/ 
import java.util.Random; 
 
import weka.classifiers.Classifier; 
import weka.classifiers.Evaluation; 
import weka.classifiers.bayes.NaiveBayes; 
import weka.core.Instances; 
 
 
public class QualityClassifierOnQualityData extends ClassificationScheme{ 
 
   
  public QualityClassifierOnQualityData(Instances d, String s){ 
    super(d); 
    System.out.print("Setting up quality classifier on quality data." + '\n'); 
 
    try { 
      d = removeBinaryQuality("Good",d); 
      d = removeBinaryQuality("Average",d); 
      d = removeBinaryQuality("Poor",d); 
    } catch (Exception e) { 
      e.printStackTrace(); 
    } 
    setData(new Instances(d)); 
    setSubjectiveQualityAttribute(d.attribute("Subjective")); 
    setOrientationAttribute(d.attribute("Type")); 
    setClassificationType(s); 
  } 
   
  public void run() throws Exception { 
     
    System.out.print("***RUNNING QUALITY CLASSIFIER ON QUALITY DATA 
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CLASSIFICATION SCHEME WITH " + getClassificationType() + " classifier***" + 
'\n'); 
     
    //Define classifier 
    //Classifier cModelQuality = (Classifier) new NaiveBayes(); 
    /* 
    Classifier cModelOrientationGood = (Classifier) new NaiveBayes(); 
    Classifier cModelOrientationAve = (Classifier) new NaiveBayes(); 
    Classifier cModelOrientationPoor = (Classifier) new NaiveBayes(); 
    */ 
    Classifier cModelOrientationGood = getClassifier(); 
    Classifier cModelOrientationAve = getClassifier(); 
    Classifier cModelOrientationPoor = getClassifier(); 
         
    //Run multiple times 
    for(int r = 0; r < getRuns(); r++){ 
      //Print the run 
      System.out.println("\n Run: " + (r+1)); 
       
      //Create cross-validation folds 
      //int seed = 4; 
      Random rand = new Random(r+1); 
      int folds = 10; 
     
      Instances randData = new Instances(getData()); 
      randData.randomize(rand); 
      randData.stratify(folds); 
       
      //Define evaluators 
      setSubjectiveQualityAttribute(getData().attribute("Subjective")); 
      setOrientationAttribute(getData().attribute("Type")); 
      randData.setClassIndex(getOrientationAttribute().index()); 
      Evaluation eTestOrientation = new Evaluation(randData); 
      Evaluation eTestOrientationGood = new Evaluation(randData); 
      Evaluation eTestOrientationAve = new Evaluation(randData); 
      Evaluation eTestOrientationPoor = new Evaluation(randData); 
      //randData.setClassIndex(subjectiveQualityAttribute.index()); 
      //Evaluation eTestQuality = new Evaluation(randData); 
       
      for (int n = 0; n < folds; n++){ 
        //get training and testing sets 
        Instances train = randData.trainCV(folds, n); 
        Instances test = randData.testCV(folds, n); 
   
        Instances orientationTesting = new Instances(test); 
         
        setClassAttributes(train); 
                 
        //filter to train for images of certain quality 
          Instances filteredTrainGood = filterOnQuality("good", train); 
          Instances filteredTrainAve = filterOnQuality("average", train); 
          Instances filteredTrainPoor = filterOnQuality("poor", train); 
          
        //Set class index 
          setClassAttributes(train); 
          filteredTrainGood.setClassIndex(getOrientationAttribute().index()); 
          filteredTrainAve.setClassIndex(getOrientationAttribute().index()); 
          filteredTrainPoor.setClassIndex(getOrientationAttribute().index()); 
         
        //build classifier with filtered training set 
          Classifier cModelOrientationGoodCopy = 
Classifier.makeCopy(cModelOrientationGood); 
          cModelOrientationGoodCopy.buildClassifier(filteredTrainGood); 
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          Classifier cModelOrientationAveCopy = 
Classifier.makeCopy(cModelOrientationAve); 
          cModelOrientationAveCopy.buildClassifier(filteredTrainAve); 
          Classifier cModelOrientationPoorCopy = 
Classifier.makeCopy(cModelOrientationPoor); 
          cModelOrientationPoorCopy.buildClassifier(filteredTrainPoor); 
           
