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AN EXPERIMENTAL STUDY OF EXPECTATION FORMATION

BY RICHARD SCHMALENSEE!

This paper reports on an experimental study of expectation formation and revision in a
time series context. In an adaptive expectations framework, it is shown that the speed of
adjustment seems to fall in turning point periods. Expectations are considered as probability
density functions, and a scoring system is devised and employed that gives subjects an
incentive to report a measure of the dispersion of these functions. This measure, which is
inversely related to the confidence with which expectations are held, seems to be inversely
related to past forecasting performance.

i. INTRODUCTION

THIS PAPER REPORTS an empirical exploration of the way individuals form and
hold expectations about future values of time series variables. In the application
of economic models in which expectations about the future play a major role in
determining behavior, these expectations are rarely directly observable, and the
econometrician is generally forced to assume that a technical rule generates
expectations as a simple function only of past observations. One way to see what
sort of technical rules make sense in such applications might be to attempt to
use this indirect approach to discriminate among possible functional forms.
Usually, however, this is computationally burdensome and not terribly revealing.
Another approach, currently receiving attention, involves direct analysis of real-
world expectations data.? A third approach, and the one followed here, is to create
and analyze an experimental situation in which the rule followed must be tech-
nical because no information other than the past history of the time series in
question is available.

The main reason for the attractiveness of the experimental approach here.
however, lies in the two aspects of expectation formation with which this study is
principally concerned. The first of these concerns the influence of turning points
in a time series context. The basic hypothesis is due to F. M. Fisher [9, p. 48]:

... a plausible way for decision makers to behave when frequent policy revisions are costly
is to pay attention (perhaps unconsciously)...to the turning points in the variable or
variables whose future behavior they desire to predict. We argued that this was plausible
because turning point years are interesting years in economic time—they contain informa-
tion as to the general course of the variable in question. Further, they stand out—they
subconsciously suggest themselves to the eye and the mind of the decision maker.

'I am indebted to Jacques Dréze, Richard Emmerson, John Hooper, Wolfhard Ramm, Dennis
Smallwood, and a referee for helpful comments, to the University of California, San Diego, Depart-
ment of Economics and the Academic Senate Committee on Research for financial support, and to
Harold Nelson for assistance with the U.C.S.D. version of the Econometric Software Package. I would
also like to thank those who commented on an earlier version of this study when it was presented to
seminars at the University of California, San Diego, and the University of Minnesota, and at the
1971 Winter Meetings of the Econometric Society in New Orleans. I, of course, retain responsibility
for any shortcomings that remain.

2 See, for instance, Hirsch and Lovell [16] and Turnovsky [25].
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The notion that turning point periods are special has not been much explored;
I am aware of no empirical studies relying on this idea except those presented by
Fisher in [9). '

Fisher tested his hypothesis by means of an experiment in which the costs of
making decisions were large.? It is of some interest to see if turning points are also
special when the costs of decision making are small. We investigate this point
below. We also see if turning points still seem to stand out when explicit account
is taken of the possible operation of more commonly assumed expectation for-
mation mechanisms. As discussed below, it is convenient for these purposes to
use Fisher’s time series.

The second aspect of expectational behavior with which we are concerned
focuses on the form in which expectations about the future are held. The basic
concept was stated clearly by J. R. Hicks [13, p. 125] in 1939:*

.. people rarely have precise expectations at all. They do not expect that the price at which
they will be able to sell a particular output in a particular future week will be just so-and-so
much ; there will be a certain figure, or range of figures which they consider most probable,
but deviations from this probable value on either side are considered to be more or less
possible.

The modern theory of behavior under uncertainty certainly responds to this point;
there is a large and rapidly expanding literature on behavior under uncertainty,
assuming that information about the future can be described in terms of subjective
probability distributions. It is by now universally recognized that parameters of
these distributions other than the mean can affect behavior in important ways.
In order to apply models of choice under uncertainty to real situations in a dynamic
context, it is clearly necessary to understand what determines at least the location
and dispersion of individuals’ subjective distributions.

Yet as far as I know, empirical studies of expectation formation have all persisted
in describing expectations in terms of a single number, corresponding to the location
parameter of the relevant subjective distribution. No attempt has been made
heretofore to measure a dispersion parameter, corresponding to the confidence
with which expectations are held, or to investigate the determinants of such
parameters. A first step toward filling this gap is taken here. It clearly requires an
experimental approach, since no published expectations series has associated with
it any index of confidence.

The next section describes the experiment conducted, the data it generated, and
the basic notation employed in the remainder of the article. We then examine the
determination of the experimental subjects’ best estimates, their point expectations.
In Section 4, we analyze the confidence attached to those forecasts. The article
concludes with a brief summary of our findings and a discussion of their im-
plications.

Results of experimental studies are not, of course, on a par with those obtained
by analyzing the actual behavior of economic actors. The experimental situation
must, to some extent, be artificial. The subjects studied often differ systematically

3 The experiment and the tests based on it are described in Fisher [9, Ch. 3).
* For an amplification of this same point in more modern language, see Hicks {14, p. 70].
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from the real world actors whose behavior is of interest.’ It is, however, difficult to
judge the importance of these problems in any particular study—including this

one.
= 2. THE EXPERIMENT

A total of twenty-three subjects participated in this experiment in January, 1971.
Ten freshmen and sophomores taking the introductory economics course at the
University of California, San Diego, composed the first group of subjects, while
the second group, which participated one week later, consisted of twelve graduate
students in economics and the spouse of one of these students. The subjects were
competing for moderate (up to $10) cash prizes. It was decided to pool the two
groups because their average performances, using the scoring system described
below, did not differ noticeably.®

Each subject was given twenty-five observations on the deflated British wheat
price, beginning in 1857. This series, shown in Figure 1, was taken from Fisher [9,
pp. 66-7] and was the same series used in Fisher’s experiments. The subjects were
told that the years were not 1901-1925, but that the series gave actual wheat
prices, corrected for cost of living changes, for a country with free trade in wheat
and large imports, over a period with no major political changes. The subjects
were given graph paper on which these observations had been plotted against
time. Five year averages for years 1-5, 2-6,...,21-25 were also presented and
plotted.

The subjects were first required to write down their best estimate, call it F, of the
average of this series for the five-year period 26-30. They were also asked to bracket
their forecast by writing down a second number, call it B, such that they felt it
likely that the true average for this period, 4, would lie between (F — B) and
(F + B).

Prizes were awarded to those with the lowest cost, where cost had the following
three components. The first was the absolute value of the difference between
F and 4. The second component was twice B. The third component was zero
unless 4 was below (F — B) or above (F + B), in which case it was ten times the
amount by which A4 fell short of (F — B) or exceeded (F + B). They were told,
for reasons that will become clear below, that a good rule of thumb was to pick
the range B so that they felt the odds were about four to one that the actual average
would lie within the indicated interval. The scoring system was discussed until
all subjects said they understood it. '

After the forecasts for the period 26-30 were completed, the actual price for
year 26 and the five year average for the period 21-26 were announced. It was
suggested that these quantities be recorded in the spaces provided on the

5 See Friedman [10] for a discussion of these issues.

® Ignoring the graduate student spouse, the mean cost achieved by the second group over the
twenty-five trials considered below exceeded that of the first by a tiny amount. (This implies slightly
worse performance on the part of the graduate students.) The 1 statistic associated with this difference
was only .109, however. Classifying the spouse as a graduate student, the corresponding ¢ statistic
was .361, while when she was placed with the first group, a ¢ statistic of .201 was obtained. As her

cost was only 1.36 sample standard deviations away from the overall mean, no obvious argument for
excluding her from the sample was present.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



800 T T T T T ™ T T T T L
|

|

750 l———SAMPLE PERIOD —=
700
650

600

I
I
I
I
I
!
I
I
I
]
Ay i
I
[

|
|
|
[
|
|
|
I
I
|
]
|
550} !
|
|

500

4501

400~

350 ] ] 1 1 1
0 5 10 15 20 25 30 3 40 45 50 55 60

FiGuRE L.

answer sheet and that they be plotted on the graph paper. Subjects were then asked
to forecast the five-year average for years 27-31 and to attach a range to their
forecast as before. The experiment continued in this fashion, a year at a time, until
forecasts for the period 53-57 (1909-1913) were made.

