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CHAPTER I 

INTRODUCTION 

The Discrete Fourier Transform (OFT) is one of the most 

widely used transforms in signal processing, image 

processing and computer vision. The computationality of 

Fourier transform however has always been one of the major 

issues for users and researchers. The time complexity of the 

sequential algorithm for calculating the discrete Fourier 
2 

transform of an N-element signal is proportional to N • 

Cooley [Cooley 65] proposed a faster method for serial 

computation of the discrete Fourier transform known as Fast 

Fourier Transform or FFT. The FFT algorithm is based on the 

divide-and-conquer paradigm and reduces the time complexity 

of the computation of an N-element sequence to NlogN. 

Over the last two decades a large body of knowledge has 

been dedicated to the processing aspects of OFT and FFT. 

Researchers have persued different approaches and techniques 

to increase the speed of the computation of the Fourier 

transform. Since the speed of serial computation of the 

Fourier transform is machine dependent, many researchers 

aimed at designing dedicated hardware (Gold 73], (Despain 

79]. Reducing the computation time by employing faster 

circuitry for basic operations used in Fourier transform, 

1 



namely, complex addition and multiplication is another 

approach persued by Taylor [Taylor 85], Cozzens [Cozzens 

85], and Troung [Troung 86]. 

Significant advances in VLSI in recent years, which 

started a new era in massive parallelism, has opened yet 

another line of research in parallel processing of the 

Fourier transform [Thompson 80], [Despain 79], [Stone 71], 

[Bongiovanni 83], [Zhang 84], [Wold 84], [Gertner 87], and 

[Troung 88]. 

2 

The serial and parallel processing of Fourier 

transform have been studied in. two different contexts, 

namely, direct Fourier transform and fast Fourier transform. 

Each method offers certain degree of freedom and suffers 

certain restrictions on the size of the sequence, form of 

the inputjoutput, and the size and capability of the basic 

computational units and the interconnections between them. 

The area-time trade-off as a common measure for 

algorithmic and VLSI complexity has been used to approximate 

the goodness of the algorithms and their associated VLSI 

implementation. Thompson [Thompson 80] has derived a set of 

assumptions and rules for the analysis of the VLSI 

complexity of circuits. He has also derived a lower bound 

for the area-time complexity of VLSI design of circuits 

which solve an N-element Fourier transform problem. 

In Chapter II, a detailed description of the techniques 

used to calculate an N-element Fourier transform is 

presented. Chapter III presents a set of new methods 
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proposed by this study. In Chater IV the set of assumptions 

and rules used in the analysis of VLSI complexity of 

circuits are presented. Also different area-time measures 

and their applicability are discussed. Based on these 

assumptions, different layouts for the basic circuitry used 

in the VLSI design of Fourier transform solving circuitry 

and their area and time complexity are analyzed. And 

finally, an in depth analysis of the VLSI complexity of all 

methods under different area-time measures is presented. 



CHAPTER II 

FOURIER TRANSFORM COMPUTATION 

Fourier transform computation is based on two diff.erent 

paradigms, the Discrete Fourier transform and the fast 

Fourier transform. This chapter is dedicated to the descrip­

tion of these methods and the detailed explanation of the 

parallel techniques to implement them. 

Discrete Fourier Transform 

The Direct Fourier transform of a finite sequence 

{X (n) 1 n=0,1, •.. ,N-1} may be expressed as {Y(n), 

n=0,1, ... ,N-1} where 

N-1 
Y(k) = L 

n=O 

nk 
x(n) w 

N 
0 <= k <= N-1 

and w = EXP (-2nj/N). DFT may also be represented in a 
N 

(2 .1) 

matrix-vector multiplication form as depicted in Figure 1. 

The direct computation of Fourier transforms using matrix-
2 

vector multiplication has a time complexity of O(N ). 

Fast Fourier Transform 

Cooley (Cooley 65] has reformulated equation 2.1 and 

proposed a new method based on the divide-and-conquer para-

4 
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digm. This method is called the Fast Fourier Transform or 

FFT. The FFT is based on the decomposition of the DFT into 

successively smaller DFTs. Algorithms based on the decompo­

sition of {x(n)} are called decimation-in-ti~e algorithms 

[Oppenheim 75]. 

The principle of decimation-in-time algorithms is best 
m 

presented by considering the special case of N=2 • Since N 

is an even number { x(n) } may be separated into two N/2-

point sequences consisting of even-numbered elements in { 

x(n) } and odd~numbered elements in { x(n) }. Equation 2.1 

is thus rewritten as: 

nk 
Y(k) = L x(n) W 

n even N 

nk 
+ L x(n) W 

n odd N 

nk 

0<= k <=N-1 

Then by exploiting the characteristics of W , the equation 
N 

may be rewritten as 

Y(k) 
N/2-1 
~· = L__ 

r=O 

rk 
x(2r) w 

N/2 
k 

= G(k) + W H(k) 
N 

k N/2-1 
+ w L. 

N r=O 

rk 
x(2r+l) W 

N/2 
(2.2) 

where G(k) is the N/2-point OFT of the even-numbered points 

of {x(n)} and H(k) is the N/2-point OFT of the odd-numbered 

points of {x(n)}. 

Therefore, the computation of an N-point OFT may be 

decomposed into two computations of N/2-point OFT. If N = 
m 

2 , then the decomposition may further be applied m times 

until a simple 2-point OFT is reached. The 2-point OFT known 
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as a butterfly computation is presented in Figure 2. The 

results of 2-point OFTs are then combined to calculate the 

4, a, .•• , N point OFTs. The complete flow graph of an a­

point OFT using decimation-in-time algorithm is presented in 

Figure 3 (Oppenheim 75]. The computation is completed after 

logN (base 2) steps and each step requires N/2 butterfly 

operations. Therefore, a complete FFT computation of an N­

point FFT has (N/2)logN computational steps which yeilds an 

O{NlogN} time complexity. The input data appears in bit­

reversed order, but the output.is in natural order. 

Oppenheim (Oppenheim 75] presents alternative formulations 

of decimation-in-time algorithms. 

Another class of FFT algorithms, namely, decimation-in­

frequency algorithms are based on the decomposition of 

{Y(n)} in the same manner. Figure 4 represents the butterfly 

operation for decimation-in-frequency algorithm. Figure 5 

represents a complete flow graph of the computation for an 

a-point sequence using decimation-in-frequency algorithm. 

Recent advances in massive parallel processing promises 

faster computation of Fourier transforms. The following two 

sections are dedicated to the detailed description of 

parallel techniques to evaluate the Fourier transform of an 

N-element sequence based on the OFT and FFT respectively. 

Parallel Processing of a OFT 

The parallel computation of a DFT is mainly based on 

Equation 2.1. The symmetrical nature of the matrix of the 

coefficients shown in Figure 1 and the relationship between 
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the elements of this matrix inspired many parallel 

techniques [Kung 80], [Mead 80], [Zhang 84], [Thompson 80]. 

The difference between these approaches stems from the 

assumptions on the size of the sequence and the number of 

processing.elements used in the design. The detailed 

description of each technique is presented in the following 

section. The VLSI complexity of these techiques along with 

others are analyzed in Chapter IV. 

N-cell DFT Pipelines 

Kung and Leiserson [Mead 80] were the first to propose 

a pipeline of processing elements to compute the DFT of an 

N-element sequence. The pipeline has 2N-1 cells to compute 

the DFT of anN-element sequence {x(n)}. Cells operate on 50 

percent duty cycle. The input sequence enters the pipeline 

from the leftmost cell with a 50 percent duty cycle. Zero­

valued {Y(n)} enters the pipeline from the rightmost cell 

again with a 50 percet duty cycle. No operation is performed 

for the first N-1 cycles or until both x(O) and Y(O) reach 

the middle cell. 

The middle cell is a special celi and it generates all 

the coefficients required by the transform. Coefficients are 

then propagated to both the right and the left cells. 

Register C in each cell is dedicated to the coeffi·cient and 

is updated by the values that are generated by the middle 

cell and propagated by other cells. These values are labeled 

RA and RT. 
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from the leftmost cell with a 50 percent duty cycle. Zero­

valued {Y(n)} enters the pipeline from the rightmost cell 

again with a 50 percet duty cycle. No operation is performed 
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Register C in each cell is dedicated to the coefficient and 

is updated by the values that are generated by the middle 

cell and propagated by other cells. These values are labeled 

RA and RT. 
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x(in) x(out) 

RA(out) ~ RA(in) 

RT(out) RT(in) 

Y(out) Y(in) 

a) Structure of Left Cells 

x(in) x(out) 

RA(in) RA(out) 

RT (in) RT(out) 

Y (out) Y(in) 

b) Structure of right cells 

OPERATION 

Y(out):= Y(in) + c * x( in) 

x(out) . - x(in) .-
c . - RA(in) * RT(in) .-

RA(out) := RA (in) 

RT(out) .- RT(in) 

Figure 6. The structure and Operation of right (a) and 
left (b) cells in 2N-l Cell OFT Pipeline. 



x(in) . 
X( out) 

RA (out) ~ RA( out) 

RT (out) ~ 0 RT( out) 

y (out) y (. l.n) 

OPERATION 

Y(out) ·- Y (in) +RA * x(in) .-
RA(out) ·- RA .-
RT(out) := RT 

2 
RA := RA* RT * w 

RT := RT * W 

Figure 7. The Structure and Operation of the Middle 
Cell in a (2N-1) Cell DFT Pipeline. 

13 
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When cell i is active, it receives Y from its right 

neighbor and x from its left neighbor and RA and RT from its 

left/right neighbor based on whether cell i is located at 

the right/left of the middle cell. Then it performs the 

multiply-add operation and sends Y to its left neighbor and 

x to its right neighbor. 

The structure and the operation of cells are depicted 

in Figure 6. Figure 6a represents the structure of the cells 

to the left of the middle cell. Figure 6b represents the 

structure of the cells to the right of the middle cell. 

The structure and operation of the middle cell is 

special and different from other cells. This cell generates 

and propagates the appropriate coefficients to all other 

cells. The structure and operation of the middle cell is 

depicted in Figure 7. Registers RA and RT in the middle cell 

are initially one and the register labeled W contains EXP(-20 

jjN). A sequence of the operations of the pipeline for a 3-

point DFT is depicted in Figure 8. Each cell is labeled with 

its current value of x, y, and c, the coefficient used in 

multiply-add operation is circled. After 2N-1 cycles through 

the pipeline, Y(O) is out, Y(1) will be out after 2 more 

cycles, and finally, it takes 2N-2 more steps after the 

compeletion of Y(O) to output Y(N-1). Therefore, 4N-3 cycles 

are required to compute an N-point DFT. Each step requires 

two multiplications and one addition. 

There are 2N-2 simple cells, each containing a register 

c, a multiplier and an adder. The middle cell performs five 

multiplications and an addition at each step. A faster 
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Figure 8. A Sequence of Operations of a (2N-1) Cell 
Pipeline for a 3-point OFT. · . 
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multiplier or several multipliers may be provided in the 

middle cell to avoid a slow down throughout the pipeline. 

Each cell requires four input and four output lines. 

Basically, this design employs 2N-1 cells each 

containing a multiply-add circuitry and a register. This 

approach reaches a 4N-3 cycles of computation for an N-

element DFT. The pipeline time (elapsed time between the 

input of two consecutive sequences) is also 4N-3 since a new 

computation may not start unless the previous computation is 

completed.· 

Kung (Kung 80] has proposed another linear pipeline 

implementation based on the recursive formulation of the 

DFT. Given the input sequence {x(n)}, the computation of the 

Fourier transform of the sequence, {Y(n)}, can be viewed as 

that of evaluating the polynomial 

N-1 N-2 
x(N-1)P +x(N-2)P + ···• +x(1)P + x(O) 

2 3 N-1 
At P = 1, W, W, W, •..•. , W. The polynomial can be 

rewritten as: 

( .... ((P x(N-1) +x(N-2))P + x(N-3))P + .••• + x(1))P + x(O) 

The recurrence formula can be rewritten as follows: 

0 
Y (i) = x(N-1) 0<= i <= N-1 
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k k-1 i 
y (i) = y (i) P + x(N-1-k) 1 <= k <= N-1 

N-1 
Then Y(i) = Y (i). The structure of a basic cell, its 

operation, and the structure of the pipeline is depicted in 

Figure 9. 

The full pipeline consists of N-1 cells. The inputs 

Y(in) and P(in) to the leftmost cell are x(N-1) and some 

power of W respectively. Y(O) leaves the pipeline after N-1 

cycles from the rightmost cell and Y(N-1) will leave the 

pipeline after N-2 more cycles. Therefore, the processing 

time of a sequence is 2N-3 cycles. A new sequence may start 

its load and computation after N cycles or immediately after 

Y(N-1) has left the leftmost cell. Therefore, the pipeline 

time is N. 

The basic cells in the pipeline require a register and 

a multiply-add circuitry. It also needs two input and two 

output lines. Inter-cell connections are near-neighbor. 

A set of new linear pipeline approaches proposed in this 

research will appear in chapter III. The main advantage of 

linear approaches lie on the fact that the implementation is 

not restricted by the input size. In other words, for any 

given N, a linear pipeline could be constructed which solves 

the Fourier transform problem for any sequence {x(m)} given 

m <= N and assuming that appropriate P values are provided. 

It is possible to decompose the DFT of a sequence 

{x(n)} to smaller DFTs and then combine the results into 

{Y(n)}. Gold and Bially [Gold 73] outlined a method to 



N-1 
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n) p P(i (out) 
" 

X 

n) y Y ( i (out) 

P (out) : = P (in) 

Y(out) := Y(in) * P(in) + x 

x(N-2) x(N-3) 

X (N-1) , •••• , X (N-1) 

, ........ 8 
Figure 9. The Structure and Operation of Basic Cell 

and the Structure of the Pipeline for 
Recursive OFT. 
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factor a T-point sequence into a two-dimensional matrix. If 

T is a composite number, it can be factored into a product 

of integers. If T is a prime number, the original signal can 

.usually be augmented with zeroes to obtain a composite 

number. 

Let T = M x L be the number of elements in the input 

sequence. Then {x(n), n=O,l, ••. ,T-1} may be rearranged into 

a two-dimensional matrix with M rows and L columns as shown 

in Figure lOa. The computational steps required to calculate 

the Fourier transform of a one-dimensional sequence 

rearranged into a matrix are as follows: 

1) Calculate the OFT of each row individually, the 
L 

kernel of these transforms is W 
T 

ij 
2) Multiply each term in the resultant matrix by W 

where i and j are the row and column indices of each 

term respectively, o <= i <= M-1 , 0 <= j <= L-1 

3) Calculate the OFTs of each column individually, the 
M 

kernel of this OFT is W 
T 

The resultant matrix is shown in Figure lOb. 

Since steps 1 and 3 are performed in parallel, the 

computation time is proportional to M+L. Given T = MxL, M+L 
V2 

will be minimized if M=L or M = T • Therefore, the matrix 

arrangement of a one-dimensional signal is most effective 

when T is a complete square. 

Zhang [Zhang 84] was the first to propose an N-cell 
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Figure 10. (a) Matrix arrangement ()f_a_~!le I •. 

. dimensional signal (b) resultant 
matrix. 
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mesh-connected network for DFT. His approach is based on the 

above formulation. Kung's recursive DFT is used to compute 

individual row and column DFTs. 
2 

The N-element sequence, N = m , is rearranged into an 

m x m matrix. The format of the rearranged input is shown in 

Figure 11a. Figure 11b represents the format of the output 

from the network. Neither the input nor the output have the 

natural form. 

The basic cell in Kung's recursive formulation is 

modified to allow both row and.column DFTs. The structure 

and operation of the basic cell is represented in Figure 12. 

A control signal s is used to distinguish column and row 

DFTs. 

Process starts with calculating column DFTs. After m-1 

cycles the first element of the Fourier transform is out. 

This output and the following outputs are multiplied by 
ij 

appropriate W and shifted back to the same column to be 
* 

used in row DFTs. Register x in the basic cell is used for 

shift operation. An extra cell is added·to the end of each 

column pipeline as the last row of the matrix which is used 
ij 

to multiply the output of the pipeline by W and shift it 

back to the pipeline. 

After m more steps, column DFTs are complete and row 

DFTs may be initiated which will be complete after 2m-2 

steps. The complete process requires 4m-2 cycles. 

The complete structure of the m x m mesh-connected 

network is shown in Figure 13. The network has mxm basic 

cells and an extra row of cells to accomplish local 
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S(out) x(out) Y {in) P(in) 

* * 
p (in) 

* 
P (out) 

X X 

* * 
Y (in) y (out) 

s {in) x(in) Y(out) P(out) 

S (in) = 1 (computin9 column DFTs and multiplying) 
. (by W**(iJ)) · 

* x(out) = x 

* 
X := X (in) 

S {out):= S (in) 

P(out) := P(in) 

Y(out) := Y(in) * P(in) + x 

S{in) = o (computing row DFTs) 

* * P(out) := P(in) 

* * * * 
Y(out):= Y(in) * P(in) + x 

S{out) := S(in) 

Figure 12. The Structure and Operation of the Basic 
Cell for N-cell Mesh-connected DFT. 
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Figure 13. Mesh-connected OFT Network (Zhang). 
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multiplications. Two multipliers generate the appropriate Ps 

used in the recursive formulation of OFT for the column and 

row DFTs. The output of these multipliers are input to the 

cells in the second row of the network (for the column DFTs) 

and the second column of the network (for the row DFTs). M 
ij 

more multipliers are needed to generate the W s, one for 

each column of cells. Therefore, the complete design 
V2 

requires N basic cells and N +2 multipliers. The basic 

cell as depicted in Figure 12 requires two registers x and 

* 
x , and a multiply-add circuit. Each cell has 6 input and 6 

output lines. 