           
        //filter to train for images of certain quality 
          Instances filteredTestGood = filterOnQuality("good", 
orientationTesting); 
          Instances filteredTestAve = filterOnQuality("average", 
orientationTesting); 
          Instances filteredTestPoor = filterOnQuality("poor", 
orientationTesting); 
           
        //Set class index 
          filteredTestGood.setClassIndex(getOrientationAttribute().index()); 
          filteredTestAve.setClassIndex(getOrientationAttribute().index()); 
          filteredTestPoor.setClassIndex(getOrientationAttribute().index()); 
           
        //predict quality using classifier 
          //eTestQuality.evaluateModel(cModelQualityCopy, qualityTesting); 
          eTestOrientation.evaluateModel(cModelOrientationGoodCopy, 
filteredTestGood); 
          eTestOrientationGood.evaluateModel(cModelOrientationGoodCopy, 
filteredTestGood); 
          eTestOrientation.evaluateModel(cModelOrientationAveCopy, 
filteredTestAve); 
          eTestOrientationAve.evaluateModel(cModelOrientationAveCopy, 
filteredTestAve); 
          eTestOrientation.evaluateModel(cModelOrientationPoorCopy, 
filteredTestPoor); 
          eTestOrientationPoor.evaluateModel(cModelOrientationPoorCopy, 
filteredTestPoor); 
           
        //based on quality prediction, use orientation classifier to predict 
orientation 
         
          //Print the Quality results 
        //System.out.println("\n Quality run: " + (n+1)); 
        //printResults(eTestQuality); 
         
          if(n == 9){ 
          //Print the Quality results 
          System.out.println("\n Overall Run: " + (r+1) + " Orientation run: " 
+ (n+1)); 
          printResults(eTestOrientation); 
     
          System.out.println("\n Overall Run: " + (r+1) + " Orientation Good 
run: " + (n+1)); 
          printResults(eTestOrientationGood); 
           
          System.out.println("\n Overall Run: " + (r+1) + " Orientation Ave 
run: " + (n+1)); 
          printResults(eTestOrientationAve); 
           
          System.out.println("\n Overall Run: " + (r+1) + " Orientation Poor 
run: " + (n+1)); 
          printResults(eTestOrientationPoor); 
          } 
     
      } 
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    } 
  } 
   
} 
 
 
 
 
/************************************************ 
 * Name: BasicClassifier 
 * Author: Amanda De Hoedt 
 * Description: Defines the structure of the basic 
 *              classification scheme and 
 *              performs classification 
 ***********************************************/ 
import java.util.Random; 
 
import weka.classifiers.Classifier; 
import weka.classifiers.Evaluation; 
import weka.classifiers.bayes.NaiveBayes; 
import weka.classifiers.functions.LinearRegression; 
import weka.classifiers.functions.Logistic; 
import weka.classifiers.functions.MultilayerPerceptron; 
import weka.classifiers.functions.SMO; 
import weka.classifiers.functions.VotedPerceptron; 
import weka.classifiers.lazy.IBk; 
import weka.classifiers.trees.J48; 
import weka.classifiers.trees.RandomForest; 
import weka.core.Instances; 
import weka.filters.Filter; 
import weka.filters.unsupervised.attribute.Remove; 
import weka.filters.unsupervised.instance.RemoveWithValues; 
import weka.core.Attribute; 
 
public class BasicClassifier extends ClassificationScheme{ 
   
  public BasicClassifier(Instances d, String s){ 
    super(d); 
    System.out.print("Setting up basic classification scheme." + '\n'); 
 
    //filter unneeded binary quality columns 
    try { 
      d = removeBinaryQuality("Good",d); 
      d = removeBinaryQuality("Average",d); 
      d = removeBinaryQuality("Poor",d); 
    } catch (Exception e) { 
      e.printStackTrace(); 
    } 
    setData(new Instances(d)); 
    setClassAttributes(d); 
    setClassificationType(s); 
  } 
   
  public void run() throws Exception{ 
    System.out.print("***RUNNING BASIC CLASSIFICATION SCHEME WITH " + 
getClassificationType() + " classifier***" + '\n'); 
     
