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Abstract
From September–December 2017, the Mathematical Biosciences Institute at Ohio State University hosted a series of work-
shops on control theory in biology and medicine, including workshops on control and modulation of neuronal and motor
systems, control of cellular and molecular systems, control of disease / personalized medicine across heterogeneous popula-
tions, and sensorimotor control of animals and robots. This special issue presents tutorials and research articles by several of
the participants in the MBI workshops.

Control theory is a mathematically oriented discipline
within engineering that concerns the design and analysis of

1 Contrary to popular belief, James Watt did not invent the Watt gov-
ernor; the mechanism was in use for wind and water mills well before
he adapted it to pressure regulation in steam engines in the late 1700s
[37].
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systems for the regulation of physical devices [35]. Clas-
sical applications in mechanical and aerospace engineering
range fromWatt’s centrifugal governor to autopilots in mod-
ern commercial aircraft.1 Control theory has a broad scope,
encompassing problems as diverse as system identification,
state and parameter estimation, analysis of nonlinear feed-
back control systems, and optimal control.

The analogy betweenmechanical control and regulation in
biological systems was articulated in Norbert Wiener’s 1948
bookCybernetics: orControl andCommunication in theAni-
mal and theMachine [38]. This analogy has proven fruitful in
many domains of physiology (including computational neu-
roscience). In a 1954 paper on a closed-loop control model
of the respiratory chemostat, Grodins and colleagues put it
thus: “The essence of physiology is regulation. It is this con-
cern with purposeful system responses which distinguishes
physiology from biophysics and biochemistry. Thus, physi-
ologists study the regulation of breathing, of cardiac output,
of blood pressure, of water balance, of body temperature and
of a host of other biological phenomena. In recent years, stim-
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ulated particularly by the practical demands ofWorldWar II,
a closely related branch of physical science has emerged. It
is concerned with the theory, design, and operation of man-
made regulators and servomechanisms. It is usually referred
to as control system engineering, but it could very well be
called the physiology of physical systems” [14].

The sentiment articulated by Wiener and Grodins was
echoed in the founding mission statement of this journal (in
1961, under its original title Kybernetik): “The concepts of
transmission of information, processing of information and
automatic control engineering originated within technology
and physics. Today, however, these concepts have also found
application in the biological sciences.” Application of con-
trol theoretic ideas to a variety of biological systems remains
a central topic for Biological Cybernetics.

Many aspects of the central nervous system may fruit-
fully be studied from such a perspective. For instance, as the
authors of [15] in this special issue write: The nervous system
acts as a controller for locomotion. Indeed, central pattern
generators are an important example of control systems, and
many analyses of motor control systems have appeared in
Biological Cybernetics [13,16,18,33,36]. As an example, the
respiratory rhythm, produced by activity of neural circuits in
the brainstem, has been studied as a control problem formany
years [4,11]; apnea, or recurring prolonged interruption of
the rhythm, has been considered as a controller instability
[23,25].

Control theory in biology and medicine remains an active
area of development; for a recent monograph see [20]. From
September–December 2017, the Mathematical Biosciences
Institute (MBI) at Ohio State University hosted an empha-
sis semester on this theme, including workshops on “Control
and Modulation of Neuronal and Motor Systems (I),” “Con-
trol of Cellular and Molecular Systems (II),” “Control of
Disease: Personalized Medicine across Heterogeneous Pop-
ulations (III),” and “Sensori-motor Control of Animals and
Robots (IV)” (Fig. 1). Biological Cybernetics is pleased to
present this special issue as a collection of papers by several
of the participants in the MBI workshops.

The papers cover a broad range of topics within control
theory. Optimization problems arising in the design of effi-
cient controllers for neuronal, cardiac, andmotor systems are
discussed in [2,7,28,29]. Optimal feedback controls2 intrin-
sic to the organism are analyzed for homeostasis of blood
pressure [39] and neuronal firing rates [27]. One paper [24]
discusses optimizing a new approach to regulation of blood
sugar in a diabetes model. Another broad theme concerns
parameter identifiability and parameter estimation: both esti-

2 The importance of understanding feedback in biological systems was
emphasized by workshop II participant H. El Samad (UCSF) who
declared “This is the dawning of the age of feedback control in biology.”

mating physiological parameters from experimental data
[8,32] and exploring how an organismmight estimate param-
eters related to the stability of its own movements [15].
Controllability of systems with nonlinear dynamics is dis-
cussed in the context of ultrasensitivity and robust rhythm
generation [10], and robust generation of waves in excitable
media [3]. The role of the nervous system itself as a controller
is emphasized in [15,19].

