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Abstract 

Today, cloud databases are widely used in many applications. The pay-per-use model 

of cloud databases enables on-demand access to reliable and configurable services (CPU, 

storage, networks, and software) that can be quickly provisioned and released with 

minimal management and cost for different categories of users (also called tenants). There 

is no need for users to set up the infrastructure or buy the software. Users without related 

technical background can easily manage the cloud database through the console provided 

by service providers, and they just need to pay to the cloud service provider only for the 

services they use through a service level agreement (SLA) that specifies the performance 

requirements and the pricing associated with the leased services. However, due to the 

resource sharing structure of the cloud, different tenants’ workloads compete for 

computing resource. This will affect tenants’ performance, especially during the 

workload peak time. So it is important for cloud database service providers to develop 

techniques that can tune the database in order to re-guarantee the SLA when a tenant’s 

SLA is violated. In this dissertation, two algorithms are presented in order to improve the 

cloud database’s performance in a multi-tenancy environment. The first algorithm is a 

memory buffer management algorithm called SLA-LRU and the second algorithm is a 

vertical database partitioning algorithm called AutoClustC. 

SLA-LRU takes SLA, buffer page’s frequency, buffer page’s recency, and buffer 

page’s value into account in order to perform buffer page replacement. The value of a 

buffer page represents the removal cost of this page and can be computed using the 

corresponding tenant’s SLA penalty function. Only the buffer pages whose tenants have 

the least SLA penalty cost increment will be considered by the SLA-LRU algorithm when 
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a buffer page replacement action is taken place. AutoClustC estimates the tuning cost for 

resource provisioning and database partitioning, then selects the most cost saving tuning 

method to tune the database. If database partitioning is selected, the algorithm will use 

data mining to identify the database partitions accessed frequently together and will re-

partition the database accordingly.  The algorithm will then distribute the resulting 

partitions to the standby physical machines (PMs) that have the least overload score 

computed based on both the PMs’ communication cost and overload status. 

Comprehensive experiments were conducted in order to study the performance of 

SLA-LRU and AutoClustC using the TPC-H benchmark on both the public cloud 

(Amazon RDS) and private cloud. The experiment results show that SLA-LRU gives the 

best overall performance in terms of query response time and SLA penalty cost 

improvement ratio, compared to the existing memory buffer management algorithms; and 

AutoClustC is capable of identifying the most cost-saving cloud database tuning method 

with high accuracy from resource provisioning and database partitioning, and performing 

database re-partitioning dynamically to provide better query response time than the 

current partitioning configuration. 
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Chapter I: Introduction 

1. Objective 

 The objective of this research is to develop a novel performance tuning technique for 

the cloud database that has the following abilities: 

i. Ability to estimate the monetary operational cost for different tuning methods 

(resource provisioning and database partitioning) and selecting the one with a 

lower cost; 

ii. Ability to monitor and manage the sharing buffer pool among multiple tenants in 

order to reduce the SLA penalty cost for the service provider; 

iii. Ability to distribute different partitions to the proper Virtual Machine (VM) 

instances in the same data center in order to provide high performance for the 

cloud database. 

 In the following sections, we present first the background of cloud databases in Section 

2, then existing performance tuning methods for cloud databases in Section 3, research 

issues that need to be addressed when applying database vertical partitioning to cloud 

database tuning in Section 4, the contribution of our research in Section 5, and finally the 

organization of the dissertation in Section 6. 

2. Database as a Service (DbaaS) 

 Cloud database, also called Database as a Service (DbaaS), can provide subscription-

oriented, enterprise-quality services with high availability, reliability and scalability [1].  

It may be defined as a pay-per-use model for enabling on-demand access to reliable and 

configurable services that can be quickly provisioned and released with minimal 

management. Users/tenants need not set up the infrastructure or buy the software, but pay 
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to the cloud service provider only for the services they use through a performance service 

level agreement (SLA) that specifies the performance requirements and the pricing 

associated with the leased services.  In recent years, DbaaS in the cloud has attracted a 

lot of attention. Major IT companies like Amazon, Facebook, Google, IBM, Microsoft 

and Yahoo! have provided large scale database management services. Some of them, such 

as Amazon SimpleDB [2], DynamoDB [3], Google Bigtable [4], and Yahoo! PNUTS [5], 

consist of large scale systems with a simplified query interface. Less scalable but fully 

relational approaches are also available, e.g., as Amazon RDS [6] and SQL Azure [7]. 

The reason why many major IT companies invest huge amount of money in the cloud 

database area is that DbaaS has the following benefits [8]: 

i. Easiness in administering the database 

The “ready-to-use” concept in DbaaS makes it easy for users to go from project 

conception to deployment. All major DbaaS providers provide Management 

Console, Command-Line Interface, or simple API for users to access the 

capabilities of a production-ready relational database in minutes. There is no need 

for the users to perform infrastructure provisioning, install database software or 

maintain a database system. 

ii. Easiness in scaling the database 

The users can scale their database's storage resources or computing resources 

within only several minutes by typing a few command lines through a Command-

Line Interface. If the users think that would be hard for them, they can even scale 

their database's storage or computing resources by just clicking a few buttons 
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through the Management Console. This would allow those users who have no 

solid computer background to re-configure the database very easily. 

iii. High availability and durability for the database 

DbaaS runs on the highly reliable infrastructures located in IT companies’ huge 

data centers. When a user provisions a database instance, DbaaS synchronously 

replicates the data to a standby database instance which is generally in a different 

availability zone or data center. DbaaS also performs backups, snapshots and host 

replacement automatically. All of these tasks make the database highly available 

and durable. 

iv. Fast database access 

Based on the application performance requirements, users may build their 

database servers with multiple virtual CPUs and may choose different storage 

options, such as choosing optimized SSD-backed storage for their high-

performance required applications or general-purpose magnetic storage for their 

low-performance required applications in which data is accessed less frequently. 

v. Secure database access 

DbaaS allows users to control network access to their databases. Many DbaaS 

providers also enable users to isolate their database instances and to connect to 

their existing IT infrastructure through an industry-standard VPN. This would 

make the data transfer process much more secure. 

vi. Low monetary cost for operation 
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Users pay very low rates and only for the resources they actually consume. In 

addition, DbaaS providers may offer different price options according to the data 

usage frequency. 

3. System Tuning for DbaaS 

 Databases in many cloud applications, such as those that process large volumes of 

sales transactions, medical records and scientific data, can be very large. The usefulness 

of these databases highly depends on how quickly data can be retrieved. Due to the change 

in tenants’ workload patterns, DbaaS usually serves more clients than a single machine 

or small cluster machine does, the performance of some tenants may degrade, and thus, 

the performance SLA may be violated. DbaaS providers have to handle such kind of 

problems in order to give their customers better user experience. Many efforts have been 

made on how to tune a cloud database in order to re-guarantee the minimum level of 

performance. Some existing solutions including (1) static and dynamic resource 

provisioning [9] [10], (2) queuing and scheduling [11], and (3) admission control [12] 

can be used to solve such a problem. But different approaches have different 

disadvantages as described below:  

i. Static and dynamic resource provisioning   

Provisioning is the process of allocating physical computing resources to VM. 

When the system detects that the pre-defined performance SLAs have a high 

chance to be violated, more resources such as CPU will be added to improve the 

situation. The static provisioning will provision a pre-defined amount of resource 

to the system, while dynamic provisioning will estimate the near future resource 

demand and provision the corresponding amount of resource to the system. A 
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major disadvantage of provisioning is that the data center operational cost will 

increase, especially for static provisioning. The consequence of the improper 

provisioning might be the negative profit to the service provider. 

ii. Queuing and scheduling 

Due to the high degree of tenants on cloud databases, sometimes the incoming 

queries are temporarily held in a queue and then scheduled based on some 

prioritization criteria, such as worse performance penalty cost. A major 

disadvantage of this queuing and scheduling method is that this solution only 

works for short-term load peaks, and some tenants’ performance may be heavily 

degraded due to their queries’ postponed execution.  

iii. Admission control 

Instead of doing queuing and scheduling, DbaaS may have new queries either 

stalled or rejected when performance SLAs have a high chance to be violated. The 

major disadvantage of this method is very similar to that of the queuing and 

scheduling solution, which is in order to guarantee some tenants’ performance 

SLAs, other tenants’ performance might have to be sacrificed since their queries 

were stalled or rejected. 

 Due to the disadvantages of the above discussed methods, researchers continue 

searching for new tuning solutions. Data storage improvement through database 

partitioning is one of them. By partitioning the database tables, the number of disk I/Os, 

and thus the query response time, can be reduced.  Database partitioning is a process that 

the database service uses to partition the database into smaller partitions so that when a 

query is processed, only the partitions required by the query need to be transferred from 
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disk to main memory, leading to a reduction in I/Os, and thus query response time. 

Database partitioning can also work as an alternative way to tune the cloud database when 

a performance SLA violation occurs. This method does not need extra resource 

provisioning from physical machines (PMs) to VMs, hence this method can reduce the 

data center’s operational cost on performance tuning. Database partitioning techniques 

can be classified into two major categories: horizontal partitioning and vertical 

partitioning [13], [14]. In horizontal partitioning, tuples are saved in the same disk block 

according to some specific relation. If users want to fetch all tuples based on that relation, 

the database service can easily locate those tuples on disk. In vertical partitioning, 

attributes are grouped together based on how often they are used in a query set. If we 

reorganize database tables in such a way that each table is partitioned vertically into sub-

tables/partitions and the database system, when executing the query, will access only the 

relevant sub table that contains the attributes in the query, then fewer pages from disk 

will be accessed to process the query [15], which reduces I/O time, and thus can lead to 

a better query response time. In many cases, horizontal and vertical partitioning are used 

together in order to provide better performance, which is called mixed partitioning [14]. 

In this dissertation, we mainly focus on tuning the DbaaS using vertical partitioning. 

4. Issues of Database Partitioning on Tuning DbaaS 

 Since the first vertical database partitioning algorithm [16] was developed in 1972, 

many vertical database partitioning algorithms have been proposed. Most of those 

algorithms are designed for a non-distributed environment; a few of those algorithms are 

designed for a distributed environment with a single tenant and none is designed for a 

distributed environment with multiple tenants, which is a cloud environment [1]. The 
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vertical partitioning algorithms for a non-distributed environment or distributed 

environment with single tenant, i.e., the traditional vertical partitioning algorithms, are 

not suitable for a cloud database environment.  The reasons are due to the following three 

major issues that cannot be solved using the traditional vertical partitioning algorithms: 

i. How to analyze and estimate the future resource demand and tuning cost for 

different tuning approaches so that a better tuning decision can be made in order 

to minimize the operational cost. 

Resource provisioning is a typical tuning method widely used in cloud computing 

since resource provisioning will eventually solve the performance SLA violation 

problem. Then why should the DbaaS providers consider a vertical partitioning 

tuning method? The reason is that, in practice, no provider can ignore the 

operational cost since that is so related to their profit, and resource provisioning 

can significantly increase the operational cost to the DbaaS providers. So if a cost-

saving performance retuning algorithm, such as vertical partitioning, can re-

guarantee the performance SLA, resource provisioning can be avoided. Then an 

important question is how to analyze and know the costs of vertical partitioning 

tuning and provisioning tuning. If the algorithm has no ability to estimate the costs 

for the two tuning methods, then there is no way to find out the correct cost-saving 

way to tune the cloud database.   

ii. How to monitor and manage the sharing buffer pool among multi-tenants so that 

the overall SLA penalty cost can be minimized. 

Sharing physical resources (CPU, RAM, I/O, and band width) is a considerable 

issue in clouds [17], [18]. This is because multi-tenancy is one of the key features 



8 

of clouds, where a large number of tenants’ databases with different SLA 

requirements are co-located in one environment and share the same physical 

resources.  Many database operations including database partitioning process 

which are designed to improve a specific tenant’s database performance cannot 

use the shared resources without consideration for other tenants. As we know, 

physical resource competing in a cloud database might sacrifice some tenants’ 

database performance due to the resource limitation.  In practice, different classes 

of tenants with different levels of SLAs might be co-located in the same VM 

instance, i.e., those tenants share the same computing resources. The SLA penalty 

costs may be different for different tenants. If there is no resource sharing 

monitoring mechanism, then there would be a chance that the SLA penalty cost 

will get very high once vertical partitioning tuning is applied to a cloud database. 

In a cloud database, the buffer pool shared by multiple tenants is one of the most 

important sharing resources, so how to monitor and manage the sharing buffer 

pool is a challenge to service providers. 

iii. How to distribute the resulting partitions to proper nodes in order to provide high 

performance.   

When a database table is partitioned, generally more than one partition will be 

generated. In a typical database partitioning process, more than one database table 

is partitioned, i.e., many partitions will be generated. How to deploy those 

partitions to different nodes is not an easy problem in a multi-tenant cloud 

environment. In practice, the DbaaS providers will distribute the partitions to 

different nodes in different availability zones in order to provide high service 
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availability and durability. However, what are the impacts of the partition 

distribution on other tenants using the same nodes? Adding a new partition to a 

node or removing an old partition from a node may change the resource utilization 

or workload on that node, which then affects the SLAs of all tenants on that node. 

Therefore, how to select proper nodes, which may be located in the same data 

center or a different data center, is a critical issue. 

5. Contribution 

 Cloud database tuning to re-guarantee tenants’ SLAs is an important process for all 

DbaaS providers. Because of the complex environment of cloud databases, tenants’ SLAs 

are occasionally violated.  Without an efficient database tuning technique, the DbaaS 

providers will incur high SLA penalty fees and therefore make the profit decreased or 

even negative. Unfortunately, the typical tuning method used by current DbaaS providers 

will lead to high data center operational cost. Database partitioning is an alternative 

method for cloud database performance tuning; but existing database partitioning 

algorithms can only partition database tables in a single tenant database environment.  

 In this dissertation, we propose two algorithms that together will provide an efficient 

algorithm to tune cloud database performance. The first algorithm, SLA-LRU, is a 

database buffer pool management algorithm. SLA-LRU controls the buffer page 

replacement by considering the pages’ frequency, recency and value. The frequency 

represents how often a page is referenced; the recency represents how long a page resides 

in the buffer pool and the value represents how expensive to remove a page from the 

buffer pool. SLA-LRU can efficiently manage the cloud database’s buffer memory and 

minimize the SLA violation penalty cost when performing the buffer page replacement 
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process in a resource sharing multi-tenancy environment. To our best knowledge, SLA-

LRU is the first practical buffer pool management algorithm which considers different 

tenants’ SLAs with a measurable metric in a cloud database. 

 The second algorithm, AutoClustC, has the ability to analyze and estimate the 

operational costs of two tuning methods, resource provisioning and database partitioning, 

on a cloud database, and select the lower cost tuning method to tune the cloud database 

in order to re-guarantee the tenants’ SLAs. AutoClustC uses the second order 

Autoregressive (AR) model [19] and Artificial Neural Network (ANN) model [16] to 

forecast the operation cost of the resource provisioning tuning method and database 

partitioning tuning method, respectively. If the database partitioning tuning method has a 

lower cost, a database partitioning algorithm based on the existing partitioning algorithm, 

AutoClust [20], is triggered to re-partition the database. Finally, the resulting partitions 

are distributed to proper nodes (PMs) in the same data center based on a “vote” 

mechanism, which votes for the best PM by computing the weighted overload score for 

each PM, in order to enhance the performance under an overloaded workload 

environment. To the best of our knowledge, AutoClustC is the first dynamic tuning 

algorithm based on database partitioning that is designed for cloud databases. 

6. Organization 

 The rest of the dissertation is organized as follows. Chapter II reviews the existing 

work related to cloud database performance tuning with a focus on database partitioning. 

Chapter III describes, SLA-LRU, our proposed technique on cloud database buffer pool 

management. Chapter IV describes AutoClustC, our proposed technique on cloud 

database tuning using database partitioning. Chapter V presents the analytical results as 
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well as the experimental results studying the performance of our techniques. Finally, 

Chapter VI provides conclusions and future research directions. 
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Chapter II: Literature Review 

 In this dissertation, two algorithms, SLA-LRU and AutoClustC, are proposed in order 

to solve all research issues presented in Section 4 of Chapter I. SLA-LRU is a database 

buffer management algorithm used to manage cloud database buffer pool based on 

tenants’ SLAs. AutoClustC is a cloud database performance tuning algorithm, which is 

able to find out the lower cost tuning technique between the two techniques, database 

partitioning and resource provisioning, and can tune the database when a specific tenant’s 

performance SLA is violated. AutoClustC can reduce service providers’ SLA penalty cost 

by considering tenants’ SLAs. In this Chapter, we first review the literature on database 

buffer pool management and then review the literature on resource provisioning and 

database partitioning. 

1. Database Buffer Management Algorithms 

 Database as a service in the cloud has attracted a lot of attention during the recent 

years. Major IT companies have provided large-scale database management services, 

such as Database.com [21], Google Cloud SQL [22], Windows Azure SQL Database [7], 

Oracle Database Cloud Service [23] and Amazon RDS [6]. In those multi-tenancy 

environments, multiple tenants with different performance SLAs share computing 

resources. Due to the resource overbooking characteristic in a cloud environment, how to 

manage the resource efficiently, especially the buffer memory, has attracted more and 

more attention. 

 When data is retrieved from the database, most recently accessed data will most likely 

be retrieved from the buffer pool, which serves as a cache of database pages and is crucial 
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for good performance. We call such data retrieval process logical I/O. If data cannot be 

found in the buffer pool, it has to be retrieved from disk, we call such data retrieval 

process physical I/O. Many existing techniques focus on how to manage the buffer pool 

efficiently so that the ratio of the logical I/O over the total I/O can be kept at a high level. 

The most famous one is LRU-K [24], which is used by most cloud databases today. The 

LRU-K algorithm is an extension of the LRU algorithm [25], which always replaces the 

least recently used buffer pages. LRU-K introduces a K parameter, which represents the 

number of times for which a page has to be referenced. Only when K reaches a specific 

threshold, the corresponding buffer page will be put into the buffer page list. By doing 

this, LRU-K will consider both the page’s recency and frequency rather than just 

considering the page’s recency (such as LRU), hence gives better performance.  

 Several other existing buffer management algorithms try to partition the buffer pool 

into two or multiple separate regions for different purposes. DBMIN [26] was proposed 

to allocate a separate buffer pool for each query. ARC [27] and its clock-based 

approximation CAR [28] divides the buffer pool into two parts: one region contains 

frequent pages, the other contains recent pages. The algorithm in [29] developed a multi-

buffer framework for saving energy consumption of accessing flash memory. All these 

algorithms focus on the goal of maximizing performance (i.e., hit ratio) for a given 

workload. They consider the recency and frequency of a referenced page so as to remove 

unnecessary pages. However, they have a common weakness when applied to the multi-

tenancy cloud environment in that they ignore the value of the referenced page, i.e., those 

algorithms ignore the cost of the removal of a page. Generally, pages belonging to 

different tenants have different values.  Improper page movement may increase the SLA 
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penalty cost to the provider. In order to solve this problem, a buffer management 

algorithm called MT-LRU [30] has recently been proposed. MT-LRU focuses on a multi-

tenancy environment. This technique considers the buffer page hit ratio degradation 

(HRD) as the metric in different tenants’ SLAs in order to manage the buffer pool. When 

a query accesses a buffer page, if it is found in the buffer pool, this access is referred as a 

hit, otherwise this access is a miss. The Hit Ratio (HR) is defined as 𝐻𝑅 =
ℎ

𝑁
, where N is 

the total number of pages accessed and h is the number of pages found in buffer pool. 

Then 𝐻𝑅𝐷 = max⁡{0, 𝐻𝑅𝐵 − 𝐻𝑅𝐴}, where 𝐻𝑅𝐵 is the hit ratio when the promised buffer 

pool is statically reserved for the tenant and 𝐻𝑅𝐴 is the hit ratio when the buffer pool is 

dynamically shared by multiple tenants. Though MT-LRU is the first buffer management 

algorithm considering the SLA violation issue for cloud databases, this algorithm has the 

following disadvantages: (1) the HRD is meaningless to the tenants when it works as the 

key metric in SLA, especially for tenants without corresponding database background, 

and thus they have no idea how to select the proper level of HRD; (2) in order to know 

the HRD, every read on a page has to be recorded and the number of page read actions 

has to be saved, which will add overheads to the algorithm; and (3) as discussed in [31], 

the biggest disadvantage of using HRD metric is that the HRD may change very little 

after a long period of database running, especially in the situation when database 

performance fluctuates significantly. Under such case, the HRD shows little variation, 

i.e., HRD cannot be used to detect a tenant’s SLA violation. That is why other metrics, 

such as Page Life Expectancy, are suggested to be used with HRD metric [31]. Overall, 

MT-LRU considers frequency and recency of a page as it is based on LRU-K which 

considers pages’ frequency and recency. It also considers the value of a page, which is 
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represented using HRD, but using HRD alone as the metric in SLA is less meaningful to 

tenants and may lead the failure to detect SLA violations when the performance of the 

database keeps fluctuating. In order to fix the weaknesses of MT-LRU, in this dissertation 

we propose SLA-LRU, an algorithm to efficiently manage the buffer pool in a multi-

tenancy database environment. This algorithm uses tenants’ buffer pool level, which is 

defined as the percentage of the total buffer pool size allocated to tenants, as the metric 

in the tenants’ SLAs. This algorithm is based on LRU-K and considers all three buffer 

page factors: recency, frequency   and value, when performing the page replacement. 

