
VLSI COMPLEXITY OF PARALLEL FOURIER

TRANSFORM ALGORITHMS

BY

TARANEH BARADARAN SEYED
~

Bachelor of Science
Aryamehr University of Technology

Tehran, Iran
1976

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 1989

I • """•
t· ~ .. : ... '.

~;_r

19890~

!36~31/

t:.Q{), ;;;

I
I
I
I

·I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Oklahoma State Univ. Library

VLSI COMPLEXITY OF PARALLEL FOURIER

TRANSFORM ALGORITHMS

Thesis Approved:

Dean of the Graduate College

ii

1352053

ACKNOWLEDGEMENT

I would like to thank my major advisor Dr. Louis G.

Johnson for his graceful attitude during the hardship, his

thoughtful advice, and support and encouragement. I deeply

owe the acheivements in my life to my husband Bijan who

never compromised his love and support. My outmost gratitude

to Dr. Donald Fisher for continous support and inspiration

during my years at osu. I would also like to thank the

members of my advisory committee Dr. Hedrick, Dr. George,

and Dr. Teague for helpful advice and support.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. FOURIER TRANSFORM COMPUTATION 4

III.

IV.

v.

NEW

VLSI

Discrete Fourier Transform . . • . . • .
Fast Fourier Transform • . . . •
Parallel Processing of OFT • .

N-Cell OFT Pipelines • . .
N**2-Cell DFT Networks. . • . • . •

Fast Fourier Transform Networks •.•••
Cascade Implementation. • • • • . •
The FFT Network • . . . •
The Perfect-Shuffle Implementation of

FFT • . • . .
The Mesh Implementation of FFT. . •

PARALLEL ALGORITHMS FOR FOURIER TRANSFORM

N-Cell Linear Pipelines
On-line Systolic DFTs
In-place systolic DFTs

N-Cell Mesh-Connected Network . . .
N**2-Cell Mesh-Connected Network
COMPLEXITY OF FOURIER TRANSFORM

Introduction • • •
VLSI Model of Computation • . . . • • .

Notations and Metrics • •
Assumptions • • . . • • .

The Area-Time Performance of Basic

4
4
8

10
26
28
28
32

34
39

43

44
45
52
73
81

91

91
92
93
94

Components . . . • . • 102
VLSI Complexity of Parallel Fourier

Transform Algorithms . > •••••••

Linear Pipeline Architectures .
Fourier Transform Networks • . .

N-Cell Mesh-Connected

. 106

. 111
128

Architectures . . • . . . • . 129
Fast Fourier Transform Networks. 130

N**2-Cell Mesh-Connected Network 140

CONCLUSIONS AND RECOMMENDATIONS . . • 14 7

REFERENCES • . • • . • • • 148

iv

LIST OF TABLES

Table

1o Physical Characteristics of the New Parallel
Fourier Transform Algorithms o o • • •

2.

3.

Computational Characteristics of the New
Parallel Fourier Transform Algorithms

Area and Time Complexity of the Basic
Components • • • . .

4. Physical Characteristics of the Linear Pipeline

Page

88

89

107

Architectures • • . . 124

5. Computational Characteristics of the Linear
Pipeline Architectures • • • 125

6. Approximated Area and Time Measures for Linear
Pipeline Architectures • o • • • • • • • • • • 127

7. Physical Characteristics of the Mesh-Connected
Networks • • • . . • • • . 133

8. Computational Characteristics of the
Mesh-Connected Networks . • .

9. Approximated Area and Time Measures for Mesh

134

Connected Networks • • 135

10. Physical Characteristics of the Fourier
Transform Networks • • . . • . 141

11. Computational Characteristics of the Fourier
Transform Networks • • 142

12. Approximated Area and Time Measures for Fourier
Transform Networks . . . • • . • 143

13. Comparative Analysis of Different Fourier
Transform Architectures 145

v

LIST OF FIGURES

Figure

1. Matrix-Vector Representation of OFT .

2. Two-Point Butterfly .

3. Flow Graph of 8-Point FFT Using the Butterfly

4.

of Figure 2 • • •

Butterfly for Decimation-in-Frequency
Decomposition . • • . • . . • • . .

5. Flow Graph of Complete Decimation-in-Frequency

Page

5

7

7

9

Decomposition . . • • • • • . . 9

6. The Structure and Operation of right(a) and Left
(b) Cells in 2N-1 Cell OFT Pipeline . • • • . . 12

7. The Structure and Operation of the Middle Cell in
a (2N-1) Cell OFT Pipeline • • 13

8. A Sequence of Operations of a (2N-1) Cell Pipeline
for a 3-point OFT . ·. • • • • • • . . . 15

9. The structure and Operation of Basic Cell and the
Structure of the Pipeline for Recursive OFT 18

10. (a) Matrix Arrangement of a one Dimensional
Signal (b) Resultant Matrix . • . . • . . . 20

11. The Input/Output Format for an N-element Mesh
Connected OFT (Zhang) . • • . . 22

12. The Structure and Operation of the Basic Cell for
N-Cell Mesh-Connected OFT 23

13. Mesh-Connected OFT Network (Zhang) 24

14. The Modified Design for Mesh-Connected Network 27

15. The Structure of the Pipeline for Cascade
Implementation of FFT 30

16. The Structure and Operation of the ith Cell in
Cascade Implementation of FFT • 30

vi

Figure Page

17. The FFT network (Thompson ao) • . . • • . . • 33

1a. The structure and Operation of the Basic Cell in
the mth level of the FFT Network 35

19. A Shuffle-Exchange Network for a-point FFT
(Stone 71) • •

20. The Flow Diagram of FFT Algorithm for an a-point
Signal with Input in Normal Order and output in

35

Bit-reversed Order . . • • . . • . . • • . . . 37

21. The Input Flow Through Perfect-Shuffle Network Ja

22. A Mesh Arrangement of a 16-Element Sequence . 40

23. A 16-point FFT Network (Thompson ao) 40

24. Fourier Transform as Vector Summation .

25. The Structure and Operation of a Basic Cell (a)
and the Structure of the Pipeline for the

46

On-line Systolic OFT . . • . • • . . • . . 49

26. The Structure and Operation of Basic Cell (a)
and the Structure of the Pipeline (b) for the
Modified On-line Systolic OFT 53

27. A List of Values of R(i,i)s and Q(i)s for
Different Values of i • . . • 57

28. The structure and Operation of the Basic Cell to
Generate Q(i)s and R(i,i)s • . . • • . . . 59

29. Structure and Operation of a Basic Cell for
In-place Systolic OFT . • . . . • . .

30. The Structure and Operation of the Basic Cell

61

for Dedicated In-place DFT • 62

31. The Set of coefficients Used at each Cell for N=4 64

32. The Structure and Operation of the Basic Cell
for In-place DFT with Minimum Communication
Lines 65

33. The Sequence of Coefficients Used by Cells in
a 4-cell Design • . • • • . 66

34. The Structure and Operation of a Basic Cell for
the bi-directional In-place Systolic DFT Pipeline 69

vii

Figure Page

35. The Structure and Operation of the Modified Cell
f~r t~e Bi-directional In-place Systolic DFT
P1pel1ne. • . • . • • . • . • 70

36. The Structure and Operation of the Basic Cell for
Linear Non-circular DFT pipeline • 72

37. The Structure of the Pipeline for the Linear
Non-circular OFT. . . . • . • • . • . 72

38. The Structure and Operation of the Basic Cell • . 74

39. The Modified Basic Cell to Direct the Output
Back to the Pipeline . • • . • ·. • . . 75

40. The Structure and Operation of the Basic Cell
for the Mesh-connected OFT Network . • . . 79

41. The Structure of N-cell Mesh-connected OFT Network 80

42. The Structure and Operation of the Cell (i,j) for
the Modified Mesh Connected OFT Network • • . • 82

43. The Structure of the Modified N-cell Mesh
Connected Network • • • . • • . • . . . 83

44. The Structure and Operation of Basic Cell and
the Structure of the Network for the N**2-cell
OFT Network • • • . . 8 6

45. An Amplifier Chain to Drive a Wire of O(K) 98

46. Planar Embedding of the Perfect-Shuffle
Connections . • • • • • . • . • . . • 140

viii

CHAPTER I

INTRODUCTION

The Discrete Fourier Transform (OFT) is one of the most

widely used transforms in signal processing, image

processing and computer vision. The computationality of

Fourier transform however has always been one of the major

issues for users and researchers. The time complexity of the

sequential algorithm for calculating the discrete Fourier
2

transform of an N-element signal is proportional to N •

Cooley [Cooley 65] proposed a faster method for serial

computation of the discrete Fourier transform known as Fast

Fourier Transform or FFT. The FFT algorithm is based on the

divide-and-conquer paradigm and reduces the time complexity

of the computation of an N-element sequence to NlogN.

Over the last two decades a large body of knowledge has

been dedicated to the processing aspects of OFT and FFT.

Researchers have persued different approaches and techniques

to increase the speed of the computation of the Fourier

transform. Since the speed of serial computation of the

Fourier transform is machine dependent, many researchers

aimed at designing dedicated hardware (Gold 73], (Despain

79]. Reducing the computation time by employing faster

circuitry for basic operations used in Fourier transform,

1

namely, complex addition and multiplication is another

approach persued by Taylor [Taylor 85], Cozzens [Cozzens

85], and Troung [Troung 86].

Significant advances in VLSI in recent years, which

started a new era in massive parallelism, has opened yet

another line of research in parallel processing of the

Fourier transform [Thompson 80], [Despain 79], [Stone 71],

[Bongiovanni 83], [Zhang 84], [Wold 84], [Gertner 87], and

[Troung 88].

2

The serial and parallel processing of Fourier

transform have been studied in. two different contexts,

namely, direct Fourier transform and fast Fourier transform.

Each method offers certain degree of freedom and suffers

certain restrictions on the size of the sequence, form of

the inputjoutput, and the size and capability of the basic

computational units and the interconnections between them.

The area-time trade-off as a common measure for

algorithmic and VLSI complexity has been used to approximate

the goodness of the algorithms and their associated VLSI

implementation. Thompson [Thompson 80] has derived a set of

assumptions and rules for the analysis of the VLSI

complexity of circuits. He has also derived a lower bound

for the area-time complexity of VLSI design of circuits

which solve an N-element Fourier transform problem.

In Chapter II, a detailed description of the techniques

used to calculate an N-element Fourier transform is

presented. Chapter III presents a set of new methods

3

proposed by this study. In Chater IV the set of assumptions

and rules used in the analysis of VLSI complexity of

circuits are presented. Also different area-time measures

and their applicability are discussed. Based on these

assumptions, different layouts for the basic circuitry used

in the VLSI design of Fourier transform solving circuitry

and their area and time complexity are analyzed. And

finally, an in depth analysis of the VLSI complexity of all

methods under different area-time measures is presented.

CHAPTER II

FOURIER TRANSFORM COMPUTATION

Fourier transform computation is based on two diff.erent

paradigms, the Discrete Fourier transform and the fast

Fourier transform. This chapter is dedicated to the descrip­

tion of these methods and the detailed explanation of the

parallel techniques to implement them.

Discrete Fourier Transform

The Direct Fourier transform of a finite sequence

{X (n) 1 n=0,1, •.. ,N-1} may be expressed as {Y(n),

n=0,1, ... ,N-1} where

N-1
Y(k) = L

n=O

nk
x(n) w

N
0 <= k <= N-1

and w = EXP (-2nj/N). DFT may also be represented in a
N

(2 .1)

matrix-vector multiplication form as depicted in Figure 1.

The direct computation of Fourier transforms using matrix-
2

vector multiplication has a time complexity of O(N).

Fast Fourier Transform

Cooley (Cooley 65] has reformulated equation 2.1 and

proposed a new method based on the divide-and-conquer para-

4

y
0

y
1

y
2

=

1

1

1

1

1

w

2
w

N-1
w

1
2

w

4
w

2(N-1)
w

1

N-1
w

w
2 (N-1)

(N-1) (N-1)
w

Figure 1. Matrix-Vector Representation of DFT.

X
0

X
1

X
2

X
N-

5

6

digm. This method is called the Fast Fourier Transform or

FFT. The FFT is based on the decomposition of the DFT into

successively smaller DFTs. Algorithms based on the decompo­

sition of {x(n)} are called decimation-in-ti~e algorithms

[Oppenheim 75].

The principle of decimation-in-time algorithms is best
m

presented by considering the special case of N=2 • Since N

is an even number { x(n) } may be separated into two N/2-

point sequences consisting of even-numbered elements in {

x(n) } and odd~numbered elements in { x(n) }. Equation 2.1

is thus rewritten as:

nk
Y(k) = L x(n) W

n even N

nk
+ L x(n) W

n odd N

nk

0<= k <=N-1

Then by exploiting the characteristics of W , the equation
N

may be rewritten as

Y(k)
N/2-1
~· = L__

r=O

rk
x(2r) w

N/2
k

= G(k) + W H(k)
N

k N/2-1
+ w L.

N r=O

rk
x(2r+l) W

N/2
(2.2)

where G(k) is the N/2-point OFT of the even-numbered points

of {x(n)} and H(k) is the N/2-point OFT of the odd-numbered

points of {x(n)}.

Therefore, the computation of an N-point OFT may be

decomposed into two computations of N/2-point OFT. If N =
m

2 , then the decomposition may further be applied m times

until a simple 2-point OFT is reached. The 2-point OFT known

Figure 2. Two-point Butterfly

x(O}

x(4)
w~

x(2}

x(6)
w2

lt (, l

x(5)
w~

X (3)

x(7}
w~

Figure 3. Flow Graph of 8-point FFT
Using the Butterfly of
Figure 2

7

8

as a butterfly computation is presented in Figure 2. The

results of 2-point OFTs are then combined to calculate the

4, a, .•• , N point OFTs. The complete flow graph of an a­

point OFT using decimation-in-time algorithm is presented in

Figure 3 (Oppenheim 75]. The computation is completed after

logN (base 2) steps and each step requires N/2 butterfly

operations. Therefore, a complete FFT computation of an N­

point FFT has (N/2)logN computational steps which yeilds an

O{NlogN} time complexity. The input data appears in bit­

reversed order, but the output.is in natural order.

Oppenheim (Oppenheim 75] presents alternative formulations

of decimation-in-time algorithms.

Another class of FFT algorithms, namely, decimation-in­

frequency algorithms are based on the decomposition of

{Y(n)} in the same manner. Figure 4 represents the butterfly

operation for decimation-in-frequency algorithm. Figure 5

represents a complete flow graph of the computation for an

a-point sequence using decimation-in-frequency algorithm.

Recent advances in massive parallel processing promises

faster computation of Fourier transforms. The following two

sections are dedicated to the detailed description of

parallel techniques to evaluate the Fourier transform of an

N-element sequence based on the OFT and FFT respectively.

Parallel Processing of a OFT

The parallel computation of a DFT is mainly based on

Equation 2.1. The symmetrical nature of the matrix of the

coefficients shown in Figure 1 and the relationship between

X.,.(p) ct--------?=----o Xm.,.,(p)

x(Q)

x(1 l

x(2J

x(3l

x(4)

Figure 4. Butterfly for
Decimation-in­
Frequency

x(5l

x(6l

x(7J
-1 -1

_,

wo
N

wo
N

wo
N

wo
N

X(Q)

X(4)

X(2l

X(6l

X(1)

X(5l

Xt:3l

X(7)

Figure 5. Flow Graph of Complete
Decimation-in- Frequency
Decomposition.

9

10

the elements of this matrix inspired many parallel

techniques [Kung 80], [Mead 80], [Zhang 84], [Thompson 80].

The difference between these approaches stems from the

assumptions on the size of the sequence and the number of

processing.elements used in the design. The detailed

description of each technique is presented in the following

section. The VLSI complexity of these techiques along with

others are analyzed in Chapter IV.

N-cell DFT Pipelines

Kung and Leiserson [Mead 80] were the first to propose

a pipeline of processing elements to compute the DFT of an

N-element sequence. The pipeline has 2N-1 cells to compute

the DFT of anN-element sequence {x(n)}. Cells operate on 50

percent duty cycle. The input sequence enters the pipeline

from the leftmost cell with a 50 percent duty cycle. Zero­

valued {Y(n)} enters the pipeline from the rightmost cell

again with a 50 percet duty cycle. No operation is performed

for the first N-1 cycles or until both x(O) and Y(O) reach

the middle cell.

The middle cell is a special celi and it generates all

the coefficients required by the transform. Coefficients are

then propagated to both the right and the left cells.

Register C in each cell is dedicated to the coeffi·cient and

is updated by the values that are generated by the middle

cell and propagated by other cells. These values are labeled

RA and RT.

11

the elements of this matrix inspired many parallel

techniques [Kung 80], [Mead 80], [Zhang 84], [Thompson 80].

The difference between these approaches stems from the

assumptions on the size of the sequence and the number of

processing elements used in the design. The detailed

description of each technique is presented in the following

section. The VLSI complexity of these techiques along with

others are analyzed in Chapter IV.

N-cell DFT Pipelines

Kung and Leiserson [Mead 80] were the first to propose

a pipeline of processing elements to compute the DFT of an

N-element sequence. The pipeline has 2N-1 cells to compute

the DFT of anN-element sequence {x(n)}. Cells operate on 50

percent duty cycle. The input sequence enters the pipeline

from the leftmost cell with a 50 percent duty cycle. Zero­

valued {Y(n)} enters the pipeline from the rightmost cell

again with a 50 percet duty cycle. No operation is performed

for the fi'rst N-1 cycles or until both x(O) and Y(O) reach

the middle cell.

The middle cell is a special cell and it generates all

the coefficients required by the transform. Coefficients are

then propagated to both the right and the left cells.

Register C in each cell is dedicated to the coefficient and

is updated by the values that are generated by the middle

cell and propagated by other cells. These values are labeled

RA and RT.

12

x(in) x(out)

RA(out) ~ RA(in)

RT(out) RT(in)

Y(out) Y(in)

a) Structure of Left Cells

x(in) x(out)

RA(in) RA(out)

RT (in) RT(out)

Y (out) Y(in)

b) Structure of right cells

OPERATION

Y(out):= Y(in) + c * x(in)

x(out) . - x(in) .-
c . - RA(in) * RT(in) .-

RA(out) := RA (in)

RT(out) .- RT(in)

Figure 6. The structure and Operation of right (a) and
left (b) cells in 2N-l Cell OFT Pipeline.

x(in) .
X(out)

RA (out) ~ RA(out)

RT (out) ~ 0 RT(out)

y (out) y (. l.n)

OPERATION

Y(out) ·- Y (in) +RA * x(in) .-
RA(out) ·- RA .-
RT(out) := RT

2
RA := RA* RT * w

RT := RT * W

Figure 7. The Structure and Operation of the Middle
Cell in a (2N-1) Cell DFT Pipeline.

