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ABSTRACT

For a cyber-physical system, its execution behaviors are often impacted by its

operating environment. However, the assumptions about a cyber-physical system’s

expected environment are often informally documented, or even left unspecified dur-

ing the system development process. Unfortunately, such unspecified assumptions

made in cyber-physical systems, such as medical cyber-physical systems, can result

in patients’ injures and loss of lives. Based on the U.S. Food and Drug Administra-

tion (FDA) data, from 2006 to 2011, there were 5,294 recalls and 1,154,451 adverse

events resulting in 92,600 patient injuries and 25,800 deaths. One of the most critical

reasons for these medical device recalls is the violations of unspecified assumptions.

These compelling data motivated us to research unspecified assumptions issues in

safety-critical cyber-physical systems, and develop approaches to reduce the failures

caused by unspecified assumptions.

In particular, this thesis is to study the issues of unspecified assumptions in

cyber-physical system design process, and to develop an unspecified assumption man-

agement framework to (1) identify unspecified assumptions in system design models;

(2) facilitate domain experts to perform impact analysis on the failures caused by

violating unspecified assumptions; and (3) explicitly model unspecified assumptions

in system design models for system safety validation and verification.

Before starting to develop the unspecified assumption management framework,

we first need to study how unspecified assumptions may be introduced into cyber-

physical systems. We took cases from the FDA medical device recall database to

analyze the root causes of medical device failures. By analyzing these cases, we found

two important facts: (1) one of the major reasons that causes medical device recalls is

violation of some unspecified assumptions; and (2) unspecified assumptions are often

introduced into the system design models through syntactic carriers. Based on the

x



two findings, we propose a framework for managing unspecified assumption in cyber-

physical system development process. The framework has three components. The

first component is called the Unspecified Assumption Carrier Finder (UACFinder),

which is to identify unspecified assumptions in system design models through au-

tomatically extracting syntactic carriers associated with unspecified assumptions.

However, as the number of unspecified assumptions identified from system design

models can be large, and it may not be always feasible for domain experts to vali-

date and address the most safety-critical assumptions at different system development

phases. Therefore, the second component of the framework is a methodology that

uses the Failure Mode and Effects Analysis (FMEA) based prioritization approach

to facilitate domain experts to perform impact analysis on unspecified assumptions

identified by the UACFinder and asses their safety-critical level. The third compo-

nent of the framework describes a model architecture and corresponding algorithms

to model and integrate assumptions into system design models, so that system safety

associated with these unspecified assumptions can be validated and formally verified

by existing tools.

We also have conducted case-studies on representative system models to demon-

strate how UACFinder can identify unspecified assumptions from system design mod-

els, and how the FMEA based prioritizing approach can facilitate domain experts to

verify the appropriateness of identified assumptions. In addition, case studies are

also conducted to demonstrate how system safety properties can be improved by

modeling and integrating unspecified assumptions into system models. The results

of case-studies indicate that the unspecified assumption management framework can

identify unspecified assumptions, facilitate domain experts to validate and verify the

appropriateness of identified assumptions, and explicitly specify assumptions that

would cause defects in these systems.
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1

CHAPTER 1

INTRODUCTION

An assumption is defined as “a thing that is accepted as true or as certain to

happen, without proof” [1] or as “a fact or statement taken for granted” [2]. Making

assumptions during the system development process is at all inevitable. During the

system development life-cycle, every time a decision is made about how to design

an interface, how to implement an algorithm, if and how to encapsulate an external

dependency, assumptions are made concerning how the system will be used, how it

will evolve, and what environments it will operate in. However, the unfortunate as-

pect of system development is that these assumptions are seldom, if ever, recorded,

communicated, or reviewed. We call assumptions that are not explicitly documented

or specified but are understood by system designers and developers unspecified as-

sumptions. When unspecified assumptions are violated, failures can be introduced.

There have been many catastrophic incidents caused by violations of unspecified as-

sumptions that resulted in loss of revenue in tune of hundreds of millions of dollars

and loss of lives [3]. Based on the U.S. Food and Drug Administration (FDA) data,

from 2006 to 2011, there were 5,294 recalls and 1,154,451 adverse events resulting in

92,600 patient injuries and 25,800 deaths [4].

1.1 Incidents of System Failure Due to Unspecified Assumptions

1.1.1 Ariane 5 Disaster. One of the most well-known failures due to an un-

specified assumption made by a software component is that of the Ariane 5 rocket.

The summary of the expert analysis in [3] is as follows - “In about 40 seconds after

initiation of the flight sequence, at an altitude of about 3700 meters, the launcher

veered off its flight path, broke up and exploded”. Ariane 5 had reused the same
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software which was used by Ariane 4. There was an operand overflow in the Inertial

Reference System module, due to a conversion of a 64-bit floating point value to a

16-bit signed integer value. The error occurred because the Ariane 5 was a much

bigger rocket than the Ariane 4 and had a higher value for the horizontal velocity

component, which overflowed a 16-bit variable.

Though a simplification, this is a classic case of reuse of a software component

with unspecified assumptions made on the environment in the system. Though this

fact “The horizontal velocity value of Ariane 5 is higher than Ariane 4” was known

beforehand, the assumption was not documented. Thus, the assumption made by the

old software that the horizontal velocity variable will never overflow 16-bits was left

unchecked, it was violated and caused the accident.

1.1.2 HAMILTON-T1 Ventilators Recall. According to the U.S. Food and

Drug Administration (FDA) medical device recall database, medical device recalls

caused by software failures are at an all-time high [5]. One of the main reasons for

the recalls is that the environment can not satisfy medical devices’ assumed operation

conditions. One recent medical device recall case is HAMILTON-T1 ventilator recall

in 2013 [6]. The FDA has labeled this recall as a Class I recall, the most serious type

of recall issued by the FDA. According to the manufacturer, there is an unexpected

high internal oxygen consumption of HAMILTON-T1 ventilator when they are used

on small pediatric patients. The current labeling does not include sufficient infor-

mation about the internal oxygen consumption of the ventilators. Depending on the

ventilator setting and the patient’s lung impedance, the internal gas consumption of

the HAMILTON-T1 may be higher than expected. The internal oxygen consumption

has to be taken into account in addition to the oxygen requirements for the patient’s

ventilation, especially when oxygen is limited. If the available oxygen supply during

transport is depleted, the life of the patient may be endangered.
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In this recall, the internal oxygen consumption is calculated by (MinV ol +

FlowTrigger) × C × (FiO2 − 20.9)/79.1, where constant C = 1.5 is initially set

for adult patients – an unspecified assumption that the formula of internal oxygen

consumption is used for adult patients. For pediatric patients, the value of C should

be 4.0, which is different from the value used for adult patients. When C = 1.5 is used

for small pediatric patients, it causes unexpected high internal oxygen consumption,

which could cause patient in danger or even death.

1.2 Challenges of Managing Unspecified Assumptions

These incidents of system failures in safety-critical cyber-physical systems in-

dicate an inarguable fact that unspecified assumptions are dangerous and can lead

to catastrophes. However, system developers constantly make assumptions about the

interpretation of requirements, design decisions, operational environment, character-

istics of input data, and other factors during system development and deployment

phases. But these assumptions are seldom documented and less frequently validated

by the domain experts who have the knowledge to verify their appropriateness. Once

the operating environment of cyber-physical systems violate the unspecified assump-

tions, failures may occur and catastrophic accidents may happen resulting in loss of

revenue in tune of hundreds of millions of dollars and loss of lives.

Given the importance of assumptions in system development stage, much re-

search has been done in explicitly specifying assumptions. For instance, Lehman and

Ramil proposed a few guidelines to correctly specify assumptions [7]. The authors be-

lieved that it is necessary to train all stakeholders to identify and record assumptions

at all stages of the system development with a standard form or structure. Lewis et

al. [8] also developed an assumption management framework for improving the quality

of software development. The framework can extract assumptions from source code

and record them into a repository for management. Besides the code level assump-



4

tion management, Tirumala [9] also developed an assumption management framework

(AMF) at system component levels. The goal of AMF is to have a well-defined vo-

cabulary to encode assumptions in a machine-checkable format [9]. AMF introduces

a systematic process that performs automatic validations for machine-checkable as-

sumptions. This framework addresses the issues caused by unspecified assumptions

at component interface levels. These tools and approaches mentioned above are to

support assumption description at the requirement gathering phase. However, how

to identify unspecified assumptions at an early stage of system development process,

and how to facilitate domain experts to perform impact analysis on failures caused

by violating unspecified assumptions, and how to help to validate and verify the

assumption-based safety-properties through the system development phases has yet

to be addressed.

To address these problems, a framework for managing unspecified assumptions

needs to solve the following challenges:

1.2.1 Understand How Unspecified Assumptions Exist in Safety-Critical

Cyber-Physical Systems. To develop an effective approach for managing un-

specified assumptions, we need to understand how unspecified assumptions are un-

intentionally introduced into the system during the system development cycle. To

understand the problems, we have to find and analyze system failure cases caused by

unspecified assumptions.

1.2.2 Identify Unspecified Assumptions in System Design Models. Over

the last decades, many modeling languages have been proposed and developed to sup-

port the design and development of complex software systems [10], [11], [12], [13], [14].

These languages are designed to provide a coherent and unambiguous vision of the

system under design, to ease the communication among stakeholders. However, devel-

opers often make assumptions throughout the system development life-cycle. Hence,
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identifying unspecified assumptions made throughout the system development activ-

ities and validating them are essential to ensure the safety of systems that have high

safety requirements. To specify assumptions during the system development cycle,

many approaches and tools have been developed to facilitate assumptions manage-

ment [7], [9], [8], [15]. However, even with these tools and approaches, it is still un-

avoidable that there are unspecified assumptions in systems, just as there are always

some bugs left in the code even with good compilers. Similar to we need debugging

tools to help to identify bugs at the code level, we also need tools to help uncover

potential unspecified assumptions at the model level.

1.2.3 Facilitate Domain Experts to Analyze the Impact on System Failures

Caused by Unspecified Assumptions. The number of unspecified assumptions

in system design models can be large and it is not always feasible for domain experts

to validate all of them at different development phases. Therefore, ensuring the most

safety-critical unspecified assumptions will be validated in time is extremely impor-

tant. To determine the safety levels of each unspecified assumptions, impact analysis

need to be performed on the possible failures caused by unspecified assumptions.

Hence, providing an effective way to facilitate domain experts to perform impact

analyze becomes essential to ensure system safety.

1.2.4 Model Assumptions and Integrate Assumption Models into Sys-

tem Design Models. For safety-critical cyber-physical systems, simulation and

validation are essential but not adequate to provide safety assurance. We need to en-

sure that safety properties are always satisfied under both specified and unspecified

assumptions. Formal model-based approaches are appealing because they provide

a unified basis for formal analysis to achieve the expected level of correctness and

safety guarantees. To have the formal system design models, it is necessary to model

assumptions and integrate assumption models into system design models first. Then
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the integrated models can be transformed into the formal models that existing for-

mal verification tools can be applied to verify system safety properties depended on

different assumptions.

In this thesis, we propose a framework to address these challenges in managing

unspecified assumptions during system development process. The following section

provides a high-level overview of the design of the framework and explain the approach

of how these challenges are addressed.

1.3 The Architecture of The Framework

To address the technical challenges presented in Section 1.2, this thesis designs

a framework to manage the unspecified assumption in safety-critical cyber-physical

systems. The architecture of the framework is depicted in Fig. 1.1.

Figure 1.1. The Architecture of the Framework to Manage Unspecified Assumptions
in Safety-Critical Cyber-Physical Systems

The implementation of the framework contains four components. A brief in-

troduction of each component is as follows.

1.3.1 Component 1: Understand How Unspecified Assumptions Are In-

jected to System Design Models. This component takes the FDA medical
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device recall database as a dataset. It contains an automatic process that uses data

mining algorithms to filter out software-related medical device recalls from the FDA

database. We then analyze if and how unspecified assumptions nay have caused

medical device recalls. Through the analysis, we find out that unspecified assump-

tions are often embedded in system design models through syntactical carriers. We

have identified three types of such carriers: 1) constant variables/values, 2) frequently

read/updated variables, and 3) frequently executed actions.

1.3.2 Component 2: Identify Unspecified Assumptions in System De-

sign Models. The component is to develop an Unspecified Assumption Car-

rier Finder (UACFinder). The UACFinder uses data mining techniques to identify

potential syntactic carriers of unspecified assumptions from system design models.

The UACFinder is currently focusing on mining three types of syntactic carriers:

constant variables, frequently read/updated variables, and frequently executed ac-

tion sequences. Whether unspecified assumptions indeed exist in these carriers are

yet to be validated by domain experts or model designers. The techniques used by

the UACFinder can automatically extract these carriers without requiring any prior

knowledge about annotations, templates, or weight assignments from end-users. The

component also involves medical doctors in the loop to validate the contents in these

carriers found by the UACFinder.

1.3.3 Component 3: Facilitate Domain Experts to Perform Impact Anal-

ysis on Unspecified Assumptions. The component develops an approach to

facilitates domain experts using Failure Mode and Effects Analysis (FMEA) to de-

termine failure modes when unspecified assumptions are violated. By analyzing the

effects of potential device failure modes, the most safety-critical assumptions will be

identified so that appropriate action plans can be made to improve system safety in
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a timely manner.

1.3.4 Component 4: Model and Integrate Identified Assumptions into

System Design Models. For this component, our strategy is to define an assump-

tion model and composition rules for engineers to explicitly and accurately specify

assumptions during system development process. The assumption model is then au-

tomatically transformed into a statechart model and integrated with system design

models. The integrated system design models are then transferred to formal models

with existing tools, such as our proposed tool Y2U [16]. Domain experts can validate

the integrated models, and system safety properties associated with assumptions can

be formally verified with existing model verification tools.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 describes the procedures of

understanding the problem of how unspecified assumptions are embedded in safety-

critical cyber-physical systems. In particular, we develop an automatic approach to

extract software-related medical device recalls from the FDA medical device recall

database. We then analyze these recalls to understand how the unspecified assump-

tions cause medical device recalls. Chapter 3 describes the design of unspecified

assumption carriers finder (UACFinder). The UACFinder is designed to take system

design models as input, and automatically mine unspecified assumptions carried by

constant variables/values, frequently read/updated variables and frequently executed

actions. The number of assumptions discovered from system design models can be

large, and it is not always feasible for domain experts to validate all of them at differ-

ent system development phases. Therefore, Chapter 4 presents an approach, i.e., the

Failure Modes and Effects Analysis (FMEA) approach, to determines possible failure

modes when unspecified assumptions are violated. By analyzing the effects of failure

modes, we can highlight the most safety-critical unspecified assumptions. However,
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for safety-critical cyber-physical systems, validation by domain experts alone is not

adequate for guaranteeing safety, and formal verification such as model checking is

required. The formal model-based approach is appealing because it provides a unified

basis for formal analysis to achieve the expected level of correctness and safety guar-

antees. In order to apply formal methods to verify the assumptions-based properties,

we need to model the validated assumptions and integrate the assumption models

into the system design model. Hence, in the Chapter 5, we present a mathematical

model and composition rules for domain experts to explicitly and accurately specify

assumptions. The mathematical assumption models can be automatically integrated

into system design models. The integrated system design models are then transferred

to formal models with existing tools, such as our proposed tool Y2U [16]. So that sys-

tem safety properties associated with unspecified assumptions can be formally verified

with existing model verification tools.

Every chapter in Chapters 3-5, starts with a discussion of background and

related work and ends with case studies. In the end, the conclusions and future

applications and extensions of the framework are presented in Chapter 6.
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CHAPTER 2

ANALYZE UNSPECIFIED ASSUMPTIONS IN SAFETY CRITICAL CYBER
PHYSICAL SYSTEMS

2.1 Background and Related Work

The medical device recalls mentioned in Chapter 1 and many other examples

that can be found in the FDA recall database [17] show an inarguable fact that un-

specified assumptions in safety-critical cyber-physical systems are dangerous and can

lead to loss of human lives. Hence, being able to explicitly and accurately specify as-

sumptions is important to ensure the safety of safety-critical cyber-physical systems.

However, before we can step into the actions to address the problem, we must un-

derstand how unspecified assumptions are unintentionally introduced into the system

during system development processes. To answer the question, we have to analyze

an amount of safety-critical cyber-physical system failures caused by unspecified as-

sumptions.

While looking for appropriate dataset of system failures, we noticed that med-

ical devices are often subject to failures that potentially cause catastrophic impacts

on patients. The number of such failed cases are significant. Based on the U.S. Food

and Drug Administration (FDA) data, from 2006 to 2011, there were 5,294 recalls

and 1,154,451 adverse events resulting in 92,600 patient injuries and 25,800 deaths.

In addition, there is a total of 7,771 device recalls that were announced by the FDA

on its public recall database from September 1, 2012, to August 31, 2015. The large

number of failures in medical cyber-physical systems indicates that the FDA medical

device recalls is an appropriate dataset for analysis.

To analyze the failures and preventing future recalls, the FDA classifies recalls
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into three classes based on the relative degree of health hazards a medical device

presents, i.e., Class I, Class II and Class III with Class I for the most severe hazards.

In addition, the FDA has released an analysis about the distributions of these three

medical device recall classes [5]. However, the analysis of the FDA does not describe

the information about the root causes of failures in the recalls, let alone if the causes

are due to unspecified assumptions.