    //Define classifier 
    Classifier cModelOrientation = getClassifier(); 
    Classifier cModelQuality = getClassifier(); 
     
    //Run multiple times 
    for(int r = 0; r < getRuns(); r++){ 
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      //Print the run 
      System.out.println("\n Run: " + (r+1)); 
       
      //Create cross-validation folds 
      //int seed = 4; 
      Random rand = new Random(r+1); 
      int folds = 10; 
       
      Instances randData = new Instances(getData()); 
      randData.randomize(rand); 
      randData.stratify(folds); 
       
      setClassAttributes(randData); 
      randData.setClassIndex(getOrientationAttribute().index()); 
      Evaluation eTestOrientation = new Evaluation(randData); 
      randData.setClassIndex(getSubjectiveQualityAttribute().index()); 
      Evaluation eTestQuality = new Evaluation(randData); 
       
      //For each fold 
      for (int n = 0; n < folds; n++){ 
       
        //get training and testing sets 
        Instances train = randData.trainCV(folds, n); 
        Instances test = randData.testCV(folds, n); 
         
        setClassAttributes(train); 
         
        //Filter to remove the subjective quality attributes 
        Remove removeQuality = new Remove(); 
        String[] qualityOptions = new String[2]; 
        qualityOptions[0] = "-R";  // "range" 
        qualityOptions[1] = 
String.valueOf(getSubjectiveQualityAttribute().index()+1); //range of 
attributes 
        removeQuality.setOptions(qualityOptions); 
        removeQuality.setInputFormat(getData()); 
         
        //Filter to remove the orientation attributes 
        Remove removeOrientation = new Remove(); 
        String[] orientationOptions = new String[2]; 
        orientationOptions[0] = "-R";  // "range" 
        orientationOptions[1] = 
String.valueOf(getOrientationAttribute().index()+1); //range of attributes 
        removeOrientation.setOptions(orientationOptions); 
        removeOrientation.setInputFormat(getData());       
         
        //Apply the filters 
        Instances orientationTraining = Filter.useFilter(train, removeQuality); 
        Instances orientationTesting = Filter.useFilter(test, removeQuality); 
        Instances qualityTraining = Filter.useFilter(train, removeOrientation); 
        Instances qualityTesting = Filter.useFilter(test, removeOrientation); 
          
        //Set class index 
        setClassAttributes(qualityTraining, orientationTraining); 
         
        orientationTraining.setClassIndex(getOrientationAttribute().index()); 
        orientationTesting.setClassIndex(getOrientationAttribute().index()); 
        qualityTraining.setClassIndex(getSubjectiveQualityAttribute().index()); 
        qualityTesting.setClassIndex(getSubjectiveQualityAttribute().index()); 
             
        //Build classifier with filtered training set 
          Classifier cModelOrientationCopy = 
Classifier.makeCopy(cModelOrientation); 
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          Classifier cModelQualityCopy = Classifier.makeCopy(cModelQuality); 
           
          cModelOrientationCopy.buildClassifier(orientationTraining); 
          cModelQualityCopy.buildClassifier(qualityTraining); 
           
        //Predict orientation using classifier 
          eTestOrientation.evaluateModel(cModelOrientationCopy, 
orientationTesting); 
          eTestQuality.evaluateModel(cModelQualityCopy, qualityTesting); 
         
          //Print the Orientation results 
          if(n==9){ 
            System.out.println("\n Orientation run: " + (n+1)); 
          printResults(eTestOrientation); 
          } 
           
        //Print the Quality results 
        if(n==9){ 
          System.out.println("\n Quality run: " + (n+1)); 
          printResults(eTestQuality); 
        } 
          
      } 
    } 
     
  }//end function run 
 
} 
 
 
 