13

14

When cell i is active, it receives Y from its right

neighbor and x from its left neighbor and RA and RT from its

left/right neighbor based on whether cell i is located at

the right/left of the middle cell. Then it performs the

multiply-add operation and sends Y to its left neighbor and

x to its right neighbor.

The structure and the operation of cells are depicted

in Figure 6. Figure 6a represents the structure of the cells

to the left of the middle cell. Figure 6b represents the

structure of the cells to the right of the middle cell.

The structure and operation of the middle cell is

special and different from other cells. This cell generates

and propagates the appropriate coefficients to all other

cells. The structure and operation of the middle cell is

depicted in Figure 7. Registers RA and RT in the middle cell

are initially one and the register labeled W contains EXP(-20

jjN). A sequence of the operations of the pipeline for a 3-

point DFT is depicted in Figure 8. Each cell is labeled with

its current value of x, y, and c, the coefficient used in

multiply-add operation is circled. After 2N-1 cycles through

the pipeline, Y(O) is out, Y(1) will be out after 2 more

cycles, and finally, it takes 2N-2 more steps after the

compeletion of Y(O) to output Y(N-1). Therefore, 4N-3 cycles

are required to compute an N-point DFT. Each step requires

two multiplications and one addition.

There are 2N-2 simple cells, each containing a register

c, a multiplier and an adder. The middle cell performs five

multiplications and an addition at each step. A faster

15

Figure 8. A Sequence of Operations of a (2N-1) Cell
Pipeline for a 3-point OFT. · .

16

multiplier or several multipliers may be provided in the

middle cell to avoid a slow down throughout the pipeline.

Each cell requires four input and four output lines.

Basically, this design employs 2N-1 cells each

containing a multiply-add circuitry and a register. This

approach reaches a 4N-3 cycles of computation for an N-

element DFT. The pipeline time (elapsed time between the

input of two consecutive sequences) is also 4N-3 since a new

computation may not start unless the previous computation is

completed.·

Kung (Kung 80] has proposed another linear pipeline

implementation based on the recursive formulation of the

DFT. Given the input sequence {x(n)}, the computation of the

Fourier transform of the sequence, {Y(n)}, can be viewed as

that of evaluating the polynomial

N-1 N-2
x(N-1)P +x(N-2)P + ···• +x(1)P + x(O)

2 3 N-1
At P = 1, W, W, W, •..•. , W. The polynomial can be

rewritten as:

(.... ((P x(N-1) +x(N-2))P + x(N-3))P + .••• + x(1))P + x(O)

The recurrence formula can be rewritten as follows:

0
Y (i) = x(N-1) 0<= i <= N-1

17

k k-1 i
y (i) = y (i) P + x(N-1-k) 1 <= k <= N-1

N-1
Then Y(i) = Y (i). The structure of a basic cell, its

operation, and the structure of the pipeline is depicted in

Figure 9.

The full pipeline consists of N-1 cells. The inputs

Y(in) and P(in) to the leftmost cell are x(N-1) and some

power of W respectively. Y(O) leaves the pipeline after N-1

cycles from the rightmost cell and Y(N-1) will leave the

pipeline after N-2 more cycles. Therefore, the processing

time of a sequence is 2N-3 cycles. A new sequence may start

its load and computation after N cycles or immediately after

Y(N-1) has left the leftmost cell. Therefore, the pipeline

time is N.

The basic cells in the pipeline require a register and

a multiply-add circuitry. It also needs two input and two

output lines. Inter-cell connections are near-neighbor.

A set of new linear pipeline approaches proposed in this

research will appear in chapter III. The main advantage of

linear approaches lie on the fact that the implementation is

not restricted by the input size. In other words, for any

given N, a linear pipeline could be constructed which solves

the Fourier transform problem for any sequence {x(m)} given

m <= N and assuming that appropriate P values are provided.

It is possible to decompose the DFT of a sequence

{x(n)} to smaller DFTs and then combine the results into

{Y(n)}. Gold and Bially [Gold 73] outlined a method to

N-1
w

18

n) p P(i (out)
"

X

n) y Y (i (out)

P (out) : = P (in)

Y(out) := Y(in) * P(in) + x

x(N-2) x(N-3)

X (N-1) , •••• , X (N-1)

, 8
Figure 9. The Structure and Operation of Basic Cell

and the Structure of the Pipeline for
Recursive OFT.

19

factor a T-point sequence into a two-dimensional matrix. If

T is a composite number, it can be factored into a product

of integers. If T is a prime number, the original signal can

.usually be augmented with zeroes to obtain a composite

number.

Let T = M x L be the number of elements in the input

sequence. Then {x(n), n=O,l, ••. ,T-1} may be rearranged into

a two-dimensional matrix with M rows and L columns as shown

in Figure lOa. The computational steps required to calculate

the Fourier transform of a one-dimensional sequence

rearranged into a matrix are as follows:

1) Calculate the OFT of each row individually, the
L

kernel of these transforms is W
T

ij
2) Multiply each term in the resultant matrix by W

where i and j are the row and column indices of each

term respectively, o <= i <= M-1 , 0 <= j <= L-1

3) Calculate the OFTs of each column individually, the
M

kernel of this OFT is W
T

The resultant matrix is shown in Figure lOb.

Since steps 1 and 3 are performed in parallel, the

computation time is proportional to M+L. Given T = MxL, M+L
V2

will be minimized if M=L or M = T • Therefore, the matrix

arrangement of a one-dimensional signal is most effective

when T is a complete square.

Zhang [Zhang 84] was the first to propose an N-cell

x(O)
X(1)

.
X (M-1)

y (0)
y (L)

.
Y ((M-1) L)

x(M)
x(M+1)

.
X(2M-1)

(a)

y (1)
Y (L+1)

.
Y ((M-1) L+1)

(b)

x(M(L-1))
X (M (L-1) +1)

.
X(M(L-1)+M-1)

Y (L-1)
Y (2L-1)

.
Y ((M -1) L + L-1)

20

Figure 10. (a) Matrix arrangement ()f_a_~!le I •.

. dimensional signal (b) resultant
matrix.

21

mesh-connected network for DFT. His approach is based on the

above formulation. Kung's recursive DFT is used to compute

individual row and column DFTs.
2

The N-element sequence, N = m , is rearranged into an

m x m matrix. The format of the rearranged input is shown in

Figure 11a. Figure 11b represents the format of the output

from the network. Neither the input nor the output have the

natural form.

The basic cell in Kung's recursive formulation is

modified to allow both row and.column DFTs. The structure

and operation of the basic cell is represented in Figure 12.

A control signal s is used to distinguish column and row

DFTs.

Process starts with calculating column DFTs. After m-1

cycles the first element of the Fourier transform is out.

This output and the following outputs are multiplied by
ij

appropriate W and shifted back to the same column to be
*

used in row DFTs. Register x in the basic cell is used for

shift operation. An extra cell is added·to the end of each

column pipeline as the last row of the matrix which is used
ij

to multiply the output of the pipeline by W and shift it

back to the pipeline.

After m more steps, column DFTs are complete and row

DFTs may be initiated which will be complete after 2m-2

steps. The complete process requires 4m-2 cycles.

The complete structure of the m x m mesh-connected

network is shown in Figure 13. The network has mxm basic

cells and an extra row of cells to accomplish local

x(m-1,m-1)
x(m-2 ,m-1)

.
x(O,m-1)

Y(O,m-1)
Y(1,m-1)

.
Y (m-1, m-1)

x(m-1,m-2)
x(m-2,m-2)

.
x(O,m-2)

.

(a) input

Y(O,m-2)
Y(1,m-2)

.
Y(m-1,m-2)

(b) output

x(m-1,0)
x(m-2,0)

.
X(O,O)

Y(O,O)
Y(1,0)

.
Y(m-1,0)

Figure 11. The InputjOutput Format for an N-element
Mesh-connected DFT (Zhang) •

22

23

S(out) x(out) Y {in) P(in)

* *
p (in)

*
P (out)

X X

* *
Y (in) y (out)

s {in) x(in) Y(out) P(out)

S (in) = 1 (computin9 column DFTs and multiplying)
. (by W**(iJ)) ·

* x(out) = x

*
X := X (in)

S {out):= S (in)

P(out) := P(in)

Y(out) := Y(in) * P(in) + x

S{in) = o (computing row DFTs)

* * P(out) := P(in)

* * * *
Y(out):= Y(in) * P(in) + x

S{out) := S(in)

Figure 12. The Structure and Operation of the Basic
Cell for N-cell Mesh-connected DFT.

24

o •••• o.1 •••• 1

.... !-...u .•.•• ~ 1,o •.... a

Figure 13. Mesh-connected OFT Network (Zhang).

25

multiplications. Two multipliers generate the appropriate Ps

used in the recursive formulation of OFT for the column and

row DFTs. The output of these multipliers are input to the

cells in the second row of the network (for the column DFTs)

and the second column of the network (for the row DFTs). M
ij

more multipliers are needed to generate the W s, one for

each column of cells. Therefore, the complete design
V2

requires N basic cells and N +2 multipliers. The basic

cell as depicted in Figure 12 requires two registers x and

*
x , and a multiply-add circuit. Each cell has 6 input and 6

output lines.

The design of the basic cell and the network as

appeared in [Zhang 84] using a single local control signal s

is incorrect. According to the specifications, the control

signal s should remain 1 for 2m cycles to guarantee the

correct calculation of the column DFTs and their shift back

to the cells. Therefore, one-valued S must be input to the

cells in the second row of the matrix from the first cycle

until the last cycle of the column DFTs or for 2m

consecutive cycles. At this point S must be changed to zero

in all cells to inhibit any further shift and propagation of

*
x (results of the column DFTs). Therefore, s must be a

global signal (connected to all cells). Otherwise if S is

set to zero, while directly connected to the last row of

cells, other cells are still receiving the value of one and

* propagating the calculated x s which will result in a faulty

outcome.

26

In summary, in order for this design to work correctly,

S must be directly connected to all cells. The consequence

of the direct connection of s to all cells is an increase in

the area of the design which has a negative effect on its

performance. The modified mesh-connected network with S

directly connected to all cells is represented in Figure 14.

A new N-cell mesh-connected network using a different

formulation and mechanism for row and column DFTs is

presented in Chapter III as a part of this study.

2
N -Cell DFT Networks

Another approach to the calculation of DFT may employ a

multitude of pipelines of N cells to boost the time

efficiency by avoiding the recirculation of the intermediate

results. Thompson [Thomson 83] refers to such a design. In

this design the non-recursive linear pipeline proposed by

Kung is used as the basic computational approach. 4N-3 basic

pipelines constitute the complete design which unrolls the

computation onto 4N-3 rows of 2N-1 cells. There are actually
2 2

about 8N cells in this N -cell design. Thompson suggests

the possibility of some reductions in the size which leaves
2

2N cells in the network. In Chapter III a new mechanism
2

using only N

presented.

cells along with detailed description is

The Fast Fourier transform is shown to calculate the

Fourier transform more efficiently on a single processor

system. Many authors have proposed hardware implementations

consisting of many processing cells based on this algorithm.

27

•(•l) • • , •••••. t,o ••••• o

Figure 14. The Modified Design for Mesh-connected Network.

28

Fast Fourier Transform Networks

There are a number of versions of the FFT algorithm

(Oppenheim 75]. The FFT algorithms mainly differ in the

order of input, output and the coefficients used. Two

algorithms, decimation-in-time and decimation-in-frequency

are presented in this chapter. Either algorithm has a time

complexity of O(NlogN) on a uni-processor system. Several

dedicated, multi-cell designs based on the FFT are presented

in the following sections.

Cascade Implementation

The cascade implementation was first proposed by

Despain [Despain 79]. It is based on the decimation-in-

frequency algorithm. The flow graph for an 8-point FFT based

on decimation-in-frequency with inputs in normal order and

outputs in bit-reversed order is presented in Figure 5. This

flow graph is used to describe the details and the mechanism

of the cascade implementation.

The cascade implementation consists of m = log N

processing cells. Cells from left-to-right C(i), 1<= i <=m
(m-i)

are connected to shift registers of length 2 • In other

words, the left-most cell, C(1) is connected to a shift
(m-1)

register of 2 cells, where each cell is capable of

holding an input datum or intermediate result. Cell C(2) or

the second cell is connected to a shift register of length
(m - 2)

2 and the last cell C(m) is connected to a shift

29

register with one cell. Cells are arranged as a pipeline.

The structure of the pipeline is depicted in Figure 15.

Each cell has two input and two output lines. The

output line SR(in) is connected to the input of the

associated shift register, while the other output line

OUTPUT is connected to the next cell in the pipeline. One

of the two input lines of each cell, SR(out), is connected

to the output of the associated shift register while the

other input line INPUT is connected to the output of the

previous cell. INPUT to the leftmost cell is the line where

the input signal enters the cascade and the OUTPUT line of

the rightmost cell sends the results of the calculation out.

Each cell saves the input values or the intermediate results

until the associated input value or intermediate result is

input to the cell for butterfly calculation. For example, in

a case of 8-point FFT whose flow graph is represented in

Figure 5, the leftmost cell C(l) inputs x(O), x(l), x(2),

and x(3). and shifts them into the shift register of length

4. When x(.4) appears on the INPUT line of C(l), its

butterfly correspondent x(O) appears on SR(out), at this

point the butterfly operation is performed. x(O)+x(4) is
0

sent to the next cell while (x(O)-x(4))W is sent to the

shift register. In the following step, the butterfly

operation is performed on x(l) and x(5) and x(l)+x(5) is

sent to the next cell while (x(l)-x(5))W is sent to the

shift register. The next step generates (x(2)+x(6)) and
2

(x(2)-x(6)) W. At this point the shift register of C(2) is

full and SR(out) in C(2) has (x(O)+x(4)) where combined with

-~1'-c_<:_1.:__} _J?--~l~_c <.:._2_:_> _J],___,y"'L_c_:_c 3_:_}_Jro 0 0 0 0 .. ~
Figure 15. The Structure of the Pipeline for Cascade

Implementation of FFT.

(m - i)
2 cells

.
SR(out)

~ 0
INPUT \counter\

leftmost-bit of counter = 0

SR(in) := INPUT

OUTPUT := SR (out)

leftmost-bit of counter = 1

OUTPUT := SR(out)+ INPUT

SR(in) := (SR(out) -INPUT)* Z

SR (in)

OUTPUT

30

Figure 16. The Structure and Operation of the ith Cell
in Cascade Implementation of FFT.

31

(x(2)+x(6)) performs the topmost butterfly operation of the

second column of Figure 5. During the next phase, the second

butterfly from the top on the second column of Figure 5 is

performed whose result combined with (x(O)+x(4)) +

(x(2)+x(6)) stored in the single register of C(3) generates

X(O) which leaves the system on the OUTPUT line of C(3).
(m-i)

Therefore, each cell C(i) performs 2 butterfly
(m-i)

cycles. During the first 2
(m-i)

operations every 2

cycles, cells accumulate the results of the previous cycles

until their associated butterfly couples are generated, then
(m-i)

during the following 2 cycles the butterfly operations

are performed. In general, C(1) performs the butterfly

operations at the first column of Figure 5, C(2) performs

those in the second column and C(3) performs the ones in the

third column.

In order to keep track of cycles associated with each

cell there is a (m-i)-bit counter. As long as the leftmost

bit of the counter is zero, the cell simply accumulates its

input values and sends the output of its shift register to

the next cell. As soon as the leftmost bit of the counter
(m-i)

becomes one and as long as it remains one (2 cycles)

it performs the butterfly operations. The structure and

operation of cell C(i) is presented in Figure 16.

one of the advantages of using a decimation-in-

frequency algorithm is the ease of generating coefficients

for the butterfly operations. Each cell has a register Z

containing 1 initially, which is multiplied by W at every

cycle. At the time of butterfly operation, this register

contains the appropriate value.

32

A new sequence of input values may enter the cascade as

soon as a slot becomes open in the shift register of the

left-most cell or N cycles after the first element of the

previous sequence has entered the leftmost cell. Therefore,

the pipeline time of the cascade is proportional to N. The

processing time of a sequence however is proportional to 2N.

To this time the time needed to shift the intermediate

results within the shift registers must be added. The total

length of shift registers for an N-element implementation of

cascade is N. The longest shift register, connected to C(l)

contains N/2 cells. Therefore, the time required to shift

N/2 elements must be added to the processing time of each

computational step. The time required to convert the output

sequence from bit-reversed order to normal order must also

be added to the processing time of this design.

The cascade implementation of an FFT uses a pipeline of

m=logN processing elements. However, the amount of memory

used for the shift registers approaches N. Thus, although

the number of processing cells is very small, the shift

registers occupy an O(N) area.

The FFT Network

One of the methods to implement FFT in hardware is to

lay out the flow graph of an FFT computation as depicted in

Figure 3 in hardware providing a distinct cell for every

butterfly computation. Consequently, the design consists of

Figure 17. The FFT Network
[Thompson 83].

33

N/2 logN cells which could be laid out in logN rows of N/2

cells. Figure 17 adopted from [Thompson 83] represents the

FFT network for N=8.

34

The input is in bit-shuffled order and the output is in

bit-reversed order. This order seems to minimize the area

required for row interconnections [Thompson 83]. Each cell

performs a butterfly operation on its two inputs and

coefficients are stored in a register in the cell. The basic

structure and operation of an FFT network cell in the mth

row is depicted in Figure 18. Additional circuitry is

required to convert the input from normal order to bit­

shuffled and to convert the output from bit-reversed to

normal order.

The interconnection between consecutive rows occupy

wire areas. Thompson [Thompson 83] shows that in general,

the connections emerging from the Kth row 0<= K <= logN-1,
~1

occupy N/(2) tracks. Consequently, a total of N-1

horizontal tracks are required to lay out the inter-row

connections.

The processing time of the FFT network is logN cycles.

To this time the time for inter row data transmission must

be added. The pipeline time performance of the FFT network

is one cycle, since a new problem can enter the network

immediately after the previous problem leaves the first row.

The Perfect-Shuffle Implementation of FFT

Stone [Stone 71] was the first to point out the

m-1
p-q = 2

X (p)
m

X (q)
m

X (p) := X
m+1 m

X (q) ·- X .-
m+1 m

(p)

rN
w

+ w
rN

rN
(p) - w

X
m

X
m

35

X (p)
m+1

X (q)
m+1

(q)

(q)

Figure 18. The Structure and Operation of the Basic Cell
in the mth level of the FFT Network.

Figure 19. A Shuffle-Exchange Network for 8-point FFT
(Stone 71).

importance of the perfect-shuffle connection in multi­

processing systems. One of the most important applications

of the perfect-shuffle network is in the implementation of

the decimation-in-time algorithm for FFT. Figure 19

represents the general form of the perfect-shuffle network

for an a-point FFT.