Value is represented by using a function to compute the penalty cost when a violation of 

an SLA that is based on buffer pool level occurs. Using the buffer pool level, instead of 

HRD, as a tenant’s SLA metric is more meaningful.  A low buffer pool level is a direct 

sign of an SLA violation. Thus, the system can correctly determine whether a tenant’s 

SLA is violated by measuring the actual buffer pool level used by the tenant. 

2. Resource Provisioning Algorithms 

 Resource provisioning on cloud is the process of allocating computing resource from 

PM to VM, i.e., it is a process of how to manage the system resources. Traditional 

Resource Management Systems (RMS) such as Condor [32], Load Leveler [32] and 

Portable Batch System [33], adopt system-centric resource allocation approaches which 

focus on optimizing overall system performance. They assume all users are equally 

important and disregard the actual SLAs of different users. Hence, they are not able to be 

used in a multi-tenancy environment in which different tenants’ requirements are crucial 

and need to be fulfilled. 
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 One of the main advantages of the cloud computing paradigm is that it simplifies the 

time-consuming processes of computing resource provisioning, which typically works as 

a way of re-guaranteeing higher Quality of Service (QoS) level to the tenants when SLAs 

are violated. The resource provisioning algorithm of a RMS for a multi-tenancy cloud 

should be able to address the following two major issues, which are not addressed in 

traditional RMS. 

Issue 1:  

First, such provisioning algorithm needs to be aware of the actual workload or resource 

demand patterns which the system has to deal with. Some patterns might be good for 

static resource provisioning; some patterns might be good for dynamic resource 

provisioning. In static resource provisioning, historical average resource utilization is 

computed and used as the amount of resource that is provisioned from PM to VM. After 

the initial static resource provisioning, the average resource utilization may not be 

recomputed for a long period of time. In contrast, dynamic resource provisioning is based 

on shorter timescales, and uses some Machine Learning or Statistic models to estimate 

the amount of resource provisioned from PM to VM. According to the description in [34], 

there are typically 4 cloud workloads or resource utilization patterns as shown in Figure 

1. In pattern (a) the workload or resource utilization follows an on/off style, i.e., the 

workload or resource utilization switches from two static values according to different 

time period.  In pattern (d) the workload or resource utilization is totally random, i.e., 

prediction is impossible using the historical data. So patterns (a) and (d) cannot be 

benefited from dynamic resource provisioning, and static resource provisioning should 

be used on these two patterns. In pattern (b) and (c) the workload or resource utilization 
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follows some style, and the workload or resource utilization has variety according to 

different time period. So patterns (b) and (c) may be benefited from dynamic resource 

provisioning, and dynamic resource provisioning could be used on these two patterns. In 

this section, we focus on the literature of dynamic resource provisioning since we use a 

dynamic method to forecast the cost of resource provisioning in this dissertation. 

 

Figure 1. Cloud workload patterns 

 

Issue 2: 

Second, the resource provisioning process needs to be cost-effective. When cloud 

service providers try to maintain the SLAs for different tenants, certainly they can 

provision huge resources to the specific VM in one time, but the weakness of doing in 

this way is that it may significantly reduce the service providers’ profit. Though the 

providers have to handle the performance degrading problem, which may be caused by 

heavy workloads or query pattern changes, they cannot charge extra fees to the users. 

Computing resource is a major operation cost to service providers, resource provisioning 
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will definitely increase the data center’s operation cost. So resource provisioning 

algorithm for a multi-tenancy cloud must take the cost into consideration. 

Several approaches have been proposed for dynamic resource provisioning. These 

approaches mainly focus on the perspective of cloud providers. In [35], the authors have 

presented an approach for dynamic resource provisioning of VM, which is called 

Sandpiper. The authors present a black-box strategy that is fully OS and application 

agnostic as well as a gray-box approach that can exploit OS and application level 

statistics. From those statistics, a unique metric, which is based on the consumption data 

of the three physical computing resources, CPU, network and memory, can be defined in 

order to make the provisioning decision. Sandpiper can automate the task of monitoring 

and detecting hotspots, determine a new resource mapping method from PM to VM, and 

initiate the necessary migrations in a data center. 

The paper [36] proposed a new self-adaptive capacity management framework that 

includes three models: a two-level SLA driven pricing model which gives rewards for 

throughput to be within SLA limits and penalty for throughput going above, an analytical 

queuing based performance model which captures application specific bottlenecks and 

the parallelism inherent to multi-tier platforms to maximize the provider's business 

objective, and a complex optimization model.  By combining those three models, the 

resource provisioning algorithm in [36] can significantly reduce the cost in terms of the 

provider's achieved revenues. But this approach would not be cost-effective in a situation 

where an application has numerous classes since different class may have different 

models. Also, according to the studies on the performance and cost in the DbaaS 

environments in [37], the authors have shown that given the range of the pricing models 
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and the flexibility of the allocation of resources in cloud-based environments, it is hard 

for users to figure out their actual monthly cost upfront. So using an inaccurate price 

model in resource provisioning may lead to a negative profit to the cloud providers. 

The authors of paper [38] developed an adaptive resource control system that 

dynamically adjusts the resource shares to individual tiers in order to meet application-

level QoS goals while achieving high resource utilization in the data center. The control 

system uses classical control theory, which carries out a black-box system modeling 

approach to overcome the absence of first principle models for complex enterprise 

applications, and relies on an approximate model which relates performance metric such 

as response time to the fraction of processor allocated to the VM in order to maintain high 

resource utilization rate. 

Dolly [39] is a resource provisioning system for cloud database, which uses VM 

cloning technique to spawn database replicas and provision resource for shared-nothing 

replicated databases in the cloud. This algorithm defines a database provisioning cost 

model in order to adapt the provisioning policy to the cloud infrastructure specifics and 

application requirements. 

Rogers et al. [40] proposed two approaches, white-box approach and black-box 

approach, for managing the resource provisioning for cloud databases. The white-box 

resource provisioning approach uses a finer grained estimation of the expected resource 

consumption of the workload, which relies on the DBMS optimizer to predict the physical 

resource (i.e., 1/O, memory, CPU) consumption for each query. The black-box resource 

provisioning uses coarse-grained profiling to characterize the workload's end-to-end 

performance across various cloud resources. 
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Kingfisher [41] is a cost-aware system that provides support for elasticity in the cloud. 

The algorithm works in two steps: (1) leveraging multiple mechanisms to reduce the time 

to transition according to new configurations, and (2) optimizing the selection of a virtual 

server configuration in order to minimize the cost. Kingfisher can significantly decrease 

the cost of resource provisioning compared to the current cost-unaware approach, but this 

algorithm does not address any SLA violation related issues.  

Recently, several open source VM management platform solutions, such as Eucalyptus 

[42] and OpenStack [43], have been developed in order to build Infrastructure as a Service 

(IaaS) clouds. Those solutions are designed to allow third-party extensions through 

modular software framework. Besides those open source VM management platform 

solutions, many market-based systems, such as [44] [45], have been proposed to manage 

allocations of computing resources from PM to VM. However, none of these market-

based systems has yet incorporated tenant-driven service management with automatic 

resource management. 

Our research in this dissertation mainly focuses on how to tune the cloud database 

using a database partitioning technique. But in order to show database partitioning based 

tuning is more cost-effective than traditional provisioning tuning in some cases, we 

propose a time-series based cost estimation method for resource provisioning. This 

method can track the tenant’s historical resource (we use CPU as an example) utilization, 

and use the auto-regressive (AR) model [19] to estimate the near future resource that is 

allocated from PM to VM once a SLA violation occurs. An AR model can describe a 

certain time-varying process in which the output variables depend linearly on this 

process’s own previous values and on a stochastic term. 
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3. Database Partitioning Algorithms 

 In this section, the literature review is divided into three subsections. Subsection 2.1 

discusses the existing work done in database vertical partitioning in non-distributed 

environments. Subsections 2.2 and 2.3 discuss vertical database partitioning algorithms 

for distributed environments with a single tenant and multiple tenants, respectively. 

3.1. Database Partitioning in Non-Distributed Environments 

 The first well-known database partitioning algorithm was introduced in 1972 with the 

name of Bond Energy Algorithm (BEA) [16]. This algorithm is an attribute affinity based 

algorithm. It uses a two-dimension array to represent the relationship between two 

different kinds of variables, row variable and column variable. Each column represents 

one kind of variable and each row represents the other kind of variable. Each element in 

the array is represented by a numerical value, which usually is an integer, to show the 

relationship between the row and column variables corresponding to this element. This 

algorithm permutes rows and columns of the array in order to group elements with similar 

values together. At the end of the algorithm, elements with similar values are located in 

the same block in the array and each block can be considered as a partition. When doing 

permutation on the array, the algorithm needs user’s subjective judgment to tell the 

similarity of elements; so this algorithm is hard to implement without human 

interpretation. Sometimes blocks may have overlaps and some elements do not belong to 

any block. It means the partitioning result is not always as good as what people expect. 

Later, after the development of BEA, another new important algorithm emerged, 

which was called Navathe’s Vertical Partitioning (NVP) [15]. NVP is also an attribute 
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affinity matrix based algorithm. This was the first time that a partitioning algorithm 

considers the frequency of queries and reflects the frequency in the attribute affinity 

matrix on which partitioning was performed. NVP is an extension and improvement of 

BEA. This algorithm repeatedly does binary vertical partitioning (BVP) on a larger 

fragment, which is obtained from the previous BVP, to form two fragments. This process 

will not stop until the fragment cannot be partitioned further. An evaluation function is 

used to determine which fragment should be selected and whether it can be partitioned 

further. This algorithm is only suitable for a small query set because of the O(2n) time 

complexity where n is the number of times the binary partitioning (which is proportional 

to the number of queries) is repeated. If fragment overlapping is allowed, the time 

complexity will be even bigger than that. 

 Later, after the NVP algorithm, a new algorithm called the Optimal Binary Partitioning 

algorithm was proposed in [46]. This algorithm uses the branch and bound method [47] 

to construct a binary tree in which each node represents a query. The left branch of a node 

represents the attributes being queried by the query that are included in a reasonable cut 

(a reasonable cut is a binary cut that partitions the attributes into two sets; in these two 

sets at least one of them is a obtained fragment which is the union of a set of attributes 

that the query accesses). The right branch of a node represents the remaining attributes. 

If all attributes of an unassigned query are contained in the fragment of the current node, 

then this query needs not be considered as the child of the current node. This algorithm 

focuses on a set of important queries rather than attributes themselves. It does reduce time 

complexity compared to the NVP algorithm but it does not consider the impact of query 

frequency, and also its run time still grows exponentially with the number of queries. 
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 Some algorithms use a graph search technique when doing partitioning. The paper [48] 

is an example which uses a graph theory based clustering technique. The attributes usually 

queried together are used to form a similarity graph. Vertices of the graph are elements 

and edges connect elements that have similarity values higher than a predefined threshold. 

Partitions are the subgraphs with edge connectivity containing more than half the vertices. 

When this technique is implemented for vertical database partitioning, a vertex represents 

an attribute and an edge represents how often the two attributes connected by this edge 

will appear together in the same query. Then the algorithm will traverse the graph and 

divide the graph into several subgraphs, each of which represents a cluster. This technique 

considers frequent queries and infrequent queries to be the same and this may lead to 

inefficient partitioning results. This is because attributes that are usually accessed 

together in infrequent queries but are not accessed together in frequent queries may be 

put in the same fragment if all queries are considered to be the same. 

 A more recent attribute partitioning algorithm was introduced in [49], which uses the 

idea of performing clustering based on an attributes affinity matrix from [15]. This 

algorithm starts with a vertex V that satisfies the least degree of reflexivity and then finds 

a vertex with the maximum degree of symmetry among V’s neighbors. Once such a 

neighbor is found, both V and its neighbor are put into a subset. The neighbor becomes 

the new V. The process continues to search for neighbors of the most recent V recursively 

until a cycle is formed or no vertex is left. After that, the fragments will be refined using 

a hit ratio function. The disadvantage of this technique is similar to the disadvantage of 

the algorithm proposed in [48] since infrequent queries are treated the same as frequent 

queries. 
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 Along with the increase of processor’s speed and the sophistication of software, 

database systems become cleverer and more powerful than ever before. Researchers then 

realized that a database system itself can give a lot of help on physical database design to 

developers. It gives the researchers a new direction when they are working on physical 

database design. Such an example is presented in [50], where a new idea of using the 

query optimizer of a database system for automated physical design was proposed. The 

authors introduced a cost estimation technique which uses the query optimizer of a 

database system for physical database design. A query optimizer can gather useful 

statistic information from system views and perform what-if calls [51] to help the 

database system to make a decision on selection of the best query execution plan among 

multiple query execution plans without running the query. Some of later database 

partitioning algorithms used the idea in [50]. 

 The AutoClust algorithm [20] is an example of using a query optimizer to generate 

partitioning solutions. Since our proposed techniques use AutoClust as the database 

partitioning technique we shall describe the workflow of AutoClust step by step here. 

There are five steps in the AutoClust algorithm. 

 Step 1: An attribute usage matrix is built based on a query set indicating which query 

accesses which attributes.  

 Step 2: The closed item sets (CIS) [52] of attributes are mined. An item set is called 

closed if it has no superset having the same support which is the fraction of queries in a 

data set where the item set appears as a subset [52]. CIS can tell us which attributes are 
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accessed frequently by the same query. We want to keep such attributes in the same 

cluster (partition) together as much as possible.  

 Step 3: Augmentations to add the primary key of the original database table to each 

existing closed item set are done to form the augmented closed item set (ACIS) which is 

a combination of CIS and the primary key. Then duplicate ACIS are removed.  

 Step 4: An execution tree is generated where each leaf represents a candidate attribute 

clustering (or vertical database partitioning) solution.  

 Step 5: The solutions are submitted to the query optimizer of the database system that 

will process the queries for cost estimation and the solution with the best estimated query 

cost is chosen as the final vertical database partitioning solution.  

 The authors of AutoClust algorithm also proposed some ideas of how to extend 

AutoClust to cluster computers. According to the authors’ ideas, multiple partitioning 

solutions are selected from the candidate partitioning solution pool. These selected 

partitioning solutions are the best solutions (i.e., the ones that have the best average query 

estimated costs) and are implemented on the computing nodes in a round robin order. 

Every future incoming query will be routed to the computing node containing the partition 

that gives the best estimated query cost for the query execution. AutoClust uses a fixed 

query set as the algorithm input and mines CIS from that query set to generate multiple 

partitioning solutions. We call such partitioning algorithm a static or semi-automatic 

partitioning algorithm. This algorithm runs only once; if users want to do re-partitioning 

they have to monitor the database performance and trigger AutoClust by themselves. The 

authors did not present any performance results of their algorithm.  
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 The DYVEP vertical partitioning algorithm was proposed in [53]. DYVEP can 

partition the database when queries are on the fly, i.e., it is a dynamic vertical partitioning 

algorithm for database systems. DYVEP monitors queries in order to accumulate relevant 

statistics for the vertical partitioning process. It analyzes the statistics in order to 

determine if a new partitioning is necessary; if yes, it triggers a vertical partitioning 

technique (VPT) to generate a new partitioning solution. The VPT could be any existing 

VPT that can make use of the available statistics. The algorithm then checks to see if the 

new partitioning solution is better than the one in place; if yes, then the system reorganizes 

the database according to the new partitioning solution. This algorithm depends heavily 

on the VPT being used and the set of rules that it develops to decide when to trigger the 

VPT. The algorithm does not address how it would take advantage of distributed 

databases that have partial or full replication so that queries can be directed to nodes that 

yield the best query costs to execute them. DYVEP is not a new algorithm to be more 

exact as it cannot work without a VPT algorithm. It just gives a way of how to re-run an 

existing VPT algorithm automatically. 

 AutoStore is the first true dynamic vertical partitioning algorithm that is presented in 

[54]. AutoStore is a self-tuning data store that can free DBAs from monitoring the current 

workload. This algorithm has the ability to automatically collect queries and partition the 

data at checkpoint time intervals. When enough queries are collected, the algorithm will 

update the old attribute affinity matrix and do permutation on this matrix to make the 

matrix have the best quality (the quality can be calculated using BEA [16]). Then 

AutoStore will do partitioning on the new matrix and use the greedy method to find out 

the best way to cluster the attributes in the new matrix based on the estimated cost from 
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the query optimizer. Once the best partitioning solution is found, the costs of building the 

new partitions and the estimated benefit brought by the new partitions will be calculated 

separately. If the benefit is larger, the re-partitioning action will be triggered; otherwise 

re-partitioning will not be triggered.  

 AutoStore is the first solution to solve the vertical database partitioning problem with 

a fully automatic online approach. Unfortunately this algorithm has several problems. 

The first is that the authors did not give any clue on how many queries (in the article this 

number is called CheckpointSize) we need to collect so that we have enough statistics to 

permute and partition the attribute affinity matrix. The second problem, which is more 

serious, is that this algorithm will run re-partitioning checking (i.e., checking to see if re-

partitioning is needed) every time the number of queries collected is equal to the 

CheckpointSize no matter what performance trend it has at that time. This means that the 

re-partitioning checking process will be triggered even when the performance is still 

good. As we know re-partitioning checking is very expensive and should not be run too 

often; but AutoStore does re-partitioning checking before checking the performance 

trend. This is not an inefficient way to do re-partitioning. 

 Till now we have reviewed many database partitioning algorithms, but they were 

designed for non-distributed environments, so none of the above database partitioning 

algorithms has the ability to analyze different SLAs for different tenants. That is why 

those algorithms cannot be used on cloud databases. In the next subsection, we will 

review database vertical partitioning algorithms designed for single-tenant distributed 

environments. 
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3.2. Database Partitioning in Single-Tenant Distributed Environments 

 Along with the development of new partitioning algorithms, some work has been done 

on evaluating the performance of distributed databases on cluster computers. The results 

show that distributed databases can greatly improve the performance and satisfy business 

requirements [55]. Because of this, distributed databases have become widely used and 

important for many applications, which call for more research to find ways to improve 

their physical database design.  In this section, we review existing database partitioning 

algorithms for single-tenant distributed databases. 

 A database partitioning algorithm on cluster computers, ElasTras, was introduced in 

[56]. This algorithm is a database schema level partitioning algorithm. The key idea of 

database schema level partitioning is that for a large number of database schemas and 

applications, transactions only access a small number of related rows which can be 

potentially spread across a number of database tables. ElasTraS takes the root database 

table of a tree structure database schema as the primary partitioning database table and 

the other nodes of the tree as the secondary partitioning database table. The primary 

partitioning database table is partitioned independently of the other database tables using 

its primary key. Because the primary database table’s key is part of the keys of all the 

secondary database tables, the secondary partitioning database tables are partitioned 

based on the primary database table’s partition key. Then all partitions will be spread 

across several Owning Transaction Managers, which own one or more partitions and 

provide transactional guarantees on them. Analyzing a database schema is much more 

difficult than analyzing a database table and this algorithm is generally configured for 

static partitioning purposes. Though the authors point out that this algorithm is for cloud 
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databases, the paper does not address any issues for a multi-tenancy environment. So we 

still regard this algorithm as a database partitioning algorithm in a single-tenant 

distributed environment. 

 In [57], the authors proposed an algorithm called FINDER that aims to find the optimal 

distribution policy for a set of database tables given a target workload. The assumption 

of this algorithm is that the workload is given and the future workload should be very 

similar to the one used by the algorithm. So it is a static algorithm. For a given database 

table set T = {T1, …,Tt}, this algorithm can find the distribution policy D = {X1, …, Xt} 

where Xi is a set of attributes and Ti is distributed based on Xi. The tuples of a database 

table will be assigned to different segments according to the hash value of Xi. We can see 

that this algorithm is used to statically partition the database tables on cluster computers. 