Each subject’s total cost was thus based on twenty-eight forecasts and ranges.
Various remarks during the experiment indicated, however, that several subjects
had not really understood what was going on at the outset of the exercise. Conse-
quently, we have chosen to consider only the last twenty-five observations for
each subject, yielding a grand total of 575 observations, though the third forecasts
and ranges have been employed as lagged values in various regressions reported
below.

Let A, and 4, be the actual price in year ¢ and the actual five-year average for
the period beginning with year ¢, respectively. A subject’s forecast for the five-year
period beginning in year ¢ is denoted F,, and the range attached to it is denoted
B,. Let C, be the cost per unit of B,, which equals two in our experiment, and let
C, be the cost per unit distance that A4, lies outside the interval [(F, — B,), (F, + B))]l.
This latter cost equals ten in our experiment.

We assume that each subject maximizes expected utility in the face of a sub-
jective density function g(4,), with distribution function G(4,). The Appendix
analyzes the optimal choice of F, and B, under these conditions; the two most
important results are the following. First, if g(4,) is symmetric about the point
A, = p, the subject should set F, = y, regardless of his attitude toward risk.
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Second, if the subject is neutral toward risk, the following condition should be
satisfied regardless of the shape of g(4,):

1) [l — G(F + B)] + [G(F, — B)] = C,/C,.

That is, the subjective probability that the actual average will lie outside the
indicated interval should equal the ratio C,/C,, .20 in our case, in order to minimize
expected cost.

The assumption of symmetry of the subjective distribution would not appear
especially important, since F, can be thought of as an indicator of the location of that
distribution in any case. The assumption of neutrality toward risk is, however,
quite crucial to the analysis. Given the relatively small prizes at stake and the
small impact of any one decision on a subject’s overall cost, this assumption
seems sensible. Without a definite assumption about attitudes toward risk, of
course, there is no way to identify the parameters of the subjective probability
distribution influencing any decision. With the assumption of risk neutrality,
B, becomes a direct measure of the dispersion of g(4,), and thus an inverse measure
of the confidence attached to F,.

In order to relate this dispersion to observable quantities, like actual forecast
errors, it seemed useful to transform the B, into estimates of the standard deviations
of the subjective distributions. From standard tables, if g(4,) is Gaussidn, the
subjective probability that A, will lie outside the interval [(F, — B,), (F, + B,)]
is .20 when B, is approximately 1.28 times the standard deviation of g(4,). Thus
B,/1.28 may be used as an estimate of the subjective standard deviation of 4,.
We modified this estimate by multiplying it by \/3 to obtain a quantity S, which
corresponds roughly (the correspondence is obviously exact only if the years are
felt to be independent) to the subjective standard deviation associated with each
of the next five years. While the interpretation of S, as a standard deviation depends
on these assumptions, it should be clear that it provides a valid measure for
the dispersion of the subjective distribution regardless of the latter’s shape.

Besides the series F,, 4,, 4,, and S,, four dummy variables are employed in what
follows. By means of an auxiliary experiment, Fisher [9, pp. 53-55] identified eight
years in our twenty-five-year period that strongly appeared to be turning points
at the time the observations corresponding to them occurred. Five of these, labeled
with T’s in Figure 1, were perceived as trough years, and three, labeled with P’s in
Figure 1, were perceived as peaks. We define DTR, as a dummy variable equal to
one in the years following these perceived troughs and zero otherwise.” Similarly,
DPK, is equal to one in the years following perceived peaks and zero otherwise.
The remaining dummy variables are defined as follows:

22) DTP, = DTR, + DPK,,
@3) DTM, = DTR, — DPK,.

" 'Thus DTR, equals one only when (¢ — 1) was perceived as a trough year by Fisher’s subjects when
they saw A4,_ ;. (This was the last value of A seen by the subjects in our experiment before they recorded
F,) Fisher excluded two of these perceived troughs from further consideration for somewhat special
reasons, Some preliminary analysis was done with two versions of DTR, the one presented in the text
and one that equalled one only in the years Fisher did not exclude. Differences in results were negligible,
however, and we dropped the second version.
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3. FORECAST VALUES

In the twenty-five-year period of interest, the standard deviation of 4, was 27.69,
and the root mean squared (RMS) error of the naive model F, = 4,._, was 68.15.
Only fourteen of the twenty-three subjects achieved a lower RMS error than this
model; the mean RMS error was 65.60, the median was 62.20, and the range was
39.52 to 97.07. On the other hand, the simple correlation between 4, and 4,_,
was negative in this period, while the forecasts of twenty of twenty-three subjects
were positively correlated with A, ; the mean correlation coefficient was .3275, the
median was .3514, and the range was —.3232 to .6422. This suggests that the
subjects generally did a reasonable job of anticipating movements in A, but that
their forecasts were consistently biased; in fact, they were generally bullish.®
Pooling all 575 observations, the mean of B, = (F, — 4,) was about 7.6 per cent
of the mean of 4,. Using a simple ¢ test on B,, its mean was significantly greater than
zero at better than the .0001 per cent level. Similarly, the mean of B, was positive
for all subjects, significant at the one per cent level for sixteen, and significant at
the five per cent level for nineteen. As Figure 1 shows, 4,, and hence A4,, generally
fell after year twenty-five. These subjects, by and large, underestimated the strength
and permanence of this trend.

The basic hypothesis that underlies our investigation of the mechanism generat-
ing these forecasts differs both from that of Fisher {9] and from that underlying most
related empirical work. Fisher suggested that, because costs of decision making
are often sizeable, important alterations in expectations take place only in turning
point periods. Most applied econometric work, on the other hand, assumes that
some adaptive or extrapolative expectation formation mechanism operates in all
periods, whether or not turning points occur. When decision making costs are
modest, as they are in our experiment, it seems sensible to follow the second ap-
proach by allowing expectations to change in non-turning point periods according
to some simple mechanism. On the other hand, if Fisher is right and turning point
periods are special, we would expect a different mechanism to operate in such
periods. In the remainder of this section, therefore, we apply alternative standard
expectation formation mechanisms to all years and then investigate differences
in behavior in turning point periods.

The most commonly encountered models of expectation formation are the
Metzler [18]-Ferber [8] extrapolative model,

(3.1 Fr=a+ AalB+y(A,-y — A0 A L) + &,
in our notation, and the Cagan [3]-Nerlove [20, 21] adaptive model,
(3.2) F—F_y=a+y[BA-,~ F]+e.

(Note that the value of 4,_; was the only new information given the subjects
between their decisions on F,_; and on F,.) In order to compare these two basic

8 This characteristic would appear to set these subjects apart from real-world business forecasters;
see Hirsch and Lovell [16, pp. 62-73].
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specifications, they were first rearranged so that (F, — 4,_,) appeared on the left-
hand side of both, yielding

(33) Fr - Al-l =%+ y[Al—l(Ax—l - AI—Z)/AI—Z] + (B - ])Al—l + g
and
G4 F—-A =a+0~9F-,— A, ]+yB—- DA, + e

To remove heteroscedasticity, all terms in these equations were divided by A4, _;,
by F,_,, and by [4,_,F,_,]"% When these models were estimated using the data
for each individual subject, the adaptive specification had a lower standard
error for twenty-one out of twenty-three using the first two scaling factors and for
twenty out of twenty-three subjects using the third. If the two models were really
equivalent for all subjects, so that the probability was .50 that either would perform
better for any particular subject, the probability of either performing better in at
least twenty out of twenty-three tries would be about .0002. These comparisons
led us to drop (3.1) from further consideration.