/************************************************ 
 * Name: QualityBasedClassifier 
 * Author: Amanda De Hoedt 
 * Description: Defines the structure of the 
 *              quality-based classification  
 *              scheme and performs  
 *              classification 
 ***********************************************/ 
import java.util.Random; 
 
import weka.classifiers.Classifier; 
import weka.classifiers.Evaluation; 
import weka.classifiers.bayes.NaiveBayes; 
import weka.core.Instance; 
import weka.core.Instances; 
import weka.filters.Filter; 
import weka.filters.unsupervised.attribute.Remove; 
 
 
public class QualityBasedClassifier extends ClassificationScheme{ 
   
  public QualityBasedClassifier(Instances d, String s){ 
    super(d); 
    System.out.print("Setting up quality-based classification scheme." + '\n'); 
    try { 
      d = removeBinaryQuality("Good",d); 
      d = removeBinaryQuality("Average",d); 
      d = removeBinaryQuality("Poor",d); 
    } catch (Exception e) { 
      e.printStackTrace(); 
    } 
    setData(new Instances(d)); 
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    setSubjectiveQualityAttribute(d.attribute("Subjective")); 
    setOrientationAttribute(d.attribute("Type")); 
    setClassificationType(s); 
  } 
   
  public void run() throws Exception { 
     
    System.out.print("***RUNNING QUALITY-BASED CLASSIFICATION SCHEME WITH " + 
getClassificationType() + " classifier***" + '\n'); 
     
    //Define classifier 
    Classifier cModelQuality = getClassifier(); 
    Classifier cModelOrientationGood = getClassifier(); 
    Classifier cModelOrientationAve = getClassifier(); 
    Classifier cModelOrientationPoor = getClassifier(); 
         
    //Run multiple times 
    for(int r = 0; r < getRuns(); r++){ 
      //Print the run 
      System.out.println("\n Run: " + (r+1)); 
       
      //Create cross-validation folds 
      //int seed = 4; 
      Random rand = new Random(r+1); 
      int folds = 10; 
     
      setSubjectiveQualityAttribute(getData().attribute("Subjective")); 
      setOrientationAttribute(getData().attribute("Type")); 
      Instances randData = new Instances(getData()); 
      randData.randomize(rand); 
      randData.stratify(folds); 
     
      //Define evaluators 
      randData.setClassIndex(getOrientationAttribute().index()); 
      Evaluation eTestOrientation = new Evaluation(randData); 
      Evaluation eTestOrientationGood = new Evaluation(randData); 
      Evaluation eTestOrientationAve = new Evaluation(randData); 
      Evaluation eTestOrientationPoor = new Evaluation(randData); 
      randData.setClassIndex(getSubjectiveQualityAttribute().index()); 
      Evaluation eTestQuality = new Evaluation(randData); 
       
      for (int n = 0; n < folds; n++){ 
        //get training and testing sets 
        Instances train = randData.trainCV(folds, n); 
        Instances test = randData.testCV(folds, n); 
   
        Instances orientationTesting = new Instances(test); 
         
        setClassAttributes(train); 
         
        //Filter to remove the orientation attributes 
        Remove removeOrientation = new Remove(); 
        String[] orientationOptions = new String[2]; 
        orientationOptions[0] = "-R";  // "range" 
        orientationOptions[1] = 
String.valueOf(getOrientationAttribute().index()+1); //range of attributes 
        removeOrientation.setOptions(orientationOptions); 
        removeOrientation.setInputFormat(getData());   
         
        //Apply the filters 
        Instances qualityTraining = Filter.useFilter(train, removeOrientation); 
        Instances qualityTesting = Filter.useFilter(test, removeOrientation); 
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        //Set class index 
        setClassAttributes(qualityTraining); 
        qualityTraining.setClassIndex(getSubjectiveQualityAttribute().index()); 
        qualityTesting.setClassIndex(getSubjectiveQualityAttribute().index());   
         
        //Build classifier with filtered training set 
          Classifier cModelQualityCopy = Classifier.makeCopy(cModelQuality);         
          cModelQualityCopy.buildClassifier(qualityTraining);  
         
        //filter to train for images of certain quality 
          Instances filteredTrainGood = filterOnQuality("good", train); 
          Instances filteredTrainAve = filterOnQuality("average", train); 
          Instances filteredTrainPoor = filterOnQuality("poor", train); 
          
        //Set class index 
          setClassAttributes(train); 
          filteredTrainGood.setClassIndex(getOrientationAttribute().index()); 
          filteredTrainAve.setClassIndex(getOrientationAttribute().index()); 
          filteredTrainPoor.setClassIndex(getOrientationAttribute().index()); 
         
