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Abstract: The evaluation of urban economies has been one key concern identified by scholars. In the
past, most research methods on urban development assessments have been based on statistical data,
and the analysis results have been presented in the form of statistical tables. Moreover, the development
of urban road networks reflects the status of urban development and spatial metrics, which are
obtained from the urban road network which can be used to evaluate the growth of the urban economy.
The OpenStreetMap (OSM) is collected through crowdsourcing, and the OSM road network has
the characteristics of a simplified and efficient approach to collect data, update data, free available
data, etc. Therefore, in this paper, the OSM road network density is used as a spatial metric which
is taken as the main study subject, to evaluate the economic development of Chinese cities. In our
experiment, results show that there is a significant regression correlation between the OSM road
network density and municipal gross domestic product (GDP). For the 85 selected Chinese cities,
a total of 71 cities with residuals between −0.1 and 0.1 account for 83.53%, and a total of 79 cities
with residuals between −0.2 and 0.2 account for 92.94%. Therefore, it is apparent that the OSM
road network density can be used as a spatial metric to evaluate the municipal GDP, and as a result,
can be used by local governments and scholars to estimate, evaluate, and forecast the urban economic
development of China.

Keywords: OpenStreetMap (OSM); road network density; urban economy; regression analysis;
spatial metric

1. Introduction

In recent years, the rapid development of remote sensing, volunteered geographic information
(VGI) and other technologies, spatial data acquisition have become easier to employ. As a result,
there is more and more research on land-cover, land-use, and urban development using spatial
metrics [1–8]. A few different approaches used to represent spatial concepts have resulted in the
development of various spatial metrics [1–4]. More commonly applied metrics used by scholars have
included patch size, dominance, number of patches, and density, edge length and density, nearest
neighbor distance, fractal dimension, contagion, etc. [4]. Herold et al. [5] used spatial metrics and
texture measures to describe the spatial characteristics of land-cover objects within each land-use
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region as derived from interpreted aerial photographs. These spatial metrics include percentage of
landscape, patch density, mean patch size, area standard deviation, edge density, largest patch index,
Euclidean mean nearest neighbor distance, Euclidean nearest neighbor distance standard deviation,
area weighted mean patch fractal dimension, fractal dimension standard deviation, etc. Herold et al. [6]
argued that remote sensing and spatial metrics lead to an improved understanding and representation
of urban dynamics while helping to develop alternative conceptions of urban spatial structure and
change. In order to cover as many metrics as possible, Reis et al. [7] presented an extended, updated,
and more thorough portfolio of spatial metrics to measure the urban growth and urban shrinkage
patterns. In their paper, spatial metrics were defined as the quantitative measures used to assess the
spatial characteristics of urban settlements. Reis et al. [8] assembled spatial metrics into three groups:
landscape metrics; geo-spatial metrics, and spatial statistics. They indicated that landscape metrics
such as fractal dimension, shape, mean perimeter-area ratio mean shape, etc., have been traditionally
used to quantify several aspects of landscape configuration and composition. Geospatial metrics
has mostly been used to measure urban spatial patterns. However, there are metrics that are similar
between geospatial metrics and landscape metrics. Moreover, an important difference between the
metrics from landscape metrics is that the latter include a set of metrics that evolved in a “top-down”
approach. Spatial statistics are metrics based on statistical tools, and these spatial metrics are often
used in combination with regression and spatial econometric models. In this paper, the main purpose
of this research is to discuss whether the OpenStreetMap (OSM) road network density can be used
to evaluate the level of urban economic development in cities. Firstly, using a regression model to
establish the relationship between the OSM road network density and municipal gross domestic
product (GDP) from 2014 to 2017. Then, the OSM road network density and municipal GDP in 2018
were used to verify the regression model, to discuss whether the OSM road network density can be
used as a spatial metric to evaluate the level of urban economic development in cities. Because the
OSM road network has the advantage to be an easier approach to collect data, in a more efficient way,
update data, and provide free available data, etc. If we can use the OSM road network density to
evaluate the level of urban economic development in cities, then this research can help policy makers
in China monitor and evaluate their cities towards more transparent and efficient cities. Moreover,
the OSM road network density is based on statistics and mainly uses a regression model, therefore,
we take the OSM road network density as a spatial metric to evaluate the level of urban development
and transparency in cites.

In general, there is a significant correlation between urbanization and the level of economic
development, and it seems that each country or region conforms to this rule to a certain degree [8–10],
and urbanization has been a defining global phenomenon and a key driving force for social and
economic development during the past century [11,12]. Despite China being the world’s largest
developed country, its urbanization has progressed at an unprecedented rate [13], as urbanization has
shifted due to the rise of industries and population in and around cities, facilitating the development of
economies of scale [14]. Cai et al. [15] indicated that the improvement of urban infrastructure attracted
corporate investments, created new jobs, and led to an influx of labor. Therefore, the proportion of
China’s population living in cities increased from 17.9% in 1978 to 58.5% in 2017 [16]. Heshmati et al. [17]
calculated a multi-dimensional composite index of urban infrastructure analyzing 31 provinces and six
regions in China during 2005 to 2014, and indicated that the economy, employment, human development,
utilities, and technology components of urban infrastructure had positive and significant effects on
China’s urbanization, and suggested that the government should guide investments to more efficient
transportation systems that improve the development of a city.

As described in the above literature, the efficient transportation systems have a positive impact on
urbanization, and the higher the urbanization level of a city, the greater the density of its road network,
the higher economic level of a city. In order to discuss the relationship between the road network density
and urban economic development, based on geospatial metrics and spatial statistics, many researchers
have studied the relationship between spatial metrics and urban economic development. Yu et al. [18]
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explored the role of the motorway in the evolution of spatial economic agglomerations, they indicated
that an improvement in the motorway network lead to a higher degree of geographic concentration of
economic activities. Jiao et al. [19] studied the relation between road accessibility and economic growth
in China from 1990 to 2010. They studied a total of 337 cities in China and explored the bivariate analysis
framework of accessibility, economic growth, and increased rates. The analysis showed that there is
a significant positive relationship between the accessibility and economic growth of a city, and that the
economic increased rates are largely influenced by the change of accessibility. Worku [20] studied the
trends, stock of achievements, and impact of the road network on the economic growth of Ethiopia,
Africa. He indicated that the impact of the road network was seen to be less strong on the agricultural
GDP growth, but had pronounced impact of the industrial and service sector of GDP. Ivanova and
Masarova [21] used the series and correlation method to analyze the effects of road infrastructure
development on the economic growth and competitiveness of Slovak’s economy, they indicated that
the road infrastructure was a prerequisite for economic growth. Beyzatlar et al. [22] investigated the
Granger causality relationship between income and transportation of EU-15 countries. They indicated
that there was an endogenous relationship between income and transportation. Gao et al. [23]
studied the relationship between the comprehensive transportation freight index and GDP in China.
They indicated that the volume of freight traffic and freight turnover in China are positively correlated
with GDP. Fan and Chan-Kang [24] studied the impact of road investment on the overall economic
growth, rural and urban growth, and rural and urban poverty reduction. They indicated that road
investments yielded the highest economic returns in the eastern and central regions of China, while the
contributions to poverty reduction were the greatest in western China. It can be seen from the above
research that the road network can be correlated with GDP, and most researchers have used regression
analysis to investigate the relationship between spatial metrics and urban economic development
in cities.