The input to the perfect-shuffle network is in bit­

shuffled order and the output is in bit-reversed order

requiring extra hardware to rearrange the input and output

36

to the normal order. The network consists of N/2 cells, each

designed to perform a butterfly operation. The flow graph of

FFT computation for perfect-shuffle arrangement is presented

in Figure 20. The flow of inputs through the network is

represented in Figure 21.

The perfect-shuffle network consists of N/2 cells each

capable of performing a butterfly operation. LogN

coefficients for butterfly operations, one for each stage of

the computation are stored in each cell. As it is shown in

Figure 21, the connection between cells is regular and

unlike the FFT network it is independent of the stage of the

computation. Data items circulate through N/2 cells for logN

cycles before the output is ready. Therefore, the processing
m

time of the FFT of an N-element sequence N=2 , is

proportional to m=log N. The time required for data

recirculation must be added to this time to reflect the

actual processing time. The problem of data recirculation

and associated area and time complexity is addressed in

chapter IV. The pipeline time for perfect-shuffle the FFT

37

x(O) X (0)

x(1l X (4)

x(2l X (2)

x(3) X(6)

wo
x(4)

~
X (1)

x(Sl
w~

X{S)

x(6)
w~

X (3)

w~
x(7)

-1
X(7l

Figure 20. The Flow Diagram of FFT Algorithm for an 8-point
Signal with Input in Normal Order and output
in Bit-reversed Order.

0

0

0
w

0
w

0
w

X
4

X
4

0
w

2
w

2
w

·x
2

X
5

X
6

•

1

0
w

0
w

1
w

X
6

X
5

0
w

2
w

3
w

X
3

38

X
7

X
7

X
7

Figure 21. The Input Flow Through Perfect-Shuffle Network.

39

network is equal to its processing time since new sequence

can enter the network only after the computation of the

current sequence is completed.

The Mesh Implementation of the FFT

The mesh implementation of an FFT was first proposed by

stevens [Stevens 71] for the ILLIAC IV architecture.
2m

Assuming N=2 and using the decimation-in-frequency

algorithm, the N-element sequence is arranged into a mesh
m m

structure of 2 x2 elements in a row-major order. Figure 22

represents a mesh arrangement of a 16-point sequence. In

order to simplify the description of the mesh implementation

of the FFT algorithm, the data flow will be shown on a 16-

point FFT network given in Figure 23.

As it is shown in Figure 23, at each stage of the

computation N/2 butterfly operations are performed. At the

first stage, the butterfly operations are performed on x(O)

and x(S), x(1) and x{9), •.•. ,and x(7) and x(15). Cell 0

receives x(S) and performs the butterfly operation, then it

keeps one of the results and sends the other to cell 8.

Cells 1 through 7 receive inputs from cells 9 through 15. If

the difference between cell numbers is considered as the

communication distance, there is an distance-S communication

between cells before the first set of butterfly operations

are performed. At the completion of butterfly operations at

cells o through 7, each cell sends one of its outputs to

cells 0-3 and the other to cells 8-11. Therefore, there are

40

Figure 22. A Mesh Arrangement of a 16-Element Sequence.

Figure 23. A 16-point FFT Network (Thompson 80).

4 distance-S and s distance-4 communications. Note that

cells S-15 are idle at the first stage. After completion of

butterfly operations in the second row of the FFT network,

cells 0-3 and S-11 have 4 distance-4 and S distance-2

communications. And finally, after the third stage, there

are 4 distance-2 and S distance-! communications.

A careful study of Figure 22 reveals that distance-S

communications can be performed in parallel between row 1

and 3 and 2 and 4 through rows 2 and 3. If routing between

near neighbors is considered to be unit routing, then

41

distance-S communication requires 2 unit routing. Distance-4

communication is between near neighbors on consecutive rows,

therefore, it requires a unit routing. Distance-2

communication occurs between columns 1 and 3 and 2 and 4

which requires 2 unit routing. Finally, distance-!

communication is between near neighbors on columns.

The total time taken by the data movement during an FFT

can be expressed in terms of unit routing performed.

Thompson [Thompson SO] shows that in general in an N-cell
k

mesh, a distance-(N/2) communication is performed before

and after the kth stage in the FFT network. The sum of the

time contributions of all stages to routing will be the

total routing time of the mesh.

There are logN stages in FFT network, each corresponding

to a computational step in mesh. There are also 2 distance­
k

(N/2) communication per stage, one before and one after the

computation. If K < 1/2 logN, the mesh's vertical

interconnections are used for routing, otherwise the

horizontal connections are used. It is shown [Thompson 80]
1/2

that the total routing time is proportional to N

The processing time consists of logN cycles of

42

butterfly computations and routing which is mainly dominated
1/2

by routing. Thus it is considered to be proprtional to N

The pipeline time of mesh implementation of an FFT is also
1/2

N since a new sequence can start computation only after

the current FFT is completed.

The cells in this design are not simple cells but

complete processors, since data routing and stage determina-

tion and also storage for coefficients are all handled by

the cells themselves, requiring larger area for basic cells.

CHAPTER III

NEW PARALLEL ALGORITHMS FOR DISCRETE

FOURIER TRANSFORM

Chapter II covers the existing parallel algorithms for

calculating the Fourier transform of a sequence. In this

chapter, a set of new parallel algorithms are presented.

These algorithms are based on the direct computation of the

Fourier transform. The main computational paradigm employed

is a pipeline and the designs are based on systolic arrays

of cells.

The idea of systolic arrays was first proposed by Kung

[Kung 79]. It is based on the decomposition of a problem

into smaller problems of the same nature. A small processing

cell is designed to solve the smaller instance of the

problem. The cells are connected appropriately to propagate

the intermediate results to the other cells in order to

generate the final result. The cell interconnections are

assumed to be simple and regular.

The main concept behind the idea of systolic arrays is

to simplify and modularize the dedicated design of a circuit

to make it amenable for VLSI implementation. The simplicity

and regularity of inter-cell connections inhibits extensive

wire area and complicated control.

43

44

Several pipeline systolic approaches to calculate the

Fourier transform of a sequence are presented in chapter II.

The new approaches proposed in this chapter are mainly

inspired by certain properties of the matrix of coefficients

in the matrix-vector multiplication representation of Figure

1.

The new pipeline systolic approaches are divided into

three categories: N-cell linear, N-cell mesh-connected, and
2

N -cell mesh-connected. The N-cell linear designs resemble

the linear pipelines proposed by Kung, but they differ in

the formulation, inputjoutput format, and the structure of

the basic cell. The N-cell mesh-connected design is based on

these new approaches and the rearrangement of an N-element
2

signal into an m x m matrix, N=m , as discussed in chapter
2

II. The N -cell design shows an improvement over the

structure proposed by Thompson [Thompson 83]. This chapter

is divided into three sections, each covering the details of

the designs in each category. The VLSI area-time complexity

of these designs along with others presented in chapter II

is presented in chapter IV.

N-Cell Linear Pipelines

The N-cell linear pipeline designs are based on the

idea of N basic cells connected as a pipeline. These

approaches are divided into two categories based on the form

of the entry of the input sequence {x(n)} to the pipeline.

The first category called on-line systolic DFT in this

study, is based on the serial input of {x(n)} overlapped

45

with the computation. The second category called In-place

systolic DFT in this study, assumes the existence of the

input sequence in the pipeline, one element per cell of the

pipeline.

On-Line Systolic DFTs

These approaches are based on the serial input of the

sequence to the pipeline from the left-most cell, one

element at a time starting with the first element of the

sequence {x(n)}, namely, x(O). Y(i)'s or the elements of the

Fourier transform of the sequence {x(n)} reside in the

registers in the processing cells, Y(O) in the leftmost cell

or cell o, Y(1) in the next cell or cell 1, and finally,

Y(N-1) in the rightmost cell or cell N-1.

The elements of {x(n)} sweep the pipeline from left to

right, visiting each cell, contributing appropriately to the

value of Y(i) residing in that cell. The coefficients by

which the elements of {x(n)} contribute to the elements of

{Y(n)} are the variables of this approach whose pattern of

change may be studied by careful examination of the matrix

of coefficients.

The matrix-vector multiplication of Figure 1 may be

rearranged as the vector summation of Figure 24. This

rearrangement represents the vectors of the values· by which

x(i) contributes to the elements of {Y(n)}. These vectors

are the columns of the matrix of coefficients. The idea may

be expressed as follows:

46

y 1 1 1 1
0

2
y 1 w w w

1
= X + X + X .•• + X

0 1 2 N-1

2
N- 2 (N-1) (N-1) y 1· w w w

N-1 I

Figure 24. Fourier Transform As Vector Summation.

47

N-1

y = L X M 0<= i <= N-1 (3 .1)
i=O i i

Where M is the ith column of the matrix of coefficients. A
i

careful study of M 's shows that
i

ij
M = { W

i
0 <= j <= N-1 } 0 <= i <= N-1

Let M (j) denote the jth element of M , then
i i

M (j) = 1 j = 0
i

i
M (j) = M (j-1) * w 1 <= j <= N-1

i i

i
Therefore, if appropriate W s are generated outside the

pipeline and are input to the pipeline along with the corre­
i

spending x(i), then a simple multiplication by W will

g~nerate the coefficient of x(i) for the next cell.
i

Let C denote W used to generate M (j+1) using M (j).
i i

Then at each step through the pipeline, a cell receives

x(i), M (j) and c. The contribution of x(i) to Y(j) is made
i

and then the coefficient for the next step is calculated by

multiplying M (j) by c.
i

Let x(in) denote the element of {x(n)} that enters a

cell, M(in) denote its corresponding coefficient, and C(in)
i

denote W • These three values are the inputs to a cell at

each stage. After the operation is performed, x(in) is

propagated to the next cell through a line called x(out),

48

M (j+1) is propagated on a line called M(out), and finally,
i

C(in) is propagated unchanged on a line called C(out). A

control signal P is added to the design to initialize Y to

zero before x(O) enters the cell. The structure and

operation of a basic cell and the structure of the pipeline

is depicted in Figures 25a and 25b.

Figure 25a represents the structure and the operation

of the basic cell. Each computational step requires two

multiplications and one addition. The cell contains a single

register Y to accomodate the value of the Fourier transform

of the signal. Four input and four output lines are needed.

Figure 25b represents the structure of the pipeline.

Input Sequence {x(n)} is fed to the pipeline sequentially in

natural order. M(in) for the leftmost cell is one, since

M (1) = 1 for 0<= i <=N-1. C(in) for the leftmost cell
i 2 N-1

varies following the sequence {1, w, W, •.• , W }. This

sequence may be easily generated by connecting C(in) to the

output of a multiplier. P(in) follows a sequence {0, 1,

,1}, the z~ro initializes Y to zero, and the following 1's

allow the computation to proceed. Other sequences {x(n)},

{M(in)}, and {C(in)} are augmented by a zero to represent

the fact that they have to be delayed by one cycle to allow

the initialization of Y to occur.

The pipeline requires N cells, each containing a

multiplier, an adder, and a register. After N cycles, Y(O)

is complete and after N-1 more cycles, the computation is

completed. Therefore, this approach requires 2N-1

computational steps. If Y(i)'s are output immediately after

49

x (· ut) ~n) x(o

in) 0 M(M(out)

C(out) in) C(

in) P(P(out)
,

P (in) = 0

y := 0

P(out): = P (in)

· P(in) = 1

Y := Y + x (in) * M (in)

M(out) := M(in) * C(in)

x(out) := x (in)

c (out) := c (in)

(a)

X(N-1), •••• , x(1),x(O), 0

1 I • • • • I 1 '
1

'
0

N-1
w

1

, ' w ' 1 '
I • • • • I 1

'
1

(b)

Figure 25. The Structure and Operation of a Basic Cell
(a) and the Structure of the Pipeline for
the On-line Systolic OFT.

they are completed, another sequence may start its

computation after N cycles. Therefore, although the

processing time of the pipeline involves 2N-l cycles, its

pipeline time may be boosted to N cycles.

50

In this design data entry to the system overlaps the

computation. Data entry is assumed to be serial, requiring

the minimum space for wires. Another feature of this design

is its modularity. All cells have the same structure and

function. The variable of the design, namely, C(in), is an

input to the system, rather than being a built-in parameter.

Therefore, an N-cell pipeline may be used to calculate the

Fourier transform of any sequence of length M, M <= N as

long as correct w, (W = EXP (-2 n j/M)) is fed to the system

and the sequence is padded with zeros to the length of N. It

is also possible to expand a pipeline of N-cells to a pipe­

line of T cells, T >= N by simply connecting the outputs of

the rightmost cell of the first module to the inputs of the

leftmost cell of the second module. Yet another feature of

this pipeline is that Y(i)'s reside in the cells and with

slight enhancement of the cells many useful operations such

as filtering followed by inverse Fourier transform can be

performed in-place without requiring the sequence to leave

the pipeline and enter again.

One of the disadvantages of this approach is ·the

multitude of inputjoutput lines in the basic cell. Although

this feature adds to the flexibility and modularity of the

design, it causes delays due to inputjoutput and increases

the processing time. If the coefficients and the

multiplicative factors used to generate them can be stored

in the cells instead of being propagated, the processing

time may be boosted at the cost of slightly larger cells.

In order to maintain multiplicative factors in the

51

basic cells, the multiplicative factors by which {x(n)}

contributes to Y(j) should be analyzed. Another look at the

matrix of multiplicative factors of Figure 1 reveals another

interesting property of this matrix. The ith row of this

matrix represents the multiplicative factors used by the

elements of {x(n)} to calculate Y(i). Let R(i) represent the

ith row of the matrix of coefficients and x represent the

vector representation of {x(n)}, then

Y(i) = R X X 0 <= i <= N-1

Therefore, while the elements of {x(n)} are flowing through

the pipeline, the values of R may be generated in each
i

cell. A careful study of R reveals that:
i

R
i

ij
= { w 0 <= j <= N-1 }

Let R (j) denote the jth element of R , then
i i

~(j) = 1
i

j = 0

0<= i <= N-1

i
~(j) =~(j-1) * w 1 <= j <= N-1

i i

52

Let R denote a register in the basic cells to hold the
i

present value of R and let c denote W , then the number of
i

input lines to the basic cell may be reduced to one

consisting only of the input value x. The control signal P

is still needed to initialize Y to zero and R to 1. The

structure and the operation of the basic cell and the

structure of the pipeline is presented in Figure 26.

The control signal P follows the { 0,1,1, ••. ,1}

sequence, initializing R and Y to one and zero respectively.
i

Register c is fixed for the design at value W for the ith

cell. Each cell contains three registers, a multiplier and

an adder, an input and an output data line, and a local

input and a local output control line.

The basic operation involves two multiplications and

one addition, an input and an output. The processing time

for the evaluation of the complete DFT is 2N-1 cycles and

the pipeline time can beN if {Y(n)} is output as it becomes

ready. The inputjoutput time is reduced from three

inputjoutput per basic operation to one.

In-place Systolic DFTs

Kung [Kung 80] was the first to propose an in-place

systolic DFT pipeline. This approach is discussed in detail

in chapter II. In this section four new in-place OFT

pipelines are introduced which are different from Kung's

approach. In all in-place methods, it is assumed that the

sequence {x(n)} is already loaded into the pipeline, one

in) x(o x(ut)

R y

in) P(o P(ut)

P (in) -- o

y := 0
R := 1

c

P(out) := P(in)

P(in) = 1

y . - y + R * x (in) .-
R ·- R * c . -
x(out) := x(in)

P(out) ·- P(in) .-

(a)

53

X I •••• I X X I 0

1

N-1 1 0
CELL

0
1 ••••t 1 1 1 1 0 ~

(b)

CELL

1 (N-1) ~

I

Figure 26. The Structure and Operation of Basic Cell
(a) and the Structure of the Pipeline (b)
for the Modified On-line Systolic DFT.

54

element per cell. In Kung's approach, the sequence is loaded

from right-to-left, leaving x(N-1) as the input to the left­

most cell, x(N-2) at the left-most cell, and finally, x(O)

at the right-most cell. Therefore, requiring only N-1 cells

for an N-element OFT.

In the new approaches presented in this section, data

is loaded to the pipeline of N cells in natural order, x(O)

in the left-most cell, x(1) in the second cell, and x(N-1)

in the right-most cell. The structure of the basic cell for

the new approaches are different from Kung's approach and

the number of cycles is less than Kung's approach by a

factor of 1/2 for the first two designs. This reduction in

the number of cycles however is at the cost of slightly

larger cells. The details of these techniques are presented

in the following paragraphs.

The first in-place approach in this section is based on

calculating {Y(n)} stored one element per cell in natural

order by allowing x's to sweep the cells and contribute to Y

in each cell. Therefore, initially x(i) and Y(i), O<=i<=N-1

are stored in the ith cell. During the first step x(i)

contributes to the value of Y(i) in the ith cell. Then x(i)

is propagated to the (i+1)th cell to contribute to the value

of Y(i+1). The pipeline is designed to be circular so that

the output of cell (N-1) may enter the cell o. The values of

{x(n)} circulate through the pipeline sweeping all the cells

and contributing to the Y(i)'s stored in the cells. There­

fore, the operation is completed after a complete sweep or N

cycles.

55

Since this design is based on the complete sweep of the

cells by {x(n)} stored in the cells, the coefficients by

which the input values at each step contribute to the value

of Y stored in the cell is different from the previous

approaches.

At the first step of the computation, x(i) contributes

to the value of Y(i). The coefficients used for this step

are the elements of the diagonal of the matrix of

coefficients of Figure 1. This sequence may be represented

as:

4 9
{ 1, w, w , w , • • • • • I

(N-1) (N-1)
w }

The coefficients used in the second step are the values by

which x(i) contributes toY((i+1) MOD N), 0 <= i <= N-1,

or the elements under the diagonal and the element at the

Nth column and the first row of the matrix of coefficients.

This sequence may be represented as:

2 6 12
{ 1,W ,W ,W , , 1}

Let R(i,j) represent the value by which x(i) contributes to

Y(j) and Q(i) represent the multiplicative factor to

generate R(i,j+1) or the coefficient by which x(i)·

contributes to Y(j+1). A careful study of these components

reveals an interesting pattern. As shown before, the values

of R(i,i) or the sequence of the contributions of x(i)s to

Y(j)s is as follows:

4
{ 1,W 1 W 1

(N-1) (N-1) ' w }

Q(i) or the value used to generate R(i,j+1) from R(i,j) is
i

W for 0 <= i <= N-1. A list of the values of R(i,i) and

Q(i) for 0< =i <= N-1 is given in Figure 27.

These values may be pre-computed and stored in each

cell or calculated on-the-fly before the actual OFT

computation starts. On-the-fly computation adds to the

flexibility of the design since W = EXP(-2 J/N) may be

changed to accomodate the pipeline for the calculation of

any sequence of length M <= N. It also increases the

modularity of the design. However, the flexibility and

modularity is attained at the price of the overhead of the

added computation time.