        //build classifier with filtered training set 
          Classifier cModelOrientationGoodCopy = 
Classifier.makeCopy(cModelOrientationGood); 
          cModelOrientationGoodCopy.buildClassifier(filteredTrainGood); 
          Classifier cModelOrientationAveCopy = 
Classifier.makeCopy(cModelOrientationAve); 
          cModelOrientationAveCopy.buildClassifier(filteredTrainAve); 
          Classifier cModelOrientationPoorCopy = 
Classifier.makeCopy(cModelOrientationPoor); 
          cModelOrientationPoorCopy.buildClassifier(filteredTrainPoor); 
           
         
          setClassAttributes(orientationTesting); 
          //for each instance of the testing set, get the quality prediction 
          //System.out.println("\n Total Number of instances: " + 
qualityTesting.numInstances()); 
          for(int i = 0; i < qualityTesting.numInstances(); i++){ 
            Instance inst = qualityTesting.instance(i); 
            double result = cModelQualityCopy.classifyInstance(inst); 
            //System.out.println("\n Result " + i + " : " + result); 
             
            //set value of corresponding instance in orientation test set 
            
orientationTesting.instance(i).setValue(getSubjectiveQualityAttribute().index()
, result);    
          } 
           
        //filter to train for images of certain quality 
          Instances filteredTestGood = filterOnQuality("good", 
orientationTesting); 
          Instances filteredTestAve = filterOnQuality("average", 
orientationTesting); 
          Instances filteredTestPoor = filterOnQuality("poor", 
orientationTesting); 
           
          //Set class index 
          filteredTestGood.setClassIndex(getOrientationAttribute().index()); 
          filteredTestAve.setClassIndex(getOrientationAttribute().index()); 
          filteredTestPoor.setClassIndex(getOrientationAttribute().index()); 
           
        //predict quality using classifier 
          eTestQuality.evaluateModel(cModelQualityCopy, qualityTesting); 
          eTestOrientation.evaluateModel(cModelOrientationGoodCopy, 
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filteredTestGood); 
          eTestOrientationGood.evaluateModel(cModelOrientationGoodCopy, 
filteredTestGood); 
          eTestOrientation.evaluateModel(cModelOrientationAveCopy, 
filteredTestAve); 
          eTestOrientationAve.evaluateModel(cModelOrientationAveCopy, 
filteredTestAve); 
          eTestOrientation.evaluateModel(cModelOrientationPoorCopy, 
filteredTestPoor); 
          eTestOrientationPoor.evaluateModel(cModelOrientationPoorCopy, 
filteredTestPoor); 
           
        //based on quality prediction, use orientation classifier to predict 
orientation 
         
          //Print the Quality results 
          if(n == 9) 
          { 
          System.out.println("\n Quality run: " + (n+1)); 
          printResults(eTestQuality); 
           
          //Print the Quality results 
          System.out.println("\n Orientation run: " + (n+1)); 
          printResults(eTestOrientation); 
     
          System.out.println("\n Orientation Good run: " + (n+1)); 
          printResults(eTestOrientationGood); 
           
          System.out.println("\n Orientation Ave run: " + (n+1)); 
          printResults(eTestOrientationAve); 
           
          System.out.println("\n Orientation Poor run: " + (n+1)); 
          printResults(eTestOrientationPoor); 
          } 
     
      }   
    } 
  } 
   
} 
 
 
/************************************************ 
 * Name: VotingClassifier 
 * Author: Amanda De Hoedt 
 * Description: Defines the structure of the 
 *              voting classification scheme and 
 *              performs classification 
 ***********************************************/ 
import java.util.Random; 
 
import weka.classifiers.Classifier; 
import weka.classifiers.Evaluation; 
import weka.classifiers.bayes.NaiveBayes; 
import weka.core.Attribute; 
import weka.core.Instance; 
import weka.core.Instances; 
import weka.filters.Filter; 
import weka.filters.unsupervised.attribute.Remove; 
 
 
public class VotingClassifier extends ClassificationScheme{ 
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  public VotingClassifier(Instances d, String s){ 
    super(d); 
    System.out.print("Setting up voting classification scheme." + '\n'); 
    setSubjectiveQualityAttribute(d.attribute("Subjective")); 
    setOrientationAttribute(d.attribute("Type")); 
    setData(new Instances(d)); 
    setClassificationType(s); 
  } 
 
public void run() throws Exception { 
   
  System.out.print("***RUNNING VOTING CLASSIFICATION SCHEME WITH " + 
getClassificationType() + " classifier***" + '\n'); 
     