Tutorials The MBI workshop series began with a series of
tutorials intended to help quantitative biologists and applied
mathematicians new to control theory find their way into the
field. KenLoparo (CaseWesternReserveUniversity) gave an
overviewof linear systems theory;Rodolphe Sepulchre (Uni-
versity of Cambridge) gave a tutorial on feedback, sensitivity,
and excitability; Robert Parker (University of Pittsburgh)
introducedmodel predictive control; and Terence Sanger lec-
tured on nonlinear filters. Videos of these tutorials and many
of the research talks were archived.3

In a similar spirit, we begin this special issue with three
tutorial reviews solicited from speakers at the workshops.
The tutorials form a series addressing biological systems that
are subject to an increasing number of control inputs: control
through a single input such as an injected current [29]; a dual
control system such as parallel control of synaptic gain and
intrinsic excitability in a nerve cell [27]; and the control of
waves in excitable media subject to three key parameters,
time-scale separation, space-scale separation, and activation
threshold [3].

The first tutorial, Phase reduction and phase-based opti-
mal control for biological systems, by Monga et al. [29]
surveys open-loop control methods based on reduction
of high-dimensional dynamical systems models to lower-
dimensional effective models. In many situations, high-
dimensional dynamical systems can be better understood
when low-dimensional organizing structure can be identified
within them. For instance, rhythmic phenomena such as the
repetitive firing of nerve or cardiac cells may be described by
systems of ODEs or PDEs with trajectories converging to a
low-dimensional manifold containing a stable limit cycle. A
limit cycle trajectory can be parametrized by a single-phase
variable representing the progression around the periodic
limit cycle orbit. This “asymptotic phase” variable can be
extended to points within the basin of attraction of the limit
cycle, giving a useful one-dimensional representation of the
full dynamics. Isostables generalize the notion of isochrons
to systems with a fixed point rather than a limit cycle [26,40],
and provide dimension reduction (by adiabatic elimination
of fast dynamics) for excitable systems. Control of periodic
orbits based on standard phase reduction is limited to con-
trols under which the controlled orbit remains within a small

3 Seehttps://mbi.osu.edu/event/?id=1062#resources.
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Fig. 1 Illustration from the Fall 2017 emphasis semester on Control Theory in Biology and Medicine at the Mathematical Biological Sciences
Institute (MBI). Art credit: Will Gehring, Ohio State University/MBI. Used with permission

neighborhoodof the limit cycle. The tutorial reviews standard
phase reduction, isostables, and augmented phase reduction.
As the authors illustrate, combining isostables and isochrons
adds one or more coordinate directions transverse to the limit
cycle, allowing the derivation of a broader range of control
strategies. The authors demonstrate the superior effectiveness
of these strategies, relative to those based on standard phase
reduction, in cases where the periodic orbit has a nontriv-
ial Floquet multiplier with magnitude close to unity. In this
situation, there is at least one direction along which return
to the limit cycle is slow enough that modest control inputs
can significantly change the shape of the trajectory. Including
the principal isostable along with the isochronal coordinate
allows more precise control of timing by avoiding controls
that push the trajectory far from the underlying periodic orbit.

The second tutorial by Miller and Cannon [27], concerns
Combined mechanisms of neural firing rate homeostasis.
Homeostasis is a fundamental control problem for biological
systems: maintaining some quantity, such as body tempera-

ture or blood glucose concentration, within prescribed limits.
For these examples,minimizing the deviation froma set point
is an appropriate goal. In contrast, neurons are subject to
multiple forms of homeostasis. Firing rate adaptation should
maintain the long-term average activity level of a nerve cell,
but not so strictly as to prevent the short-term variations in
firing frequency that are believed to encode (some of the)
information in the nervous system. The tutorial [27] reviews
recent work on dual control through mechanisms combin-
ing synaptic gain and intrinsic cellular excitability [5,6],
building on a framework developed by O’Leary and col-
leagues [30,31]. When two control mechanisms act on the
same system, there is the potential for “wind-up” instabil-
ity (imagine two heating/cooling systems regulated by linear
thermostats, with equal gain but different set points, both
trying to control the temperature of the same room). The
tutorial reviews conditions under which neural homeostasis
mechanisms can avoid wind-up instabilities, and jointly nav-
igate gain and excitability under closed-loop control to find
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parameter values that maximize mutual information between
neuronal inputs and outputs. Because the mutual informa-
tion is sensitive to both the mean and variance of the firing
rate, control through two mechanisms in concert proves to
be superior to control through a single feedback mechanism
alone. The authors also show how a dual control mechanism
facilitates robust maintenance of a neural integrator (e.g., for
maintaining eye position without visual feedback), and dis-
cuss a specific implementation of single and dual feedback
control in terms of known molecular components of calcium
ion signaling pathways in neurons.