Glejser’s [11] test for heteroscedasticity was applied to the three versions of the
linear adaptive model (3.4) by regressing the absolute value of the residual vector
on A,_, and F,_, for each version for each subject. At the ten per cent level, the
hypothesis of no relation between these variables and the size of the residual could
be rejected for only one subject when F, _ | was used as the deflator, while the version
using [F,_,A,_,1'* produced three rejections, and that using A,_, produced
five rejections. Only the last of these suggests difficulties.” As a further check,
Durbin’s [7] large sample test for first-order serial correlation in the presence of a
lagged dependent variable was applied to all these regressions.'® Again working
at the ten per cent level, the null hypothesis of serial independence was rejected
once for the versions using F,_, and [F,_,4,_,]"? as deflators and twice when
A, -, was employed. These tests indicate that all three versions of (3.4) are relatively
sound. Because it seems the soundest, in what follows we work exclusively with the
version in which division by F,_, is used to remove heteroscedasticity.

Logarithmic versions of the-extrapolative and adaptive models are

(3.5) In(F]=1In[ad,_ ]+ yIn[4,_,/4,_.] + ¢,

and

(36) In[F/F_d=In[e]+yIn[fA,_\/F_]+¢&.

As above, these were rearranged so they had the same dependent variable, yielding

37 In[F/A-J=In[e] +yIn{4, /A, 5] + &,

° If the null hypothesis were true for all subjects and if the tests were independent so that the proba-
bility of rejecting the null hypothesis at the ten per cent level were .10 for all subjects, the probability
of observing at least five rejections in twenty-three tries would be .0731, while the probability of
observing at least three rejections would be .408.

'° Durbin [7] proposes two asymptotically equivalent tests; we used the two-sided test based on his
equation (11). As the small sample properties of this test are not known, its use here is justified only
by the absence of a simple alternative.
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and
(3.3) In{F/A,]=In[p]+ (1 - y)In[F_,/4,.,] +&.

Once again the adaptive model performed much better than its rival; equation
(3.8) had a smaller standard error than (3.7) for twenty-one of the twenty-three
subjects, and the log-linear extrapolative model (3.5) was dropped from further
consideration. The tests for heteroscedasticity and autocorrelation discussed
above were also applied to equation (3.8). At the ten per cent level, the null hypo-
thesis of homoscedasticity was rejected for four subjects, and the null hypothesis
of no first-order serial correlation was rejected for one subject. Both these results
support the basic soundness of the equation.!!

In order to compare equation (3.4) (divided by F,_,) and equation (3.8), the
squared correlation coefficient between the predicted and actual values of F
was computed for both specifications for all subjects. The linear model, which
involved three parameters, performed better than the logarithmic model, which
involved only two parameters, for only eight of the twenty-three subjects. The
differences were generally tiny, however: the linear model had a slightly larger
mean R? (8354 versus .8341) and a slightly lower median (.8755 versus .8770).
Both models perform well, considering that individuals’ behavior if being modeled,
and there seems very little difference between them. We consider specifications
based on both in what follows.

From the very nature of the experimental situation, all subjects received ap-
proximately the same stimuli. Consequently, one might expect the disturbance
terms in the various subjects’ equations to be contemporaneously correlated.
As an heuristic check on this possibility, Bartlett’s [1] test for orthogonality was
applied to the contemporaneous residual covariance matrices calculated from
(3.4) (divided by F,_,) and (3.8).!> Using the normal approximation to the chi-
square (with 253 degrees of freedom) yielded normal deviates of 5.68 for (3.4)
and 3.80 for (3.8). Both strongly suggest the presence of contemporaneous cor-
relation, and they thus imply that efficiency would be gained by applying Zellner’s
[26] generalized least squares estimator for “‘seemingly unrelated regressions.”
This method is consequently applied in what follows.

Equation 1 in Table I exhibits the coefficient means (across subjects) and the
associated ¢ statistics produced by GLS estimation of (3.4). For this specification,
and for all others shown in Table I, Zellner’s [26] test for aggregation bias rejected
the hypothesis that the coefficients are the same for all subjects at at least the .0l
per cent level. Hence, the means of the individual estimates are presented as
summary information.'® For all three coefficients, F tests rejected the hypotheses

' Under the assumptions of footnote 9, the probability of obtaining four or more rejec(lons of the
nuil hypothesis at the ten per cent level is .193.

'2 Since the small sample distribution of the estimated covariances depends in a complicated way
on the correlations among the independent variables in the various equations (see, for instance, Theil
[24, pp. 321-322)), this test is not exact.

'3 These statistics may be viewed as inefficient estimates of the means of the distributions of the
coefficients in the population from which our subjects are a sample. See Swamy [23, pp. 147-150] for
an (asymptotxcally) efficient estimator of such means; his approach was not employed because it would
have required inversion of several 575 x 575 matrices.
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that the coefficient is zero for all subjects at at least the [ per cent level. (This was
true for all coefficients in Table I not discussed below.) The ¢ statistics associated
with the first and third mean values are small, however, because the first coefficient
was negative for twelve subjects and the third was positive for eleven, while the
second coefficient was positive for twenty-one subjects.

In the face of this, it seemed reasonable to simplify by assuming either o = 0
or § = 1 in equations designed to detect turning point effects. (This makes some
sense, of course, as o # 0 and f§ # 1 are both ways of describing the difference
between F and A in equilibrium.) Accordingly, the second and third specifications
presented in Table I were estimated. The intercept in equation 2 was negative for
only six subjects, while the second coefficient in equation 3 was negative for only
five subjects. There seems little dlﬁ'erence between these specifications, and we
analyze both in what follows.

TABLE II

SySTEM GLS ESTIMATES OF LOGARITHMIC ADAPTIVE EXPECTATION MODELS:
MEANS OF SUBJECTS’ ESTIMATES®

Independent Variables

Equation Constant DTM, DTP, In(F,_,/A,-,) DTP,In(F,_,/A,_,)

1. 01052 .6344
(.00232) (:00721)

2 01110 001416 6314
(.00255) (.00720) (.00752)

3. 01232 .008814 6137 1109
(.00254) (.00876) - (.0106) (.0524)

4. 01152 . .6230 02616
(.00237) {.00854) (0354)

*Q ities in p h are d errors. The dependent variable is In(F,/A,_,).

System GLS estimates corresponding to (3.8) are presented as equation 1 in
Table II. Again, since the hypothesis of coefficient equality across subjects was
strongly rejected for all specifications shown, means of individual estimates
are presented as summary information. Similarly, the hypotheses that either of the
coefficients are zero for all subjects were convincingly rejected. (This was again
true for all coefficients in Table II not discussed below.) The intercept was positive
for all but six subjects, and the slope was positive for all but two.

We thus have three fairly standard models of expectation formation that per-
form well for this sample of subjects and that are almost equivalent on statistical
grounds. We now examine the impact that turning points seem to have on the
parameters of these models.

Consider first equation (3.4) when f§ = 1. After years that are perceived as
troughs, one might expect forecasts to be higher than otherwise. Similarly, fore-
casts might be lower than usual at peaks. The most obvious way to model this is
to allow « to rise immediately after perceived troughs and to fall immediately
after perceived peaks. The fourth equation in Table I allows for this effect. The
mean of the estimates of the second coefficient is positive but not significantly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



different from zero. The hypothesis that this coefficient is zero for all subjects is
quite convincingly rejected, however: the F statistic with 23 and 506 degrees of
freedom is 8.07. The estimates for nine of the subjects are negative. There is thus
reasonably strong evidence that o changes at turning points, but only weak
evidence that the change is generally in the expected direction.

Equation 5 in Table I assumes that « is fixed, and it investigates the possibility
that y changes at turning points. When the actual series has been rising, adaptive
forecasts will typically be below their equilibrium values. A fall in y would thus
lead to lower predictions at peaks and, correspondingly, higher forecasts when
troughs are perceived. Again the evidence is mixed. The F statistic, with 23 and
506 degrees of freedom, corresponding to the hypothesis that the third coefficient
is zero for all subjects is a highly significant 6.03, while the mean of the individual
estimates, though it has the right sign, is not significant at any reasonable level.
Seven of the individual -estimates are negative.

Both these estimates suggest a skewed distribution of coefficients in the under-
lying population. Most of the mass of the densities seems to lie on the expected
side of the origin, but there are noticeable tails on the other side.

Equation 6 in Table I allows for the occurrence of both changes, and it supports
the second as against the first. The second coefficient, giving the mean estimated
change in o, has the wrong sign, as do eleven of the individual estimates. The
associated F statistic (2.76) is formally highly significant, but it is much smaller
than that associated with the fourth coefficient (6.23). While eight of the estimates
of this latter term are negative, the overall mean has the expected sign and is
significant at five per cent on a one-tailed test.