 The Amossen algorithm [58] is a partitioning algorithm used only on OLTP 

applications. Generally an OLAP application contains lots of many-row aggregates and 

likely benefit from parallelizing its queries on multiple sites and exchanging small sub 

results between the sites after the aggregations. It means that the queries happening on 

such system are usually very complex. In an OLTP application, on the other hand, there 

are many short queries with no many-row aggregates or few-row aggregates and the 

queries only gather all attributes from the same site. It means that the queries happening 

on such system are usually very simple. In [58] the authors presented a cost model and 

then used simulated annealing to find the close-to-optimal vertical partitioning with 

respect to the cost model. In this algorithm, the queries must be very simple and have to 

avoid breaking single-sitedness. So we can regard this algorithm as a static algorithm. 
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 HACA algorithm was presented in [59]. This algorithm is based on an existing object 

clustering technique called ant clustering technique, which was first proposed in  [60]. As 

the name described, this existing object clustering algorithm is an unsupervised learning 

technique based on ants’ behaviors. It is used to simulate the ant movement in nature to 

pick or drop objects so as to cluster objects with similar patterns together. In HACA, a 

hybrid ant clustering technique is used to partition attributes in a database table according 

to the transaction patterns. After the partitioning process, attributes with similar 

transaction patterns will be grouped together and the sum of irrelevant local attribute 

access cost and relevant remote attribute access cost will be minimized. Irrelevant local 

attribute access cost represents the cost spent on reading irrelevant attributes from a local 

partitioning fragment; relevant remote attribute access cost represents the cost on reading 

relevant attributes from a non-local partitioning fragment. Since the vertical partitioning 

problem has very high complexity in terms of being NP-Hard [61], the performance of 

HACA heavily relies on the iterations of the ant clustering technique used in the whole 

partitioning process. The more iteration the higher performance the partitioning solution 

will be. But the times of iteration is a user defined parameter; if this number is set to a 

small value, the partitioning result will lose accuracy and if this number is set to a very 

large value, the algorithm will take a very long time to run. 

 Genetic algorithm-based clustering (GAC) was proposed in [62]. This algorithm 

formulates a database partitioning algorithm into the travelling salesman problem. This 

algorithm works in 5 steps. In Step 1, some initial solutions are randomly generated. They 

are considered as the first generation or the parents of next generation solutions. In Step 

2, a code is proposed to represent each solution. This code can be either binary or non-
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binary. In Step 3, every pair of individuals from the current generation exchange their 

genetic composition. The offspring inherits some genes from parents during the crossover 

operation. For each offspring, it still has the same code format as its parents. In step 4, an 

offspring alters its gene with a very small probability, thus the algorithm can provide a 

small amount of random search on the offspring. Step 4 is optional in GAC. In Step 5, a 

fitness function is used to evaluate the fitness of each offspring in order to select the best 

offspring which will be used as the parent for the next generation. The above 5 steps are 

performed repeatedly until a certain criterion is met. GAC assumes the transactions or 

workload profile is known in advance, i.e., GAC uses an existing transaction set to 

perform vertical partitioning. If the users want to re-partition the database tables they 

have to re-collect the most recent transactions as the input of the algorithm, which is time-

consuming and needs DBA with solid physical database design knowledge to find out 

useful transactions, which are those transactions with high physical read ratio and high 

frequency. This algorithm does not separate the logical I/O transactions from the physical 

I/O transactions. Also this algorithm does not mention anything about how to distribute 

partitioning results to different nodes and how to perform query routing. 

 The partitioning algorithms reviewed in this subsection are designed for a distributed 

database running on cluster computers with a single tenant. The same as the algorithms 

discussed in Section 3.1, the algorithms discussed in this subsection have no ability to 

make SLA based partitioning decisions. In recent years, cloud database becomes very 

popular because of its pay-per-use model. In a cloud database, more than one tenants are 

competing resources of the same PM. The database partitioning algorithms designed for 

cluster databases cannot work well any more. That is why some new database partitioning 
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algorithms are developed for cloud databases. In the next subsection, we review those 

algorithms. 

3.3. Horizontal Database Partitioning in Multiple-Tenants Distributed Environments 

 Horizontal partitioning has been used on existing commercial cloud based database 

systems, like SQL Server in Microsoft Azure [63], [64]. Cloud SQL Server composes of 

five layers: (1) Infrastructure and Deployment Services layer, (2) Distributed Fabric layer, 

(3) Database Engine layer, (4) Distributed Query Services layer, and (5) Protocol 

Gateway layer. Partitioning activities and partition management are done by the 

Distributed Fabric layer. The Distributed Query Services layer is responsible for routing 

queries to the appropriate partition for single-partition queries and to coordinate queries 

across partitions for multi-partition queries. 

 In [65], a relational cloud model is presented, in which a dynamic horizontal 

partitioning technique is used to scale a single large database to multiple nodes using a 

workload-aware strategy presented in [66]. The dynamic horizontal partitioning process 

is done by analyzing query execution traces and identifying tuple groups that are accessed 

together by individual transactions periodically. The execution trace can be represented 

as a graph. Each graph node represents a group of tuples. The weight on an edge between 

two graph nodes whose tuples are accessed by a single transaction reflects the frequency 

of such pair-wise accesses in a workload. Balanced logical partitions can be found by 

minimizing the total weight of the cut edges. The output of the partitioning algorithm is 

a mapping of individual tuples to logical partitions. Then query routing is done by finding 

a set of predicates on the tuple attributes. The algorithm does not consider the 

requirements of other tenants when partitioning data for one tenant.  
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 In [67], the authors propose several methods to scale databases from a small number 

of nodes (p) to a large number of nodes (q). The simplest method does a brute force 

matching of the current p data partitions to q data partitions under certain partitioning 

constraints. An advanced method is to pre-partition the data into fine-grain chunks and 

manage data partitions that are aligned and mapped to the chunks. Data movement is 

improved by using a hierarchy of pre-computed partitions; however the algorithm is 

static.  

 In [68], an elastic and scalable data management system (ElasTras) for the cloud is 

presented. Unlike other partitioning techniques that are table-level partitioning (either 

horizontal or vertical), the partitioning technique used by ElasTras is schema-level 

partitioning. The algorithm proposed in [68] is an improved version of the algorithm 

presented in [56]. The new algorithm addresses issues for a multi-tenancy environment. 

It uses a partitioned database design based on the principle of key-value stores, in which 

an associative array is used as the fundamental data model. In this data array model, data 

is represented as a collection of key-value pairs where each possible key appears at most 

once in the collection. This data storage structure allows related data fragments of 

different database tables to be stored in the same partition. ElasTras has the ability to 

automatically consolidate the database for small tenants and partition and scale out the 

database for big tenants, so it can be considered a dynamic schema level partitioning 

technique. 

 In [69], the authors modeled the workload as a hypergraph and tried to minimize the 

number of average query spans after partitioning the data. This algorithm can monitor the 

change of workload and incrementally repartition the database and place the data to 
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different nodes in small steps without having to complete the whole repartitioning 

process. This algorithm can deal with the partition relocation problem when workload 

changes. Though this algorithm is dynamic, it does not address how resource limitation 

will impact the partition relocation results and how the results for one tenant will impact 

other tenants’ SLAs. 

 The algorithms discussed in this subsection are designed for a cloud environment, but 

they are used for scale out purposes. None of them is vertical partitioning.  Besides 

horizontal partitioning for relational database clouds, there are partitioning algorithms for 

non-relational databases, such as [70] which performs horizontal partitioning based on 

data mining for NoSQL databases. While all algorithms except the one in [67] are 

dynamic, only [65] provides a method for routing queries to appropriate nodes, and none 

of them handles queries requiring physical I/Os separately from those requiring logical 

I/Os.  Concerning the aspects of distribution and parallel in a cluster computer 

environment, none of these algorithms provides multiple partitioning solutions or 

includes a method to distribute partitions to different nodes.  In addition, these algorithms 

do not address the research issues specific to multi-tenancy in clouds, which are discussed 

in Section 4 of Chapter I, as they do not monitor, model and analyze buffer pool sharing 

among tenants and their resource utilization to decide on re-partitioning for a specific 

tenant, and do not consider the impact of new partitions over the SLAs of other tenants. 

In this dissertation we propose algorithms which aim to address all the research issues 

associated with vertical database partitioning for multi-tenant cloud databases. 
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Chapter III: A Proposed Buffer Pool Management Technique for 

Cloud Databases 

When data is retrieved from the database, most recently accessed data will most likely 

be retrieved from the buffer pool. Generally, such data retrieval is called logical I/O. If 

data cannot be found in the buffer pool, they will be read from disks first instead of from 

the buffer pool. Such data retrieval is called physical I/O. In DbaaS, the buffer pool is 

usually shared by multiple tenants, and the management of the buffer pool directly 

impacts the query response time. This is because tenants will compete for using the buffer 

pool, especially as the size of the buffer pool is limited. The operation of one tenant on 

the buffer pool may impact other tenants, so improper management of the buffer pool will 

directly increase the query response time for most tenants, which finally leads to a cost 

increment to DbaaS providers due to the SLA penalty cost. 

In order to reduce the SLA penalty cost to DbaaS providers, in this chapter we present 

an algorithm called SLA-LRU. SLA-LRU is a buffer pool management algorithm which 

can manage the buffer pool level for different tenants in an efficient way by considering 

the SLA penalty cost for different tenant. SLA-LRU first computes the possible SLA 

penalty cost increment for different tenants based on a pre-defined SLA penalty cost 

function when there is no free memory buffer page left in the buffer pool. Then the 

algorithm will free the buffer pages with the least removal cost from those least recent 

used pages in the buffer pool. 

Next, we will present SLA-LRU in the following sections of this chapter. In Section 

1, we briefly discuss the motivation of our new buffer management algorithm, SLA-LRU. 

In Section 2 an overview of SLA-LRU will be presented. Then in Section 3 and Section 
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4 we present our SLA penalty cost function model and the workflow of SLA-LRU 

respectively. In Section 5 we discuss the overheads of SLA-LRU comparing to the LRU-

2 algorithm. 

1. Motivation of SLA-LRU 

Many modern database systems, such as Oracle, MySQL and Microsoft database 

products [30], are using LRU-2 or a variant of LRU-2 as their buffer management policy. 

LRU-2 is a specific version of the LRU-K algorithm (K=2), which was proposed in [24]. 

The main idea of LRU-2 is to keep track of two lists, the referenced page list and the 

buffer page list, as shown in Figure 2.  

 

Figure 2. Main idea of LRU-K (K=2) 

When a page is referenced for the first time, it will be added to the referenced page 

list. This page’s reference time will be increased by 1 when it is referenced again. When 

this page’s reference time is 2, i.e., the page has been referenced two times, it will be 

moved to the buffer page list, which is ranked based on the pages’ timestamps in the 
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decreasing order (the oldest page is at the top of the list). When a page replacement occurs 

in the buffer pool, the page with the oldest timestamp in the buffer page list will be 

removed from the buffer pool and the buffer page list. We can see thatLRU-2 considers 

two factors when performing page replacement: page recency and page frequency. By 

defining the K parameter, LRU-2 considers the page frequency factor; and by ranking the 

pages in the buffer page list based on the pages’ timestamps and removing the oldest 

timestamp page from the buffer pool, LRU-2 considers the page recency factor. Though 

LRU-2 performs well in a normal database system, it cannot satisfy the needs in a multi-

tenancy database system since not all tenants’ page values are equal. A tenant’s page 

value represents the page removal cost. If tenant A’s buffer pages’ value is bigger than 

tenant B’s buffer pages’ value, the page removal for tenant A may have a higher cost than 

the page removal for tenant B. From the description of LRU-2, we can see that LRU-2 

has no ability to handle different buffer pages’ values, i.e., LRU-2 cannot guarantee low 

SLA penalty cost. In order to remove this weakness of LRU-2 in a multi-tenancy 

environment, we propose our SLA-LRU buffer pool management algorithm. 

2. Overview of SLA-LRU 

SLA-LRU is based on the classic LRU-2 algorithm, i.e., SLA-LRU considers the page 

frequency using the K parameter (K = 2), and considers the page recency using the page 

timestamps. The buffer pages in the buffer page list are ranked based on the page 

timestamp in a decreasing order, so the most recent page will be at the bottom of the list, 

and the least recent page will be at the top of the list. Then the buffer page list is divided 

into two portions by a page with timestamp t* at the α percentile position of the buffer 
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page list. Only the buffer pages located in the portion in which the page timestamp is 

earlier than t* will be considered as the least recent pages. 

Besides frequency and recency, SLA-LRU also considers the value of a page when 

releasing a page from the buffer page list. We use the term value to represent the 

importance of a page, and the value of a page is computed using the SLA penalty cost 

function which will be discussed in detail in Section 3. SLA-LRU only releases the pages 

that have the lowest penalty cost increment from the least recent pages. Table 1 presents 

the list of symbols used by SLA-LRU in this dissertation and the rest of this section 

discusses SLA-LRU in detail. 

Table 1. List of symbols used by SLA-LRU 

Symbol Interpretation 

K The referenced frequency of a page (K equals to 2 by default) 

t* The timestamp of the page at the α percentile position in the buffer page 

list 

α User defined percentile of the buffer page list 

𝑓(𝑥) SLA penalty cost function 

𝑓𝑖(𝑥) SLA penalty cost function of tenant i 

Δ𝑥 The change of the buffer pool level 

Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦 The change of the penalty cost 

 

3. Buffer pool level related SLA penalty cost model 

Due to the characteristic of multi-tenancy of the cloud database, resources used by 

the database will be shared among multiple tenants. We take the deployment of Amazon 

RDS as an example to illustrate the resource sharing architecture of a cloud database. 

Amazon RDS implements its multi-tenancy architecture by provisioning different EC2 

instances to different AWS users. Each user can create multiple, highly varied database 
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instances on this user’s EC2 instance. Those database instances can vary on the storage 

size and compute resources. Amazon provides different EC2 instance purchase options 

to its customers. Those options include “On-Demand”, “Reserved”, “Spot” and 

“Dedicated” [71]. When an EC2 instance is launched, the user may determine the 

hardware of the host computer used for this instance type. Each instance type has different 

CPU, memory, and storage capabilities [72]. So different Amazon RDS database 

instances may reside either on the same Amazon EC2 instance or on different Amazon 

EC2 instances. For a specific Amazon RDS instance type, it may have various purchase 

options or priorities. The pre-defined SLAs with different instance priorities should be 

different, and DbaaS providers may promise different buffer pool levels in SLA to 

different tenants with different instance priorities. 

The buffer pool in a DBMS is a cache of database pages and plays an important role 

for good workload performance [30]. When a tenant purchases a database instance, the 

service provider provisions a specific memory for this database instance. In practice, the 

provisioned memory may not always be used as the buffer pool for this tenant since the 

memory may be shared by other tenants. So we propose to use the average buffer pool 

level in a specific time period of a tenant as the metric in the tenant’s SLA, where the 

buffer pool level is the percentage of the total buffer pool size. For a different tenant 

priority, this average buffer pool level may be different. A tenant with a higher priority 

may have a higher average buffer pool level. 

The penalty cost function defines how the service provider will be charged when the 

buffer pool level assigned to a tenant could not meet the promised level. The penalty cost 

function is a part of the SLA. Often major DbaaS service providers do not expose the 



40 

SLA metrics which are directly related to buffer performance, such as buffer hit ratio, to 

their customers since those metrics may not be meaningful to many customers. However, 

the metrics, such as the average buffer pool level which is based on the total buffer pool 

size, are easier to be understood by customers. When tenants sign the SLAs with DbaaS 

providers, they can choose their desired buffer pool level, just like what they do in 

choosing the level of the CPU or memory for their database instances. 

For a tenant, the penalty cost function quantifies a possible compensation for the 

performance degradation. For a service provider, the penalty cost function shows the 

priority of resource allocation across different tenants. A penalty cost function can be 

either linear or non-linear. If a penalty cost function is non-linear, it can be either step-

based or non-step-based. Three possible patterns of the penalty cost function are shown 

in Figure 3. In pattern (a), the penalty cost increases exponentially when the tenant’s 

actual buffer pool level decreases. In pattern (b), the penalty cost has a linear relationship 

to the tenant’s actual buffer pool level. In pattern (c), the penalty cost has a step-based 

relationship to the tenant’s actual buffer pool level. No matter which penalty cost function 

is used, the service provider has to refund some portion of the service fee to the tenant if 

the actual buffer pool level cannot reach the promised level.  

 

Figure 3. Penalty cost function examples 
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When two tenants are competing for a computing resource, the service provider can 

decide the priority of resource allocation by estimating their penalty cost changes. A 

penalty cost change, 𝑓(𝑥1) − 𝑓(𝑥2), represents the penalty cost difference when a tenant’s 

buffer pool level changes from x1 to x2, where 𝑓(𝑥) is the penalty cost function. Let us 

consider an example in which tenant A is using the penalty cost function pattern (a), 

tenant B is using the penalty cost function pattern (b), and the promised buffer pool level 

defined in the SLA of each tenant is k. Also, assume that for the current system, there is 

no free buffer page available, and the actual buffer pool level used by each tenant is k. 

Now the system is requesting r free buffer pages for either tenant A or tenant B due to the 

increasing workload. If the system plans to release r buffer pages from tenant A’s buffer 

pool portion, then the penalty cost of releasing r buffer pages from tenant A’s buffer pool 

portion is 𝑓𝑎A(𝑘−𝑟)−𝑓𝑎A(𝑘); otherwise, if the system plans to release r buffer pages from 

tenant B’s buffer pool portion then the penalty cost is 𝑓𝑏B(𝑘−𝑟)−𝑓𝑏B(𝑘). Both the penalty 

costs are caused by missing the guarantee of the promised buffer pool levels in the SLAs 

of the two tenants, and are shown in Figure 4.  

If the maximum amount of the penalty fee for buffer SLA violation is the same for 

both tenant A and tenant B, then from Figure 4 we can see that the penalty cost of 

releasing the buffer pages from tenant A’s buffer pool portion is much smaller than the 

penalty cost of releasing the buffer pages from tenant B’s buffer pool portion. So, the 

service providers should release the buffer pages from tenant A’s buffer pool portion to 

make free buffer pages for the incoming queries in order to reduce the penalty cost caused 

by missing the guarantee of the promised buffer pool level.  
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Figure 4. Penalty cost change for tenant A and tenant B with SLA violation 

penalty function of pattern (a) and pattern (b), respectively 

 From the above example, we can see that the penalty cost change trends can be used 

to determine different tenants’ buffer allocation priorities when buffer reallocation is 

required. 

 Our algorithm can use any pattern of the penalty cost function. In our experiments, we 

use the step-based pattern (pattern (c) in Figure 3). The reason is that the step-based 

penalty functions are used widely in both practice and theory. For example, in practice, a 

step-based vCPU penalty cost function is used for Amazon T2 instance [73]; in theory, a 

step-based resource penalty cost function is used in [74]. The penalty cost function used 

for our experiments will be presented in detail in the performance analysis chapter, 

Chapter V. 

4. Workflow of SLA-LRU 

In a single-tenancy environment, the system does not have to consider the penalty 

issue caused by page replacement since all pages belong to a single tenant. However, in 

a multi-tenancy environment, the penalty cost function for each tenant may be different; 

so, considering the penalty cost change is necessary for a cloud database when a page 

replacement occurs. If 𝑓𝑖(𝑥) is used to represent the penalty cost function of tenant i, then 

𝑓𝑖(𝑥 + ∆𝑥) − 𝑓𝑖(𝑥) can represent the penalty cost change, Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦, according to the 
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tenant’s buffer pool level change, Δ𝑥. In a cloud database, if there is enough virtual 

memory, Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦 will always be zero because the promised buffer pool level can 

always be guaranteed for each tenant. However, in practice, in order to save the 

operational cost of a data center, DbaaS providers usually overbook the resources 

including the virtual memory. So, the actual buffer pool level used by a tenant is generally 

below the promised level in the corresponding SLA. In such a case, the Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦 will 

be bigger than zero. So we have equation (1) when the actual buffer pool level of a tenant 

i changes by an amount of Δ𝑥: 

∆𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑓𝑖(𝑥 + ∆𝑥) − 𝑓𝑖(𝑥)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)  

From equation (1) we can get equation (2) when ∆x is not zero: 

∆𝑝𝑒𝑛𝑎𝑙𝑡𝑦

∆𝑥
=
𝑓𝑖(𝑥 + ∆𝑥) − 𝑓𝑖(𝑥)

∆𝑥
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

If Δ𝑥 is one unit of buffer pool level change, i.e., we want to measure the SLA penalty 

cost change trend, then equation (2) can be written as equation (3) 

∆𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
𝑓𝑖(𝑥 + ∆𝑥) − 𝑓𝑖(𝑥)

∆𝑥
= 𝑓𝑖′(𝑥)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

Equation (3) shows how we can compute the increment trend of Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦. This 

Equation means that the derivative of the SLA penalty cost function can be used to 

measure the penalty change trend.  If the penalty cost change trend, 𝑓𝑖′(𝑥), is bigger, the 

penalty cost paid by the service provider due to the SLA violation is lower. 