Excitability, a form of ultrasensitivity, is a fundamen-
tal notion in biological cybernetics. Indeed Wiener [38,
p. 17], proposed the study of “irritability” in cardiac mus-
cle as a tractable and worthwhile alternative to irritability
in the nervous system, and pursued this idea with his long-
time collaborator Rosenblueth [34]. Excitable media play an
important role in many physiological processes, for exam-
ple, propagation of action potentials along the axon of a
nerve cell [17] or propagation of a wave of activity along
a chain of oscillators [21] (a traveling wave), generation of
stable patterns of activation in a developing embryo [12] or
in a neural network [1,9] (standing waves), and instability
of cardiac activation patterns leading to atrial fibrillation
[22] (spiraling waves). The final tutorial [3], Controlling
excitable wave behaviors through the tuning of three param-
eters, by Bhattacharya and Iglesias, surveys how initiation
of waves in excitable media can be controlled through three
physical parameters: time-scale separation, space-scale sep-
aration, and activation threshold. The authors cover traveling,
rotating, and standing waves, as well as wave reflection
due to inhomogeneities in the wave medium or encounter
with domain boundaries. The authors showcase a simple
two-dimensional activator–inhibitor model, related to the
FitzHugh–Nagumo equations, to illustrate the transitions
between the different types of wave behavior under varia-
tion of the three different control parameters.

Articles The special issue continues with nine original
articles written by participants. The first three investigate
physiological control mechanisms, in rhythm generation by
central circuits; in neuromotor control of a single limb; and
in control of bipedal running or walking.

In Cellular switches orchestrate rhythmic circuits, Drion
et al. [10] investigate the neural mechanisms underlying the
robust generation of rhythms for various motor functions.
They highlight an elegant possible mechanism of cellu-
lar switching based on a slow negative conductance that
allows modulation of the individual participation of cells
in the circuit rhythms and that can be externally controlled
by neuromodulators. The cellular switch makes the circuits
reconfigurable, robust, adaptable, and externally control-
lable. The authors illustrate these interesting properties with

the generation of different rhythms in a circuit model of the
crab stomatogastric ganglion.

Given properties of a network of neurons, we know how
to approximate the dynamics of the network. One open prob-
lem in neuroscience is a predictive principle for why neural
networks are organized the way they are in humans and
other animals. To make progress on this question and in
marked contrast to the current fashion of “deep learning” and
large black-box multilayer neural networks trained on large
complex data, the article A normative approach to neuromo-
tor control, by Berniker and Penny [2], describes a neural
network at the other extreme: small (40 neurons), shallow
(only three layers), and mostly understandable. Specifically,
they consider a simple controller for a reaching task: The
controller takes the current state of the “hand” as input
and outputs muscle forces that move the hand toward its
goal. They then approximate this linear controller by their
small probabilistic neural network so that the output of the
network produces the desired muscle force with high prob-
ability. Once their neural network is trained to approximate
the controller, they find, remarkably, that it exhibits vari-
ous phenomena previously observed in experiments, such
as cosine tuning, population vectors correlated with reach-
ing directions, and apparent oscillatory neural activity in
point-to-point reaches. Consequently, they argue that these
previous experimental observations are simply epiphenom-
ena, emerging naturally from a regularized approximation
of a linear controller in a single simple model. This line of
research is promising: One could potentially apply similar
techniques to derive biophysically grounded neural net-
works to control various other tasks, perhaps for much
simpler organisms with well-characterized neural networks,
and thereby compare the derived networks evenmore directly
with what nature has produced.

Estimation problems form an important part of control
theory, both parameter estimation and system identification,
and state estimation for closed-loop control. In Locomo-
tion: exploiting noise for state estimation, Guckenheimer
and Javeed [15] investigate the hypothesis that in locomo-
tory systems, such as bipedal walking, individuals actively
perturb their own rhythmic motions in order to estimate sta-
bility parameters, such as Floquet exponents, which cannot
be detected by observing noiseless periodic trajectories. In
order for an organism to estimate the rate at which its own
unperturbed locomotory rhythm would return to a nominal
periodic orbit, the trajectory must first be displaced away
from that orbit in a controlled fashion. The paper explores the
time-versus-accuracy tradeoffs in time and accuracy for esti-
mating Floquet multipliers using different types of stochastic
processes as the source of perturbations. The authors suggest
that heavy-tailed perturbation distributions, rather thanGaus-
sian perturbations, are more effective for this purpose. They
suggest experimental tests of this possibility, and for explor-
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ing the mechanisms by which organisms learn to stabilize
rhythmic motions through practice.