In the last decade, OSM has achieved tremendous development with the popularity and
development of the Internet. OSM is a user-generated street map, most of the data sources are
provided by the public or volunteers [25], and until now, there are more than six million registered
members in the world, and more than six billion nodes in the OSM database [26]. Today, the OSM has
become available to be applied in many ways, such as 3D city modeling, road updating, etc. [27–37].
For example, based on the free geographic data provided by the OSM project and the public domain
height information provided by the Shuttle Radar Topography Mission, Over et al. [27] studied the
prospects of using an interactive 3D city model in Germany and pointed out that the point of interest
(POI) in the OSM data provides new opportunities for 3D city modeling. Fonte et al. [28,29] used
the OSM data and GlobeLand30 image data to process, resulting in a more accurate and detailed
land use coverage map, and more details can be shown by this method than any other methods.
Mobasheri et al. [34] explored the feasibility of using the OSM data as geo-navigation data in several
German cities by using factors such as the number of features and integrity, and the results showed that
the sidewalk data in the OSM can be used to route navigation. Zhang et al. [37] explored the relationship
between road density and road type diversity based on data obtained from China’s OSM road network
in May 2014, taking 340 prefecture-level cities in China as its study area, it is concluded that the OSM
road diversity reflects the demand and value of road-related geographic information and it also reflects
the interests of users towards employing the OSM geographical information; Goetz [38] used the points
of interest data in the OSM to focus on the detailed display in 3D city modeling. Wang and Zipf [39]
used an algorithm to extract the building information in the OSM data for modeling, and the building
interior details can be displayed by using the proposed method. In the study of path navigation,
Bergman and Oksanen [40] took the OSM data and mobile sport tracking data as research objects,
the hidden Markov model (HMM) based as a research method, pointed out that the OSM data has
feasibility in bicycle path navigation. In terms of geographic mapping, Rosina et al. [41] took Slovenia
and Austria as research objects, and added the OSM data to the Copernicus imperviousness layer to
improve the population distribution map, drawing methods of the two countries. The experimental
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result showed that the total error is reduced after adding the OSM data for auxiliary processing, and the
addition of the OSM data has certain improvement effects; Zhao et al. [42] studied the evolution of the
OSM road network in Beijing from four aspects. Through the experimental analysis, they believed
that the development of the OSM road network in Beijing was significantly related to the number of
volunteers, and the growth of the OSM road network was very similar to the development process of
the real road network. Dingil et al. [43] used the OSM to estimate and analyze the passenger transport
energy per person per year of 57 cities, distributed over 33 countries, the results indicating that high
private car mode share is a main cause for the high transport energy usage of such cities.

From the above application research on OSM, it is apparent that using OSM data to do research
has become more widespread. In this paper, we aim to focus on developing an economic development
evaluation for 85 Chinese cities by using OSM spatial metric road network density. The main purpose
is to explore the application of the OSM to evaluate the urban economic development of Chinese cities,
and take the OSM road network density as a spatial metric to evaluate the level of urban economic
development which is measured by the municipal GDP. In our experiment, we selected 85 cities to
verify the proposed method, the results show that the correlation between the OSM road network
density and municipal GDP are significant. As a result, it is feasible to predict the level of urban
economic development by using the OSM road network density.

This paper is organized as follows: the data sources and basic methods are introduced in Sections 2
and 3, respectively. Experimental results and analysis are reported in Section 4. Conclusions are drawn
in Section 5.

2. Study Areas and Data Source

2.1. Study Areas

Since the reform and reopening in 1978, China’s urbanization level has continuously improved.
As the pioneer area of China’s economy development, coastal cities and provincial cities have a higher
urbanization rate, which has exceeded 60% in 2017 [43]. This is because eastern coastal and provincial
cities have comparative advantages in resource adsorption, innovation, transportation, and so on,
making them leaders in China’s overall economic and social development [43]. Since eastern coastal
and provincial cities are the pioneers of China’s economic and urbanization development, the open-up
policy, new technical innovation, and adjustment of input structure methods has improved the
urbanization efficiency of China [44,45].

In this paper, we selected a total of 85 cities in China. Among the 85 cities, there were a total of
62 eastern cities, 12 central cities, and 11 western cities. In addition, among the 85 cities, the study
included a total of 27 provincial cities and 4 municipalities.

2.2. Data Collection

There are three main types of data: OSM road network, municipal GDP, and urban area in each
selected city. More details about data sources and data formats are as follows.

2.2.1. OSM Road Network

Currently, OSM is one of the most successful and popular VGI projects, and has achieved
tremendous development. Until now, there are more than six million registered members in the world,
and more than six billion nodes in the OSM database [26], and a lot of research on OSM. Because OSM
data are collected through crowdsourcing, the quality of OSM has been often discussed, and usually
evaluated based on its quality with authority data. Haklay [46] was the first researcher who analyzed and
investigated the data quality of the OSM road network for England, UK. Since then, many researchers
have analyzed the data quality of OSM for Germany [47,48], France [49], and China [50]. Luo et al. [50]
selected three large, medium, and small cities in China, and compared the length integrity of the OSM
road network with the Baidu road network, and Google road network. They indicated that the length
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integrity of the OSM road network is basically consistent with Baidu’s road network and the Google
road network, and the length integrity of the OSM road network is better than Baidu’s road network,
and the Google road network in some regions. Hecht et al. [51] measured the completeness of the
OSM data on buildings by comparing them with official survey data. It is clear from their research
that the OSM building data in urban areas, particularly near the town center, achieve a much higher
level of completeness. Singh Sehra et al. [52] introduced a comprehensive review of the assessment
of OSM data. Some researchers indicated that OSM has a higher location accuracy, completeness,
etc., data quality characteristics in urban areas [48,53]. Because, most urban areas with a higher
population density inherit larger numbers of contributors, who influence the quantity and quality of
the collaboratively crowdsourced OSM objects [45–53]. Therefore, in this paper, we use the urban road
network of the OSM to calculate the road network density for 85 Chinese cities.

The OSM road network is downloaded from the OSM website (http://download.geofabrik.de/),
which is the ESRI Shapefile. In addition, the projected coordinate system used is the Universal
Transverse Mercator (UTM) coordinate system. In this paper, data were collected and downloaded
from 2014 to 2018. The OSM road network has about 20 road classes such as cycle way, footway,
motorway, residential, primary, and secondary, etc.

2.2.2. Municipal Gross Domestic Product

Over the past 40 years, China’s economic reform has been successful, becoming one of the most
important economic power engines around the world, and the second largest economy measured by
GDP. China’s rapid economic growth has largely depended on abundant use of natural resources,
low-cost investment, and labor with support of a high saving rate, and government policies have
also played an important role in promoting infrastructure construction [54]. In recent years, China’s
economic growth rate has fallen from the double-digit rate from 5% to 7%. China’s economy has
entered “The New Normal Economy”. There are three main characteristics of The New Normal of
China’s Economy: (a) a shift from high growth rates to medium-high growth rates; (b) an on-going
process of optimizing and upgrading the economic structure, and narrowing the urban-rural gap,
with higher personal income as a share of GDP, and an increasing number of people benefiting from
economic development; and (c) a transition from growth driven by input and investment to one driven
by innovation. These characteristics and measures can promote the steady growth of the Chinese
economy, enhance development potential, and further unleash market vitality [55]. No matter if
China’s economy is in the double-digit growth rate or the current “new normal economy” medium-high
growth rate, the GDP is an index used to describe the economic development level of a city, and the
efficient transportation system, population, technology, etc., have a positive impact on GDP. Among the
85 selected cities, a total of 5 first-grade cities, 31 second-grade cities, and 49 third-grade cities were
identified (https://www.yicai.com/news/5293378.html). Overall, the GDP and urbanization rate of the
first-grade cities are higher than the second-grade cities, and the GDP and urbanization rate of the
second-grade cities are higher than the third-grade cities.

In our research, municipal GDP data are collected from the National Bureau of Statistics (http:
//www.stats.gov.cn/), data on GDP are from 2014 to 2018, and municipal GDP unit is in trillion CNY.