In practice, the buffer pages will not be released one by one, instead, they are released 

on a “block” or “portion” basis. The buffer page list is divided into two portions by the 

page with timestamp t* at the α percentile position, which is shown in Figure 5. 
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Figure 5. Two portions of a buffer page list 

 

In Figure 5, we can see each page in the buffer page list is associated with a tenant ID 

and a timestamp. All buffer pages are ranked based on their timestamps. A page with 

timestamp t* at the α percentile position of the buffer page list is tracked. Then the buffer 

page list is divided into two portions, A and B, by t*. The timestamps of the pages in 

portion A are earlier than t* and the timestamps of the pages in portion B are older than 

t*. When a page replacement using LRU-2 algorithm occurs, all pages in portion A will 

be released. Generally a buffer page list contains the buffer pages of different tenants. For 

the pages of the same tenant, they have the same value since those pages belong to the 

same tenant who has a fixed SLA penalty cost function. When SLA-LRU analyzes the 

SLA penalty cost function for each tenant, the tenant with the biggest 𝑓𝑖′(𝑥) will be 

marked (if there are more than one such tenant found, all of them will be marked). 

Comparing with other tenants, removing the pages of such tenant will give the service 

provider less penalty cost increment. Then among those pages that belong to the marked 

tenant, only the pages whose timestamps are older than t* will be removed. 



45 

By considering both the page age and page removal cost, the buffer pool sharing 

problem can be solved. Comparing with LRU-2, SLA-LRU has an additional process, 

which is the SLA penalty cost analyzing process, when performing buffer page 

replacements. Adding a new process to the algorithm certainly introduces overheads; so, 

we propose a moving-forward scanning method to reduce such overhead. This method 

will increase the next scanning length of the buffer page list when the current scanning 

cannot free enough buffer space, i.e., the position of α will be moved forward for the next 

scanning. This scanning method works in the following steps: 

Step 1: During the current buffer page list scanning process, the pages whose 

corresponding tenants have the biggest 𝑓𝑖′(𝑥)and the pages whose corresponding tenants

’ actual buffer pool levels are bigger than the promised ones will be removed from the 

buffer page list and buffer pool. 

Step 2: If the buffer pages released by the current buffer page list scanning process 

are not enough for the incoming queries, the next buffer page list scanning process will 

double the scanning length, i.e., the size of portion A will be doubled. 

Step 3: If the new scanning length is bigger than the buffer page list size, the scanning 

length will be set as the buffer page list size. 

Step 4: Restart Step 1 until enough buffer pages are released. 

The moving-forward scanning method can speed up the page replacement process by 

increasing the scanning length during different scanning phases. This will significantly 

reduce the total buffer page list scanning times and reduce the overhead incurred by the 

SLA-LRU algorithm. In the next subsection, we provide more detailed discussions 

comparing the overheads of SLA-LRU and LRU-2. 
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5. Overheads of SLA-LRU comparing with LRU-2 

We discuss the overheads from two major factors: CPU and memory. First we 

investigate how the SLA-LRU algorithm impacts the memory. In order to analyze the 

SLA penalty costs for different tenants, a penalty cost function table has to be stored in 

the main memory. Every time when a new tenant is signed up, this tenant will be added 

to the corresponding category in the penalty cost function table. This table, of course, will 

occupy additional memory space when the database system is running. However, 

comparing with the buffer pool, which is also saved in the main memory, the penalty cost 

function table is much smaller. If a tenant’s page size is 8 KB, then a 512 MB promised 

portion of the buffer pool can hold around 65,000 buffer pages for this tenant. But in the 

penalty cost function table, only the tenant ID and the corresponding promised buffer 

pool level are saved in the table. So SLA-LRU will not add much more memory overhead 

comparing with LRU-2. 

Second, we investigate how the SLA-LRU algorithm impacts the CPU. In LRU-2, the 

algorithm will remove all buffer pages in portion A, which is decided by the parameter 

α, of the buffer page list. Different database systems may use different α (for example, in 

MySQL, α is 0.1 [75]). In SLA-LRU, the algorithm will remove the pages with the biggest 

𝑓𝑖′(𝑥), i.e., fewer buffer pages will be released during a full scan of the buffer page list 

comparing with LRU-2. So in order to get enough free buffer space, SLA-LRU may need 

more scanning times on the buffer page list than LRU-2, which will incur a CPU overhead 

for the algorithm. The buffer page list is saved in the main memory, by scanning the 

buffer page list in a moving-forward way, the overall time complexity of SLA-LRU is 
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still O(n), where n is the size of the buffer page list, which is the same as that in LRU-2. 

So SLA-LRU will not add much more CPU overhead compared with LRU-2. 

Till now we can see that SLA-LRU includes two major phases: 1) analyzing the SLA 

violation penalty cost changes for different tenants; and 2) removing the corresponding 

buffer pages from the buffer pool to provide free buffer pages. The algorithms of the first 

and second phases are named as Algorithm 1 and Algorithm 2, respectively, and 

discussed below.  

Algorithm 1 (shown in Figure 6): First, in order to let the storage engine know which 

tenants’ buffer pages will be released, two temporary parameters, T and penalty_change, 

are initialized (Lines 1-2). T is a set used to save the tenant ID whose buffer pages will 

be removed from the buffer pool. At the beginning of the algorithm, no tenants are 

selected so T is set to be empty at start. Parameter penalty_change is used to save the 

penalty change trend for the tenant i, which is the derivative of a tenant’s penalty cost 

function. We always want to find out the tenant with the least penalty cost increment 

(such tenant has the biggest derivative of the penalty cost function), so at the beginning 

of the algorithm, penalty_change is set to be the minimal integer value. Then the tenant 

with the maximal derivative of the SLA penalty cost function for the current buffer pool 

level will be identified (Lines 2-8). If more than one tenants are found, all of them will 

be added to T (Lines 9-12), then all tenants that have the maximal derivative of the SLA 

penalty cost function for the current buffer pool level will be returned (Line 13). 
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Figure 6. Algorithm of analyzing SLA violation penalty cost 

 

Algorithm 2 (shown in Figure 7): First, two temporary parameters, iteration and 

scan_distance, are initialized (Lines 1-2). Iteration is used to save the current scanning 

times and scan_distance is used to save the current scanning length of the buffer page 

list. At the beginning of the algorithm, iteration is set to 1 and scan_distance is set to 1/10 

of the length of the buffer list (the default value of scan_distance for MySQL is 1/10 of 

the length of the buffer list; we adopt this value for our algorithm). Next, the pointer is 

moved to the top of the buffer page list (Line 4).and the buffer page list is locked from 

being simultaneously accessed by other queries (Line 5). The buffer page is then moved 

from the buffer page list and the buffer pool if this buffer page is not dirty and satisfies 

either of the two conditions: 1) this page belongs to the tenants resulted from Algorithm 

1; and 2) the buffer pool level of the corresponding tenant of this buffer page is still bigger 

than the buffer pool level promised in the SLA (Lines 6-10). After this, the pointer is 

moved to the next buffer page in the buffer page list (Lines 11-13). The buffer page list 

is then unlocked so that other queries can access the list (Line 14). The scanning length 
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of the buffer page list is increased if more free buffer pages are needed after the previous 

buffer page list scanning process. In order to increase the scanning speed, the scanning 

length on the buffer page list will increase with a speed of the exponential of 2, i.e., the 

next scanning length is the double size of the previous scanning length until the whole 

buffer page list can be scanned. This will reduce the program running time greatly, and 

thus will improve the query response time (Lines 15-19). 

 

Figure 7. Algorithm of releasing buffer pages 
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Chapter IV A Proposed Performance Tuning Algorithm Based on 

Database Partitioning for Cloud Databases 

In this chapter, we present our AutoClustC algorithm. AutoClustC is a performance 

tuning algorithm based on database partitioning for DbaaS. This algorithm considers the 

costs of resource provisioning and database partitioning to select the lower cost method 

to tune the DbaaS. If database partitioning is selected. AutoClustC will use data mining 

to partition the database and distribute the resulting partitions to proper PMs located in 

the same data center.   Proper PMs are those that have the least overload scores which are 

computed using both the PMs’ communication cost and resource overload status. 

This chapter is divided into three sections. In Section 1, the technique of how to 

forecast the cost for resource provisioning is presented. In Section 2, the technique of 

how to forecast the cost for database partitioning is presented. In Section 3, the technique 

of how to distribute the resulted partitions to proper PMs is presented. 

1. Cost Forecasting for Resource Provisioning 

 Resource provisioning is a typical solution to fulfill the tenants’ requirements and 

guarantee the QoS in a virtual environment [18] [19]. Resource provisioning can 

eventually guarantee all tenants’ performance but it will cause the extra operation cost to 

the service provider. So, an alternative tuning method, such as database re-partitioning, 

should be used if it incurs a lower cost than resource provisioning. To make this decision, 

we will need to know the costs of resource partitioning and database partitioning.  In this 

section, we present a method to estimate the cost of resource provisioning using time 

series analysis. This section includes two subsections: Subsection 1.1 presents the 

characteristics of CPU utilization patterns that can be benefited from dynamic resource 
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provisioning and Subsection 1.2 discusses how to use statistic models to forecast the 

resource provisioning cost. 

1.1. CPU utilization patterns for dynamic provisioning 

In Section 2 of Chapter II, 4 typical resource utilization patterns are discussed. In 

pattern (a), the amount of resource utilization mainly switch between two fixed values, 

i.e., there is no strong utilization variability in pattern (a).  In pattern (d), the amount of 

resource utilization changes extremely randomly, i.e., pattern (d) features a poor 

autocorrelation, which is a mathematical representation of the degree of similarity 

between a given time series and a lagged version of itself over successive time intervals 

[76]. That is why dynamic forecasting cannot be used on neither pattern (a) nor pattern 

(d). Instead, for those two patterns, static forecasting should be used. In [18] the authors 

conclude that only the utilization behavior that is characterized by strong utilization 

variability and good autocorrelation associated with this periodic behavior, can be 

benefited greatly by using the dynamic resource provisioning. According to this 

conclusion, we can see the pattern (b) and (c) discussed in Section 2 of chapter 2 are good 

choices for dynamic forecasting. We therefore assume the CPU utilization behavior in 

our research should satisfy this conclusion, i.e., the provisioning cost forecasting 

algorithm developed in this dissertation can be used on both pattern (b) and pattern (c) if 

the two patterns follow a periodical behavior.  

1.2. Problem modeling of cost forecasting for dynamic resource provisioning 

In order to understand the forecasting process more clearly, consider an example 

shown in Figure 8, which shows a snapshot of 24 hours CPU utilization demand historical 

data (U) with the demand probability density function (PDF) u(x). If the current time 
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point is 𝑡0, and the prediction time interval is t, the forecasting process is to compute the 

average CPU demand, which is denoted by 𝑈𝑡0+𝑡 in the next prediction time interval. If 

the prediction error is 𝐸𝑡, the forecasting result will be 𝑈𝑡0+𝑡 + 𝐸𝑡. In [18], the authors 

use an AR model to compute the gain, which is the ratio of the estimated future CPU 

demand of dynamic resource provisioning to the estimated future CPU demand of static 

resource provisioning. In our algorithm, we also use an AR model, but the exact estimated 

future CPU demand is computed so that we can compare the costs of resource 

provisioning and database partitioning. 

 

Figure 8. Dynamic forecasting estimation 

 

If we use 𝑈𝑡(𝑥) to represent the demand probability density function of the predicted 

time series, the exact average future demand forecast can be represented as 

𝑈𝑡0+𝑡 + 𝐸𝑡 = ∫ (𝑥 + 𝐸𝑡) × 𝑢𝑡(𝑥)𝑑𝑥
∞

0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 
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    The expression (𝑥 + 𝐸𝑡) represents a given CPU resource allocation, which will be 

weighted with 𝑢𝑡(𝑥), the probability of a particular provisioned CPU amount x. 

    Equation 4 can be rewritten as 

𝑈𝑡0+𝑡 + 𝐸𝑡 = ∫ 𝑥 × 𝑢𝑡(𝑥)𝑑𝑥
∞

0
+ 𝐸𝑡                     (5) 

    Equation 5 can be approximated using the following formula: 

𝑈𝑡0+𝑡 + 𝐸𝑡 ≈ ∫ 𝑥 × 𝑢(𝑥)𝑑𝑥
∞

0
+ 𝐸𝑡 = 𝐸[𝑈] + 𝐸𝑡 (6) 

where E[U] is the statistical mean of the measured historical CPU demand. Now the 

only undetermined parameter in Equation 6 is Et, which will be computed based on [19] 

using Equations (7), (8) and (9). 

    Based on the assumption of our algorithm, the CPU demand is characterized by 

periodic behaviors. So for any time series T, the CPU demand in T can be represented as 

𝑈𝑇 = 𝐷𝑇 + 𝑈𝑇
𝑅 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

where DT  is the trend sub-utilization of the CPU demand and 𝑈𝑇
𝑅 is the residual sub-

utilization of the CPU demand as shown in Figure 9. Figure 9 shows a very small portion 

of CPU demand from Figure 8, and this small partition has been zoomed in in order to 

see the details. The trend sub-utilization is highlighted in blue and the residual sub-

utilization is highlighted in red. The trend sub-utilization is deterministic due to the 

known pattern, i.e., the CPU utilization function is known; and the residual sub-utilization 

is random and needs to be estimated using some statistical model. 
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Figure 9. The trend sub-utilization and residual sub-utilization 

 

As stated in [19], the second order AR model (AR(2)) is a simple and effective method 

in time series modelling, so we use the AR(2) to estimate the residual sub-utilization for 

our case. The AR(2) model can be represented as 

𝑈𝑇
𝑅 = 𝛼1𝑈𝑇−1

𝑅 + 𝛼2𝑈𝑇−2
𝑅 + 𝜖𝑇 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

where 𝛼1  and 𝛼2 are two AR(2) parameters that are estimated from the historical data, 

and 𝜖𝑇  is the error term, which is assumed to be an independently and identically 

distributed Gaussian random variable with a mean of zero and a variance of 𝜎𝜖
2. In order 

to study the accuracy of an n step prediction, a characteristic function of the AR model is 

defined as 

𝐺(𝑗) =
𝛾1
𝑗+1

− 𝛾2
𝑗+1

𝛾1 − 𝛾2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

where γ1 and γ2 are the roots of the equation 1 − 𝛼1𝐵 − 𝛼2𝐵
2 = 0. Then the n step 

prediction error is represented using the Gaussian variable having mean zero and variance 

𝜎𝑒
2(𝑛) = ∑ 𝐺2(𝑗)𝜎𝜖

2𝑛−1
𝑗=0 . Here, 𝜎𝜖

2 is the error variance of one-step prediction. 

    Once the future CPU demand, CPU_Demand, is estimated, it can be used as the 

argument in the cost function C(CPU_Demand) to get the exact operational cost for 
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resource provisioning, where the C function describes the relationship between CPU time 

and money spent. In the next step, we need to forecast the cost of database partitioning. 

In Section 2, a novel forecasting technique will be proposed to predict the cost of database 

partitioning. 

2. Cost Forecasting for Database Partitioning 

As we discussed earlier in Section 1 of this chapter, resource provisioning is the 

simplest way to fulfill the QoS for different customers; but this way generally needs the 

cloud service providers to reallocate more computing resources. In order to maximize the 

profit for the service providers, we compare resource provisioning with another 

performance tuning method, database partitioning. The tuning method with a lower cost 

always works as the practical performance tuning method on cloud databases. In this 

section, we first discuss the factors that can impact the cost of database partitioning in 

Subsection 2.1; then in Subsection 2.2 we present how to use the ANN model [77] to 

solve the forecasting problem for database partitioning. 

2.1. Factors impacting database partitioning 

There are many factors that can impact the CPU time spent on figuring out a suitable 

partitioning solution for a particular database table. The partitioning method used in our 

algorithm is based on the Closed Item Sets (CIS) mining [52]. The original algorithm, 

called AutoClust, was first published in [20]. We can conclude 3 major factors that may 

heavily impact the CPU utilization spent on the partitioning process. The first factor is 

the size of the database, S. In AutoClust, a query optimizer is used to estimate the cost of 

each partitioning solution, i.e., partitions will be temporarily physically created in order 

to let the query optimizer compute the cost. If the database size is large, the partition 
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creation process will require a high CPU cost to be finished. The second factor is the 

number of attributes in a database table, NA (if the partitioning process covers more than 

one table, the maximum number of attributes among those tables will be used). When 

mining the CIS from the query set, frequent CIS have to be generated. If there are NA 

attributes, the possible number of attribute sets would be 2𝑁𝐴. Then each attribute set has 

to be compared with the attribute set accessed by each query in order to find out the CIS. 

There are many algorithms such as [78] [79] to prune the number of possible attribute 

sets, NA; but NA is still another factor that will impact the CPU cost on partitioning. 

Finally, the third factor is the number of query types, NQ. From the second factor, we 

already know each query type will be scanned in order to tell whether an attribute set is 

CIS. So NQ is a factor that has to be considered. Besides the above three factors, one 

more factor has to be added from the aspect of multi-tenancy, which is the number of 

users of the DbaaS, NU. In DbaaS, common physical resources are shared by multiple 

tenants. A major consequence of such an environment is that the multiple tenants will 

compete for the resource of the same VM, which will delay the partition creation process. 

Hence the degree of multi-tenancy becomes an additional factor. 

2.2. Artificial Neural Network on cost prediction for database partitioning  

 A cloud database is a complex system and the relationship between the partitioning 

cost and S, NA, NQ and NU is highly non-linear. Because of these characteristics, we 

propose to use ANN [77] to forecast the partitioning process cost since ANN performs 

well on complex systems that are intrinsically non-linear in nature [80]. In our ANN 

model, the inputs are S, NA, NQ and NU. One hidden layer with 8 neural nodes (twice the 

size of the input) is used between the input and output layers. The control architecture is 
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a feed forward back propagation network. The activation function used is the sigmoid 

function, which is a transfer function used to calculate a layer's output from its net input, 

for all the inner nodes. This function can give the neural network the ability to learn and 

generate an output for which it is not trained. However, in order to make the ANN work 

properly, a well-defined training dataset is necessary. The whole ANN works in two 

phases: (1) the network is trained using the data provided by users; and (2) the new input 

is fed to the network and the network produces a desired output that is most appropriate 

for the given input. Since it is important to choose a proper training function and learning 

function, the TRAINGDX [81] and LEARNGDM [82] functions can be used in the 

network. The TRAINGDX function is a network training function that updates weight 

and bias values according to gradient descent momentum and an adaptive learning rate. 

The LEARNGDM function calculates the weight change for a given neuron from the 

neuron's input and error, the weight, learning rate, and momentum constant, according to 

gradient descent with momentum. The structure of the whole network is shown in Figure 

10 where W represents the weight of a node and B represents the bias of a node. There 

are four different types of input (S, NA, NQ and NU) and one type of output (CPU time), 

so we have 4 nodes in input and 1 node in output. We use twice the size of the input types 

as the number of nodes in the hidden layer, so we have 8 nodes in the hidden layer.   

Once the ANN model is constructed using the training dataset, the CPU time spent on 

the partitioning process can be predicted by sending the current values of the system 

parameters, which are S, NA, NQ and NU, to the ANN model. Then the money spent on 

performing attribute partitioning tuning and resource provisioning tuning can be 

calculated by using the C(CPU_Demand) function where the CPU time estimated from 
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each of the two forecasting partitioning and resource provisioning processes will be the 

argument of the C function. The method that yields the lower monetary cost will be 

selected to improve the system performance. The whole performance tuning cost analysis 

algorithm is shown in Figure 11.  