Let us now consider the second special case of (3.4), that in which « is assumed
zero. Equation 7 allows f§ to rise after troughs and falls after peaks, so that it corres-
ponds closely to equation 4. And, as in that equation, the estimates are mixed.
While the mcan estimate of the third coefficient is virtually zero, the associated
F statistic is 4.68, indicating that the hypothesis that the coefficient is zero for all
subjects must be rejected. The seven subjects with negative estimated values draw
down the overall mean enough to rob it of significance.

In equation 8, on the other hand, f is assumed constant while y is allowed to
fall at turning points. The second coefficient has a mean of the expected sign that is
significant at the one per cent level on a one-tailed test. Eight of the individual es-
timates are negative, and the corresponding F statistic is 6.58. If § is in fact constant,
the fourth coefficient should be a simple (but nonlinear) function of the first three
for each subject.!* These constraints were not imposed, however, and the mean of
the estimates of the fourth coefficient has the wrong sign, as do thirteen of the
individual estimates; the corresponding F statistic is only 2.78.

One possible reason for the weakness of this coefficient is that f also changes at
turning points, rising at troughs and falling at peaks. Equation 9 allows for this

4 Let b, ¢, d, and e be the four coefficients for some subject, and let ¥ be the value of 7 in turning-
point periods. Then b is an estimate of (I — y), ¢ of (y — ¥'), d of ¥( — 1), and e of (' — 7)(B — 1), so
that four coefficients are being used to estimate three parameters. The obvious constraint is
e= —cd/(l1 —b).
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possibility. Letting y’ be the value of y in turning point years, i be the value of f
in peak years, and B' be the value of § in trough years, the fourth coefficient in
equation 9 is an estimate of [y'(f* — 1) — ¥(f — 1)], while the fifth coefficient
estimates [y'(87 — 1) — y(B — 1)]. The mean estimate of the fourth coefficient
exceeds that of the fifth, as we would expect, though the ¢ statistic corresponding
to this difference is only .152. In a now familiar pattern, however, the fifth coefficient
exceeded the fourth for eight subjects, and an F test rejected the hypothesis that
these coefficients are the same for all subjects at better than the one per cent level.
On the other hand, the estimates of the second coefficient in equation 9 have all the
solidity of those in equation 8. In this specification, as in the alternative assuming
B = 1, it seems clear that y falls in turning point periods, while the evidence for a
change in the model’s other parameter is less convincing.

Finally, we come to the log linear model, (3.8). Here o and § cannot be identified
without further information, but we can allow « and/or § to rise in trough years
and fall in peak years, thus causing corresponding changes in In («f?). Equation 2
in Table II looks for such changes on the assumption that y.is constant, and it does
not find them. The second coefficient is negative for eleven subjects, and its mean is
not significant.!> In equation 3, on the other hand, « and f are assumed constant,
and y is allowed to fall at turning points. Eight of the individual estimates of the
fourth coefficient have the wrong sign, but the mean has the expected sign and is
significant at the 2.5 per cent level on a one-tailed test, and the overall F statistic
(7.89) is highly significant. We would expect the second coefficient in this equation
to be negative, since we would expect f to generally exceed one, but the overall
mean and fourteen of the individual estimates are positive. The mean is not signi-
ficantly different from zero, and the F statistic relating to the hypothesis that the
coefficient is zero for all units (2.77), while significant, is much smaller than that
relating to the fourth coefficient.

There are two possible reasons for the weakness of the second coefficient. First,
in spite of the dismal performance of equation 2, « and f§ may also be changing at
turning points. Second, if f§ is quite close to unity, changes in y will have little
effect on the intercept in (3.8). We attempted to estimate an equation like 3 but
with DTP, replaced by DTR, and DPK, in order to investigate the first hypothesis.
Unfortunately, the routine employed was unable to perform one of the matrix
inversions required to compute the system estimates. Some evidence is provided
by the ordinary least squares estimates, however. The coefficient of DTR, ex-
ceeded that of DPK, for seventeen of the twenty-three subjects, implying, as
expected, that In («f%) is generally larger in trough periods than in peak periods.
Viewing each of the twenty-three estimates as an independent trial, if the true
difference were zero for all so that the probability of the coefficient of DTR,
exceeding that of DPK, were .5, the probability of obtaining seventeen or more
“‘successes” in twenty-three trials would be .017.16 Some indirect evidence is also

5 As usual, however, the hypothesis.that this coefficient is zero for all subjects is rejected at the
one per cent level.

16 Note that this sort of reasoning cannot be applied to the system estimates, since cross-equation
dependence is explicitly present there.
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provided by equation 4 in Table II, which embodies the alternate hypothesis that,
because f is generally near unity, the intercept does not change at all at turning
points. Imposing this restriction causes the mean of the third coefficient to fall
dramatically from significance, even though only five of the individual estimates
are negative.

Still, as in the other specifications, it seems clear that y, the speed of adjustment,
generally falls in turning point periods. The other parameters may also change,
but the evidence from this sample is far from conclusive on that point.!”

4. FORECAST CONFIDENCE

Just as the subjects’ forecasts were generally biased upward, so they seemed to
have been excessively confident of their projections. As we indicated in Section 2,
if the subjects were minimizing expected cost, the subjective probability of the
actual average, 4, falling outside the interval [(F — B), (F + B)] would be .20
for all observations. Yet for 321 of the 575 observations, 4 did fall outside this
interval. The probability of obtaining at least this number of observations with
A outside the specified interval when the probability of such an occurrence is .20
is, using the normal approximation to the binomial, less than 10~°. Under this
same null hypothesis, the probability that any subject would encounter nine or
more such events in twenty-five periods is about .05, yet eighteen of the twenty-
three subjects had nine or more A’s outside the corresponding intervals.

Three explanations for this bias suggest themselves. First, it is quite possible
that our subjects.did not understand the laws of probability or their application
to the experimental situation. While this might lead to erratic behavior, however, it
is hard to see why it would lead to a persistent bias in the observed direction.
Second, as the Appendix shows, we might expect this bias if the subjects were
generally risk lovers. Finally, as inexperienced forecasters, our subjects may have
continuously overestimated their own abilities. The third of these seems as reason-
able as the second, and even if the subjects generally preferred risk for some reason,
there still may be something to be gained from analysis of changes in their level of
confidence. ’

A second important characteristic of the S, series is the extreme inertia it shows.
For 247 of the 575 observations considered, about 43 per cent, S, equalled S, _,.
That is, almost half the forecasts were written down with the same associated
range as the previous forecast.!® As there were no objective costs of changing
B (and thus S,), the only obvious explanation of this inertia is that the scoring
system, as it related to the range attached to any forecast, was so complex that
subjects were reluctant to make the mental effort of coping with it.

Because of this property of the data, we cannot treat all 575 observations on S,
as equivalent. It seems reasonable to suppose that when a change was made in

71t should be reported that a number of attempts were made to detect the effects of forecast con-
fidence (measured by (S,/A, - ,)) on the parameters of these models, but no evidence of the existence of
such influences was obtained.

'8 The median number of changes in S, per subject in twenty-five trials was fourteen, and the mean
was 14.3. The range was from four to twenty-four changes.
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S,, the new value accurately reflected perceived uncertainty. On the other hand, if
S, = S,_, it would appear doubtful that S, was the best possible estimate of the
relevant parameter of the subjective probability distribution. More likely, it was
a bad estimate, but one that was not so bad that the subject felt it worth the effort
to correct it.

We thus divide our analysis of forecast confidence into two parts.!® The first
considers models explaining S, and applies them to the 328 *‘good™ observations
on this quantity. The second part focuses on the timing of changes in S,. As will
become clear, this section does not purport to present and verify “the” definitive
theory of forecast confidence determination. Some seemingly plausible hypotheses
have been confronted with the data, but conclusive results have not been obtained.
As this is a new area of investigation, I could probably have continued to generate
hypotheses, with an eye to the data, until more impressive statistics fell from the
computer. I think, however, it is more useful to report the evidence obtained on a
first set of hypotheses.