2.2.3. Exploring the Urban Area of Each Selected City

The study scope analyzed a total of 85 main urban areas. The study applied the unit of area
square kilometers. Take Shanghai for example, the scope of the main urban area is extracted from the
Shanghai Bureau of Planning and Natural Resources Department (http://ghzyj.sh.gov.cn/). Figure 1
shows the location and the municipal GDP in 2018 of the selected 85 cities.

http://download.geofabrik.de/
https://www.yicai.com/news/5293378.html
http://www.stats.gov.cn/
http://www.stats.gov.cn/
http://ghzyj.sh.gov.cn/
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Figure 1. Study research area and gross domestic product (GDP) in 2018.

3. Methodology

Regression analysis is one of the most commonly statistical analysis methods used to describe
the correlation between independent variables and dependent variables [56]. In our paper, we used
a regression model to study the correlation between the OSM road network density and the municipal
GDP, and employed the OSM road network density as a spatial metric to evaluate the level of urban
economic development of cities. In this section, we do not describe the details of the regression model,
but only introduce the calculation method of the OSM road network density.

Calculating the OSM Road Network Density of a City

The road network density is an important index for the evaluation of regional road traffic [57–59].
The OSM road network density comprises of geographical information that reflect a real-world road
network, and an index for assessing the quality of OSM geographic data. In this study, we calculated
the OSM road network density of 85 Chinese cities [60,61]:

Di = Li/Ai i ∈ [1, 2, 3, . . . , 85], (1)

where one main urban area is i, the OSM road network density in the main urban area i is Di, the OSM
road network length for the main urban area i is Li, and the area of the main urban area i is Ai.

Figure 2 shows the OSM road network in three different grades based on city. The blue polylines are
the OSM road network in 2018. The red polylines are the OSM road networks in 2014. Figure 1 shows
the cities of Beijing, Shanghai, and Guangzhou as first-grade cities. Compared to the cities of Nanjing,
Wuhan, and Chengdu with second-grade cities, and the cities of Guiyang, Haikou, and Lanzhou
with third-grade cities, these cities have different levels of economic development and OSM road
network density.
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Figure 2. The OpenStreetMap (OSM) road network with three different grades in Chinese cities.

4. Results and Analysis

4.1. Fit Analysis

In this paper, we used Equation (1) to calculate the OSM road network density from 2014 to
2018, then applied the OSM road network density data from 2014 to 2017 as the independent variable,
and the municipal GDP from 2014 to 2017 as the dependent variable. Moreover, the regression models
of the 85 Chinese cities were obtained using the unary linear regression model, and then applied the
OSM road network density and the municipal GDP data in 2018 to validate the regression model.

The OSM road network density, the municipal GDP, the regression models, and the coefficient of
determination (R2) of the 85 Chinese cities from 2014 to 2017 are shown in Table A1 (Appendix A),
the statistics of R2 are shown in Figure 3. Among all the cities, the maximum value of R2 is Guangzhou,
and its R2 is 0.999; the minimum value of R2 is Hohhot, and its R2 is 0.0005. The distribution of
coefficient of determination is shown in Figure 4.

In this paper, we also used the OSM road network density and population data from 2014 to
2017 as the independent variables, the municipal GDP from 2014 to 2017 as the dependent variable,
the regression models of 85 Chinese cities were obtained using a binary linear regression model,
and then used the OSM road network density and the municipal GDP data in 2018 to validate the
same regression model.

The statistics of R2 are shown in Figure 5, and the distribution of coefficient of determination is
shown in Figure 6. Among all the selected cities, the maximum value of R2 is Taizhou, its R2 is 0.9999.
The minimum value of R2 is Baotou, its R2 is 0.3353. In this regression model, the R2 of Guangzhou
is 0.9996, and the R2 of Hohhot is 0.4842. The distribution of coefficient of determination is shown
in Figure 6. In addition, we can see that the R2, which is calculated by the OSM road network density
and population, is higher than the R2, which is calculated by the OSM road network density and is
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Figure 3 shows a total of 72 cities with significant correlation with coefficient of determination R2

above 0.7, accounting for 84.71%. These 72 cities experienced rapid economic development during the
four years from 2014 to 2017, and with their municipal GDP increasing steadily year by year; 5 cities
with coefficient of determination R2 below 0.5, they are Shenyang, Urumqi, Dalian, Baotou, and Hohhot,
respectively, and their R2 are 0.499, 0.483, 0.342, 0.303, and 0.0005, respectively. The municipal GDP
statistical data and the OSM road network density for these five cities are shown in Tables 1 and 2.
It can be seen that the municipal GDP for these five cities does not increase year by year, but the density
of the OSM road network increases year by year.

Table 1. The Chinese municipal GDP (trillion CNY) statistical results of five cities.

City GDP (2014) GDP (2015) GDP (2016) GDP (2017) GDP (2018)

Shenyang 0.709871 0.728000 0.546001 0.586497 0.62924
Urumqi 0.246147 0.263164 0.245898 0.274382 0.309962
Dalian 0.765558 0.773164 0.68102 0.73639 0.76685
Baotou 0.363631 0.378193 0.386763 0.275303 0.29518
Hohhot 0.289405 0.309052 0.317359 0.274372 0.29035

Table 2. The OSM road network density of the five cities.

City OSM RND (2014) OSM RND (2015) OSM RND (2016) OSM RND (2017) OSM RND (2018)

Shenyang 2.014 2.150 2.203 2.292 2.449
Urumqi 1.472 1.489 1.549 1.676 1.851
Dalian 1.750 1.838 1.917 1.981 2.441
Baotou 0.601 0.629 0.852 0.900 1.399
Hohhot 0.567 0.656 0.860 0.870 0.962

Note: OSM RND represents the OSM road network density.

Hohhot shows the minimum coefficient of determination, and the coefficient of determination is
0.0005. We found that the GDP of Hohhot decreased from 317.359 billion CNY in 2016 to 274.372 billion
CNY in 2017. However, the density of the OSM road network in the main urban area gradually
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increased from 2014 to 2017. More specifically, in 2016, with an increase of 0.204 compared with 2015,
which is much higher than other years. Baotou and Hohhot, which are located in the Inner Mongolia
Autonomous Region of China, have similar patterns. In 2017, the GDP of Baotou was 275.303 billion
CNY, a decrease of 111.46 billion CNY from 386.763 billion CNY in 2016. The density of the OSM
road network in the main urban area increased from 0.629 in 2015 to 0.852 in 2016, an increase of 0.22,
which is much higher than changes in other years.

4.2. Validation of the Model

In order to validate the regression model obtained by the OSM road network density in the
above section, we used the real municipal GDP of 85 Chinese cities in 2018 to validate the regression
model. The statistical results of the absolute residuals and relative residuals when using the OSM
road network density are shown in Table A2, Figure 7, and Figure 8, respectively. The distribution of
absolute residual and relative residual results when using the OSM road network density is shown
in Figures 9 and 10, respectively.

The calculation method of absolute residual (Rabsolute) and relative residual (Rrelative) is as follows:

Rabsolute = Predictivei −Reali i ∈ [1, 2, 3, . . . , 85], (2)

Rrelative =
(Predictivei −Reali)

Reali
× 100 i ∈ [1, 2, 3, . . . , 85], (3)

where one main urban area is i, the predictive GDP of the main urban area i in 2018 is Predictivei,
the real GDP of the main urban area i in 2018 is Reali.

At the same time, we validated the regression model obtained by using the OSM road network
density and population, we also used the real municipal GDP of 85 cities in 2018 to validate the
regression model, and the statistical results of the absolute residuals are shown in Figures 11 and 12,
respectively. The distribution of residual results is shown in Figures 13 and 14, respectively.