 

Figure 10. The ANN model used for partitioning cost forecasting 
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Figure 11. Performance tuning cost analysis in AutoClustC 

 

3. Partition Distribution 

After a database table is partitioned, generally more than one partition will be 

generated. In a typical database partitioning process, more than one database table is 

partitioned, and thus many partitions will be generated. How to deploy those partitions to 

different PM is not an easy problem. In this section we present a partition distribution 

algorithm to distribute the resulting partitions to PM. This algorithm considers both the 

communication cost between different PM groups and the resource overload status of 

each PM in order to find out the best PM to distribute partitions. We assume for each 
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standby database instance, it has a full copy of the data of the master database instance. 

In the Subsection 3.1, we first review the structure of a typical data center and discuss the 

motivation of why partition distribution is important for DbaaS. In the Subsection 3.2, we 

present how the distribution algorithm compute the resource overload score for each PM 

group, and how it compute the SLA violation probability for each PM in the PM group 

with the least overload score in order to find out the best PM to distribute partitions. Then, 

in the Subsection 3.3, we present how the partition distribution algorithm use the 

communication cost as the weight to adjust the overload score of each PM group if the 

communication cost is too high to be ignored. 

3.1. Motivation of partition distribution for DbaaS 

Before we discuss the motivation, first we will take a close look at the physical 

structure of a typical cloud. We take AWS RDS [6] as our example since it is the major 

cloud service provider. For AWS RDS, it can hold tenants’ database instances in multiple 

locations world-wide. These locations are composed of regions and availability zones 

(AZ). Each region is a separate geographic area. Each region has multiple, isolated 

locations known as availability zones. Each availability zone has multiple data centers. 

The overall physical structure is shown in Figure 12 [83], where we can see that AWS 

has many regions across the nation. If we take the North Virginia region as an example, 

we can see there are 5 AZs in this region. Those 5 AZs are connected to transit centers 

using redundant paths. A transit center is used to connect different regions together. The 

communication delay between different AZs in the same region is less than 1 millisecond. 

In an AZ, there are multiple data centers which are connected by a high speed network, 

for which the delay between two data centers is less than 0.25 millisecond [83]. 
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Figure 12. AWS cloud structure 

 

For a cloud database, high availability of data is a very important feature. Generally 

speaking, high availability refers to a system that is continuously operational for a 

desirably long length of time. This availability can be measured nearly to 100% 

operational or never failing. A public cloud provider often puts their availability metric 

in their SLAs. In order to guarantee high availability, tenants’ data must be duplicated in 

the same data center or across multiple data centers. If the PM which holds a tenant’s data 

fails, other PMs that contain the backup data can take over the failed PM’s job and keep 

the tenant’s application running. Those PMs are generally called standby PMs. For our 

case, when the partitioning process is done, multiple partitioning solutions may be 

generated, each of which contains multiple partitions. We may distribute different 

partitioning solutions to different standby PMs so that each standby PM will contain a 

full copy of tenants’ data and each copy is partitioned in a different way. When the PM 
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containing the master database instance fails, other standby PMs in which the backup 

database instances exist can continue processing the incoming queries. So the high 

availability of the cloud database can be guaranteed. This is the first motivation of our 

partition distribution algorithm. 

In a cloud database, computing resources are shared by multiple tenants. Therefore 

DbaaS providers are facing more unpredictable workloads. This makes the SLAs 

guarantee work more difficult, especially during the workload peak time. When the pre-

defined performance SLAs are violated under some specific circumstances, DbaaS 

providers need to either refund some portion of the service fee to the tenants or find out 

a way to re-guarantee the performance SLAs as soon as possible. If the performance SLA 

violation is caused by the overloaded workload, one of the easiest way of performing the 

SLA re-guarantee work is to use the database instance that contains the duplicated data 

located on the standby PMs to process some portion of the queries, so that the workload 

on the master database instance can be reduced, hence the performance SLA can be re-

guaranteed. So this is the second motivation of our partition distribution algorithm.  

Partition distribution can occur on different levels: the data center level, availability 

zone level, and region level. In this dissertation we only consider the case for which 

partitions are distributed in the same data center, i.e., partitions are distributed on the data 

center level. 

3.2. Computing load balance using the overload score 

In modern data centers, virtualization technologies can enable application running and 

data saving to be hosted inside VMs. Those VMs utilize the physical resource of the PMs 

in which they are hosted. An important characteristic of a well-managed data center is 
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whether the data center has the ability to avoid overloaded PMs. Overloaded PMs often 

lead to performance degrading and are easy to fail. When database partitions are 

distributed in the same data center, the PM that accepts the distributed partitions has to 

provision the physical resource for a new database instance. If this PM is already almost 

overloaded, the performance SLAs of the tenants that are located on this PM will be 

violated. This may even cause the PM to fail. This is why intelligent partition distribution 

is so important. However, deciding which PM to be selected to host the distributed 

partitions is a challenging task. In this section, we present our PM selection method that 

is based on PM’s overload score. Before we discuss our algorithm, first we need to 

understand how PMs are connected in a data center.  

 

Figure 13. PMs and VMs in a data center 

 

A small part of a typical data center is represented in Figure 13. A data center may 

consist thousands of PMs which are connected by switches and routers. PMs connected 

to the same switch form a PM group. For example, PM1, PM2 and PM3 are connected to 



64 

switch1, so PM1, PM2 and PM3 form a PM group connected to switch1. We can see that 

in order to find the PM to host the distributed partitions, we first should find a proper PM 

group, and we can then select the best PM in this group for our answer. So for our partition 

distribution algorithm, there are two major steps: 1) locate the proper PM group, and 2) 

find out the best PM in the PM group resulted from Step 1. These steps are described 

below. 

Step 1: locate the proper PM group: 

Creating a VM in a PM requires the provisioning of different physical resources, such 

as CPU, memory, and I/O bandwidth. For different time points, the amount for each 

resource used by a VM may be different. In this dissertation, we focus on the CPU and 

memory provisioned from a PM to a VM. We can use a vector, VecURes, to represent the 

CPU and memory resources used by VMs for a particular PM at the time point t as 

follows: 

𝑉𝑒𝑐𝑈𝑅𝑒𝑠 =⁡< 𝑈𝑅𝑒𝑠𝐶𝑃𝑈, 𝑈𝑅𝑒𝑠𝑅𝐴𝑀 >⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (10) 

For each resource, there is always a threshold defined by the user to limit the amount 

of resource that can be provisioned from a PM to its VMs. If the amount of some resource 

provisioned from PM to its VMs exceeds the pre-defined threshold, this PM is said to 

have an overload status. The performance of the VMs in an overloaded PM is very poor, 

and the PM has a higher chance to fail. We can use a vector, VecTRes, to represent the 

threshold of the CPU and memory resources that can be maximally provisioned from a 

PM to VM at any time point as follows: 

𝑉𝑒𝑐𝑇𝑅𝑒𝑠 =⁡< 𝑇𝑅𝑒𝑠𝐶𝑃𝑈, 𝑇𝑅𝑒𝑠𝑅𝐴𝑀 >⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (11) 
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In order to tell how busy a PM is, we can compute the resource utilization fraction of 

a PM. The resource utilization fraction of CPU equals to the ratio of 𝑈𝑅𝑒𝑠𝐶𝑃𝑈  over 

𝑇𝑅𝑒𝑠𝐶𝑃𝑈, and the resource utilization fraction of memory equals to the ratio of 𝑈𝑅𝑒𝑠𝑅𝐴𝑀 

over 𝑇𝑅𝑒𝑠𝑅𝐴𝑀 . We can use a vector, VecFRes, to represent the CPU and memory 

resources utilization fraction in a PM at time point t as follows:  

𝑉𝑒𝑐𝐹𝑅𝑒𝑠 =⁡<
𝑈𝑅𝑒𝑠𝐶𝑃𝑈
𝑇𝑅𝑒𝑠𝐶𝑃𝑈

,
𝑈𝑅𝑒𝑠𝑅𝐴𝑀
𝑇𝑅𝑒𝑠𝑅𝐴𝑀

>⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (12) 

Then we want to measure the degree of overload of resource i, which is either CPU or 

memory, for a PM. This degree is called the overload score of resource i for a PM. We 

use the 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒𝑖 to represent it. The function used to compute the overload score 

of resource i is from [84]:  

𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒𝑖 = {

0
⁡

𝑒
𝑉𝑒𝑐𝐹𝑅𝑒𝑠𝑖−𝑉𝑒𝑐𝑇𝑅𝑒𝑠𝑖

𝑉𝑒𝑐𝑇𝑅𝑒𝑠𝑖

⁡𝑉𝑒𝑐𝐹𝑅𝑒𝑠𝑖 < 𝑉𝑒𝑐𝑇𝑅𝑒𝑠𝑖
⁡

⁡𝑉𝑒𝑐𝐹𝑅𝑒𝑠𝑖 ≥ 𝑉𝑒𝑐𝑇𝑅𝑒𝑠𝑖

}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

Till now we have presented the degree of overload of resource i for a PM. The degree 

of overload of a PM can be obtained by summing all the overload scores of CPU and 

memory on this PM. We can use 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝑗  to represent the degree of 

overload of  the jth PM as follows: 

𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝑗 = 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒𝐶𝑃𝑈 + 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒𝑅𝐴𝑀⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

If there are N PMs in the kth PM group, then the degree of overload of this PM group 

(𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘) can be obtained by summing the overload scores of all PMs in 

this PM group as follows: 

𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 =∑𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝑗

𝑁

𝑗=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 
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Now the overload score of each PM group has been computed, if this score is higher 

for a particular PM group, it means this PM group has a higher chance to fail due to the 

resource overload problem. So we need to select the PM group whose overload score is 

the smallest to identify the best PM to distribute the partitions to. Next we will go to Step 

2 to select the best PM from this selected PM group. 

Step 2: Locate the best PM in the selected PM group. 

The best PM to distribute the partitions to should be the one that has the lowest 

probability to violate the existing tenants’ SLAs, i.e., we need to compute the SLA 

violation probability for each PM in the selected PM group when a new standby database 

instance is created on this PM. We know that if a PM has a high CPU and RAM, and a 

low number of tenants (tenant degree), then creating a new standby database instance on 

such PM may have a low probability of causing a possible SLA violation to other existing 

tenants.  

We define two vectors, VecCPU and VecRAM, to represent the CPU and memory 

available to be provisioned for the new standby database instance on each PM, 

respectively. If the selected PM group contains N PMs then VecCPU equals to: 

𝑉𝑒𝑐𝐶𝑃𝑈 = 〈𝐶𝑃𝑈1, 𝐶𝑃𝑈2, … , 𝐶𝑃𝑈𝑁〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 

and VecRAM equals to: 

𝑉𝑒𝑐𝑅𝐴𝑀 = 〈𝑅𝐴𝑀1, 𝑅𝐴𝑀2, … , 𝑅𝐴𝑀𝑁〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

Then the probability of choosing the jth PM by considering the possible SLA violation 

due to CPU overload is 
𝑉𝑒𝑐𝐶𝑃𝑈𝑗

∑ 𝑉𝑒𝑐𝐶𝑃𝑈𝑖
𝑁
𝑖=1

. The probability of choosing the jth PM by 

considering possible SLA violation due to memory overload is 
𝑉𝑒𝑐𝐶𝑃𝑈𝑗

∑ 𝑉𝑒𝑐𝐶𝑃𝑈𝑖
𝑁
𝑖=1

. 
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We can see that the probability of choosing a PM as the target to distribute the 

partitions to is directly proportional to the available CPU and memory of this PM. Unlike 

the CPU and memory, the probability of choosing a PM is inversely proportional to this 

PM’s tenant degree. We define a vector, VecTD, to represent the tenant degree of each 

PM of the selected PM group as follows: 

𝑉𝑒𝑐𝑇𝐷 = 〈𝑇𝐷1, 𝑇𝐷2, … , 𝑇𝐷𝑁〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18) 

Then the probability of choosing the jth PM by considering its possible SLA violation 

due to the tenant degree is 

1

𝑉𝑒𝑐𝑇𝐷𝑗

∑
1

𝑉𝑒𝑐𝑇𝐷𝑖

𝑁
𝑖=1

. So the overall probability of choosing the jth PM 

by considering the possible SLA violations caused by CPU, RAM and tenant degree is: 

𝑉𝑒𝑐𝐶𝑃𝑈𝑗
∑ 𝑉𝑒𝑐𝐶𝑃𝑈𝑖
𝑁
𝑖=1

×
𝑉𝑒𝑐𝑅𝐴𝑀𝑗

∑ 𝑉𝑒𝑐𝑅𝐴𝑀𝑖
𝑁
𝑖=1

×

1
𝑉𝑒𝑐𝑇𝐷𝑗

∑
1

𝑉𝑒𝑐𝑇𝐷𝑖

𝑁
𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19) 

After estimating the probabilities of choosing a PM considering its possible SLA 

violations due to CPU, RAM and tenant degree for all PMs in the selected PM group, we 

will select the PM with the highest probability resulted from equation (19) and distribute 

the partitions to that PM. 

3.3. Communication cost 

In the Subsection 3.2 we discussed how to use the overload score to compute the 

degree of overload for each PM group, and then find the best PM in the selected PM 

group by considering the probability of SLA violation for each PM. Besides the resource 

overload factor, there is another factor that can impact the process of choosing the target 

standby PM to distribute the partitions to. This factor is the communication cost. If the 

communication time between two PM groups is too high to be ignored, we have to 
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consider the impact of communication cost, which can work as a weight to the overload 

score when choosing the proper PM group. If the communication time between two PM 

groups is small compared to the average query response time, for example the average 

query response time is measured in seconds and the communication time is measured in 

milliseconds or even microseconds, then we may ignore the communication delay or scale 

the weight using a scaler 𝜌 , which equals to the average communication delay over 

average query response time. 

According to [85], multi-path TCP protocols are being used in today’s data center in 

order to improve the whole data center’s performance by performing very short timescale 

distributed load balancing. Multi-path TCP protocols make effective use of parallel paths 

in modern data center’s network topologies.  When data is transferred from source to 

target, more than one path will be used. For example, in Figure 13, if the router wants to 

route data to the PM group consisting of PM7, PM8 and PM9, the path “router-switch3” 

and the path “router-switch2-switch3” may be used simultaneously. So when we consider 

the communication cost between a PM group and other switches in the network, we need 

to measure the overall communication cost from the switch that is directly connected to 

that PM group to all other switches. The Closeness Centrality [86] of network can help 

us solve this problem. 

In a network, a node is said to be closer to all other nodes, if the sum of the distances 

from this node to all other nodes is smaller than that of other candidate nodes [87]. In a 

data center we can consider a PM group as a candidate node. Formally, the Closeness 

Centrality Degree (CCD) of a node v is defined as 𝐶𝑐(𝑣), which equals to: 

𝐶𝑐(𝑣) =
𝑀 − 1

∑ 𝑑(𝑣, 𝑎)𝑎≠𝑣
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20) 
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where M is the total number of nodes in a network and 𝑑(𝑣, 𝑎) represents the distance 

between node v and node a. Equation (20) tells us that if a node has the maximum CCD 

in a network then this node has the minimal overall distance to other nodes. 

When we apply the CCD in our case, M equals to the total number of PM groups; v 

represents the a PM group; a represents a PM group other than v; and 𝑑(𝑣, 𝑎) represents 

the communication delay between the v and a. The CCD of each PM group can be 

represented using a vector, VecCCD, as follows: 

𝑉𝑒𝑐𝐶𝐶𝐷 = 〈𝐶𝐶𝐷1, 𝐶𝐶𝐷2, … , 𝐶𝐶𝐷𝑁〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 

The bigger CCD for a PM group means this PM group connected has less overall 

communication delay to other PM groups.  

Next we compute the weight using CCD. First we need to compute the inverse of CCD 

and save it in the vector VecICCD as follows: 

𝑉𝑒𝑐𝐼𝐶𝐶𝐷 = 〈𝐼𝐶𝐶𝐷1, 𝐼𝐶𝐶𝐷2, … , 𝐼𝐶𝐶𝐷𝑀〉⁡⁡⁡⁡⁡⁡⁡⁡⁡(22) 

where 𝐼𝐶𝐶𝐷𝑖 =
1

𝐶𝐶𝐷𝑖
. Then we normalize the VecICCD vector using Min-Max 

normalization in order to use this vector as the weight to the overload score vector. 

𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷 = 

〈

𝐼𝐶𝐶𝐷1 −𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)

𝑀𝑎𝑥(𝑉𝑒𝑐𝐼𝐶𝐶𝐷) − 𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)
,

𝐼𝐶𝐶𝐷2 −𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)

𝑀𝑎𝑥(𝑉𝑒𝑐𝐼𝐶𝐶𝐷) − 𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)
,… ,

𝐼𝐶𝐶𝐷𝑀 −𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)

𝑀𝑎𝑥(𝑉𝑒𝑐𝐼𝐶𝐶𝐷) − 𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)

〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23) 

For a PM group, when we compute the overload score of this PM group, a lower 

overload score for a PM group means this PM group has higher chance to be selected as 

the target PM group. If we want to use communication delay as the weight to penalize the 

overload score, we should penalize the overload score to make it a bigger value than the 
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original one. The reason is that we always want to select the PM group with the smallest 

overload score. If the giving scaler 𝜌, which equals to 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛⁡𝑑𝑒𝑙𝑎𝑦

𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑞𝑢𝑒𝑟𝑦⁡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒⁡𝑡𝑖𝑚𝑒
, is not 

zero then the weighted overload score of the PM group k, 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘, equals 

to 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 × (1 + 𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘 × 𝜌) . By doing so we consider the 

communication cost issue of the network. If the communication cost can be ignored when 

the communication delay is small enough, 𝜌 will be zero and there is no penalty for each 

PM group’s overload score.  

The whole partition distribution algorithm (communication delay is considered) is 

shown as Figure 14.  

From Figure 14 we can see the algorithm first computes the overload score for each 

PM in a PM group (lines 2-5). Then the overload score of the corresponding PM group is 

calculated by summing each PM’s overload score in this group (line 6). After that the 

algorithm calculates the inverse of this PM group’s closeness centrality degree, and adds 

this degree to VecICCD vector (lines 7-8). When VecICCD is generated it will be 

normalized using Min-Max normalization to get VecNICCD (line 10). If the 

communication cost is considered, the algorithm will use a weight to penalize the 

overload score for each PM group (lines 11-13). Then the PM group x with the least 

overload score will be selected (line 14). For the selected PM group, each PM’s selection 

probability will be computed (lines 15-18). Finally the PM with the biggest selection 

probability will be returned (line 19). 
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Input:  

1. Number of PM groups (M) 

2. Number of PMs in the kth PM group (Nk) 

3. Vector of CPU and memory provisioned to VMs for the jth PM in the kth PM  

    group (VecURes) 

4. Vector of CPU and memory provision threshold for the jth PM in the kth PM group    

(VecTRes) 

5. Vector of the CPU provisioned to VMs for each PM in the kth PM group   

    (VecCPU) 

6. Vector of the memory provisioned to VMs for each PM in the kth PM group  

    (VecRAM) 

7. Vector of the tenant degree for each PM in the kth PM group (VecTD) 

8. Weight scaler (𝜌) 

Output: 

The ID of the PM to distribute partitions 

Parameters initialized: 

1. Vector of workload fraction for each resource of the jth PM in the kth PM group    

    (VecFRes) 

2. Vector of the inverse of closeness centrality degree for each PM group (VecICCD) 

3. Vector of normalized inversed closeness centrality degree for each PM group  

(VecNICCD) 

 

Steps: 

1. For each PM group k 

2.      For each PM j 

3.           VecFResi = VecUResi / VecTResi 

4.           Compute overload_score_PMj for jth PM using VecFRes         

5.      End for 

6.      Compute 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 by summing overload_score_PMj 

7.      Compute closeness centrality degree, CCDk, for the kth PM group 

8.      Add the inverse of CCDk to VecICCD      

9. End for 

10. VecNICCD = Min-Max normalization of VecICCD 

11. For each PM group k 

12.      𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 = 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 × (1 + 𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘 × 𝜌) 
13. End for 

14. Find out the PM group, x, with the least overload score. 

15. For each PM j in PM group x 

16.      Compute the selection probability using    

17.       
𝑉𝑒𝑐𝐶𝑃𝑈𝑗

∑ 𝑉𝑒𝑐𝐶𝑃𝑈𝑖
𝑁
𝑖=1

×
𝑉𝑒𝑐𝑅𝐴𝑀𝑗

∑ 𝑉𝑒𝑐𝑅𝐴𝑀𝑖
𝑁
𝑖=1

×

1

𝑉𝑒𝑐𝑇𝐷𝑗

∑
1

𝑉𝑒𝑐𝑇𝐷𝑖

𝑁
𝑖=1

 

18. End for 

19. Return the ID of the PM  with the biggest selection probability 

 

 

Figure 14. Partition distribution algorithm 
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Chapter V Performance Analysis 

 This chapter presents the theoretical and empirical analysis of our algorithms, SLA-

LRU and AutoClustC. We will evaluate their performance from different metrics. The 

empirical analysis is conducted using the TPC-H benchmark [88]. We present the 

theoretical analysis first followed by the description of our experimental model and the 

experimental results. 