In this Chapter, we focus on analyzing the unspecified assumptions that causes

software failures in the medical device recalls. In Section 2.3, we present a process that

filters out software-related medical device recalls from the FDA database. Collecting

all software-related medical device recalls is a joint effort that needs the support and

contributions from a large research, industrial, and medical communities, To facilitate

such effort, we have developed a web-based platform for different users to contribute

and share new software-related medical device recalls. In Section 2.4, we analyze one

hundred software-related recalls that have been collected from the FDA database. Our

analysis reveals that there are four major categories of software failures in medical

device recalls and unspecified assumptions made by medical device manufacturers are

among one of the leading causes in medical device recalls. In Section 2.5, we conduct

analysis of different types of assumptions in software-related recalls. The analysis on

how assumptions contributed to the four major categories of software failures leads to

an important finding that unspecified assumptions are often introduced into system

design models by syntactical carriers, such as constant variables/values, frequently

read/write variables, and frequently executed actions. This finding provides us the

key to uncover the unspecified assumptions in the system development processes.

2.2 Introduction of the FDA Medical Device Recall Database

The FDA regulates medical devices sold in the U.S. by requiring manufacturers

to follow a set of pre and post market regulatory controls. The FDA has classified
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and described over 1,700 distinct types of devices and organized them with the Code

of Federal Regulations into 16 medical specialties "panels" such as Cardiovascular

devices or Ear, Nose, and Throat devices [18]. After a medical device is distributed

in the market, the FDA monitors reports of adverse events and other problems with

the device and, when necessary, alerts health professionals and the public to ensure

proper use of the device and safety of patients.

The FDA Medical Device Recall database contains medical device recalls since

November 1, 2002 [5]. A recall is a voluntary action that a manufacturer, distributor,

or other responsible party takes to correct or remove from the market any medical

device that violates the laws administrated by the FDA. Recalls are initiated to

protect the public health and well-being from devices that are defective or that present

health risks such as disease, injury, or death. In rare cases, if a company fails to

voluntarily recall a device that presents a health risk, the FDA can issue a recall

order to the manufacturer.

The FDA classifies recalls into three classes based on the relative severity of

health hazard a device presents. Class I recalls indicate that there is a reasonable

chance that the use of the device will cause serious adverse health problems or death.

Class II indicates devices that might cause temporary or medically reversible adverse

health consequences or pose a remote chance of serious health problems. Class III

indicates that devices violate the laws administrated by the FDA but are not likely

to cause adverse health consequences.

In the FDA database, a medical device recall entry, as shown Fig. 2.1, has

the following information: 1) recall title, 2) recall class type, 3) recall posted date,

4) recall number, 5) device name, 6) recalling firm, 7) reasons of the recall, 8) action

of the recall, 9) instructions for recovery, and 10) device distribution. The reasons of

the recall contains human-written, unstructured text explaining the main causes of
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the recall.

Figure 2.1. An Example of FDA Medical Device Recall

2.3 Mining Software-Related Medical Device Recalls

To identify the recalls that are possibly due to software issues from the FDA

database, we first need to identify whether the reasons for a recall contains semantic-

related software keywords, then manually review the reason and communicate with

its recalling firms to confirm whether it is a software-related recall. Fig. 2.2 shows

the workflow that how we mine software-related medical device recalls from the FDA

medical device recall database.

At the beginning, we extract all the medical device recalls reported to the

FDA between 1 January 2014 and 31 December 2016, and store the result as Re-

call Record V1. For each recall in Recall Record V1, we use a Part-Of-Speech

Tagger (POS Tagger) [19] to marking up each words in the reason field of the recall

as nouns, verbs, adjectives, adverbs, etc. For example, the reason of Simens’s Pic-

ture Archiving and Communication System recall [20] is “RGB images will show?,
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Figure 2.2. Flow for Mining Software-Related Medical Device Recalls

since the calculation of HU is not possible”. After tagging process, the sentence is

presented as “RGB/NN images/NN will/RB show/VB ?/. ,/, since/CC the/DT

calculation/NN of/IN HU/NN is/VB not/RB possible/JJ”, where the meanings

of tags are shown in Table 2.1.

Table 2.1. Notation of Tags

Tag Description Example
CC Coordin. Conjunction since
DT Determiner the
IN Preposition of
JJ Adjective possible
NN Noun images
RB Adverb not
VB Verb show
. Sentence-final punc (. ? !)
, Comma ,

Based on the tagging results, we calculate the number of times a word occurs

in the recalls, which is called as term frequency. However, in the previous example,

the term “the” is so common that term frequency will tend to incorrectly emphasize
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recalls which happen to use the word “the”, and fail to give enough weight to the

more meaningful term “calculation”. In other words, the term “the” is not a good

keyword to distinguish relevant or non-relevant software-related recalls, while the less

common word “calculation” does.

The term frequency-inverse document frequency (TF_IDF) [21] is one of the

most popular term-weighting schemes intending to reflect how important a word is in

a document. Hence, rather than using simple term frequency to identify important

terms, we apply the TF_IDF method to extract the most relevant nouns and ad-

jectives from the recalls, and reduce the weight of terms (such as “the”) that occurs

frequently.

To determine which noun or adjective is semantically related to software in the

medical domain, we need to define a set of software-related keywords in the medical

domain as a comparison objective. For mining and analyzing software-related medical

device recalls, we have developed a web-based application [22] that allows users to

upload software-related medical device recalls, and provide the ability that allows

users to use a few keywords to tag the recalls. By extracting the tagging words from

our website, we have collected a set of software-keywords, as shown in Table 2.2.

Table 2.2. Pre-defined Software-related Keywords

Pre-defined Software-related Keywords
system, software, application, database, program, integration, display,
function, code, bug, error, fail, verification, validation, self-test, reboot,

web, robotic, calculation, document, performance, workstation,
expected, senor, alarm, message, screen, signal, interface, monitor,
button, key, network, terminal, model, mode, communication,

interaction, battery, power, supply, outlet, plug, power-up, discharge,
charger, pause, terminate, dosage, environment

We can then calculate the semantic relevance of words from most relevant
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nouns and adjectives by comparing with the pre-defined software-related keywords.

Algorithm 1 computes the semantic relevance and retrieves software-related nouns

and adjectives.

Algorithm 1 S-RKeywords(W,Wpre)
Input: A set of words W , and the pre-defined set of software-related keywords Wpre.
Output: The set of software-related words Wout.
1: Use word2vec model [23] to map each word wi ∈ W and wj ∈ Wpre to vector

representation as vec(wi) and vec(wj)
2: for each work wj in Wpre do
3: if there exists a word wi ∈ W , cos(vec(wj), vec(wi)) ≥ threshold then
4: Put wi to Wout

5: end if
6: end for
7: return Wout

Algorithm 1 generates a set of most frequently used software-related words.

We use keywords matching to extract the medical device recalls whose reason fields

contain software-related words identified by the algorithm. The extracted records are

denoted as Recall Record V2. As many of the recall records may have the same

reasons because the same components or parts are used in different devices or models

manufactured by the same company, we use recall title and recalling firm as a basis

to remove duplicated entries and get another set of medical device recalls as Recall

Record V3.

By manually reviewing each recall in Recall Record V3, we exclude the

records whose reason for the recalls do not indicate they are software-related recalls.

In addition, we also communicate the recalling firms about unclear reasons of the

recalls and request more details about the recalls, such as requesting detailed recall

letters. At the end, we finalize a list of software-related recalls as Software-related

Recalls, which can be accessed through http://gauss.cs.iit.edu/~code/r

ecalls.html.

http://gauss.cs.iit.edu/~code/recalls.html
http://gauss.cs.iit.edu/~code/recalls.html
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To utilize Software-related Recalls and provide a platform for users freely

participating in adding new recalls, tagging reasons of the recalls, querying and ana-

lyzing the recalls, we have developed a social networking service based web application

http://gauss.cs.iit.edu/~code/recalls.html. The application front-

end interface is organized around three main interconnected visualization panels: 1)

the recalls display, 2) the modal panel for uploading new recalls, and 3) the querying

panel. All three panels are interactive and allow users to navigate intuitively among

them.

The recall display panel, shown in Fig. 2.3 allows the user to see at a glance

the latest recalls posted by others. Each recall contains: 1) recall title, 2) recalling

Figure 2.3. Home Page Display of the Application

firm, 3) device type, 4) original URL, 5) date posted and 6) keywords to represent

the recall. All these information is required to post a new recall to the application as

shown in Fig. 2.4.

As shown in Fig. 2.3, we use red icons to represent the tagging keywords of

http://gauss.cs.iit.edu/~code/recalls.html
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Figure 2.4. Uploading New Recall

each recall. The modification of the tagged words can be processed through the red

plus icon. In addition, the application allows users to filter recalls by tagging words,

as well as providing different querying methods, such as querying by tagging words,

device names, reasons of recalls or recalling firm names, as shown in Fig. 2.5. Through

this free online platform, users not only can capture, share and analyze the medical

device recalls, but also can find interesting motivating examples to drive their research

directions.

2.4 Analyzing Software-Related Medical Device Recalls

We use 100 identified software-related recalls as the basis for deriving statistics

on fault categories of software-related failures. Before analyzing the recalls based on

software-related fault categories, we illustrate the distribution of the recalls across

different risk classes defined by the FDA. As shown in Fig. 2.6, 82% of software-

related recalls are classified as class II with a medium risk of health consequences.

However, the FDA’s risk level itself can not reflect the root causes of software-related
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Figure 2.5. Query Interfaces and Results

medical device recalls. To give more detailed information about the failures that might

impact the safe functioning of a software-based medical device, we further group the

failures under four categories:(1) Control Flow Fault; (2) Calculation Fault; (3)

System Integration Fault; (4) Human-Machine Interaction Fault. Fig. 2.7

illustrates the distribution of recalls across different fault categories. The majority

(93%) of software-related recalls were classified into these four fault categories, while

the rest of the recalls, whose descriptions indicate they are software-related failures

but do not clearly belong to any of the four categories, are classified as Other category.

2.4.1 Control Flow Fault. Medical treatment scenarios are often complicated re-

sulting in complicated control flow in medical systems, which increase the probability

of control flow fault. For example, the medical treatment guideline [24] for stroke

contains more than 30 main steps, and the complicated execution orders of the steps

make control flow more error-prone. We group the failures of control flow into five

fields: 1) inconsistent logic from requirements; 2) exception handling fault; 3) block

or unblock interrupts fault; 4) execution orders fault; and 5) conditional statement
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Figure 2.6. Distribution of software-related recalls in the FDA’s risk levels

fault. Fig. 2.8 illustrates the distribution of recalls across different fault categories.

The following shows examples of these control flow faults in each field.

• Inconsistent logic from requirements example. Device Name: Ventila-

tor, Date Posted: 05/09/2016, Recall Class: 2, Recalling Firm: Hamilton

Medical, Inc, Recall URL: http://www.accessdata.fda.gov/scrip

ts/cdrh/cfdocs/cfRes/res.cfm?ID=145040, and Recall Reason:

After performing the suctioning maneuver, including disconnecting the patient,

suctioning , and reconnecting the patient, the preset pattern of ventilation many

not continue as expected.

• Exception handing fault example. Device Name: Picture Archiving and

Communication System, Date Posted: 07/08/2014, Recall Class: 2, Re-

calling Firm: Philips Healthcare, Recall URL: http://www.accessda

ta.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=128568,

and Recall Reason: Faulty Automatic Motion Controller (AMC), a problem

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=145040
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=145040
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=128568
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=128568
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Figure 2.7. Distribution of 100 Recalls across Fault Categories

in the Power On Self Test (POST) error handling was detected, can result in a

hazardous movement of the C-arc. system.

• Block or unblock interrupts example. Device Name: Picture Archiving

and Communication System, Date Posted: 07/08/2014, Recall Class: 2,

Recalling Firm: Siemens, Recall URL: http://www.accessdata.f

da.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=133015, and

Recall Reason: In case of a system crash, images may not be written to the

hard disk and this may result in inconsistencies in the database. In case of a

system crash (e.g. blue screen, power outage) images may not be written from

cache to the hard disk and might get lost.

• Execution orders fault example. Device Name: Picture Archiving and

Communication System, Date Posted: 03/30/2015, Recall Class: 2, Re-

calling Firm: Siemens, Recall URL: http://www.accessdata.fda

.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=134102, and Re-

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=133015
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=133015
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=134102
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=134102
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Figure 2.8. Distribution of 26 Recalls across Control Flow Fault

call Reason: Possibly incomplete archived studies during pre-fetch. In a server

farm setup, when pre-fetch/retrieve operation is performed for partially archived

studies, the series that have not yet been archived, will remain unarchived.

• Conditional statement fault example. Device Name: Radiation Therapy

System, Date Posted: 06/21/2014, Recall Class: 2, Recalling Firm: VAR-

IAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH, Recall URL:

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes

/res.cfm?ID=127498, and Recall Reason:Anomaly with the ProBeam

System where under certain conditions, the Treatment Control and Monitoring

application could fail to send treatment history records to the ARIA database.

2.4.2 Calculation Fault. A medical treatment scenario often involves many med-

ications, which are prescribed with different precision of dosages, different units of

medicines, different data types of dosages. These facts increase the probability of

causing calculation faults. We group calculation failures into four fields: 1) incorrect

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=127498
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=127498
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arithmetic/formula; 2) incorrect/outdated constants; 3) incorrect conversion; and

4) incorrect approximation/precision. Fig. 2.9 illustrates the distribution of recalls

across different calculation fields. The following indicates these calculation faults,

along with a related recall in each field.

Figure 2.9. Distribution of 18 Recalls across Calculation Fault

• Incorrect arithmetic/formula example: Device Name: Ventilator, Date

Posted: 05/09/2014, Recall Class: 2, Recalling Firm. Spacelabs Health-

care, Recall URL:http://www.accessdata.fda.gov/scripts/cdr

h/cfdocs/cfRes/res.cfm?ID=127487, and Recall Reason: Spacelabs

Healthcare is voluntarily recalling the Hamilton Galileo Ventilator Flexport,

Model 90436A-07, where the monitored Minute Volumes (Vmin) has been re-

ported at one time to reach ten times the actual value on the bedside monitor.

• Incorrect/outdated constants example. Device Name: Neurological

Stereo Instrument, Date Posted: 12/23/2015, Recall Class: 2, Recalling

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=127487
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=127487
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Firm: Synaptive Medical, Inc, Recall URL: http://www.accessdata

.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=142094,

and Recall Reason: Out of tolerance for radio frequency emissions. At the

150-1000MHz frequency, the testing indicated the BrightMatter Navigation sys-

tem was up to 20dB uV/meter higher than the applicable IEC 60601-1-2:2007

(Ed3.0) standard specification.

• Incorrect conversion example. Device Name: Ultrasound Systems, Date

Posted: 09/17/2015, Recall Class: 2, Recalling Firm: Siemens, Recall

URL: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/c

fRes/res.cfm?ID=127515, and Recall Reason: The ACUSON SC2000

ultrasound system considers uppercase/lowercase differences in the same pa-

tient name as unique patient instances when registered on the same ultrasound

system. If these differences are not corrected at the time of registration, the

system does not capture images or clips.

• Incorrect approximation/precision example. Device Name: Picture

Archiving and Communication System, Date Posted: 02/23/2016, Recall

Class: 2, Recalling Firm: Siemens, Recall URL: http://www.acce

ssdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=14

3694, and Recall Reason: Siemens is releasing an updated software version

to address several software issues including RGB images will show "?" since

calculation of HU is not possible; save as option enabled; changes in access for

loading studies; breast region is now properly fitted to segment boundary when

clicking fit breast to screen.

2.4.3 Integration Fault. A medical treatment scenario often involves many dif-

ferent medical devices working together, which increases the complexity of system

integration, and increases the probability of integration failures. We group the fail-

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=142094
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=142094
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=127515
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=127515
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=143694
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=143694
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=143694
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ures of integration into four fields: 1) mismatch of reused component; 2) mismatch

of component interfaces; 3) inconsistent system evolution; and 4) mismatch of com-

ponents configurations. Fig. 2.10 illustrates the distribution of recalls across different

integration fields and the followings represent these integration faults, along with a

related recall in each field.

Figure 2.10. Distribution of 30 Recalls across Integration Fault

• Mismatch of reused components example. Device Name: Picture Archiv-

ing and Communication System, Date Posted: 03/17/2016, Recall Class: 2,

Recalling Firm: Siemens, Recall URL: http://www.accessdata.f

da.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=144270, and

Recall Reason: Siemens’ conducting a recall due to a potential issue when

using the measurement package of the VA10 version of syngo Dynamics.

• Mismatch of components interfaces example. Device Name: Picture

Archiving and Communication System, Date Posted: 07/02/2015, Recall

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=144270
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=144270
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Class: 2, Recalling Firm: Synaptive Medical, Inc, Recall URL: http:

//www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.c

fm?ID=138013, and Recall Reason: When the E-NMT-01 module is used

in conjunction with the ElectroSensor, the Neuromuscular Transmission (NMT)

values may indicate a deeper level of muscle relaxation than the actual level of

muscle relaxation. In the clinical situation visual movements of the hand are

seen after TOF (Train of Four) stimulation, but the patient monitor shows no

counts, or counts are not corresponding to the actual value.

• Inconsistent system evolution example. Device Name: Intranasal Splint,

Date Posted: 08/07/2014, Recall Class: 2, Recalling Firm: Enhancement

Medical, Recall URL: http://www.accessdata.fda.gov/scripts/c

drh/cfdocs/cfRes/res.cfm?ID=128288, and Recall Reason: Manu-

facturer made a change in the production process that resulted in a change in

final gel weight. RECALL EXPANDED 7/8/2014 Firm expanded their recall

to include all lots of product.