The design of the basic cell and the network as 

appeared in [Zhang 84] using a single local control signal s 

is incorrect. According to the specifications, the control 

signal s should remain 1 for 2m cycles to guarantee the 

correct calculation of the column DFTs and their shift back 

to the cells. Therefore, one-valued S must be input to the 

cells in the second row of the matrix from the first cycle 

until the last cycle of the column DFTs or for 2m 

consecutive cycles. At this point S must be changed to zero 

in all cells to inhibit any further shift and propagation of 

* 
x (results of the column DFTs). Therefore, s must be a 

global signal (connected to all cells). Otherwise if S is 

set to zero, while directly connected to the last row of 

cells, other cells are still receiving the value of one and 

* propagating the calculated x s which will result in a faulty 

outcome. 
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In summary, in order for this design to work correctly, 

S must be directly connected to all cells. The consequence 

of the direct connection of s to all cells is an increase in 

the area of the design which has a negative effect on its 

performance. The modified mesh-connected network with S 

directly connected to all cells is represented in Figure 14. 

A new N-cell mesh-connected network using a different 

formulation and mechanism for row and column DFTs is 

presented in Chapter III as a part of this study. 

2 
N -Cell DFT Networks 

Another approach to the calculation of DFT may employ a 

multitude of pipelines of N cells to boost the time 

efficiency by avoiding the recirculation of the intermediate 

results. Thompson [Thomson 83] refers to such a design. In 

this design the non-recursive linear pipeline proposed by 

Kung is used as the basic computational approach. 4N-3 basic 

pipelines constitute the complete design which unrolls the 

computation onto 4N-3 rows of 2N-1 cells. There are actually 
2 2 

about 8N cells in this N -cell design. Thompson suggests 

the possibility of some reductions in the size which leaves 
2 

2N cells in the network. In Chapter III a new mechanism 
2 

using only N 

presented. 

cells along with detailed description is 

The Fast Fourier transform is shown to calculate the 

Fourier transform more efficiently on a single processor 

system. Many authors have proposed hardware implementations 

consisting of many processing cells based on this algorithm. 
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Figure 14. The Modified Design for Mesh-connected Network. 
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Fast Fourier Transform Networks 

There are a number of versions of the FFT algorithm 

(Oppenheim 75]. The FFT algorithms mainly differ in the 

order of input, output and the coefficients used. Two 

algorithms, decimation-in-time and decimation-in-frequency 

are presented in this chapter. Either algorithm has a time 

complexity of O(NlogN) on a uni-processor system. Several 

dedicated, multi-cell designs based on the FFT are presented 

in the following sections. 

Cascade Implementation 

The cascade implementation was first proposed by 

Despain [Despain 79]. It is based on the decimation-in-

frequency algorithm. The flow graph for an 8-point FFT based 

on decimation-in-frequency with inputs in normal order and 

outputs in bit-reversed order is presented in Figure 5. This 

flow graph is used to describe the details and the mechanism 

of the cascade implementation. 

The cascade implementation consists of m = log N 

processing cells. Cells from left-to-right C(i), 1<= i <=m 
(m-i) 

are connected to shift registers of length 2 • In other 

words, the left-most cell, C(1) is connected to a shift 
(m-1) 

register of 2 cells, where each cell is capable of 

holding an input datum or intermediate result. Cell C(2) or 

the second cell is connected to a shift register of length 
(m - 2) 

2 and the last cell C(m) is connected to a shift 
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register with one cell. Cells are arranged as a pipeline. 

The structure of the pipeline is depicted in Figure 15. 

Each cell has two input and two output lines. The 

output line SR(in) is connected to the input of the 

associated shift register, while the other output line 

OUTPUT is connected to the next cell in the pipeline. One 

of the two input lines of each cell, SR(out), is connected 

to the output of the associated shift register while the 

other input line INPUT is connected to the output of the 

previous cell. INPUT to the leftmost cell is the line where 

the input signal enters the cascade and the OUTPUT line of 

the rightmost cell sends the results of the calculation out. 

Each cell saves the input values or the intermediate results 

until the associated input value or intermediate result is 

input to the cell for butterfly calculation. For example, in 

a case of 8-point FFT whose flow graph is represented in 

Figure 5, the leftmost cell C(l) inputs x(O), x(l), x(2), 

and x(3). and shifts them into the shift register of length 

4. When x(.4) appears on the INPUT line of C(l), its 

butterfly correspondent x(O) appears on SR(out), at this 

point the butterfly operation is performed. x(O)+x(4) is 
0 

sent to the next cell while (x(O)-x(4))W is sent to the 

shift register. In the following step, the butterfly 

operation is performed on x(l) and x(5) and x(l)+x(5) is 

sent to the next cell while (x(l)-x(5))W is sent to the 

shift register. The next step generates (x(2)+x(6)) and 
2 

(x(2)-x(6)) W. At this point the shift register of C(2) is 

full and SR(out) in C(2) has (x(O)+x(4)) where combined with 
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Figure 15. The Structure of the Pipeline for Cascade 

Implementation of FFT. 
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SR (in) 
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Figure 16. The Structure and Operation of the ith Cell 
in Cascade Implementation of FFT. 
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(x(2)+x(6)) performs the topmost butterfly operation of the 

second column of Figure 5. During the next phase, the second 

butterfly from the top on the second column of Figure 5 is 

performed whose result combined with (x(O)+x(4)) + 

(x(2)+x(6)) stored in the single register of C(3) generates 

X(O) which leaves the system on the OUTPUT line of C(3). 
(m-i) 

Therefore, each cell C(i) performs 2 butterfly 
(m-i) 

cycles. During the first 2 
(m-i) 

operations every 2 

cycles, cells accumulate the results of the previous cycles 

until their associated butterfly couples are generated, then 
(m-i) 

during the following 2 cycles the butterfly operations 

are performed. In general, C(1) performs the butterfly 

operations at the first column of Figure 5, C(2) performs 

those in the second column and C(3) performs the ones in the 

third column. 

In order to keep track of cycles associated with each 

cell there is a ( m-i )-bit counter. As long as the leftmost 

bit of the counter is zero, the cell simply accumulates its 

input values and sends the output of its shift register to 

the next cell. As soon as the leftmost bit of the counter 
(m-i) 

becomes one and as long as it remains one (2 cycles) 

it performs the butterfly operations. The structure and 

operation of cell C(i) is presented in Figure 16. 

one of the advantages of using a decimation-in-

frequency algorithm is the ease of generating coefficients 

for the butterfly operations. Each cell has a register Z 

containing 1 initially, which is multiplied by W at every 



cycle. At the time of butterfly operation, this register 

contains the appropriate value. 
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A new sequence of input values may enter the cascade as 

soon as a slot becomes open in the shift register of the 

left-most cell or N cycles after the first element of the 

previous sequence has entered the leftmost cell. Therefore, 

the pipeline time of the cascade is proportional to N. The 

processing time of a sequence however is proportional to 2N. 

To this time the time needed to shift the intermediate 

results within the shift registers must be added. The total 

length of shift registers for an N-element implementation of 

cascade is N. The longest shift register, connected to C(l) 

contains N/2 cells. Therefore, the time required to shift 

N/2 elements must be added to the processing time of each 

computational step. The time required to convert the output 

sequence from bit-reversed order to normal order must also 

be added to the processing time of this design. 

The cascade implementation of an FFT uses a pipeline of 

m=logN processing elements. However, the amount of memory 

used for the shift registers approaches N. Thus, although 

the number of processing cells is very small, the shift 

registers occupy an O(N) area. 

The FFT Network 

One of the methods to implement FFT in hardware is to 

lay out the flow graph of an FFT computation as depicted in 

Figure 3 in hardware providing a distinct cell for every 

butterfly computation. Consequently, the design consists of 



Figure 17. The FFT Network 
[Thompson 83]. 

33 



N/2 logN cells which could be laid out in logN rows of N/2 

cells. Figure 17 adopted from [Thompson 83] represents the 

FFT network for N=8. 
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The input is in bit-shuffled order and the output is in 

bit-reversed order. This order seems to minimize the area 

required for row interconnections [Thompson 83]. Each cell 

performs a butterfly operation on its two inputs and 

coefficients are stored in a register in the cell. The basic 

structure and operation of an FFT network cell in the mth 

row is depicted in Figure 18. Additional circuitry is 

required to convert the input from normal order to bit­

shuffled and to convert the output from bit-reversed to 

normal order. 

The interconnection between consecutive rows occupy 

wire areas. Thompson [Thompson 83] shows that in general, 

the connections emerging from the Kth row 0<= K <= logN-1, 
~1 

occupy N/(2 ) tracks. Consequently, a total of N-1 

horizontal tracks are required to lay out the inter-row 

connections. 

The processing time of the FFT network is logN cycles. 

To this time the time for inter row data transmission must 

be added. The pipeline time performance of the FFT network 

is one cycle, since a new problem can enter the network 

immediately after the previous problem leaves the first row. 

The Perfect-Shuffle Implementation of FFT 

Stone [Stone 71] was the first to point out the 
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Figure 18. The Structure and Operation of the Basic Cell 
in the mth level of the FFT Network. 

Figure 19. A Shuffle-Exchange Network for 8-point FFT 
(Stone 71). 



importance of the perfect-shuffle connection in multi­

processing systems. One of the most important applications 

of the perfect-shuffle network is in the implementation of 

the decimation-in-time algorithm for FFT. Figure 19 

represents the general form of the perfect-shuffle network 

for an a-point FFT. 

The input to the perfect-shuffle network is in bit­

shuffled order and the output is in bit-reversed order 

requiring extra hardware to rearrange the input and output 
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to the normal order. The network consists of N/2 cells, each 

designed to perform a butterfly operation. The flow graph of 

FFT computation for perfect-shuffle arrangement is presented 

in Figure 20. The flow of inputs through the network is 

represented in Figure 21. 

The perfect-shuffle network consists of N/2 cells each 

capable of performing a butterfly operation. LogN 

coefficients for butterfly operations, one for each stage of 

the computation are stored in each cell. As it is shown in 

Figure 21, the connection between cells is regular and 

unlike the FFT network it is independent of the stage of the 

computation. Data items circulate through N/2 cells for logN 

cycles before the output is ready. Therefore, the processing 
m 

time of the FFT of an N-element sequence N=2 , is 

proportional to m=log N. The time required for data 

recirculation must be added to this time to reflect the 

actual processing time. The problem of data recirculation 

and associated area and time complexity is addressed in 

chapter IV. The pipeline time for perfect-shuffle the FFT 
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Figure 20. The Flow Diagram of FFT Algorithm for an 8-point 
Signal with Input in Normal Order and output 
in Bit-reversed Order. 
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Figure 21. The Input Flow Through Perfect-Shuffle Network. 
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network is equal to its processing time since new sequence 

can enter the network only after the computation of the 

current sequence is completed. 

The Mesh Implementation of the FFT 

The mesh implementation of an FFT was first proposed by 

stevens [Stevens 71] for the ILLIAC IV architecture. 
2m 

Assuming N=2 and using the decimation-in-frequency 

algorithm, the N-element sequence is arranged into a mesh 
m m 

structure of 2 x2 elements in a row-major order. Figure 22 

represents a mesh arrangement of a 16-point sequence. In 

order to simplify the description of the mesh implementation 

of the FFT algorithm, the data flow will be shown on a 16-

point FFT network given in Figure 23. 

As it is shown in Figure 23, at each stage of the 

computation N/2 butterfly operations are performed. At the 

first stage, the butterfly operations are performed on x(O) 

and x(S), x(1) and x{9), •.•. ,and x(7) and x(15). Cell 0 

receives x(S) and performs the butterfly operation, then it 

keeps one of the results and sends the other to cell 8. 

Cells 1 through 7 receive inputs from cells 9 through 15. If 

the difference between cell numbers is considered as the 

communication distance, there is an distance-S communication 

between cells before the first set of butterfly operations 

are performed. At the completion of butterfly operations at 

cells o through 7, each cell sends one of its outputs to 

cells 0-3 and the other to cells 8-11. Therefore, there are 
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Figure 22. A Mesh Arrangement of a 16-Element Sequence. 

Figure 23. A 16-point FFT Network (Thompson 80). 



4 distance-S and s distance-4 communications. Note that 

cells S-15 are idle at the first stage. After completion of 

butterfly operations in the second row of the FFT network, 

cells 0-3 and S-11 have 4 distance-4 and S distance-2 

communications. And finally, after the third stage, there 

are 4 distance-2 and S distance-! communications. 

A careful study of Figure 22 reveals that distance-S 

communications can be performed in parallel between row 1 

and 3 and 2 and 4 through rows 2 and 3. If routing between 

near neighbors is considered to be unit routing, then 

41 

distance-S communication requires 2 unit routing. Distance-4 

communication is between near neighbors on consecutive rows, 

therefore, it requires a unit routing. Distance-2 

communication occurs between columns 1 and 3 and 2 and 4 

which requires 2 unit routing. Finally, distance-! 

communication is between near neighbors on columns. 

The total time taken by the data movement during an FFT 

can be expressed in terms of unit routing performed. 

Thompson [Thompson SO] shows that in general in an N-cell 
k 

mesh, a distance-(N/2 ) communication is performed before 

and after the kth stage in the FFT network. The sum of the 

time contributions of all stages to routing will be the 

total routing time of the mesh. 

There are logN stages in FFT network, each corresponding 

to a computational step in mesh. There are also 2 distance­
k 

(N/2 ) communication per stage, one before and one after the 

computation. If K < 1/2 logN, the mesh's vertical 

interconnections are used for routing, otherwise the 



horizontal connections are used. It is shown [Thompson 80] 
1/2 

that the total routing time is proportional to N 

The processing time consists of logN cycles of 

42 

butterfly computations and routing which is mainly dominated 
1/2 

by routing. Thus it is considered to be proprtional to N 

The pipeline time of mesh implementation of an FFT is also 
1/2 

N since a new sequence can start computation only after 

the current FFT is completed. 

The cells in this design are not simple cells but 

complete processors, since data routing and stage determina-

tion and also storage for coefficients are all handled by 

the cells themselves, requiring larger area for basic cells. 



CHAPTER III 

NEW PARALLEL ALGORITHMS FOR DISCRETE 

FOURIER TRANSFORM 

Chapter II covers the existing parallel algorithms for 

calculating the Fourier transform of a sequence. In this 

chapter, a set of new parallel algorithms are presented. 

These algorithms are based on the direct computation of the 

Fourier transform. The main computational paradigm employed 

is a pipeline and the designs are based on systolic arrays 

of cells. 

The idea of systolic arrays was first proposed by Kung 

[Kung 79]. It is based on the decomposition of a problem 

into smaller problems of the same nature. A small processing 

cell is designed to solve the smaller instance of the 

problem. The cells are connected appropriately to propagate 

the intermediate results to the other cells in order to 

generate the final result. The cell interconnections are 

assumed to be simple and regular. 

The main concept behind the idea of systolic arrays is 

to simplify and modularize the dedicated design of a circuit 

to make it amenable for VLSI implementation. The simplicity 

and regularity of inter-cell connections inhibits extensive 

wire area and complicated control. 

43 
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Several pipeline systolic approaches to calculate the 

Fourier transform of a sequence are presented in chapter II. 

The new approaches proposed in this chapter are mainly 

inspired by certain properties of the matrix of coefficients 

in the matrix-vector multiplication representation of Figure 

1. 

The new pipeline systolic approaches are divided into 

three categories: N-cell linear, N-cell mesh-connected, and 
2 

N -cell mesh-connected. The N-cell linear designs resemble 

the linear pipelines proposed by Kung, but they differ in 

the formulation, inputjoutput format, and the structure of 

the basic cell. The N-cell mesh-connected design is based on 

these new approaches and the rearrangement of an N-element 
2 

signal into an m x m matrix, N=m , as discussed in chapter 
2 

II. The N -cell design shows an improvement over the 

structure proposed by Thompson [Thompson 83]. This chapter 

is divided into three sections, each covering the details of 

the designs in each category. The VLSI area-time complexity 

of these designs along with others presented in chapter II 

is presented in chapter IV. 

N-Cell Linear Pipelines 

The N-cell linear pipeline designs are based on the 

idea of N basic cells connected as a pipeline. These 

approaches are divided into two categories based on the form 

of the entry of the input sequence {x(n)} to the pipeline. 

The first category called on-line systolic DFT in this 

study, is based on the serial input of {x(n)} overlapped 
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with the computation. The second category called In-place 

systolic DFT in this study, assumes the existence of the 

input sequence in the pipeline, one element per cell of the 

pipeline. 