1. Theoretical Analysis 

 In this section we discuss the time and space complexity of SLA-LRU and 

AutoClustC.  The variables used in the analysis are listed in Table 2. 

Table 2. Variables used in the theoretical analysis 

Name Meaning 

𝑛𝑡 # of tenants 

𝑛𝑏 # of entries in the buffer page list 

𝑛𝑐 # of entries in the historical CPU utilization data set 

𝑛𝑖 # of inputs of ANN 

𝑛𝑜 # of outputs of ANN 

𝑛𝑛 # of nodes in hidden layer of ANN 

𝑛𝑡𝑟 # of records of the training data set for ANN 

𝑛𝑡𝑖 # of training iterations for ANN 

𝑛𝑃𝑀𝐺  # of PM groups 

𝑚𝑃𝑀 Maximum # of PMs in one PM group 

 

1.1. Complexity analysis for SLA-LRU 

 SLA-LRU is divided into two parts: 1) analyzing the SLA penalty cost for each tenant, 

and 2) releasing memory buffer pages when the memory buffer pool is full. All tenants’ 

SLA penalty cost functions are saved in an SLA penalty cost table with a format as shown 

in Table 3. From Table 3 we can see that each record of the SLA penalty cost table 

contains the ID, category and SLA penalty cost, which is based on different buffer pool 
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levels, for the corresponding tenant. For instance, the penalty cost function for Tenant 1 

in Table 3 is defined such that the penalty costs are 0, c, 2c and 4c, respectively according 

to different buffer pool utilization level ranges, which are defined by the cloud service 

providers. 

Table 3. An example entry in the SLA penalty cost table 

 

Tenant ID 
Tenant 

category 

Penalty cost 

(Micro) 
Actual buffer pool level range 

1 Micro 

0 (95%p, 100%p] 

c (25%p, 95%p] 

2c (5%p, 25%p] 

4c [0%p, 5%p] 

 

 

 The SLA penalty cost table is updated when there is a change to this table, i.e., when 

a new tenant is added/removed from the SLA penalty cost table or the SLA penalty cost 

function is changed for some tenant in the SLA penalty cost table. The first part of SLA-

LRU runs when the algorithm wants to know the page removal cost for different tenants. 

The second part of SLA-LRU runs when there is no free memory buffer page available 

for incoming queries. In this section, we present the complexity of each part individually 

and then the total complexity of SLA-LRU, which is the sum of the complexity of both 

parts. The time complexity of SLA-LRU is analyzed based on the amount of time SLA-

LRU would take to perform a full scan on the memory buffer page list in the worst case.  

1.1.1. Time complexity of SLA-LRU 

 We first present the time complexity of analyzing the SLA penalty cost for each tenant. 

Before SLA-LRU releases memory buffer pages from the buffer pool, the algorithm has 

to know the derivative of the SLA penalty cost function for each tenant that is using the 

buffer pool. The computation of the derivative of the SLA penalty cost function occurs 
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only once unless a change happened to the SLA penalty cost table. When the algorithm 

analyzes the SLA penalty cost function for each tenant, a full scan will be performed on 

the SLA penalty cost table. The length of the table equals to the number of tenants located 

on the VM, so the time of scanning the SLA penalty cost table will be O(𝑛𝑡), where 𝑛𝑡 is 

the number of tenants on the VM. 

 Then we present the time complexity of releasing memory buffer pages when the 

buffer pool is full. The time complexity of this part is analyzed based on the amount of 

time SLA-LRU would take to perform a full scan on the memory buffer page list. As we 

discussed in Section 2 of Chapter III, during the first iteration of the memory buffer page 

releasing process, the scanning percentage on the memory buffer page list is 𝛼. The 

scanning percentage on the memory buffer page list for the next iteration will always be 

doubled according to the previous iteration. So we have equation (24) 

2𝑝−1𝛼 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24) 

where p is the total number of scanning times. So p can be represented by using the 

following equation: 

𝑝 = 1 + ⌈log2
1

𝛼
⌉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(25) 

Then the total number of memory buffer pages scanned can be represented by using the 

following equation: 

𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝𝑎𝑔𝑒𝑠_𝑠𝑐𝑎𝑛𝑒𝑑 = (𝛼 + 2𝛼 + 4𝛼 +⋯+ 2⌈log2
1
𝛼
⌉𝛼) × 𝑛𝑏⁡⁡⁡⁡⁡⁡⁡(26) 

where 𝑛𝑏 is the number of the entries in the memory buffer page list. Equation (26) is a 

sum of geometric sequence, and we know that 1 − 𝑞𝑥 = (1 − 𝑞)(1 + 𝑞 + 𝑞2 +⋯+

𝑞𝑥−1). For our case q is 2, so it can be re-written as: 
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𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝𝑎𝑔𝑒𝑠_𝑠𝑐𝑎𝑛𝑒𝑑 = 𝛼 × 𝑛𝑏 × (2⌈log2
1
𝛼
⌉+1 − 1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(27) 

So the time complexity for releasing memory buffer pages is O(𝛼 × 𝑛𝑏 × (2⌈log2
1

𝛼
⌉+1 −

1)). Generally, we define 𝛼 as a meaningful value, so O(𝛼 × 𝑛𝑏 × (2⌈log2
1

𝛼
⌉+1 − 1)) can 

be considered as O(𝑛𝑏). Then the total time complexity of SLA-LRU is O(𝑛𝑏) + O(𝑛𝑡). 

In practice, the number of tenants located on a VM is far less than the number of entries 

of the memory buffer page list. So we can consider the final time complexity of SLA-

LRU to be O(𝑛𝑏). 

1.1.2. Space complexity of SLA-LRU 

 SLA-LRU stores the derivative of each tenant's SLA penalty cost function with the 

tenant's ID and class in a hash table in the memory. Moreover, a set is used to save the 

tenants that have the maximal derivatives of the SLA penalty cost function. Hence the 

total amount of storage required is O(2𝑛𝑡), we can consider the final space complexity to 

be O(𝑛𝑡). 

1.2. Complexity analysis for AutoClustC 

 AutoClustC is divided into three parts: 1) cost forecasting for resource provisioning, 

2) cost forecasting for database partitioning, and 3) partition distribution. For each tuning 

process, parts 1) and 2) must be run in order to find out the most cost saving approach, 

which is either resource provisioning or database partitioning. Part 3) is triggered only 

when database partitioning is selected. In this section, we present the complexity of each 

part individually and then the total complexity of AutoClustC, which is the sum of the 

complexity of all three parts. In order to analyze the complexity for the worst case, we 
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assume all three parts will be executed, i.e., database partitioning is selected as the tuning 

method. 

1.2.1. Time complexity of AutoClustC 

 In this section we first present the time complexity of forecasting the cost for resource 

provisioning, then present the time complexity of forecasting the cost for database 

partitioning, and finally present the time complexity of partition distribution. 

 Time complexity of forecasting the cost for resource provisioning: 

 From Section 1.2 of Chapter IV, we know that the resource provisioning from PM to 

VM can be estimated using the equation: 𝐸[𝑈] + 𝐸𝑡, where E[U] is the statistical mean 

of the measured historical CPU demand and 𝐸𝑡 is the error term. So the time complexity 

of forecasting the cost for resource provisioning is the sum of the time complexity of 

computing E[U] and the time complexity of computing 𝐸𝑡. In order to compute E[U], 

historical CPU demand data must be collected. If the number of entries in the historical 

CPU demand data set is 𝑛𝑐 then the time complexity of computing E[U] is O(𝑛𝑐). 

 𝐸𝑡 is computed using the AR(2) model. From Section 1.2 of Chapter IV, we know the 

2 step prediction error can be represented using the Gaussian variable having mean zero 

and variance 𝜎𝑒
2(𝑛) = ∑ 𝐺2(𝑗)𝜎𝜖

21
𝑗=0 . 𝐺(𝑗) is the characteristic function of the AR(2) 

model, which can be presented using the equation 𝐺(𝑗) =
𝛾1
𝑗+1

−𝛾2
𝑗+1

𝛾1−𝛾2
. From Section 1.2 of 

Chapter IV we know that γ1 and γ2 are the roots of the equation 1 − 𝛼1𝐵 − 𝛼2𝐵
2 = 0, 

where 𝛼1  and 𝛼2 are two AR(2) parameters. So the time complexity of computing 𝐺(𝑗) 

is based on the time complexity of finding out the value of 𝛼1 and 𝛼2. The Yule–Walker 

algorithm [89] can be used to calculate 𝛼1 and 𝛼2 using the historical CPU demand data 
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set. According to [89], the time complexity of finding out 𝛼1 and 𝛼2 for the AR(2) model 

is a constant. So the time complexity of computing 𝐸𝑡 is a constant, O(1). 

 Overall, the time complexity of forecasting the cost for resource provisioning is O(𝑛𝑐), 

where 𝑛𝑐 is the number of entries of the historical CPU demand data set. 

 Time complexity of forecasting the cost for database partitioning: 

 The cost forecasting process for database partitioning uses ANN, so the time 

complexity includes two parts: time complexity for training and time complexity for 

predicting. We first discuss the time complexity for training, then discuss the time 

complexity for predicting, then sum the two time complexity together to get the final time 

complexity. 

 In order to train an ANN (assuming only one hidden layer with 𝑛𝑛 nodes existing) 

with 𝑛𝑖 inputs, 𝑛𝑜 outputs using a training data set with 𝑛𝑡𝑟 number of records, each node 

of the network has to receive the input and take the weight to adjust the input in order to 

generate a new output. The predicted output will be compared with the corresponding 

output in the training data set in order to modify the weights. So the forward and reverse 

propagations’ time complexity will always be O(𝑛𝑖𝑛𝑛𝑛𝑜 ) for each data tuple in the 

training data set in one training iteration. If the whole training data set is used for training 

and 𝑛𝑡𝑖 training iterations are taken place, the overall time complexity of training process 

will be O(𝑛𝑖𝑛𝑛𝑛𝑜𝑛𝑡𝑟𝑛𝑡𝑖). 

 When ANN is used for prediction, the way of calculating the time complexity for 

prediction is similar to the way of calculating the time complexity for training. The only 

difference is that the prediction runs on one data tuple and has no reverse propagation. So 

the time complexity of the predicting process is O(𝑛𝑖𝑛𝑛𝑛𝑖). 
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 Now we can sum the two time complexity together, which is O(𝑛𝑖𝑛𝑛𝑛𝑜𝑛𝑡𝑟𝑛𝑡𝑖 ) + 

O(𝑛𝑖𝑛𝑛𝑛𝑖). In our ANN model 𝑛𝑖 equals to 4, 𝑛𝑛 equals to 8 and 𝑛𝑜 equals to 1, so the 

final time complexity of forecasting the cost for database partitioning is O(32𝑛𝑡𝑟𝑛𝑡𝑖) + 

O(32) = O(𝑛𝑡𝑟𝑛𝑡𝑖). We can see that the time complexity of using ANN in our application 

is mainly determined by the number of records of the training data set and the number of 

training iterations. 

 Time complexity of partition distribution: 

 Based on the discussion in Sections 3.2 and 3.3 of Chapter IV, we know the time 

complexity of partition distribution equals to the sum of the time complexity of 

computing the overall weighted overload score for each PM group and the time 

complexity of finding out the PM with highest selection probability in that PM group.  

 When partition distribution algorithm is searching the proper PM group to distribute 

resulted partitions, the algorithm first compute the overall overload score for each PM, 

which always has constant time complexity, O(1), since we only consider the overload 

status for CPU and memory. Then the algorithm will compute the overall overload score 

for a PM group by summing the overload scores of all PMs located in this PM group. If 

the maximum number of PMs in one PM group is 𝑚𝑃𝑀, the time complexity of finding 

out the overall overload score for one PM group is O(𝑚𝑃𝑀). If totally there are 𝑛𝑃𝑀𝐺  PM 

groups, the time complexity of finding out the overall overload score for all PM groups 

is O(𝑚𝑃𝑀𝑛𝑃𝑀𝐺). Once the overall overload score is computed for each PM group, the 

closeness centrality degree will be computed for each PM group in order to analyze the 

communication delay. The time complexity of computing the closeness centrality degree 
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is O(𝑛𝑃𝑀𝐺
2). So the total time complexity of search the proper PM group is O(𝑚𝑃𝑀𝑛𝑃𝑀𝐺) 

+ O(𝑛𝑃𝑀𝐺
2).  

 Next, the algorithm will compute the selection probability for each PM in the selected 

PM group in order to find out the proper PM to distribute partitions. Since we only 

consider the impact of CPU, memory and tenant degree for each PM the time complexity 

of computing the selection probability for each PM will be constant. We know there are 

𝑚𝑃𝑀  PMs in the PM group, so the time complexity of finding out the proper PM to 

distribute partitions is O(𝑚𝑃𝑀).   

 We can sum the above time complexities to get the total time complexity for partition 

distribution, which is O(𝑚𝑃𝑀𝑛𝑃𝑀𝐺) + O(𝑛𝑃𝑀𝐺
2)+ O(𝑚𝑃𝑀) = O(𝑚𝑃𝑀𝑛𝑃𝑀𝐺) + O(𝑛𝑃𝑀𝐺

2). 

1.2.2. Space complexity of AutoClustC 

 In order to compute the space complexity of AutoClustC, we have to find out the space 

complexity for forecasting the cost for resource provisioning, the space complexity for 

forecasting the cost for database partitioning and the space complexity for partition 

distribution. Then the sum of the three space complexity is AutoClustC’s space 

complexity. 

 Space complexity for forecasting the cost for resource provisioning: 

 When AutoClustC forecasts the cost of resource provisioning, the historical CPU 

demand data set has to be saved in the memory, so the space complexity for forecasting 

the cost for resource provisioning equals to O(𝑛𝑐), where 𝑛𝑐 is the number of entries in 

the historical CPU demand data set. 
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 Space complexity for forecasting the cost for database partitioning: 

 When AutoClustC forecasts the cost of database partitioning using ANN, the training 

data set has to be saved in memory with O(𝑛𝑡𝑟 ) space complexity, where 𝑛𝑡𝑟  is the 

number of records in the training data set. In order to make ANN running, the memory 

for each node’s weight has to be allocated. Since there are only 4 inputs and 1 hidden 

layer with 8 nodes, we can consider the space complexity of allocating memory to nodes’ 

weight as a constant. So the overall space complexity for forecasting the cost of database 

partitioning is O(𝑛𝑡𝑟). 

 Space complexity for partition distribution: 

 There are 3 major steps when AutoClustC performs the partition distribution. In the 

first step it computes the overload score for each PM of a PM group. In the second step 

it computes the weight for each PM group and find out the overall weighted overload 

score for each PM group. In the third step AutoClustC selects the PM with the highest 

selection probability from the candidate PM group. 

 When AutoClustC performs the first step, two resources, CPU and memory, are 

considered. So the space complexity of computing the overload score for one PM is 

constant, which is O(1). 

 When AutoClustC performs the second step, it has to allocate memory to save the 

distance of each PM group pair. If there are 𝑛𝑃𝑀𝐺  PM groups, the maximum number of 

PM group pairs equals to 
𝑛𝑃𝑀𝐺

2−𝑛𝑃𝑀𝐺

2
 and this will use O(𝑛𝑃𝑀𝐺

2) space complexity. 

AutoClustC also needs to save the overload score of all PMs in the data center, and this 

will use O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) space complexity, where 𝑚𝑃𝑀 is the maximum number of PMs of 
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one PM group. So the total space complexity of the second step is O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀 ) + 

O(𝑛𝑃𝑀𝐺
2). 

 When AutoClustC performs the third step, the selection probability of each PM in the 

candidate PM group has to be saved, so the space complexity of step 3 is O(𝑚𝑃𝑀  ). 

 Then the space complexity for partition distribution equals to O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀 ) + 

O(𝑛𝑃𝑀𝐺
2) + O(𝑚𝑃𝑀 ) = O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) + O(𝑛𝑃𝑀𝐺

2). 

 Now we can sum the three space complexity of AutoClustC together, which is O(𝑛𝑐) 

+ O(𝑛𝑡𝑟) + O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) + O(𝑛𝑃𝑀𝐺
2), to get the final space complexity for AutoClustC. 

1.3. Summary of worst-case time and space complexity analysis results 

 The summary of the time and space complexity analysis results is shown in Table 4. 

Table 4. Summary of worst-case time and space complexity analysis results 

 Time complexity Space complexity 

SLA-LRU O(𝑛𝑏) O(𝑛𝑡) 

AutoClustC 
O(𝑛𝑐) + O(𝑛𝑡𝑟𝑛𝑡𝑖) + 

O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) + O(𝑛𝑃𝑀𝐺
2) 

O(𝑛𝑐) + O(𝑛𝑡𝑟) + O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) + 

O(𝑛𝑃𝑀𝐺
2) 

 

2. Experimental Analysis 

 We have conducted an extensive set of experiments to study the performance of our 

algorithms SLA-LRU and AutoClustC.  We also compare SLA-LRU with two existing 

buffer pool management technique, LRU-2 [24] and MT-LRU [30] which we have 

reviewed in Chapter II. For AutoClustC, to the best of our knowledge it is the first cloud 

database tuning algorithm that is based on vertical database partitioning. So we have no 

similar algorithm to compare with. However, we compare the performance of the 

resulting partitions when using distribution with that of not using distribution. We present 

the simulation models in Section 2.1 and the experimental results in Section 2.2.  
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2.1. Simulation Models 

 The goal of the simulation model is to demonstrate the effectiveness of our algorithms. 

We build two experiment models to test the performance of our SLA-LRU and 

AutoClustC algorithms, respectively. The details of our simulation models are discussed 

in the following subsections. 

2.1.1. Simulation model for SLA-LRU 

 In order to implement our algorithm, we use the open source MySQL Server 5.5 [75] 

as our database platform.  MySQL Server 5.5 uses the classic LRU-2 algorithm to manage 

the memory buffer pool.  We modify this component of the original code to include our 

SLA-LRU.  We conduct experiments comparing SLA-LRU with the two existing buffer 

pool management algorithms, LRU-2 [24] and MT-LRU [30] using the TPC-H 

benchmark [88] database as our dataset and the TPC-H bench mark queries as the query 

set. Totally there are 8 database tables: ORDERS, SUPPLIER, LINEITEM, PARTSUPP, 

CUSTOMER, PART, NATION and REGION, and 22 query types. All the code 

modifications are done using C and all test scripts are written using tcl scripts. The 

experiments are performed on a machine with a CPU of i5-2400 3.10 GHz and 4 GB 

memory. 

 In order to run SLA-LRU and MT-LRU, the SLA penalty cost functions have to be 

pre-defined. For SLA-LRU, we classify tenants into 4 categories: Micro, Small, Medium 

and Large. We adopt the class categories used by Amazon T2 instance [73], which are 

shown in Table 5. The SLA promised buffer pool levels are 5%, 10%, 20% and 40% of 

the corresponding VM’s memory for Micro, Small, Medium, and Large tenants, 

respectively. According to the vCPU penalty cost function used by Amazon [73], the 
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penalty costs for different categories of tenants should follow a pattern of exponential of 

2. For example, Amazon defines the vCPU penalty cost for Micro, Medium and Large 

tenant categories as 21×3=6, 22×3=12 and 23×3=24, respectively. So we will also use the 

pattern of exponential of 2 in our experiments. Based on the discussions in [30] and [74], 

step-based resource utilization is widely used in practice to decide the penalty cost. So 

we also use the similar step-based actual buffer pool level to decide the penalty cost for 

each category of tenants in our experiments as shown in Table 6, where c is a weight to 

compute the penalty cost, and p is the SLA promised buffer pool level for the 

corresponding tenant category. From this penalty cost function we can see that the service 

provider does not have any penalty cost when the tenant’s buffer pool level just starts to 

decrease from the promised level until the buffer pool level falls below 95% of the 

promised level. Once the tenant’s buffer pool level falls below 25%, the penalty cost to 

the service provider becomes very high. For MT-LRU, we use the penalty cost function 

shown in Table 7. The same as the way we defined Table 6, the penalty cost pattern in 

Table 7 also follows [73], and the HRD pattern follows [30] and [74]. 