• Mismatch of components configurations example. Device Name: Mon-

itor, Date Posted: 08/05/2014, Recall Class: 2, Recalling Firm: Curbell

Medical, Inc, Recall URL: http://www.accessdata.fda.gov/scrip

ts/cdrh/cfdocs/cfRes/res.cfm?ID=129118, and Recall Reason:

The firm became aware of a potential problem that was initiated by a customer

complaint. After consultation with the manufacturer, it was discovered that a

resistor was incorrectly placed within the circuit board on the monitor. This

change to the resistor was a planned change to address a product improvement

(improve battery drain).

2.4.4 Human-Machine Interaction Fault. For medical systems, human-machine

interactions are often performed. Some unexpected interaction patterns can cause in-

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=138013
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=138013
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=138013
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=128288
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=128288
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=129118
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=129118
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tegration faults. We group the failures of human-machine interaction into three fields:

1) missing/wrong functions of human-machine interactions; 2) missing/misleading/-

confusing/error information; and 3) inappropriate use of keyboard/button. Fig. 2.11

illustrates the distribution of recalls across different integration fields and the follow-

ings show these interaction faults, along with a related recall in each field.

Figure 2.11. Distribution of 19 Recalls across Human-Machine Integration Fault

• Missing/wrong functions of human-machine interactions. Device Name:

MAMMOMAT Inspiration, Date Posted: 04/25/2014, Recall Class: 2, Re-

calling Firm: Siemens, Recall URL: http://www.accessdata.fda.g

ov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=127169, and Recall

Reason: There is a potential and possible hazard to the user when using the

MAMMOMAT Inspiration PC monitor at the control desk, in that the holder of

the PC monitor can break causing an unstable monitor to fall causing possible

serious injury.

• Missing/misleading/confusing/error information. Device Name: Ven-

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=127169
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=127169
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tilator, Date Posted: 03/17/2016, Recall Class: 2, Recalling Firm: Co-

vidien, Recall URL: http://www.accessdata.fda.gov/scripts/c

drh/cfdocs/cfRes/res.cfm?ID=143047, and Recall Reason: In

the case of a loss of GUI display due to a Backlight Inverter PCBA failure, the

ventilator continues to provide uninterrupted ventilatory support at the pro-

grammed settings for the patient. However, there is a loss of display and thus

there is a necessity to move the patient to another ventilator.

• Inappropriate use of keyboard/button. Device Name: Ventilator, Date

Posted: 07/16/2015, Recall Class: 1, Recalling Firm: Breas Medical, Re-

call URL: http://www.accessdata.fda.gov/scripts/cdrh/cfdo

cs/cfRes/res.cfm?ID=131484, and Recall Reason: Unintended treat-

ment termination could result from a keypad malfunction in some situations.

The device erroneously interprets this as a Stop Treatment Instruction. An

alarm will not sound, or be registered. Accessories and monitoring equipment

connected to the Vivo 50 will stop functioning as the device enters a stand-by

mode.

Fig. 2.12 depicts the types of medical devices accounted for the different per-

centage of device recall events. The proportions of medical device types in the recalls

is helpful for us to address the issues and challenges that may impact device quality,

safety, and effectiveness from industry-wide perspective.

Through manually review the software-related recalls and their fault cate-

gories, we observe some major challenges related to medical devices safety have not

been addressed in existing works [25, 26, 27]. The following are our insights on some

of the future challenges in safety-critical cyber-physical system design:

• Develop model-driven design procedures that consider unspecified assumptions,

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=143047
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=143047
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=131484
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=131484
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Figure 2.12. Distribution of 100 Recalls across Device types

flawed requirements, complex software errors, accidents due to incorrect func-

tional interactions among components.

• Integrating patient/doctor/nurse modeling, medical equipment’s modeling and

simulation into M-CPS design.

• Propose safe and efficient strategies that applying advanced techniques such as

model checking, comprehensive validation of the system, and run-time monitor-

ing in M-CPS design.

2.5 Analyzing Unspecified Assumptions in Software-Related Medical De-
vice Recalls

Among the 100 software-related medical device recalls, there are 46 recalls

that are caused by violation of unspecified assumptions. In particular, 8, 10, and

18 recalls that are related to unspecified assumptions about constant variables, un-

specified assumptions about correlated variables, and unspecified assumptions about
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execution pattern, respectively.

2.5.1 Unspecified Assumptions about Constant Variables. As we know,

system behaviors are often restricted by environment conditions. For instance, the

discharge rate of a ventilator’s battery can be changed when the temperature de-

creases. During the system development process, environment conditions are often

represented by constant variables, and the declaration and initialization of constant

variables are often associated with the assumptions made for the system’s operating

environment. However, the assumptions about constant variable declarations often

exist in the domain experts’ mind, which cause the assumptions to be unspecified.

And system failures can be caused by violating these unspecified assumptions.

Taking the ventilator recall [28] as an example. The battery in the ventilator

did not last as long as expected. The battery installed in the ventilator depleted much

earlier than expected although the battery indicator showed a sufficiently charged

battery. Even when the battery was totally depleted, the power fail alarm was not

generated. If the ventilator shuts down without alarm, a patient may not receive

necessary oxygen. The root cause of this failure is that ventilators are assumed to

be installed in temperature controlled areas, in which the battery discharge rate is a

constant variable. However if the temperature is not in the assumed range, the fixed

value of discharge rate becomes invalid and cause the ventilator system to miscalculate

the remaining time and fail to send an alarm event on time.

2.5.2 Unspecified Assumptions about Correlated Variables. In the system

development process, some variables are read/updated together consistently. We call

these variables correlated variables. For example, when monitoring patient’s activities

who is using medical ventilators, heart rate, oxygen level, blood flow and respiratory

rate related to the patient must be obtained and updated together [29]. However, the

assumptions of these correlated variables that need to be read and updated together
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consistently often are unspecified in the system. But it is necessary to record these

data and verify whether they are valid and consistent.

2.5.3 Unspecified Assumptions about Execution Actions. In the medical

devices recall database, some recalls are due to that medical professionals were not

aware of the sequences of operations for performing a task. A medical device is

expected to execute human tasks followed by sequence as specified. However the

assumptions of such executed actions are often not documented. For instance, with a

medical ventilator, users should set the mode of mechanical ventilation before setting

the value of tidal volume.

In medical domain, performing a procedure involve different devices. The as-

sumptions of the sequences of tasks should be explicitly specified. For a stroke patient

in ICU room, in order to get vital information of the patient from the monitoring sys-

tem, multiple physicians need to perform different interactions with various devices

such as infusion pump and ventilator. Assumptions of the interactions are required

to be explicitly specified to navigate users’ interactions correctly.

The analysis of unspecified assumptions in the medical device failures reveals

that unspecified assumptions are often introduced into systems by constant vari-

ables/values, frequently read/updated variables, and frequently executed actions.

2.6 Summary

In this Chapter, we presented a procedure to collect software-related medical

device recalls from the FDA database and developed a web-based platform that en-

ables users to add new and share about software-related medical device recalls. In

addition, we classified major categories of software failures most frequently occurred

in medical domain and conducted an analysis on these recalls to determine the lead-

ing causes of these recalls. The analysis reveals that unspecified assumptions is one
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of the root causes of medical device recall. We analyzed how unspecified assumptions

may lead to the medical device recalls. The analysis inferred to a key finding that

unspecified assumptions are often introduced into systems by 1) constant variables/-

values, 2)frequently read/updated variables, and 3) frequently executed actions. Next

Chapter, we will present an approach to identify unspecified assumptions at an early

stage of system development process based on the key finding.
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CHAPTER 3

IDENTIFY UNSPECIFIED ASSUMPTIONS IN SYSTEM DESIGN MODELS

3.1 Background and Related Work

The analysis in the Chapter 2 indicates that unspecified assumptions often

exist through syntactic carriers, such as constant variables, frequently read/updated

variables, and frequently executed actions. We use the following FDA medical de-

vice recall example to illustrate how unspecified assumptions are injected to systems

through syntactic carriers and have caused an M-CPS failure.

Recall Case 1 (HAMILTON-T1 ventilators recall with software versions 1.1.2 and

lower. 01/23/2013 [6]). The FDA has identified this recall as a Class I recall–the

most serious type of recall issued by the FDA. According to the recall report [6], there

is unexpected high internal oxygen consumption of HAMILTON-T1 ventilators dur-

ing the ventilation of small pediatric patients. The current labeling does not include

sufficient information about the internal oxygen consumption of the ventilators. De-

pending on the ventilator setting and the patient’s lung impedance, the internal gas

consumption of the HAMILTON-T1 may be higher than expected. The internal oxy-

gen consumption has to be taken into account in addition to the oxygen requirements

for the patient’s ventilation, especially when oxygen is limited. If the available oxygen

supply d uring transport is depleted, the life of the patient may be endangered.

In this recall, the internal oxygen consumption is calculated by (MinV ol +

FlowTrigger) × C × (FiO2 − 20.9)/79.1, where constant C = 1.5 is initially set

for adult patients – an unspecified assumption that the formula of internal oxygen

consumption is used for adult patients. For pediatric patients, the value of C should
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be 4.0, which is different from the value used for adult patients. When C = 1.5

is using for children, it causes unexpected high internal oxygen consumption. This

recall and many other examples in FDA recall database [17] indicate that unspecified

assumptions are dangerous and can lead to catastrophes. Therefore, being able to

identify such assumptions at an early stage of M-CPS development process is critical

to ensure systems’ safety.

Many researchers have pointed out the importance of assumption management

in software development. For example, Corbato [30] mentioned in his ACM Turing

Award lecture that “design bugs are often subtle and occur by evolution with early

assumptions being forgotten as new features or uses are added to systems”. Many

problems in software development can be traced to unspecified assumptions [8]. Ste-

ingruebl and Peterson [31] argued that unspecified software assumptions could lead

to software failures, and they proposed methods and techniques to manage software

assumptions. In addition, Bazaz et al. [32] pointed out that the violation of unspeci-

fied assumptions about system resources might cause the system to be vulnerable and

even fail. Unspecified assumptions often cause failures in safety-critical cyber-physical

systems [33]. For instance, the Ariane 5 [3] and Child-seat Airbag Incident [34] were

caused by unspecified assumptions made in the system development process. The

unspecified assumption issue is also magnified in M-CPS development such as many

medical devices recalls documented in FDA recall database [17].

Given the importance of assumptions in the system development process, many

efforts have been made in explicitly specifying assumptions. Lehman and Ramil pro-

posed a few guidelines to specify assumptions correctly [7]. The authors believed

that it is necessary to train all stakeholders to identify and record assumptions at

all stages of the system development with a standard form or structure. Lewis et

al. [8] developed an assumption management framework for improving the quality of
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software development. The framework can extract assumptions from source code and

record them into a repository for management. Besides the code level assumption

management, Tirumala [9] developed an assumption management framework (AMF)

at system component levels. The goal of AMF is to have a well-defined vocabulary

to encode assumptions in a machine-checkable format [9]. AMF introduces a system-

atic process that performs automatic validations for machine-checkable assumptions.

This framework addresses the issues caused by unspecified assumptions at component

interface levels. These tools and approaches mentioned above are to facilitate domain

experts actively to specify assumptions during the system development cycle.

However, even with these tools and approaches, it is still unavoidable that

there are unspecified assumptions made in systems, just as there are always some

bugs left in the code even with good compilers. Similar to we need debugging tools

to help to identify bugs at the code level, we also need tools and approaches to help

uncover unspecified assumptions at different levels in the system development pro-

cess. Based on the fact that programmers often use assertions and comments in their

code to specify assumptions which make it possible to mine unspecified assumptions

directly, Li and Zhou proposed an approach to efficiently extract unspecified pro-

gramming rules from large software code by integrating data mining technologies and

static analysis at the code level [35]. In addition, as large datasets of programming

codes become available and as the machine learning advance, combining static anal-

ysis and machine learning to improve the correctness of hardware and software has

become a new hot research topic. For example, based on the datasets provided by

the National Institute of Standards and Technology (NIST): the NVD [36] and the

Software Assurance Reference Dataset (SARD) project [37], a deep learning-based

vulnerability detection system, called Vulnerability Deep Pecker (VulDeePecker), has

been developed to detect vulnerabilities [38]. In addition, by using 38383 open-source

C files as the dataset, Cong Wang, et al. have developed a weakness-oriented assertion
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recommendation toolkit based on machine learning technologies, called Weak-Assert,

uses well-designed patterns to match the abstract syntax trees of source code auto-

matically, and inserts assertions into proper locations of programs for improving the

quality of software testing and verification [39]. Another example is Daikon, which

uses machine learning-based dynamic invariant detection to run a program, observe

the values that the program computes, and then report properties that were true over

the observed executions [40].

Although assumptions can be detected from source code, it can still cost huge

human efforts to trace the assumptions back to an earlier stage of the development

cycle, let alone the cost of fixing the failures caused by the unspecified assumptions.

Therefore, it is highly desirable to have tools to identify such unspecified assump-

tions at system design level automatically. However, how to efficiently applying the

approaches that are successful at the code level on the system design level for im-

proving the quality of validation and verification has not been addressed well yet.

One reason is lacking large open-source datasets of system design models. Besides,

different from the programming code, the assertions and comments are rarely used

in system design models. The differences make mining invariant or mis-specifications

from assertions and comments at model levels be much more difficult. Based on these

two reasons, existing solutions for unspecified assumptions detection at model level

mainly rely on human experts. However, even for domain experts and developers,

this is a tedious, subjective, and sometimes error-prone task because of the massive

complexity.

After analyzing over one hundred software-related medical device recalls in the

FDA database [41], we observed that unspecified assumptions are often introduced

into the system design models through syntactical structures of modeling languages,

such as constant variables, frequently read/updated variables, and frequently executed
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actions, and we call them as syntactic carriers. For example, in the FDA Medical De-

vice Recall 1, the unspecified assumption (the formula of internal oxygen consumption

can be only used for adult patients) is injected into the system development through

the initialization of the constant variable C = 1.5.

Based on the observation, in this Chapter, we present a new approach to

identify unspecified assumptions through finding potential unspecified assumption

syntactic carriers rather than unspecified assumptions themselves. Once the syntac-

tic carriers are identified, domain experts and developers can validate unspecified

assumptions associated with the carriers. And based on the approach, we present an

unspecified assumption syntactic carriers finder called UACFinder, which uses data

mining techniques to identify potential syntactic carriers of unspecified assumptions

from system design models. The UACFinder currently focuses on mining three types

of syntactic carriers: constant variables, frequently read/updated variables, and fre-

quently executed actions. Whether unspecified assumptions exist in these carriers are

yet to be validated by domain experts or model developers. The techniques used

by the UACFinder can automatically extract these carriers without requiring any

prior knowledge about annotations, templates, or weight assignments from end-users.

We use a simplified cardiac-arrest statechart model as a case study to evaluate the

UACFinder in mining potential syntactic carriers of unspecified assumptions. We

also invite a medical doctor1 to validate the possible unspecified assumptions about

these carriers found by the UACFinder. The validation results indicate that the

UACFinder is of practical use in identifying potential unspecified assumptions from

system design models.

1Doctor Li Meng is an associate chief physician from the Department of Neurology in the First
Hospital of Hebei Medical University, China.
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3.2 Overview of the UACFinder

Developing the UACFinder is inspired by our extensive study of the FDA recall

database [41], from which we have two critical findings: (1) unspecified assumptions

can cause adversary events on patients, and (2) many unspecified assumptions are

implemented through syntactic carriers provided by modeling languages. Hence, the

high-level idea of the UACFinder is to automatically find syntactic carriers of po-

tential unspecified assumptions from system design models. In this paper, we use

statechart models as a design modeling language, and we focus on mining syntac-

tic carriers from system statechart models. However, the fundamentals behind the

UACFinder can be applied in other system modeling languages.

A statechart model is an extended form of the exemplary state diagram rep-

resenting a finite-state machine (FSM) [42]. Statecharts have high similarities with

many medical diseases and treatment models. In addition, statecharts have been suc-

cessfully used to represent the behavior of different safety-critical systems including

avionics [43], air traffic control systems [44]. In particular, it is worth highlighting that

[45] has proven that statecharts can successfully capture the behavioral aspects of sur-

gical care delivery. These distinguishing features of statecharts enable many groups

to model medical cyber-physical systems with statecharts [46], [25], [47], [48], [49].

Therefore, mining syntactic carriers of potential unspecified assumptions from system

statechart models serves as a good starting point.

A statechart model has the following five primary elements:

1. V ariable. They are four types of variables: integer, real, boolean, and string.

2. Event. An event represents a point in time when something of importance
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happens in the context of a state machine, such as a user pushes a button; a

value is delivered, or a period of time is passed.

3. Action. There are four types of actions: assignment, condition statement, event

raising, and function call.

4. State. A state represents the states of a state machine. A state can have a

behavior, and the behavior specifies which actions are executed and on what

conditions. Actions can be triggered by entering a state, leaving a state, an

occurrence of an event such as conditions becoming true, or time passes.

5. Transition. a transition is the transfer of one state to another. A transition

specifies boolean expressions for when this transition is active and actions that

are to execute when the transition takes place.

In this paper, we focus on extract syntactic carriers in the form of constant vari-

ables, frequently read/updated variables, and frequently executed actions from system

statechart model. We discuss each of the forms in the following subsections. The

architecture of UACFinder is depicted in Fig. 3.1.