Our basic hypothesis is that the uncertainty a subject attaches to expectations
about the future is related to the quality of his past forecasts. Specifically, we would
expect a run of large forecast errors to lead a subject to doubt his ability and thus
to increase the range attached to future forecasts. To make this notion more con-
crete, we must define “forecast error” and specify the functional form of the
hypothesized relation.

Three definitions of forecast error were examined. Letting E}, be the error of
type o associated with F,_, at the time the subject is preparing to write down
F, and S,, the simplest definition is

(4.1) E‘x',: = [F-c — A-d-

This definition implicitly assumes that each subject’s feeling about any forecast
is determined as soon as he hears the first of the five actual values to which it refers.
It does not allow for any tendency to keep track of the five-year averages, which in
fact determine his score. The second definition does allow for this:

T
[Foe = Y, Aoi/tl, <5,
k=1
(4.2) E!, = .
|Fee = Y A8l T25
k=t—4
According to this definition, forecasts written down five or more periods earlier
are compared with the corresponding actual five-year averages to judge their
accuracy. For more recent forecasts, an estimate of the corresponding average is
made using only those actual values currently available. Note that when 7 =1
these two definitions give the same measure. Finally, it might be supposed that
subjects also use their current expectations about the future to evaluate recent

19 The general model of Dagenais (6] offers a conceptually more satisfactory approach to this sort
of situation. Computationally, however, it is extremely burdensome, and, for that reason, it was not

employed.
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forecasts. As these expectations are reflected in the current forecast, we are led to
our third definition:

F_.— [(5 —OF + ), A,_k:I/S, 7 <5, .
k=1

Eb

{844

43 E.=
25

Suppose for some particular subject and some particular period ¢t that S, # S,_,
=8_2=...=8_4 # 8_4—,. It seems logical that S, — S,_; should reflect
all the relevant evidence on the subject’s forecasting ability that has been ac-
cumulated in periods ¢t — 1, t — 2,...,¢t — k. In particular, we assume that the
quantity

k k 1/2

(4.4) D(e, 2), = I:Z AYEER S S li":l : 0<A<1; a=ugab,c,
i=1 i=1

summarizes this information. D(«, 1), is the maximum likelihood estimate of the

standard deviation of E}, in periods t — 1 tot — k when 4 = 1 and E* is assumed

normally distributed with known mean zero. For smaller values of 1, more weight

is placed on more recent periods, and for A = 0, D, = E} .

We initially assumed, in the spirit of adaptive models of expectation formation,
that our subjects sought to ‘establish some desired relation between D{a, 2), and
S,-1.When S, # §,_,, we assumed that the new uncertainty measure was generated
according to

(4.5) S = 8- = Y{[a + BD(e, 2),] — Sl—l} + g
or equivalently,
(4.6) Sy =ya + yBD(, '{)x + (1 =9S- + &

where g was assumed homoscedastic and serially independent. Fifteen estimates
of (4.6) were computed for each subject, assuming o = a,b,c and 1 = 1.0, .75,
.50, .25, 0.0.

Selection among the (x, 4) pairs was made on the basis of sums of squared
residuals. Table III shows the frequency with which each pair of values was thus

TABLE 111
DISTRIBUTION OF NONLINEAR PARAMETER ESTIMATES*
P!

Error Type () 1.0 15 .50 25 0.0 Total
a 1 0 1 1 1.5% 4.5
b 0 0 2 1 1.5° 4.5

c 7 1 0 1 5 14

Total 8 1 3 3 8 23

* Number of subjects for whom the indicated {, 2) pair minimized the sum of squared residuals in (4.6).
® Since (a, 0.0) and (b, 0.0) are identical, the threc subjects for whom this was the best specification were
simply split between the two error types.
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chosen. Notice that @ = ¢ was best for the majority of subjects; if the true proba-
bility of its being best for any one subject were £, the probability of its being selected
fourteen or more times out of twenty-three trials would be about .007. Considering
all values of 2, the sums of squared residuals with error types a and b could be
compared ninety-two times, and type b was superior in fifty-two cases. Under the
obvious null hypothesis, the probability of fifty-two or more “successes” is about
.106, indicating that @ = b was generally a better specification than o = a. In
115 a — ¢ comparisons, ¢ had the lower sum of squared residuals seventy-three
times, while it was superior in seventy-one b — ¢ comparisons. Under the obvious
null hypothesis, the probability of seventy-one or more successes is only about
.006; this reinforces the impression of type c’s superiority.

This is in fact what we had expected. The specification & = ¢ assumes that subjects
use all available information in evaluating past forecasts. When o = a, they
are assumed to use very little, while « = b is intermediate in this respect. It is
comforting that the subjects generally seemed to use all the information at hand.

For the twenty-two subjects for which they could be calculated, F statistics were
computed treating (c, 1.0) and (c, 0.0) as null hypotheses and formally assuming
that one restriction was relaxed in estimating any alternative specification. These
computations strongly indicated the flatness of the likelihood functions for most
subjects. In the fifteen cases where (¢, 1.0) was not the preferred specification, it was
rejected only twice at the ten per cent level, both times in favor of (c, 0.0). In the
seventeen cases where (c, 0.0) was not preferred, it was rejected only three times at
this same level, always in favor of (c, 1.0). While these are hardly rigorous tests,
they do add to the evidence suggesting that we would lose little by restricting our
attention to (c, 1.0) and (c, 0.0). In simple pairwise comparisons, the first of these
outperformed the second for eleven subjects, so it is not obvious how one would
choose between them.

Several other aspects of these estimates of (4.6) require comments. The coefficient
of D, was positive, as expected, for eighteen subjects, and it was significant at the
ten per cent level on a one-tailed test for fourteen.?® Under the obvious null
hypotheses, the probabilities of obtaining at least that many successes are .0053
and <.0001, respectively. The basic hypothesis that past performance influences
confidence thus receives strong support. Further, this specification appeared free
of heteroscedasticity ; Glejser’s [11] test, applied as in the last section, rejected the
null hypothesis at the ten per cent level for only three subjects.

There were problems with this specification, however. Durbin’s [7] large sample
test for serial correlation was applied to the preferred regressions for each subject.
The estimated variance of the estimated coefficient of the lagged dependent
variable was too large to permit computation of the test statistic for five subjects,
but for ten of the remaining eighteen, the null hypothesis of no first-order serial
correlation was rejected at the twenty-five per cent level on a two-tailed test. For
seven subjects, this hypothesis was rejected at the five per cent level. Even though
the small sample properties of this test are unknown, these results required allow—
ance for the possibility of serial correlation.

A secand problem was the relative weakness of the coefficient of the lagged

20 Degrees of freedom were not adjusted to take into account the estimation of « and A,
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dependent variable.2! This coefficient was negative for ten subjects, though it was
positive and significant at the ten per cent level on a one-tailed test for seven.
While one might suspect that the latter result merely reflected bias in the presence
of serial correlation, this coefficient was significant at the ten per cent level for only
one of the ten subjects for whom the null hypothesis of serial independence was
rejected at the twenty-five per cent level. Still, it seemed clear that we must allow
for the possibilities that y = 1 and that serial correlation is present for some
subjects.22 -

Consequently, a second round of estimates was calculated. To ensure that
hypothesis tests would have some power, we dropped the five subjects who made
fewer than ten changes in S,. These subjects accounted for six of the seven of our
328 total changes for which k, as in (4.4), was ten or greater,.but they contributed
only five of the thirty-five changes for which 3 < k < 7. Three of these subjects
had estimated values of 1 not equal to zero or one; it seems difficult to interpret
their disproportionate representation in this category. Finally, only one of the
five excluded subjects had a negative coefficient of D,.

The following equations were estimated for each subject with 4 = 1.0 and with
1=00:

4.7a) S, = o+ BD(c, ), + &,
4.7b) S, =ay + ByD(c, A, + (1 —S,—, + &,
(47¢) S,=oa+ fD(c,A), + u,
(47d) S, =ay+ ByD(c,2), + (1 — p)S,—; + u,,

where g, is assumed homoscedastic and serially uncorrelated, while u, is assumed
to be generated by a first-order autoregressive process with serial correlation
coefficient p. This parameter was estimated by the Cochrane-Orcutt [4] iterative
technique. As this approach drops the first observation, that observation was also
dropped in estimation of (4.7a) and (4.7b) to ensure comparability.2?