On-Line Systolic DFTs 

These approaches are based on the serial input of the 

sequence to the pipeline from the left-most cell, one 

element at a time starting with the first element of the 

sequence {x(n)}, namely, x(O). Y(i)'s or the elements of the 

Fourier transform of the sequence {x(n)} reside in the 

registers in the processing cells, Y(O) in the leftmost cell 

or cell o, Y(1) in the next cell or cell 1, and finally, 

Y(N-1) in the rightmost cell or cell N-1. 

The elements of {x(n)} sweep the pipeline from left to 

right, visiting each cell, contributing appropriately to the 

value of Y(i) residing in that cell. The coefficients by 

which the elements of {x(n)} contribute to the elements of 

{Y(n)} are the variables of this approach whose pattern of 

change may be studied by careful examination of the matrix 

of coefficients. 

The matrix-vector multiplication of Figure 1 may be 

rearranged as the vector summation of Figure 24. This 

rearrangement represents the vectors of the values· by which 

x(i) contributes to the elements of {Y(n)}. These vectors 

are the columns of the matrix of coefficients. The idea may 

be expressed as follows: 
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Figure 24. Fourier Transform As Vector Summation. 
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N-1 

y = L X M 0<= i <= N-1 ( 3 .1) 
i=O i i 

Where M is the ith column of the matrix of coefficients. A 
i 

careful study of M 's shows that 
i 

ij 
M = { W 

i 
0 <= j <= N-1 } 0 <= i <= N-1 

Let M (j) denote the jth element of M , then 
i i 

M (j) = 1 j = 0 
i 

i 
M ( j) = M (j-1) * w 1 <= j <= N-1 

i i 

i 
Therefore, if appropriate W s are generated outside the 

pipeline and are input to the pipeline along with the corre­
i 

spending x(i), then a simple multiplication by W will 

g~nerate the coefficient of x(i) for the next cell. 
i 

Let C denote W used to generate M (j+1) using M (j). 
i i 

Then at each step through the pipeline, a cell receives 

x(i), M (j) and c. The contribution of x(i) to Y(j) is made 
i 

and then the coefficient for the next step is calculated by 

multiplying M (j) by c. 
i 

Let x(in) denote the element of {x(n)} that enters a 

cell, M(in) denote its corresponding coefficient, and C(in) 
i 

denote W • These three values are the inputs to a cell at 

each stage. After the operation is performed, x(in) is 

propagated to the next cell through a line called x(out), 
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M (j+1) is propagated on a line called M(out), and finally, 
i 

C(in) is propagated unchanged on a line called C(out). A 

control signal P is added to the design to initialize Y to 

zero before x(O) enters the cell. The structure and 

operation of a basic cell and the structure of the pipeline 

is depicted in Figures 25a and 25b. 

Figure 25a represents the structure and the operation 

of the basic cell. Each computational step requires two 

multiplications and one addition. The cell contains a single 

register Y to accomodate the value of the Fourier transform 

of the signal. Four input and four output lines are needed. 

Figure 25b represents the structure of the pipeline. 

Input Sequence {x(n)} is fed to the pipeline sequentially in 

natural order. M(in) for the leftmost cell is one, since 

M (1) = 1 for 0<= i <=N-1. C(in) for the leftmost cell 
i 2 N-1 

varies following the sequence {1, w, W, •.• , W }. This 

sequence may be easily generated by connecting C(in) to the 

output of a multiplier. P(in) follows a sequence {0, 1, 

,1}, the z~ro initializes Y to zero, and the following 1's 

allow the computation to proceed. Other sequences {x(n)}, 

{M(in)}, and {C(in)} are augmented by a zero to represent 

the fact that they have to be delayed by one cycle to allow 

the initialization of Y to occur. 

The pipeline requires N cells, each containing a 

multiplier, an adder, and a register. After N cycles, Y(O) 

is complete and after N-1 more cycles, the computation is 

completed. Therefore, this approach requires 2N-1 

computational steps. If Y(i)'s are output immediately after 
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x ( · ut) ~n) x(o 

in) 0 M( M( out) 

C( out) in) C( 

in) P( P( out) 
, 

P (in) = 0 

y := 0 

P(out): = P (in) 

· P(in) = 1 

Y := Y + x (in) * M (in) 

M(out) := M(in) * C(in) 

x(out) := x (in) 

c (out) := c (in) 

(a) 

X(N-1), •••• , x(1),x(O), 0 

1 I • • • • I 1 ' 
1 

' 
0 

N-1 
w 

1 

, . . . . ' w ' 1 ' 
I • • • • I 1 

' 
1 

(b) 

Figure 25. The Structure and Operation of a Basic Cell 
(a) and the Structure of the Pipeline for 
the On-line Systolic OFT. 



they are completed, another sequence may start its 

computation after N cycles. Therefore, although the 

processing time of the pipeline involves 2N-l cycles, its 

pipeline time may be boosted to N cycles. 
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In this design data entry to the system overlaps the 

computation. Data entry is assumed to be serial, requiring 

the minimum space for wires. Another feature of this design 

is its modularity. All cells have the same structure and 

function. The variable of the design, namely, C(in), is an 

input to the system, rather than being a built-in parameter. 

Therefore, an N-cell pipeline may be used to calculate the 

Fourier transform of any sequence of length M, M <= N as 

long as correct w, (W = EXP ( -2 n j/M) ) is fed to the system 

and the sequence is padded with zeros to the length of N. It 

is also possible to expand a pipeline of N-cells to a pipe­

line of T cells, T >= N by simply connecting the outputs of 

the rightmost cell of the first module to the inputs of the 

leftmost cell of the second module. Yet another feature of 

this pipeline is that Y(i)'s reside in the cells and with 

slight enhancement of the cells many useful operations such 

as filtering followed by inverse Fourier transform can be 

performed in-place without requiring the sequence to leave 

the pipeline and enter again. 

One of the disadvantages of this approach is ·the 

multitude of inputjoutput lines in the basic cell. Although 

this feature adds to the flexibility and modularity of the 

design, it causes delays due to inputjoutput and increases 



the processing time. If the coefficients and the 

multiplicative factors used to generate them can be stored 

in the cells instead of being propagated, the processing 

time may be boosted at the cost of slightly larger cells. 

In order to maintain multiplicative factors in the 
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basic cells, the multiplicative factors by which {x(n)} 

contributes to Y(j) should be analyzed. Another look at the 

matrix of multiplicative factors of Figure 1 reveals another 

interesting property of this matrix. The ith row of this 

matrix represents the multiplicative factors used by the 

elements of {x(n)} to calculate Y(i). Let R(i) represent the 

ith row of the matrix of coefficients and x represent the 

vector representation of {x(n)}, then 

Y(i) = R X X 0 <= i <= N-1 

Therefore, while the elements of {x(n)} are flowing through 

the pipeline, the values of R may be generated in each 
i 

cell. A careful study of R reveals that: 
i 

R 
i 

ij 
= { w 0 <= j <= N-1 } 

Let R (j) denote the jth element of R , then 
i i 

~(j) = 1 
i 

j = 0 

0<= i <= N-1 

i 
~(j) =~(j-1) * w 1 <= j <= N-1 

i i 
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Let R denote a register in the basic cells to hold the 
i 

present value of R and let c denote W , then the number of 
i 

input lines to the basic cell may be reduced to one 

consisting only of the input value x. The control signal P 

is still needed to initialize Y to zero and R to 1. The 

structure and the operation of the basic cell and the 

structure of the pipeline is presented in Figure 26. 

The control signal P follows the { 0,1,1, ••. ,1} 

sequence, initializing R and Y to one and zero respectively. 
i 

Register c is fixed for the design at value W for the ith 

cell. Each cell contains three registers, a multiplier and 

an adder, an input and an output data line, and a local 

input and a local output control line. 

The basic operation involves two multiplications and 

one addition, an input and an output. The processing time 

for the evaluation of the complete DFT is 2N-1 cycles and 

the pipeline time can beN if {Y(n)} is output as it becomes 

ready. The inputjoutput time is reduced from three 

inputjoutput per basic operation to one. 

In-place Systolic DFTs 

Kung [Kung 80] was the first to propose an in-place 

systolic DFT pipeline. This approach is discussed in detail 

in chapter II. In this section four new in-place OFT 

pipelines are introduced which are different from Kung's 

approach. In all in-place methods, it is assumed that the 

sequence {x(n)} is already loaded into the pipeline, one 



in) x(o x( ut) 

R y 

in) P(o P( ut) 

P (in) -- o 

y := 0 
R := 1 

c 

P(out) := P(in) 

P(in) = 1 

y . - y + R * x (in) .-
R ·- R * c . -
x(out) := x(in) 

P(out) ·- P(in) .-

(a) 
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X I •••• I X X I 0 

1 

N-1 1 0 
CELL 

0 
1 ••••t 1 1 1 1 0 ~ 

(b) 

CELL 

1 (N-1) ~ 

I 

Figure 26. The Structure and Operation of Basic Cell 
(a) and the Structure of the Pipeline (b) 
for the Modified On-line Systolic DFT. 
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element per cell. In Kung's approach, the sequence is loaded 

from right-to-left, leaving x(N-1) as the input to the left­

most cell, x(N-2) at the left-most cell, and finally, x(O) 

at the right-most cell. Therefore, requiring only N-1 cells 

for an N-element OFT. 

In the new approaches presented in this section, data 

is loaded to the pipeline of N cells in natural order, x(O) 

in the left-most cell, x(1) in the second cell, and x(N-1) 

in the right-most cell. The structure of the basic cell for 

the new approaches are different from Kung's approach and 

the number of cycles is less than Kung's approach by a 

factor of 1/2 for the first two designs. This reduction in 

the number of cycles however is at the cost of slightly 

larger cells. The details of these techniques are presented 

in the following paragraphs. 

The first in-place approach in this section is based on 

calculating {Y(n)} stored one element per cell in natural 

order by allowing x's to sweep the cells and contribute to Y 

in each cell. Therefore, initially x(i) and Y(i), O<=i<=N-1 

are stored in the ith cell. During the first step x(i) 

contributes to the value of Y(i) in the ith cell. Then x(i) 

is propagated to the (i+1)th cell to contribute to the value 

of Y(i+1). The pipeline is designed to be circular so that 

the output of cell (N-1) may enter the cell o. The values of 

{x(n)} circulate through the pipeline sweeping all the cells 

and contributing to the Y(i)'s stored in the cells. There­

fore, the operation is completed after a complete sweep or N 

cycles. 
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Since this design is based on the complete sweep of the 

cells by {x(n)} stored in the cells, the coefficients by 

which the input values at each step contribute to the value 

of Y stored in the cell is different from the previous 

approaches. 

At the first step of the computation, x(i) contributes 

to the value of Y(i). The coefficients used for this step 

are the elements of the diagonal of the matrix of 

coefficients of Figure 1. This sequence may be represented 

as: 

4 9 
{ 1, w, w , w , • • • • • I 

(N-1) (N-1) 
w } 

The coefficients used in the second step are the values by 

which x(i) contributes toY( (i+1) MOD N ), 0 <= i <= N-1, 

or the elements under the diagonal and the element at the 

Nth column and the first row of the matrix of coefficients. 

This sequence may be represented as: 

2 6 12 
{ 1,W ,W ,W , . . . . . , 1} 

Let R(i,j) represent the value by which x(i) contributes to 

Y(j) and Q(i) represent the multiplicative factor to 

generate R(i,j+1) or the coefficient by which x(i)· 

contributes to Y(j+1). A careful study of these components 

reveals an interesting pattern. As shown before, the values 

of R(i,i) or the sequence of the contributions of x(i)s to 



Y(j)s is as follows: 

4 
{ 1,W 1 W 1 

(N-1) (N-1) . . . . . . ' w } 

Q(i) or the value used to generate R(i,j+1) from R(i,j) is 
i 

W for 0 <= i <= N-1. A list of the values of R(i,i) and 

Q(i) for 0< =i <= N-1 is given in Figure 27. 

These values may be pre-computed and stored in each 

cell or calculated on-the-fly before the actual OFT 

computation starts. On-the-fly computation adds to the 

flexibility of the design since W = EXP(-2 J/N) may be 

changed to accomodate the pipeline for the calculation of 

any sequence of length M <= N. It also increases the 

modularity of the design. However, the flexibility and 

modularity is attained at the price of the overhead of the 

added computation time. 
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Figure 27 shows the "on-the-fly" pattern of the compu-

tation of R(i,i)s and Q(i)s using the values of R(i-1,i-1) 

and Q(i-1). Basically, the following computational steps may 

be carried out through the pipeline to calculate and store 

R(i,i) and Q(i) in each cell: 

Q(O) = 1 

Q(i) = Q(i-1)*W 1<= i <= N-1 

R(O,O) = 1 

R(i,i) = R(i-1,i-1)*Q(i-1)*Q(i) 1 <= i <= N-1 

Therefore, by initializing the Q(O) and R(O,O) to 1 and 
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Figure 27. A List of values of 
R(i,i)s and Q(i)s for 
Different Values of i. 
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inputting W = EXP(-2 J/N) to the leftmost cell, the above 

systolic process may generate and store Q(i) and R(i,i) in 

the ith cell. 
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Let Q(in) and R(in) representing Q(i) a.nd R(i,i) and 

z(in) representing W=EXP(-2ITJ/N) be the set of inputs to the 

cell at each instance. Let Q(out) and R(out) representing 

Q(i+l) and R(i+l,i+l) be the set of outputs from the cell. 

Then the above systolic operation may be performed at each 

stage to generate the values of Q(i) and R(i,i). Registers Q 

and R in each cell are dedicated to the values of Q(i) and 

R(i,i). A local control signal Tis added to each cell to 

inhibit further operations in the cells where Q and R are 

already computed. This signal is also used to initialize Y 

to zero. The structure and operation of the basic cell to 

generate Q(i)s and R(i,i)s is presented in Figure 28. After 

Q(i)s and R(i,i)s are calculated, the in-place DFT may 

start. 

Assuming a circular pipeline of cells (last cell is 

directly connected to the first cell), x(i) is multiplied by 

R(i,i) and accumulated in Y(i). The next step is to 

calculate R(i,i+l) which is accomplished by multiplying 

R(i,i) by Q(i) .• Then x(i), R(i,i+l) and Q(i) are propagated 

to the next cell. After N iterations, Y(i) o <= i <= N-1 

contains the ith element of {Y(n)} or the Fourier transform 

of {x(n)}. 

The structure and operation of a complete cell to 

calculate the coefficients and to perform the DFT is 
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1, •••• ,1,0 . n) T(l. T( out) 

w, •••• ,w,w Z(l. G 0 -
"n) z( out) -
in) 

G 
Q( 
~ 

l, .... ,l,l Q( out) 

l, .... ,l,l R( in) R( out) 
~ 

T(in) = 0 store Q(in) and R(in) and generate 
Q(out) and R(out) 

Q ·- Q (in) .-
R ·- R (in) .-
Q(out) ·- Q(in) * z (in) .-
R(out) := Q(in) * R (in) * Q(out) 

Z(out) ·- z (in) .-
T(out) := T(in) 

T(in) = l initialize Y and propagate T 

y := 0 

T(out) := T(in) 

Figure 28. The Structure and Operation of the Basic Cell 
to Generate Q(i)s and R(i,i)s 



presented in Figure 29. A global signal s is used to 

differentiate the coefficient preparation process from the 

actual computation. The preparation process requires N 

cycles, and the calculation process requires N more cycles 

which yields a 2N step process for a complete DFT 

calculation. 
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The basic cell contains four registers, a multiplier, 

an adder, four inputjoutput data lines and two control 

lines. The main reason for this added space is to attain 

flexibility and modularity by tnputting W = EXP(-20J/N) 

which makes the design independent of N. Sequence {Y(n)} 

resides in the pipeline after the completion of the process. 

The number of computational steps may further be 

reduced if Q(i) and R(i,i) are pre-computed and stored in 

each cell, eliminating the preparation process and reducing 

the number of control signals to one. The global signal s 

may be used to initialize Y to zero and to load the pre­

computed value of R (S=O} and then to invoke the OFT process 

(S=l} which is completed after N steps. The structure and 

operation of the basic cell for the dedicated in-place DFT 

is presented in Figure 30. 

Although storing the pre-computed values in the cells 

eliminates the need to prepare the coefficients, it does not 

eliminate the need for propagating the values R and Q, since 

these values are related to the x's which are floating 

through the pipeline. 

In order to reduce the data transfer rate between the 

cells, we may investigate the coefficients used during the 
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s = 0 *prepare Q(i)s and R(i,i)s * 

T(in) = o 

Q := Q (in) 
R := R( in) 
Q(out) := Q(in) * z(in) 
R(out) := Q(in} * R(in} * Q(out} 
z(out) := z(in) 
T (out) : = T (in) 

T(in) = 1 

y := 0 
T(out} := T(in) 

s = 1 perform the in-place DFT 

Y := Y + X * R 
Q(out} := Q 
R(out) := R*Q 
z (out) := x 
R := R( in) 
Q : = Q (in} 
x : = z (in) 

Figure 29. Structure and Operation of a Basic Cell for 
In-place Systolic DFT 
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~ z(out) 
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z(in) ___., 

s = 0 load precomputed value of R, intialize Y 

s = 1 

y ·- 0 .-
R := R' 

Y := Y + X * R 

Q(out):= Q 

R(out) := R * Q 

z(out):= x 

R := R( in) 

Q := Q (in) 

x := z(in) 

perform the DFT 

Figure 30. The Structure and Operation of the Basic 
Cell for Dedicated In-place DFT 
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process by floating values of x in correspondence with a 

given Y. The set of coefficients used during the four stages 

of the computation in each cell for N=4 is presented in 

Figure 31. 