Figure 3.1. The Architecture of UACFinder

In particular, to efficiently mine out these syntactic carriers, the UACFinder

converts the problem into a frequent itemset mining problem by first parsing the
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statechart models to proposed data structures. Second, we treat a state and one of

its incoming transitions as a combined state, and each action in the combined state is

hashed into a number, forming an itemset (a set of numbers). In the end, the itemset

is written as a row into the itemset database. As a result, all the actions in a state-

chart model are converted into a database that contains many itemsets of actions. By

mining this database using a frequent itemset mining algorithm such as FPclose [50],

we can find the frequent sub-itemsets that appear for many times. These frequent

sub-itemsets can then be used to infer syntactic carriers as frequently read/updated

variables and frequently executed actions. Before introducing the detailed mining pro-

cedures, we first explain how unspecified assumptions exist in the statechart models

through the three types of syntactic carriers.

3.2.1 Constant Variables as Syntactic Carriers of Potential Unspecified

Assumptions. In system design models, a constant variable is a variable whose

value never changes during the execution of the system. During the development of

system design models, the declaration and initialization of a constant often associate

with assumptions. However, the assumptions about constant variable declarations

often exist in the developers’ mind, which cause the assumptions to be unspecified.

Taking the renal insufficiency statechart model [51] as an example (Renal in-

sufficiency represents the poor function of the kidneys that may be due to a reduction

in blood flow to kidneys caused by renal artery disease [52]). In the renal insufficiency

statechart model, the variable Kidney.Potassium_High_Threshold is declared as

a constant and represents the high threshold of potassium in patients’ body, and the

initial value of Kidney.Potassium_High_Threshold is set to be 5.5 since the safety

range for potassium levels is usually between 3.5 and 5.5 mEq/L [53] for adults. The

consequence of the initialization leads an unspecified assumption to be introduced

into the renal insufficiency statechart model: the renal insufficiency model is
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only designed for adult patients since the normal range of potassium is

3.4-4.7 mEq/L for children [53]. However, if the assumption is unspecified and

the model is used to examine pediatric patients, it would output incorrect test results

and may lead doctors to make wrong decisions, which can cause patients harm and

even death. Therefore, we take constant variables as one of the syntactic carriers of

unspecified assumptions. They need to be identified from the system design models

to help uncover potential unspecified assumptions in system design models.

3.2.2 Frequently Read/Updated Variables as Syntactic Carriers of Poten-

tial Unspecified Assumptions. In the system design models, some variables are

read/updated together consistently. For example, when monitoring a patient’s activ-

ities who is using medical ventilators, two variables related to the patient’s ventilator

dependence must be read and updated together are oxygenation and CO2 elimina-

tion [29]. We use a simple statechart model depicted in Fig. 3.2 to briefly illustrate

how frequently read/updated variables exist a statechart model.

Figure 3.2. An Example for Illustrating frequently read/updated variables in A Simple
Statechart Model

In this statechart model, there are three states and tree transitions. The

actions in these states and transitions form itemsets of actions as A = {{x = m +

n; y = z/2}, {z = z − 1; y = m ∗ n}, {z = 12, x = m + n, y = m ∗ n}, {z = 10, x =

m + n, y = m ∗ n}}. From the itemsets of actions, we can obeserve that variable x

and y are often updated together and the supprot/appereance of this pair of updated
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variables is 3. In addition, we find out that variables m and n are often read together.

Therefore we can infer that x and y are possiblely frequently updated together, andm

and n are possible frenquently read together. For simplicity of description, we refer to

those variables that share such read/updated correlation as frequently read/updated

variables. However, these types of variables that need to be read or updated together

consistently often are implicitly represented in system design models, which leads the

assumptions of why these variables need to read/updated together to be unspecified.

Therefore, in this paper, we take frequently read/updated variables as the second

syntactic carriers of unspecified assumption that UACFinder need to mine out from

the system design models.

3.2.3 Frequently Executed Action Sequences as Syntactic Carriers of Po-

tential Unspecified Assumptions. A simple example of a frequently executed

actions is the function call pair of lock and unlock: a call to lock should be fol-

lowed by a call to unlock later. In addition to the well-known frequently executed

actions there are also many frequently executed actions in the development of medi-

cal cyber-physical system models. For instance, laser surgery is a surgical procedure

that uses a laser to remove problematic tissues and is widely used in airway surgery,

thoracic surgery, eye surgery, etc. For airway laser surgery, to avoid the potential

risk of fire, we have to ensure two actions to be always executed by the sequence:

turn-off-ventilator, and then turn-on-laser.

We use a simple statechart model in Fig. 3.3 to illustrate how frequently exe-

cuted actions may exist in a system statechart model.
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Figure 3.3. A Statechart Example for Illustrating frequently executed actions

In the statechart model depicted in the Fig. 3.3, there are four itemsets of

actions: 1) itemset of actions in stateA: {x = z + 1}; 2) itemset of actions in

transition1 and stateB: {z = z−1, raisealarm}; 3) itemset of actions in transition3

and stateC: {x = z∗10, z = z−1, y = z/2, raise alarm}; and 4) itemset of actions in

transition2 and stateC: {z = z−1, y = z/2, raise alarm}. From the four itemsets of

actions, we observe that the sub-itemset {z = z − 1, raise alarm} occur three times.

Comparing with occurrences of the rest action itemsets, we can infer that {z = z −

1, raise alarm} may be frequently executed actions (an execution pattern). However,

the assumptions of why some actions are treated as frequently executed actions are

often too tedious to be documented by model developers and hence left unspecified.

When these unspecified assumptions are violated by other model developers who

are unaware of or forget about the frequently executed action, defects can be easily

introduced into systems. Therefore, the UACFinder takes frequently executed actions

as a targeted syntactic carrier for potential unspecified assumptions.

3.3 Obtain Itemset Database of Actions from Statechart Model

As this thesis focuses on extracting syntactic carriers in the form of constant

variables, frequently read/updated variables, and frequently executed actions from stat-

echart models, we develop a parsing component in the UACFinder that parses a stat-

echart model, and then builds an itemset database of actions and variables. At the

end, we convert the extract frequently read/updated variables and frequently executed
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actions into a frequent itemset mining problem. Although the current version of the

UACFinder is targeting statechart models, it can be easily applied to other modeling

languages by replacing the parsing component.

To parse the source code of a statechart model (the source file of a statechart

is an XML file), the UACFinder first makes use of DOM parser [54] to obtain the

intermediate representations of the statechart model. The intermediate representa-

tion is stored in our proposed data structure, with each instance of the data structure

representing different types of elements in statechart models, such as variables, ac-

tions, events, transitions, and states. The proposed data structures for representing

the statechart model are listed as follows:

• V ariable. A variable is represented as (type, name, value, scope), where

type ∈ {bool, string, int, real}, name is a string value, and scope ∈ {const, φ}.

• Event. As an event in a statechart is implemented as a boolean variable, we

treat an event as a specific variable with fixed type bool.

• Action. An action is represented with (statement, Vc, Vu), where statement is

string to represent the action itself. Vc = {v1, . . . , vi, . . . , vn}, where for each

variable vi ∈ Vc, the value of vi will be updated after execution of this action.

Vu = {v1, . . . , vj, . . . , vm} and for each variable vj ∈ Vu, vj is involved in this

action but the value of vj is not been updated after execution of this action.

• Transition. A transition is represented as (id, guard, sf , se, A), where id is a

string indicating the identity of this transition. sf and se are the ids of from

and to states of the transition, respectively, and A = {a1, . . . , ai, . . . , an} is a

set of actions which are to be executed when the transition is active. gurad is

a string of boolean expression for determining whether this transitions can be

active.
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• State. A state is defined as (id, name, Tin, Tout, A), where id is a string indicat-

ing the identity of this state. name is also a string indicating the name of this

state. Tin = {t1, . . . , ti, . . . , tn} and Tout = {t1, . . . , tj, . . . , tk} are sets of ids of

transitions into and outof the state, respectively, and A = {a1, . . . , ai, . . . , an}

is a set of actions which are to be executed when the state is active.

• Statechart: A statechart is represented as (name, V, T, S), where name is also

a string indicating the name of the statechart. V is a set containing all the

variables in this statechart. T is a set containing all the transitions in this

statechart. S is a set containing all the states in this statechart.

Figure 3.4. A Simple Yakindu Statechart Model and Its XML File

We use a Yakindu statechart example shown in Fig. 3.4 to illustrate how to

use the proposed data structures to represent a statechart model. Since a Yakindu

statechart is constructed by using specified XML schemes, we first use the DOM

parser to obtain the tree structure of the statechart. In the Yakindu statechart,

sgraph : Statechart is the identifier representing a statechart; specification is
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the attributes to represent variables, actions, guards. incomingTransitions and

outgoingTransitions are two identifiers indicating transitions, states are determined

with the identifier vertices. As shown the Fig. 3.4 , there are three vertices rep-

resenting states: initial/entry, A1, and A2, respectively. We have implemented

an extended DOM parser to parse Yakindu statechart XML document to the pro-

posed structures described above. Algorithm 2 depicts the procedure for construct-

ing the proposed structures from a statechart model, and the time complexity of

Algorithm 2 is O(S ∗ T ), where S is the total number of states and T is the total

number of incoming transitions. The Java code for the procedure is at https:

//github.com/fuzhicheng-java/UAFinder. Because it is not sufficient

to only access independent elements and extract their information, the parser also

records relationship information among the elements, such as in which state an action

takes place, and what variables are involved in an action or changed by the action.

Such information is critical in mining constant variables, frequently read/updated vari-

ablesand frequently executed actions.

3.4 Mining Syntactic Carriers

The UACFinder aims to extract the syntactic carriers in the form of constant

variables, frequently read/updated variables, and frequently executed actions. Mining

variables that are frequently read/updated together and actions that are frequently

executed together are similar to the problem of finding a frequent itemset problem [50].

Therefore, we can apply data mining techniques to mine frequently read/updated vari-

ables and frequently executed actions. In particular, the UACFinder uses an FP-tree-

based mining algorithm called FPclose [50] to identify the syntactic carriers that we

are interested in. By combining all actions in a combination of a state and one of its

incoming transition, we can form one itemset of actions. Then the itemsets of all the

combinations form an itemset database, and we can apply data mining techniques to

https://github.com/fuzhicheng-java/UAFinder
https://github.com/fuzhicheng-java/UAFinder
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Algorithm 2 Parsing Yakindu Statechart Model
Input: A XML Source File X of a Yakindu Statechart
Output: An Instantiated Yakindu Statechart st = (name = “”, V, T, S)
1: Parse X with DOM parser to be a tree structure Ts

2: Declare st = (id = “”, name = “”, V = ∅, T = ∅, S = ∅)
3: For the root node n0 of Ts, set Y.name = n0.name and partition n0.specification

with Yakindu statechart keywords to instantiate V
4: for each vertice node ni ∈ Ts do
5: Declare a state si = (id = “”, name = “”, Tin = ∅, Tout = ∅, A = ∅).
6: Set si.id = ni.id, si.name = ni.name. Partition ni.specification to instantiate

A. Partition ni.incomingTransitions to instantiate Tin. S = {si} ∪ S.
7: end for
8: for each outgoingTransition node nj ∈ Ts do
9: Declare a transition tj = (id = “”, sf = “”, st = “”, A = ∅).
10: Set tj.id = nj.id and tj.st = nj.target. Partition nj.specification to instanti-

ate A.
11: Get the parent node np

j of nj, set tj.sf = np
j.id and T = {tj} ∪ T.

12: Find the state s ∈ S ∧ s.id = np
j.id. s.Tout = {tj.id} ∪ s.Tout.

13: end for
14: return st

mine the itemset of the database. The reason to convert a combination of a state

and one of its incoming transition as an itemset is that in statechart the actions in

a state and its incoming transitions must be executed together. It is worth pointing

out that some actions can span across multiple states. However, mining these actions

is much more complicated, and it requires more in-depth inter-procedural analysis

of the statechart models, which is beyond the scope of the paper. In this section,

we first introduce the background of frequent itemset mining. We then explain the

mining procedures for the three syntactic carriers.

3.4.1 Frequent Itemset Mining. The initial application of the frequent itemset

mining was in the analysis of straight market baskets [55]. It now has broad appli-

cations, including mining motifs in DNA sequences, analysis of customer shopping

behavior, etc [56], [57]. The goal of frequent itemset mining is to efficiently find

frequent itemsets (an itemset is a set of items) in a large database. In a database

composed of a large number of itemsets, if a sub-itemset (the subset of an itemset)
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is contained in more than a specified threshold (called min support) of itemsets, it is

considered frequent. The number of occurrences of a sub-itemset A is denoted as A’s

support. The itemset that contains A is called its supporting itemset. For example,

in an itemset database D: D = {{a, b, c, d, e}, {a, b, d, e, f}, {a, b, d, g}, {a, c, h, i}}.

The support of sub-itemset {a, b, d} is 3, and its supporting itemsets are {a, b, c, d, e},

{a, b, d, e, f}, and {a, b, d, g}. If the threshold of support is set as 3, the frequent

sub-itemsets for D are {a}:4, {b}:3, {d}:3, {a, b}:3, {a, d}:3, {b, d}:3, and {a, b, d}:3,

where the numbers are the supports of the corresponding sub-itemsets.

To solve the frequent itemset mining problem, a few algorithms have been

proposed [55], [58], [59]. The UACFinder chooses to use the FPclose algorithm [50],

one of the most efficient frequent itemset mining algorithms. Instead of generating the

complete set of frequent sub-itemsets, FPclose mines only the closed sub-itemsets. A

closed sub-itemset is the sub-itemset whose support is different from that of its super-

itemsets. In the example above, the frequent sub-itemsets {b}, {d}, {a, b}, {a, d} and

{b, d} are not closed since their supports are the same as their super-itemset{a, b, d}.

FPclose only generates the closed sub-itemsets {a}:4 and {a, b, d}:3 as result. This

can significantly improve time and space performance since it can avoid generating

an exponential number of frequent sub-itemsets.

After the UACFinder parses a statechart model and generates an itemset

database of all actions, it applies the closed frequent itemset mining algorithm, FP-

close, on the database to find closed frequent sub-itemsets. If a set of numbers appear

together in any itemsets for more than a specified threshold number (min support)

of times, this sub-itemset is considered frequent. However, it is not sufficient to only

know the patterns and their support values (i.e., how many times the pattern oc-

curs). It would be more useful for domain experts and developers if the location in

which one pattern occurs. Such information is also needed later for domain experts’
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validation. Unfortunately, the original data mining algorithms, FPclose in particular,

are not designed precisely for our purpose. They only output the support values for

each discovered pattern but not their supporting itemsets. We enhance the mining

algorithm to address the problem by also maintaining the supporting itemsets during

the mining process.

3.4.2 Mining Constant Variables. In computer programming languages, constant

variables are variables whose value cannot change after the initial assignment, and a

constant variable is declared with a keyword. For instance, in C/C++, the keyword

const is used to declare these constant variables. Similar to programming languages,

many modeling languages also define a constant variable with one keyword. However,

during system models development, model developers often declare global or local

variables and use them as constant variables. This practice makes extracting all

constant variables much more difficult. We not only need to extract the variables

already declared with the keyword, such as const, but also have to examine the system

design models to extract the variables that are not declared as constant variables but

used as constants. We use the following two rules to determine if a variable is a

constant:

• R1. A variable is declared with the keyword for constant.

• R2. A variable is not declared with the keyword for constant, but the value of

the variable is never changed after its initialization during the execution of the

system.

After constant variables being explicitly identified based on the two rules, domain

experts and model developers can work together to determine whether there exist

unspecified assumptions about the declaration of each constant variable. However,

only highlight constant variables is not enough to validate the safety of system models



50

because domain experts also need to understand which parts of system models may be

affected when the initialized values of constant variables are incorrect. Therefore, we

not only extract all the constant variables but also record locations where the variables

are used. Based on the locations of variables in the system models, domain experts

can perform impact analysis about the condition when the unspecified assumptions

of constant variables are violated.

We use the Yakindu statechart model as an example to illustrate how to extract

constant variables and record their traces in the system design models. To record

constant variables and states/transitions where the variables are used, we define a

structure C = {c|c = (v, S, T )}, where v, S, and T is a constant variable, a set of

states in which v is used; and a set of transitions in which v is used, respectively.

The brief explanation of the procedure for extracting constant variables is described

as follows.

Given an instantiated Yakindu statechart st = (name, V, T, S), we declare C =

∅. For each variable v ∈ V, we traverse all actions in T and S. If v satisfies R.1 or

R.2, we declare c =< v, Sv = ∅, Tv = ∅ > and put the states and transitions in which

v is used to Sv and Tv, respectively. At the end, we set C = C ∪ {c}. Algorithm 3

depicts the procedure extracting constant variables from an instantiated Yakindu

statechart model, and the time complexity of Algorithm 3 is O(V ∗ T ), where V is

the total number of variables and T is the total number of incoming transitions in the

statechart model. In Yakindu statechart models, there exist two keywords: always

and oncycle to enable an action or a state for updating variables to be executed in

every run-to-completion step. At this specific situation, we treat the occurrences

of updated variables to be infinity. Although the Algorithm 3 currently works for

statechart models, it can be easily extended to other modeling languages by replacing

the user-defined data structure described in Section 3.3.
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Algorithm 3 Extracting Carriers as Constant Variables
Input: An Instantiated Yakindu Statechart st = (name, V, T, S)
Output: A Set C = {c|c =< v, Sv, Tv >}, where v is a constant variable, Sv and Tv

are the sets of states and transitions in which v is used, respectively.
1: Declare C = ∅
2: for each variable vi ∈ V do
3: Declare a boolean variable isConst = true and ci = (vi, Su = ∅, Tu = ∅).
4: for each state si ∈ S do
5: For each action in si, if vi is used, Su = Su ∪ {si}; if vi is changed, set

isConst = false.
6: end for
7: for each transition ti ∈ T do
8: For each action ti, if vi is used, T i

u = T i
u∪{ti}; if vi is changed, set isConst =

false.
9: end for
10: if isConst then
11: C = C ∪ {ci}
12: end if
13: end for
14: return C

3.4.3 Mining Frequently Read/Updated Variables and Executed Action

Sequences. In this section, we explain how to extend the closed frequent itemset

mining algorithm-FPclose algorithm [50] to mine frequently read/updated variables

and frequently executed actions. Note that actions in a state and one of its incoming

transitions must execute together. For example, given the statechart model in Fig. 3.5,

the itemset of actions in the StateC and the transition from StateB to StateC is

{x = z ∗ 10, z = z − 1, y = z/2, raise alarm}.
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Figure 3.5. Simple Statechart Model

As we mentioned above, an action is represented in the form of assignments,

event raises, and function calls. If raise alarm is executed in StateC, any state

whose incoming transition only needs alarm event as the guard will also be executed.