For each value of 4, simple F tests were used to select the preferred specification.?*

21 Of course, the well known small sample bias in this quantity, even in the absence of serial cor-
relation, makes this finding less than completely surprising.

22 One might suspect that large values of y and small values of Z would go together, as both indicate
heavy weighting of the most recent information. No such association was found in this sample, how-
ever. There was a tendency for subjects making more changes in S, to have smaller estimated y's: the
simple correlation coefficient was significant at the ten per cent level. No significant correlations
involving /4 were observed in this sample.

23 Estimates of (4.7a) with the addition of DP7, were also computed to see if turning point effects
could be detected here. For 2 = 1.0, ten of the cnghteen coefficients of this variable were negative, and
four of these were significant at ten per cent on a two-tailed test. (As there were no a priori reasons
to expect this coefficient to be of either sign, a two-tailed test is appropriate.) When 2 = 0.0, a negative
sign was encountered in twelve trials, and three of these were significant by the same test. These results
suggested that subjects may have been more confident just after turning points, but the evidence
seemed too weak to pursue the point.

2% In the first round of tests, {4.7a) was treated as the restricted mode), and each of the other three
were used as the unrestricted model. If none of the restrictions could be rejected at the ten per cent
level, the simple model was selected, while if only one of the other models was superior on this basis, it
was chosen. If two or more of the tests were significant, another round of similar tests was run. Where
models (4.7b) and (4.7c) were equivalent under this procedure, the one with the smaller standard error
(deducting one degree of freedom in (4.7c) to allow for the estimation of p) was chosen.
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Following Bischoff [2], the restriction p = 0 was treated as if it were linear. Some-
what surprisingly, (4.7a) was sclected for eight of the eighteen subjects with 1 = 0
and for 10 when A = 1. Even more surprisingly, in view of the results of Durbin’s
test, (4.7d) represented a significant improvement over (4.7b) only once for each
value of 4. The preferred specifications for the two values of A were compared, and
the one with the smaller standard error was chosen.?® (In most cases, differences
were minor, especially between (4.7b) and (4.7c).) The results are shown in Table
IV; the statistics shown for specifications (4.7a) and (4.7b) were computed using all
observations for each subject.

These are not terribly impressive. For subjects eight, ten fourteen, and sixteen,
the coefficient of D, was negative not only here but in virtually all other specifica-
tions estimated. The basic model employed here does not seem to apply to those
subjects. Some of the estimates of this coefficient for subject seventeen were
positive, including that in the preferred version of (4.6), which had « = b and
A = .50, but it is quite possible, in view of the difficulty of drawing any firm con-
clusions on the basis of ten observations, that the model does not apply to him
either. On balance, though, I think the evidence for the hypothesis that past
petformance generally influences current confidence suggests that it merits further
study.

Considering the thirteen subjects with ten or more changes to whom the model
does seem to apply, it is interesting to note that equation (4.7a) was selected for five
of the six subjects for whom 4 = 0.0 was the preferred specification. When 1 = 0.0,
only the quality of the most recent forecast is used to compute D,, so that it is not
surprising that older information, embodied in the last choice of S,, does not
affect current confidence. Similarly, this equation was selected for none of the seven
subjects for whom A = 1.0 was preferred. When A = 1.0, all the information received
since the last choice of S, is reflected in D,, so that it is not too surprising that even
older information affects confidence. This suggests a natural division of this
sample into those whose confidence is’ determined entirely by very recent ex-
perience and those whose confidence is affected by their entire past performance.
It is not clear, however, how such a division, if it really exists, might be
exploited.

Finally, we report on an investigation of the causes of changes in S,. Our basic
hypothesis was that differences between S,_, and D, that are significant, in a sense
to be made precise below, are likely to lead to changes in S,.2¢ This hypothesis did

25 One deégree of freedom was subtracted in (4.7c) and (4.7d) to allow for the estimation of p. This
selection procedure was not followed for subject thirtcen in Table 1V. For this subject, (4.7c) was only
slightly superior to (4.7b) in the reduced sample, and A = 0.0, which had negative coefficients of D,,
was slightly superior for both models to 4 = 1.0, for which the coefficients were positive. In the overall
sample, however, (4.7b) with 2 = 1.0 was considerably better than the same equation with 2 = 0.0.In
the face of this evidence, (4.7b) with A = 1.0 was selected as the preferred specification.

26 A preliminary analysis of the impact of turning points on the occurrence of changes in S, was
also carried out. Of the 328 changes, 64 occurred in the five trough years. Under the null hypothesis
that the probability of a change is independent of whether or not a trough is perceived, one would
expect 65.6 changes in these years; the difference is clearly not significant. Similarly, 40 changes occurred
in peak years, 39.4 would be expected under the null hypothesis, and the difference is negligible. These
findings were sufficiently negative to discourage further search for turning point effects on this aspect
of subject behavior.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE IV
FoRECAST CONFIDENCE MODELS FOR SUBJECTS WITH TEN OR MORE OBSERVATIONS®

Total
Observa-
Subject  tions® Constant D(c, %), S,_, 2 p R?
1 18 6.443 2326 7116 1.0 — 74
(15.0) (.0559) (.115)
2 13 2255 .0539 — 1.0 —.65 41
(241) (.0252)
3 17 24.52 .1084 - 0.0 — 19
(4.93) (-0583)
4 21 33.00 1591 — 0.0 — 15
(3.22) (.0853)
5 11 25.78 .1470 —_ 0.0 —_ 07
(5.87) (173)
6 16 36.72 2335 4546 1.0 — 73
(14.0). (0553) (.156)
7 12 24.80 .3082 — 0.0 — 23
(4.82) (176)
8¢ 16 29.12 —.0572 —~1.076 0.0 .64 72
(2.90) (.:0297) (.124)
9 23 100.0 3833 — 1.0 35 18
(12.3) (-282)
10 19 - 97.20 —.2326 — 1.0 _— .07
(13.1) (:203)
1 20 60.40 0543 —.0639 1.0 _ .05
(13.5) (0571) (243)
12 14 67.20 6442 — 0.0 —_ 28
(13.6) (.300)
13 14 132.7 .1484 —.1025 1.0 — 29
(23.6) (.0694) (.186)
14 14 59.80 —.0499 e 1.0 - .18
(4.96) (.:0308)
15 22 20.33 .2055 15484 0.0 - 33
(11.6) (.240) (.181)
16 24 76.15 27717 — 0.0 46 23
©.31) (210)
17 10 124.8 -.2359 — 0.0 — .02
(25.0) (635)
18 13 18.40 BYYE .6487 1.0 —_ .69
(12.9) (0780) < (155)

* Standard errors are shown in parentheses.
®Where p # 0, estimates are bascd on one less observation.
€ Cooper’s (5] large sample adjustment was applied to the standard errors.

not receive a great deal of support, but, since the problem investigated is something
of a peculiarity of this sample, no effort was made to improve upon it.
Suppose, as before, that S,_; = ... = S,_; # S,_,-, and consider the quantity

k
(48) €' =[M,D(,A)/S?, where M,= Y FL

i=1

Under the nuil hypothesis that the E7  are normally and independently distributed
with known mean zero and standard deviation 5, C" is distributed as chi-square
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with M, = k degrees of freedom when 1 = 1.0. Under the same null hypothesis,
C? is distributed as chi-square with M, = 1 degree of freedom when 1 = 0.0.27
If the subject would set S, = S,_, if the null hypothesis were true, one would
expect values of C7 large or small enough to reject this hypothesis at some reason-
able level to lead to S, # S,_,.

This approach was applied to the thirteen subjects whose estimates in Table IV
had positive coefficients of D, the values of A indicated there were used. Two
versions of S” were employed. The simplest, call it §*, was simply S, - ;. The second
version, call it 52, was obtained by solving each subject’s estimated equation in
Table IV for D, as a function of §,_,, assuming S, = S,_;. This quantity is thus
the value of D, for which the subject would be in equilibrium if the current S,_,
prevailed.