  //Define classifiers 
  Classifier cModelQuality = getClassifier(); 
  Classifier cModelQualityGood = getClassifier(); 
  Classifier cModelQualityAve = getClassifier(); 
  Classifier cModelQualityPoor = getClassifier(); 
  Classifier cModelOrientationGood = getClassifier(); 
  Classifier cModelOrientationAve = getClassifier(); 
  Classifier cModelOrientationPoor = getClassifier(); 
         
  //Run multiple times 
  for(int r = 0; r < getRuns(); r++){ 
    //Print the run 
    System.out.println("\n Run: " + (r+1)); 
     
    //Create cross-validation folds 
    Random rand = new Random(r+1); 
    int folds = 10; 
     
    setSubjectiveQualityAttribute(getData().attribute("Subjective")); 
    setOrientationAttribute(getData().attribute("Type")); 
    Instances randData = new Instances(getData()); 
    randData.randomize(rand); 
    randData.stratify(folds); 
     
    //Define evaluators 
    randData.setClassIndex(getOrientationAttribute().index()); 
    Evaluation eTestOrientation = new Evaluation(randData); 
     
    randData.setClassIndex(getSubjectiveQualityAttribute().index()); 
    Evaluation eTestQuality = new Evaluation(randData); 
     
    Attribute binaryQualityAttribute = randData.attribute("Good"); 
    randData.setClassIndex(binaryQualityAttribute.index()); 
    Evaluation eTestBinaryQuality = new Evaluation(randData); 
     
    for (int n = 0; n < folds; n++){ 
      //get training and testing sets 
      Instances train = randData.trainCV(folds, n); 
      Instances test = randData.testCV(folds, n); 
 
      Instances orientationTraining = removeAllBinaryQuality(train); 
      Instances orientationTesting = removeAllBinaryQuality(test); 
       
      Instances votingQualityTraining = removeAllBinaryQuality(train); 
      votingQualityTraining = 
removeOrientationAttribute(votingQualityTraining); 
      Instances votingQualityTesting = removeAllBinaryQuality(test); 
      votingQualityTesting = removeOrientationAttribute(votingQualityTesting); 
      setClassAttributes(votingQualityTraining); 
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votingQualityTraining.setClassIndex(getSubjectiveQualityAttribute().index()); 
       
      setClassAttributes(train); 
       
      //MAKE THREE QUALITY CLASSIFIERS 
      Instances qualityGoodTrain = getFilteredQualitySet("Good", train); 
      Instances qualityAveTrain = getFilteredQualitySet("Average", train); 
      Instances qualityPoorTrain = getFilteredQualitySet("Poor", train); 
       
      Instances qualityGoodTest = getFilteredQualitySet("Good", test); 
      Instances qualityAveTest = getFilteredQualitySet("Average", test); 
      Instances qualityPoorTest = getFilteredQualitySet("Poor", test); 
       
      //Build classifiers with filtered training set 
      Classifier cModelQualityCopy = Classifier.makeCopy(cModelQuality); 
        Classifier cModelGoodQualityCopy = 
Classifier.makeCopy(cModelQualityGood); 
        Classifier cModelAveQualityCopy = 
Classifier.makeCopy(cModelQualityAve);   
        Classifier cModelPoorQualityCopy = 
Classifier.makeCopy(cModelQualityPoor);   
        cModelQualityCopy.buildClassifier(votingQualityTraining);  
        cModelGoodQualityCopy.buildClassifier(qualityGoodTrain);       
        cModelAveQualityCopy.buildClassifier(qualityAveTrain);  
        cModelPoorQualityCopy.buildClassifier(qualityPoorTrain); 
       