Table 5. Tenant's category 

Tenant category Promised buffer pool level 

Large 40% 

Medium 20% 

Small 10% 

Micro 5% 
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Table 6. Buffer pool level based SLA penalty cost function for SLA-LRU 

Penalty cost 

(Large) 

Penalty cost 

(Medium) 

Penalty cost 

(Small) 

Penalty cost 

(Micro) 
Actual buffer pool level range 

0 0 0 0 (95%p, 100%p] 

8c 4c 2c c (25%p, 95%p] 

16c 8c 4c 2c (5%p, 25%p] 

32c 16c 8c 4c [0%p, 5%p] 

 

Table 7. Hit ratio degradation based SLA penalty cost function for MT-LRU 

Penalty cost (Category I) Penalty cost (Category II) HRD range 

0 0 [0%p, 5%] 

c 4c (5%p, 25%] 

2c 8c (25%p, 95%] 

4c 16c (95%p, 100%] 

 

2.1.2. Simulation model for AutoClustC 

 AutoClustC is triggered when the performance related SLA of a tenant is violated. We 

use percentile query response time, which is discussed in detail in Section 2.3.2 of this 

chapter, as the measurement in the performance related SLA. AutoClustC first forecasts 

the costs for resource provisioning and database partitioning, then selects the lower cost 

method to tune the database. If database partitioning is chosen, a partitioning algorithm 

based on AutoClust [20] is run to partition the corresponding tenant’s database, and 

distribute the resulting partitions to proper PM in the same data center. Sometimes, such 

PM is called standby PM since the database instance on this PM is not the master database 

instance. The number of PMs that can be used to work as the standby PMs is defined in 

the tenants’ SLAs. In our experiments, we perform two round tests. In the first round, we 

conduct experiments to test the accuracy of each prediction model in our algorithm, and 

then conduct experiments to test the performance of the resulting partitions if database 
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partitioning is selected as the tuning method on the master database instance without 

running the partition distribution process. In the second round test, we assume database 

partitioning is selected, and directly conduct experiments to test the performance of the 

resulting partitions performance when running the partition distribution process. 

 The first round experiments are done on an AMAZON RDS cloud [6] with the 

database instance class of db.m1.medium and database engine of SQL Server SE 

11.00.5058.0.v1. The second round experiments are done in a virtual environment based 

on three physical servers, PM1, PM2 and PM3. PM1 and PM3 are Dell PowerEdge R510 

servers with Intel Xeon CPU E5645@2.4 GHz and 16 GB RAM. PM2 is a Dell 

PowerEdge 2900 server with Intel Xeon CPU E4310@1.6 GHz and 8 GB RAM. All 

machines run Microsoft SQL Server 2008 edition. The experiment program is coded in 

Java and tcl script. The TPC-H [88] database is used as our dataset. The TPC-H queries 

are used as the query set. Totally there are 8 database tables: ORDERS, SUPPLIER, 

LINEITEM, PARTSUPP, CUSTOMER, PART, NATION and REGION, and 22 query 

types in the TPC-H benchmark. 

 In order to train the ANN, the following training data set as shown in Table 8 is used.  

Table 8. Sample dataset used for ANN training 

ID Database size (MB) # query types # users # attributes  CPU time (cycles) 

1 42.6 8 12 16 1.88 

2 42.6 15 12 16 5.77 

3 145.5 8 12 16 4.19 

4 145.5 15 12 16 13.13 

5 267 22 8 16 29.7 

6 317 8 12 16 8.19 

7 237.5 15 8 16 26.84 

8 237.5 22 8 16 38.6 

9 395 22 12 16 44.91 

10 571.4 15 8 16 35.24 
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2.2. Competitive algorithms 

 We compare SLA-LRU with two existing algorithms that we have reviewed in Chapter 

II: LRU-2 [24] and MT-LRU [30].  We restate the keys ideas of these two algorithms 

here for ease of reference. 

 LRU-2 keeps tracking two lists: the referenced page list and the buffer page list. A 

page will be added to the referenced page list when it is referenced for the first time, and 

this page’s reference time is increased by 1. When this page is referenced again its 

reference time becomes 2, i.e. the page has been referenced two times, it will be moved 

to the buffer page list, which is ranked based on the pages’ timestamps in a decreasing 

order (the oldest page is at the top of the list). When a page replacement occurs in the 

memory buffer, the page with the oldest timestamp in the buffered page list will be 

removed from the buffer and the buffer page list.  

 MT-LRU focuses on a multi-tenancy environment. This technique considers the buffer 

page hit ratio degradation (HRD) as the metric in different tenants’ SLAs in order to 

manage the buffer memory. According to the description in [30], when a query accesses 

a memory buffer page, if it is found in the buffer pool, this access is referred as a hit; 

otherwise this access is a miss. The Hit Ratio (HR) is defined as: 𝐻𝑅 =
ℎ

𝑁
, where N is the 

total number of page accessed and h is the number of page accesses found in the buffer 

pool. Then 𝐻𝑅𝐷 = max⁡{0, 𝐻𝑅𝐵 − 𝐻𝑅𝐴}, where 𝐻𝑅𝐵 is the hit ratio when the promised 

memory buffer is statically reserved for the tenant; 𝐻𝑅𝐴 is the hit ratio when memory 

buffer is dynamically shared by multiple tenants. When MT-LRU releases memory buffer 

pages from buffer pool, besides the reference times and timestamp of buffer pages, it also 
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consider the HRD for each buffer page, hence the SLAs of different tenants are 

considered. 

2.3. Performance metrics 

 In this section we present the performance metrics for our SLA-LRU and AutoClustC 

algorithms, respectively. 

2.3.1. Performance metrics for SLA-LRU 

We measure the performance of the SLA-LRU algorithm based on two performance 

metrics: (1) the average query response time of processing one TPC-H query set, and (2) 

the SLA violation penalty cost improvement ratio. 

 Average query response time of processing one TPC-H query set: 

In the TPC-H benchmark query set, there are 22 query types. A different query type 

has different complexity. Some query types may not contain any nested query, while 

some query types may contain several nested queries. So for those 22 query types, they 

have different query response time. A query of a simple query type may take less than 1 

second to be processed, while a query of a complex query type may take more than 10 

seconds to be processed. That is why we use the average query response time of 

processing one TPC-H query set, instead of one TPC-H query, as our performance metric. 

We run the TPC-H benchmark query set 10 times and calculate the total query response 

time. Then we use the total query response time to compute the average benchmark query 

set processing time which is the average time to finish processing one TPC-H benchmark 

query set. 
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 SLA violation penalty cost improvement ratio: 

 Once we know the average query response time of processing one TPC-H benchmark 

query set for two algorithms that we want to compare against each other, we also want to 

know how much better one algorithm works compared to the other algorithm in terms of 

the SLA violation penalty cost. We can use the SLA violation penalty cost improvement 

ratio metric to measure the improvement. The SLA violation penalty cost improvement 

of an algorithm A over an algorithm B is calculated using the formula, 

100%.(𝑆𝐿𝐴𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝐵−𝑆𝐿𝐴𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝐴)

𝑆𝐿𝐴𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝐵
  where SLAPenaltyCostB is the SLA violation 

penalty cost after running a query set when algorithm B is used as the memory buffer 

page replacement algorithm and SLAPenaltyCostA is the SLA violation penalty cost after 

running the same query set when algorithm A is used as the memory buffer page 

replacement algorithm. If the result is bigger than zero, then we say that algorithm A can 

reduce the SLA violation penalty cost for the service provider compared to algorithm B, 

i.e., algorithm A performs better than algorithm B in terms of SLA violation penalty cost. 

2.3.2. Performance metrics for AutoClustC 

 For the first round experiment, we measure the performance of the AutoClustC 

algorithm based on three performance metrics: (1) the prediction accuracy of the AR(2) 

and ANN models, (2) the monetary cost ratio of resource provisioning to database 

partitioning, and (3) the query response time of the resulting partitions when applied 

database partitioning to repartition the database for performance tuning. 

 Prediction accuracy of the AR(2) and ANN models: 

 When the AR(2) model is used for estimating the CPU time for resource provisioning, 

according to the discussion in Section 1.2 of Chapter IV, we know the estimated CPU 
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utilization can be represented by the sum of the prediction value and prediction error. So 

the error ratio of using the AR(2) model to forecast the resource provisioning cost can be 

calculated as  
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑒𝑟𝑟𝑜𝑟

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑒𝑟𝑟𝑜𝑟+𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑣𝑎𝑙𝑢𝑒
.  

 When the ANN model is used for estimating the CPU time for database partitioning, 

we need to train the ANN model in order to use this model to do prediction. For each 

iteration of the training process, we have an error ratio which represents the difference 

between the predicted value and the real value. We use the Mean Square Error (MSE) of 

all iteration errors to calculate the final accuracy of the ANN model. 

 Ratio of monetary cost of resource provisioning to monetary cost of database 

partitioning: 

 In order to see which tuning method, resource provisioning or database partitioning, 

is the better cost saving method, , we can calculate the ratio the monetary cost of resource 

provisioning to the monetary cost of database partitioning as  

𝐶(𝐶𝑃𝑈𝐶𝑜𝑠𝑡𝑂𝑓𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑔)

𝐶(𝐶𝑃𝑈𝐶𝑜𝑠𝑡𝑂𝑓𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔)
, where C is a function that computes the monetary cost 

given the CPU cost.  Generally, DbaaS providers define the C function by themselves 

when they started to provide any services. In our experiment, we use a linear C function. 

 Query response time of new resulting partitions: 

 When database partitioning is selected as the method to tune the database performance, 

some new partitions will be generated. In order to measure how well the new partitions 

perform, we can calculate the percentile query response time for each query type. The 

percentile query response time of a particular query type is defined as the 95th percentile 

query response time of all queries which belong to the same query type. 
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 For the second round experiment, we measure the performance of the AutoClustC 

algorithm based on the following performance metrics: query response time improvement 

of processing the whole TPC-H query benchmark using partition distribution over 

processing it without using partition distribution. 

 Query response time improvement of processing the whole TPC-H query 

benchmark with partition distribution over the query response time without 

partition distribution: 

 The main reason of distributing partitions to other standby machines is that the 

workload can be split by different database instances when the master database instance 

is heavily overloaded. By implementing the partition distribution process, the probability 

of performance SLA violation can be reduced. In order to measure how the distribution 

of the new partitions perform, we can calculate the query response time improvement, 

which is the ratio of the time difference between the time of processing the whole TPC-

H benchmark query set without partition distribution and the time of processing the same 

query set with partition distribution over the time without partition distribution. It is 

computed as 
𝑇𝑖𝑚𝑒𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛−𝑇𝑖𝑚𝑒𝑊𝑖𝑡ℎ𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
, where TimeWithDistribution 

represents the overall query response time of processing the whole TPC-H benchmark 

query set with partition distribution and TimeWithoutDistribution represents the overall 

query response time of processing the whole TPC-H benchmark query set without 

partition distribution. 
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2.4. Experimental results 

 In this section we show the experimental results of the SLA-LRU algorithm in the first 

subsection, and the experimental results of the AutoClustC algorithm in the second 

subsection. 

2.4.1. Experimental results for SLA-LRU 

 In this subsection, we compare LRU-2, MT-LRU and SLA-LRU in terms of query 

response time and SLA penalty cost. 

2.4.1.1. Comparison of query response time of  LRU-2, MT-LRU and SLA-LRU 

 As we discussed in Section 5 of Chapter III, the increase of the scanning time on the 

buffer page list is the main overhead of SLA-LRU, and the additional operation of saving 

a hit or miss of a buffer page access for each buffer read request is the main overhead of 

MT-LRU. From Figure 15 we can see that the average query response time from 

processing the whole benchmark query set using LRU-2 is a little bit less than that when 

using SLA-LRU, but much less than that when using MT-LRU. The reason is that, for 

MT-LRU, each buffer page access request has to be analyzed so that the algorithm can 

know whether this access is a hit or miss, and this result has to be saved in memory. When 

there is no free space in the buffer pool, MT-LRU has to scan the corresponding memory 

in order to know the hit ratio degradation for each tenant. Since the number of buffer page 

requests is large, especially when the number of tenants is big, the memory scanning 

process will take a long time to be done. 

 From Figure 15 we can see the maximum difference between LRU-2 and SLA-LRU 

occurs when the number of tenants equals to 10. When there are 10 tenants on one 

instance, the average benchmark processing time using LRU-2 is 329 seconds and the 
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average benchmark processing time using SLA-LRU is 341 seconds. We can see that 

SLA-LRU is slower than LRU-2 by (341-329)/329=3.6%, i.e., on average, using SLA-

LRU to process a query will take (329×3.6%)/22=0.54 second more than that of using 

LRU-2 averagely. If we compare the query response time between MT-LRU and SLA-

LRU, we will see that averagely MT-LRU has to spend around 58 seconds more to 

process the whole benchmark query set. Also we can see that the average benchmark 

processing time increases when the number of tenants increases. More tenants means 

more workloads, and the queries have to be queued for the processor to process them. 

This is why the average benchmark processing time increases when the number of tenants 

increases. 

 

Figure 15. Average TPC-H benchmark query set processing time 

 

2.4.1.2. Comparison of SLA penalty costs of  LRU-2, MT-LRU and SLA-LRU 

 We measure the SLA penalty cost incurred by the LRU-2, MT-LRU and SLA-LRU 

algorithms when the buffer pool is shared by multiple tenants. In this test, for SLA-LRU 

we use the penalty cost function presented in Table 6; and for MT-LRU we use the penalty 

cost function shown in Table 7. We randomly assign different tenants to different tenants’ 
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categories which are defined in Table 5. We use 8 tenants as an example to illustrate how 

to measure the penalty cost. The tenants’ categories used in the example are shown in 

Table 9. We first compare SLA-LRU with LRU-2, and then compare MT-LRU with 

LRU-2. 

Table 9. Eight tenants' categories 

Tenant ID Tenant categories Promised buffer pool level 

1 Small 10% 

2 Medium 20% 

3 Medium 20% 

4 Small 10% 

5 Micro 5% 

6 Micro 5% 

7 Micro 5% 

8 Large 40% 

  

 Comparison between LRU-2and SLA-LRU: 

 The actual buffer pool levels assigned to each tenant before performing any buffer 

management algorithm and after performing LRU-2 and SLA-LRU are shown in the 

columns labelled “Preload,” “LRU-2,” and “SLA-LRU,” respectively in Figure 16. The 

SLA penalty cost is computed based on the buffer assignment status after using each 

algorithm. For example, from Table 9 we know that tenants 5, 6 and 7 are micro tenants; 

tenants 1 and 4 are small tenants; tenants 2 and 3 are medium tenants; and tenant 8 is a 

large tenant. So the promised buffer pool level for each tenant is shown in Table 10. 
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Figure 16. Buffer assignment status (actual buffer pool level) before performing 

any buffer management algorithm and after performing LRU-2 and SLA-LRU 

Table 10. Promised buffer pool level for each tenant for SLA-LRU 

Tenant ID 5 6 7 4 1 2 3 8 

p / total buffer size 5% 5% 5% 10% 10% 20% 20% 40% 

 

 Before running any page replacement algorithm (preload status), from Figure 16 we 

can see that the actual buffer pool level for each tenant is shown in Table 11. 

Table 11. Actual buffer pool level for each tenant before running algorithms 

Tenant ID 5 6 7 4 1 2 3 8 

Actual buffer utilization / total buffer 

size 
2% 3% 4% 38% 6% 6% 29% 1% 

Actual buffer utilization / p 40% 60% 80% 380% 60% 30% 145% <1% 

 After running the LRU-2 algorithm, from Figure 16 we can see that the new actual 

buffer pool level for each tenant is shown in Table 12. 
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Table 12. Actual buffer pool level for each tenant after running LRU-2  

Tenant ID 5 6 7 4 1 2 3 8 

Actual buffer utilization / total buffer 

size 
1.5% 1.5% 1.5% 15% <1% 1% 20% 50% 

Actual buffer utilization / p 30% 30% 30% 150% 4% 5% 100% 125% 

 

 Using the data given in Table 6 and Table 12, we can calculate the penalty cost for 

each tenant. For example, for tenant 1 (Small tenant), from Table 12 we can see the actual 

buffer pool level is 4% of p. Based on Table 6, when the actual buffer level range is [0%, 

5%], for a Small tenant the SLA penalty cost is 8c. Similarly we can derive the penalty 

costs for the rest of the tenants which are shown in Table 13. 

Table 13. Penalty cost for each tenant after running LRU-2  

Tenant ID 5 6 7 4 1 2 3 8 

Penalty cost c c c 0 8c 16c 0 0 

 

 So after using the LRU-2 algorithm, the SLA penalty cost is c + c + c + 0 + 8c +

16c + 0 + 0 = 27c⁡. Similarly, the SLA penalty cost after running SLA-LRU can be 

computed as c + c + c + 0 + 8c + 8c + 0 + 0 = 19c .  We can see that the major 

difference of memory buffer reassignment between the two algorithms occurs on tenant 

2 and tenant 4. Tenant 2 is a medium class tenant, and tenant 4 is a small class tenant. 

The SLA-LRU algorithm analyzes the “values” of the two tenants, which are the SLA 

violation penalty costs, and decide to free more buffer pages of tenant 4 instead of tenant 

2. By doing this the SLA penalty cost could be reduced by (27c − 19c)/27c = 30% 

according to the penalty function used in Table 6. 

 The performance of SLA-LRU over LRU-2 based on the penalty cost ratio for 

different numbers of tenants is shown in Figure 17, where we can see that the service 
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provider could reduce the penalty cost when using the SLA-LRU algorithm to manage 

the buffer pool for most cases. From Figure 17, we conclude that the average SLA 

violation penalty cost improvement of using SLA-LRU over LRU-2 is about 

(1−1)+(1.3−1)+(1.2−1)+(1.51−1)+(1.42−1)

5
≈ 29%. Also we can see that when there are 

more than two tenants, SLA-LRU generally can provide good penalty cost savings. But 

the performance of LRU-2 and SLA-LRU looks similar when there are only two tenants 

(the penalty cost ratio is 1 in Figure 17). The reasons for the similar performance could 

be the following: 1) the buffer pool is big enough to hold two tenants’ databases; and 2) 

the incoming queries of tenants do not fluctuate too much, i.e., few buffer page 

replacements are needed to process all queries. 

 

Figure 17. SLA penalty cost ratio of using LRU-2 over using SLA-LRU 

 Comparison between LRU-2 and MT-LRU: 

 For MT-LRU, the SLA penalty cost function is shown in Table 7 of Subsection 2.1.1.  

We assume there are two categories of tenants as shown in Table 7. Tenants belonging to 

category II are more important than those tenants belonging to category I. So the penalty 

cost for category II tenants is higher.   
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       The performance of MT-LRU over LRU-2 based on the penalty cost ratio for 

different numbers of tenants is shown in Figure 18, where we can see that the service 

provider can reduce the penalty cost when using the MT-LRU algorithm to manage the 

buffer pool for most cases. The average penalty cost improvement is about 

(1−1)+(1.1−1)+(1.7−1)+(2.5−1)+(2.3−1)

5
≈ 72%. If the query response time can be 

ignored, MT-LRU can save more money than SLA-LRU for service providers. However, 

from Figure 15 we can see that MT-LRU cannot guarantee a fast query response time 

compared to LRU-2 and SLA-LRU, i.e., it sacrifices query response time too much in 

order to maintain a low SLA penalty cost. 

 

Figure 18. SLA penalty cost ratio of using LRU-2 over using MT-LRU 

 We can conclude the performance of SLA-LRU and MT-LRU compared to LRU-2 in 

Table 14 using the average query response time results shown in Figure 15 and the 

average penalty cost improvements that we have calculated from Figures 17 and 18. From 

Table 14 we can see that MT-LRU gives the best SLA violation penalty cost but the worst 

query response time; and SLA-LRU and LRU-2 have compatible query response time, 

but SLA-LRU has much better SLA violation penalty cost than LRU-2 does. Overall, 

SLA-LRU gives the best performance considering both metrics together. 
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Table 14. Overall performance of SLA-LRU and MT-LRU 

 SLA-LRU MT-LRU 

Average penalty cost improvement over LRU-2 29% 72% 

Averagely query response time increase over LRU-2 3.6% 21.3% 

 

2.4.2. Experimental results for AutoClustC 

 In this subsection, we first present our experiments results for the first round test: the 

performance of the ANN model for database partitioning cost forecasting, the 

performance of the AR(2) model for resource provisioning cost forecasting, the monetary 

cost ratio of resource provisioning cost to database partitioning cost, and the performance 

of the new resulting partitions. Secondly, we present our experiments results for the 

second round test: performance improvement of using partition distribution. 