Linear interpolation was then used with standard tables to approximate?®

(4.9) P{(C}) = 2|prob (x < C}) — 1/2|,

for x distributed as chi-square with M, degrees of freedom and n = 1, 2, for each
year in the twenty-five-year sample period for each of the thirteen subjects con.
sidered. It is clear that the P} vary between zero and one and that they equal
(1 — 20), where o is the level of significance attained by the corresponding CT
on a one-tailed test. Values of P} near one should, on the above reasoning, be likely
to lead to changes in the range attached to a subject’s forecast.

Since P} is bounded, a linear probability model is not as inappropriate here as
in most applications. Hence, we created a variable 4, for each subject that was equal
to one when S, # S,_, and zero otherwise, and we estimated equations in which
this quantity was a linear function of P7.2° In ordinary least squares runs with
P!, only eight of the thirteen slope coefficients were positive, and the mean and
median values of R? were .0618 and .0155. When P?, which had been expected to
perform better, was the independent variable, only four of the slopes were positive,
and the mean and median values of R? were .0521 and .0334. It is true, as Morrison
{19] has pointed out, that if the true probabilities of change do not vary much, one
would expect low values of R? in estimates of this sort.>® But we obtained truly
miniscule values of this statistic, and the sign pattern of the slope coefficients is
quite disturbing.

Ordinary least squares is well known to be an inefficient estimator of the linear
probability model because of that model’s basic heteroscedasticity. We thus
reestimated these functions, using the fitted values from the least squares equations

27 For intermediate value of 4, the moment generating function of this quantity is reasonably
complicated. It is relatively easy to verify, however, that if F(2, k) = (I + 2%/(1 + 2), the random
variable Z, = M,[1 — F(4, k)] + C,/\/F(4, k) has the same mean and variance as a random variable
distributed according to the gamma distribution with parameters M,/2 and 2. As this reduces to the
chi distribution when M, is an integer, appropriate interpolation in standard tables of the chi-square
could be employed as a first approximation.

28 Interpolation was linear in C for C less than the median of the appropriate distribution, recog-
nizing that P(0) = 1. Similarly, linear interpolation was performed on 1/C for C above the median,
taking into account that P(c0) = 1.

29 Some experiments were also performed with quadratics, but no gain in predictive power was
obtained.

30 But see also Goldberger [12).
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to estimate the standard deviations of the individual disturbances.’! The sign
pattern of the slopes was completely unchanged in this second round.

Two ways of summarizing these estimates seemed to be available. First, we
employed Zellner’s [26] generalized least squares estimator to estimate each of
these (transformed) models for all subjects together. As in the last section, the
similarity of the stimuli to which all were exposed suggested substantial contem-
poraneous error correlation. For both models, seven of the thirteen slopes were
positive in this third round of estimates, and the hypothesis of identical coefficients
for all subjects could be rejected at better than the one per cent level. The arithmetic
means of the coefficients across subjects and the associated standard errors were
as follows:

(4.10a) 4, = .5624 + .1674 P!,
(.0484) (.0673)

and

(4.10b) 4, = .6665 + 0152 P2.
(.0436) (.0608)

These suggest that the probability of changing the range attached to any forecast
is, at best, only slightly raised by even dramatic increases in the significance
level attained by C,. According to (4.10a), the probability of change varies from
.562 to .730, while (4.10b) indicates a range of .667 to .682, while the actual mean of
the dependent variable for all thirteen subjects was .658. These statistics might lead
one to believe that the true probabilities do not vary much.

Bartlett’s [1] test was applied to the estimated contemporaneous disturbance
covariance matrices used in computing these estimates, however, and in both
cases the normal approximation to the chi-square statistic with seventy-eight
degrees of freedom was negative, implying that the hypothesis of disturbance
orthogonality could not be rejected at any reasonable level. The small sample
properties of this test applied to regression residuals are unknown, of course, and
the GLS standard errors were generally noticeably smaller than the corresponding
single equation statistics; the standard errors of the slopes fell by an average of
about thirty per cent in both models. Still the possibility of disturbance orthcgon-
ality suggested the use of Swamy’s [23, Ch. 4] random coefficient estimator for
such situations. This approach assumes that the true coefficients for each subject
are random drawings from an underlying population, and asymptotically efficient
estimates of the mean vector of that population are produced. The estimated
population means and the associated standard errors for the two models con-
sidered were as follows:

@.11a) 4, = .6495 + 0175 P!,
(141)  (:206)

31 See McGillivray {17] for the basic procedure and its large sample properties. We followed a
suggestion of Smith and Cicchetti [22] and treated observations for which the least squares equation
yielded an estimated probability outside the interval [0, 1] as if the estimate had been .99, thus assigning
such observations large weights.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and

(@.11b) 4, = .6547 — .0141 P2,
(175) (222)

These are quite awful.

There seems to be no point in trying to argue for the superiority of (4.11) over
(4.10) as a general representation of subject behavior, or vice versa. Equations
(4.10) take into account disturbance covariances, but the arithmetic mean of the
individual subjects’ estimates is not a particularly efficient estimator of the popula-
tion mean. Similarly, (4.11) result from a technique that is efficient only if the
a priori unlkely hypothesis of disturbance orthogonality is correct. Overall,
though, the bad results in (4.11), the rather disappointing sign pattern of the single-
equation slope coefficients, and the unexpected superiority of P! over P? combine
to suggest weakness in the basic approach. We have been assuming that the proba-
bility that S, differs from §,_, is a function only of the extent to which the latter is
seen to be at odds with recent performance. As the results indicate, this assumption
may be too restrictive. One might imagine, for instance, that S, received thought
when a subject found it easy, for one reason or another, to decide on F,. Still,
our main interest is in the determination of the level of S,, rather than the timing of
its changes.

A final set of experiments should be mentioned. Since the confidence with which
expectations are held is so rarely directly observable, it seemed of some interest
to see if an observable proxy for this quantity could be found. The only thing that
came to mind, however, was some measure of the dispersion of the individual
forecasts. A variety of measures of average confidence were related to a variety
of measures of the dispersion in the F,. While some significant correlations were
obtained, none of the relations had sufficient explanatory power to justify reporting
results in detail.

5. CONCLUSIONS AND IMPLICATIONS

In Section 3 it was found that turning point years seemed to be special years to
the subjects in this experiment, as Fisher [9] had asserted, even though costs of
decision making were negligible and account was taken of the operation of an
adaptive expectations mechanism. In the three models examined, the best suppor-
ted hypothesis was that the parameter y, the speed of response in the adaptive
structure, fell in turning point periods.

This finding has a number of implications. First, it suggests that the technical
expectation formation mechanisms commonly assumed in empirical work are too
simple. But the alternative mechanism suggested by this analysis is not much more
complex, so it should be relatively simple to test its applicability to real-world
data. The limitations of the experimental approach and the somewhat tentative
nature of our statistical results suggest that further testing of this notion, using any
or all of the three approaches mentioned in the Introduction, is in order.

In Section 4, we investigated the determinants of the confidence with which
expectations were held. Some support was found for the basic hypothesis that a
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forecaster’s current confidence was affected by his past performance, and weaker
evidence was found for the notion that our subjects were more likely to change
their reported confidence when previous reports were strikingly at odds with their
recent performance. This part of the study was clearly more tentative and ex-
ploratory than the analysis of Section 3, and it yielded fewer firm conclusions.
But it did suggest, I hope, the possibility of refining this basic approach and apply-
ing it in other contexts. At a minimum, this study should indicate the need for and
possibility of explicit consideration of at least two moments of economic actors’
subjective probability distributions in applied work.

University of California, San Diego

Manuscript received September, 1973.