Furthermore, StateE will be active after the alarm is raised. Based on the semantics

of event execution, when StateC and its incoming transition are activated, only using

the itemset of actions {x = z ∗ 10, z = z − 1, v = v/2, raise alarm} to represent

all executed actions is not correct. The right itemset of actions should include all

actions in StateC, the transition from StateD to StateE, except event raise actions,

i.e., {x = z ∗ 10, z = z − 1, y = z/2, y = 0}.

The Algorithm 4 is designed to extract the itemsets of actions based on the

execution feature of events. The time complexity of Algorithm 4 is O((S∗T )2), where

S is the total number of states and T is the total number of incoming transitions in

the statechart model.

After collecting the itemset database of actions, we can start to mine frequently

read/updated variables and frequently executed actions.

3.4.4 Mining Frequently Read/Updated Variables . The UACFinder con-

ducts static analysis to collect frequently read/updated variables from all actions in
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Algorithm 4 Extract Itemset of Actions Based Event Feature
Input: An instantiated Yakindu statechart st = (name, V, T, S)
Output: A set A = {A1, A2, ...An}. For each Ai ∈ A, Ai = (AS, Ti, Si) where AS is the

itemset of actions of the transitions in Ti and the states in Si.
1: Declare A = ∅.
2: for each state si ∈ S do
3: for each incoming transition ti of si do
4: Declare AS = ∅, Ti = {ti}, Si = {ti}.
5: Put all the actions in si and ti into AS.
6: if AS contains event raise actions then
7: for each event raise action ek ∈ AS do
8: For each transition tk ∈ T whose gurad is ek, find all states Sk whose

incoming tranistion is tk, and Ti = Ti ∪ {tk}.
9: For each s ∈ Sk, put all the actions in s into AS, and Si = Si ∪ {s}.
10: AS = AS\ek.
11: end for
12: end if
13: Declare A = (AS, Ti, Si), and A = A ∪ A.
14: end for
15: end for
16: return A

statechart models. Similar to constant variables mining, the UACFinder not only

mines the frequently read/updated variables but also records the locations of vari-

ables. The goal of this step is to identify frequently read/updated variables in stat-

echart models whose occurrences exceed a given threshold. For each set of read-

/updated variables that satisfies this property, we refer it as a pattern of frequently

read/updated variables. Given the itemset of read/updated variables, different ap-

proaches can be used to extract such patterns. For example, one solution is to count

the number of itemsets containing both x and y for every pair of variables {x, y}.

Although this solution is relatively simple, it cannot scale to large system design

models with a large number of states and transitions. Moreover, it would be difficult

to extend this algorithm to consider frequently read/updated variables that involve

more than two variables such as {x, y, z}. Our approach is to use a well-studied

data mining technique, i.e., frequent itemset mining [50]. Frequent itemset mining
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examines a database where each entry is an itemset. For example, in an itemset

database D = {{w, y, z}, {v, w, y, z}, {w, x, y}}, support indicates how many times a

set of items occurs in the database D, and min_support is the threshold for filter-

ing frequent itemsets out. In this example, if min_support = 3, the mining result

will show that itemsets {w}, {y}, {w, y} are frequent. If min_support = 2, itemsets

{w}, {y}, {z}, {w, y}, {w, z}, {y, z}, {w, y, z} are frequent. We separate the procedure

of mining frequently read/updated variables into two sub-procedures: 1) mining fre-

quently updated variables, and 2) mining frequently read variables.

To mine frequently updated variables, we only need to collect the updated

variables in the actions. For instance, the itemset of actions {z = m ∗ n, x = m +

n} of StateB and its incoming transition in the statechart models in Fig. 3.5, we

only need to extract the variables on the left side of assign statements, which is

{z, x}. After collecting all the itemsets of actions A from a given statechart model

by applying Algorithm 4, we first extract the itemsets of updated variables V from

A. We then apply FPclose algorithm on V to mine frequently updated variables. The

whole procedure for mining frequently updated variables is described in Algorithm 5.

The time complexity of Algorithm 5 is O((S ∗ T )2), where S is the total number of

states and T is the total number of incoming transitions in the statechart model.

To mine frequently read variables, we need to collect itemsets of variables in

the actions excluding updated variables. For instance, the itemset of actions {z =

m ∗ n, x = m+ n} of StateB and its incoming transition in the statechart models in

Fig. 3.5, we only want to extract the variables on the right side of assign statements,

which is {m,n}. The procedure of mining frequently read variables is similar to

the procedure for mining frequently updated variables. The Algorithm 6 depicts the

procedures for mining frequently read variables. The time complexity of Algorithm 6

is O((S ∗ T )2), where S is the total number of states and T is the total number of
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Algorithm 5 Mining Frequently Updated Variables
Input: An instantiated Yakindu statechart st = (name, V, T, S), and the threshold

number min_support for filtering frequently updated variables out.
Output: A set of patterns of frequently updated variables P = {p|p =

(Vi, Si, Ti, support)}, where Vi is an itemset of frequently updated variables, Si is
a set of states in which the itemset of variables occurs, Ti is a set of transitions
in which the itemset of variables occurs. support indicates how many times the
itemset of variables Vi occurs in st.

1: Applying Algorithm 4 to get the itemset database of actions A from st. For each
Ai ∈ A, Ai = (AS, Ti, Si) where AS is the itemset of actions of transitions in Ti and
states in Si

2: Declare V = ∅.
3: for each element Ai ∈ A do
4: Extract the itemset of updated variables Vi from Ai.AS. Then V = V ∪ {Vi}
5: end for
6: Use FPclose to mine itemsets of frequently updated variables from V: Vout ←
FPCLOSE(V, min_support)

7: Declare P = ∅.
8: for each itemset of frequently updated variables Vi ∈ Vout do
9: Find the set of states Si and the set of transitions Ti where the itemset of

updated variables Vi occurs. Let pi = (Vi, Si, Ti, support), where support is
the time of occurrences of Vi. P = P ∪ {pi}.

10: end for
11: return P

incoming transitions in the statechart model.

3.4.5 Mining Frequently Executed Actions. The purpose of this step is to

extract frequently executed actions in statechart models whose occurrences exceed a

given threshold. For each set of executed action sequences that satisfies this prop-

erty, we treat it as a pattern of frequently executed actions. Through the Algorithm 4,

we can extract the itemsets of all actions in a statechart model. As mentioned in

Section 3.3, an action in statechart is represented in the form of strings. However,

sometimes a string can be too large to ensure the mining procedures to be efficient

enough. Therefore, to improve the efficiency of the UACFinder for extract frequently

executed actions, we first use BKDR Hash Function [60] to hash each action string

to a number. For example, for the itemset of actions {z = z − 1, x = x ∗ 2}
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Algorithm 6 Mining Frequently Read Varaibles
Input: An instantiated Yakindu statechart st = (name, V, T, S), and the threshold

number min_support for filtering frequently read variables out.
Output: A set of patterns of frequently read variables P = {p|p =

(Vi, Si, Ti, support)}, where Ai is an itemset of frequently read variables, Si is
a set of states in which the itemset of variables occurs, Ti is a set of transitions
in which the itemset of variables occurs. support indicates how many times the
itemset of variables Vi occurs in st.

1: Applying Algorithm 4 to get the itemset database of actions A from st. For each
Ai ∈ A, Ai = (AS, Ti, Si) where AS is the itemset of actions of transitions in Ti and
states in Si

2: Declare V = ∅.
3: for each element Ai ∈ A do
4: Extract the itemset of read variables Vi from Ai.AS. Then V = V ∪ {Vi}
5: end for
6: Use FPclose to mine frequently read variables from V: Vout ←
FPCLOSE(V, min_support)

7: Declare P = ∅.
8: for each itemset of frequently read variables Vi ∈ Vout do
9: Find the set of states Si and the set of transitions Ti where the itemset of

updated variables Vi occurs. Let pi = (Ai, Si, Ti, support), where support is
the time of occurrences of Vi. P = P ∪ {pi}.

10: end for
11: return G

in stateB and its incoming transition shown in the Fig. 3.5, after applying the

hash procedure, the converted itemset of actions is {z = z − 1, x = x ∗ 2} is

{8683372948524200635, 8541304859824854267}.

Before we hash all the actions into numbers, we have to solve the duplication

problem. We use the following two examples to illustrate the problem.

• Taking the actions a1 = {z = z − 1} and a2 = {z − 1} as an example, since

there exists white spaces in the action a2, if we just hash to these two actions

into numbers, the UACFinder will treat a1 and a2 as two different actions.

• For two actions a3 = {z = z − 1} and a3 = {−1 + z}, after hashing to the

two actions into numbers, the UACFinder will treat a3 and a4 as two different
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actions. Similar cases often exist in actions, such as a5 = {a = a− b− (c− d)}

and a6 = {a = a− b− c+ d}.

To address the duplication problems, we first remove all the white spaces in the

actions, we then develop an algorithm to re-organized the sequences of one action.

A simple idea behind the algorithm is to keep a record of the Global and Local

Sign (operators such as +, / * -) in each action. The Global Sign here means the

multiplicative sign at each operand. The resultant sign for an operand is the local sign

multiplied by the global sign at that operand. For example, the action a = a+b−(c−d)

is evaluated as a = (+) + a(+) + b(−) + c(−)− d => a = a+ b− c+ d. The global

sign (represented inside bracket) is multiplied to the local sign for each operand. In

addition, a stack and a vector are used to keep the record of the global signs, and the

counts of the operands, respectively. The entire code for this algorithm can found at

https://github.com/fuzhicheng-java/UAFinder.

After removing duplication of actions, the UACFinder applies FPclose algo-

rithm to mine frequently executed actions. Similarly, it is not sufficient to only know

the possible frequently executed actions. It is also important to know in which parts

of the system models the extracted frequently executed actions occur. Unfortunately,

the original FPclose algorithm only outputs the support values for each discovered

group. We extend FPclose algorithm to not only extract frequently executed actions,

but also identify the traces where these frequently executed actions occur. We use

the Yakindu statechart as an illustrative example and describe the procedure to mine

frequently executed actionsin Algorithm 7. The time complexity of Algorithm 7 is

O((S ∗ T )2), where S is the total number of states and T is the total number of

incoming transitions in the statechart model.

https://github.com/fuzhicheng-java/UAFinder
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Algorithm 7 Mining Frequently Executed Actions
Input: An instantiated Yakindu statechart st = (name, V, T, S), and the threshold

number min_support for filtering frequently executed actions out.
Output: A set of patterns of frequently executed actions P = {p|p =

(Ei, Si, Ti, support)}, where Ei is an itemset of frequently executed actions, Si

is a set of states in which the itemset of variables occurs, Ti is a set of transitions
in which the itemset of actions occurs. support indicates how many times the
itemset of actions Ei occurs in st.

1: Applying Algorithm 4 to get the itemset database of actions A from st. For each
Ai ∈ A, Ai = (AS, Ti, Si) where AS is the itemset of actions of transitions in Ti and
states in Si.

2: Declare E = ∅.
3: for each element Ai ∈ A do
4: Filter action duplications in Ai.AS to generate a new itemset of actions Ak, and

let E = D ∪ {Ak}.
5: end for
6: Use FPclose algorithm to mine frequently executed actions from E: Eout ←
FPCLOSE(E, min_support)

7: Declare P = ∅.
8: for each itemset of frequently executed actions Ei ∈ Eout do
9: Find the set of states Si and the set of transitions Ti where the itemset of

actions Ei occurs. Let pi = (Ei, Si, Ti, support), where support is the time of
occurrences of Ei, and P = P ∪ {pi}.

10: end for
11: return P

3.5 A Case Study – Using the UACFinder to Find Unspecified Assump-
tions in Cardiac Arrest Statechart Model

In this section, we use a cardiac-arrest treatment statechart model [51] to eval-

uate the UACFinder. Cardiac arrest is initially the devastating cessation of cardiac

activity, which is caused by the loss of the heart’s electrical and muscular pumping

function. The completed statechart model can be found in [51]. In the cardiac-arrest

statechart model [51], there are a total of 55 states, 155 transitions, and 45 declared

variables. We apply the UACFinder to look for potential unspecified assumption car-

riers. We then invite a medical doctor footnote 1 to validate whether these carriers

carry unspecified assumptions.

3.5.1 Mining Constant Variables as Syntactic Carriers. By applying the
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UACFinder on the cardiac-arrest treatment statechart model, we extracted 13 con-

stant variables as syntactic carriers from the total of 45 variables in the cardiac-

arrest statechart model. The extracted constant variables, their initialized values,

and assumptions of the variable initialization are described in Table 3.1. The as-

sumptions for initialization of these 13 variables are not specified in system design

models. Therefore, the initial values set to these variables need to be validated by

medical professionals to decides whether there exist unspecified assumptions about

the initialization. For example, one unspecified assumption made in the initializa-

tion of the variable Kidney.Potassium_High_Threshold to be 5.5 is that the patient

must be an adult. However, if the model with this unspecified assumption is used

to examine pediatric patients, it would output inaccurate test results and may lead

doctors to make incorrect decisions. Hence, such assumptions need to be specified for

all stakeholders.

In addition, the UACFinder extracts all constant variables and output the

traces where a constant variable is used. Fig. 3.6 shows the traces where the vari-

able BGI.paCO2_High_Threshold is used in the Blood Gas Examination statechart

model, which is a part of the cardiac-arrest statechart model. Blood gases are mea-

surements of how much oxygen and carbon dioxide are in patients bloodstream, which

is for detecting metabolic acidosis, respiratory acidosis, and hypercapnia [51].

3.5.2 Mining Frequently Read/Updated Variables as Syntactic Carriers.

To ensure mining as many frequently read/updated variables as possible, we set the

threshold to be 2 for filtering frequently read variables and frequently updated variables

out from the statechart model. With the UACFinder, we extract 14 possible frequently

executed actions from the cardiac-arrest statechart model as shown in Table 3.2.

To facilitate validation, the UACFinder also highlights states and transitions

where frequently read variables and frequently updated variables occurs in statechart
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Figure 3.6. Traces Where BGI.paCO2_High_Threshold Is Used

modes, such as recording the locations where the itemset of frequently read vari-

ables: {Kidney.Creatinine, Kidney.BUN}, which occurs in the Renal Insufficiency

statechart model shown in Fig. 3.7.

3.5.3 Mining Frequently Executed Actions as Syntactic Carriers. Similar

to mining frequently read/updated variables, we also set the threshold value of support

to be 2 for finding out all possible frequently executed actions. However, the thresh-

old value is not hard coded in the program, and end-users can declare a threshold

value based on their domain knowledge. With the UACFinder, we extract 14 possi-

ble frequently executed actions from the cardiac-arrest statechart model as shown in

Table 3.3.

To facilitate medical professionals’ validation, the UACFinder also highlights

states and transitions where the frequently executed actions occur in statechart modes,

such as recording the locations where the frequently executed action {raise BGI.
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Figure 3.7. Traces Where Frequently Read Variables Kidney.Creatinine, Kidney.BUN
Occurs in the Renal Insufficiency Satechart Model

PatientHasMetabolicAcidosis, metabolic_acidosis_hold_timer = 0} occurs in the

statechart model in Fig. 3.8.

3.5.4 Validating Unspecified Assumptions Associated with Mined Syntac-

tic Carriers. Through the UACFinder we have mined syntactic carriers in the

form of constant variables, frequently read/updated variables, and frequently executed

actions from the simplified cardiac-arrest treatment statechart model [51]. The mined

syntactic carriers are shown in the Table 3.1, Table 3.2, and Table 3.3, respectively.

In addition, we invite a medical doctorfootnote 1 who is an expert in cardiac-arrest

treatment to validate the unspecified assumptions associated with these carriers. The

result of this validation is represented as identified assumptions that are listed in the

rightest column in Table 3.1, Table 3.2, and Table 3.3.

For constant variables as syntactic carriers shown in Table 3.1, the medical

doctor and developers have identified 13 unspecified assumptions associated with

the constant variables. Taking Kidney.BUN_High_Threshold = 20 as an example,

the initialization is based on one unspecified assumption that the normal range of
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Figure 3.8. Traces Where Frequently Executed Actions raise BGI.PatientHas
MetabolicAcidosis, metabolic_acidosis_hold_timer = 0 Occurs

BUN level for adults up to 60 years old is 6− 20mg/dL, and for adults over 60

years old the range is 8− 23mg/dL [61]. However, assumptions associated with

some constant variable initialization are not easy to be identified. For instance of

Kidney.Creatinine_High_Threshold = 5, the assumption for this initialization can

not be identified. Because the normal range for creatinine in the blood could be 0.84

to 1.21 milligrams per deciliter (74.3 to 107 micromoles per liter), but the range can

vary from lab to lab, between men and women, and by age [62], [63].