        //MAKE THREE ORIENTATION CLASSIFIERS 
      //filter to train for images of certain quality 
        Instances filteredTrainGood = filterOnQuality("good", 
orientationTraining); 
        Instances filteredTrainAve = filterOnQuality("average", 
orientationTraining); 
        Instances filteredTrainPoor = filterOnQuality("poor", 
orientationTraining); 
        
      //Set class index 
        setClassAttributes(orientationTraining); 
        filteredTrainGood.setClassIndex(getOrientationAttribute().index()); 
        filteredTrainAve.setClassIndex(getOrientationAttribute().index()); 
        filteredTrainPoor.setClassIndex(getOrientationAttribute().index()); 
       
      //build classifier with filtered training set 
        Classifier cModelOrientationGoodCopy = 
Classifier.makeCopy(cModelOrientationGood); 
        Classifier cModelOrientationAveCopy = 
Classifier.makeCopy(cModelOrientationAve); 
        Classifier cModelOrientationPoorCopy = 
Classifier.makeCopy(cModelOrientationPoor); 
        cModelOrientationGoodCopy.buildClassifier(filteredTrainGood); 
        cModelOrientationAveCopy.buildClassifier(filteredTrainAve); 
        cModelOrientationPoorCopy.buildClassifier(filteredTrainPoor); 
                 
        setClassAttributes(orientationTesting); 
        //for each instance of the testing set, get the quality prediction 
        //System.out.println("\n Total Number of instances: " + 
test.numInstances()); 
        for(int i = 0; i < test.numInstances(); i++){ 
 
          Instance instG = qualityGoodTest.instance(i); 
          Instance instA = qualityAveTest.instance(i); 
          Instance instP = qualityPoorTest.instance(i); 
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          //Get scores from good, average, and poor quality classifiers 
          double resultG = cModelGoodQualityCopy.classifyInstance(instG); 
          double resultA = cModelAveQualityCopy.classifyInstance(instA); 
          double resultP = cModelPoorQualityCopy.classifyInstance(instP); 
           
          //get quality prediction from vote 
          String result = getVotingResults(resultP, resultA, resultG); 
          //System.out.println("\n Result " + i + ": " + "G: " + resultG + " A: 
" + resultA + " P: " + resultP + " Vote: " + result); 
           
          double vote = (double)getIntFromVoteQuality(result); 
           
          //set value of corresponding instance in orientation test set 
          setClassAttributes(orientationTesting); 
          
orientationTesting.instance(i).setValue(getSubjectiveQualityAttribute().index()
, vote);  
           
          //set value of corresponding instance in quality test set 
          setClassAttributes(votingQualityTesting); 
          
votingQualityTesting.instance(i).setValue(getSubjectiveQualityAttribute().index
(), vote);  
        } 
         
      //filter to train for images of certain quality 
        Instances filteredTestGood = filterOnQuality("good", 
orientationTesting); 
        Instances filteredTestAve = filterOnQuality("average", 
orientationTesting); 
        Instances filteredTestPoor = filterOnQuality("poor", 
orientationTesting); 
         
      //Set class index 
        setClassAttributes(orientationTesting); 
        filteredTestGood.setClassIndex(getOrientationAttribute().index()); 
        filteredTestAve.setClassIndex(getOrientationAttribute().index()); 
        filteredTestPoor.setClassIndex(getOrientationAttribute().index()); 
         
        setClassAttributes(votingQualityTesting); 
        
votingQualityTesting.setClassIndex(getSubjectiveQualityAttribute().index()); 
         
      //predict quality using classifier 
        eTestQuality.evaluateModel(cModelQualityCopy, votingQualityTesting); 
        eTestBinaryQuality.evaluateModel(cModelGoodQualityCopy, 
qualityGoodTest); 
        eTestBinaryQuality.evaluateModel(cModelAveQualityCopy, qualityAveTest); 
        eTestBinaryQuality.evaluateModel(cModelPoorQualityCopy, 
qualityPoorTest); 
        eTestOrientation.evaluateModel(cModelOrientationGoodCopy, 
filteredTestGood); 
        eTestOrientation.evaluateModel(cModelOrientationAveCopy, 
filteredTestAve); 
        eTestOrientation.evaluateModel(cModelOrientationPoorCopy, 
filteredTestPoor); 
         