APPENDIX

If a subject makes decisions according to a utility of points function U(x), where x is minus his cost
in points, the expected utility associated with a particular choice of F and B is (dropping time subscripts
for claritv)

F-8
(A1) E(U) = U{—(F — A) — BC, — C,[(F — B) — A1} dG(A)

©

F F+B
+ f U{—(F — A)— BC,} dG(A) + f U{~(4 — F) — BC,} dG(A)
F-B F

+ f ° U{—(4 — F) — BC, — ColA — (F + B)]} dG(A).
F+B

Making the necessary convergence and regularity assumptions (see Hildebrand [15, pp. 359-361)),
we can differentiate E(U) to obtain the two first-order conditions for a maximum:

F+B F
A2) %EW) _ { f U'{—(4 — F) — BC,}dG(A) — f U'{—(F — 4) - BC,} dG(Z)}
oF F F-B
+(1 + Coj{f ° U'{—(A = F) — BC, — Co[A — (F + B))} dG(A)
F+B
F-B
— [ v~ - Be, - coltF - B - A dc(z)} -0,
and
aE(U) F , _ = F+B X _ . _
(A3) —==C, f U'{—(F — A) — BC,} dG(A) + J‘ U'{—(A — F) — BC,} dG(A)
aB F-B F

F-B
+(Co — c,,){f U'{—(F — A) — BC, — Cyl{F — B) — A} dG(A)

-

o
+ f U{—(A - F) = BC, — CofA — (F + B)]} dG(Z)} =0,

F+B
where primes denote differentiation. If the subject is neutral toward risk, these reduce to

(A2) {G(F + B) + G(F — B) - 2G(F)} +.(1 + Co){1 — G(F + B) — G(F — B)} = 0,
and
(A.3) —Cu{G(F + B) — G(F — B)} + (Cy — C){G(F — B} + 1 — G(F + B)} = 0.
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Two observations can be made at this point. First, if g(4) is symmetric about the point 4 = p,
F = pand any B > 0 will satisfy (A.2). In this case the two choices are sequential: (A.2) determines F,
and (A.3) determines B. Second, equation (A.3) may be rewritten as

(A4) [1 — G(F + B)] + [G(F — B)] = C,/C,.

That is, risk neutrality implies that the subjective probability of 4 falling outside the range [(F — B),
(F + B)] should equal C,/C,, regardless of the shape of the distribution.

In order to derive a manageable set of second-order conditions, let us assume that g(4) is symmetric
about 4 = g, so that y = F. It can be du'ect]y verified that in this case 8*E(U)/dF 8B = 0, so that the
two second-order conditions for a maximum are

azE(U) _ F+B . - _
(A.5) 2= = J; U"{—(4 — F) — BC,} dG(A)
+o
+1+ co)f U"{—(A — F) — BC, — C,[A — (F + B)]} dG(A)
F+B
— U'[—-BC,)g(F) — CoU'[—B — BCJg(F + B) < 0,
and
aZE(U) ™ F+B . _ _
(A.6) 21— = C :L U"{—(A — F) — BC,} dG(A)

+(Co - c,,)ZJ. U"{~(A — F) — BC, — C,[A — (F + B)]} dG(A)
F+B .

— C,U[—B — BCJg(F + B) < 0.

A sufficient, but not necessary, condition for these to hold is that U" be nonpositive almost everywhere.
In the symmetric case, it is possible to investigate the influence of attitudes toward risk on the choice
of B. Define

F+8
(A7) U= {J. U'{—(4 — F) - BC,} dG(Z)}/{G(F + B) — G(F)} .
F

Employing (A.7) and the symmetry of g(4), (A.3) may be written as
(A.3) —GIG(F + B) — G(F))U’
+co 1 _(F — - - T _.
£(Co— Cb)U’f U{—(4 — F) = BC, — Col4 — (F + B)}}
F+B

= dG(A) =0

or
(A9) —GCy[G(F + B) — 11 + (Co — Ck[1 — G(F + B)] = 0,

where k is a constant which equals one if the subject is risk neutral and exceeds one if he is everywhere
risk averse. Let P = 2[1 — G(F + B)] be the subjective probability of A falling outside [(F — B),
(F + B)), and let P, = C,/Cy be the value of P that would be selected by a risk neutral subject
Substituting into (A.9) and solving yields

PD

(A.10) P= P AkI= Py

A risk averse subject will thus select a smaller P (larger B) than a risk neutral subject when both are
faced with the same subjective distribution. Similarly, a risk lover for whom (A.5) and (A.6) hold will
select a larger P (smaller B) than a subject indifferent to risk.

REFERENCES

[1) BARTLETT, M. S.: “Tests of Significance in Factor Analysis,” British Journal of Psychology,
Statistical Section, 3 (1950), 77-85.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



{2] BiscHOFF, C. W.: “Hypothesis Testing and the Demand for Capital Goods,” Review of Economics
and Statistics, 52 (1969), 354-368.
[3] CaGan, P. D.: “The Monetary Dynamics of Hyperinflation,” in Studies in the Quantity Theory
of Money, ed. by M. Friedman. Chicago: University of Chicago Press, 1956.
{4) CocHRANE, D., AND G. H. OrcuTT: “Application of Least Squares Regression to Relatioaships
Containing Autocorrelated Error Terms,” Journal of the American Statistical Association, 44
(1949), 32-61.
[5] CoorpEr, J. P.: “Asymptotic Covariance Matrix of Procedures for Linear Regression in the
Presence of First Order Serially Correlated Disturbances,” Econometrica, 40 (1972), 305-310.
[6] DAGENAIS, M. D.: ““A Threshold Regression Model,” Econometrica, 37 (1969), 193-203.
[7) DurBIN, J.: “Testing for Serial Correlation in Least-Squares Regression When Some of the
Regressors are Lagged Dependent Variables,” Econometrica, 38 (1970), 410-421.
[8) FERBER, R.: The Railroad Shippers Forecasts. Urbana, Illinois: Bureau of Economic and Businéss
Research, University of Illinois, 1953.
9] FisHER, F. M.: 4 Priori Information and Time Series Analysis. Amsterdam: North-Holland, 1962.
[10] FrieDMAN, J. W.: “On Experimental Research in Oligopoly,” Review of Economic Studies, 36
(1969), 399-416.
[11] Gresser, H.: “A New Test for Heteroskedasticity,” Journal of the American Statistical Associa-
tion, 64 (1969), 316-323.
[12] GOLDBERGER, A. S.: “Correlations Between Binary Outcomes and Probabilistic Predictions,”
Journal of the American Statistical Association, 68 (1973), 84.
[13] Hicks, J. R.: Value and Capital. Oxford: Clarendon Press, 1939.
[14] : Capital and Growth. Oxford: Oxford University Press, 1965.
[15] HIiLDEBRAND, F. B.: Advanced Calculus for Applications. Englewood Cliffs, New Jersey: Prentice-
Hall, 1962.
[16] HirscH, A. A., AND M. C. LovELL: Sales Anticipations and Inventory Behavior. New York: John
Wiley, 1969.
[17] McGiLLIvRAY, R. G.: “Estimating the Linear Probability Function,” Econometrica, 38 (1970),
775-776.
[18} METZLER, L.: “The Nature and Stability of Inventory Cycles,” Review of Economic Statistics, 29
(1941), 113-129. -
[19] Morrison, D. G.: *“Upper Bounds for Correlations Between Binary Outcomes and Probabilistic
Predictions,” Journal of the American Statistical Association, 67 (1972), 68~70.
{20] NerLOVE, M.: The Dynamics of Supply: Estimation of Farmers' Response to Price. Baltimore:
Johns Hopkins University Press, 1958.
: “*Adaptive Expectations and Cobweb Phenomena,” Quarterly Journal of Economics, 72
(1958), 227-240.
[22]) SmitH, V. K., aND C. J. CiccHETTI: “Regression Analysis with Dichotomous Dependent
Variables,” paper presented at the meeting of the Econometric Society, December, 1972.
[23] Swamy, P. A. V. B.: Statistical Inference in Random Coefficient Regression Models. Berlin:
Springer-Verlag, 1971.
[24) Tuew, H.: Principles of Econometrics. New York: John Wiley, 1971.
[25] TurNOVsKY, S.: “Empirical Evidence on the Formation of Price Expectations,” Journal of the
American Statistical Association, 65 (1970), 1441-1454.
{26] ZELLNER, A.: **An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for
Aggregation Bias,” Journal of the American Statistical Association, 57 (1962), 348-368.

{21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