We calculated the difference between the residual, which is obtained by using the OSM road
network density, and population. The statistical results of the differences are shown in Figure 15,
and the distribution of the differences are shown in Figure 16. The results show 69 cities with residual
differences between −0.1 and 0.1, accounting for 81.18%; a total of 76 cities with residual differences
between −0.2 and 0.2, accounting for 89.41%. Overall, the forecasting results by using the OSM road
network density are found to have similar characteristics in the forecasting results when using the
OSM road network density and population. This shows that the OSM road network density can be
used as a spatial metric to evaluate the level of urban economic development in cities.

Considering that the main purpose of this paper is to study whether the OSM road network density
can be used as a spatial metric to evaluate the level of urban economic development, the following
discussion will focus on forecasting results obtained by using the OSM road network density.

As shown in Figure 7 and Table A2, there are a total of 50 Chinese cities that have negative
absolute residuals, and 35 cities with positive absolute residuals. The largest positive absolute residual
is Chongqing, with a value of the absolute residual of 0.444; the smallest negative absolute residual
is Shenzhen, with a value of the absolute residual of −0.2817. The absolute residuals of 44 cities are
between −0.1 and 0.0, accounting for 51.76%, and the absolute residuals of 27 cities are between 0.0 and
0.1, accounting for 31.76%. The absolute residuals of 71 cities are between −0.1 and 0.1, accounting for
85.53%. The absolute residuals of 4 cities are between −0.2 and −0.1, accounting for 4.71%. The absolute
residuals of 4 cities are between 0.1 and 0.2, accounting for 4.71%. The absolute residuals of 79 cities
are between −0.2 and 0.2, accounting for 92.94%.
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Figure 7. The statistical result of the absolute residuals by using the OSM road network density.
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Figure 10. Distribution of the relative residuals of 85 Chinese cities by using OSM road network density.

As shown in Figure 8 and Table A2, there are a total of 50 Chinese cities that have negative relative
residuals, and 35 cities with positive relative residuals. The smallest negative relative residual is
Anshan, with a relative residual of −34.6088, and the largest positive relative residual is Shijiazhuang,
with a value of the relative residual of 47.8711. The relative residuals of 41 cities are between −10 and
0.0, accounting for 48.24%, and the relative residuals of 20 cities are between 0.0 and 10, accounting
for 23.53%. The relative residuals of 61 cities are between −10.0 and 10.0, accounting for 71.76%.
The relative residuals of 77 cities are between −20.0 and 20.0, accounting for 90.59%.
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Figure 11. The statistical result of the absolute residuals by using OSM road network density
and population.

Results indicate that the regression models obtained from the above section have a high prediction
accuracy, and the OSM road network density can be used as a spatial metric to forecast the municipal
GDP. In order to directly discuss the difference between the predicted GDP in 2018 and GDP in 2018,
the following discussion is based on the absolute residuals in Figure 7 and Table A2.



ISPRS Int. J. Geo-Inf. 2020, 9, 517 13 of 25

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 26 

 

 
Figure 11. The statistical result of the absolute residuals by using OSM road network density and 
population. 

 

Figure 12. The statistical result of the relative residuals by using OSM road network density and 
population. 

3 1

37 36

4 4

0
5

10
15
20
25
30
35
40

[-0.5 - -0.2] (-0.2 - -0.1] (-0.1 - 0.0] (0.0 - 0.1] (0.1 - 0.2] (0.2 - 2.0]

N
um

be
r o

f c
iti

es

The Statistics of Absolute Residuals

5

1 2

12

21

24

7 8

2 2 1
0

5

10

15

20

25

30

[-50,-20](-20,-15](-15,-10] (-10,-5] (-5,0] (0,5] (5,10] (10,15] (15,20] (20,50] (50,305]

N
um

be
r o

f c
iti

es

The Statistics of Relative Residuals

Figure 12. The statistical result of the relative residuals by using OSM road network density
and population.

The largest positive value of residual is Chongqing, the value of residual is 0.444. Chongqing is
located in the southwest of China, and is the only municipality in the southwest of China, its total area
is 82,400 square kilometers, and its main urban area is 7220 square kilometers. The municipal GDP
and OSM road network density from 2014 to 2018 are shown in Tables A1 and A2. From 2014 to 2017,
the municipal GDP of Chongqing increased year by year, the average annual municipal GDP growth
of Chongqing is 172.084 billion CNY. However, the municipal GDP growth in 2018 is 93.824 billion
CNY, far lower than the average annual municipal GDP growth in the previous 3 years. The OSM
road network density growth in 2018 is 0.38, and the average OSM road network density growth is
0.13, different from the municipal GDP growth change in 2018, the OSM road network density growth
in 2018 is much higher than the average OSM road network density growth during the previous 3 years,
and the inconsistent trends in municipal GDP growth and OSM road network growth have resulted
in excessive forecast residual.

1 
 

 

Figure 13. Distribution of 85 Chinese cities’ absolute residuals using OSM road network density
and population.
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Figure 15. Statistical result of the difference between two residuals.

Tianjin has the second largest residual, the value of the residual is 0.3149. Tianjin is a municipality
located in the north of China, total area is 11,900 square kilometers, and the main urban area is
1007 square kilometers. From 2014 to 2018, the total municipal GDP of Tianjin increased year by year,
but the municipal GDP growth varied greatly. The municipal GDP growth in 2018 is 260.45 billion
CNY, compared to the average GDP growth of 94.075 billion CNY. As a result, the municipal GDP
growth in 2018 is much lower than the average GDP growth from the previous three years. However,
the OSM road network density of Tianjin is increasing quickly, more specifically in 2018, the OSM road
network density growth is 0.89, and the average OSM road network density growth is 0.26, the OSM
road network density growth in 2018 is much higher than the average OSM road network density
growth during the previous 3 years, and these factors finally caused the excessive forecast residuals.
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On the contrary, Shenzhen has the smallest negative residual, the value of the residual is −0.2817.
Shenzhen is an important special economic development zone in the south of China, its total area
is 1997 square kilometers, and the main urban area is 927 square kilometers. Shenzhen’s economy
is developed with a steady growth from 1.600182 billion CNY in 2014 to 2.4222 billion CNY in 2018.
However, during 2014 to 2017, the annual growth of road density in Shenzhen showed a downward
trend, but an annual growth in 2018. Thus, the difference between the variation tendency of the
municipal GDP and the variation tendency of the OSM road network density makes the forecast value
of the municipal GDP smaller than the real data, which leads to Shenzhen’s residual to have the
smallest negative residual.

Overall, between the 85 cities, a total of 8 cities were found with absolute residual larger than
0.1, and 6 cities with absolute residual lower than −0.1, these 14 cities include Beijing, Shanghai,
Shenzhen, Tianjin, Chongqing, Hangzhou, Dalian, Ningbo, Ji’nan, Suzhou, Shenyang, Wuxi, Foshan,
and Shijiazhuang. These 14 cities all have characteristic of developed cities. In recent years, the pace of
urban construction of these developed cities has increased at a rapid pace, having large populations,
which can contribute a lot to the municipal GDP growth. From 2014 to 2018, the changes of municipal
GDP are not consistent with the OSM road network density. More specifically, the municipal GDP
annual growth for the above 14 cities in 2018 is much lower than that in 2017, but at the same time,
the OSM road network density is increasing, which caused a big absolute residual value.