2.4.2.1. Performance of the ANN Model for Database Partitioning Cost 

Forecasting 

 The training dataset of the ANN model is from the monitor system called Cloud Watch 

Service provided by Amazon RDS. 20% of the dataset is used as the validation set and 

20% of the data set is used as the test set. The performance measured in MSE is shown 

in Figure 19. From this figure we can see that the best performance MSE is about 2.12 

happened at 720 epochs, which is a measure of the number of times all of the training 

vectors are used once to update the weights. If more epochs are performed, the network 

will be over trained since the MSE of validation increases after 720 epochs. Then the 

linear regression graph is shown in Figure 20. If the training were perfect, the outputs of 

the network would be exactly equal to the targets of the network, i.e. the dash line and 

color line in the graph should be 100% overlapped (R=1); but the relationship is rarely 
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perfect in practice. From Figure 20 we can see that the training, validation and test are all 

fitting the network targets well. 

 

Figure 19. ANN performance on forecasting database partitioning CPU time 

 

Figure 20. Linear regression of the network on forecasting the database 

partitioning CPU time 
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2.4.2.2. Performance of the AR(2) model for Resource Provisioning Cost 

Forecasting 

 As discussed in Section 1.2 of Chapter IV, the accuracy of the cost forecasting for 

resource provisioning is the accuracy of estimating the prediction error whose probability 

distribution follows a normal distribution with zero mean. Figure 21 shows the probability 

distribution of the prediction error. We can see that 95% of the prediction errors range 

from -0.015 to 0.015. Comparing with the statistic mean of the historical data, which is 

0.31, the error rate of forecasting is about 
0.015

0.015+0.31
= 4.6%. 

 

Figure 21. Probability distribution of prediction error in resource provisioning 

CPU time forecasting 

 

2.4.2.3. Ratio of monetary Cost of Resource Provisioning Cost to Monetary 

Cost of Database Partitioning 

 Typically, after resource provisioning, the new assigned resources on the VM may 

take up to serval minutes for the acquired VM to be ready to use. This time is dependent 
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on the image size (the size of the data mounted from a PM to a VM), VM type, data center 

location, etc. [90]. So the new assigned resources will not be released in minutes. We 

assume the dynamic provisioned resources will be kept at least for 30 minutes, which is 

also the time interval of two sample neighbor data points as discussed in Section 1.2 of 

Chapter IV. From Section 2.4.2.1 of this chapter, we use the training data to estimate the 

CPU time cost of partitioning using the ANN model. The estimation is 42.55 CPU time 

units. From the section 2.4.2.2 of this chapter we estimate the average CPU time 

provisioned to VM. The estimation is 0.325 × 30 × 60 = 585⁡CPU time units. Since the 

C(CPU_Demand) function is linear, the final provision monetary cost measured in dollar 

will be about 
C(585)

C(42.55)
≈

585

42.55
≈ 14⁡ times as the final monetary cost of database 

partitioning. 

2.4.2.4. Performance of the New Database Partitions 

 In Section 2.4.2.3 we can conclude that the database partitioning method costs less 

money than resource provisioning; so the database partitioning method will be used for 

performance tuning to re-guarantee the performance SLA. In this subsection the 

performance in terms of percentile query response time of the new database partitions 

after the partitioning process is presented in Figure 22. We define the performance SLA 

as follows: at least the 95th percentile query response time of each query type must be 

within a specific time threshold, TH; otherwise the performance SLA is said to be 

violated. When a performance SLA violation occurs, the partitioning process will be 

triggered and the new partitions will be generated to replace the old ones. This experiment 

is conducted as follows:  

1. A tenant’s behavior is simulated on a cloud database.  
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2. Half number of the query types are randomly selected from the TPC-H query type 

benchmark, and each type of query is executed for a random number of times (less 

than 300).  

3. Once all queries are successfully finished, Step 2 is repeated until the experiment 

time of 5 hours is reached.   

4. In Step 3 if a performance SLA violation is detected, the partitioning process is 

triggered and new partitions are generated before Step 2 is repeated. 

 In Figure 22, each colored line represents the percentile query response time of the 

query corresponding to that color. The red dashed line represents the pre-defined 

performance SLA (TH). From Figure 22 we can see that the partitioning process occurs 

3 times at the three time points 1, 2, and 3, i.e., performance SLA violations occur at the 

3 time points in 5 hours. At time point 1, which is at about 1,800 seconds in the experiment 

time, a performance SLA violation is detected for query type 18; at time point 2, which 

is at about 7,100 seconds in the experiment time, a performance SLA violation is detected 

for query type 21; and at time point 3, which is at about 14,700 seconds in the experiment 

time, a performance SLA violation is detected for query types 9, 12 and 19. The 

performance SLA violations are caused by query pattern changes since the query set 

running on the cloud database is randomly changed in Step 2. If the time threshold TH is 

defined as 7 seconds then from this figure, we can see that the performance SLA is re-

guaranteed again after the partitioning process is completed (shown as the colored line 

falling below the red dashed line again after the partitioning process is completed). Figure 

22 also can give a general idea to the service providers of what performance SLA should 

be made between them and their customers. If the customers are asking for a better 
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response time, like 5 seconds for example, then from Figure 22, the providers can know 

that such performance SLA is really hard to guarantee if they still use the current VM 

configuration. In that case, they can provide better computing resources to the customers 

by charging a service upgrade fee. So our algorithm can also help the providers make a 

profitable decision on deriving a correct performance SLA. 

 

Figure 22. Query response time of 95th percentile of query for different query 

types before and after database partitioning 

 

2.4.2.5. Query response time improvement of processing the whole TPC-H 

benchmark query set with partition distribution over the query 

response time without partition distribution 

The database partitioning algorithm in AutoClustC is based on AutoClust, so before 

we conduct experiments we need to set up some parameters used by the database 

partitioning algorithm.  The parameter setup needs to be done only once.  We use the 
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same parameters of our partitioning algorithm which is published in [91]. The following 

Table 15 shows all parameters with their values. 

Table 15. Parameters used by the database partitioning algorithm in AutoClustC 

Name Meaning Default Value 

𝑟 Physical read ratio threshold of a query 20% 

𝑓𝑛 The threshold of  the percentage  of queries that 

satisfies r 

40% 

𝑓𝑡 Query frequency threshold: a query must occur at 

least ft percent in the whole query set 

0 

𝑐𝛼 Confidence interval 1% 

𝛼 Confidence level 95% 

 

In order to test how the distributed partitions on the standby PM improve the whole 

system performance, we construct virtual environments on three PMs, PM1, PM2 and 

PM3, as described in section 2.1.2. In PM1 we create 5 VMs each with 2 GB RAM and 

Xeon E5645@2.4 GHz CPU. In PM2 we create 4 VMs each with 1 GB RAM and Xeon 

E5310@1.6 GHz CPU. In PM3 we create 3 VMs each with 2 GB RAM and Xeon 

E5645@2.4 GHz CPU. When we simulate the environment of a data center, we use the 

VM created on PM1, PM2 or PM3 to represent the real PM in a real data center. If we 

use PM* to represent the VM in our experiment, then there are totally 12 PM* (5 PM* 

on PM1, 4 PM* on PM2 and 3 PM* on PM3) as shown in Table 16. We measure the 

communication delay of each physical server pair and the result is shown in Table 17.  

From Table 17 we can see that the communication delay is less than 1 millisecond since 

all three physical servers are located in the same room and connected by a high speed 

Ethernet. We also know the query response time for each query type of TPC-H 

benchmark ranges from 1 second to 15 seconds when those queries run on our physical 

server. So the scaler, 𝜌, used in out experiment can be set to 1/1000. Such small scaler 
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means the communication delay almost has no impact on the selection of a proper PM. 

This is because according to the formula, 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 × (1 +

𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘 × 𝜌), which is used to compute the overall weighted overload score, we 

know 1 +
𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘

1000
≈ 1 since  𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘 cannot be bigger than 1.  

When we perform our experiments, for each PM* we run 10-15 tenants (the number 

of tenants is randomly generated).  

Table 16. Specifications of the virtual environment 

PM # VM (PM*) # Spec. 

PM1 

VM1 (PM1*) 

2 GB RAM and Xeon E5645@2.4 GHz CPU 

VM2 (PM2*) 

VM3 (PM3*) 

VM4 (PM4*) 

VM5 (PM5*) 

PM2 

VM6 (PM6*) 

1 GB RAM and Xeon E5310@1.6 GHz CPU 
VM7 (PM7*) 

VM8 (PM8*) 

VM9 (PM9*) 

PM3 

VM10 (PM10*) 

2 GB RAM and Xeon E5645@2.4 GHz CPU VM11 (PM11*) 

VM12 (PM12*) 

 

Table 17. Communication delay for each server pair 

 PM1 PM2 PM3 

PM1 0 0.704 millisecond 0.306 millisecond 

PM2 0.704 millisecond 0 0.281 millisecond 

PM3 0.306 millisecond 0.281 millisecond 0 

 

We set the tested master database instance in a PM1*, and the other PM*s can work as 

the standby PM*s which may be used to distribute partitions to. The tenants on PM1* are 

querying their database instances with a time interval of 500-1000 milliseconds (time 

interval is randomly generated for each tenant). If the database instances occupies more 

than 75% of the CPU of the PM1*, we say PM1* is overloaded and the SLAs of the tenants 
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on PM1* may be violated due to the heavy workload. If such case occurs the 

corresponding standby PM*, which has the distributed partitions for the master database 

instance, has to be used in order to split the workload until the CPU utilization ratio falls 

below 75% of the CPU of the PM1*. We read the CPU utilization every 10 seconds from 

the system and the performance of the whole system is shown in Figure 23. 

 

Figure 23. CPU utilization ratio of PM1* 

 

From Figure 23 we can see the overall CPU utilization is increasing when more tenants 

are querying their database instances. At 90 seconds, the CPU utilization on PM1* is 

about 81%, which is above the 75% threshold. From this time on, there exists a high risk 

for all tenants such that the SLA might be violated under the heavy workload. So the 

distributed partitions of the tested database instance on the standby PM* start to be used 

to process the workload. That is why the CPU utilization is falling down after 90 seconds. 

The risk of SLA violation for all tenants on PM1* will be reduced. In Figure 24 we can 

see how the overloaded PM1* performs comparing to an un-overloaded PM1*. 
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Figure 24. Average time of processing one TPC-H benchmark query set under the 

overloaded and un-overloaded status 

 

From Figure 24 we can see when CPU is overloaded (at the 90th second in Figure 23), 

the CPU utilization is about 81%, and the average time of processing one TPC-H 

benchmark query set is 55 seconds. When CPU is un-overloaded (at the 110th second in 

Figure 23), i.e., the database instance on a standby PM* is involved to help the master 

database instance process the workload, the average time of processing one TPC-H 

benchmark query set is 46 seconds. So the time improvement is 
55−46

55
= 16.4%. This can 

reduce the SLA violation for all tenants on the PM1*. 
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Chapter VI Conclusions and Future Work 

 In this research we have proposed a memory buffer management algorithm for cloud 

database, SLA-LRU, and a performance tuning algorithm for cloud database, 

AutoClustC. 

 The first algorithm, SLA-LRU, takes SLA into account and considers memory buffer 

page’s frequency, buffer page’s recency, and buffer page’s value which is the cost of 

remove a page from the buffer pool, in order to perform buffer page replacement. SLA-

LRU first will check whether the memory buffer pool is full or not. If there is no free 

space in the memory buffer pool, SLA-LRU then computes the SLA penalty change trend 

for each tenant using the pre-defined SLA penalty cost function for each tenant. After 

SLA-LRU identifies the tenant who has the lowest SLA penalty cost increment, the 

algorithm will free the corresponding tenant’s memory buffer pages using a moving 

forward scanning method, which doubles the scanning length on the buffer page list for 

each iteration until the whole buffer page list is scanned or enough memory buffer pages 

have been freed.  

 The second algorithm, AutoClustC, is designed for dynamically tuning the cloud 

database when an SLA violation occurs by considering both resource provisioning tuning 

method and database partitioning tuning method. It uses an AR(2) and an ANN model l 

to estimate the tuning cost for database partitioning and resource provisioning 

respectively. Then the tuning method with the lower cost will be selected to tune the 

database in order to re-guarantee the performance related SLA. If database partitioning is 

selected, a database partitioning algorithm based on AutoClust is used to partition the 

database tables. Then the AutoClustC algorithm will distribute the resulting partitions to 
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the proper PM located in the same data center by considering the overall weighted 

overload score for each PM group and the selection probability of each PM in the selected 

PM group.  The PM that has the highest selection probability in the PM group that has 

the least overload score is chosen to be the proper PM for partition distribution. 

We have analyzed the worst-case time and space complexity of the two proposed 

algorithms. The time complexity of SLA-LRU is impacted by the number of entries in 

the buffer page list (𝑛𝑏) and the space complexity of SLA-LRU is impacted by the 

number of tenants (𝑛𝑡). The time complexity of AutoClustC is impacted by the number 

of entries in the historical CPU utilization data set (𝑛𝑐), the number of records of the 

training data set for ANN (𝑛𝑡𝑟), the number of training iterations for ANN (𝑛𝑡𝑖), the 

number of PM groups in the data center (𝑛𝑃𝑀𝐺) and  the maximum number of PMs in 

one PM group (𝑚𝑃𝑀). The space complexity of AutoClustC is also impacted by the 

number of entries in the historical CPU utilization data set (𝑛𝑐), the number of records of 

the training data set for ANN (𝑛𝑡𝑟), the number of training iterations for ANN (𝑛𝑡𝑖), the 

number of PM groups in the data center (𝑛𝑃𝑀𝐺) and  the maximum number of PMs in 

one PM group (𝑚𝑃𝑀).  

We have also performed extensive experiments in order to study the performance of 

SLA-LRU and AutoClustC using the TPC-H benchmark. We have compared our SLA-

LRU algorithm with two existing buffer management algorithms, LRU-2 and MT-LRU, 

in terms of query response time and the penalty cost improvement ratio. We have studied 

our AutoClustC algorithm by computing the prediction accuracy of the ANN model and 

the AR(2) model and comparing the performance of the new database partition results on 

the cloud database after a database repartitioning takes place with and without using 
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partition distribution. A summary of our theoretical and experimental performance 

evaluation results is presented in the following sections. 

1. Summary of Performance Evaluation Results 

1.1. Summary of the performance results for SLA-LRU 

 SLA-LRU is a cloud database buffer pool management algorithm based on the classic 

LRU-2 algorithm but takes SLA into consideration. It requires user-defined parameter, 

percentile of the buffer page list for the first scanning process (α), and a pre-defined SLA 

penalty cost function (fi(x)) for each tenant i. In the dissertation we used 0.1 as the default 

value for α. By changing this value people can decide the scanning speed on the memory 

buffer page list. Below we summarize the results we have obtained so far for SLA-LRU. 

1. SLA-LRU has a time complexity of O(𝑛𝑏), and a space complexity of O(𝑛𝑡), 

where 𝑛𝑏 is the number of entries in the buffer page list and 𝑛𝑡 is the number of 

tenants. 

2. SLA-LRU can provide almost the same query response time as that of LRU-2 

algorithm, and much better query response time compared to MT-LRU. 

3. Both SLA-LRU and MT-LRU can significantly reduce the SLA penalty cost 

compared to LRU-2, and MT-LRU has a better penalty cost improvement ratio 

than that of SLA-LRU. 

4. The overall performance of SLA-LRU by considering both query response time 

and SLA penalty cost improvement ratio is better than that of LRU-2 and MT-

LRU. 
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1.2. Summary of performance results for AutoClustC 

 AutoClustC is a dynamic cloud database tuning algorithm based on the partitioning 

algorithm, AutoClust. So it requires the user-defined parameters used in AutoClust: 1) 

physical read ratio threshold of a query (r) (by changing this value, people can decide 

whether a query is a physical read mainly query or a logical read mainly query), 2) query 

frequency threshold (ft) (by changing this value people can decide what queries are outlier 

queries), 3) confidence interval (a), and 4) confidence level (ca) (by changing these two 

values a  and ca,  people can decide how many queries have to be collected so that there 

are enough physical read mainly queries for re-partitioning). Besides the 4 parameters 

listed above, AutoClustC also needs one more user-defined parameter, time interval for 

the future CPU utilization forecasting (t), and five more system parameters, size of 

database (S), maximum number of attributes (NA), number of query types (NQ), number 

of users (NU),  and the historical CPU utilization data (U). If the algorithm is run for the 

first time, a training data set for the ANN model has to be provided. Below we summarize 

the results we have obtained for AutoClustC. 

1. AutoClustC has a time complexity of O(𝑛𝑐 ) + O(𝑛𝑡𝑟𝑛𝑡𝑖 ) + O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀 ) + 

O(𝑛𝑃𝑀𝐺
2), and a space complexity of O(𝑛𝑐) + O(𝑛𝑡𝑟) + O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) + O(𝑛𝑃𝑀𝐺

2), 

where 𝑛𝑐 is the number of entries in the historical CPU utilization data set; 𝑛𝑡𝑟 is 

the number of records of the training data set for ANN; 𝑛𝑡𝑖  is the number of 

training iterations for ANN; 𝑛𝑃𝑀𝐺  is the number of PM groups in the data center; 

and 𝑚𝑃𝑀 is the maximum number of PMs in one PM group. 

2. AutoClustC is able to dynamically tune the cloud database when performance 

SLA is violated. 
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3. AutoClustC has high accuracy when it forecasts the costs for resource 

provisioning tuning method and database partitioning tuning method. 

4. If the master database instance is the only database instance in the data center and 

database partitioning is selected as the tuning method, the new resulting partitions 

can provide better performance which is measured in 95th percentile query 

response time for each query type. 

5. If a standby database instance is used and database partitioning is selected as the 

tuning method, the new resulting partitions distributed to the standby database 

instance can significantly reduce the chance of SLA violation by splitting the high 

volume workload on the master database instance. 

2. Future Research 

For future work, we plan to perform the following tasks in order to improve the 

weaknesses of our proposed algorithms in this dissertation. 

Testing non-linear SLA penalty cost functions for SLA-LRU 

For SLA-LRU, the SLA penalty cost function used in the algorithm is a step based 

function. We have not tested any non-linear penalty cost function for our algorithm. In 

the future research, we will use different non-linear functions as the SLA penalty cost 

functions and perform experiments using the new functions. 

Dealing with dirty buffer pages for SLA-LRU 

In the current SLA-LRU algorithm we did not address the issue of how to handle dirty 

buffer pages. If the buffer page is a dirty page we cannot simply remove the page from 

the buffer pool since the data in this buffer page may not be written back to disk yet. In 

the future research, we will conduct some research and improve the SLA-LRU algorithm 
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so that the advanced version of SLA-LRU can perform correct actions when doing page 

replacement on dirty buffer pages. 

Dynamically adjusting the scanning length for SLA-LRU 

In the current SLA-LRU algorithm, the most recent scanning length on the buffer page 

list is two times of the length of the previous scanning iteration, until the a full scan occurs 

on the buffer page list. One problem of such scanning method is that it has no ability to 

adjust buffer page releasing speed. In the future research we would like to adjust the 

buffer page releasing speed by dynamically changing the value of 𝛼 , which is the 

percentile position used to separate least recent used buffer pages and most recent used 

buffer pages. The actual value of 𝛼 can be determined by the ratio of the number of buffer 

pages that have been released over the number of buffer pages that are needed. 

Dynamically adjusting the scanning length would help SLA-LRU find enough buffer 

pages faster. 

Testing more CPU utilization patterns for AutoClustC 

For AutoClustC, the CPU utilization pattern used in the algorithm has to match some 

assumptions. In reality, the CPU utilization may fluctuate and not follow our assumptions, 

and this could cause low prediction accuracy when using our prediction algorithm. In the 

future research, we would like to consider more CPU utilization patterns, combine static 

provisioning and dynamic provisioning together, and use different statistic models to 

forecast the future CPU utilization according to different CPU utilization patterns. 

Distributing partitions to proper PM based on different distribution levels 

The current partition distribution algorithm used in AutoClustC is a same data center 

based algorithm. The standby PM which is used to distribute partitions has to be located 
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in the same data center as the PM of the master database instance. The weakness of such 

distribution method is that the failure of the data center will cause the service interruption 

of both master database instance and standby database instance. So we need to consider 

distributing partitions based on different distribution levels. In our future research, we 

will perform research on different data center distribution and different availability zone 

distribution. The PMs located in different data centers or different availability zones are 

100% physically isolated, so the service cannot be interrupted when one data center fails. 
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