56

Figure 27 shows the "on-the-fly" pattern of the compu-

tation of R(i,i)s and Q(i)s using the values of R(i-1,i-1)

and Q(i-1). Basically, the following computational steps may

be carried out through the pipeline to calculate and store

R(i,i) and Q(i) in each cell:

Q(O) = 1

Q(i) = Q(i-1)*W 1<= i <= N-1

R(O,O) = 1

R(i,i) = R(i-1,i-1)*Q(i-1)*Q(i) 1 <= i <= N-1

Therefore, by initializing the Q(O) and R(O,O) to 1 and

i

0

1

2

3

4

N-2

N-1

R (i, i)

1

w

4
w

9
w

16
w

2
(N-2)

w

2
(N-1)

w

2..UJ..

1

w

2
w

3
w

4
w

(N-2)
w

(N-1)
w

Figure 27. A List of values of
R(i,i)s and Q(i)s for
Different Values of i.

57

inputting W = EXP(-2 J/N) to the leftmost cell, the above

systolic process may generate and store Q(i) and R(i,i) in

the ith cell.

58

Let Q(in) and R(in) representing Q(i) a.nd R(i,i) and

z(in) representing W=EXP(-2ITJ/N) be the set of inputs to the

cell at each instance. Let Q(out) and R(out) representing

Q(i+l) and R(i+l,i+l) be the set of outputs from the cell.

Then the above systolic operation may be performed at each

stage to generate the values of Q(i) and R(i,i). Registers Q

and R in each cell are dedicated to the values of Q(i) and

R(i,i). A local control signal Tis added to each cell to

inhibit further operations in the cells where Q and R are

already computed. This signal is also used to initialize Y

to zero. The structure and operation of the basic cell to

generate Q(i)s and R(i,i)s is presented in Figure 28. After

Q(i)s and R(i,i)s are calculated, the in-place DFT may

start.

Assuming a circular pipeline of cells (last cell is

directly connected to the first cell), x(i) is multiplied by

R(i,i) and accumulated in Y(i). The next step is to

calculate R(i,i+l) which is accomplished by multiplying

R(i,i) by Q(i) .• Then x(i), R(i,i+l) and Q(i) are propagated

to the next cell. After N iterations, Y(i) o <= i <= N-1

contains the ith element of {Y(n)} or the Fourier transform

of {x(n)}.

The structure and operation of a complete cell to

calculate the coefficients and to perform the DFT is

59

1, •••• ,1,0 . n) T(l. T(out)

w, •••• ,w,w Z(l. G 0 -
"n) z(out) -
in)

G
Q(
~

l, ,l,l Q(out)

l, ,l,l R(in) R(out)
~

T(in) = 0 store Q(in) and R(in) and generate
Q(out) and R(out)

Q ·- Q (in) .-
R ·- R (in) .-
Q(out) ·- Q(in) * z (in) .-
R(out) := Q(in) * R (in) * Q(out)

Z(out) ·- z (in) .-
T(out) := T(in)

T(in) = l initialize Y and propagate T

y := 0

T(out) := T(in)

Figure 28. The Structure and Operation of the Basic Cell
to Generate Q(i)s and R(i,i)s

presented in Figure 29. A global signal s is used to

differentiate the coefficient preparation process from the

actual computation. The preparation process requires N

cycles, and the calculation process requires N more cycles

which yields a 2N step process for a complete DFT

calculation.

60

The basic cell contains four registers, a multiplier,

an adder, four inputjoutput data lines and two control

lines. The main reason for this added space is to attain

flexibility and modularity by tnputting W = EXP(-20J/N)

which makes the design independent of N. Sequence {Y(n)}

resides in the pipeline after the completion of the process.

The number of computational steps may further be

reduced if Q(i) and R(i,i) are pre-computed and stored in

each cell, eliminating the preparation process and reducing

the number of control signals to one. The global signal s

may be used to initialize Y to zero and to load the pre­

computed value of R (S=O} and then to invoke the OFT process

(S=l} which is completed after N steps. The structure and

operation of the basic cell for the dedicated in-place DFT

is presented in Figure 30.

Although storing the pre-computed values in the cells

eliminates the need to prepare the coefficients, it does not

eliminate the need for propagating the values R and Q, since

these values are related to the x's which are floating

through the pipeline.

In order to reduce the data transfer rate between the

cells, we may investigate the coefficients used during the

{1, •• 1,0} {1, •• ,1}

T(in)

s ->

Q

T(out)

{1, •• ,1}

Q(in) R(in)

Q(out) R(out)

{W, •• W}

Z(in)

X

z(out)

61

s = 0 *prepare Q(i)s and R(i,i)s *

T(in) = o

Q := Q (in)
R := R(in)
Q(out) := Q(in) * z(in)
R(out) := Q(in} * R(in} * Q(out}
z(out) := z(in)
T (out) : = T (in)

T(in) = 1

y := 0
T(out} := T(in)

s = 1 perform the in-place DFT

Y := Y + X * R
Q(out} := Q
R(out) := R*Q
z (out) := x
R := R(in)
Q : = Q (in}
x : = z (in)

Figure 29. Structure and Operation of a Basic Cell for
In-place Systolic DFT

s

l
~ [!]

Q (out)
7'

Q(in)
~

0 0
R(out)

""?

R(in)

~ z(out)
~

z(in) ___.,

s = 0 load precomputed value of R, intialize Y

s = 1

y ·- 0 .-
R := R'

Y := Y + X * R

Q(out):= Q

R(out) := R * Q

z(out):= x

R := R(in)

Q := Q (in)

x := z(in)

perform the DFT

Figure 30. The Structure and Operation of the Basic
Cell for Dedicated In-place DFT

62

63

process by floating values of x in correspondence with a

given Y. The set of coefficients used during the four stages

of the computation in each cell for N=4 is presented in

Figure 31.

Obviously, these sequences have the initial value of

{ R(i,i) } studied in previous paragraphs. The sequence used

in the second step of the computation may be generated from
-i

the first sequence by multiplying each element by W . This

generalization is true for all the following steps.
-i i

Therefore, by storing W instead of W in Q(i) the need for

propagating R(i,i) and Q(i) is eliminated.

A basic cell for this approach consists of three
-i

registers Q containing W , R' containing the initial value

of R or R(i,i), and R which holds the current value of

R(i,j). Registers x andY are used to hold the values of the

sequences {x(n)} and {Y(n)}. x registers may be eliminated

from the cell if parallel input of the sequence to the cells

during the initial load is available.

The operation of the basic cell is the same as the

dedicated design. The only difference is in the fact that R

and Q are going to hold the values of the coefficient and

multiplicative factor at all times, therefore, eliminating

the need for their propagation.

The structure and operation of the basic cell for this

approach is presented in Figure 32. As it is shown, the

number of inputjoutput data lines is reduced to one which in

turn reduces the inputjoutput time. The processing time of

64

STEP Cell 0 Cell 1 Cell 2 Cell 3

y y y y
0 1 2 3

4 9
1 1 w w w

2 6
2 1 1 w w

3 3
3 1 .w 1 w

2 6
4 1 w w 1

Figure 31. The Set of Coefficients Used at each Cell for
N=4.

x (out)
y

X

* initialize R and Y

* perform the DFT

Figure 32. The Structure and Operation of the
Basic Cell for In-place DFT with
Minimum Communication Lines.

65

STEP

1

2

3

4

Cell 0

y
0

(RL

1

(0, 1)

(0' 1)

(0, 1)

Figure 33.

'
RR)

Cell 1

y
1

w

2
(1, w)

3
(W,W)

2 4
(W ,W)

·Cell 2

y
2

4
w

2 6
(W 'w)

8
(1 'w)

2 10
(W , W }

The Sequence of Coefficients Used
in a 4-cell design.

by

66

Cell 3

y
3

9
w

6
(W , 0}

3
(W ' 0)

(1,0)

Cells

67

this design is N cycles. The pipeline time is also N cycles.

The pipelines for the two previous designs are circular

pipelines. The disadvantage of ·circular pipeline is that the

wire connecting the rightmost cell to the leftmost cell is

in general a long wire with an O(N) length which imposes

long delay and slows down the entire process. It is

intresting to investigate the possibility of the float of

the x's in both directions to eliminate the need for a long

connection.

In order to allow ·x's to flow in both directions, the

techniques used in the previous two designs are combined.

Thus at the expense of larger cells and two more

inputjoutput lines, the long wire connection which adds to

the space and the time complexity of the design is avoided.

The values of the {x(n)} which are stored in the cells of

the pipeline are now allowed to propagate to both the right

and the left neighboring cells. Therefore, two sets of

coefficients need to be maintained and manipulated in each

cell, one for the x being input from the left neighbor xL

and another for the x being input from the right neighbor

xR.

The multiplicative factors associated with xL and xR
-i i

are W and W respectively. The sequence of coefficients

used at each step by cells 0-3 in a 4-cell design is

represented in Figure 33.

The left input to the leftmost cell and the right input

to the rightmost cell are set to zero to inhibit incorrect

computations. At the first step of the computation, x(i) is

68

multiplied by R(i,i) and added to Y(i). Then x in each cell

is propagated to both the right and the left neighboring

cells and two x's are input to the cell, one from the left

neighbor and another from the right neighbor. The

coefficient for the xL and xR, RL and RR, are multiplied by
-i

w
i

and W respectively to attain their new values. Both

coefficients are initially set to R(i,i). Then xL is

multiplied by RL and added to Y. And finally, xR is

multiplied by RR and added to Y.

The structure and operation of the basic cell for the

design is presented in Figure 34. Registers QL and QR are
-i i

fixed for the design at values W and W respectively. A

global control signal S is used to initialize Y,RL, and RR

and to allow x's stored in cells contribute to associated

Y's (S=O) and to start the flow of x's and the computation

(S=l) •

It is apparent that although all the cells are fully

functional at the first step, only a portion of the cells

will be fully functional in the following steps. For

example, the leftmost and the rightmost cells do not receive

meaningful inputs on the xL and xR in the following steps

and cells 1 and N-2 are not going to receive meaningful

inputs on their xL and xR input lines after the second step.

Therefore, in order to inhibit meaningless multiplications,

two local control signals SL and SR may be added to the

design to avoid multiplication by zero. SL and SR are set to

1 initially. SL(in) for the leftmost cell and SR(in) for the

1, .•• ,1,0

st
XL(i n) XL(

QL

RL R X

y QR
xR(ou t) xR(

RR

s = 0
y . - R*X .-

RR ·- R .-
RL := R

xL(out) := X

xR(out) := X

s = 1

RR := RR * QR

RL := RL * QL

Y := Y + XL(in) * RL + xR (in) * RR

xL(out) := xL (in)

xR(out) := xR (in)

out)

in)

Figure 34. The Structure and Operation of a Basic
Cell for the Bi-directional In-place
Systolic DFT Pipeline.

69

51_
XL(in) XL (out)

RL

SL(in) QL y SL (out)

X
.

SR(ou t) RR SR (in)

xR(ou t) XR (in)

s = 0
y := R * X

RR .- R
RL . - R .-
xL(out) := X
xR(out) :=x
SL(out} := 1
SR(out} := 1

s = 1

SR = 1

RR := RR * QR
y ·- y + RR * XL (in) .-

SL = 1

RL := RL * QL
Y := Y + RL * XL (in)

xL(out) := xL(in)
XR(out) := XR(in)

Figure 35. The Structure and Operation of the Modified
Cell for the Bi-directional In-place
Systolic OFT Pipeline.

70

71

-i
appropriate coefficients in cell i is w O<= i <=N-1.

Therefore, using Q and R registers in each cell to represent

the multiplicative factor and the coefficient, Q has a fixed
-i N**2

value W and R is initialized to W

After N iterations, Y(O) is complete and is fed back to

the pipeline, while Y(N-1) enters cell 0 for further

computation. After N-1 more computational steps, {Y(n)} is

completed and stored in cells 0 through N-1 respectively.

The structure and operation of the basic cell for the linear

in-place OFT pipeline is presented in Figure 36. Figure 37

represents the structure of the pipeline.

This pipeline consists of N cells, each containing four

registers, two inputjoutput data lines and one control line,

a multiplier and an adder. There is no long data lines and

the connections are all near neighbor. The processing and

the pipeline time of this design are both 2N cycles.

Yet another technique may be used to avoid long wires

by allowing zero-valued Y(i)'s to enter the pipeline from

the leftmost cell and sweep the pipeline from left to right.

Thus each cell should generate the sequence of the

coefficients corresponding to the x(i) stored in the ith

cell. These sequences are the columns of the matrix of

coefficients. The ith sequence may be represented as:

ij
M = { W , 0 <= j <= N-1 }

i

i
Therefore, if W is stored in each cell, and the initial

s

72

ls
Y(in) Y(out)

/

Q X

* R R' * Y(out) Y(in)

s = 0 * initialize and perform the first
operation

R := R'

Y(out) := X * R

* * Y(out) := Y(in)

s = 1

R := R * Q

Y(out) := Y(in) + x * R

* * Y(out) := Y(in)

Figure 36. The Structure and Operation of the Basic
Cell for Linear Non-circular DFT
Pipeline.

Cell

1

Figure 37. The Structure of The pipeline for Linear
Non-circular DFT.

73

value of the sequense is set to 1, then the following

elements of the sequence may be generated by multiplying its
i

previous value by W .
i

Let Q and R denote the registers containing W and the

element of the sequence. Let Y(in) denote the value of Y

that enters the cell and Y(out) denote the value that exits

the cell. Then the basic operation of the cell is to

multiply R by x and add it to Y(in) and then generate the

new R by multiplying it by Q.

The structure and operation of the basic cell is

represented in Figure 38. To assure the correct operation of

the pipeline, a local control signal F is added to the

design to initialize R to 1 (F=O) and to start the

computation at each ~ell as needed (F=1).

After N iterations, Y(O) is out from the rightmost

cell. If it is desired to route the result back to the

pipeline, then two data lines may be added to the cells to

route the output back to the pipeline by connecting the

output of .the rightmost cell back to itself. The modified

basic cell is represented in Figure 39.

The processing time of this pipeline is 2N-1 cycles. If

the resulting sequence { Y(n) } leaves the pipeline, a new

sequence may start evaluation immediately after the last

element of the current sequence leaves the leftmost cell. In

this case the pipeline time will be N cycles.

N-Cell Mesh-Connected Network

The idea of an N-cell mesh-connected DFT network was

Y(in)

R X

Q . /

(~n) F

F(in) = o

R := 1

F (out) : = F (in)

F(in) = 1

Y(out) :=Y(in) + x * R

R := R * Q

F(out) := F(in)

Y(o ut) ...

F(o ut)

Figure 38. The Structure and Operation of
the Basic Cell.

74

Y(in)
.

R

Q
F(in)

"'
y I (out)

F(in) = 0

R := 1

F (out) : = F (in)

F(in) = 1

Y(out):=Y(in)+x * R

R := R * Q

F(out):= F(in)
I I ,

Y(out):=Y(1n)

y (out)

X

F (out)

y 1 (in)

Figure 39. The Modified Basic Cell to Direct
the Output Back to the Pipeline.

75

76

first introduced by Zhang [Zhang 84]. This approach is

discussed in detail in Chapter II. The idea is based on the

rearrangement of a one-dimensional sequence {x(n)} into a
2

two-dimensional matrix given N = m .

Zhang's approach has many drawbacks. The proposed

design uses an (m+1) x m network of mesh-connected cells.

Input and output have an irregular form. The first row.and

the first column of the cells have a different form solely

because of the form of Kung's recursive linear pipeline used

for the basic DFT computation. A total of m multipliers are

required to generate different sequences of W. And finally,

a global signal S (connected to all cells) is required to

assure the correct function of the network. The area used

and the delay imposed by the multipliers and global signal

and also excessive number of inputjoutput lines per cell are

the undesirable features of this design.

A new mesh-connected network based on the linear

pipeline techniques discussed in previous sections is

presented in the following paragraphs. The aim is to reduce

the time and the space complexity of the design by reducing

the inputjoutput lines and avoiding the long distance

connections.

The input sequence is arranged into an m x m matrix, m
1/2

= N as represented in Figure 11. The computation is

divided into three phases:

1) compute the row DFTs

77

ij
2) multiply the results by W 0 <= i,j <= m-1

3) compute the column DFTs

Phase 2 is combined with the initialization phase of the

column DFT computation. The on-line linear DFT of Figure 26

is used for the row DFT computation. This technique allows

data entry to overlap the computation. It also requires the

minimum amount of input/output lines per cell.

After m iterations the Fourier transform values for

column zero of the cells is computed. At this point the

column OFT of column zero may start. For the column DFTs,

one of the non-circular linear in-place DFTs may be used to

avoid long distance connections of the other in-place DFT

techniques. After 2m-1 cycles, the column DFT of column zero

is complete. The computation for the entire sequence is

completed after m-1 more cycles. Thus, the processing and

the pipeline time of this design is 4m-2 cycles. A control

signal T is added to the basic cell to stop the operation

after the completion of the column DFTs at each column.

The structure and operation of the basic cell using the

non-circular linear in-place DFT cell of Figure 36 is

presented in Figure 40. The control signal P is used in both

row column DFTS. For row DFTs, control signal P has the

values {0,1, .•. ,1}. It is set to zero to initialize the

values of Y and R. It is changed to one immediately and it

remains one for m cycles otr until row DFTs are completed.

During this phase s is zero to indicate row DFTs. After m

cycles S is changed to one to invoke column DFTs. During

this phase, P is used as the global signal s in Figure 36.

It is set to zero to initialize R and Y and then it is

changed to one and remains one for 2m-1 cycles. During the

first 3m cycles T is zero to allow row and column DFTs to

78

proceed. After 3m cycles it is changed to one to inhibit any

further calculations in the columns with completed DFTs. A
ij

register is dedicated to hold W • Each cell consists of 6

registers, 8 inputjoutput data lines, and 2 inputjoutput

control lines. All communications are near-neighbor. Each

cell contains a multiplier and an adder. Each operational

step requires 2 multiplications and an addition. The

structure of the complete network is presented in Figure 41.

The main advantage of this network is that the Fourier

transform values remain in the network for further

operations.

The structure of the basic cell may be further

simplified and the pipeline time of the network may be

boosted by using the cell of Figure 38 for column DFTs.
i

Register Q in the ith cell of each row with a value of W

0<= i <= m-1 is used to update the initially one-valued

coefficient R. A new control signal F is added which sweeps

the cells from top to bottom along Y'. F is set to zero

after the roth cycle to initialize R and multiply Y by C and

Q and it is changed to one after that and remains one for

2m-1 cycles.