However, when considering the other 71 cities, the absolute residuals are found to be between
−0.1 and 0.1. From 2014 to 2018, the municipal GDP growth of these cities did not change
drastically, the change trend of the municipal GDP and OSM road network density has similarities,
resulting in a smaller absolute residual. Among these 71 cities, most cities are second and third grade
cities, these cities were found to have smaller populations. Therefore, to some extent, the analysis
of the absolute residual in the paper also confirms that the current economic development strategy
of China with a high-speed economic stage to a medium-high-speed economic stage has a relatively
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predicted impact in developed cities, when compared to the second and third grade cities, where the
impact is not significant.

5. Conclusions

This study focused on using the urban OSM road network density as a spatial metric to evaluate
the urban economic development of 85 Chinese cities. The following conclusions are identified
in this paper:

(1) The OSM road network density can be used as a spatial metric to estimate and predict the
level of urban economic development of cities which is commonly measured by the municipal GDP.

(2) It is feasible to analyze the level of urban economic development of cities by using the OSM
road network density. There is a significant correlation between the OSM road network density
and the municipal GDP. Results demonstrated a total of 71 Chinese cities with absolute residuals
between −0.1 and 0.1, accounting for 83.53%; and 79 cities with absolute residuals between −0.2 and
0.2, accounting for 92.94%. There are 61 cities with relative residuals between −10 and 10, accounting
for 71.76%; and there are 77 cities with relative residuals between −20 and 20, accounting for 90.59%.

(3) In our experiment, the R2 is calculated with the OSM road network density and population
is higher than the R2. which is calculated by the OSM road network density, but for the residuals,
the absolute and relative residuals by using the OSM road network density are found to have similar
characteristics as the absolute and relative residuals by using the OSM road network density and
population. Among the 85 cities, there are 73 cities with absolute residuals between −0.1 and 0.1,
accounting for 85.88%; and 78 cities with absolute residuals between −0.2 and 0.2, accounting for
91.76%.There are a total of 64 cities with relative residuals between −10 and 10, accounting for 75.29%;
and there are 77 cities with relative residuals between −20 and 20, accounting for 90.59%.

(4) The development strategy of the Chinese economy is changing from high-speed development
to medium-high speed development, these findings are more apparent in economically developed
cities, compared to ordinary cities. Moreover, economically developed cities pay more attention to the
influence of high technology.

The research in this paper has identified the imperfections found in the method when using
the OSM road network density to evaluate and predict the level of urban economic development
in Chinese cities. It is evident that the OSM road network density can be used as a spatial metric for
predictive analysis and policy making to gain transparency. In the future, we will use the proposed
spatial metric to do some related research.
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Appendix A

Table A1. The statistical results of the municipal GDP, coefficient of determination R2, and regression equation of 85 Chinese cities from 2014 to 2017.

No. Cities Location of the Cities
Municipal GDP (trillion CNY) OSM RND Represent the OSM Road Network Density

Regression Equation Coefficient of Determination (R2)
2014 2015 2016 2017 2014 2015 2016 2017

1 Beijing Eastern 2.13308 2.29686 2.48993 2.80004 4.958224 5.141546 5.357883 5.499061 y = 1.174x − 3.721 0.9515

2 Shanghai Eastern 2.356094 2.496499 2.746615 3.013386 3.155228 3.566878 4.213839 4.775253 y = 0.4047x + 1.0635 0.9954

3 Guangzhou Eastern 1.670687 1.810041 1.954744 2.150315 2.676991 3.534283 4.42808 5.49531 y = 0.1697x + 1.212 0.999

4 Shenzhen Eastern 1.600182 1.750286 1.94926 2.249006 6.827965 8.959036 9.394507 9.633126 y = 0.1792x + 0.3274 0.6705

5 Tianjin Eastern 1.572693 1.653819 1.788539 1.854919 5.901592 6.248347 6.441155 6.67073 y = 0.3837x − 0.706 0.956

6 Chongqing Central 1.42622 1.571727 1.774059 1.942473 0.662438 0.81481 0.900102 1.039407 y = 1.4165x + 0.4687 0.9746

7 Hangzhou Eastern 0.920616 1.005021 1.131372 1.260336 2.782885 3.022515 3.985984 4.35391 y = 0.1934x + 0.3956 0.9616

8 Nanjing Eastern 0.882075 0.972077 1.050302 1.17151 2.497384 2.930633 3.550194 4.445725 y = 0.1445x + 0.5339 0.9909

9 Qingdao Eastern 0.86921 0.930007 1.001129 1.103728 1.760078 1.887759 2.111393 2.364463 y = 0.3787x + 0.2068 0.9962

10 Dalian Eastern 0.765558 0.773164 0.68102 0.73639 1.75048 1.837818 1.917477 1.981108 y = −0.2446x + 1.1969 0.3415

11 Ningbo Eastern 0.761028 0.800361 0.868649 0.98421 1.560726 1.969064 2.056487 2.125499 y = 0.31x + 0.256 0.6433

12 Xiamen Eastern 0.327358 0.346603 0.378427 0.43517 6.883743 7.503913 7.690256 7.821306 y = 0.0947x − 0.3358 0.6945

13 Ji’nan Eastern 0.57706 0.610023 0.653612 0.720196 1.30219 1.353739 1.427773 1.692866 y = 0.3468x + 0.1394 0.9479

14 Suzhou Eastern 1.376089 1.450407 1.54751 1.731951 3.440061 3.859497 4.561366 6.548412 y = 0.1107x + 1.0168 0.9822

15 Wuhan Central 1.006948 1.09056 1.191261 1.341034 2.750418 2.951396 3.20614 3.695856 y = 0.3509x + 0.0517 0.9939

16 Chengdu Western 1.005683 1.080116 1.217023 1.388939 3.358756 4.236498 4.594147 5.561516 y = 0.1801x + 0.3738 0.9487

17 Changsha Central 0.782481 0.851013 0.945536 1.021013 1.533576 1.756367 2.052184 3.297249 y = 0.1215x + 0.6375 0.8346

18 Xi’an Western 0.549264 0.58012 0.625718 0.746985 3.196316 3.865494 4.135966 4.471107 y = 0.1421x + 0.0688 0.7828

19 Shenyang Eastern 0.709871 0.728 0.546001 0.586497 2.014167 2.150415 2.203039 2.292415 y = −0.5466x + 1.8259 0.4997

20 Zhengzhou Eastern 0.667699 0.731152 0.802531 0.91302 1.740456 2.115113 2.676731 2.880727 y = 0.1937x + 0.3227 0.9216

21 Dongguan Eastern 0.588118 0.627506 0.682767 0.758209 1.030598 1.501366 2.197582 2.854381 y = 0.092x + 0.4898 0.992

22 Fuzhou Eastern 0.516916 0.561808 0.619764 0.71034 0.902237 2.082021 2.257173 2.395907 y = 0.0982x + 0.4147 0.6464

23 Wuxi Eastern 0.820531 0.851826 0.921002 1.05118 2.153178 3.162821 3.301254 3.867276 y = 0.1253x + 0.5199 0.7635

24 Harbin Eastern 0.534007 0.575121 0.610161 0.635505 0.483118 0.51934 0.584794 0.615797 y = 0.7215x + 0.1913 0.9782

25 Foshan Eastern 0.760328 0.800392 0.863 0.95496 4.658889 5.297152 5.517081 5.916113 y = 0.1522x + 0.0309 0.8897

26 Changchun Eastern 0.534243 0.553003 0.591794 0.653003 0.937574 1.229054 1.432111 1.486014 y = 0.1836x + 0.3497 0.7557

27 Shijiazhuang Eastern 0.517027 0.54406 0.592773 0.646088 2.650926 2.756092 2.828802 2.846626 y = 0.5834x − 1.0413 0.8326

28 Taiyuan Central 0.253109 0.273534 0.29556 0.338218 0.925942 0.96981 1.230886 1.398845 y = 0.1582x + 0.1111 0.9397

29 Yantai Eastern 0.600208 0.644608 0.69257 0.733895 0.571782 0.624688 0.692235 0.923017 y = 0.3473x + 0.4237 0.8592

30 Hefei Central 0.515797 0.566027 0.627438 0.721345 1.07847 1.916291 2.42456 2.662393 y = 0.1166x + 0.372 0.8532

31 Kunming Western 0.371299 0.396801 0.430008 0.485764 0.764001 0.918156 1.01496 1.177625 y = 0.2808x + 0.1489 0.9709

32 Wenzhou Eastern 0.430281 0.461984 0.50454 0.545317 0.987931 1.447027 1.584584 2.000244 y = 0.1169x + 0.3096 0.9462
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Table A1. Cont.