We turn next to a series of articles addressing different
aspects of system identification and parameter estimation
for a critical physiological control system: the regulation of
blood pressure. In Cardiovascular regulation in response to
multiple hemorrhages: analysis and parameter estimation,
Ciocanel et al. [8] study the cardiovascular response to a
succession of blood withdrawals, analyzing the identifiabil-
ity of different parameters in a quantitative physiologically
based model of the cardiac regulatory system. They find that
the identifiable parameters include those governing timing
of cardiac contraction, systemic vascular resistance, and car-
diac contractility. Of these, vascular resistance and cardiac
contractility varied systematically over time.

One of the more significant bottlenecks in mathematical
models of medicine and biology is the paucity of mea-
sured parameters. This will be of increasing importance as
we move toward an era of personalized medicine, where
patient-specific models are used as a basis for therapy. In
Parameter subset selection techniques for problems in math-
ematical biology, Olsen et al. [32] consider the problem
of parameter identifiability and parameter subset selec-
tion. Through a series of examples involving arterial blood
pressure, they compare various methods and contrast their
efficiency depending on the accuracy of initial parameter
estimates.

Estimation problems typically involve optimization: One
seeks the best estimate under some appropriate metric. Opti-
mization also takes many other forms within control theory
for biological systems, as illustrated by the remaining arti-
cles.

In Optimizing SGLT inhibitor treatment for diabetes with
chronic kidney diseases, Layton [24] uses a detailed com-
putational model of the kidney to study the effects of a
novel diabetes therapy—sodium glucose transport (SGLT2)
inhibitors—on kidney function. The SGLT2 is part of the
body’s mechanism for regulating blood sugar levels. This
transporter normally lowers blood sugar levels by increas-
ing the rate of secretion of urine in the kidneys, and may
provide an alternative to insulin-based therapy for manag-
ing blood sugar levels. The study makes predictions about
the effects of SGLT2 inhibition therapy on kidney function
under normal physiology and in the presence of chronic kid-
ney disease.

A much-vaunted advantage of the use of models in med-
ical applications is that it enables experimentation without
many of the hurdles, in terms of feasibility, costs, and ethical
considerations, that would arise from in vivo experiments. In
An optimal control approach for blood pressure regulation
during head-up tilt, Williams et al. [39] use optimal control
techniques to investigate the effect on the systemic blood
flow, volume, and pressure changes in response to head-up

tilt, a common test used to assess a patients ability to regulate
blood pressure.

Optimal phase control of biological oscillators using aug-
mented phase reduction, byMonga andMoehlis [28], details
control algorithms for the optimal control of nonlinear oscil-
lators on the basis of the augmented phase reduction theory
(see also the tutorial review [29]). The method allows chang-
ing the phase using aminimumenergy input and, as a novelty,
the distance to the oscillator along a transverse direction.
They apply their method to several classical oscillator mod-
els in the literature: the Andronov–Hopf bifurcation normal
form, cardiac pacemaker cells, thalamic neurons, and circa-
dian oscillators. The examples illustrate the applicability of
themethod in real problems such as treating jet lag and poten-
tially reducing motors symptoms of Parkinsonian tremor.

In Spiking networks as efficient distributed controllers,
Huang and Ching [19] address the question of tracking a
reference trajectory of a linear state-space model with a spik-
ing controller. The spike train is computed by minimizing a
quadratic cost of the tracking error regularized by a penalty
on the firing rate. The authors show that the resulting event-
based controller can be interpreted as the output of a recurrent
neural network that combines rate coding and spike coding.
The properties of the proposed controller are discussed from
the general perspective of predictive neural coding.