Obviously, these sequences have the initial value of 

{ R(i,i) } studied in previous paragraphs. The sequence used 

in the second step of the computation may be generated from 
-i 

the first sequence by multiplying each element by W . This 

generalization is true for all the following steps. 
-i i 

Therefore, by storing W instead of W in Q(i) the need for 

propagating R(i,i) and Q(i) is eliminated. 

A basic cell for this approach consists of three 
-i 

registers Q containing W , R' containing the initial value 

of R or R(i,i), and R which holds the current value of 

R(i,j). Registers x andY are used to hold the values of the 

sequences {x(n)} and {Y(n)}. x registers may be eliminated 

from the cell if parallel input of the sequence to the cells 

during the initial load is available. 

The operation of the basic cell is the same as the 

dedicated design. The only difference is in the fact that R 

and Q are going to hold the values of the coefficient and 

multiplicative factor at all times, therefore, eliminating 

the need for their propagation. 

The structure and operation of the basic cell for this 

approach is presented in Figure 32. As it is shown, the 

number of inputjoutput data lines is reduced to one which in 

turn reduces the inputjoutput time. The processing time of 
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STEP Cell 0 Cell 1 Cell 2 Cell 3 

y y y y 
0 1 2 3 

4 9 
1 1 w w w 

2 6 
2 1 1 w w 

3 3 
3 1 .w 1 w 

2 6 
4 1 w w 1 

Figure 31. The Set of Coefficients Used at each Cell for 
N=4. 
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Figure 32. The Structure and Operation of the 
Basic Cell for In-place DFT with 
Minimum Communication Lines. 
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this design is N cycles. The pipeline time is also N cycles. 

The pipelines for the two previous designs are circular 

pipelines. The disadvantage of ·circular pipeline is that the 

wire connecting the rightmost cell to the leftmost cell is 

in general a long wire with an O(N) length which imposes 

long delay and slows down the entire process. It is 

intresting to investigate the possibility of the float of 

the x's in both directions to eliminate the need for a long 

connection. 

In order to allow ·x's to flow in both directions, the 

techniques used in the previous two designs are combined. 

Thus at the expense of larger cells and two more 

inputjoutput lines, the long wire connection which adds to 

the space and the time complexity of the design is avoided. 

The values of the {x(n)} which are stored in the cells of 

the pipeline are now allowed to propagate to both the right 

and the left neighboring cells. Therefore, two sets of 

coefficients need to be maintained and manipulated in each 

cell, one for the x being input from the left neighbor xL 

and another for the x being input from the right neighbor 

xR. 

The multiplicative factors associated with xL and xR 
-i i 

are W and W respectively. The sequence of coefficients 

used at each step by cells 0-3 in a 4-cell design is 

represented in Figure 33. 

The left input to the leftmost cell and the right input 

to the rightmost cell are set to zero to inhibit incorrect 

computations. At the first step of the computation, x(i) is 
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multiplied by R(i,i) and added to Y(i). Then x in each cell 

is propagated to both the right and the left neighboring 

cells and two x's are input to the cell, one from the left 

neighbor and another from the right neighbor. The 

coefficient for the xL and xR, RL and RR, are multiplied by 
-i 

w 
i 

and W respectively to attain their new values. Both 

coefficients are initially set to R(i,i). Then xL is 

multiplied by RL and added to Y. And finally, xR is 

multiplied by RR and added to Y. 

The structure and operation of the basic cell for the 

design is presented in Figure 34. Registers QL and QR are 
-i i 

fixed for the design at values W and W respectively. A 

global control signal S is used to initialize Y,RL, and RR 

and to allow x's stored in cells contribute to associated 

Y's (S=O) and to start the flow of x's and the computation 

(S=l) • 

It is apparent that although all the cells are fully 

functional at the first step, only a portion of the cells 

will be fully functional in the following steps. For 

example, the leftmost and the rightmost cells do not receive 

meaningful inputs on the xL and xR in the following steps 

and cells 1 and N-2 are not going to receive meaningful 

inputs on their xL and xR input lines after the second step. 

Therefore, in order to inhibit meaningless multiplications, 

two local control signals SL and SR may be added to the 

design to avoid multiplication by zero. SL and SR are set to 

1 initially. SL(in) for the leftmost cell and SR(in) for the 
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XL(i n) XL( 

QL 

RL R X 

y QR 
xR(ou t) xR( 

RR 

s = 0 
y . - R*X .-

RR ·- R .-
RL := R 

xL(out) := X 

xR(out) := X 

s = 1 

RR := RR * QR 

RL := RL * QL 

Y := Y + XL(in) * RL + xR (in) * RR 

xL(out) := xL (in) 

xR(out) := xR (in) 

out) 

in) 

Figure 34. The Structure and Operation of a Basic 
Cell for the Bi-directional In-place 
Systolic DFT Pipeline. 
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XL( in ) XL (out) 

RL 

SL(in ) QL y SL (out) 

X 
. 

SR(ou t) RR SR (in) 

xR(ou t) XR (in) 

s = 0 
y := R * X 

RR .- R 
RL . - R .-
xL(out) := X 
xR(out) :=x 
SL(out} := 1 
SR(out} := 1 

s = 1 

SR = 1 

RR := RR * QR 
y ·- y + RR * XL (in) .-

SL = 1 

RL := RL * QL 
Y := Y + RL * XL (in) 

xL(out) := xL(in) 
XR(out) := XR(in) 

Figure 35. The Structure and Operation of the Modified 
Cell for the Bi-directional In-place 
Systolic OFT Pipeline. 
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-i 
appropriate coefficients in cell i is w O<= i <=N-1. 

Therefore, using Q and R registers in each cell to represent 

the multiplicative factor and the coefficient, Q has a fixed 
-i N**2 

value W and R is initialized to W 

After N iterations, Y(O) is complete and is fed back to 

the pipeline, while Y(N-1) enters cell 0 for further 

computation. After N-1 more computational steps, {Y(n)} is 

completed and stored in cells 0 through N-1 respectively. 

The structure and operation of the basic cell for the linear 

in-place OFT pipeline is presented in Figure 36. Figure 37 

represents the structure of the pipeline. 

This pipeline consists of N cells, each containing four 

registers, two inputjoutput data lines and one control line, 

a multiplier and an adder. There is no long data lines and 

the connections are all near neighbor. The processing and 

the pipeline time of this design are both 2N cycles. 

Yet another technique may be used to avoid long wires 

by allowing zero-valued Y(i)'s to enter the pipeline from 

the leftmost cell and sweep the pipeline from left to right. 

Thus each cell should generate the sequence of the 

coefficients corresponding to the x(i) stored in the ith 

cell. These sequences are the columns of the matrix of 

coefficients. The ith sequence may be represented as: 

ij 
M = { W , 0 <= j <= N-1 } 

i 

i 
Therefore, if W is stored in each cell, and the initial 
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ls 
Y(in) Y(out) 

/ 

Q X 

* R R' * Y(out) Y(in) 

s = 0 * initialize and perform the first 
operation 

R := R' 

Y(out) := X * R 

* * Y(out) := Y(in) 

s = 1 

R := R * Q 

Y(out) := Y(in) + x * R 

* * Y(out) := Y(in) 

Figure 36. The Structure and Operation of the Basic 
Cell for Linear Non-circular DFT 
Pipeline. 

Cell 

1 

Figure 37. The Structure of The pipeline for Linear 
Non-circular DFT. 
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value of the sequense is set to 1, then the following 

elements of the sequence may be generated by multiplying its 
i 

previous value by W . 
i 

Let Q and R denote the registers containing W and the 

element of the sequence. Let Y(in) denote the value of Y 

that enters the cell and Y(out) denote the value that exits 

the cell. Then the basic operation of the cell is to 

multiply R by x and add it to Y(in) and then generate the 

new R by multiplying it by Q. 

The structure and operation of the basic cell is 

represented in Figure 38. To assure the correct operation of 

the pipeline, a local control signal F is added to the 

design to initialize R to 1 ( F=O ) and to start the 

computation at each ~ell as needed ( F=1 ). 

After N iterations, Y(O) is out from the rightmost 

cell. If it is desired to route the result back to the 

pipeline, then two data lines may be added to the cells to 

route the output back to the pipeline by connecting the 

output of .the rightmost cell back to itself. The modified 

basic cell is represented in Figure 39. 

The processing time of this pipeline is 2N-1 cycles. If 

the resulting sequence { Y(n) } leaves the pipeline, a new 

sequence may start evaluation immediately after the last 

element of the current sequence leaves the leftmost cell. In 

this case the pipeline time will be N cycles. 

N-Cell Mesh-Connected Network 

The idea of an N-cell mesh-connected DFT network was 
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(~n) F 

F(in) = o 

R := 1 

F (out) : = F (in) 

F(in) = 1 

Y(out) :=Y(in) + x * R 

R := R * Q 

F(out) := F(in) 

Y(o ut) ... 

F(o ut) 

Figure 38. The Structure and Operation of 
the Basic Cell. 
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Figure 39. The Modified Basic Cell to Direct 
the Output Back to the Pipeline. 
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first introduced by Zhang [Zhang 84]. This approach is 

discussed in detail in Chapter II. The idea is based on the 

rearrangement of a one-dimensional sequence {x(n)} into a 
2 

two-dimensional matrix given N = m . 

Zhang's approach has many drawbacks. The proposed 

design uses an (m+1) x m network of mesh-connected cells. 

Input and output have an irregular form. The first row.and 

the first column of the cells have a different form solely 

because of the form of Kung's recursive linear pipeline used 

for the basic DFT computation. A total of m multipliers are 

required to generate different sequences of W. And finally, 

a global signal S (connected to all cells) is required to 

assure the correct function of the network. The area used 

and the delay imposed by the multipliers and global signal 

and also excessive number of inputjoutput lines per cell are 

the undesirable features of this design. 

A new mesh-connected network based on the linear 

pipeline techniques discussed in previous sections is 

presented in the following paragraphs. The aim is to reduce 

the time and the space complexity of the design by reducing 

the inputjoutput lines and avoiding the long distance 

connections. 

The input sequence is arranged into an m x m matrix, m 
1/2 

= N as represented in Figure 11. The computation is 

divided into three phases: 

1) compute the row DFTs 
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ij 
2) multiply the results by W 0 <= i,j <= m-1 

3) compute the column DFTs 

Phase 2 is combined with the initialization phase of the 

column DFT computation. The on-line linear DFT of Figure 26 

is used for the row DFT computation. This technique allows 

data entry to overlap the computation. It also requires the 

minimum amount of input/output lines per cell. 

After m iterations the Fourier transform values for 

column zero of the cells is computed. At this point the 

column OFT of column zero may start. For the column DFTs, 

one of the non-circular linear in-place DFTs may be used to 

avoid long distance connections of the other in-place DFT 

techniques. After 2m-1 cycles, the column DFT of column zero 

is complete. The computation for the entire sequence is 

completed after m-1 more cycles. Thus, the processing and 

the pipeline time of this design is 4m-2 cycles. A control 

signal T is added to the basic cell to stop the operation 

after the completion of the column DFTs at each column. 

The structure and operation of the basic cell using the 

non-circular linear in-place DFT cell of Figure 36 is 

presented in Figure 40. The control signal P is used in both 

row column DFTS. For row DFTs, control signal P has the 

values {0,1, .•. ,1}. It is set to zero to initialize the 

values of Y and R. It is changed to one immediately and it 

remains one for m cycles otr until row DFTs are completed. 

During this phase s is zero to indicate row DFTs. After m 



cycles S is changed to one to invoke column DFTs. During 

this phase, P is used as the global signal s in Figure 36. 

It is set to zero to initialize R and Y and then it is 

changed to one and remains one for 2m-1 cycles. During the 

first 3m cycles T is zero to allow row and column DFTs to 
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proceed. After 3m cycles it is changed to one to inhibit any 

further calculations in the columns with completed DFTs. A 
ij 

register is dedicated to hold W • Each cell consists of 6 

registers, 8 inputjoutput data lines, and 2 inputjoutput 

control lines. All communications are near-neighbor. Each 

cell contains a multiplier and an adder. Each operational 

step requires 2 multiplications and an addition. The 

structure of the complete network is presented in Figure 41. 

The main advantage of this network is that the Fourier 

transform values remain in the network for further 

operations. 

The structure of the basic cell may be further 

simplified and the pipeline time of the network may be 

boosted by using the cell of Figure 38 for column DFTs. 
i 

Register Q in the ith cell of each row with a value of W 

0<= i <= m-1 is used to update the initially one-valued 

coefficient R. A new control signal F is added which sweeps 

the cells from top to bottom along Y'. F is set to zero 

after the roth cycle to initialize R and multiply Y by C and 

Q and it is changed to one after that and remains one for 

2m-1 cycles. 

2m-1 cycles after the start of the column DFT on column 

zero, the associated DFT is out and a new sequence may enter 



* 
Y(out) 

x(in) 

w 
T(in) 

R' 

P(in) Q 

s (in) 

T(in) = 0 (3m cycles) 
S(in)= 0 (m cycles) 

ROW OFT 

P(in) = o 
Y := 0 R := 1 

P(out) :=P(in) 

S (out) : =S (in) 

T (out) : =T (in) 

P(in) = 1 
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Y (in) 

x(out) 

T(out) 

P(out) 
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S(out) 

Y(out) 

S(in)= 1 (2m cycles) 
COLUMN OFT 

P(in)= o 
R := R',Y := Y*W 

Y(out):=Y*R 

S{out) :=S(in) 

T(out) := T(in) 

P(out) .- P(in) 

P(in) = 1 

R := R * Q 
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ij 

Y := Y + R*x(in) 

R := R * C Y'(out) := Y'(in)+Y*R 

P(out) := P(in) 

S(out) := S(in) 

T ( out) : =T ( in) 

T (in) = 1 (m cycles) 
* DO NOTHING * 

* * Y(out):=Y(in) 

S(out) :=S(in) 

T(out) := T(in) 

P(out):= P{in) 

Figure 40. The Structure and Operation of the Basic Cell 
for the Mesh-connected DFT Network. 



I I 

I I 
I I 

I 0 

I I 

I I 

I I 

' 

Figure 41. The Structure of N-cell Mesh-connected DFT 
Network. 
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the network, boosting the pipeline time of the network to 

Jm. The structure and operation of the basic cell for this 

approach is presented in Figure 42. 

It is intresting to note that the c register used as 

the multiplicative factor for row DFTs is fixed at value W 
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j 

for any cell at the jth column. Register Q is also fixed at 
i 

value w for any cell at the ith row. Thus, there is no need 
ij 

for a separate register to hold w , reducing the number of 

registers in the cell to 4. There is also no need for the 

control signal T in the previous design to stop the 

operation at columns with completed DFTs since the result is 

already out and a new sequence may start the computation 

immediately (S=O). 

The basic cell with six inputjoutput data lines and six 

local control lines and four registers is reasonably small. 

Data and control lines are all near-neighbor connected. The 
2 

entire network which requires m =N cells is presented in 

Figure 43. The disadvantage of this network is that the 

Fourier transform is transferred out of the network. 

2 
N -Cell Mesh-connected Network 

In previous sections several methods for calculating 

the direct Fourier transform of a sequence of N elements 

using an N-element pipeline or an N-element mesh-connected 

network have been proposed. These techniques generate the 
2 

coefficients of the transform during the computation. If N 
2 

coefficients used in the computation are stored in the N 
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R := 1 
F(out) := F(in) 
S(out) := S(in) 
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Y'(out) := Y'(in)+Y*R 
R := R * Q 
F(out) .- F (in) 
S(out) := S(in) 

Figure 42. The Structure and Operation of the Cell (i,j) 
for the Modified Mesh-Connected DFT Network. 
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Figure 43. The Structure of the Modified N-cell Mesh­
connected Network. 
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cells of a mesh-connected network, there will be no need to 

store the multiplicative factors and calculate the 
2 

coefficients. This is the basis for the N -cell mesh-

connected network to calculate the direct Fourier transform 

of an N-element sequence. 

Thompson [Thompson 83] referred to an (4N-3)x(2N-1) 

cell network of mesh-connected cells to calculate the DFT 

using Kung's linear pipeline approach discussed in Chapter 
2 

II. In this section an N -cell mesh-connected network is 

proposed which contains fewer cells. 