No. Cities Location of the Cities
Municipal GDP (trillion CNY) OSM RND Represent the OSM Road Network Density

Regression Equation Coefficient of Determination (R2)
2014 2015 2016 2017 2014 2015 2016 2017

33 Nanning Western 0.31483 0.341009 0.370339 0.411883 0.304956 0.405285 0.406003 0.589919 y = 0.3344x + 0.2169 0.9107

34 Nanchang Central 0.366796 0.400001 0.435499 0.500319 4.445648 5.080118 5.207499 5.528507 y = 0.1164x − 0.1642 0.8569

35 Tangshan Eastern 0.62253 0.61 0.63062 0.71061 0.692859 0.858997 0.905533 1.472886 y = 0.1277x + 0.518 0.9037

36 Zibo Eastern 0.402977 0.41302 0.441201 0.478132 0.953503 0.988958 1.8103 2.013233 y = 0.058x + 0.3503 0.8951

37 Changzhou Eastern 0.490187 0.52732 0.577386 0.662228 1.340996 1.801608 1.848598 3.019328 y = 0.1003x + 0.3634 0.9294

38 Quanzhou Eastern 0.573336 0.613774 0.664663 0.754801 0.634438 0.920326 1.384851 1.342822 y = 0.1867x + 0.4517 0.7318

39 Guiyang Eastern 0.249727 0.289116 0.31577 0.353796 1.4045 1.561081 1.73026 2.215922 y = 0.1197x + 0.0952 0.9203

40 Jiaxing Eastern 0.33528 0.351706 0.37601 0.435524 1.127291 1.266025 1.598774 1.725241 y = 0.1447x + 0.1678 0.8476

41 Nantong Eastern 0.565279 0.61484 0.67682 0.77346 0.587234 1.243394 2.189651 2.424369 y = 0.0989x + 0.4982 0.8832

42 Jinhua Eastern 0.320664 0.34065 0.363501 0.387022 0.314445 0.663407 0.705874 0.910499 y = 0.1096x + 0.2819 0.8947

43 Zhuhai Eastern 0.185732 0.202498 0.222637 0.256473 2.257383 2.892806 3.178339 3.573405 y = 0.0525x + 0.0605 0.9154

44 Huizhou Eastern 0.30007 0.314003 0.341217 0.383058 0.54594 0.681892 0.733018 0.937024 y = 0.2204x + 0.1749 0.9566

45 Xuzhou Eastern 0.496391 0.531988 0.580852 0.660595 0.839667 0.833549 1.604102 3.131913 y = 0.0638x + 0.4653 0.9418

46 Haikou Eastern 0.10917 0.116196 0.125767 0.139058 1.215575 1.39047 1.391586 1.593147 y = 0.0796x + 0.0113 0.9019

47 Urumqi Western 0.246147 0.263164 0.245898 0.274382 1.471562 1.488615 1.548517 1.676137 y = 0.1043x + 0.0962 0.4828

48 Shaoxing Eastern 0.426583 0.446665 0.471 0.510804 0.758167 0.803163 1.000226 1.245672 y = 0.1613x + 0.3103 0.9789

49 Zhongshan Eastern 0.28233 0.301003 0.320278 0.345031 1.636848 1.759837 2.144733 2.393204 y = 0.0758x + 0.1617 0.9693

50 Taizhou
(Zhejiang) Eastern 0.338751 0.355813 0.384281 0.438822 0.531115 0.576276 0.832387 1.119472 y = 0.1603x + 0.2568 0.9833

51 Lanzhou Western 0.200094 0.209599 0.226423 0.252354 0.623852 0.644902 0.723011 1.678987 y = 0.0412x + 0.1843 0.8392

52 Weifang Eastern 0.478674 0.517053 0.55227 0.585863 0.808287 1.067039 1.251496 2.839208 y = 0.0438x + 0.4681 0.7604

53 Baoding Eastern 0.30352 0.300034 0.32273 0.35809 1.08439 1.307091 1.321359 1.482171 y = 0.1299x + 0.1524 0.637

54 Zhenjiang Eastern 0.325238 0.350248 0.383384 0.401036 0.877717 1.211188 1.385888 1.712882 y = 0.0949x + 0.2419 0.955

55 Yangzhou Eastern 0.369789 0.401684 0.444938 0.506492 1.440231 1.801123 2.298118 2.526604 y = 0.117x + 0.1947 0.9365

56 Hohhot Western 0.289405 0.309052 0.317359 0.274372 0.567368 0.655892 0.859838 0.869946 y = −0.0029x + 0.2997 0.0005

57 Langfang Eastern 0.217596 0.24019 0.27063 0.28806 0.437621 0.726791 0.791253 1.032201 y = 0.1226x + 0.1626 0.9129

58 Luoyang Central 0.328457 0.350875 0.37829 0.429019 0.908334 1.110387 1.912928 2.084188 y = 0.069x + 0.2679 0.856

59 Weihai Eastern 0.279034 0.300157 0.32122 0.34801 1.158146 1.249603 1.297057 1.523613 y = 0.1835x + 0.0723 0.935

60 Yancheng Eastern 0.383562 0.42125 0.457608 0.508269 0.657349 0.692985 0.894144 1.233145 y = 0.194x + 0.274 0.9275

61 Linyi Eastern 0.35698 0.37632 0.402675 0.434539 1.480754 2.084111 2.317847 2.54728 y = 0.0686x + 0.2481 0.8741

62 Jiangmen Eastern 0.208276 0.224002 0.241878 0.269025 1.3465 1.558839 1.660016 1.74101 y = 0.1434x + 0.0097 0.8806

63 Taizhou
(Jiangsu) Eastern 0.337089 0.365553 0.410178 0.474453 0.822494 1.257907 1.596425 2.136174 y = 0.107x + 0.2414 0.9821

64 Zhangzhou Eastern 0.250636 0.276745 0.312534 0.352853 0.916913 1.151741 1.200081 1.38604 y = 0.2206x + 0.0414 0.9201

65 Handan Eastern 0.308001 0.31454 0.33371 0.36663 0.675282 0.813087 0.914555 0.949443 y = 0.1836x + 0.1769 0.7366
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Table A1. Cont.