2m-1 cycles after the start of the column DFT on column

zero, the associated DFT is out and a new sequence may enter

*
Y(out)

x(in)

w
T(in)

R'

P(in) Q

s (in)

T(in) = 0 (3m cycles)
S(in)= 0 (m cycles)

ROW OFT

P(in) = o
Y := 0 R := 1

P(out) :=P(in)

S (out) : =S (in)

T (out) : =T (in)

P(in) = 1

ij

Y (in)

x(out)

T(out)

P(out)

c
S(out)

Y(out)

S(in)= 1 (2m cycles)
COLUMN OFT

P(in)= o
R := R',Y := Y*W

Y(out):=Y*R

S{out) :=S(in)

T(out) := T(in)

P(out) .- P(in)

P(in) = 1

R := R * Q

79

ij

Y := Y + R*x(in)

R := R * C Y'(out) := Y'(in)+Y*R

P(out) := P(in)

S(out) := S(in)

T (out) : =T (in)

T (in) = 1 (m cycles)
* DO NOTHING *

* * Y(out):=Y(in)

S(out) :=S(in)

T(out) := T(in)

P(out):= P{in)

Figure 40. The Structure and Operation of the Basic Cell
for the Mesh-connected DFT Network.

I I

I I
I I

I 0

I I

I I

I I

'

Figure 41. The Structure of N-cell Mesh-connected DFT
Network.

80

the network, boosting the pipeline time of the network to

Jm. The structure and operation of the basic cell for this

approach is presented in Figure 42.

It is intresting to note that the c register used as

the multiplicative factor for row DFTs is fixed at value W

81

j

for any cell at the jth column. Register Q is also fixed at
i

value w for any cell at the ith row. Thus, there is no need
ij

for a separate register to hold w , reducing the number of

registers in the cell to 4. There is also no need for the

control signal T in the previous design to stop the

operation at columns with completed DFTs since the result is

already out and a new sequence may start the computation

immediately (S=O).

The basic cell with six inputjoutput data lines and six

local control lines and four registers is reasonably small.

Data and control lines are all near-neighbor connected. The
2

entire network which requires m =N cells is presented in

Figure 43. The disadvantage of this network is that the

Fourier transform is transferred out of the network.

2
N -Cell Mesh-connected Network

In previous sections several methods for calculating

the direct Fourier transform of a sequence of N elements

using an N-element pipeline or an N-element mesh-connected

network have been proposed. These techniques generate the
2

coefficients of the transform during the computation. If N
2

coefficients used in the computation are stored in the N

F (in)1

x(in)
i

Q = w
P(in)

,
j

c = w
S{in)

t
F(out)

S(in) = o (m cycles)
ROW DFT

P(in)= o
y := 0
R := 1
P(out) := P(in)
S (out):= S (in)

P(in)= 1

Y := Y + R * X {in)
R := R * C
x(out) := x(in)
P(out) :=P(in)
S(out) := S(in)

y

R

t Y' (in)

X (out)
,

p (out)

s (out) ..,..

~
Y' (out)

S(in) = 1 {2m cycles)
COLUMN DFT

F(in)= o

y := y * c * Q
R := 1
F(out) := F(in)
S(out) := S(in)

F(in)= 1

82

Y'(out) := Y'(in)+Y*R
R := R * Q
F(out) .- F (in)
S(out) := S(in)

Figure 42. The Structure and Operation of the Cell (i,j)
for the Modified Mesh-Connected DFT Network.

I I

I I
I I

I I

I I

I

I I

I I
I I

Figure 43. The Structure of the Modified N-cell Mesh­
connected Network.

83

84

cells of a mesh-connected network, there will be no need to

store the multiplicative factors and calculate the
2

coefficients. This is the basis for the N -cell mesh-

connected network to calculate the direct Fourier transform

of an N-element sequence.

Thompson [Thompson 83] referred to an (4N-3)x(2N-1)

cell network of mesh-connected cells to calculate the DFT

using Kung's linear pipeline approach discussed in Chapter
2

II. In this section an N -cell mesh-connected network is

proposed which contains fewer cells.

Assuming an NxN network of mesh-connected cells, the

elements of the matrix of coefficients may be stored one

element per cell. Let register W in cell (i,j) 0 <= i,j <=
ij

N-1 contain w . Then {x(n)} and zero-valued {Y(n)} may be

input to the network through the topmost row and the

leftmost column, one element at a time delayed by one cycle.

x(O) enters through cell (0,0), x(1) enters through cell

(0,1) delayed by one cycle, and x(N-1) enters through cell

(O,N-1) one cycle after x(N-2) has entered the network

throgh cell (O,N-2). Y(O) enters through cell (0,0) at the

same time that x(O) enters the cell, Y(1) enters through

Then x(O) is propagated to the next cell in column zero or

cell (1,0) and Y(O) is propagated to the next cell in row 0

or cell (0,1). During the second cycle, Y(1) enters cell

(1,0) from the left while x(O) enters cell (1,0) from the
1*0

top. Then Y(1) is incremented by x(O) * W and both x(O)

85

and Y(1) are propagated. At the same time, Y(O) enters cell

(0,1) from left while x(1) enters the cell from top. Then
0*1

Y(O) is incremented by x(1) * W and they are both

propagated. Therefore, the computation assumes a form of a

diagonal sweep of the matrix of coefficients starting at the

northwest corner and ending at the southeast corner.

The operation of the basic cell consists of a simple

multiplication and addition. Each cell contains a single

register and four inputjoutput data lines. The structure and

operation of the basic cell and the network is represented

in Figure 44.

Y(O) leaves the·network through cell (O,N-1) after N

cycles, Y(1) leaves the network through cell (1,N-1) at the

following cycle, and finally Y(N-1) leaves the network

through cell (N-1,N-1) at the Nth cycle. Therefore, the

processing time of the network is 2N cycles. However, a new

sequence may enter the network immediately after x(O) and

Y(O) for the current sequence leave cell (0,0) or after the

first cycle. Thus, the pipeline time of the network is one

cycle.

Although this technique employs large area but it is

capable of accomodating for the computation of N different

sequences concurrently. All the other techniques lack this

capability to this extent. The only network which can

simultanously process more than two sequences is the FFT

86

x(in) ~

Y (in) Y(out)

w

x (out)~
Y(out) ·-.- Y (in) + x(in) * w
x(out) ·- X (in) .-

X (N-1)

l
X(1)

x(O)

y (1)

.1, ~ J,

Y(N-1) --~1 (N-1,0)~~~~ ·1 (N-1,N-1) l-y (N-1)

Figure 44. The Structure and Operation of Basic Cell
and the Structure of the Network for the
N**2-Cell DFT Network.

87

network which can simultanously process logN different

sequences.

A summary of different methods presented in this

chapter is depicted in Tables 1 and 2. Table 1 represents

the physical characteristics of the designs including number

of cells and the physical characteristics of the basic cell

such as the number of inputjoutput lines and the number of

registers. Table 2 represents the computational

characteristics of each design-including the number of

multiplications and additions per computational step, number

of computational steps in terms of processing and pipeline

steps, and the form of the input and the result.

Each design has its own advantages and disadvantages as

explained throughout this chapter. Modularity is attainable

at the cost of increased processing time. Fast computation

is usually achieved at the cost of larger cells and

inflexibility.

The best processing time performance is attained

through the N-cell mesh-connected netwo~k presented in

Figure 42. Although if the result is required to be kept in

the network, the design of Figure 40 would be more

desireable. The limitation of both methods is the size of

the sequence which is limited to complete squares.

Other methods offer the possibility of dedicated

implementation for any data sequence regardless of the size.
2

The N -cell design has the best pipeline time performance at

the cost of larger area. In-place and on-line approaches

offer modular and flexible designs and also fast but

88

TABLE 1

PHYSICAL CHARACTERISTICS OF THE PARALLEL
FOURIER TRANSFORM ALGORITHMS

METHOD OF NUMBER NUMBER OF NUMBER OF
FIGURE OF CELLS I/0 REGISTERS

25 N 3 1

26 N 1 3

29 N 3 4

30 N 3 5

32 N 1 5

34 N 2 7

35 N 4 8

38 N 1 3

40 N 4 6

42 N 2 4

2
44 N 2 1

89

TABLE 2

COMPUTATIONAL CHARACTERISTICS OF THE
NEW PARALLEL FOURIER TRANSFORM

ALGORITHMS

METHOD OF NUMBER OF PROCESSING PIPELINE RESULT
FIGURE MULTIPLIES TIME TIME

25 2 2N-1 N resident

26 2 2N-1 N resident

29 3 2N 2N resident

30 2 N N resident

32 2 N N resident

34 4 N N resident

35 2 2N 2N resident

38 2 2N N out

1/2 1/2
40 2 4N 4N resident

1/2 1/2
42 2 4N 3N out

44 1 2N 1 out

inflexible designs. The choice of a method however is

application dependent.

90

CHAPTER IV

VLSI COMPLEXITY OF FOURIER TRANSFORM

Introduction

A VLSI chip is composed of transistors and interconnec­

tions. Thompson [Thompson 80] proposed a VLSI model of

computation based on a graph composed of nodes representing

a transistor or a small cluster of transistors and wires

representing the interconnections.

Nodes are capable of storing information. A collection

of nodes and wires is allowed to be a complete computing

structure. The inputs and outputs to and from the

computation are stored in sets of nodes called source and

sink nodes respectively. A collection of nodes and wires

capable of solving a problem is called a communication

graph.

The VLSI model of computation is designed so that there

is a direct correspondence between VLSI chips and communica­

tion graphs. Unfortunately, not all communication graphs

correspond to feasible chip designs. Certain constraints are

added to the VLSI model of computation to overcome this

difficulty. Any communication graph that satisfies these

constraints is called an admissible communication graph. A

communication graph is admissible if it can be implemented

91

92

as a VLSI chip of the same area and time performance

[Thompson 80].

The concise definition and explanation of the VLSI

model of computation and its components is presented in the

following section. Two sets of assumptions are presented to

define the model. One set is used to draw the lower bound

measures of area and time for the communication graph. These

assumptions are labeled with "L". The second set of

assumptions are used to draw the upper bound measures for

the communication graph and are labeled with "U".

VLSI Model of Computation

The VLSI model of computation [Thompson 80] defines the

basic characteristics of a VLSI chip, namely, area, time,

information, and energy. As explained before, two sets of

assumptions are made which are used respectively to draw

lower and upper bound complexity metrics for a communication

graph.

The natural and physical units of area, time,

information and energy may be defined based on the current

technology, manufacturing and physical limitations. There is

a natural unit of area for VLSI which is the minimal spacing

between the centers of parallel wires. This spacing is 4 ~
2.

2 [Mead 80]. The square of this length, 16 ~ , is a

covenient area unit, large enough to contain a small

transistor or one wire cross-over. The total area of a VLSI

chip may be evaluated as either the mask size (smallest

93

rectangle) or the area actually occupied by nodes and wires.

The unit of information is defined as a bit. The unit

of time is defined as the bandwidth of a unit-width wire.

Thus, a signal that encodes a bit has a duration of at least

one time unit. Total time is measured in terms of the units

of time required to solve a problem using a communication

graph.

A unit of energy is defined as a product of a unit of

area and a unit of time. The energy required to charge a

capacitor (wire or transistor) is proportional to its

capacitance which is proportional to the area. Thus the

energy consumed by switching transistors in wires and gates

is proportional to its area. Thus a unit of energy per unit

time is consumed by a unit of area whenever it is involved

in the signal transmission. The total switching energy

consumed by a VLSI chip is defined as the product of the

total area and the total time.

A large portion of any VLSI chip is dedicated to the

conductors that distribute power and global clock signals.

Since these wires do not carry information, there is no

correspondence for them in the communication graph.

Notations and Metrics

The following functional notation is used throughout

the rest of this chapter:

f(n) = o (g(n)): there exists a positive constant c for

which f(n) <= c g(n) for all

sufficiently large n (an upper bound

94

sufficiently large n (an upper bound

measure of complexity within a constant

factor)

f(n) = e (g(n)): there exist two positive constants c

and d for which c g(n) <= f(n) <=dg(n)

for all sufficiently large n (an exact

bound within a constant factor)

f(n) = Q (g(n)): there exists a positive constant c for

which f(n) >= c g(n) for all

sufficiently large n (a lower bound

within a constant factor)

log x: the base two logarithm of X
y y

log x: (log x)
y y

log log x: (log (log X))

Based on the two main measures of VLSI complexity,

namely, total area used by a communication graph, A, and the

total time spent to solve the problem, T, a general metric
2x

is defined as AT , 0<= x <=1. This metric is used to assign

different weights to the time performance of a communication

graph. A special case x=l/2 gives rise to the metric AT

which is a measure of total energy used. Another case where
2

x=l gives rise to the AT metric which will be frequently
2x

referenced in this study. The general metric AT will also

be used to compare the performance of different communica-

tion graphs.

Assumptions

95

A communication graph is composed of nodes, and wires

laid out on a grid of unit squares. A wire is a horizontal

or vertical track connecting two points. A node represents a

point where wires meet [Thompson 80]. Thompson [Thompson 80]

defines a set of assumptions to derive the A and T measures

for lower bound and upper bound complexity measures of the

communication graphs. These assumptions are labeled by 11 L11

and 11U11 respectively. A list and description of these assum­

ptions appears in the following paragrphs. Almost all of the

following text is adopted from [Thompson 80] unless stated

otherwise.

ASSUMPTION L1: AREA. A unit square can contain one node or

one wire cross-over. One wire may cross each

edge of a unit square, so that nodes have a

maximum of four wires.

ASSUMPTION U1: AREA. The area of a node is determined by its

functionality

a) A logic node is a node with at most 0(1)

input wires, 0(1) output wires, and 0(1)

area. Each of its wires is 0(1) unit long.

Each wire runs through at most a constant

number of unit squares. Each logic node

belongs to a self-timed region. A self­

timed region is a set of logic nodes that

receive clock pulses with nearly identical

phase. all nodes within a self-timed

region are in synchronization with each

other (Thompson 80]. All wires connecting

96

to a logic node must lead to or from other

nodes in its self-timed region.

b) A driver node and a receiver node are

associated with each wire that is more

than 0(1) units long or crosses the

boundary of a self-timed region. A wire of

length K requires a driver that occupies

0(1) by O(k) unit area. Its receiver node

takes up only 0(1) units of area. The

driver's input wire and the receivers's

output wire are 0(1) units long.

Arguments may be made on the use of a node with an O(K)

area to drive a wire of O(K) length. Although the length of

the wire could be very long the capacitance placed on it is

limited and large capacitance may damage the wire.

On the other hand if the size of the driver node is

increased to O(K), the other nodes connected to this node

should be modified in order to be able to drive a node with

O(K) area.

The optimum way to decrease the delay in an O(K) wire is

to place a set of amplifiers between the 0(1) area driver

node and 0(1) receiver node to amplify the signal to a

magnitude large enough to drive the load capacitance of O(K)

of the wire [Mead 80]. Mead [Mead 80] shows that if a chain

of log K inverters in which each invertor is f times larger

than its previous invertor is used, the total delay could be

reduced to O(log K). It is shown that [Mead 80] that delay

97

is minimized if f is chosen to be the base of natural loga-

rithm or e.

An example of amplification chain is shown in Figure 45.

The original signal from the driver is amplified through

(ln K) stages of the inverters. The total area occupied by

inverters is O(K) and the total delay is O(ln K). Therefore,

in order to drive a wire of O(K) length in minimum delay

time of O(ln K) amplifiers with the total area of O(K) must

be used.

ASSUMPTION L2: TOTAL AREA. The total area of a communication

graph is equal to the number of unit squares

occupied by wires or nodes.

ASSUMPTION U2: TOTAL AREA. The total area of an admissible

communication graph is the number of unit

squares in the smallest bounding rectangle.

ASSUMPTION L3: UNIT OF TIME. A wire has at most unit band-

width in each direction.

ASSUMPTION U3: UNIT OF TIME. A wire has at most unit band-

width in one direction only.

ASSUMPTION L4: PROBLEM DEFINITION: Each of N input variables

take on one of M different values, for a
N

total of M equally likely problem instances.

ASSUMPTION U4: PROBLEM DEFINITION. log M = O(log N)

Assumption U4 restricts the word size to represent M

different values of input variables to O(logN) merely to

simplify the form of the upper bound measures, which would

otherwise depend on M as well as N. In this study however,

P = logM is used to represent the number of bits required

98

---{>------11 receiver I
2 ln K

0(1) 1 e e... e O(K) 0(1)

Figure 45. An Amplifier Chain to Drive a Wire of O(K).

99

for data representation.

ASSUMPTION L5: TRANSMISSION FUNCTION. Node states and wire

signals are completely and consistently

described by the transmission function

associated with each node. A node with state

vectors, input wires (A, .•. ,D), and output

wires (E, ... ,G) computes a function of the form

[S(t+1),E(t+&), ... ,G(t+ b)=F[S(t),A(t), .•. ,D(t)]

where and
E G

E G

are the non-negative delays of wires E and G.

ASSUMPTION US: TRANSMISSION FUNCTION. The transmission

function of a node is constrained by its

functionality.

a) A logic node has at most 0(1) bits of

state and 0(1) units of delay on each of

its output wires.

b) The total delay through a driver-wire-

receiver circuit is O(log K) if the wire

is O(K) units in length. The receiver's

output R(t) is the delayed version of the

driver's input. The combined transmission

function of the driver and the receiver is

R(t +~) = D(t)
w

where ~ = O(log K)
w

100

The VLSI model of computation assumes that signals take

one of the two values of zero and one. Marginal and

errorneous signals which appear in real systems are not

considered.

A communication graph which solves a problem with N

input variables and M output variables is composed of N

nodes that are dedicated to input variables which are called

source nodes and M nodes that are dedicated to output

variables which are called sink nodes. The initial state of

source nodes is the subject of assumptions L6 and U6.

ASSUMPTION L6: SOURCE NODES. The initial state of a source

node may be any function of the value of its

input variable. Each input variable affects

only the initial state of its source node.

ASSUMPTION U6: SOURCE NODES, INPUT REGISTERS. The initial

state of the Kth node of an input register

associated with the source node is the Kth

bit of the binary expansion of the value of

its input variable 1 <= K <= log M •

There is a one-to-one correspondence between source nodes

and input variables. As there is one source node for any

input variable, there is one sink node for any output

variable. The function of a sink node is to collect

information about the correct values for its output

variables. The computation is complete when a sink node is

stablized.

ASSUMPTION L7: SINK NODES. There is a fixed assertion for

101

each sink node, relating its state to the

correct values of its output variables (as a

function of the values of the input

variables). A computation is complete at time

T if all assertions are satisfied at all

times t>=T.

ASSUMPTION U7: SINK NODES, OUTPUT REGISTERS. The computation

is complete when the Kth node of every output

register contains the correct value of the Kth

bit of its output variable, 1 <= K <=[log MJ.

Problem solution is defined the same way for both the lower

and upper bound measures.