Assuming an NxN network of mesh-connected cells, the 

elements of the matrix of coefficients may be stored one 

element per cell. Let register W in cell (i,j) 0 <= i,j <= 
ij 

N-1 contain w . Then {x(n)} and zero-valued {Y(n)} may be 

input to the network through the topmost row and the 

leftmost column, one element at a time delayed by one cycle. 

x(O) enters through cell (0,0), x(1) enters through cell 

(0,1) delayed by one cycle, and x(N-1) enters through cell 

(O,N-1) one cycle after x(N-2) has entered the network 

throgh cell (O,N-2). Y(O) enters through cell (0,0) at the 

same time that x(O) enters the cell, Y(1) enters through 

Then x(O) is propagated to the next cell in column zero or 

cell (1,0) and Y(O) is propagated to the next cell in row 0 

or cell (0,1). During the second cycle, Y(1) enters cell 



(1,0) from the left while x(O) enters cell (1,0) from the 
1*0 

top. Then Y(1) is incremented by x(O) * W and both x(O) 
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and Y(1) are propagated. At the same time, Y(O) enters cell 

(0,1) from left while x(1) enters the cell from top. Then 
0*1 

Y(O) is incremented by x(1) * W and they are both 

propagated. Therefore, the computation assumes a form of a 

diagonal sweep of the matrix of coefficients starting at the 

northwest corner and ending at the southeast corner. 

The operation of the basic cell consists of a simple 

multiplication and addition. Each cell contains a single 

register and four inputjoutput data lines. The structure and 

operation of the basic cell and the network is represented 

in Figure 44. 

Y(O) leaves the·network through cell (O,N-1) after N 

cycles, Y(1) leaves the network through cell (1,N-1) at the 

following cycle, and finally Y(N-1) leaves the network 

through cell (N-1,N-1) at the Nth cycle. Therefore, the 

processing time of the network is 2N cycles. However, a new 

sequence may enter the network immediately after x(O) and 

Y(O) for the current sequence leave cell (0,0) or after the 

first cycle. Thus, the pipeline time of the network is one 

cycle. 

Although this technique employs large area but it is 

capable of accomodating for the computation of N different 

sequences concurrently. All the other techniques lack this 

capability to this extent. The only network which can 

simultanously process more than two sequences is the FFT 
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Y (in) Y(out) 

w 

x (out)~ 
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x(O) 

y ( 1) 

.1, ~ J, 

Y(N-1) --~1 (N-1,0)~~~~ ..... ·1 (N-1,N-1) l-y (N-1) 

Figure 44. The Structure and Operation of Basic Cell 
and the Structure of the Network for the 
N**2-Cell DFT Network. 
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network which can simultanously process logN different 

sequences. 

A summary of different methods presented in this 

chapter is depicted in Tables 1 and 2. Table 1 represents 

the physical characteristics of the designs including number 

of cells and the physical characteristics of the basic cell 

such as the number of inputjoutput lines and the number of 

registers. Table 2 represents the computational 

characteristics of each design-including the number of 

multiplications and additions per computational step, number 

of computational steps in terms of processing and pipeline 

steps, and the form of the input and the result. 

Each design has its own advantages and disadvantages as 

explained throughout this chapter. Modularity is attainable 

at the cost of increased processing time. Fast computation 

is usually achieved at the cost of larger cells and 

inflexibility. 

The best processing time performance is attained 

through the N-cell mesh-connected netwo~k presented in 

Figure 42. Although if the result is required to be kept in 

the network, the design of Figure 40 would be more 

desireable. The limitation of both methods is the size of 

the sequence which is limited to complete squares. 

Other methods offer the possibility of dedicated 

implementation for any data sequence regardless of the size. 
2 

The N -cell design has the best pipeline time performance at 

the cost of larger area. In-place and on-line approaches 

offer modular and flexible designs and also fast but 
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TABLE 1 

PHYSICAL CHARACTERISTICS OF THE PARALLEL 
FOURIER TRANSFORM ALGORITHMS 

METHOD OF NUMBER NUMBER OF NUMBER OF 
FIGURE OF CELLS I/0 REGISTERS 

25 N 3 1 

26 N 1 3 

29 N 3 4 

30 N 3 5 

32 N 1 5 

34 N 2 7 

35 N 4 8 

38 N 1 3 

40 N 4 6 

42 N 2 4 

2 
44 N 2 1 
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TABLE 2 

COMPUTATIONAL CHARACTERISTICS OF THE 
NEW PARALLEL FOURIER TRANSFORM 

ALGORITHMS 

METHOD OF NUMBER OF PROCESSING PIPELINE RESULT 
FIGURE MULTIPLIES TIME TIME 

25 2 2N-1 N resident 

26 2 2N-1 N resident 

29 3 2N 2N resident 

30 2 N N resident 

32 2 N N resident 

34 4 N N resident 

35 2 2N 2N resident 

38 2 2N N out 

1/2 1/2 
40 2 4N 4N resident 

1/2 1/2 
42 2 4N 3N out 

44 1 2N 1 out 



inflexible designs. The choice of a method however is 

application dependent. 
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CHAPTER IV 

VLSI COMPLEXITY OF FOURIER TRANSFORM 

Introduction 

A VLSI chip is composed of transistors and interconnec­

tions. Thompson [Thompson 80] proposed a VLSI model of 

computation based on a graph composed of nodes representing 

a transistor or a small cluster of transistors and wires 

representing the interconnections. 

Nodes are capable of storing information. A collection 

of nodes and wires is allowed to be a complete computing 

structure. The inputs and outputs to and from the 

computation are stored in sets of nodes called source and 

sink nodes respectively. A collection of nodes and wires 

capable of solving a problem is called a communication 

graph. 

The VLSI model of computation is designed so that there 

is a direct correspondence between VLSI chips and communica­

tion graphs. Unfortunately, not all communication graphs 

correspond to feasible chip designs. Certain constraints are 

added to the VLSI model of computation to overcome this 

difficulty. Any communication graph that satisfies these 

constraints is called an admissible communication graph. A 

communication graph is admissible if it can be implemented 
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as a VLSI chip of the same area and time performance 

[Thompson 80]. 

The concise definition and explanation of the VLSI 

model of computation and its components is presented in the 

following section. Two sets of assumptions are presented to 

define the model. One set is used to draw the lower bound 

measures of area and time for the communication graph. These 

assumptions are labeled with "L". The second set of 

assumptions are used to draw the upper bound measures for 

the communication graph and are labeled with "U". 

VLSI Model of Computation 

The VLSI model of computation [Thompson 80] defines the 

basic characteristics of a VLSI chip, namely, area, time, 

information, and energy. As explained before, two sets of 

assumptions are made which are used respectively to draw 

lower and upper bound complexity metrics for a communication 

graph. 

The natural and physical units of area, time, 

information and energy may be defined based on the current 

technology, manufacturing and physical limitations. There is 

a natural unit of area for VLSI which is the minimal spacing 

between the centers of parallel wires. This spacing is 4 ~ 
2. 

2 [Mead 80]. The square of this length, 16 ~ , is a 

covenient area unit, large enough to contain a small 

transistor or one wire cross-over. The total area of a VLSI 

chip may be evaluated as either the mask size (smallest 
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rectangle) or the area actually occupied by nodes and wires. 

The unit of information is defined as a bit. The unit 

of time is defined as the bandwidth of a unit-width wire. 

Thus, a signal that encodes a bit has a duration of at least 

one time unit. Total time is measured in terms of the units 

of time required to solve a problem using a communication 

graph. 

A unit of energy is defined as a product of a unit of 

area and a unit of time. The energy required to charge a 

capacitor (wire or transistor) is proportional to its 

capacitance which is proportional to the area. Thus the 

energy consumed by switching transistors in wires and gates 

is proportional to its area. Thus a unit of energy per unit 

time is consumed by a unit of area whenever it is involved 

in the signal transmission. The total switching energy 

consumed by a VLSI chip is defined as the product of the 

total area and the total time. 

A large portion of any VLSI chip is dedicated to the 

conductors that distribute power and global clock signals. 

Since these wires do not carry information, there is no 

correspondence for them in the communication graph. 

Notations and Metrics 

The following functional notation is used throughout 

the rest of this chapter: 

f(n) = o (g(n)): there exists a positive constant c for 

which f(n) <= c g(n) for all 

sufficiently large n (an upper bound 
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sufficiently large n (an upper bound 

measure of complexity within a constant 

factor) 

f(n) = e (g(n)): there exist two positive constants c 

and d for which c g(n) <= f(n) <=dg(n) 

for all sufficiently large n (an exact 

bound within a constant factor) 

f(n) = Q (g(n)): there exists a positive constant c for 

which f(n) >= c g(n) for all 

sufficiently large n ( a lower bound 

within a constant factor) 

log x: the base two logarithm of X 
y y 

log x: (log x) 
y y 

log log x: (log (log X)) 

Based on the two main measures of VLSI complexity, 

namely, total area used by a communication graph, A, and the 

total time spent to solve the problem, T, a general metric 
2x 

is defined as AT , 0<= x <=1. This metric is used to assign 

different weights to the time performance of a communication 

graph. A special case x=l/2 gives rise to the metric AT 

which is a measure of total energy used. Another case where 
2 

x=l gives rise to the AT metric which will be frequently 
2x 

referenced in this study. The general metric AT will also 

be used to compare the performance of different communica-

tion graphs. 

Assumptions 
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A communication graph is composed of nodes, and wires 

laid out on a grid of unit squares. A wire is a horizontal 

or vertical track connecting two points. A node represents a 

point where wires meet [Thompson 80]. Thompson [Thompson 80] 

defines a set of assumptions to derive the A and T measures 

for lower bound and upper bound complexity measures of the 

communication graphs. These assumptions are labeled by 11 L11 

and 11U11 respectively. A list and description of these assum­

ptions appears in the following paragrphs. Almost all of the 

following text is adopted from [Thompson 80] unless stated 

otherwise. 

ASSUMPTION L1: AREA. A unit square can contain one node or 

one wire cross-over. One wire may cross each 

edge of a unit square, so that nodes have a 

maximum of four wires. 

ASSUMPTION U1: AREA. The area of a node is determined by its 

functionality 

a) A logic node is a node with at most 0(1) 

input wires, 0(1) output wires, and 0(1) 

area. Each of its wires is 0(1) unit long. 

Each wire runs through at most a constant 

number of unit squares. Each logic node 

belongs to a self-timed region. A self­

timed region is a set of logic nodes that 

receive clock pulses with nearly identical 

phase. all nodes within a self-timed 

region are in synchronization with each 

other (Thompson 80]. All wires connecting 
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to a logic node must lead to or from other 

nodes in its self-timed region. 

b) A driver node and a receiver node are 

associated with each wire that is more 

than 0(1) units long or crosses the 

boundary of a self-timed region. A wire of 

length K requires a driver that occupies 

0(1) by O(k) unit area. Its receiver node 

takes up only 0(1) units of area. The 

driver's input wire and the receivers's 

output wire are 0(1) units long. 

Arguments may be made on the use of a node with an O(K) 

area to drive a wire of O(K) length. Although the length of 

the wire could be very long the capacitance placed on it is 

limited and large capacitance may damage the wire. 

On the other hand if the size of the driver node is 

increased to O(K), the other nodes connected to this node 

should be modified in order to be able to drive a node with 

O(K) area. 

The optimum way to decrease the delay in an O(K) wire is 

to place a set of amplifiers between the 0(1) area driver 

node and 0(1) receiver node to amplify the signal to a 

magnitude large enough to drive the load capacitance of O(K) 

of the wire [Mead 80]. Mead [Mead 80] shows that if a chain 

of log K inverters in which each invertor is f times larger 

than its previous invertor is used, the total delay could be 

reduced to O(log K). It is shown that [Mead 80] that delay 



97 

is minimized if f is chosen to be the base of natural loga-

rithm or e. 

An example of amplification chain is shown in Figure 45. 

The original signal from the driver is amplified through 

(ln K) stages of the inverters. The total area occupied by 

inverters is O(K) and the total delay is O(ln K). Therefore, 

in order to drive a wire of O(K) length in minimum delay 

time of O(ln K) amplifiers with the total area of O(K) must 

be used. 

ASSUMPTION L2: TOTAL AREA. The total area of a communication 

graph is equal to the number of unit squares 

occupied by wires or nodes. 

ASSUMPTION U2: TOTAL AREA. The total area of an admissible 

communication graph is the number of unit 

squares in the smallest bounding rectangle. 

ASSUMPTION L3: UNIT OF TIME. A wire has at most unit band-

width in each direction. 

ASSUMPTION U3: UNIT OF TIME. A wire has at most unit band-

width in one direction only. 

ASSUMPTION L4: PROBLEM DEFINITION: Each of N input variables 

take on one of M different values, for a 
N 

total of M equally likely problem instances. 

ASSUMPTION U4: PROBLEM DEFINITION. log M = O(log N) 

Assumption U4 restricts the word size to represent M 

different values of input variables to O(logN) merely to 

simplify the form of the upper bound measures, which would 

otherwise depend on M as well as N. In this study however, 

P = logM is used to represent the number of bits required 
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Figure 45. An Amplifier Chain to Drive a Wire of O(K). 
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for data representation. 

ASSUMPTION L5: TRANSMISSION FUNCTION. Node states and wire 

signals are completely and consistently 

described by the transmission function 

associated with each node. A node with state 

vectors, input wires (A, .•. ,D), and output 

wires (E, ... ,G) computes a function of the form 

[S(t+1),E(t+& ), ... ,G(t+ b )=F[S(t),A(t), .•. ,D(t)] 

where and 
E G 

E G 

are the non-negative delays of wires E and G. 

ASSUMPTION US: TRANSMISSION FUNCTION. The transmission 

function of a node is constrained by its 

functionality. 

a) A logic node has at most 0(1) bits of 

state and 0(1) units of delay on each of 

its output wires. 

b) The total delay through a driver-wire-

receiver circuit is O(log K) if the wire 

is O(K) units in length. The receiver's 

output R(t) is the delayed version of the 

driver's input. The combined transmission 

function of the driver and the receiver is 

R(t +~ ) = D(t) 
w 

where ~ = O(log K) 
w 
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The VLSI model of computation assumes that signals take 

one of the two values of zero and one. Marginal and 

errorneous signals which appear in real systems are not 

considered. 

A communication graph which solves a problem with N 

input variables and M output variables is composed of N 

nodes that are dedicated to input variables which are called 

source nodes and M nodes that are dedicated to output 

variables which are called sink nodes. The initial state of 

source nodes is the subject of assumptions L6 and U6. 

ASSUMPTION L6: SOURCE NODES. The initial state of a source 

node may be any function of the value of its 

input variable. Each input variable affects 

only the initial state of its source node. 

ASSUMPTION U6: SOURCE NODES, INPUT REGISTERS. The initial 

state of the Kth node of an input register 

associated with the source node is the Kth 

bit of the binary expansion of the value of 

its input variable 1 <= K <= log M • 

There is a one-to-one correspondence between source nodes 

and input variables. As there is one source node for any 

input variable, there is one sink node for any output 

variable. The function of a sink node is to collect 

information about the correct values for its output 

variables. The computation is complete when a sink node is 

stablized. 

ASSUMPTION L7: SINK NODES. There is a fixed assertion for 
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each sink node, relating its state to the 

correct values of its output variables (as a 

function of the values of the input 

variables). A computation is complete at time 

T if all assertions are satisfied at all 

times t>=T. 

ASSUMPTION U7: SINK NODES, OUTPUT REGISTERS. The computation 

is complete when the Kth node of every output 

register contains the correct value of the Kth 

bit of its output variable, 1 <= K <=[log MJ. 

Problem solution is defined the same way for both the lower 

and upper bound measures. 

ASSUMPTION LS and US: PROBLEM SOLUTION. A communication graph 

is said to solve a problem in worst-

case time T if it takes no longer than 

T units of time to complete its 

computation of any problem instance. A 

communication graph is said to solve a 

problem in average time T if its 

average completion time over all 

problem instances is T. 

Based on the above assumptions and the characteristics 

of the communication graph, Thompson [Thompson 80] derives a 

lower bound for Fourier transform computation. He proves 

that the performance of any communication graph with area A 

that solves a discrete Fourier transform of an N-element 
2 2 2 

sequence in average time T is limited by AT >=P [N/8] . 
2x 2x 1+x 

He also proves that the relation AT =O(P N ) 
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O<=x<=l is satisfied by any communication graph with area A 

that takes average time T to solve an N-element discrete 

Fourier transform. This lower bound is derived under the 

assumption that the communication graph to solve the OFT is 
2 1/2 

bounded by a rectangle of area (w-1) where w = O(N ) is 

the minimum bisection width of the communication graph. 

Based on the same assumptions he proves that at least 
3/2 

O(PN ) units of energy must be dissipated by any chip 

solving an N-element OFT. 

These lower bound measures are used as a basis for 

comparing the performance of OFT and FFT algorithms 

presented in Ch~pters II and III. In order to conduct a 

realistic analysis of the performance of the VLSI Fourier 

transform circuits, it is crucial to analyze the area and 

the time performance of the basic components used in each 

circuit. The asymptotic area and time performance of these 

basic building blocks are discussed in the following 

section. 

The Area-Time Performance of 

Basic Components 

The proposed VLSI designs for solving Fourier transform 

are mainly composed of a subset of the following basic 

components: 

a) memory elements 

b) shift register 

c) adder 
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d) multiplier 

e) processor 

f) transceiver 

Thus, it is important to analyze the area and time 

complexity of each of the above components. Since according 

to assumption U4, the word size to represent the input 

values is considered to be P=logM this measure is used in 

the following paragraphs to deduce the area and time 

complexity of the basic components. 