We has identified five unspecified assumptions that are associated with fre-

quently read/updated variables, as shown in Table 3.2. For example, rhythm (Ar-

rhythmia.rhythm), blood pressure (Arrhythmia.BP), heart rate (Arrhythmia.HR) must

be read together to diagnose heart rhythm problems [65]. Through validation of

frequently read/updated variables as syntactic carriers, we observe that for specific

disease treatment, some vital variables are always assumed to be binded together in



63

reading and updating for diagnosing purposes.

In addition, 10 unspecified assumptions that are associated with mined fre-

quently executed actions have been identified and confirmed by the medical doctor, as

shown in Table 3.3. We have sent the rest frequently executed actions to the original

model developers for future validation. We take the frequently executed actions: raise

BGI.PatientHasMetabolicAcidosis; metabolic_acidosis_hold_timer = 0; Communi-

cation.sendInfo() as an example, the unspecified assumptions behind this itemset of

frequently executed action is that when a patient is admitted to the procedure of

blood examination, a timer is triggered to record the diagnosis time, and when the

diagnosis is confirmed, the timer should reset to zero, and the system should inform

doctors about the vital symptom.

Through the analysis of these identified syntactic carriers, we find out that

based on the mined frequently executed actions, the UACFinder can be also used to

find potential bugs by detecting violations to these frequently executed actions. The

main idea is that the frequently executed actions usually holds for most cases, and

violations happen only occasionally. For example, from the table 3.3 we observe that

in most cases each event raise is followed by the action Communication.sendInfo().

However, int itemset of executed actions: raise BGI.PatientHasHypercapnia; hyper-

capnia_hold_timer = 0, the event raise is not followed by Communication.sendInfo(),

which indicates that the action Communication.sendInfo() may be missing. Whether

the low-frequency frequently executed actionis designed on purpose or just a copy-

pasting error raises another interesting problem that may be addressed by detecting

violations based on high-frequency frequently executed actions in our future work. In

addition, the results of the validation indicate that it is necessary to involve domain

experts during the system development process for identifying all possible unspecified

assumptions.
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3.6 Summary

In this Chapter, we present a tool called UACFinder which uses data mining

techniques to automatically and efficiently extract syntactic carriers of unspecified

assumptions in the form of constant variables, frequently read/updated variables, and

frequently executed actions from system statechart models. The UACFinder also

provides traces where these carriers occur in statechart models. We evaluate the

UACFinder with a cardiac arrest-assist system statechart model. The results of

the evaluation indicate that the UACFinder can identify unspecified assumptions

and facilitate validation for domain experts at the system design stage of developing

M-CPS systems. Although the current version of the UACFinder is based on state-

chart models, it can be easily applied to other modeling languages by replacing the

parsing component. In addition, the fundamental methodology to identify potential

assumptions through syntactical carriers can also be employed in other domain areas.

Currently, the only focuses on potential unspecified assumption carriers in the forms

of constant variables, frequently read/updated variables, and frequently executed ac-

tions. However, there may be other forms of carriers that associate with unspecified

assumptions, which will be our future work.

As the UACFinder also provides traces where constant variables, frequently

read/updated variables, and frequently executed actions occur, we can potentially use

the information to perform impact analyze on the violation of unspecified assump-

tions. However, since the number of identified unspecified assumptions may be large,

and how to determine the severity levels of unspecified assumptions may cause to

systems is another challenge. In the next Chapter, we will focus on how to facilitate

domain experts to perform impact analysis on unspecified assumptions.
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Table 3.1. Constant Variables As Syntactic Carriers Mined From the Cardiac-Arrest
Statechart Model. The right column represents the unspecified assumptions iden-
tified by domain experts and model developers.

Constant Variables Identified Assumptions
Kidney.BUN_High_Threshold =

20
The initialization is based on the assumption
that targeted patients are adults who is under
60 years. General reference ranges for a normal
BUN level are: (1) Adults up to 60 years of

age: 6-20 mg/dL; and (2) Adults over 60 years
of age: 8-23 mg/dL [61].

Kidney.Creatinine_High_Threshold
= 5

The assumption for this initialization can not
be specified. Because the normal range for
creatinine in the blood may be 0.84 to 1.21

milligrams per deciliter (74.3 to 107
micromoles per liter), although this can vary
from lab to lab, between men and women, and

by age [62], [63].
Kidney.Potassium_High_Threshold

= 5.5
The initialization is based on the assumption
that targeted patients are adults. Normal

levels of potassium in the blood are generally
between 3.7 and 5.2 mEq/L for adults and

3.4-4.7 mEq/L for children [53]. For adults, the
safety range for potassium levels is usually

between 3.5 and 5.5 mEq/L [53].
BGI.pH_Low_Threshold = 7.2 The initialization is based on the assumption

that the normal blood pH range is 7.35-7.45 for
adults [64].

BGI.paCO2_High_Threshold = 45 The initialization is based on the assumption
that the normal blood paCO2 range is 35-45

for adults [64].
Physician.Deviation_Short_Timer

= 20
The holding time for doctors to make decision

at emergency condition is 20 seconds.
Physician.Deviation_Long_Timer

= 100
The holding time for doctors to make decision

at normal condition is 100 seconds.
hypercapnia_jump_timer = 0 The counter or timer starts from 0, and the

unit is second.
metabolic_acidosis_deviation_

counter = 0
Same as above.

hypercapnia_deviation_counter =
0

Same as above.
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Table 3.2. Frequently Read/Updated Variables as Syntactic Carriers in the Cardiac
Arrest Statechart Model. The value of support is +∞ indicates that its correspond-
ing itemset of frequently updated variables will be updated after each execution
cycle of the statechart model.

Frequently
Read/Update Variables

Support Type Assumptions

Arrhythmia.rhythm
Arrhythmia.BP
Arrhythmia.HR

12 Read Rhythm, Heart Rate and
Blood Pressure are three
binded vital variables to
diagnose heart rhythm

problems(heart
arrhythmias) [65].

Arrhythmia.rhythm
Arrhythmia.BP 4 Read Rhythm and Blood Pressure

are two vital variables for
diagnosing ventricular

tachycardia [66].
Kidney.Creatinine

Kidney.BUN 2 Read Creatinine and Blood Urea
Nitrogen are two vital

variables to diagnose renal
insufficiency [67].

Arrhythmia.rhythm
Arrhythmia.BP
Arrhythmia.HR

+∞ Updated Rhythm, heart rate and
blood pressure are three
binded vital variables that
should be updated together
for diagnosing heart rhythm

problems(heart
arrhythmias) [65].

Kidney.Creatinine
Kidney.BUN +∞ Updated Creatinine, Potassium, and

Blood Urea Nitrogen are
three vital variables that
should be updated for

monitoring renal insufficiency
symptoms [67]
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Table 3.3. Frequently Executed Actions as Syntactic Carriers Mined From the
Cardiac-Arrest Statechart Model. The most right column presents the identified
assumptions about the syntactic carriers by domain experts.

Frequently Executed Actions Support Assumptions

raise Kidney.PatientHasRenalInsufficiency;
Communication.sendInfo()

10 When there is vital symptoms of
patents, the system should

inform doctors.
raise BGI.PatientHasNormalpH;

Communication.sendInfo() 7 Same as above

raise BGI.PatientHasMetabolicAcidosis;
metabolic_acidosis_hold_timer = 0;

Communication.sendInfo()

7 Same as above

raise Arrhythmia.PatientIsPEA;
PEA_deviation_counter=0;
Communication.sendInfo()

6 Same as above

raise Arrhythmia.PatientIsVtach;
vtach_deviation_counter=0;
Communication.sendInfo()

6 Same as above

raise Arrhythmia.PatientIsSinus;
sinus_deviation_counter=0;
Communication.sendInfo()

6 Same as above

raise PatientHasNormalRenalFunction;
Communication.sendInfo()

5 Same as above

sinus_deviation_counter+=1;
Communication.addToLog 4 After sinus_deviation_counter

being increased by one second,
adding "Deviation from Sinus"

into the log database.
PEA_deviation_counter+=1;
Communication.addToLog() 4 Every one second, the counter

increase, adding "Deviation from
PEA" into the log database.

vtach_deviation_counter +=1;
Communication.addToLog() 4 After vtach_deviation_counter

being increased by one second,
adding "Deviation from VTach"

into the log database.
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CHAPTER 4

FACILITATE DOMAIN EXPERTS TO ANALYZE THE IMPACT OF
IDENTIFIED ASSUMPTIONS IN SYSTEM DESIGN MODELS

4.1 Background and Related Work

As technology advances, safety-critical systems are playing increasingly more

important roles in our everyday lives, such as medical systems, aircrafts, and nuclear

power plants. Because of their critical significance, they have high dependability

requirements for assuring the safety and correctness of the systems. Any failure of

such systems could lead to death or serious injury to people and cause severe damage

to equipment/property. Considering the fact that violating unspecified assumptions

can cause system failures,it is essential to determine the impact of failure caused by

violating unspecified assumptions on overall system to take preventive and corrective

actions. In Chapter 3, we have presented a tool, the UACFinder, which applies data

mining techniques to identify unspecified assumptions from system design models.

However, the number of unspecified assumptions in a system can be large, and it

is not always feasible, neither necessary, for domain experts to validate all of them

at different development phases. Furthermore, for the unspecified assumptions, to

prioritize which assumptions are the most safety-critical is also needed for effectively

addressing potential safety issues caused by unspecified assumptions.

Among many tools and approaches of performing impact analysis on failures,

Failure Mode and Effects Analysis(FMEA) is one of the best management tools to

analyze the potential failure modes within a system under conditions of uncertainties.

FMEA is a structured qualitative analysis of systems, subsystems, components, or

functions that highlights potential failure modes, their causes, and the effects of fail-

ures on system operation. There have been several published studies demonstrating
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the benefits of employing FMEA in other domains [68], [69], [70], [71], [72]. For exam-

ple, Snooke N. et al. described how model-based simulation can be employed to au-

tomatically generate the system-level effects of all possible failures on systems within

the aircraft systems [68]. The application of functional modeling to the automatically

produce FMEA information for mechanical systems is described in [69]. In addition,

Faida Mhenni1 et al. have proposed an approach to generate fault tree from SysML

System Models and extract the needed information on the dysfunctional behaviors

from functional SysML models to generate FMEA reports for improving safety [70].

Beyond applying FMEA in validation, Papadopoulos et al. have proposed a model-

based automated synthesis of fault trees from Matlab-Simulink models [71], [72] to

improve system safety.

Though the FMEA was originally developed outside of the healthcare do-

main, it is now being used in health care to assess the risk of failures and harms

in medical processes and to identify the most important areas for process improve-

ments [73], [45], [74], [75]. A variety of Institute for Healthcare Improvement pro-

grams in many hospitals, including Idealized Design of Medication Systems (IDMS),

Patient Safety Collaborative, and Patient Safety Summit, have also started to use

FMEA to analyze safety problems in their medical processes to improve patient care

safety [76], [77], [78]. The implementation of the FMEA is now required by health-

care organizations accredited by the Joint Commission on Accreditation of Healthcare

Organizations as part of their patient safety standards [79].

Though the benefits of employing FMEA in medical domains are enormous,

how to identify all possible failure modes has not been addressed well in the literature.

There are two main challenges to conduct the FMEA: 1) how to find all possible failure

modes and their corresponding root causes. 2)how to assess the relative impact of

different failure modes. One most common approach to finding possible failure modes
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is: analysis group members perform brainstorming to identify possible failure modes

based on their experiences and understanding of the medical processes at hand [80].

However, the method is time-consuming and the identified failure modes may not be

exhaustive and may be too abstract to support detailed effects analysis of these failure

modes. In this thesis, we present an approach, making use of the concept of FMEA,

to systematically identifying possible failure modes related to assumptions in system

design models and determine the priority of assumptions to facilitate impact analysis

by domain experts. In addition, based on our literature review [81], [82], [83], [84]

and discussion with medical professionals, we have concluded a few necessary steps in

conducting the Failure Mode and Effects Analysis for medical cyber-physical systems,

but specific details may vary based on standards of individual organizations:

1. Assemble a cross-functional team with knowledge in both medical and computer

domains.

2. For a medical process, identify all possible failures that may happen. These are

potential failure modes.

3. For each failure mode, identify all possible effects on end users or related sys-

tems.

4. Determine the severity of each effect (S), with 1 most severe effect and 10 the

least one.

5. For each failure mode, determine all the potential root causes.

6. For each cause, determine its potential occurrence rate (O), with 1 extremely

unlikely and 10 inevitable.

7. For each cause, determine its detection rate (D), with 1 for easy detection and

10 almost impossible to detect.
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8. Determine the risk priority number for each failure (RPN ).

9. Recommend actions to improve system safety.

In summary, we present an approach that makes use of the concept of Fail-

ure Mode and Effects Analysis (FMEA) to determine failure modes when unspecified

assumptions are violated. By analyzing the effects of potential failure modes, we pri-

oritize the assumptions to enable domain experts to analyze assumptions accordingly

and develop appropriate action plans to ensure system safety in a timely manner.

We assemble an analysis team including two medical doctors and take a blood gas

examination statechart model as an example to illustrate how the proposed approach

can facilitate domain experts to analyze the impact of failures caused by violating

unspecified assumptions in practice.

4.2 The Approach of Applying FMEA for Facilitating the Analysis of
Unspecified Assumptions

In the procedure of the FMEA described in Section 4.1, there are two im-

portant sequential steps, i.e., find possible failure modes and then identify their cor-

responding root causes. Given a system design model, we can apply to mine as

many unspecified assumptions as possible. However, the number of mined unspeci-

fied assumptions may be too large to be validated efficiently. For example, how to

make sure the most safety-critical unspecified assumptions can be validated first by

domain experts. Therefore, prioritizing the mined unspecified assumptions from the

perspective of system safety is highly demanded. In this section, we apply the FMEA

to prioritize mined unspecified assumptions through the UACFinder, we revise the

two steps as 1) for each assumption, we assume the assumption is violated and treat

the violation as the root cause of a failure; and 2) based on the identified root cause,

we find all possible failure modes. With the modification, the approach of using the

FMEA to prioritize assumptions is depicted in Fig. 4.1.
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Figure 4.1. The Approach of Using Failure Mode and Effects Analysis to Analyze the
Impacts of Assumptions

To illustrate how the proposed approach can help domain experts to analyze

the impacts of violations of unspecified assumptions in system design models, we use

a real medical system design model as an example to explain each procedure of the

proposed approach. We take the blood gas to examine statechart model [51], shown

in the Fig. 4.2, as a target medical system design mode. The following subsections

give the details of each step in the approach.

4.2.1 Assemble Analysis Team. To make sure applying the FMEA for analyzing

system design models, there must be a large engineering team that makes sure that the

system is designed correctly, as well as a vital group with domain experts to validate

the design and implementation [76], [77], [78]. To ensure analysis procedures are valid

both from the perspectives of computer science and medical domain, we assemble an
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Figure 4.2. Blood Gas Examine Yakindu Statechart Model

analysis team, which includes two medical doctors and five computer professionals.

4.2.2 Find Possible Failure Modes Caused by Violations of Unspecified

Assumptions. To conduct effects analysis for a medical process, we need to iden-

tify the maximal number of failure modes, if not all the possible failure modes, in the

medical process. A failure mode is anything that could go wrong during the comple-

tion of the medical process. However, how to identify all possible failure modes has

not been addressed well in the literature. One most common approach is: analysis

group members perform brainstorming to identify possible failure modes based on

their experiences and understanding of the medical processes at hand [80]. However,

the method is time-consuming, the identified failure modes may not be exhaustive

and may be too abstract to support detailed effects analysis of these failure modes.

Rather than using brainstorming approach, we propose a systematic way to identify

possible failure modes from statechart models. The approach has two main steps:

1. For a unspecified assumption, search the given statechart models and find states

and transitions that are related to the assumption. Failures are most likely to

happen when the unspecified assumption is violated; and
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2. Identify possible failure modes that may occur in these states and transitions

by assuming the unspecified assumption is violated.

We have applied the UACFinder on the Blood Gas Examination statechart

model shown in Fig. 4.2 and are able to find three types of unspecified assumptions

in the statechart model:

• Assumptions that describe the expected environment of how to use constant

variables. For example, the constant variable BGI.paCO2_High_Threshold is

initialized to be 45 which is based on an assumption that the intended patients

are adults, i.e., A1 in Table 4.1;

• Assumptions that describe which set of actions should be executed together.

For example, an approval event’s trigger and its corresponding holder timer’s

reset are assumed to be executed together, i.e., A4 in Table 4.1;

• Assumptions that describe how user interactions with the system should take

place. For example, if a transition’s guard contains an approval event from

users, the transition’s from states are assumed to send a notification to inform

user for the following actions, i.e., A3 in Table 4.1.

Given a statechart model and a set of unspecified assumptions found through

the UACFinder, based on features of each assumption types, we define the following

rules to find which parts of statechart models most likely have failure modes if some

assumptions are violated. The rules are list as follows:

• Rule 1. If an assumption describes an expected environment about how to

use specific constant variables, search all states and transitions that involve the

constant variables;
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Table 4.1. Unspecified Assumptions Identified in the Blood Gas Examination State-
chart Model

ID Assumption
A1 The constant variable BGI.paCO2_High_Threshold is hard-coded to

be 45 implicitly only for adult patients.
A2 The constant variable BGI.pH_Low_Threshold is hard-coded to be

7.2 implicitly only for adult patients.
A3 When there is a need for medical physicians to perform actions to the

system, such as medical physician approval actions which are
highlighted with red color in the Fig. 4.2, the system model must send
a notification to inform medical physicians which are highlighted with

orange.
A4 When an approval event is triggered by medical physicians (approval

events are highlighted as red in the Fig. 4.2), its corresponding holder
timer should be reset to be 0.