Prospects We conclude the special issue with a Prospects
piece by Chang and Paydarfar [7], Optimizing stimulus
waveforms for electroceuticals, that reviews a variety of
approaches to optimization of electrical stimulation wave-
forms for therapeutic purposes. The review emphasizes the
importance of patient-to-patient variability and the need
for optimization methods to be built into “electroceutical
devices” directly. While traditional stimulus optimization is
often limited to a small number of parameters, such as mean
current, frequency, duration, and amplitude, advances in
digital technology allowclinicians in principle to applywave-
forms of unlimited complexity. In this context, the authors
offer a broad surveyofmethods for seeking optimal control of
therapeutic electrical stimulation waveforms, with examples
drawn from deep brain stimulation for Parkinson’s disease;
defibrillation treatment of cardiac arrest; and cardioversion,
or remediation of cardiac arrhythmia through reentrainment.
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26. Mauroy A, Mezić I, Moehlis J (2013) Isostables, isochrons, and
Koopman spectrum for the action-angle representation of stable
fixed point dynamics. Phys D Nonlinear Phenom 261:19–30

27. Miller P, Cannon J (2018) Combined mechanisms of neural fir-
ing rate homeostasis. Biol Cybern 1–13. https://doi.org/10.1007/
s00422-018-0768-8

28. Monga B, Moehlis J (2018) Optimal phase control of biological
oscillators using augmented phase reduction. Biol Cybern 1–18.
https://doi.org/10.1007/s00422-018-0764-z

29. Monga B,Wilson D, Matchen T, Moehlis J (2018) Phase reduction
and phase-based optimal control for biological systems: a tutorial.
Biol Cybern 1–36. https://doi.org/10.1007/s00422-018-0780-z

30. O’Leary T,WilliamsAH, Caplan JS,Marder E (2013) Correlations
in ion channel expression emerge from homeostatic tuning rules.
Proc Natl Acad Sci 110(28):E2645–E2654

31. O’Leary T, Williams AH, Franci A, Marder E (2014) Cell
types, network homeostasis, and pathological compensation from
a biologically plausible ion channel expression model. Neuron
82(4):809–821

32. Olsen CH, Ottesen JT, Smith RC, Olufsen MS (2018) Parameter
subset selection techniques for problems in mathematical biology.
Biol Cybern 1–18. https://doi.org/10.1007/s00422-018-0784-8

33. Prablanc C, Echallier J, Komilis E, Jeannerod M (1979) Optimal
response of eye and hand motor systems in pointing at a visual
target. Biol Cybern 35(2):113–124

34. Rosenblueth A,Wiener N (1946) The mathematical formulation of
the problem of conduction of impulses in a network of connected
excitable elements specifically in cardiac muscle. Arch Del Instit
De Cardiologia De Mexico 16:205–265

35. SontagED (2013)Mathematical control theory: deterministic finite
dimensional systems, vol 6. Springer, Berlin

36. Uno Y, Kawato M, Suzuki R (1989) Formation and control of opti-
mal trajectory in human multijoint arm movement. Biol Cybern
61(2):89–101

37. Von Tunzelmann GN (1978) Steam power and British industrial-
ization to 1860. Oxford University Press, Oxford

38. Wiener N (1948) Cybernetics: or control and communication in the
animal and the machine. MIT Press, Cambridge

39. Williams ND,Mehlsen J, Tran HT, OlufsenMS (2018) An optimal
control approach for blood pressure regulation during head-up tilt.
Biol Cybern 1–11. https://doi.org/10.1007/s00422-018-0783-9

40. WilsonD,Moehlis J (2015) Extending phase reduction to excitable
media: theory and applications. SIAM Rev 57(2):201–222

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s00422-018-0771-0
https://doi.org/10.1007/s00422-018-0774-x
https://doi.org/10.1007/s00422-018-0774-x
https://doi.org/10.1007/s00422-018-0781-y
https://doi.org/10.1007/s00422-018-0778-6
https://doi.org/10.1007/s00422-018-0778-6
https://doi.org/10.1007/s00422-018-0772-z
https://doi.org/10.1007/s00422-018-0772-z
https://doi.org/10.1007/s00422-018-0769-7
https://doi.org/10.1007/s00422-018-0769-7
https://doi.org/10.1007/s00422-018-0765-y
https://doi.org/10.1007/s00422-018-0765-y
https://doi.org/10.1007/s00422-018-0768-8
https://doi.org/10.1007/s00422-018-0768-8
https://doi.org/10.1007/s00422-018-0764-z
https://doi.org/10.1007/s00422-018-0780-z
https://doi.org/10.1007/s00422-018-0784-8
https://doi.org/10.1007/s00422-018-0783-9


Biological Cybernetics is a copyright of Springer, 2019. All Rights Reserved.


	Control theory in biology and medicine
	Introduction to the special issue
	Abstract
	References