A P-bit RAM requires an O(P) area. The access time to 

RAM may be reduced to as low as O(log P) if the cells are 

arranged in a hierarchical manner [Mead 80]. Almost all 

parallel Fourier transform algorithms require few memory 

cells if any. Thus, the memory access time is not a crucial 

factor in the overall time complexity of these algorithms. 

Shift register is used either for data transmission or 

for the major component of the design. A P-bit shift regis­

ter requires area of O(P). AnN-bit shift requires O(P) time 

[Kung 81]. Therefore, the A and T measures for an P-bit 

shift register are bounded by O(P) and Q(P). 

The Fourier transform computation requires complex 

addition and multiplication as its major computational 

functions. One of the most efficient forms of an adder is 

the carry-save adder. The basic element of a carry-save 

adder may be constructed using an 0(1) area. Thus, a P-bit 

carry-save adder can be built on an O(P) area [Thompson 80]. 

Carry-save addition is performed in two steps requiring 0(1) 
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time. 

Multiplication deserves a special consideration as the 

most time consuming function in evaluating the Fourier 

transform. Thompson [Thompson 80] shows that a P-bit multip-

lier built from carry-save adders will fit in an O(P) area 

and has a time performance of O(P). Kung [Kung 81] proves 

that based on convolution theorm it is possible to build a 

P-bit multiplier on an area of O(PlogP) with a time perfor-
1/2 

mance of O(P logP) acheiving a faster asymptotic 

performance than the other multipliers. 
2x 

In general, Kung (Kung 81] proves that AT performance 
1+x 

of a P-bit multiplier is Q(P N) for 0<= x<=1. He also 

proves that multiplication is harder than addition. If 
2x 2x 

(AT ) (P) is the AT measure for a P-bit multiplier and 
2x M 2x 

(AT ) (P) is the AT measure for an P-bit adder, then he 
A 

shows that 

2x 
(AT ) (P) 

M 

2x 
(AT ) (P) 

A 

1/2 
= O(P ) 

Any one of these measures may be used in the analysis, 

although the slower multiplier presented by Thompson is more 

realistic. 

One of the parallel Fourier transform algorithms; 

namely, the mesh implementation of FFT requires cells which 

are complete processors. According to Thompson [Thompson 80] 
2 

a P-bit processor can be built in an area of O(P ). This 
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micro-coded processor has O(P)-bit ALU, O(P) registers, and 

O(P)-bit long instruction. 

Data transmission is one of the major issues in the 

design and implementation of any VLSI chip. Data 

transmission through wires can be either serial or parallel. 

Serial data transmission requires less space but it is 

slower. On the other hand parallel data transmission 

requires more space and it is faster. Another issue is the 

transmission distance. The farther the destination, the more 

area and time is required. 

The transmission distance is divided into two 

categories in this study, unit-distance and N-distance. The 

one-bit unit-distance transmission between a driver and a 

receiver requires unit time. The one-bit N-distance transmi­

ssion requires an O(N) time. The optimum method to improve 

the delay of an N-distance transmission through a chain of 

amplifiers was discussed in a previous section. This method 

requires an O(N) area for the amplifiers and reduces the 

delay from O(N) to O(logN). 

Based on the nature of the Fourier transform algorithm 

serial or parallel transmission may be selected. When the 

time performance of the design is degraded by long-distance 

data transmission, amplifiers may boost the time performance 

at the cost of area being used by them. 

A serial transceiver (transmitter receiver) requires a 

P-bit shift register. Thus, it can be built in an area of 

O(P). The time required for the transmission of one bit of 
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information on a unit-distance wire is unit time. Therefore, 

the unit-distance serial transmission of P-bit data requires 

O(P) units of time. However, the N-distance serial transmis­

sion of P-Bit data requires an O(P) area for register plus 

an O(N) area for the amplifiers yeilding an O(N) area. The 

time required for N-distance serial transmission is the sum 

of the delay in the amplifiers for P-bit data which is 

O(P+logN). 

A parallel P-bit transceiver requires a P-bit register 

and P wires. Thus, it requires more area than a serial 

transceiver. The time for P-bit parallel transceiver is 0(1) 

since all the bits are transmitted simultanously. An N­

distance parallel transceiver requires the most area among 

the transceivers. Each line of transmission requires O(N) 

area for amplifiers. Therefore, an O(PN) area is consumed by 

amplifiers. The time required to transmit the data however 

is still bounded by the delay in the amplifiers which is an 

O(logN). 

The area-time measures for the basic VLSI building 

blocks of Fourier transform is summarized in Table 3. These 

measures will be used in the computation of the overall VLSI 

area-time performance of the parallel algorithms for solving 

Fourier transform discussed in Chapters II and III. 

VLSI Complexity of the Parallel 

Fourier Transform Algorithms 

A VLSI chip is composed of transistors and wires. The 

VLSI complexity theory proposed by Thompson [Thompson 80] 
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TABLE 3 

AREA AND TIME COMPLEXITY OF THE 
BASIC COMPONENTS 

Area Time 

RAM O(P) 0 (log P) 

shift O(P) (one bit)/(time unit) 
register 

carry-save 0 (P) 0 (1) 
adder 

carry-save 0 (P) 0 (P) 
multiplier 

2 
P-bit 0 (P ) O(P) 
processor 

serial 0 (P) 0(1) 
unit-
distance 

serial 0 (N) O(log N) 
N-distance 

parallel 0 (P) 0 (1) 
unit-
distance 

parallel O(PN) O(logN) 
N-distance 



models a VLSI chip as a communication graph composed of 

nodes representing a transistor or a small cluster of 
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transistors and wires. Thus the area of a chip designed to 

solve a problem consists of the area occupied by nodes and 

wires. The time required to solve a problem may be measured 

in different fashions. Thus it is imperative to base the 

analysis on a set of well-defined measures of area and time. 

Let An denote the area occupied by a node and Aw denote 

the area occupied by a wire. Then the total area occupied by 

a VLSI design to solve a problem may be represented as 

A = ~ An + ~ Aw 
nodes wires 

This measure of total area is used for lower bound analysis. 

As explained previously, the area consumed by wires for 

power distribution and synchronization is not considered in 

this analysis. Unfortunately, this measure is not adequate 

for fabrication purposes. Instead, the total area for 

fabrication is considered as the area of the smallest 

bounding rectangle which is used in upper bound measures. 

The solution time of an algorithm may be defined in 

many different ways. The solution time for a problem may be 

defined as the time elapsed between the input of the first 

bit and the output of the last bit. This definition of 

solution time is called Ts in this study. However, almost 

all the parallel algorithms discussed in chapters II and III 

use pipelines as the main architectural structure. 

A pipeline is capable of accepting a new input sequence 
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while the previous sequence is still being processed. There-

fore, it is possible to simultaneously process more than one 

sequence of input elements through a pipeline. The pipeline 

time of a design referenced by Tp may be defined as the 

elapsed time between the input of the first bits of the two 

consecutive input sequences. 

The processing time of a VLSI design to solve a problem 

is composed of the time consumed by nodes, Tn and the time 

consumed on transmitting the data through wires, Tw. Thus, 

the total time used by a VLSI chip to solve a problem may be 

expressed as: 

Ts =L Tn +> Tw 
nodes wires 

In order to simplify the comparison between the 

parallel algorithms discussed in chapters II and III they 

are classified into two categories based on their underlying 

architecture and not their underlying computational para-

digm. 

The two categories reflect the architecture and the 

inter-cell connection topology. The first category includes 

all the algorithms that use linear inter-cell connections. 

The cascade implementation of an FFT is included in this 

category since a linear connection is used to connect its 

cells. The second category includes all the algorithms that 

are based on a network of inter-connected cells. This 

category covers all mesh-connected designs, the FFT network, 
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2 
the perfect-shuffle, and the N -cell mesh. 

In summary, the parallel algorithms to solve the one-

dimensional Fourier transform of an N-element sequence are 

categorized as follows: 

1) linear pipeline architectures (including cascade) 

2) network architectures 

a) N-cell mesh 

b) Fast Fourier Transform networks 

1) FFT network 

2) perfect shuffle 
2 

c) N -cell mesh 

The VLSI area-time complexity of the algorithms in each 

category based on the area and time measures discussed in 

the preceeding section and the area and the time complexity 

of the major components is analyzed in the following 

sections. The given measures are all asymptotic. The 

comparison between the designs with the same asymptotic 

complexity is based on the details of the designs. 

One of the major issues in VLSI design is the issue of 

the topology and the distance of the connections between the 

components. Kung (Kung 88] stresses the importance of inter-

connections betweem the components. He suggests that down 

scaling of the minimum feature size and up scaling of the 

maximum chip size will further accentuate the role of inter-

connections in a VLSI design. 

He shows that although the gate delays decrease with 

scaling, interconnection delays remain the same. Thus, the 

speed at which a circuit can operate will be determined by 
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interconnect delays rather than device delays, recommending 

minimal, local, and short interconnections. Therefore, in 

evaluating the different designs this criteria will be used 

as one of the determinants. 

Linear Pipeline Architectures 

The linear pipeline DFT architectures are analyzed in 

two groups based on the form of the input to the pipeline. 

The first group consists of all pipelines which are based on 

on-line algorithms allowing data input to overlap the 

computation. The second group consists of in-place 

algorithms based on the assumption that the sequence is 

already loaded into the pipeline. 

The first on-line linear pipeline architecture for DFT 

is the (2N-1)-cell pipeline proposed by Kung which is 

presented in chapter II. This pipeline consists of (2N-1) 

cells, (2N-2) of which have the same basic structure. ~he 

middle cell which is the largest and also the slowest cell 

in the pipeline does not seriously affect the asymptotic 

complexity measures of the design. 

The {2N-2) basic cells contain one register, one 

multiplier, and one adder. There are four inputjoutput data 

lines per cell, requiring four inputjoutput registers in the 

cell. Thus the area occupied by a basic cell, An, consists 

of five registers, one adder, and one multiplier. Since each 

component will fit in an area of O{P), the complete cell 

will fit in an area of O(P). 
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Inter-cell connection is near-neighbor, thus unit 

length wires will be sufficient to carry the information. 

The area occupied by wires Aw is 0(1). Therefore, the total 

area occupied by the pipeline, A is (2N-2) times the area 

occupied by the basic cell and its connected wires, yeilding 

an O(PN) complexity. 

This algorithm involves (4N-3) computational steps. 

Each step requires two multiplications and one addition, 

thus Tn=O(P). The time required for data transmission Tw is 

also O(P) for serial data transmission. Therefore, the time 

complexity of each step is O(P). since (4N-3) steps are 

involved in the complete computation the total processing 

time is T has a complexity of O(PN). The pipeline time is 

equal to the processing time, having the same time 

complexity. 

Two new on-line linear pipeline algorithms have been 

proposed as a part of this study. The basic cells for these 

pipelines are presented in Figures 25 and 26 respectively. 

These two methods are comparable to the Kung's (2N-1)-cell 

pipeline in the sense that they all allow data entry to the 

pipeline overlap the computation. 

The pipeline in Figure 25 consists of N cells. Each 

cell requires one memory cell, three inputjoutput registers, 

one multiplier, and one adder, thus An= O(P). Inter-cell 

connections are near-neighbor, requiring unit-distance data 

transmission, thus Aw = 0(1). Therefore, the total area per 

cell is O(P). There are N cells in the pipeline, thus, A= 

O(PN). 
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The total computation requires {2N-1) steps. Each step 

involves two multiplications, one addition, and serial data 

transmission. Thus, Tn = O{P). The total processing timeT 

is therefore O{PN). The pipeline time is also O{PN). 

The other on-line linear pipeline is presented in 

Figure 26. This pipeline requires the least amount of 

inputjoutput lines of the three on-line approaches. Each 

cell contains three memory cells, one inputjoutput register, 

one multiplier, and one adder, thus An = O{P). Inter-cell 

connection is near-neighbor, thus, Aw = 0{1). Therefore, the 

total area occupied by a cell and its wires is O(P). The 

total area occupied by the pipeline or A is O{PN). 

A total of (2N-1) steps are required to complete the 

evaluation of the Fourier transform of an N-element 

sequence. Each step requires two multiplications and one 

addition, thus, Tn = O(P). Data transfer is near­

neighbor, thus Tw = O(P). Therefore, the total processing 

time for each step is O(P). The total processing time for 

the pipeline, T, is O(PN). 

Although the three on-line linear pipeline DFT 

approaches have the same asymptotic area and time 

complexity, the pipeline of Figure 26 has the best overall 

performance. 

The pipelines of Figure 25 and 26 have half the number 

of cells of the pipeline proposed by Kung. They require 

smaller cells (one less memory space) and almost half the 

processing time. Therefore, they both have better area and 
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time performance than Kung's (2N-1)-cell pipeline. The 

pipeline of Figure 26 requires less area than the pipeline 

of Figure 25 since it requires two less wires per cell which 

saves an O(N) wire area. 

The other class of linear pipeline architectures for 

Fourier transform is the class of in-place pipeline 

algorithms. The main difference between the in-place and the 

on-line algorithms is in the form of data input. On-line 

algorithms allow data input to the pipeline overlap the 

computation. In-place algorithms on the other hand assume 

that data elements are already loaded into the pipeline. 

The issue of the initial load of the input sequence 

into the pipeline should be addressed at this point. The 

sequence {x(n)} may be loaded to the pipeline either 

serially through the inter-cell communication lines or in 

parallel through a separate bus. Serial input requires an 

extra O(PN) delay time since O(PN) bits should travel 

through the pipeline. Since the inter-cell connections are 

near-neighbor an 0(1) time is needed to transfer each bit, 

thus, the time required to load the data is O(PN). 

The parallel data transmission may be established 

through a separate data transmission line for each cell. The 

wire area consumed by this method is O(N) and the delay is 

O(P). Dedication of N off-chip lines for data transmission 

may not always be practical. on the other hand if N input 

registers are dedicated to the input values an extra O(PN) 

area would be consumed. 

The first alternative; namely, serial data transmission 
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through the inter-cell communication lines of the pipeline 

seems more practical and economical. The price to be paid 

however, is the overhead of O(PN) delay before the computa­

tion can start. Therefore, in-place linear pipeline 

algorithms suffer from an either area or time overhead that 

the on-line linear pipeline algorithms do not. The VLSI 

complexity of the in-place linear pipeline algorithms is 

analyzed in the following paragraphs. 

The pipeline based on the recursive formulation of DFT 

is presented in Figure 9. This pipeline requires (N-1) 

cells. Each cell requires two inputjoutput registers, one 

memory cell, one multiplier, and one adder. Since all compo­

nents will fit in O(P) area, then An= O(P). Cells have 

near-neighbor connections, thus Aw = 0(1). Consequently, the 

total area per cell is O(P). The pipeline has (N-1) cells, 

therefore, A = O(PN). 

This method requires (2N-3) computational steps. Each 

step involves one multiplication and one addition. Thus, Tn 

= O(P). Inter-cell connections are near-neighbior. serial 

data transmission between cells for P-bit data items require 

O(P) time. Thus Tw = O(P). Total processing time for the 

algorithm is T = O(PN). A new sequence may enter the pipe­

line after N steps, thus the pipeline time is also O(PN). 

A set of new algorithms for in-place DFT is proposed in 

this study. The first pipeline whose basic cell is presented 

in Figure 29 is designed to be flexible and modular. The 

coefficients are calculated through the first phase of the 
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computation, thus they may be modified to accomodate for any 

sequence of size M <= N. 

Each cell requires four memory cells, one adder and one 

multiplier, thus An= O{P). Three data lines and one control 

line connect the consecutive cells in the pipeline, thus Aw 

= 0(1). Therefore, the total area used by a cell and its 

wires is O(P). The pipeline has N cells, thus, A= O(PN). A 

global control line is used which occupies an O(N) area. The 

long wire connecting the rightmost cell to the leftmost cell 

also occupies an O{N) area. Although this area is asymptoti­

cally negligible, it increases the size of the design. 

The computation of DFT through the pipeline requires 2N 

steps. Each step includes three or two multiplications based 

on the phase of the computation and one addition, thus Tn = 

O(P). The time required to input three data items is O(P). 

The time required to route the global control signal is 

O(log N), Thus, Tw = O(P+log N). The total time spent during 

a computational cycle is O(P). Since the entire computation 

requires 2N cycles, T = O(PN). The duration of the computa­

tional cycle for this approach is longer than actual time 

required for computation and near-neighbor inter-cell propa­

gation since the delay on the long wire connecting the 

rightmost cell to the leftmost cell is O(log N) at its best. 

The second new in-place algorithm allows the initial 

values of the coefficient to be pre-stored in the cells. The 

basic cell for this algorithm is presented in Figure 30. As 

a result of storing the coefficients in the cells, the first 

phase of the computation is eliminated and the entire opera-
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tion requires N cycles instead of 2N cycles. This pipeline 

has the same area and time complexity of the pipeline of 

Figure 29, but requires half the number of computational 

cycles to calculate the Fourier transform of an N-element 

sequence. 

The basic cell presented in Figure 32 is designed to 

reduce the number of input;output lines. The total wire area 

for inter-cell communication thus is reduced from three to 

one. Consequently, the total wire area for the complete 

design is reduced from 3N in the two previous pipelines to 

N. This is especially important when long wires are used 

since for each communication line an area with O(N) 

complexity must be dedicated to the amplifiers. 