No. Cities Location of the Cities
Municipal GDP (trillion CNY) OSM RND Represent the OSM Road Network Density

Regression Equation Coefficient of Determination (R2)
2014 2015 2016 2017 2014 2015 2016 2017

66 Jining Western 0.380006 0.401312 0.430182 0.465057 0.471934 0.526896 0.776055 0.91366 y = 0.1739x + 0.3022 0.966

67 Wuhu Eastern 0.23079 0.245732 0.269944 0.306552 0.672768 0.965252 1.227687 1.957186 y = 0.0598x + 0.1912 0.9873

68 Yinchuan Central 0.139567 0.148073 0.161728 0.180317 0.497675 0.59603 0.693312 0.716513 y = 0.164x + 0.0548 0.8525

69 Liuzhou Eastern 0.220851 0.229862 0.247694 0.275564 0.455206 0.485649 0.604588 0.599445 y = 0.2719x + 0.0977 0.7542

70 Mianyang Western 0.157989 0.170033 0.183042 0.207475 0.445944 0.554054 0.707322 0.734055 y = 0.1434x + 0.0921 0.838

71 Zhanjiang Eastern 0.22587 0.238002 0.258478 0.282403 1.405769 1.659609 2.261492 2.575143 y = 0.0455x + 0.1613 0.9729

72 Anshan Eastern 0.2349 0.2326 0.14408 0.16021 0.727266 0.768087 0.816542 0.828872 y = −0.9284x + 0.9219 0.8297

73 Daqing Eastern 0.407 0.29835 0.261 0.26805 0.499983 1.191177 1.2228 1.222723 y = −0.1858x + 0.5007 0.9601

74 Yichang Central 0.313221 0.33848 0.370936 0.385717 1.996736 2.126815 2.172778 2.900025 y = 0.0641x + 0.2048 0.6429

75 Baotou Eastern 0.363631 0.378193 0.386763 0.275303 0.601152 0.628997 0.851639 0.900335 y = −0.1854x + 0.4892 0.3029

76 Jilin Eastern 0.27302 0.24552 0.253135 0.23028 0.601762 0.695863 0.781348 0.880384 y = −0.1324x + 0.3484 0.7854

77 Huai’an Eastern 0.245539 0.274509 0.3048 0.338743 0.549558 0.656979 0.695744 0.776926 y = 0.4165x + 0.0119 0.9658

78 Cangzhou Eastern 0.313338 0.32406 0.35334 0.38169 0.746255 0.809976 0.888409 1.36473 y = 0.1017x + 0.2462 0.8629

79 Xiangyang Central 0.31293 0.338212 0.369451 0.40649 0.347927 0.424744 0.563634 0.594033 y = 0.3347x + 0.1952 0.9255

80 Yueyang Central 0.266939 0.288628 0.310087 0.325803 0.78718 0.829211 0.870221 1.291411 y = 0.0898x + 0.2131 0.67

81 Taian Eastern 0.300219 0.31584 0.33168 0.358528 0.935667 1.041736 1.769295 1.918874 y = 0.0462x + 0.2612 0.8588

82 Dongying Eastern 0.343049 0.345064 0.34796 0.380178 0.455815 0.496966 0.737227 0.774951 y = 0.0783x + 0.3058 0.5307

83 Nanyang Central 0.267688 0.287502 0.311877 0.33777 0.32572 0.387065 0.39798 0.513531 y = 0.3688x + 0.1515 0.9074

84 Xining Western 0.106578 0.113162 0.124817 0.12849 2.148855 2.336419 2.553052 2.433314 y = 0.0526x − 0.0062 0.7804

85 Lhasa Western 0.034745 0.038946 0.042495 0.047916 0.497234 0.788384 0.857679 0.901169 y = 0.0273x + 0.0203 0.7902

Table A2. The statistical results for predictive GDP of 85 Chinese cities in 2018.

No. Cities Location of
the Cities

GDP in 2018
(trillion CNY)

Predictive GDP in
2018 by Using OSM

Road Network
Density (trillion CNY)

Predictive GDP in 2018 by
Using OSM Road

Network Density and
Population (trillion CNY)

Absolute Residuals by
Using OSM Road
Network Density

Relative Residuals by
Using OSM Road
Network Density

Absolute Residuals by
Using OSM Road

Network Density and
Population

Relative Residuals by
Using OSM Road

Network Density and
Population

1 Beijing Eastern 3.0320 3.1938 3.4422 0.1618 5.3364 0.4102 13.5290

2 Shanghai Eastern 3.2680 3.0637 3.0811 −0.2043 −6.2515 −0.1869 −5.7191

3 Guangzhou Eastern 2.2859 2.2386 2.2264 −0.0473 −2.0692 −0.0595 −2.6029

4 Shenzhen Eastern 2.4222 2.1405 2.4473 −0.2817 −11.6299 0.0251 1.0362

5 Tianjin Eastern 1.8810 2.1958 2.2128 0.3149 16.7358 0.3318 17.6396

6 Chongqing Central 2.0363 2.4803 2.0682 0.4440 21.8043 0.0319 1.5666

7 Hangzhou Eastern 1.3509 1.5446 1.5063 0.1937 14.3386 0.1554 11.5034
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Table A2. Cont.

No. Cities Location of
the Cities

GDP in 2018
(trillion CNY)

Predictive GDP in
2018 by Using OSM

Road Network
Density (trillion CNY)

Predictive GDP in 2018 by
Using OSM Road

Network Density and
Population (trillion CNY)

Absolute Residuals by
Using OSM Road
Network Density

Relative Residuals by
Using OSM Road
Network Density

Absolute Residuals by
Using OSM Road

Network Density and
Population

Relative Residuals by
Using OSM Road

Network Density and
Population

8 Nanjing Eastern 1.2820 1.2024 1.0471 −0.0797 −6.2090 −0.2349 −18.3229

9 Qingdao Eastern 1.2002 1.2330 1.2537 0.0328 2.7329 0.0535 4.4576

10 Dalian Eastern 0.7669 0.5997 0.7002 −0.1672 −21.8021 −0.0667 −8.6974

11 Ningbo Eastern 1.0746 0.9531 1.1785 −0.1215 −11.3065 0.1039 9.6687

12 Xiamen Eastern 0.4791 0.4474 0.4887 −0.0317 −6.6166 0.0096 2.0038

13 Ji’nan Eastern 0.7857 1.0287 0.8826 0.2430 30.9278 0.0969 12.3330

14 Suzhou Eastern 1.8565 1.9590 1.9216 0.1025 5.5211 0.0651 3.5066

15 Wuhan Central 1.4847 1.4228 1.4250 −0.0619 −4.1692 −0.0597 −4.0210

16 Chengdu Western 1.5254 1.5929 1.5392 0.0675 4.4251 0.0138 0.9047

17 Changsha Central 1.1003 1.0682 1.2354 −0.0322 −2.9174 0.1351 12.2785

18 Xi’an Western 0.8350 0.7505 1.2377 −0.0845 −10.1198 0.4027 48.2275

19 Shenyang Eastern 0.6292 0.4871 2.5457 −0.1421 −22.5842 1.9165 304.5931

20 Zhengzhou Eastern 1.0143 1.0272 1.0107 0.0128 1.2718 −0.0036 −0.3549

21 Dongguan Eastern 0.8279 0.8223 0.8294 −0.0056 −0.6764 0.0015 0.1812

22 Fuzhou Eastern 0.7857 0.6961 0.7764 −0.0895 −11.4038 −0.0093 −1.1837

23 Wuxi Eastern 1.1439 1.0292 1.1492 −0.1146 −10.0271 0.0053 0.4633

24 Harbin Eastern 0.6301 0.6759 0.6757 0.0458 7.2687 0.0456 7.2369

25 Foshan Eastern 0.9936 1.1602 1.1390 0.1666 16.7673 0.1454 14.6337

26 Changchun Eastern 0.7176 0.6533 0.6331 −0.0643 −8.9604 −0.0845 −11.7754

27 Shijiazhuang Eastern 0.6083 0.8995 0.5967 0.2913 47.8711 −0.0116 −1.9070

28 Taiyuan Central 0.3884 0.3584 0.3837 −0.0301 −7.7240 −0.0047 −1.2101

29 Yantai Eastern 0.7833 0.7658 0.7777 −0.0174 −2.2341 −0.0056 −0.7149

30 Hefei Central 0.7823 0.7452 0.8277 −0.0371 −4.7424 0.0454 5.8034

31 Kunming Western 0.5207 0.5186 0.4968 −0.0021 −0.4033 −0.0239 −4.5900

32 Wenzhou Eastern 0.6006 0.5519 0.5490 −0.0487 −8.1086 −0.0516 −8.5914

33 Nanning Western 0.4147 0.4548 0.4532 0.0401 9.6696 0.0385 9.2838

34 Nanchang Central 0.5275 0.5144 0.5443 −0.0131 −2.4834 0.0168 3.1848

35 Tangshan Eastern 0.6955 0.7423 0.7444 0.0468 6.7290 0.0489 7.0309

36 Zibo Eastern 0.5068 0.4839 0.4693 −0.0230 −4.5185 −0.0375 −7.3994

37 Changzhou Eastern 0.7050 0.6780 0.7372 −0.0270 −3.8298 0.0322 4.5674

38 Quanzhou Eastern 0.8468 0.7687 0.7780 −0.0781 −9.2230 −0.0688 −8.1247
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Table A2. Cont.