ASSUMPTION LS and US: PROBLEM SOLUTION. A communication graph

is said to solve a problem in worst-

case time T if it takes no longer than

T units of time to complete its

computation of any problem instance. A

communication graph is said to solve a

problem in average time T if its

average completion time over all

problem instances is T.

Based on the above assumptions and the characteristics

of the communication graph, Thompson [Thompson 80] derives a

lower bound for Fourier transform computation. He proves

that the performance of any communication graph with area A

that solves a discrete Fourier transform of an N-element
2 2 2

sequence in average time T is limited by AT >=P [N/8] .
2x 2x 1+x

He also proves that the relation AT =O(P N)

102

O<=x<=l is satisfied by any communication graph with area A

that takes average time T to solve an N-element discrete

Fourier transform. This lower bound is derived under the

assumption that the communication graph to solve the OFT is
2 1/2

bounded by a rectangle of area (w-1) where w = O(N) is

the minimum bisection width of the communication graph.

Based on the same assumptions he proves that at least
3/2

O(PN) units of energy must be dissipated by any chip

solving an N-element OFT.

These lower bound measures are used as a basis for

comparing the performance of OFT and FFT algorithms

presented in Ch~pters II and III. In order to conduct a

realistic analysis of the performance of the VLSI Fourier

transform circuits, it is crucial to analyze the area and

the time performance of the basic components used in each

circuit. The asymptotic area and time performance of these

basic building blocks are discussed in the following

section.

The Area-Time Performance of

Basic Components

The proposed VLSI designs for solving Fourier transform

are mainly composed of a subset of the following basic

components:

a) memory elements

b) shift register

c) adder

103

d) multiplier

e) processor

f) transceiver

Thus, it is important to analyze the area and time

complexity of each of the above components. Since according

to assumption U4, the word size to represent the input

values is considered to be P=logM this measure is used in

the following paragraphs to deduce the area and time

complexity of the basic components.

A P-bit RAM requires an O(P) area. The access time to

RAM may be reduced to as low as O(log P) if the cells are

arranged in a hierarchical manner [Mead 80]. Almost all

parallel Fourier transform algorithms require few memory

cells if any. Thus, the memory access time is not a crucial

factor in the overall time complexity of these algorithms.

Shift register is used either for data transmission or

for the major component of the design. A P-bit shift regis­

ter requires area of O(P). AnN-bit shift requires O(P) time

[Kung 81]. Therefore, the A and T measures for an P-bit

shift register are bounded by O(P) and Q(P).

The Fourier transform computation requires complex

addition and multiplication as its major computational

functions. One of the most efficient forms of an adder is

the carry-save adder. The basic element of a carry-save

adder may be constructed using an 0(1) area. Thus, a P-bit

carry-save adder can be built on an O(P) area [Thompson 80].

Carry-save addition is performed in two steps requiring 0(1)

104

time.

Multiplication deserves a special consideration as the

most time consuming function in evaluating the Fourier

transform. Thompson [Thompson 80] shows that a P-bit multip-

lier built from carry-save adders will fit in an O(P) area

and has a time performance of O(P). Kung [Kung 81] proves

that based on convolution theorm it is possible to build a

P-bit multiplier on an area of O(PlogP) with a time perfor-
1/2

mance of O(P logP) acheiving a faster asymptotic

performance than the other multipliers.
2x

In general, Kung (Kung 81] proves that AT performance
1+x

of a P-bit multiplier is Q(P N) for 0<= x<=1. He also

proves that multiplication is harder than addition. If
2x 2x

(AT) (P) is the AT measure for a P-bit multiplier and
2x M 2x

(AT) (P) is the AT measure for an P-bit adder, then he
A

shows that

2x
(AT) (P)

M

2x
(AT) (P)

A

1/2
= O(P)

Any one of these measures may be used in the analysis,

although the slower multiplier presented by Thompson is more

realistic.

One of the parallel Fourier transform algorithms;

namely, the mesh implementation of FFT requires cells which

are complete processors. According to Thompson [Thompson 80]
2

a P-bit processor can be built in an area of O(P). This

105

micro-coded processor has O(P)-bit ALU, O(P) registers, and

O(P)-bit long instruction.

Data transmission is one of the major issues in the

design and implementation of any VLSI chip. Data

transmission through wires can be either serial or parallel.

Serial data transmission requires less space but it is

slower. On the other hand parallel data transmission

requires more space and it is faster. Another issue is the

transmission distance. The farther the destination, the more

area and time is required.

The transmission distance is divided into two

categories in this study, unit-distance and N-distance. The

one-bit unit-distance transmission between a driver and a

receiver requires unit time. The one-bit N-distance transmi­

ssion requires an O(N) time. The optimum method to improve

the delay of an N-distance transmission through a chain of

amplifiers was discussed in a previous section. This method

requires an O(N) area for the amplifiers and reduces the

delay from O(N) to O(logN).

Based on the nature of the Fourier transform algorithm

serial or parallel transmission may be selected. When the

time performance of the design is degraded by long-distance

data transmission, amplifiers may boost the time performance

at the cost of area being used by them.

A serial transceiver (transmitter receiver) requires a

P-bit shift register. Thus, it can be built in an area of

O(P). The time required for the transmission of one bit of

106

information on a unit-distance wire is unit time. Therefore,

the unit-distance serial transmission of P-bit data requires

O(P) units of time. However, the N-distance serial transmis­

sion of P-Bit data requires an O(P) area for register plus

an O(N) area for the amplifiers yeilding an O(N) area. The

time required for N-distance serial transmission is the sum

of the delay in the amplifiers for P-bit data which is

O(P+logN).

A parallel P-bit transceiver requires a P-bit register

and P wires. Thus, it requires more area than a serial

transceiver. The time for P-bit parallel transceiver is 0(1)

since all the bits are transmitted simultanously. An N­

distance parallel transceiver requires the most area among

the transceivers. Each line of transmission requires O(N)

area for amplifiers. Therefore, an O(PN) area is consumed by

amplifiers. The time required to transmit the data however

is still bounded by the delay in the amplifiers which is an

O(logN).

The area-time measures for the basic VLSI building

blocks of Fourier transform is summarized in Table 3. These

measures will be used in the computation of the overall VLSI

area-time performance of the parallel algorithms for solving

Fourier transform discussed in Chapters II and III.

VLSI Complexity of the Parallel

Fourier Transform Algorithms

A VLSI chip is composed of transistors and wires. The

VLSI complexity theory proposed by Thompson [Thompson 80]

107

TABLE 3

AREA AND TIME COMPLEXITY OF THE
BASIC COMPONENTS

Area Time

RAM O(P) 0 (log P)

shift O(P) (one bit)/(time unit)
register

carry-save 0 (P) 0 (1)
adder

carry-save 0 (P) 0 (P)
multiplier

2
P-bit 0 (P) O(P)
processor

serial 0 (P) 0(1)
unit-
distance

serial 0 (N) O(log N)
N-distance

parallel 0 (P) 0 (1)
unit-
distance

parallel O(PN) O(logN)
N-distance

models a VLSI chip as a communication graph composed of

nodes representing a transistor or a small cluster of

108

transistors and wires. Thus the area of a chip designed to

solve a problem consists of the area occupied by nodes and

wires. The time required to solve a problem may be measured

in different fashions. Thus it is imperative to base the

analysis on a set of well-defined measures of area and time.

Let An denote the area occupied by a node and Aw denote

the area occupied by a wire. Then the total area occupied by

a VLSI design to solve a problem may be represented as

A = ~ An + ~ Aw
nodes wires

This measure of total area is used for lower bound analysis.

As explained previously, the area consumed by wires for

power distribution and synchronization is not considered in

this analysis. Unfortunately, this measure is not adequate

for fabrication purposes. Instead, the total area for

fabrication is considered as the area of the smallest

bounding rectangle which is used in upper bound measures.

The solution time of an algorithm may be defined in

many different ways. The solution time for a problem may be

defined as the time elapsed between the input of the first

bit and the output of the last bit. This definition of

solution time is called Ts in this study. However, almost

all the parallel algorithms discussed in chapters II and III

use pipelines as the main architectural structure.

A pipeline is capable of accepting a new input sequence

109

while the previous sequence is still being processed. There-

fore, it is possible to simultaneously process more than one

sequence of input elements through a pipeline. The pipeline

time of a design referenced by Tp may be defined as the

elapsed time between the input of the first bits of the two

consecutive input sequences.

The processing time of a VLSI design to solve a problem

is composed of the time consumed by nodes, Tn and the time

consumed on transmitting the data through wires, Tw. Thus,

the total time used by a VLSI chip to solve a problem may be

expressed as:

Ts =L Tn +> Tw
nodes wires

In order to simplify the comparison between the

parallel algorithms discussed in chapters II and III they

are classified into two categories based on their underlying

architecture and not their underlying computational para-

digm.

The two categories reflect the architecture and the

inter-cell connection topology. The first category includes

all the algorithms that use linear inter-cell connections.

The cascade implementation of an FFT is included in this

category since a linear connection is used to connect its

cells. The second category includes all the algorithms that

are based on a network of inter-connected cells. This

category covers all mesh-connected designs, the FFT network,

110

2
the perfect-shuffle, and the N -cell mesh.

In summary, the parallel algorithms to solve the one-

dimensional Fourier transform of an N-element sequence are

categorized as follows:

1) linear pipeline architectures (including cascade)

2) network architectures

a) N-cell mesh

b) Fast Fourier Transform networks

1) FFT network

2) perfect shuffle
2

c) N -cell mesh

The VLSI area-time complexity of the algorithms in each

category based on the area and time measures discussed in

the preceeding section and the area and the time complexity

of the major components is analyzed in the following

sections. The given measures are all asymptotic. The

comparison between the designs with the same asymptotic

complexity is based on the details of the designs.

One of the major issues in VLSI design is the issue of

the topology and the distance of the connections between the

components. Kung (Kung 88] stresses the importance of inter-

connections betweem the components. He suggests that down

scaling of the minimum feature size and up scaling of the

maximum chip size will further accentuate the role of inter-

connections in a VLSI design.

He shows that although the gate delays decrease with

scaling, interconnection delays remain the same. Thus, the

speed at which a circuit can operate will be determined by

111

interconnect delays rather than device delays, recommending

minimal, local, and short interconnections. Therefore, in

evaluating the different designs this criteria will be used

as one of the determinants.

Linear Pipeline Architectures

The linear pipeline DFT architectures are analyzed in

two groups based on the form of the input to the pipeline.

The first group consists of all pipelines which are based on

on-line algorithms allowing data input to overlap the

computation. The second group consists of in-place

algorithms based on the assumption that the sequence is

already loaded into the pipeline.

The first on-line linear pipeline architecture for DFT

is the (2N-1)-cell pipeline proposed by Kung which is

presented in chapter II. This pipeline consists of (2N-1)

cells, (2N-2) of which have the same basic structure. ~he

middle cell which is the largest and also the slowest cell

in the pipeline does not seriously affect the asymptotic

complexity measures of the design.

The {2N-2) basic cells contain one register, one

multiplier, and one adder. There are four inputjoutput data

lines per cell, requiring four inputjoutput registers in the

cell. Thus the area occupied by a basic cell, An, consists

of five registers, one adder, and one multiplier. Since each

component will fit in an area of O{P), the complete cell

will fit in an area of O(P).

112

Inter-cell connection is near-neighbor, thus unit

length wires will be sufficient to carry the information.

The area occupied by wires Aw is 0(1). Therefore, the total

area occupied by the pipeline, A is (2N-2) times the area

occupied by the basic cell and its connected wires, yeilding

an O(PN) complexity.

This algorithm involves (4N-3) computational steps.

Each step requires two multiplications and one addition,

thus Tn=O(P). The time required for data transmission Tw is

also O(P) for serial data transmission. Therefore, the time

complexity of each step is O(P). since (4N-3) steps are

involved in the complete computation the total processing

time is T has a complexity of O(PN). The pipeline time is

equal to the processing time, having the same time

complexity.

Two new on-line linear pipeline algorithms have been

proposed as a part of this study. The basic cells for these

pipelines are presented in Figures 25 and 26 respectively.

These two methods are comparable to the Kung's (2N-1)-cell

pipeline in the sense that they all allow data entry to the

pipeline overlap the computation.

The pipeline in Figure 25 consists of N cells. Each

cell requires one memory cell, three inputjoutput registers,

one multiplier, and one adder, thus An= O(P). Inter-cell

connections are near-neighbor, requiring unit-distance data

transmission, thus Aw = 0(1). Therefore, the total area per

cell is O(P). There are N cells in the pipeline, thus, A=

O(PN).

113

The total computation requires {2N-1) steps. Each step

involves two multiplications, one addition, and serial data

transmission. Thus, Tn = O{P). The total processing timeT

is therefore O{PN). The pipeline time is also O{PN).

The other on-line linear pipeline is presented in

Figure 26. This pipeline requires the least amount of

inputjoutput lines of the three on-line approaches. Each

cell contains three memory cells, one inputjoutput register,

one multiplier, and one adder, thus An = O{P). Inter-cell

connection is near-neighbor, thus, Aw = 0{1). Therefore, the

total area occupied by a cell and its wires is O(P). The

total area occupied by the pipeline or A is O{PN).

A total of (2N-1) steps are required to complete the

evaluation of the Fourier transform of an N-element

sequence. Each step requires two multiplications and one

addition, thus, Tn = O(P). Data transfer is near­

neighbor, thus Tw = O(P). Therefore, the total processing

time for each step is O(P). The total processing time for

the pipeline, T, is O(PN).

Although the three on-line linear pipeline DFT

approaches have the same asymptotic area and time

complexity, the pipeline of Figure 26 has the best overall

performance.

The pipelines of Figure 25 and 26 have half the number

of cells of the pipeline proposed by Kung. They require

smaller cells (one less memory space) and almost half the

processing time. Therefore, they both have better area and

114

time performance than Kung's (2N-1)-cell pipeline. The

pipeline of Figure 26 requires less area than the pipeline

of Figure 25 since it requires two less wires per cell which

saves an O(N) wire area.

The other class of linear pipeline architectures for

Fourier transform is the class of in-place pipeline

algorithms. The main difference between the in-place and the

on-line algorithms is in the form of data input. On-line

algorithms allow data input to the pipeline overlap the

computation. In-place algorithms on the other hand assume

that data elements are already loaded into the pipeline.

The issue of the initial load of the input sequence

into the pipeline should be addressed at this point. The

sequence {x(n)} may be loaded to the pipeline either

serially through the inter-cell communication lines or in

parallel through a separate bus. Serial input requires an

extra O(PN) delay time since O(PN) bits should travel

through the pipeline. Since the inter-cell connections are

near-neighbor an 0(1) time is needed to transfer each bit,

thus, the time required to load the data is O(PN).

The parallel data transmission may be established

through a separate data transmission line for each cell. The

wire area consumed by this method is O(N) and the delay is

O(P). Dedication of N off-chip lines for data transmission

may not always be practical. on the other hand if N input

registers are dedicated to the input values an extra O(PN)

area would be consumed.

The first alternative; namely, serial data transmission

115

through the inter-cell communication lines of the pipeline

seems more practical and economical. The price to be paid

however, is the overhead of O(PN) delay before the computa­

tion can start. Therefore, in-place linear pipeline

algorithms suffer from an either area or time overhead that

the on-line linear pipeline algorithms do not. The VLSI

complexity of the in-place linear pipeline algorithms is

analyzed in the following paragraphs.

The pipeline based on the recursive formulation of DFT

is presented in Figure 9. This pipeline requires (N-1)

cells. Each cell requires two inputjoutput registers, one

memory cell, one multiplier, and one adder. Since all compo­

nents will fit in O(P) area, then An= O(P). Cells have

near-neighbor connections, thus Aw = 0(1). Consequently, the

total area per cell is O(P). The pipeline has (N-1) cells,

therefore, A = O(PN).

This method requires (2N-3) computational steps. Each

step involves one multiplication and one addition. Thus, Tn

= O(P). Inter-cell connections are near-neighbior. serial

data transmission between cells for P-bit data items require

O(P) time. Thus Tw = O(P). Total processing time for the

algorithm is T = O(PN). A new sequence may enter the pipe­

line after N steps, thus the pipeline time is also O(PN).

A set of new algorithms for in-place DFT is proposed in

this study. The first pipeline whose basic cell is presented

in Figure 29 is designed to be flexible and modular. The

coefficients are calculated through the first phase of the

116

computation, thus they may be modified to accomodate for any

sequence of size M <= N.

Each cell requires four memory cells, one adder and one

multiplier, thus An= O{P). Three data lines and one control

line connect the consecutive cells in the pipeline, thus Aw

= 0(1). Therefore, the total area used by a cell and its

wires is O(P). The pipeline has N cells, thus, A= O(PN). A

global control line is used which occupies an O(N) area. The

long wire connecting the rightmost cell to the leftmost cell

also occupies an O{N) area. Although this area is asymptoti­

cally negligible, it increases the size of the design.

The computation of DFT through the pipeline requires 2N

steps. Each step includes three or two multiplications based

on the phase of the computation and one addition, thus Tn =

O(P). The time required to input three data items is O(P).

The time required to route the global control signal is

O(log N), Thus, Tw = O(P+log N). The total time spent during

a computational cycle is O(P). Since the entire computation

requires 2N cycles, T = O(PN). The duration of the computa­

tional cycle for this approach is longer than actual time

required for computation and near-neighbor inter-cell propa­

gation since the delay on the long wire connecting the

rightmost cell to the leftmost cell is O(log N) at its best.

The second new in-place algorithm allows the initial

values of the coefficient to be pre-stored in the cells. The

basic cell for this algorithm is presented in Figure 30. As

a result of storing the coefficients in the cells, the first

phase of the computation is eliminated and the entire opera-

117

tion requires N cycles instead of 2N cycles. This pipeline

has the same area and time complexity of the pipeline of

Figure 29, but requires half the number of computational

cycles to calculate the Fourier transform of an N-element

sequence.

The basic cell presented in Figure 32 is designed to

reduce the number of input;output lines. The total wire area

for inter-cell communication thus is reduced from three to

one. Consequently, the total wire area for the complete

design is reduced from 3N in the two previous pipelines to

N. This is especially important when long wires are used

since for each communication line an area with O(N)

complexity must be dedicated to the amplifiers.

The pipeline with the basic cell presented in Figure 32

has the same asymptotic area and time complexity as of the

other previous two pip~lines.

The three linear pipeline methods presented in Figures

29,30, and 32 are all circular. The first algorithm is more

flexible but it requires more computational steps. The next

two pipelines both require N computational steps. The

circular pipeline with the basic cell of Figure 32 occupies

smaller area since it has a single input line in each cell.

Therefore, among the three circular pipelines presented in

this study, the pipeline with the basic cell of Figure 32

has the best area and time performance. In all three cases

the result of the operation resides in the pipeline which

facilitates further operations on the· signal.

118

Two alternate methods are presented in Chapter III to

avoid long wires. The first pipeline whose basic cell is

presented in Figure 36 allows the Y's to sweep the cells.