A5 When an on hold event is triggered by medical physicians (hold events
are highlighted as blue in the Fig. 4.2), its corresponding holder timer

should be reset to be 50.

• Rule 2. If the assumption describes which set of actions should be executed

together, search all states and transitions which execute all actions in a group;

• Rule 3. If the assumption describes how user interaction should be performed,

search all pairs of states and transitions (S, T ) where the guard of transition

T involves user events and the S is transition T ’s from state and sends user

notifications.

We use Example 1 to illustrate how to apply these three rules to find states

and transitions that are related to a given assumption.

Example 1. Given the statechart model shown in Fig. 4.2 and assumptions A1, A3,

and A4 in Table 4.1. As the assumption A1 describes that the constant variable

BGI.paCO2_High_Threshold is assigned to be 45, we apply Rule 1 and find three

related transitions using the constant variable: transition T1 from state “Metabolic

Acidosis” to state “Respiratory Acidosis Detected”, transition T2 from state “Hyper-
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capnia pH detected” to state “Normal Blood Gas Levels”, and transition T3 from

state “Respiratory Acidosis” to state “Metabolic Acidosis Detected 2”. Similarly, we

apply Rule 3 and Rule 2 to find related states and transitions of assumption A3 and

A4, respectively. For instance, one transition related to assumption A4 is transition T4

from state “Metabolic Acidosis Detected” to state “Metabolic Acidosis”. For the as-

sumption A3, one pair of state and transition is (S1, T4), where S1 is state “Metabolic

Acidosis Detected”.

With the defined three rules, a limited set of states and transitions where

failure modes are most likely to happen are located. By narrowing down the scope

where failure modes could happen, domain experts in the analysis group can quickly

and accurately determine possible failure modes with the following steps.

1. Find execution paths which contain the identified states and transitions.

2. Assume the target assumption is violated, analyze the semantic meaning of the

identified paths to determine the possible failure modes.

3. Provide a concrete scenario as an evidence for the failure modes.

To ensure the failure modes are correctly identified, domain experts must be

involved in the analysis group. We use the assumption A1 given in the Table 4.1 as

an example to illustrate how to perform the steps to identify failure modes.

1. States and transitions that are related to the assumption A1 are extracted. For

instance, 1) the transition from state “Metabolic Acidosis” to state “Respiratory

Acidosis Detected”, 2) the transition from state “Hypercapnia pH detected” to

state “Normal Blood Gas Levels”, and 3) the transition from state “Respiratory

Acidosis” to state “Metabolic Acidosis Detected 2” are extracted.
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2. Extract the execution paths which contain the identified transitions, such as

the execution path P1: “Normal Blood Gas Levels” → “Metabolic Acidosis” →

“Respiratory Acidosis Detected” → “Respiratory Acidosis”.

3. Assume A1 is violated and identify the possible failure mode in the execution of

P1. One failure mode is that the transition from state “Metabolic Acidosis” to

state “Respiratory Acidosis Detected” should take place but actually does not.

4. Give concrete examples to show when the failure mode will happen. For in-

stance, an evident example is that when a patient is an infant, BGI.paCO2_High

_Threshold=45 is no longer accurate for calculating the patient’s blood gas level

since the value of BGI.paCO2_High_Threshold for infant patients should be

42.

Based on the procedure described above, we can systematically identify pos-

sible failure modes from a given statechart model more rapidly and accurately com-

paring to only relying on domain experts’ brainstorming. Table 4.2 lists the possible

failure modes identified from the blood gas examination statechart model with viola-

tions of assumptions in Table 4.1.

4.2.3 Conduct Effects Analysis On Identified Failure Modes. For each

failure mode, analysis group members work together to review its impacts on end

users or systems. Each identified failure mode is scored according to its potential

severity and impact [75], [73]. The main three criteria to quantify the effects of a

failure mode [75], [73]: 1) the severity of the effect on end users or systems, 2) how

frequently the failure mode is likely to occur and 3) how easily the failure mode can

be detected. Participants must set and agree on a ranking between 1 and 10 (1 =

low, 10 = high) for the severity, occurrence, and difficulty level of detecting each of

the failure modes, respectively.
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However for some specific applications, not every failure mode will result a

catastrophe, but the impacts of a failure may manifest as procedural delays, sys-

tem breakdowns, reductions in throughput, and other factors affecting the system’s

quality. Therefore, for different applications, analysis group members should develop

customized scoring rules for severity. For instance, severity scoring rules for use in

the medical domain have been introduced and developed over the last 30 years [85].

They allow an assessment of the severity of the disease and provide an estimate of

in-hospital mortality. A weighting factor is applied to each variable, and the sum of

the weighted individual scores produces the severity score [86].

To evaluate the effects of the identified failure modes in the Blood Gas Exam-

ination Statechart Model. The medical physicians in the analysis group first identify

the specific patient data and corresponding weight factors to determine severity scor-

ing rules. Table 4.3 lists the available patient’s data for use in scoring rules. Based

on the guideline that how to interpret a blood gas [87] and the importance of patient

data in the Table 4.3, a simple scoring table of severity is constructed by medical

physicians in the analysis group, which is shown in Table 4.4

In determining the probability of a failure mode occurring and detection, ref-

erence should be made to the data from previous adverse events and to the personal

experience of domain experts. The higher the ranking (scale of 1-10), the more likely

it is for the failure mode to occur and detection. Based on the experience of the

analysis group, we provide a simple occurrence scoring table and a detection scoring

table, as shown in Table 4.5 and Table 4.6, respectively.

The next step is to define a proper formula to achieve risk priority number

based on the value of severity, occurrence, and detection. The risk priority number

(RPN ), also referred to as the critical index, is a quantitative measure used to

evaluate and assess a failure mode [88]. In our proposed approach, the RPN is
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derived from the product of severity (S), the probability of occurrence (O), detect-

ability (D), and the weight factor of severity (W), as RPN = S ×O×D×W . The

RPN are then ranked to allow prioritization of the failure modes and to highlight

the failure modes that exceed acceptable limits and should, therefore, be targeted for

change. The highest RPN should be prioritized for corrective action. Regardless of

the RPN attention should always focus on any domain where the severity ranking

is high. Those steps with low RPN (and therefore of low impact in the spectrum of

failure) are unlikely to affect the process and should therefore not be prioritized as

part of this process. For an assumption, after we have finished the calculation ofRPN

for each of failure mode caused by violations of the assumptions, we just simply add

RPN of each failure mode to get final RPN of each assumption. Table 4.7 indicates

the result of effects analysis of failure modes caused by violation of the unspecified

assumptions in Table 4.1.

Once the major failure modes and the corresponding effect analysis have been

identified, strategies should be developed and implemented to prevent the subsequent

occurrence.

4.2.4 Discussion of Using the FMEA. Although the application of the FMEA

in safety-critical systems is promising, the FMEA has only been introduced into this

area relatively recently, and many improvements are still needed. For example, if we

use numeric product to calculate RPN , a failure mode with a high severity but low

probability of detection can have the same score as a failure mode with a low severity

but high probability of detection. However, failure modes with high severity should

be targeted for analysis with high priority, and an action plan should promptly be

put in place to address the risk. Although the default RPN calculation may work

in other industries that use the FMEA, a failure mode with a high severity but the

low probability of detection is unacceptable in medical systems, because it may lead



80

to patient morbidity or even mortality. Therefore, for healthcare failure modes with

a high severity, scores should probably be analyzed regardless of the probability of

occurrence and detection.

In addition, the overall reliability of the FMEA also has been questioned [89].

In a comparative study performed by two groups working on the same topic but

in different hospitals, investigators found only a 17% overlap of failure modes that

were identified [90]. The two groups also had considerably different RPN s for their

common failure modes, resulting in the different prioritization of the failure modes.

These data suggest that developing generic standards to perform the FMEA with

different expertise and experience, is most likely to help the FMEA process succeed.

4.3 Summary

In this Chapter, we present an approach that makes use of the concept of

Failure Mode and Effects Analysis (FMEA) to facilitate domain experts to perform

impact analysis on possible failures caused by violating unspecified assumptions. By

analyzing the effects of potential failure modes, we prioritize the assumptions to

enable domain experts to analyze assumptions accordingly and develop appropriate

action plans to ensure system safety in a timely manner. Currently, our approach is

semi-automatic since some steps in the approach to are still required manual work

by domain experts, such as identifying failure modes. Therefore, how to integrate

appropriate domain knowledge into our approach to minimize manually efforts will

be investigate in our future work.
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Table 4.2. The Identified Failure Modes from The Blood Gas Examine Model with
Violation of Assumptions in Table 4.1

FM ID A ID Failure Mode Description
FM1 A1 When a patient is an infant,

BGI.paCO2_High_Threshold = 45 is no longer accurate for
calculating the patent’s blood gas level, consequently, some

transitions in the blood gas examine statechart should not but
will take place. These transitions include: 1) the transition from

state “Metabolic Acidosis” to state “Respiratory Acidosis
Detected”, 2) the transition from state “Hypercapnia pH
detected” to state “Normal Blood Gas Levels”, and 3) the

transition from state “Respiratory Acidosis” to state “Metabolic
Acidosis Detected 2”.

FM2 A2 When a patient is an infant, BGI.pH_Low_Threshold = 7.2 is
no longer accurate for calculating the patient’s blood pH, and

consequently some transitions in the blood gas examine
statechart should not but will take place. These transitions

include: 1) the transition from state “Normal Blood Gas Levels”
to state “Metabolic Acidosis Detected”, 2) the transition from
state “Hypercapnia” to state “Respiratory Acidosis Detected”,

and 3) the transition from state “Hypercapnia pH detected 2” to
state “Respiratory Acidosis”.

FM3 A3 The system fails to send notifications to inform users to take the
corresponding user-interactions on time. Alternatively, we can

say that in the blood gas examine statechart, transitions
containing user-interaction events:

Physician.MetabolicAcidosisApproved,
Physician.HypercapniaApproved, and

Physician.RespiratoryAcidosisApproved, should take place but
not.

FM4 A4 The system fails to reset respiratory_acidosis_holdtimer = 0,
hypercapnia_hold_timer = 0, and

metabolic_acidosis_holdtimer = 0. Alternatively, we can say
that in the blood gas examine statechart, transitions containing

respiratory_acidosis_holdtimer == 0,
hypercapnia_hold_timer == 0, and

metabolic_acidosis_holdtimer == 0, should take place but not.
FM5 A5 The system fails to reset respiratory_acidosishold_timer = 50,

hypercapnia_hold_timer = 50, and
metabolic_acidosis_hold_timer = 50, which may case the
corresponding notice can be send out every 50 seconds.
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Table 4.3. Patient Data for Determining Scoring Rules of Severity within Blood Gas
Examine Process

Weight(1-10)(W) Patient’s Variables
10 paCO2

10 paCO2 Threshold
10 pH

10 pH Threshold
8 Age

8 Temperature

Table 4.4. Severity Scoring Table for Blood Gas Examine Process

Severity(S)
10 Terminal injury or death
7 Permanent lessening of body function, surgical intervention required,

disfigurement
5 Temporary patient harm
3 May affect patients
1 No effect

Table 4.5. Occurrence Scoring Table for Blood Gas Examine Process

Occurrence(O)
10 Documented, almost certain; or happens 90-100% of the time
7 Documented and frequent; or happens 70-80% of the time
5 Documented but less frequent; or happens 40 - 60% of the time
3 Possible, but no known data; or happens 10 - 30 % of the time
1 No known occurrence; or happens < 10 % of the time

Table 4.6. Detection Scoring Table for Blood Gas Examine Process

Detection(D)
10 Detection not possible at any point; or we can never catch it!
7 Low likelihood of detection; or we can catch it 3 out of 10 times
5 Moderate likelihood of detection; or we can catch it 5 out of 10 times
3 Error almost always detected, or we can catch it 9 out of 10 times
1 Error almost always detected, or we can catch it 9 out of 10 times
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Table 4.7. The Effects Analysis of Unspecified Assumptions Including Failure Modes,
Effect Description, Severity, Occurrence, Detection, Weight, and Risk Priority
Number

A ID FM ID Effects S O D W RPN
A1 FM1 Medical physicians can not

find out the paCO2 value of
an infant patient is greater
than the threshold in time,
which could cause the infant
patient can not get correct
treatment on time and make

the patient in danger.

10 10 10 10 10000

A2 FM2 Medical physicians may find
out the pH value of an infant

patient is lower than the
threshold by mistake, which
could cause the infant patient
can not get correct treatment
on time and make the patient

in danger.

10 10 10 10 1000

A3 FM3 Medical physicians can not
get notification about patient
status in time, which could
lead medical physicians give

incorrect treatment to
patients or delay patient

treatment. The misleading or
delay could make patients in

danger.

10 10 3 1 300

A4 FM4 Medical physicians can not
get accurate patient status in

time, which could lead
medical physicians give
incorrect treatment to
patients, which makes
patients in danger.

7 7 1 1 49

A5 FM5 Medical physicians can not
get the accurate value of

patient holding time, which
could lead medical physicians
give incorrect treatment to
patients or delay patient

treatment. The misleading or
delay could make patients in

danger.

7 7 1 1 49
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CHAPTER 5

MODEL AND INTEGRATE ASSUMPTIONS INTO SYSTEM DESIGN MODELS

5.1 Background and Related Work

In the previous chapters, we have presented techniques and tools to identify

unspecified assumptions in system design models. In addition, we have also presented

the approaches for facilitating domain experts to perform impact analysis on possible

failures caused by violating identified unspecified assumptions. All these approaches

described are bottom-up solutions in which we are working on the recovery from given

system design models. However, if assumptions are given before the design phase, a

challenging question is how we can ensure the safety of system design models under

these assumptions. An intuitive approach is to explicitly specify assumptions in

human language, so that the system’s safety associated with different assumptions

can be validated by domain experts.

Based on the intuitive approach, An amount of significant work has been done

to specify assumptions in system design models in different domains [15], [8], [9].

For example, in the guidance "Applying Human Factors and Usability Engineering to

Medical Devices" released by U.S. Food and Drug Administration [91], it recommends

developers to evaluate and understand relevant assumptions of all intended use envi-

ronments and describe them for the purpose of safety evaluation and design [91]. In

addition, the Medical Device Plug-and-Play Interoperability (MDPnP)program [92],

this program has been leading the development of the Integrated Clinical Environ-

ment (ICE) standard and gap analysis on the ability of the IEEE 11073 family of

standards [93] to meet the clinical use cases described in the ICE standard. Cur-

rently, much work about assumptions for MDPnP focuses on establishing dynamic
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connectivity of devices with different data format assumptions [94], synchronization

among devices with diverse clock assumptions [95], and ensuring fair access to a com-

munication medium [96]. All these work have shown the promising approaches to

specify assumptions with natural languages, but how to formally model assumptions

and integrate assumption models into system models from the system development

perspective has not been addressed yet.

In the previous chapters, we have developed the UACFinder to identify as-

sumptions about constant variables, frequently read/updated variables, and frequently

executed actions. Based on the features of these assumptions, we proposed the fol-

lowing methodology to model assumptions. For the assumptions related to constant

variables and frequently read/updated variables we model them with numeric parame-

ters, and mathematical functions to describe the constraints between such parametric

values and possibly specifications of dynamic behavior are given. For the assumptions

related to frequently executed actions the resulted behaviors can be modeled by means

of formulas in temporal logic.

Based on the proposed methodology, we present an approach to model and

integrate assumptions about constant variables into system design models. As we

mentioned in Chapter 2, many assumptions about the physical environment can be

treated as assumptions about constant variables. In this section, we first show an

FDA medical device recall example, and then an analysis shows how assumptions

associated with constant variables of environment can cause fatal M-CPS failures.

Recall Case 2 (Dräger Medical, Evita V500 and Babylog VN500 Ventilators – Faulty

Batteries, July 13, 2015 [28]). FDA has identified this recall as a Class I recall, the

most serious type of recall. According to the recall report [28], the battery capacity

of optional PS500 Power Supply Unit of the Infinity ACS Workstation Critical Care

(Evita Infinity V500) did not last as long as expected. The batteries installed in the
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PS500 depleted much earlier than expected although the battery indicator showed a

sufficiently charged battery. Even when the battery depleted totally, the power fail

alarm was not generated. If the ventilator shuts down without alarm, a patient may

not receive necessary oxygen. This could cause patient injury or death.

In the FDA recalled ventilator, there are three major components in the sys-

tem: Controller, Alarm and Battery [97]. The Controller calculates remaining time

that the Battery can supply. If the remaining time is within the range of 30 to 35

minutes, the Controller should send an event to the Alarm component to trigger an

alarm for medical staffs. One unspecified assumption is that ventilators are installed

in temperature controlled areas, such as hospital rooms, where room temperature are

maintained at normal room temperature. In this environment, the capacity the bat-

tery can supply is a constant. However, if a hospital room’s temperature is kept to be

the assumed operating temperature, the capacity of the battery will be not reduced.