The pipeline with the basic cell presented in Figure 32 

has the same asymptotic area and time complexity as of the 

other previous two pip~lines. 

The three linear pipeline methods presented in Figures 

29,30, and 32 are all circular. The first algorithm is more 

flexible but it requires more computational steps. The next 

two pipelines both require N computational steps. The 

circular pipeline with the basic cell of Figure 32 occupies 

smaller area since it has a single input line in each cell. 

Therefore, among the three circular pipelines presented in 

this study, the pipeline with the basic cell of Figure 32 

has the best area and time performance. In all three cases 

the result of the operation resides in the pipeline which 

facilitates further operations on the· signal. 



118 

Two alternate methods are presented in Chapter III to 

avoid long wires. The first pipeline whose basic cell is 

presented in Figure 36 allows the Y's to sweep the cells. 

The outgoing Y's are routed back to the pipeline for further 

computations. The result resides in the cells of the pipe­

line. Although the long wire is eliminated, the number of 

computational steps is increased from N to 2N cycles and 

cells are not fully functional. 

The second alternative has the basic cell presented in 

Figure 38. Zero-valued Y's enter the pipeline through the 

leftmost cell, sweep it from left to right and exit from the 

rightmost cell. The basic cell requires three memory cells, 

one inputjoutput register, one multiplier, and one adder. 

The inter-cell connection is near-neighbor, thus, An = O(P) 

Aw = 0(1), and A= O(PN). 

The complete process requires 2N-1 cycles, although a 

new sequence may enter the pipeline after N cycles. Each 

cycle requires two multiplications, one addition, and one 

input, thus Tn = O(P). Inter-cell connections are near­

neighbor, thus, Tw = 0(1). And finally, the complete process 

has T = O(PN) time complexity. This cell may be modified to 

route the results back to the pipeline as represented in 

Figure 39. 

The comparison between the three in-place methods, 

namely, Kung's recursive method, pipeline with the basic 

cell of Figure 32 and the one with the basic cell of Figure 

38 is rather complex and involves many issues such as the 

form of output, area, computation time, and finally the 
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propagation time. 

All three aforementioned pipelines use N basic cells. 

The result of the computation in the first and the third 

pipeline leaves the pipeline. If two more lines are added to 

the basic cell, the result may be redirected back to the 

pipeline which results in an increase in the number of 

inputjoutput registers by one. After this modification, the 

two last pipelines will have the same area for the basic 

cell. Kung's pipeline has the smallest cell among the three 

with one less memory cell per basic cell. 

The second pipeline uses a long wire which adds an O(N) 

area to the pipeline for the O(N) long wire and its 

amplifiers. The long wire also causes an O(log N) delay 

through the pipeline for the propagation. Thus, the cycle 

time of the second pipeline is longer than the cycle time of 

the other two by a factor of O(log N). On the other hand, 

the second pipeline requires N cycles of computation instead 

of (2N-3) cycles for the first pipeline and (2N-1) for the 

third. 

A complete cycle for the basic cell is composed of the 

time required for multiplication tm, the time required for 

addition ta, and the time required for propagation tp. Then 

the total computation time for each method T(i) 1 <= i <=3 

can be expressed as: 

2N-3 
T(l) = L (tm + ta + tp) 

1 



T(2) =L (2tm + ta + tp) 
1 

2N-1 
T(3) = L (2tm + ta + tp) 

1 
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tp = P for the first and the third method. however, it is 

P+logN for the second method due to the delay in the long 

wire. Then 

T(1) = (2N-3)tm + (2N-3)ta + (2N-3)P 

T(2) = 2Ntm + Nta + N(P + logN) 

T(3) =2(2N-1)tm + (2N-1)ta + (2N-1)P 

The first and the second pipeline are compareable. Let Td = 

T(1)-T(2), then 

Td = -3tm + (N-3)ta + NP - NlogN-3P 

ignoring the constant factors, 

Td = N(ta + P - logN) = O(N) 

Thus the second method has a time performance better than 

the first method by a factor of O(N) at the cost of extra 

area of O(N) for the wires and amplifiers. 

The two pipelines selected from the two on-line and in-

place categories as having better area-time performance in 

their category may also be compared. The best pipeline in 

the category of on-line pipelines is presented in Figure 26 

and the best pipeline in the category of in-place pipelines 

is presented in Figure 32. 

Both pipelines require N cells. The first pipeline has 

smaller cells, and no long wires. Thus, the complete 
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pipeline is smaller than the other pipeline by a factor of 

0 (N). 

Let T(i) 1<= i <=2 denote the total computation time 

for the two pipelines. If the time required for the initial 

load is added to the computat~on time, then 

2N-1 
T(1) = c (2tm + ta + tp) 

1 
N 

T(2) = N logN + L (2tm + ta + tp) 
1 

Since tp = logN for the first pipeline and P+1ogN for the 

second pipeline, then 

T(1) = 2(2N-1)tm + (2N-1)ta + (2N-1)logN 

T(2) = NlogN + (2N)tm + (N)ta + N(P+logN) 

Therefore, the difference between T(1) and T(2) ignoring 

constant terms is 

Td = (2N)tm + (N)ta -PN 

Since tm = O(P) and assuming that the time required for 

multiplication is comparable to the time required for data 

transmission, the above equation indicates that the on-line 

pipeline is slower than the in-place pipeline. 

In summary, although all linear pipeline methods have 

the asymptotic area and time complexity of O(PN), it is 

shown that the in-place pipeline of Figure 32 has a better 

overall performance. 

The cascade implementation of FFT is the last design 
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that is classified under linear pipeline architectures, 

solely for its basic architectural characteristics. 

The cascade pipeline is composed of logN basic cells. 

Each cell contains one multiplier, one adder, two memory 

cells, one counter, and two inputjoutput registers. There-

fore, a total of four memory cells is required in each basic 

cell. The complete cell will fit in an O(P) area, thus, An = 

O(P). Inter-cell connections are near-neighbor, thus, Aw = 

0(1). Therefore, the total area occupied by the cells is O(P 

logN). The ith cell in the pipeline however is connected to 
(m-i) 

a shift register of length 2 (m=logN). The area 

occupied by the shift registers is the sum of the number of 
m 

elements in the shift registers or 2 =N multiplied by the 

size of each element which is O(P). Thus the total area 

occupied by the pipeline is O(P logN+ PN) which is an O(PN). 

The computation involves (2N-1) cycles although the 

pipeline time is only N cycles. Each computational cycle 

involves at least one multiplication although half the 

cycles involve two multiplications and two additions. Each 

cycle involves a P-bit shift. Thus, the total time may be 

expressed as: 

2N-1 
T = ~ (2tm + 2ta + ts + tp) 

Since the cycle time should be longer than the longest 

operation, ignoring the constant factors, 

T = 4Ntm + 4Nta + 4PN 
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Obviously, the total time used by cascade is twice the time 

used by other linear pipelines except Kung's (2N-1)-cell 

pipeline. To this time we must add the time required to 

convert the output from bit-reversed order to normal order. 

The area used by cascade however is smaller than the 

area used by the other pipelines since the main area is 

occupied by shift registers and not adders and multipliers. 

Thus, it is reasonable to claim that cascade occupies an 

area at least three times smaller than the other linear 

pipelines. 

The main disadvantage of cascade however lies on its 

inflexibility. The design is limited to solving the Fourier 
m 

transform of sequences of size N=2 . It is not easily 

expandable since its hardware is especially designed for a 

specific value of N. 

A summary of physical and computational characteristics 

of the linear pipelines studied in this section is presented 

in Tables 4 and 5. Table 4 represents a list of physical 

characteristics of the pipelines and also the asymptotic 

area complexity of the basic cell and the entire pipeline. 

Table 5 represents the computational characteristics of the 

pipelines and the asymptotic time complexity of the basic 

cycle and the complete computation. 

Since the asymptotic area and time complexity of all 

pipelines for solving Fourier transform is the same, an 

approximation to the area and time of each design may assist 

in the evaluation of the performance of each pipeline. 
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TABLE 4 

PHYSICAL CHARACTERISTICS OF 
THE LINEAR PIPELINE 

ARCHITECTURES 

method tcells U/O #memory total Aw An A other 
reg cells memory 

1) Kung's 2N-1 4 1 5 4 O(P) O(PN) 
non-
recursive 

2) Figure N 3 1 4 3 O(P) O(PN) 
25 

3) Figure N 1 3 4 1 O(P) O(PN) 
26 

4) Kung's N-1 2 1 3 2 O(P) O(PN) 
recursive 

5) Figure N 3 4 4 0 (P) O(PN) O(N) 
29 long 

wire 

6) Figure N 5 5 3 O(P) O(PN) O(N) 
30 long 

wire 

7) Figure N 5 5 1 O(P) O(PN) O(N) 
32 long 

wire 

8) Figure N 2 4 6 2 O(P) O(PN) 
36 

9) Figure N 1 3 4 1 O(P) O(PN) 
38 

10) cas- logN 2 2 4 2 O(P) O(PlogN) 0 (PN) 
cade 
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TABLE 5 

COMPUTATIONAL CHARACTERISTICS OF 
THE LINEAR PIPELINE 

ARCHITECTURES 

method #steps #multi #add Tw Tn T pipeline other 

1) 4N-3 2 1 O(P) O(P) O(PN) O(PN) 

2) 2N-l. 2 1 II II II II 

3) 2N-1 2 1 II II II II 

4) 2N-3 1 1 II II II II initial 
load 
O(PN) 

5) 2N 3(2) 1 II II II II 

II 

6) N 2 1 II II II II II 

O(logN) 
long 
wires 

7) N 2 1 II II II II 

II 

8) 2N 2 1 II II II II O(PN) 
initial 
load 

9) 2N-l. 2 1 II II II II 

l.O) 2N-l. 2 2 II II II II 
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This approximation is based on the assumption that all 

major components occupy an areaof P. Thus the area of a cell 

with 5 memory cells, one multiplier, and one adder is appro­

ximated as 7P. Then the total area is approximated by multi­

plying the number of cells by the area of the cell. 

The processing time is approximated by assigning P 

units of time to multiplication and inter-cell serial tran­

smission, P+logN for N-distance transmission, and unit time 

for addition. The total time is approximated by multiplying 

the number of steps required by the total cycle time. The 

summary of these approximations along with the approximation 

for pipeline time, the restrictions on the size of the 

sequence and also the advantages and disadvantages of the 

ten linear pipelines are listed in Table 6. 

Some of the pipelines are easily expandable due to 

their flexible design. Flexibility and modularity is 

considered to be one of the major evaluation criteria. The 

other issue is the form of the output. The pipelines which 

save the result in the pipeline are considered more 

favorably, since as it· was previously mentioned slight 

enhancements in the cells will allow many useful operations 

to take place in the cell without a need to transfer the 

result out and then route it back again. The multitude and 

the length of the inter-cell connections is also considered. 

Extensive wire area or long wires are considered as a 

negative factor. 

As it shown in Table 6, the first pipeline occupies the 

largest cell area and the cascade implementation of FFT 
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TABLE 6 

APPRIOXIMATED AREA AND TIME MEASURES 
FOR LINEAR PIPELINE 

ARCHITECTURES 

pipeline approximated approximated pipeline N advantage disadvantage 
area time time 

cells wires 

1) 14PN SN 16PN + 16PN + - easily result is out 
4N 4N expandable too much time 

and area 

2) 6PN 3N 6PN + 3PN + - easily too much 
2N N expandable time and 

result area 
remains 

3) 6PN N 6PN + 3PN + - result hard to 
2N N remains expand 

few 
wires 

4) SPN 2N SPN + 3PN + - easily result 
2N N expanable is out 

5) 6PN 4N 7PN+2NlogN 6PN+ - result too much 
+2N 2N+2NlogN remains time and 

easy to area 
expand 

6) 7PN 3N 3PN + 3PN + - result hard to 
N+NlogN N +NlogN remains expand 

fast 
7) 7PN N 3PN + 3PN + - result hard to 

N +2NlogN N +2NlogN remains expand 
fast 
few wires 

8) SPN 2N 7PN + 7PN + - result hard to 
2N 2N remains expand 

too much 
area 

9) 6PN N 7PN + 4PN + - few wires result 
2N N is out 

m 
10) PN 2logN 6PN + 3PN + 2 small very 

+N 4N 2N area hard to 
expand 
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occupies the smallest cell area. These two pipelines are 

also associated with the two extremes for the wire area. The 

pipeline of Figure 32 has the least wire area and 

computational time among the comparable pipelines. although 

the choice of one pipeline over others is application 

dependent, Table 6 gives a better insight to the comparative 

area-time measures of each pipeline. 

Fourier Transform Networks 

All parallel Fourier transform architectures with non-

linear interconnections are classified as Fourier transform 

networks. The first class of parallel Fourier transform 

architectures is the mesh-connected architectures. Three 

mesh-connected architectures are covered in this study. Two 

mesh-connected architectures are covered in Chapter II and 

one is covered in Chapter III. 

The mesh-connected architecture proposed by Zhang 

[Zhang 84] and the one proposed by this study are based on 

the rearrangement of an N-element one-dimensional signal 
2 

into a two dimensional matrix assuming that N = m . The 

third mesh-connected architecture is based on the FFT 
2m 

algorithm assuming that N = 2 

Another class of Fourier transform network 

architectures includes the FFT network which is the hardware 

implementation of the FFT flow graph, and the perfect-

shuffle interconnection network which has a more regular 

architecture than the FFT network. 
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2 
Finally, the N -cell mesh-connected network is the only 

one of its kind with the capability of concurrently handling 

N different sequences. The VLSI complexity of these networks 

is analyzed in the following sections. 

N-cell Mesh-Connected Architectures. Zhang [Zhang 84) 

was the first to propose a mesh-connected architecture for 
2 

OFT. The architecture is based on the fact that N = m • The 

architecture is composed of N = m x m basic cells. A set of 

m extra cells are added to the architecture as the (m+1)th 
ij 

row of the network to multiply the outgoing result by W 

and route it back to the network. Thus, the complete network 

consists of (m+1) x m basic cells. A set of (m+2) multip-

liers are also required to generate the appropriate powers 

of P needed by the Kung's linear pipeline to perform column 

and row DFTs and to generate appropriate powers of W to be 

used by the last row of the cells. Thus, the total number of 
2 

cells used in the architecture is ((m+1)m+m+2)=(m +2m+2) 

cells. Assuming that the transceiver in each cell can 

receive and transmit data in all directions, at least three 

inputjoutput registers are required in each cell. Each cell 

also contains two memory cells, one multiplier, and one 

adder. Thus An= O~P). Each node is associated with 5 data 

lines. Thus, Aw = 0(1). 

The wire area used by this architecture for long wires 

directing the global signal s and the powers of P generated 

by the two multipliers is significant. Since S is a global 

signal, it has to be directed to all the nodes. Thus, it 
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requires one horizontal and m vertical long wires of O(m). 

Therefore, to the wire area required by the architecture the 
2 

amount mP + m must be added (the cell area is assumed to be 

a rectangle of logN by 1). 

The processing time of this network involves 4m cycles. 

To this time the time required to load the sequence which is 

at least O(m) must be added. Each computational cycle 

involves one multiplication and one addition. Thus Tn = 

O(P). Inter-cell connections are near-neighbor, thus, Tw = 

O(logN). Therefore, the total processing timeT is O(mP). 

The pipeline time for this network is the sum of the proces-

sing time and the time required for the initial load, since 

a new computation may not start unless the previous computa-

tion is completed and the new sequence is completely loaded. 

Thus, the pipeline time is approximately SmP which is O(mP). 

The N-cell mesh-connected network for DFT proposed by 

this study which is presented in Figure 42 is an attempt to 

reduce the area and the time overhead and to avoid long 

wires as much as possible. All control signals are local, 

the initial load is overlapped with the computation, and the 

inter-cell data communication is minimized. The basic cells 

however are slightly largerthan Zhang's network. 

The complete network consists of N basic cells arranged 

as an m x m matrix. No extra cell or multiplier is required. 

Thus, the initialization of multipliers and their 

synchronization with the basic cells is not an issue. Each 

cell contains one inputjoutput register since at any cycle 

only one data item is input or output. Each cell contains 
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four memory cells, one multiplier, and one adder. Thus, An = 

O(P). Each cell is connected to two data lines, thus, Aw 

= 0(1). No other extra area for long wires or multipliers 

are needed. Therefore the total area used by the 
1/2 

architecture is O(PN ). 

The complete computation requires 4m cycles. Although a 

new sequence may start loading and computation after 3m 

cycles. Therefore, although processing time involves 4m 

cycles, the pipeline time only involves 3m steps. Each cycle 

consists of two multiplications and one addition. Thus, a 

complete cycle requires an O(P) time or Tn = O(P). Inter-

cell connection and control signal transmission is near-

neighbor which requires an O(P) time, thus, Tw = O(P). 

Therefore, the complete processing time has an O(m P) 

complexity. No other time overhead is involved. 

The last mesh-connected network based on the FFT 

network was first proposed by Stevens [Stevens 71] for the 

Illiac IV computer. The size of the sequence N is restricted 
2m m m 

to 2 . The network consists of N cells arranged as a 2 x 2 

matrix. Data is loaded in a row-major order as depicted in 

Figure 22 prior to the computation. 