The outgoing Y's are routed back to the pipeline for further

computations. The result resides in the cells of the pipe­

line. Although the long wire is eliminated, the number of

computational steps is increased from N to 2N cycles and

cells are not fully functional.

The second alternative has the basic cell presented in

Figure 38. Zero-valued Y's enter the pipeline through the

leftmost cell, sweep it from left to right and exit from the

rightmost cell. The basic cell requires three memory cells,

one inputjoutput register, one multiplier, and one adder.

The inter-cell connection is near-neighbor, thus, An = O(P)

Aw = 0(1), and A= O(PN).

The complete process requires 2N-1 cycles, although a

new sequence may enter the pipeline after N cycles. Each

cycle requires two multiplications, one addition, and one

input, thus Tn = O(P). Inter-cell connections are near­

neighbor, thus, Tw = 0(1). And finally, the complete process

has T = O(PN) time complexity. This cell may be modified to

route the results back to the pipeline as represented in

Figure 39.

The comparison between the three in-place methods,

namely, Kung's recursive method, pipeline with the basic

cell of Figure 32 and the one with the basic cell of Figure

38 is rather complex and involves many issues such as the

form of output, area, computation time, and finally the

119

propagation time.

All three aforementioned pipelines use N basic cells.

The result of the computation in the first and the third

pipeline leaves the pipeline. If two more lines are added to

the basic cell, the result may be redirected back to the

pipeline which results in an increase in the number of

inputjoutput registers by one. After this modification, the

two last pipelines will have the same area for the basic

cell. Kung's pipeline has the smallest cell among the three

with one less memory cell per basic cell.

The second pipeline uses a long wire which adds an O(N)

area to the pipeline for the O(N) long wire and its

amplifiers. The long wire also causes an O(log N) delay

through the pipeline for the propagation. Thus, the cycle

time of the second pipeline is longer than the cycle time of

the other two by a factor of O(log N). On the other hand,

the second pipeline requires N cycles of computation instead

of (2N-3) cycles for the first pipeline and (2N-1) for the

third.

A complete cycle for the basic cell is composed of the

time required for multiplication tm, the time required for

addition ta, and the time required for propagation tp. Then

the total computation time for each method T(i) 1 <= i <=3

can be expressed as:

2N-3
T(l) = L (tm + ta + tp)

1

T(2) =L (2tm + ta + tp)
1

2N-1
T(3) = L (2tm + ta + tp)

1

120

tp = P for the first and the third method. however, it is

P+logN for the second method due to the delay in the long

wire. Then

T(1) = (2N-3)tm + (2N-3)ta + (2N-3)P

T(2) = 2Ntm + Nta + N(P + logN)

T(3) =2(2N-1)tm + (2N-1)ta + (2N-1)P

The first and the second pipeline are compareable. Let Td =

T(1)-T(2), then

Td = -3tm + (N-3)ta + NP - NlogN-3P

ignoring the constant factors,

Td = N(ta + P - logN) = O(N)

Thus the second method has a time performance better than

the first method by a factor of O(N) at the cost of extra

area of O(N) for the wires and amplifiers.

The two pipelines selected from the two on-line and in-

place categories as having better area-time performance in

their category may also be compared. The best pipeline in

the category of on-line pipelines is presented in Figure 26

and the best pipeline in the category of in-place pipelines

is presented in Figure 32.

Both pipelines require N cells. The first pipeline has

smaller cells, and no long wires. Thus, the complete

121

pipeline is smaller than the other pipeline by a factor of

0 (N).

Let T(i) 1<= i <=2 denote the total computation time

for the two pipelines. If the time required for the initial

load is added to the computat~on time, then

2N-1
T(1) = c (2tm + ta + tp)

1
N

T(2) = N logN + L (2tm + ta + tp)
1

Since tp = logN for the first pipeline and P+1ogN for the

second pipeline, then

T(1) = 2(2N-1)tm + (2N-1)ta + (2N-1)logN

T(2) = NlogN + (2N)tm + (N)ta + N(P+logN)

Therefore, the difference between T(1) and T(2) ignoring

constant terms is

Td = (2N)tm + (N)ta -PN

Since tm = O(P) and assuming that the time required for

multiplication is comparable to the time required for data

transmission, the above equation indicates that the on-line

pipeline is slower than the in-place pipeline.

In summary, although all linear pipeline methods have

the asymptotic area and time complexity of O(PN), it is

shown that the in-place pipeline of Figure 32 has a better

overall performance.

The cascade implementation of FFT is the last design

122

that is classified under linear pipeline architectures,

solely for its basic architectural characteristics.

The cascade pipeline is composed of logN basic cells.

Each cell contains one multiplier, one adder, two memory

cells, one counter, and two inputjoutput registers. There-

fore, a total of four memory cells is required in each basic

cell. The complete cell will fit in an O(P) area, thus, An =

O(P). Inter-cell connections are near-neighbor, thus, Aw =

0(1). Therefore, the total area occupied by the cells is O(P

logN). The ith cell in the pipeline however is connected to
(m-i)

a shift register of length 2 (m=logN). The area

occupied by the shift registers is the sum of the number of
m

elements in the shift registers or 2 =N multiplied by the

size of each element which is O(P). Thus the total area

occupied by the pipeline is O(P logN+ PN) which is an O(PN).

The computation involves (2N-1) cycles although the

pipeline time is only N cycles. Each computational cycle

involves at least one multiplication although half the

cycles involve two multiplications and two additions. Each

cycle involves a P-bit shift. Thus, the total time may be

expressed as:

2N-1
T = ~ (2tm + 2ta + ts + tp)

Since the cycle time should be longer than the longest

operation, ignoring the constant factors,

T = 4Ntm + 4Nta + 4PN

123

Obviously, the total time used by cascade is twice the time

used by other linear pipelines except Kung's (2N-1)-cell

pipeline. To this time we must add the time required to

convert the output from bit-reversed order to normal order.

The area used by cascade however is smaller than the

area used by the other pipelines since the main area is

occupied by shift registers and not adders and multipliers.

Thus, it is reasonable to claim that cascade occupies an

area at least three times smaller than the other linear

pipelines.

The main disadvantage of cascade however lies on its

inflexibility. The design is limited to solving the Fourier
m

transform of sequences of size N=2 . It is not easily

expandable since its hardware is especially designed for a

specific value of N.

A summary of physical and computational characteristics

of the linear pipelines studied in this section is presented

in Tables 4 and 5. Table 4 represents a list of physical

characteristics of the pipelines and also the asymptotic

area complexity of the basic cell and the entire pipeline.

Table 5 represents the computational characteristics of the

pipelines and the asymptotic time complexity of the basic

cycle and the complete computation.

Since the asymptotic area and time complexity of all

pipelines for solving Fourier transform is the same, an

approximation to the area and time of each design may assist

in the evaluation of the performance of each pipeline.

124

TABLE 4

PHYSICAL CHARACTERISTICS OF
THE LINEAR PIPELINE

ARCHITECTURES

method tcells U/O #memory total Aw An A other
reg cells memory

1) Kung's 2N-1 4 1 5 4 O(P) O(PN)
non-
recursive

2) Figure N 3 1 4 3 O(P) O(PN)
25

3) Figure N 1 3 4 1 O(P) O(PN)
26

4) Kung's N-1 2 1 3 2 O(P) O(PN)
recursive

5) Figure N 3 4 4 0 (P) O(PN) O(N)
29 long

wire

6) Figure N 5 5 3 O(P) O(PN) O(N)
30 long

wire

7) Figure N 5 5 1 O(P) O(PN) O(N)
32 long

wire

8) Figure N 2 4 6 2 O(P) O(PN)
36

9) Figure N 1 3 4 1 O(P) O(PN)
38

10) cas- logN 2 2 4 2 O(P) O(PlogN) 0 (PN)
cade

125

TABLE 5

COMPUTATIONAL CHARACTERISTICS OF
THE LINEAR PIPELINE

ARCHITECTURES

method #steps #multi #add Tw Tn T pipeline other

1) 4N-3 2 1 O(P) O(P) O(PN) O(PN)

2) 2N-l. 2 1 II II II II

3) 2N-1 2 1 II II II II

4) 2N-3 1 1 II II II II initial
load
O(PN)

5) 2N 3(2) 1 II II II II

II

6) N 2 1 II II II II II

O(logN)
long
wires

7) N 2 1 II II II II

II

8) 2N 2 1 II II II II O(PN)
initial
load

9) 2N-l. 2 1 II II II II

l.O) 2N-l. 2 2 II II II II

126

This approximation is based on the assumption that all

major components occupy an areaof P. Thus the area of a cell

with 5 memory cells, one multiplier, and one adder is appro­

ximated as 7P. Then the total area is approximated by multi­

plying the number of cells by the area of the cell.

The processing time is approximated by assigning P

units of time to multiplication and inter-cell serial tran­

smission, P+logN for N-distance transmission, and unit time

for addition. The total time is approximated by multiplying

the number of steps required by the total cycle time. The

summary of these approximations along with the approximation

for pipeline time, the restrictions on the size of the

sequence and also the advantages and disadvantages of the

ten linear pipelines are listed in Table 6.

Some of the pipelines are easily expandable due to

their flexible design. Flexibility and modularity is

considered to be one of the major evaluation criteria. The

other issue is the form of the output. The pipelines which

save the result in the pipeline are considered more

favorably, since as it· was previously mentioned slight

enhancements in the cells will allow many useful operations

to take place in the cell without a need to transfer the

result out and then route it back again. The multitude and

the length of the inter-cell connections is also considered.

Extensive wire area or long wires are considered as a

negative factor.

As it shown in Table 6, the first pipeline occupies the

largest cell area and the cascade implementation of FFT

127

TABLE 6

APPRIOXIMATED AREA AND TIME MEASURES
FOR LINEAR PIPELINE

ARCHITECTURES

pipeline approximated approximated pipeline N advantage disadvantage
area time time

cells wires

1) 14PN SN 16PN + 16PN + - easily result is out
4N 4N expandable too much time

and area

2) 6PN 3N 6PN + 3PN + - easily too much
2N N expandable time and

result area
remains

3) 6PN N 6PN + 3PN + - result hard to
2N N remains expand

few
wires

4) SPN 2N SPN + 3PN + - easily result
2N N expanable is out

5) 6PN 4N 7PN+2NlogN 6PN+ - result too much
+2N 2N+2NlogN remains time and

easy to area
expand

6) 7PN 3N 3PN + 3PN + - result hard to
N+NlogN N +NlogN remains expand

fast
7) 7PN N 3PN + 3PN + - result hard to

N +2NlogN N +2NlogN remains expand
fast
few wires

8) SPN 2N 7PN + 7PN + - result hard to
2N 2N remains expand

too much
area

9) 6PN N 7PN + 4PN + - few wires result
2N N is out

m
10) PN 2logN 6PN + 3PN + 2 small very

+N 4N 2N area hard to
expand

128

occupies the smallest cell area. These two pipelines are

also associated with the two extremes for the wire area. The

pipeline of Figure 32 has the least wire area and

computational time among the comparable pipelines. although

the choice of one pipeline over others is application

dependent, Table 6 gives a better insight to the comparative

area-time measures of each pipeline.

Fourier Transform Networks

All parallel Fourier transform architectures with non-

linear interconnections are classified as Fourier transform

networks. The first class of parallel Fourier transform

architectures is the mesh-connected architectures. Three

mesh-connected architectures are covered in this study. Two

mesh-connected architectures are covered in Chapter II and

one is covered in Chapter III.

The mesh-connected architecture proposed by Zhang

[Zhang 84] and the one proposed by this study are based on

the rearrangement of an N-element one-dimensional signal
2

into a two dimensional matrix assuming that N = m . The

third mesh-connected architecture is based on the FFT
2m

algorithm assuming that N = 2

Another class of Fourier transform network

architectures includes the FFT network which is the hardware

implementation of the FFT flow graph, and the perfect-

shuffle interconnection network which has a more regular

architecture than the FFT network.

129

2
Finally, the N -cell mesh-connected network is the only

one of its kind with the capability of concurrently handling

N different sequences. The VLSI complexity of these networks

is analyzed in the following sections.

N-cell Mesh-Connected Architectures. Zhang [Zhang 84)

was the first to propose a mesh-connected architecture for
2

OFT. The architecture is based on the fact that N = m • The

architecture is composed of N = m x m basic cells. A set of

m extra cells are added to the architecture as the (m+1)th
ij

row of the network to multiply the outgoing result by W

and route it back to the network. Thus, the complete network

consists of (m+1) x m basic cells. A set of (m+2) multip-

liers are also required to generate the appropriate powers

of P needed by the Kung's linear pipeline to perform column

and row DFTs and to generate appropriate powers of W to be

used by the last row of the cells. Thus, the total number of
2

cells used in the architecture is ((m+1)m+m+2)=(m +2m+2)

cells. Assuming that the transceiver in each cell can

receive and transmit data in all directions, at least three

inputjoutput registers are required in each cell. Each cell

also contains two memory cells, one multiplier, and one

adder. Thus An= O~P). Each node is associated with 5 data

lines. Thus, Aw = 0(1).

The wire area used by this architecture for long wires

directing the global signal s and the powers of P generated

by the two multipliers is significant. Since S is a global

signal, it has to be directed to all the nodes. Thus, it

130

requires one horizontal and m vertical long wires of O(m).

Therefore, to the wire area required by the architecture the
2

amount mP + m must be added (the cell area is assumed to be

a rectangle of logN by 1).

The processing time of this network involves 4m cycles.

To this time the time required to load the sequence which is

at least O(m) must be added. Each computational cycle

involves one multiplication and one addition. Thus Tn =

O(P). Inter-cell connections are near-neighbor, thus, Tw =

O(logN). Therefore, the total processing timeT is O(mP).

The pipeline time for this network is the sum of the proces-

sing time and the time required for the initial load, since

a new computation may not start unless the previous computa-

tion is completed and the new sequence is completely loaded.

Thus, the pipeline time is approximately SmP which is O(mP).

The N-cell mesh-connected network for DFT proposed by

this study which is presented in Figure 42 is an attempt to

reduce the area and the time overhead and to avoid long

wires as much as possible. All control signals are local,

the initial load is overlapped with the computation, and the

inter-cell data communication is minimized. The basic cells

however are slightly largerthan Zhang's network.

The complete network consists of N basic cells arranged

as an m x m matrix. No extra cell or multiplier is required.

Thus, the initialization of multipliers and their

synchronization with the basic cells is not an issue. Each

cell contains one inputjoutput register since at any cycle

only one data item is input or output. Each cell contains

131

four memory cells, one multiplier, and one adder. Thus, An =

O(P). Each cell is connected to two data lines, thus, Aw

= 0(1). No other extra area for long wires or multipliers

are needed. Therefore the total area used by the
1/2

architecture is O(PN).

The complete computation requires 4m cycles. Although a

new sequence may start loading and computation after 3m

cycles. Therefore, although processing time involves 4m

cycles, the pipeline time only involves 3m steps. Each cycle

consists of two multiplications and one addition. Thus, a

complete cycle requires an O(P) time or Tn = O(P). Inter-

cell connection and control signal transmission is near-

neighbor which requires an O(P) time, thus, Tw = O(P).

Therefore, the complete processing time has an O(m P)

complexity. No other time overhead is involved.

The last mesh-connected network based on the FFT

network was first proposed by Stevens [Stevens 71] for the

Illiac IV computer. The size of the sequence N is restricted
2m m m

to 2 . The network consists of N cells arranged as a 2 x 2

matrix. Data is loaded in a row-major order as depicted in

Figure 22 prior to the computation.

Each cell is a message driven processor capable of

creating new messages, addressing it to another cell in the

network, forwarding a message along the shortest path to its

destination, and finally receiving a message. The functional

aspects of this network is discussed in Chapter II. Thompson

[Thompson 80] shows that the computation time for this

132

network is basically dominated by the time required for

routing. He suggests that the transceiver in each node

should have parallel transmission to other nodes and serial

transmission to the multiply-add unit. The proposed tran-
2

sceiver occupies an O(P) area. Using the large parallel

transceiver reduces the parallel transmission time to O(log

P) but adds an area of P for wires to each processor in each

direction. The area occupied by each node also contains logN

coefficients being used in logN steps of the computation,

multiply-add circuit and control circuit. Thompson proves
2

that the complete processor will fit in an O(P) area. Thus
2

the complete network occupies an O(P N) area for cells and

an O(PN) area for wires.

The computation involves log N cycles. Each cycle

consists of one multiplication, two additions, and routing.

The routing distance depends on the stage of the computation

as explained in Chapter II. Thompson [Thompson 80] shows
k

that each node in the kth stage performs two (N/2)-distance

routing. When K < (logN)/2, the mesh's vertical interconnec-

tions are used. The horizontal interconnections are used

otherwise. He proves that the total routing time is
1/2

proportional to (N log P).

The physical and computational characteristics of the

three mesh-connected networks are summarized in Tables 7 and

8. Table 9 represents a rough approximation of the time and

the area used by each architecture. The approximation is

based on the assumptions made in the previous section.

Comparing the physical and computational characteris-

cells

I/o
registers

memory
cells

total
memory

Aw

An

A

other

TABLE 7

PHYSICAL CHARACTERISTICS OF
MESH-CONNECTED

NETWORKS

Zhang

1/2
N + 2N +2

3

2

5

5

0 (P)

O(PN)

1/2
PN +N
(wires)

This study

N

1

4

5

2

0 (P)

O(PN)

133

stevens

N

2

log N

2 + logN

4P

2
O(P)

2
O(P N)

4PN
(wires)

#steps

multi-
plications

additions

Tw

Tn

T

other

TABLE 8
COMPUTATIONAL CHARACTERISTICS

OF MESH-CONNECTED
NETWORKS

Zhang This study

1/2 1/2
4N 4N

1 2

1 1

O(P+logN) O(P)

0 (P) 0 (P)

1/2 1/2
O(PN) O(PN)

1/2
O(PN)

(initial load)

134

Stevens

logN

1

2

O(logP)*
(number of
routing
steps)

0 (P)

1/2
O(N logP)

1/2
O(N)

(routing)
1/2

O(PN)
(initial· load)

cells

wires

approx
time

approx
pipeline
time

N

Advantage

dis
advantage

TABLE 9

APPROXIMATED AREA AND TIME
MEASURES FOR MESH
CONNECTED NETWORKS

Zhang

1/2
(7PN +7PN

SN

1/2 1/2
8PN +4N +

1/2 1/2
8N logN

1/2 1/2
9PN +4N +

1/2 1/2
8N logN

2
m

excessive
hardware
long wire

)

This Study

7PN

2N

1/2 1/2
12PN +4N

1/2 1/2
9PN +3N

2
m

no long wires
easy to expand

135

Stevens

2
p N

2PN

1/2
(4N logP +

(4N

4P

2
4P

1/2
logP+

1/2 1/2
+PN

2m
2

large basic
cells,
extensive
area, hard
to expand

136

tics of the three networks, it is apparent that the network

proposed by this study requires less cell area than the

other two networks since it is reasonable to assume that P >

7. It also requires less wire area. It is difficult to find

a good approximation for the time used by Stevens's mesh­

connected network since the time used by the processor to

create, receive and direct a message, fetch the coefficient,

etc is not known. The approximation given in Table 9

includes the time for multiplication and routing. The appro­

ximated time of the other two networks are comparable.