This unanticipated change of battery capacity will cause Controller to miscalculate

the remaining time and hence fail to send the alarm event before the ventilator is

out of power. In this recall, the assumption is associated with the room temperature,

under which the ventilator operates. We can use a parameter to represent such as-

sumption. There are many conceptually similar assumptions can be represented by

parameters, such as clock skews rate, network delays, and task execution times. The

challenging question is how to ensure these assumptions are correctly reflected in the

system design models and they do not cause violations of system safety.

For safety-critical cyber-physical systems, validations by domain experts alone

are not adequate for ensuring systems safety. Formal verification of the systems are

essential. There are many formal verification techniques exist in the literature, such

as model checking [98], theorem proving [99], and knowledge based verification [100].

Formal model based approaches have successfully provided a unified basis for formal
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analysis to achieve the expected level of safety guarantees. It has been applied in

many safety-critical areas such as automotive systems [101] and avionics systems [102].

Hence, to ensure the safety of safety-critical system under different assumptions, the

desired approach not only can model and integrate assumptions into system design

models, but also the integrated system design models can be easily transferred to

formal models for formal verification to ensure the safety.

The design and development of safety-critical cyber-physical systems requires

knowledge from different domain experts. For instance, the design and development

of a medical cyber-physical system will need the joint efforts from engineers, computer

scientists, and medical professionals. Engineers are more familiar with mathematical

structures and operations, whereas medical professionals are more used to statecharts

as disease and treatment models since they have high resemblance to statecharts.

Hence, to explicitly integrate assumptions into system design models, our strategy is

to define a mathematical model and composition rules for engineers to explicitly and

accurately specify design assumptions for their physical devices. The mathematical

assumption model is then automatically transformed into a specific system design

model and integrated with system models so that the integrated models can be vali-

dated by domain experts and system safety properties can be formally verified with

existing model verification tools.

Fig. 5.1 depicts the high level view of our proposed approach for modeling

and integrating assumptions into system design models for validation and formal

verification. In this approach, we use statechart model as the specific system design

model to illustrate the procedures of the proposed approach. Currently, we focus on

applying the proposed approach for modeling and integrating assumptions associated

with constant variables into the system design models. In this chapter, we call the

assumptions associated with constant variables as environment assumptions.
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Figure 5.1. The Architecture of Modeling and Integrating Assumptions into System
Design Models for Validation and Formal Verification

5.2 Modeling Environment Assumptions

The impact of environment change on M-CPS’ behaviors is often due to the

fact that environment change can cause M-CPS system parameters to change, as

in the FDA recall presented above. An environment assumption describes how a

relation between a system parameter and a set of environment parameters. Hence,

to bring to light environment assumptions in systems, we need to explicitly specify

the relationships between system parameters and environment parameters. In this

section, we define a mathematical structure to specify environment assumptions.

5.2.1 Mathematical Structure of Assumptions. An environment assumption

is represented as A(s, E,F), where s is a system parameter, E = {e1, · · · , en} indi-

cates an set of environment parameters. F is a function that defines a relation that

associates environment parameters in E to the system parameter s, F : E → s. We

use the following simple example to illustrate how to use this mathematical structure

to represent environment assumptions.

Example 2. Consider the following two scenarios of battery behaviors in the FDA
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Recall 2 example. The system parameter C indicates the percentage of capacity that

battery can indeed provide in different environment [103]. And the following two

scenarios describe the relationships between the system parameter and environment

parameters.

• S1: when the temperature T is within the range [−10, 15), the percentage is

C = (1− 2× (25− T )/100).

• S2: when the temperature T is within the range [15, 35], the percentage C = 1.

The two scenarios S1 and S2 in the Example 2 describes an environment as-

sumption between the system parameter C and environment parameter-temperature

T . The assumption can be represented as A1(C, {T},F1), where

C = F1(T ) =


1, if 15 ≤ T ≤ 35

1− 2× (25− T )/100, if − 10 ≤ T < 15

Through the example above, we illustrate how to use the proposed mathe-

matical structure to model environment assumptions without ambiguity. In the two

scenarios S1 and S2, we notice the system parameter C is impacted by only one en-

vironment parameter-temperature T . However, in a cyber-physical system, a system

parameter is often impacted by multiple environment parameters. For instance, both

temperature and humidity can impact battery capacity in the the FDA Recall 2. The

following two scenarios S3 and S4 indicate the percentage of capacity C that battery

can indeed provide can also be affected by humidity [104].

• S3: when the relative humidity H is in range [10%RH, 30%RH], the battery

capacity reduces by 10%, i.e., C = 0.9.
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• S4: when the relative humidity H is in range [40%RH, 60%RH], the battery

capacity does not change, i.e., C = 1.

These two scenarios S3 and S4 describe another environment assumption

about the impact of humidity on battery capacity. We present the mathematical

structure of this assumption as A2(C, {H},F2), where

C = F2(H) =


0.9, if 0.1 ≤ H ≤ 0.3

1, if 0.4 ≤ H ≤ 0.6

These two environment assumptions A1 and A2 indicate that a system param-

eter can be impacted by multiple environment parameters at the same time, and we

define that A1 and A2 are interfered by each other.

5.2.2 Assumption Composition. Given two assumptions Ai(si, Ei,Fi) and Aj(sj,

Ej, Fj), if si = sj, we call these two assumptions interfering assumptions. For

interfering assumptions, their original relation functions that define the relationships

between a system parameter and environment parameters may need modification.

Domain experts might need to compose the interfering assumptions to be a new

assumption with re-defining the relation function F based on their domain knowledge.

We define the composition operation (⊕) to compose two interfering assumptions:

A(s, E,F) = Ai(s, Ei,Fi) ⊕ Aj(s, Ej,Fj), where E = Ei ∪ Ej, and Dom(F) = E

Noting that defining a new relation function F to replace F1 and F2 is per-

formed by domain experts. For instance, based on the domain knowledge described

in [28], [104], [103], we use a simple piecewise function F3(T,H) = min(F1(T ),F2(H))

to indicate the relationship between the system parameter C and both environment

parameters T and H in the Example 2. With the new relation function F3, we can

composite A1 and A2 to be a new assumption A3(C,E3,F3) = A1(C, {T},F1) ⊕
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A2(C, {H},F2), where E3 = E1 ∪ E2 = {T,H}, and

C = F3(T,H) =



0.9, if 5 ≤ T ≤ 35 ∧ 0.1 ≤ H ≤ 0.3

1, if 5 ≤ T ≤ 35 ∧ 0.4 ≤ H ≤ 0.6

1− 2(25−T )
100 , if − 10 ≤ T < 15 ∧ 0.1 ≤ H ≤ 0.3

1− 2(25−T )
100 ), if − 10 ≤ T < 15 ∧ 0.4 ≤ H ≤ 0.6

During the development of a cyber-physical system, there will be many en-

vironment assumptions made by domain experts. With the proposed mathematical

structure to mode assumptions, we can easily filter the interfering assumptions out.

Then by preforming the composition operation iterative, we can avoid interference

among different assumptions on the same system parameter, which will help to reduce

the workload for validation and formal verification.

5.3 Integrating Assumption Models with System Model

To validate and verify assumptions, we can not just validate and verify the

assumptions themselves. We need to validate and verify the system with these as-

sumptions to ensure the safety. Therefore, we need to integrate assumption models

with system models to enable the validation and verification. In M-CPS domain, it

is important that engineers and medical staffs can understand M-CPS models eas-

ily and validate them through user-friendly simulation. Noting that statechart has

high remembrance to disease and treatment models, can be easily understood by field

professionals, is executable, and can be indirectly verified, we hence transform the

mathematical model of environment assumptions to statecharts. We choose Yakindu

statechart tool. Yakindu is an open-source tool kit based on the concept of state-

charts. It has a well-designed user interface, provides simulation and code generation

functionalities, and hence enables rapid prototyping and validation with field profes-
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sionals.

5.3.1 Transforming Assumption Models to Statecharts. The interference

among multiple assumptions on the same system parameter increase the difficulty

of transforming mathematical assumption models into statecharts. We first perform

composition operation to compose assumptions and remove their interference. For

the transformation purpose, we can then assume all assumptions A ∈ A are non-

interfering. For each non-interfering assumption A(s, E,F) ∈ A, we use an inde-

pendent sub-statechart in an orthogonal state to represent the assumption. If F is

piecewise function, for each piece Fi in the F , we create a state Sd with entry action

s = Fi and add a transition from the initial state to state Sd with guard Dom(Fi)

to represent the system parameter’s corresponding change under the environment

condition. If F is not a piecewise function, treating F as a whole piece and fol-

low the same steps described above. For all states in the sub-statechart except the

initial state, we add transitions back to the initial state with guard true to enable

the statechart capturing environment conditions. Algorithm 8 depicts the transform

procedure. Example 3 illustrates how we apply Algorithm 8 to transform A3 to a

statechart.

Algorithm 8 Transform Assumptions to Statecharts
Input: A system’s assumption set A.
1: Create a statechart
2: Add a orthogonal state named Assumptions to the statechart
3: for each Ai(si, Ei,Fi) ∈ A do
4: Add a sub-statechart sti to the orthogonal state–Assumptions
5: Add the initial state InitState to sti

6: for each piece Fij
of Fi do

7: Add a state sdj to sti with entry action si = Fij

8: Add a transition Tj from InitState to sdj with guard Dom(Fij
)

9: Add a transition from sdj to InitState with guard ¬Dom(Fij
)

10: end for
11: end for

Example 3. To transform A3 in Example 2, we create the statechart Environment
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that contains an orthogonal state Assumptions. To represent A3, we add a sub-

statechart batteryassumptions containing an initial state Init_State to the or-

thogonal state Assumptions. For r13 ∈ R3, we create state r13 with entry action

c = 0.9, add a transition from state Init_State to r13 with guard T >= 15 && T <=

35 && H >= 0.1 && H <= 0.3, and set the priority of the added transition as 1.

According to the Line 9 in Algorithm 8, we also add a transition from state r13 back

to Init_State with guard true. Similar procedures can be taken for the rest depen-

dencies in A3.

Figure 5.2. Assumption Statechart
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5.3.2 Integrating Assumption Statecharts with System Model. To inte-

grate assumption statecharts with system model, we model the interactions between

assumption statechart models and system statechart models with following rules:

• Integration Rule 1. For each system parameter s, declare an event es to

implement the interaction.

• Integration Rule 2. For each state in the assumption statechart model, if it

changes the value of a system parameter s, raise the event es in the state’s entry

action.

• Integration Rule 3. For the system statecharts, modify it by the followed

rules.

– Integration Rule 3.1. For each transition T (G,A), if its guard G or

action A involves a system parameter s, G = G && es.

– Integration Rule 3.2. For each state, if its action involves a system

parameter s, replace the guard of all its incoming transitions {Ti(Gi, Ai)}

by Gi = Gi && es.

We integrate the assumption statechart shown in Fig. 5.2 with the medical

ventilator statechart model in Fig. 5.3. and Fig. 5.4 shows the integrated system

statechart model. In particular, based on Integration Rule 1, we declare an event

upC for the battery capacity c. According to Integration Rule 2, we raise the event

upC in the entry action of all states in the sub-statechart batteryassumptions ex-

cept state Init_State. In the ventilator model, there are two transitions involving

the battery capacity c: transition T1(G1, A1) from state Monitor to state OutPower

and the self-loop transition T2(G2, A2) of state Monitor, where G1 = [c <= 0] and

G2 = [c > 0]. Based on Integration Rule 3.1, the two transitions’ guards are set as



95

G1 = [c <= 0 && upC] andG2 = [c > 0 && upC]. The only one state involving battery

capacity c in the ventilator model is Monitor, which has three incoming transitions:

transition T2(G2, A2), transition T3(G3, A3) from state Battery_Control, and tran-

sition T4(G4, A4) from state Power_Low, where G3 = [true] and G4 = [true]. The

guard of transition T2 has been updated, hence we just change guards of transition

T3 and T4 as G3 = [upC] and G4 = [upC] by applying Integration Rule 3.2.

5.4 Medical Ventilator Case Study

In this section, we perform a case study on the recalled medical ventilator

scenario given in the beginning of the Chapter. We demonstrate the differences of

two models shown in Fig. 5.3 and Fig. 5.4.

5.4.1 Validation of System Models. We define a safety criteria as: the ventilator

must raise a low power alarm before shutdown. In the system statechart models shown

in Fig. 5.3 and Fig. 5.4, the safety criteria is expressed as: the state B_Low_Alarm

must be activated before state ShutDown’s activation.

We take the scenario S2 and S4 in Example 2, i.e., −10 ≤ T < 15∧0.4 ≤ H ≤

0.6, as an example to show the validation of medical ventilator models with/without

physical environment assumptions. The simulation results show that: (1) the safety

criteria fails in the model without environment assumptions as shown in Fig. 5.5; and

(2) the criteria is satisfied in the model with assumptions as shown in Fig. 5.6.

5.4.2 Formal Verification of System Models.

For safety critical Medical Cyber-Physical Systems, validation is not adequate

for guaranteeing their correctness and safety, and formal verification is required. In

this paper, we use the Y2U1 tool [46] to transform system models represented by

1The Y2U tool is available at www.cs.iit.edu/~code/software/Y2U/index.html.

www.cs.iit.edu/~code/software/Y2U/index.html
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Yakindu statecharts to UPPAAL timed automata for formal verification.

The UPPAAL models transformed from Yakindu statechart models by the

Y2U tool are shown in Fig. 5.7 and Fig. 5.8. The safety criteria can be checked by

the following formula in UPPAAL: A[ ] Battery.ShutDown imply PLF == true.

The verification results also show that: (1) the criteria fails in the model without

considering environment assumptions (Fig. 5.7); and (2) the criteria is satisfied in the

model with assumptions (Fig. 5.8).

5.5 Summary

In this Chapter, we have presented an approach to model and integrate as-

sumptions associated with constant variables (unspecified assumptions) into system

design models for validation and formal verification. We develop a mathematical as-

sumption model and composition rules that allow domain experts to explicitly and

precisely model environment assumptions. Algorithms are then developed to inte-

grate mathematical assumption models with the system model so that the safety of

the system can be not only validated by both medical and engineering professionals

but also formally verified by existing formal verification tools. We also use a FDA

recalled medical ventilator scenario as a case study to show how the mathematical

assumption model and its integration in system design may improve the safety of the

ventilator. We believe this approach can be used in the design of other safety-critical

cyber-physical systems.
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Figure 5.3. Medical Ventilator Model without Environment Assumptions
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Figure 5.4. Medical Ventilator Model with Environment Assumptions
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Figure 5.5. Simulation Result of Ventilator Model without Assumptions
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Figure 5.6. Simulation Result of Ventilator Model with Assumptions

Figure 5.7. Formal Model without Assumptions
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Figure 5.8. Formal Model with Assumptions
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CHAPTER 6

CONCLUSION

For a cyber-physical system, its execution behaviors are often impacted by its

operating environment. However, the assumptions about a cyber-physical system’s

expected environment are often informally documented, or even left unspecified in

the system design. Unfortunately, such unspecified environment assumptions made

in safety-critical cyber-physical systems, such as medical cyber-physical systems, can

lead to catastrophes. This thesis studies the issues of unspecified assumptions and

develops an unspecified assumptions management framework to identify unspecified

assumptions, facilitate domain experts to perform impact analysis on the failures

caused by unspecified assumptions, and explicitly model and integrate unspecified as-

sumptions into system design models for validation and formal verification. We first

present the design and implementation of a tool called UACFinder that can automat-

ically extract unspecified assumptions associated with constant variables, frequently

read/write variables, and execution patterns from system design models. However,

the number of unspecified assumptions discovered from system design models can

be enormous. It may not always be feasible for domain experts to identify the most

safety-critical ones at different system development phases. Neither it is always neces-

sary to validate all of them. Therefore, we present a Failure Mode and Effects Analysis

(FMEA) based approach to facilitate domain experts to conduct impact analysis on

unspecified assumptions. In addition, the framework also provides a model for encod-

ing assumptions in a machine-checkable format and composing different unspecified

assumptions. Algorithms are also developed to integrate the assumption models with

system design models so that system safety properties associated with assumptions

can be not only validated by domain experts but also formally verified by existing
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formal verification tools.

Case-studies are also conducted on representative system models to demon-

strate how UACFinder extracts unspecified assumptions from system design models,

and how the prioritizing approach based on FMEA facilitates domain experts to ver-

ify the appropriateness of identified assumptions. In addition, case studies are also

conducted to demonstrate system safety properties may be improved by modeling and

integrating unspecified assumptions into system models. The results of case-studies

indicate that the proposed unspecified assumptions management framework can iden-

tify unspecified assumptions, facilitate domain experts to verify the appropriateness

of identified assumptions, and explicitly specify the many unspecified assumptions

that caused defects in these systems.

Beyond the scope of this thesis, there are several open challenges.

• In the future work, we need to collect and study more software-related medical

device recalls to find out or confirm the detailed root causes of software failures

in medical device recalls. By conducting analysis of the root causes, we hope to

identify the potential hazards, safety requirements and assumptions, and risk

mitigation techniques and strategies to design the next generation of devices

and prevent re-occurrence of similar adverse events in the future.

• As the UACFinder also provides traces where constant variables, frequently

read/updated variables, and frequently executed actions occur, we can potentially

use the information to perform impact analyze on element changes, and identify

what needs to be modified to realize an element change. In addition, this

thesis only focuses on potential unspecified assumption carriers in the forms

of constant variables, frequently read/updated variables, and frequently executed

actions, there may be other forms of carriers that associate with unspecified
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assumptions, which need more investigations in future.

• It is possible that certain properties fail to hold during model verification. In

this case, being able to trace back to the unspecified assumptions that causes

the failed properties is important and needs to be further studied.
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