Each cell is a message driven processor capable of 

creating new messages, addressing it to another cell in the 

network, forwarding a message along the shortest path to its 

destination, and finally receiving a message. The functional 

aspects of this network is discussed in Chapter II. Thompson 

[Thompson 80] shows that the computation time for this 
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network is basically dominated by the time required for 

routing. He suggests that the transceiver in each node 

should have parallel transmission to other nodes and serial 

transmission to the multiply-add unit. The proposed tran-
2 

sceiver occupies an O(P ) area. Using the large parallel 

transceiver reduces the parallel transmission time to O(log 

P) but adds an area of P for wires to each processor in each 

direction. The area occupied by each node also contains logN 

coefficients being used in logN steps of the computation, 

multiply-add circuit and control circuit. Thompson proves 
2 

that the complete processor will fit in an O(P ) area. Thus 
2 

the complete network occupies an O(P N) area for cells and 

an O(PN) area for wires. 

The computation involves log N cycles. Each cycle 

consists of one multiplication, two additions, and routing. 

The routing distance depends on the stage of the computation 

as explained in Chapter II. Thompson [Thompson 80] shows 
k 

that each node in the kth stage performs two (N/2 )-distance 

routing. When K < (logN)/2, the mesh's vertical interconnec-

tions are used. The horizontal interconnections are used 

otherwise. He proves that the total routing time is 
1/2 

proportional to (N log P). 

The physical and computational characteristics of the 

three mesh-connected networks are summarized in Tables 7 and 

8. Table 9 represents a rough approximation of the time and 

the area used by each architecture. The approximation is 

based on the assumptions made in the previous section. 

Comparing the physical and computational characteris-



# cells 

# I/o 
registers 

# memory 
cells 

total 
memory 

Aw 

An 

A 

other 

TABLE 7 

PHYSICAL CHARACTERISTICS OF 
MESH-CONNECTED 

NETWORKS 

Zhang 

1/2 
N + 2N +2 

3 

2 

5 

5 

0 (P) 

O(PN) 

1/2 
PN +N 
(wires) 

This study 

N 

1 

4 

5 

2 

0 (P) 

O(PN) 
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stevens 

N 

2 

log N 

2 + logN 

4P 

2 
O(P ) 

2 
O(P N ) 

4PN 
(wires) 



#steps 

# multi-
plications 

# additions 

Tw 

Tn 

T 

other 

TABLE 8 
COMPUTATIONAL CHARACTERISTICS 

OF MESH-CONNECTED 
NETWORKS 

Zhang This study 

1/2 1/2 
4N 4N 

1 2 

1 1 

O(P+logN) O(P) 

0 (P) 0 (P) 

1/2 1/2 
O(PN ) O(PN ) 

1/2 
O(PN ) 

(initial load) 
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Stevens 

logN 

1 

2 

O(logP)* 
(number of 
routing 
steps) 

0 (P) 

1/2 
O(N logP) 

1/2 
O(N ) 

(routing) 
1/2 

O(PN ) 
(initial· load) 



cells 

wires 

approx 
time 

approx 
pipeline 
time 

N 

Advantage 

dis 
advantage 

TABLE 9 

APPROXIMATED AREA AND TIME 
MEASURES FOR MESH 
CONNECTED NETWORKS 

Zhang 

1/2 
(7PN +7PN 

SN 

1/2 1/2 
8PN +4N + 

1/2 1/2 
8N logN 

1/2 1/2 
9PN +4N + 

1/2 1/2 
8N logN 

2 
m 

excessive 
hardware 
long wire 

) 

This Study 

7PN 

2N 

1/2 1/2 
12PN +4N 

1/2 1/2 
9PN +3N 

2 
m 

no long wires 
easy to expand 
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Stevens 

2 
p N 

2PN 

1/2 
(4N logP + 

(4N 

4P 

2 
4P 

1/2 
logP+ 

1/2 1/2 
+PN 

2m 
2 

large basic 
cells, 
extensive 
area, hard 
to expand 
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tics of the three networks, it is apparent that the network 

proposed by this study requires less cell area than the 

other two networks since it is reasonable to assume that P > 

7. It also requires less wire area. It is difficult to find 

a good approximation for the time used by Stevens's mesh­

connected network since the time used by the processor to 

create, receive and direct a message, fetch the coefficient, 

etc is not known. The approximation given in Table 9 

includes the time for multiplication and routing. The appro­

ximated time of the other two networks are comparable. 

However, the pipeline time of the network proposed by this 

study is better than Zhang's network by a factor of 4m. 

Considering the other advantages of this network and the 

fact that the structure is extremely modular, this network 

is considered to have a better overall performance. 

Fast Fourier Transform Networks. Two different fast 

Fourier transform networks are discussed in Chapter II. The 

first network is the hardware replica of the FFT flow graph 

called FFT network. The second architecture is based on the 

perfect-shuffle network proposed by Stone [Stone 71]. 

The FFT network is composed of logN levels of N/2 

cells. Each cell receives two inputs, performs a butterfly 

operation, and sends two outputs to two other cells. The 

coefficient for the butterfly operation is stored in the 

cell. Each cell contains one multiplier and one adder, thus, 

An= O(P}. Thompson [Thompson 80] shows that the connections 

emerging from the kth row (k=O,l, ••• , logN- 1) occupy 
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k+l 
N/2 tracks, as it is shown in Figure 17. He shows that a 

total of N/2 horizontal tracks are necessary and sufficient 

for laying out the interconnections between the first two 

rows. The connections between the second and the third row 

occupy N/4 horizontal tracks. Thus a total of N-1 horizontal 

tracks are required to lay out the interrow connection. 

Each track is a long wire. Thus, in order to obtain the 

minimum delay, appropriate amplification is required. The 

wires between the first two rows cross the middle line, 

therefore, their length is proportional to N. Since each 
2 

wire needs an amplifier with O(N) area, then an O(N ) area 

is required for the amplifiers between the first and the 

second row. There are N/4 tracks between the second and the 

third row which although do not cross the middle line but 

they occupy N/4 wire area. Thus, they each require N/2 area 
2 

for amplifiers, a total of N /8 area. Hence the total area 
2 

occupied by wires and amplifiers is O(N ). If the cells are 

laid out as a rectangle of O(P) tall and 0(1) wide, then the 
2 

bounding rectangle would require an O(N ) area. The area 

occupied by amplifiers is a very important factor in this 

network. 

A total of (logN) cycles is required to complete the 

computation. Although a new sequence may enter the network 

after the current sequence leaves the first row or after 

the first cycle. A computational cycle involves the time for 

data input, one multiplication, and one addition. Thus, Tn = 

O(P). The time required for propagation assuming that ampli-
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fiers are added to the netwok is Tw = O(log N). Thus, the 

total computation timeT is O(logN(P+logN)). The pipeline 

time however is O(P+log N). FFT network is capable of proce­

ssing logN sequences of data simultanously. 

The perfect-shuffle network was first proposed by Stone 

[Stone 71]. Thompson [Thompson 80] discusses the VLSI 

complexity of the FFT using the perfect-shuffle 

interconnection network. Thompson [Thompson 80] proposes a 

planar layout for the network. He shows that the N/2 cells 

in the network can be partitioned int.o logN equivalence 

classes, B(k), k=0,1, ... ,logN-1, where each class contains 

the cells with the same number of 1's in their binary 

expansion. For example, for N=16, there are 8 cells and the 

equivalence classes are as follows: 

B(O) = { cell o } 

B(1) = { cells 1,2, and 4 } 

B(2) = { cells 3,5, and 6 } 

B(3) = { cell 7 } 

It is easy to verify that cells in B(k) are connected to 

other cells in B(k) and to cells in B(k-1) and B(k+1). 

Clustering the cells by their equivalence classes helps 

limit the length of the wires. Unfortunately, the 

equivalence classes are rather large. Thompson [Thompson 80] 
1/2 

shows that the largest class has a size O(Njlog N). 

Consequently, the wires connecting this class to other 
1/2 

classes may be as long as O(N/log N). Figure 46 adopted 

from [Thompson 80] represents the planar embedding of the 
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perfect-shuffle network for N=16. 

The equivalence classes B(O) and B(J) contain input 

values {x(O),x(1)} and {X(14),x(15)} respectively. Equivale-

nee classes B(1) and B(2) each contain three cells and 

accomodate for 6 input values. The connections between two 

consecutive classes are represented with large rectangular 

boxes. The size of the box depends on the size of the equi-

valence classes it is connecting. The width of the box is 

the sum of the widths of the two classes. The height of the 

box is proportional to the number of the connections between 

the two classes which is equal to the sum of the cells in 

two classes. Since the wires used in these connections could 
V2 

be as long as O(N/log N), adequate amplification is needed 

to achieve the O(logN) delay in the line. The area occupied 
1/2 

by the amplifiers to drive an O(Njlog N) wire is 
1/2 

O(Njlog N). Therefore, if amplifiers are added to each 

wire, the interconnection box for the two largest classes 

(B(1) and B(2) in 
1/2 

Figure 46) would require O(N/log N) * 
1/2 2 

O(Njlog N) area which is O(N jlogN). Thus the total area 

occupied by the network is O(N) wide due to the width of the 

cells and O(NjlogN) tall due to the interconnections, conse-
2 

quently, A= O(N jlogN). 

The complete computation requires logN steps. Each step 

requires one multiplication, two additions, and the time 

required for routing which is O(P). Thus Tn = O(P). The long 

wire transmissions are localized thus Tw = O(log N). There-
2 

fore, the complete process requires T = O(PlogN +log N) 
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processing time. The pipeline time is equal to the proces-

sing time since a new sequence may not enter the network 

unless the previous computation is completed. Perfect-

shuffle network is capable of handling only one sequence at 

a time. 

The physical and computational characteristics of the 

two networks are summarized in Tables 10 and 11. Table 12 

represents the approximated area and time for the networks 

and also the restrictions on the size of the sequence and 

the advantages and disadvantages of each network. 

The approximated time and area calculated for FFT 

network and perfect-shuffle network represented in Table 12 

shows that the two networks have almost the same area-time 

performance. FFT network occupies a slightly larger area. 

Perfect-shuffle network on the other hand has a longer 

pipeline time. Both networks are restricted to the sequences 
m 

of size N=2 and they are both very hard to expand. FFT 

network will be used as the best network in this category in 

the comparative analysis among different classes of 

architectures merely for its better pipeline time. 

2 
N -cell Mesh-Connected Network 

2 
The N -cell mesh architecture proposed by this study 

has intresting properties which the other network architec-

tures lack. This network is capable of concurrently 

processing N different data sequences. The pipeline archite­

ctures are capable of simultanously processing at most two 

sequences. Other mesh-connected arcitectures are capable of 
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TABLE 10 

PHYSICAL CHARACTERISTICS OF 
THE FOURIER TRANSFORM 

NETWORKS 

FFT network perfect-shuffle 

N/2 logN N/2 

2 2 

1 logN 

3 2+logN 

K+1 1/2 
N/2 horiz·ontal O(N /log N) 
tracks for wires 
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kth row 

0 (P) O(PlogN) 

2 2 
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TABLE 11 

COMPUTATIONAL CHARACTERISTICS OF THE 
FOURIER TRANSFORM NETWORKS 

FFT network 

logN 

1 

2 

O(P+logN) 

0 (P) 

2 
O(PlogN+log N) 

O(P+logN) 

delay through 
amplifiers 

O(logN) 

perfect-shuffle 

logN 

1 

2 

O(P+logN) 

0 (P) 

2 
O(PlogN+log N) 

2 
O(PlogN+log N) 

delay through 
amplifiers 

O(logN) 
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TABLE 12 

APPROXIMATED AREA AND TIME MEASURES 
FOR FOURIER TRANSFORM NETWORKS 

FFT network 

cells SPN/2 logN 

2 
wires N 

2 
time 2PlogN + log N 

2 
log N 

pipeline P+logN 
time 

m 
N 2 

advantage fast 
capable of handling 
logN differnt sequences 
simultanously 

disadvantage too much wire and 
amplifier area 
hard to expand 

perfect-shuffle 

PN/2(logN+4) 

2 
N 

2PlogN + 2logN+ 
2 

log N 

2PlogN +2logN 
2 

log N 

m 
2 

fast 

very difficult to 
expand 
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processing one or two sequence at a given instance. FFT 

network is the only network capable of simultanously proces-

sing logN sequences. This characteristics may be considered 

as an important determinant in the evaluation of the Fourier 

transform architectures if the flow of data is comparable 

with the speed of the computation. 
2 2 

The N -cell mesh architecture is composed of N basic 

cells connected as a grid of NxN cells. Each cell contains 

one multiplier, one adder, one memory cell, and two 

inputjoutput registers. Thus An= O(P). Inter-cell 

connections are all near-neighbor, therefore, Aw = 0(1). 

Thus, the total network should fit in an area of A = 
2 

O(PN ). 

A total of 2N-1 cycles are required for the completion 

of the processing of a sequence. The pipeline time however 

is only one cycle. Each cycle consists of data input, one 

multiplication, and one addition, thus, Tn = O(P). The 

inter-cell connections are near-neighbor and serial, thus, 

Tw = 0(1). Therefore, T = O(PN). The pipeline time on the 

other hand is O(P). 

Table 13 summarizes the area-time performance of the 

best architectures in each category. A, T, and Tp denote the 

total area, total time, and pipeline time respectively. 
2 2x 

Measures AT, AT , and AT are evaluated using both proces-

sing and pipeline time. 
2 

Linear pipelines and N -cell mesh may be used to calcu-

late the Fourier transform of any given sequence regardless 
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TABLE 13 

COMPARATIVE ANALYSIS OF DIFFERENT 
FOURIER TRANSFORM ARCHITECTURES 

Linear 
pipeline 

A 0 (PN) 

T O(PN) 

Tp O(PN) 

2 2 
AT O(P N ) 

2 2 
ATp O(P N ) 

2 3 3 
AT O(P N ) 

2 3 3 
ATp O(P N ) 

2x 1+2x 
AT O(N 

1+2x 
p ) 

2x 1+2x 
ATp O(N 

1+2x 

N 

p ) 

unrestric 
ted 

mesh 
(this study) 

O(PN) 

1/2 
O(PN ) 

1/2 
O(PN ) 

2 3/2 
O(P N ) 

2 3/2 
O(P N ) 

3 2 
O(P N ) 

3 2 
O(P N ) 

l+x 
O(N 

1+2x 
p ) 

1+x 
O(N 

1+2x 
p ) 

2 
m 

FFT 
Network 

2 
O(N ) 

2 
O(log N+ 

PlogN) 

O(P+logN) 

2 
O(PN logN+ 

2 2 
N log N) 

2 2 
O(PN +N logN) 

2 2 2 
O(P N log N+ 

2 4 
N log N) 

2 2 
0 ( N ( 1 og N + P) ) 

2 
O(N (PlogN+ 

2 2x 
log N) ) 

2 
N -cell 

mesh 

2 
O(PN ) 

O(PN) 

0 (P) 

2 3 
O(P N ) 

2 2 
O(P N ) 

3 4 
O(P N ) 

3 2 
O(P N ) 

2+2x 
O(N 

1+2x 
p ) 

2 2x 1+2x 2 
O(N (P+logN) ) O(P N ) 

m 
2 unrestric 

ted 
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of its size. The other two networks however, are restricted 

to specific values of N. · 

Linear pipelines and N-cell mesh-connected OFT network 

proposed by this study occupy the smallest area. FFT network 
2 

on the other hand has the best processing time. The N -cell 

mesh has the best pipeline time. The N-cell mesh-connected 
2 

OFT network has the best AT, ATp, and AT 

all the architectures. Mesh-connected OFT 

performance among 
2 

network and N -
2 

cell mesh -connected network have the same ATp performance. 
2 

The FFT network has better overall ATp performance. 

However, it is only capable of simultaneously processing 

logN different sequences. Thus, when the capacity of concur-
2 

rent data processing is a determinant, N -cell mesh is more 
2 

appropriate choice at the cost of slightly higher AT 
2x 

measure. Mesh-connected OFT network also has the best AT 

performance. 

Comparing the results of this study with the lower 
2 2x 

bound for AT,AT , and AT measures deduced by Thompson ( 

Thompson 80], it is apparent that all measures deduced for 

the N-cell mesh-connected OFT are only a factor of P away 

from the lower bounds. Considering the other advantages of 

this design; namely, simplicity and ease of VLSI implementa-

tion, modularity and simplicity and regularity of 

interconnections it is selected to be the most efficient 

design. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The comparative analysis of the VLSI area-time complexity 

of the parallel algorithms for Fourier transform presented 

in Chapter IV shows that the N-cell mesh-connected designs 

have better overall performance. The simplicity of the basic 

cell and also interconnections in this category is also one 

of the major advantages of these designs. The modular layout 

provides flexibility and allows ease of expansion. The 

regularity of interconnections is also an advantage in lieu 

of VLSI implementation. 

The issues that would be raised for actual VLSI 

implementation are not addressed in this study. The physical 

characteristics of the available technology and the goals of 

the design will determine the actual VLSI layout. 

The decomposition of the one dimensional signal to 

three or more dimensions is also a possiblity which may be 

addressed in the context of existing planar VLSI circuits or 

the possibility of future non-planar VLSI circuits. 
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