However, the pipeline time of the network proposed by this

study is better than Zhang's network by a factor of 4m.

Considering the other advantages of this network and the

fact that the structure is extremely modular, this network

is considered to have a better overall performance.

Fast Fourier Transform Networks. Two different fast

Fourier transform networks are discussed in Chapter II. The

first network is the hardware replica of the FFT flow graph

called FFT network. The second architecture is based on the

perfect-shuffle network proposed by Stone [Stone 71].

The FFT network is composed of logN levels of N/2

cells. Each cell receives two inputs, performs a butterfly

operation, and sends two outputs to two other cells. The

coefficient for the butterfly operation is stored in the

cell. Each cell contains one multiplier and one adder, thus,

An= O(P}. Thompson [Thompson 80] shows that the connections

emerging from the kth row (k=O,l, ••• , logN- 1) occupy

137

k+l
N/2 tracks, as it is shown in Figure 17. He shows that a

total of N/2 horizontal tracks are necessary and sufficient

for laying out the interconnections between the first two

rows. The connections between the second and the third row

occupy N/4 horizontal tracks. Thus a total of N-1 horizontal

tracks are required to lay out the interrow connection.

Each track is a long wire. Thus, in order to obtain the

minimum delay, appropriate amplification is required. The

wires between the first two rows cross the middle line,

therefore, their length is proportional to N. Since each
2

wire needs an amplifier with O(N) area, then an O(N) area

is required for the amplifiers between the first and the

second row. There are N/4 tracks between the second and the

third row which although do not cross the middle line but

they occupy N/4 wire area. Thus, they each require N/2 area
2

for amplifiers, a total of N /8 area. Hence the total area
2

occupied by wires and amplifiers is O(N). If the cells are

laid out as a rectangle of O(P) tall and 0(1) wide, then the
2

bounding rectangle would require an O(N) area. The area

occupied by amplifiers is a very important factor in this

network.

A total of (logN) cycles is required to complete the

computation. Although a new sequence may enter the network

after the current sequence leaves the first row or after

the first cycle. A computational cycle involves the time for

data input, one multiplication, and one addition. Thus, Tn =

O(P). The time required for propagation assuming that ampli-

138

fiers are added to the netwok is Tw = O(log N). Thus, the

total computation timeT is O(logN(P+logN)). The pipeline

time however is O(P+log N). FFT network is capable of proce­

ssing logN sequences of data simultanously.

The perfect-shuffle network was first proposed by Stone

[Stone 71]. Thompson [Thompson 80] discusses the VLSI

complexity of the FFT using the perfect-shuffle

interconnection network. Thompson [Thompson 80] proposes a

planar layout for the network. He shows that the N/2 cells

in the network can be partitioned int.o logN equivalence

classes, B(k), k=0,1, ... ,logN-1, where each class contains

the cells with the same number of 1's in their binary

expansion. For example, for N=16, there are 8 cells and the

equivalence classes are as follows:

B(O) = { cell o }

B(1) = { cells 1,2, and 4 }

B(2) = { cells 3,5, and 6 }

B(3) = { cell 7 }

It is easy to verify that cells in B(k) are connected to

other cells in B(k) and to cells in B(k-1) and B(k+1).

Clustering the cells by their equivalence classes helps

limit the length of the wires. Unfortunately, the

equivalence classes are rather large. Thompson [Thompson 80]
1/2

shows that the largest class has a size O(Njlog N).

Consequently, the wires connecting this class to other
1/2

classes may be as long as O(N/log N). Figure 46 adopted

from [Thompson 80] represents the planar embedding of the

139

perfect-shuffle network for N=16.

The equivalence classes B(O) and B(J) contain input

values {x(O),x(1)} and {X(14),x(15)} respectively. Equivale-

nee classes B(1) and B(2) each contain three cells and

accomodate for 6 input values. The connections between two

consecutive classes are represented with large rectangular

boxes. The size of the box depends on the size of the equi-

valence classes it is connecting. The width of the box is

the sum of the widths of the two classes. The height of the

box is proportional to the number of the connections between

the two classes which is equal to the sum of the cells in

two classes. Since the wires used in these connections could
V2

be as long as O(N/log N), adequate amplification is needed

to achieve the O(logN) delay in the line. The area occupied
1/2

by the amplifiers to drive an O(Njlog N) wire is
1/2

O(Njlog N). Therefore, if amplifiers are added to each

wire, the interconnection box for the two largest classes

(B(1) and B(2) in
1/2

Figure 46) would require O(N/log N) *
1/2 2

O(Njlog N) area which is O(N jlogN). Thus the total area

occupied by the network is O(N) wide due to the width of the

cells and O(NjlogN) tall due to the interconnections, conse-
2

quently, A= O(N jlogN).

The complete computation requires logN steps. Each step

requires one multiplication, two additions, and the time

required for routing which is O(P). Thus Tn = O(P). The long

wire transmissions are localized thus Tw = O(log N). There-
2

fore, the complete process requires T = O(PlogN +log N)

140

processing time. The pipeline time is equal to the proces-

sing time since a new sequence may not enter the network

unless the previous computation is completed. Perfect-

shuffle network is capable of handling only one sequence at

a time.

The physical and computational characteristics of the

two networks are summarized in Tables 10 and 11. Table 12

represents the approximated area and time for the networks

and also the restrictions on the size of the sequence and

the advantages and disadvantages of each network.

The approximated time and area calculated for FFT

network and perfect-shuffle network represented in Table 12

shows that the two networks have almost the same area-time

performance. FFT network occupies a slightly larger area.

Perfect-shuffle network on the other hand has a longer

pipeline time. Both networks are restricted to the sequences
m

of size N=2 and they are both very hard to expand. FFT

network will be used as the best network in this category in

the comparative analysis among different classes of

architectures merely for its better pipeline time.

2
N -cell Mesh-Connected Network

2
The N -cell mesh architecture proposed by this study

has intresting properties which the other network architec-

tures lack. This network is capable of concurrently

processing N different data sequences. The pipeline archite­

ctures are capable of simultanously processing at most two

sequences. Other mesh-connected arcitectures are capable of

cells

I/O
registers

memory
cells

total
memoryjcell

Aw

An

A

TABLE 10

PHYSICAL CHARACTERISTICS OF
THE FOURIER TRANSFORM

NETWORKS

FFT network perfect-shuffle

N/2 logN N/2

2 2

1 logN

3 2+logN

K+1 1/2
N/2 horiz·ontal O(N /log N)
tracks for wires
emerging from the
kth row

0 (P) O(PlogN)

2 2
O(N) O(N)

141

steps

multiplica­
tions/step

additions/
step

Tw

Tn

T

pipeline
time

other

142

TABLE 11

COMPUTATIONAL CHARACTERISTICS OF THE
FOURIER TRANSFORM NETWORKS

FFT network

logN

1

2

O(P+logN)

0 (P)

2
O(PlogN+log N)

O(P+logN)

delay through
amplifiers

O(logN)

perfect-shuffle

logN

1

2

O(P+logN)

0 (P)

2
O(PlogN+log N)

2
O(PlogN+log N)

delay through
amplifiers

O(logN)

143

TABLE 12

APPROXIMATED AREA AND TIME MEASURES
FOR FOURIER TRANSFORM NETWORKS

FFT network

cells SPN/2 logN

2
wires N

2
time 2PlogN + log N

2
log N

pipeline P+logN
time

m
N 2

advantage fast
capable of handling
logN differnt sequences
simultanously

disadvantage too much wire and
amplifier area
hard to expand

perfect-shuffle

PN/2(logN+4)

2
N

2PlogN + 2logN+
2

log N

2PlogN +2logN
2

log N

m
2

fast

very difficult to
expand

144

processing one or two sequence at a given instance. FFT

network is the only network capable of simultanously proces-

sing logN sequences. This characteristics may be considered

as an important determinant in the evaluation of the Fourier

transform architectures if the flow of data is comparable

with the speed of the computation.
2 2

The N -cell mesh architecture is composed of N basic

cells connected as a grid of NxN cells. Each cell contains

one multiplier, one adder, one memory cell, and two

inputjoutput registers. Thus An= O(P). Inter-cell

connections are all near-neighbor, therefore, Aw = 0(1).

Thus, the total network should fit in an area of A =
2

O(PN).

A total of 2N-1 cycles are required for the completion

of the processing of a sequence. The pipeline time however

is only one cycle. Each cycle consists of data input, one

multiplication, and one addition, thus, Tn = O(P). The

inter-cell connections are near-neighbor and serial, thus,

Tw = 0(1). Therefore, T = O(PN). The pipeline time on the

other hand is O(P).

Table 13 summarizes the area-time performance of the

best architectures in each category. A, T, and Tp denote the

total area, total time, and pipeline time respectively.
2 2x

Measures AT, AT , and AT are evaluated using both proces-

sing and pipeline time.
2

Linear pipelines and N -cell mesh may be used to calcu-

late the Fourier transform of any given sequence regardless

145

TABLE 13

COMPARATIVE ANALYSIS OF DIFFERENT
FOURIER TRANSFORM ARCHITECTURES

Linear
pipeline

A 0 (PN)

T O(PN)

Tp O(PN)

2 2
AT O(P N)

2 2
ATp O(P N)

2 3 3
AT O(P N)

2 3 3
ATp O(P N)

2x 1+2x
AT O(N

1+2x
p)

2x 1+2x
ATp O(N

1+2x

N

p)

unrestric
ted

mesh
(this study)

O(PN)

1/2
O(PN)

1/2
O(PN)

2 3/2
O(P N)

2 3/2
O(P N)

3 2
O(P N)

3 2
O(P N)

l+x
O(N

1+2x
p)

1+x
O(N

1+2x
p)

2
m

FFT
Network

2
O(N)

2
O(log N+

PlogN)

O(P+logN)

2
O(PN logN+

2 2
N log N)

2 2
O(PN +N logN)

2 2 2
O(P N log N+

2 4
N log N)

2 2
0 (N (1 og N + P))

2
O(N (PlogN+

2 2x
log N))

2
N -cell

mesh

2
O(PN)

O(PN)

0 (P)

2 3
O(P N)

2 2
O(P N)

3 4
O(P N)

3 2
O(P N)

2+2x
O(N

1+2x
p)

2 2x 1+2x 2
O(N (P+logN)) O(P N)

m
2 unrestric

ted

146

of its size. The other two networks however, are restricted

to specific values of N. ·

Linear pipelines and N-cell mesh-connected OFT network

proposed by this study occupy the smallest area. FFT network
2

on the other hand has the best processing time. The N -cell

mesh has the best pipeline time. The N-cell mesh-connected
2

OFT network has the best AT, ATp, and AT

all the architectures. Mesh-connected OFT

performance among
2

network and N -
2

cell mesh -connected network have the same ATp performance.
2

The FFT network has better overall ATp performance.

However, it is only capable of simultaneously processing

logN different sequences. Thus, when the capacity of concur-
2

rent data processing is a determinant, N -cell mesh is more
2

appropriate choice at the cost of slightly higher AT
2x

measure. Mesh-connected OFT network also has the best AT

performance.

Comparing the results of this study with the lower
2 2x

bound for AT,AT , and AT measures deduced by Thompson (

Thompson 80], it is apparent that all measures deduced for

the N-cell mesh-connected OFT are only a factor of P away

from the lower bounds. Considering the other advantages of

this design; namely, simplicity and ease of VLSI implementa-

tion, modularity and simplicity and regularity of

interconnections it is selected to be the most efficient

design.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The comparative analysis of the VLSI area-time complexity

of the parallel algorithms for Fourier transform presented

in Chapter IV shows that the N-cell mesh-connected designs

have better overall performance. The simplicity of the basic

cell and also interconnections in this category is also one

of the major advantages of these designs. The modular layout

provides flexibility and allows ease of expansion. The

regularity of interconnections is also an advantage in lieu

of VLSI implementation.

The issues that would be raised for actual VLSI

implementation are not addressed in this study. The physical

characteristics of the available technology and the goals of

the design will determine the actual VLSI layout.

The decomposition of the one dimensional signal to

three or more dimensions is also a possiblity which may be

addressed in the context of existing planar VLSI circuits or

the possibility of future non-planar VLSI circuits.

147

REFERENCES

Bongiovanni G. " A VLSI Network for Variable Size FFT's".
IEEE Transactions on Computers, Vol. C-32, No.8, Aug
1983, pp. 756-760.

Cooley J. W. and J. W. Tukey. "An Algorithm for the
Machine Computation of complex Fourier Series." Math.
Comput. Vol. 19, Apr. 1965, pp .. 297-301.

Chow P., z.c. Vranesic, and J.L. Yen. "A Pipelined Distrib­
uted Arithmetic PFFT Processor." IEEE Transactions on
Computers, Vol. C-32, No.12, Dec. 1983, pp. 1128-1136.

Cozzens J. and L. Finkelstein. "Computing the Discrete
Fourier Transform Using Residue Number Systems in a
Ring of Algebraic Integers." IEEE Transactions on
Information Theory, Vol. IT-31, No.5, Sep. 1985, pp.
580-588.

Despain A. "Very Fast Fourier Transform Algorithms Hardware
Implementation." IEEE Transactions on Computers, Vol.
C-28, No.5, May 1979, pp. 333-341.

Gertner I. and M. Shamash. "VLSI Architecture for Multi­
dimensional Fourier Transform Processing." IEEE
Transactions on Computers, Vol. C-36, No.ll, Nov.
1987, pp. 1265-1274.

Gold Ben and Theodore Bially. "Parallelism in Fast Fourier
Transform Hardware." IEEE Transactions on Audio and
ElectroAcoustics, Vol. AU-21, No.1, Feb. 1973, pp 5-16.

Groginsky.H.L. and G.A. Works. "A Pipeline Fast Fourier
Transform." IEEE Transactions on Computers, Vol. C-19,
No.ll, Nov. 1970, pp. 1015-1019.

Kung H. T. "Special-Purpose for Signal Processing opport­
unity in very large Scale Integration (VLSI), "Real­
time Signal Processing 111, 1980.

Kung H. T. and R. P. Brent. "The Area-Time Complexity of
Binary Multiplication." JACM, Vol 28, No.3, July 1981,
pp. 521-534.

148

149

Kung H. T. "Why systolic Architectures." Computer, Jan 1982,
pp. 37-46.

Kung s. Y. "VLSI array Processors." 1st Ed. Prentice-Hall,
Englewood Cliffs, 1988.

Mead c. and L. Conway. "Introduction to VLSI Systems."
Addison-wesley, 2nd Ed., 1980, chapter 8.

Norton A. and A. Silberger. "Parallelization and
Analysis of the Cooley-Tukey FFT Algorithm
Memory Architecture." IEEE Transactions on
Vol. C-36, No.5, May 1987, pp. 581-591.

Performance
for Shared
Computers

Oppenheim Alan v. and Ronald w. Schafer. "Digital Signal
Processing" 1st Ed. Prentice-Hall, 1975.

Owens R. and M. J. Irwin. "The Arithmetic Cube." IEEE Trans­
actions on Computers, Vol. C-36, No.11, Nov. 1987, pp.
1342-1348.

O'Leary Dianne P. "Systolic Array for Matrix Transpose and
other Reorederings." IEEE Transactions on Computers,
Vol. C-36, No.1, Jan. 1987, pp. 117-122.

Reed I. and I. K. Troung. "A New Hybrid Algorithm for Compu­
ting a Fast Discrete Fourier Transform." IEEE
Transactions on Computers, Vol. C-28, No.7, July 1979,
pp. 487-492.

Stevens j. " A Fast Fourier Transform Subroutine for ILLIAC
IV." Center for Advanced Computing, University of
Illinois, Technical Rep. 1971.

Stone H. "Parallel Processing With Perfect Shuffle." IEEE
Transactions on Computers, Vol. C-20, No.2, Feb. 1971,
pp. 153-155.

Taylor F. J. and G. Papadourakis, A. Skavantzos, and A.
Stouraitis. "A Radix-4 FFT Using Complex RNS Arith­
metic." IEEE Transactions on Computers, Vol. C-34,
No.6; June 1985, pp. 573-576.

Thompson Clark. "A Complexity Theory for VLSI". Disserta­
tion, Carnegie-Mellon University, Aug. 1980.

Thompson T. "Fourier Transforms in VLSI." IEEE Transactions
on Computers, Vol. C-32, No.1, Nov. 1983, pp. 1047-
1057.

Troung T. K., J. J. Chang, I. s. Hsu, D. Y. Pei, and I. s.
Reed. "Techniques for computing the Discrete Fourier
Transform Using the Quadratic Residue Fermat Number
System." IEEE Transactions on Computers, Vol. C-35,

150

No.11, Nov. 1986, pp. 1008-1012.

Troung T. K., I. s. Reed, I. Hsu, H. Shyu, and H. M. Shao.
"A Pipeline Design of a Fast Prime Factor DFT on a
Finite Field." IEEE Transactions on Computers, Vol.
C-37, No.3, March 1988, pp. 266-273.

Wold E. and A.Despain. "Pipeline and Parallel FFT Processors
for VLSI Implementation." IEEE Transactions on Comput­
ers, Vol. C-33, No.5, May 1984, pp. 414-425.

Zhang N. "Multi-Dimensional Systolic Networks For Discrete
Fourier Transform." Proceedings of the 11th Interna­
tional Conference on Computer Architecture, Ann Arbor,
Michigan, 1984, pp. 215-222.

VITA

Taraneh Baradaran-seyed

candidate for the Degree of

Doctor of Philosophy

Thesis: VLSI COMPLEXITY OF PARALLEL FOURIER TRANSFORM

Major Field: Computer and Information Sciences

Biographical:

Personal Data: Born in Tehran, Iran, October 18, 1952

Education: Graduated from Aryamehr University of
Technology, Tehran, Iran, in January 1976; received
Master of Science degree in Computer Science from
Oklahoma State University in December 1981;
Completed requirements for the Doctor of Philosophy
degree at Oklahoma State University in May 1989.

Professional Experience: computer Instructor, ISIRAN
Institute, Tehran, Iran; Graduate Teaching
Assistant: Department of Computer and Information
Sciences, Oklahoma State University, 1979-1984
Assistant Professor; Kearney State College, 1984-
1986; Instructor: University of New Haven, 1986-
1988; Assistant Professor; Southern Connecticut
State University; 1988-present.