No. Cities Location of
the Cities

GDP in 2018
(trillion CNY)

Predictive GDP in
2018 by Using OSM

Road Network
Density (trillion CNY)

Predictive GDP in 2018 by
Using OSM Road

Network Density and
Population (trillion CNY)

Absolute Residuals by
Using OSM Road
Network Density

Relative Residuals by
Using OSM Road
Network Density

Absolute Residuals by
Using OSM Road

Network Density and
Population

Relative Residuals by
Using OSM Road

Network Density and
Population

39 Guiyang Eastern 0.3798 0.4347 0.3671 0.0549 14.4550 −0.0127 −3.3439

40 Jiaxing Eastern 0.4872 0.4513 0.4875 −0.0359 −7.3686 0.0003 0.0616

41 Nantong Eastern 0.8427 0.7887 0.9330 −0.0540 −6.4080 0.0903 10.7156

42 Jinhua Eastern 0.4100 0.3952 0.4049 −0.0148 −3.6098 −0.0051 −1.2439

43 Zhuhai Eastern 0.2915 0.2626 0.3010 −0.0288 −9.9142 0.0095 3.2590

44 Huizhou Eastern 0.4103 0.3910 0.3898 −0.0193 −4.7039 −0.0205 −4.9963

45 Xuzhou Eastern 0.6755 0.6919 0.7017 0.0164 2.4278 0.0262 3.8786

46 Haikou Eastern 0.1511 0.2083 0.1459 0.0573 37.8557 −0.0052 −3.4414

47 Urumqi Western 0.3100 0.2892 0.3181 −0.0207 −6.7097 0.0081 2.6129

48 Shaoxing Eastern 0.5417 0.5172 0.5427 −0.0244 −4.5228 0.001 0.1846

49 Zhongshan Eastern 0.3633 0.3738 0.4142 0.0105 2.8902 0.0509 14.0105

50 Taizhou
(Zhejiang) Eastern 0.4875 0.4979 0.4914 0.0105 2.1333 0.0039 0.8000

51 Lanzhou Western 0.2733 0.2572 0.2673 −0.0161 −5.8910 −0.006 −2.1954

52 Weifang Eastern 0.6157 0.6289 0.6077 0.0132 2.1439 −0.008 −1.2993

53 Baoding Eastern 0.3590 0.4259 0.4253 0.0669 18.6351 0.0663 18.4680

54 Zhenjiang Eastern 0.4050 0.4095 0.5013 0.0045 1.1111 0.0963 23.7778

55 Yangzhou Eastern 0.5466 0.5026 0.5821 −0.0440 −8.0498 0.0355 6.4947

56 Hohhot Western 0.2904 0.2969 0.2957 0.0066 2.2383 0.0053 1.8251

57 Langfang Eastern 0.3108 0.3112 0.3174 0.0004 0.1287 0.0066 2.1236

58 Luoyang Central 0.4641 0.4307 0.4405 −0.0334 −7.1967 −0.0236 −5.0851

59 Weihai Eastern 0.3641 0.3568 0.3589 −0.0073 −2.0049 −0.0052 −1.4282

60 Yancheng Eastern 0.5487 0.5544 0.3228 0.0057 1.0388 −0.2259 −41.1700

61 Linyi Eastern 0.4718 0.4571 0.4416 −0.0147 −3.1157 −0.0302 −6.4010

62 Jiangmen Eastern 0.2900 0.2910 0.3001 0.0010 0.3448 0.0101 3.4828

63 Taizhou
(Jiangsu) Eastern 0.5108 0.4790 0.2763 −0.0317 −6.2255 −0.2345 −45.9084

64 Zhangzhou Eastern 0.3948 0.4722 0.4006 0.0774 19.6049 0.0058 1.4691

65 Handan Eastern 0.3455 0.3577 0.3600 0.0122 3.5311 0.0145 4.1968

66 Jining Western 0.4931 0.4905 0.4776 −0.0026 −0.5273 −0.0155 −3.1434

67 Wuhu Eastern 0.3279 0.3260 0.3294 −0.0019 −0.5794 0.0015 0.4575

68 Yinchuan Central 0.1901 0.2211 0.1720 0.0309 16.3072 −0.0181 −9.5213
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Table A2. Cont.

No. Cities Location of
the Cities

GDP in 2018
(trillion CNY)

Predictive GDP in
2018 by Using OSM

Road Network
Density (trillion CNY)

Predictive GDP in 2018 by
Using OSM Road

Network Density and
Population (trillion CNY)

Absolute Residuals by
Using OSM Road
Network Density

Relative Residuals by
Using OSM Road
Network Density

Absolute Residuals by
Using OSM Road

Network Density and
Population

Relative Residuals by
Using OSM Road

Network Density and
Population

69 Liuzhou Eastern 0.3084 0.3025 0.2880 −0.0059 −1.9131 −0.0204 −6.6148

70 Mianyang Western 0.2304 0.2376 0.1645 0.0072 3.1250 −0.0659 −28.6024

71 Zhanjiang Eastern 0.3008 0.2947 0.2966 −0.0061 −2.0279 −0.0042 −1.3963

72 Anshan Eastern 0.1751 0.1145 0.1012 −0.0606 −34.6088 −0.0739 −42.2045

73 Daqing Eastern 0.2801 0.2620 0.2582 −0.0181 −6.4620 −0.0219 −7.8186

74 Yichang Central 0.4064 0.4784 0.3904 0.0720 17.7165 −0.016 −3.9370

75 Baotou Eastern 0.2952 0.2298 0.3095 −0.0654 −22.1545 0.0143 4.8442

76 Jilin Eastern 0.2210 0.2180 0.2167 −0.0030 −1.3575 −0.0043 −1.9457

77 Huai’an Eastern 0.3601 0.4267 0.3499 0.0666 18.4949 −0.0102 −2.8325

78 Cangzhou Eastern 0.3676 0.4266 0.4065 0.0590 16.0501 0.0389 10.5822

79 Xiangyang Central 0.4310 0.4096 0.4381 −0.0214 −4.9652 0.0071 1.6473

80 Yueyang Central 0.3411 0.4007 0.3001 0.0596 17.4729 −0.041 −12.0199

81 Taian Eastern 0.3652 0.3579 0.3465 −0.0072 −1.9989 −0.0187 −5.1205

82 Dongying Eastern 0.4152 0.4105 0.3266 −0.0047 −1.1320 −0.0886 −21.3391

83 Nanyang Central 0.3567 0.3501 0.3379 −0.0066 −1.8503 −0.0188 −5.2705

84 Xining Western 0.1286 0.1322 0.1360 0.0035 2.7994 0.0074 5.7543

85 Lhasa Western 0.0528 0.0486 0.0515 −0.0042 −7.9545 −0.0013 −2.4621
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