      //based on quality prediction, use orientation classifier to predict 
orientation 
       
        if(n == 9){ 
          //Print the Quality results 
        System.out.println("\n Binary Quality run: " + (n+1)); 
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        printResults(eTestBinaryQuality); 
         
        //Print the Quality results 
        System.out.println("\n Subjective Quality run: " + (n+1)); 
        printResults(eTestQuality); 
         
        //Print the Quality results 
        System.out.println("\n Orientation run: " + (n+1)); 
        printResults(eTestOrientation); 
        } 
   
    }   
  } 
} 
 
private static String getVotingResults(double resultP, double resultA, double 
resultG){ 
  int pWeight = 1; 
  int aWeight = 2; 
  int gWeight = 3; 
  double result; 
   
  double num = (resultP * pWeight) + (resultA * aWeight) + (resultG * gWeight); 
  double denom = resultP + resultA + resultG; 
   
  if(denom == 0) 
  { 
    result = 1; 
  } 
  else 
  { 
    result = Math.floor(num/denom); 
  } 
   
  if(result == 1) 
  { 
    return "poor"; 
  } 
  else if(result == 2) 
  { 
    return "average"; 
  } 
  else if(result == 3) 
  { 
    return "good"; 
  } 
  else 
  { 
    return "void"; 
  } 
} 
   
  private static Integer getIntFromVoteQuality(String s){ 
    if(s == "average"){ 
      return 0; 
    } 
    else if(s == "poor"){ 
      return 1; 
    } 
    else if(s == "good"){ 
      return 2; 
    } 
    return null; 
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  } //end getQualityFromInt 
     
  private Instances getFilteredQualitySet(String q, Instances train) throws 
Exception{ 
    String[] qualities = new String[3]; 
    qualities[0] = "Good"; 
    qualities[1] = "Average"; 
    qualities[2] = "Poor"; 
     
    train = removeOrientationAttribute(train); 
    train = removeSubjectiveQualityAttribute(train); 
     
    //Remove binary values for other qualities 
    for(int i = 0; i < qualities.length; i++) 
    { 
      if(qualities[i] != q) 
      { 
        train = removeBinaryQuality(qualities[i],train); 
      } 
    } 
     
    //Set class index 
    Attribute binaryAttribute = train.attribute(q); 
    train.setClassIndex(binaryAttribute.index()); 
     
    return train; 
  } 
   
   
  private Instances removeOrientationAttribute(Instances d) throws Exception{ 
    setOrientationAttribute(d.attribute("Type")); 
     
    //Filter to remove the orientation attributes 
    Remove removeOrientation = new Remove(); 
    String[] orientationOptions = new String[2]; 
    orientationOptions[0] = "-R";  // "range" 
    orientationOptions[1] = 
String.valueOf(getOrientationAttribute().index()+1); //range of attributes 
    removeOrientation.setOptions(orientationOptions); 
    removeOrientation.setInputFormat(d);   
       
    //Apply the filters 
    Instances filtered = Filter.useFilter(d, removeOrientation); 
     
    return filtered; 
  } 
   
  private Instances removeSubjectiveQualityAttribute(Instances d) throws 
Exception{ 
    setSubjectiveQualityAttribute(d.attribute("Subjective")); 
     
    //Filter to remove the orientation attributes 
    Remove removeOrientation = new Remove(); 
    String[] orientationOptions = new String[2]; 
    orientationOptions[0] = "-R";  // "range" 
    orientationOptions[1] = 
String.valueOf(getSubjectiveQualityAttribute().index()+1); //range of 
attributes 
    removeOrientation.setOptions(orientationOptions); 
    removeOrientation.setInputFormat(d);   
       
    //Apply the filters 
    Instances filtered = Filter.useFilter(d, removeOrientation); 
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    return filtered; 
  } 
   
  private Instances removeAllBinaryQuality(Instances d) throws Exception{ 
      d = removeBinaryQuality("Good",d); 
      d = removeBinaryQuality("Average",d); 
      d = removeBinaryQuality("Poor",d); 
      return d; 
  } 
 
} 
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