
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SLA-BASED PERFORMANCE TUNING TECHNIQUES FOR CLOUD

DATABASES

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

LIANGZHE LI

 Norman, Oklahoma

2017

SLA-BASED PERFORMANCE TUNING TECHNIQUES FOR CLOUD

DATABASES

A DISSERTATION APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

BY

Dr. Le Gruenwald, Chair

Dr. Qi Cheng

Dr. Sudarshan Dhall

Dr. Changwook Kim

Dr. Scott Moses

© Copyright by LIANGZHE LI 2017

All Rights Reserved.

iv

Acknowledgements

 I have been working on this research for more than three years and it has been

impossible to complete this task on my own. Many people provided their support,

guidance and encouragement to me.

First I want to thank all the members of my dissertation committee: Dr. Le Gruenwald,

Dr. Qi Cheng, Dr. Sudarshan Dhall, Dr. Changwook Kim and Dr. Scott Moses. Without

their guidance I could not have successfully finished my research and had my results

published. I also want to thank other members of the OU Database Group for helping me

on this research. A special gratitude I owed to Dr. Gruenwald is that she spent a lot of

time advising me on my work. I will always be grateful for her assistance.

However, I wish to give my greatest gratitude to my family, my parents, my wife and

my daughter. I was supposed to stay with you every day but you have seen me less for

the past three years because of my busy work. Especially, I really want to thank my

daughter, Sunny Li. Though you are too little and had no chance of helping me on my

task, you brought so much happiness to me. I hope you know that I love you so much.

 A lot of friends in the School of Computer Science offered their help, too. I cannot

list all their names here, I thank you all.

v

Table of Contents

Acknowledgements ... iv

List of Tables ... ix

List of Figures ... x

Abstract ... xii

Chapter I: Introduction ... 1

1. Objective ... 1

2. Database as a Service (DbaaS) ... 1

3. System Tuning for DbaaS .. 4

4. Issues of Database Partitioning on Tuning DbaaS ... 6

5. Contribution .. 9

6. Organization ... 10

Chapter II: Literature Review ... 12

1. Database Buffer Management Algorithms ... 12

2. Resource Provisioning Algorithms ... 15

3. Database Partitioning Algorithms .. 21

3.1. Database Partitioning in Non-Distributed Environments 21

3.2. Database Partitioning in Single-Tenant Distributed Environments 28

3.3. Horizontal Database Partitioning in Multiple-Tenants Distributed

Environments .. 32

Chapter III: A Proposed Buffer Pool Management Technique for Cloud Databases 35

1. Motivation of SLA-LRU .. 36

2. Overview of SLA-LRU .. 37

vi

3. Buffer pool level related SLA penalty cost model 38

4. Workflow of SLA-LRU ... 42

5. Overheads of SLA-LRU comparing with LRU-2 .. 46

Chapter IV A Proposed Performance Tuning Algorithm Based on Database Partitioning

for Cloud Databases ... 50

1. Cost Forecasting for Resource Provisioning .. 50

1.1. CPU utilization patterns for dynamic provisioning 51

1.2. Problem modeling of cost forecasting for dynamic resource provisioning

 .. 51

2. Cost Forecasting for Database Partitioning .. 55

2.1. Factors impacting database partitioning ... 55

2.2. Artificial Neural Network on cost prediction for database partitioning . 56

3. Partition Distribution .. 59

3.1. Motivation of partition distribution for DbaaS 60

3.2. Computing load balance using the overload score 62

3.3. Communication cost ... 67

Chapter V Performance Analysis ... 72

1. Theoretical Analysis ... 72

1.1. Complexity analysis for SLA-LRU .. 72

1.1.1. Time complexity of SLA-LRU .. 73

1.1.2. Space complexity of SLA-LRU ... 75

1.2. Complexity analysis for AutoClustC .. 75

1.2.1. Time complexity of AutoClustC .. 76

vii

1.2.2. Space complexity of AutoClustC ... 79

1.3. Summary of worst-case time and space complexity analysis results 81

2. Experimental Analysis .. 81

2.1. Simulation Models .. 82

2.1.1. Simulation model for SLA-LRU .. 82

2.1.2. Simulation model for AutoClustC .. 84

2.2. Competitive algorithms .. 86

2.3. Performance metrics ... 87

2.3.1. Performance metrics for SLA-LRU ... 87

2.3.2. Performance metrics for AutoClustC ... 88

2.4. Experimental results ... 91

2.4.1. Experimental results for SLA-LRU .. 91

2.4.1.1. Comparison of query response time of LRU-2, MT-LRU and SLA-

LRU .. 91

2.4.1.2. Comparison of SLA penalty costs of LRU-2, MT-LRU and SLA-

LRU .. 92

2.4.2. Experimental results for AutoClustC ... 98

2.4.2.1. Performance of the ANN Model for Database Partitioning Cost

Forecasting ... 98

2.4.2.2. Performance of the AR(2) model for Resource Provisioning Cost

Forecasting ... 100

2.4.2.3. Ratio of monetary Cost of Resource Provisioning Cost to Monetary

Cost of Database Partitioning ... 100

viii

2.4.2.4. Performance of the New Database Partitions 101

2.4.2.5. Query response time improvement of processing the whole TPC-H

benchmark query set with partition distribution over the query response

time without partition distribution .. 103

Chapter VI Conclusions and Future Work ... 108

1. Summary of Performance Evaluation Results .. 110

1.1. Summary of the performance results for SLA-LRU 110

1.2. Summary of performance results for AutoClustC 111

2. Future Research .. 112

ix

List of Tables

Table 1. List of symbols used by SLA-LRU .. 38

Table 2. Variables used in the theoretical analysis ... 72

Table 3. An example entry in the SLA penalty cost table .. 73

Table 4. Summary of worst-case time and space complexity analysis results 81

Table 5. Tenant's category .. 83

Table 6. Buffer pool level based SLA penalty cost function for SLA-LRU 84

Table 7. Hit ratio degradation based SLA penalty cost function for MT-LRU 84

Table 8. Sample dataset used for ANN training ... 85

Table 9. Eight tenants' categories ... 93

Table 10. Promised buffer pool level for each tenant for SLA-LRU 94

Table 11. Actual buffer pool level for each tenant before running algorithms 94

Table 12. Actual buffer pool level for each tenant after running LRU-2 95

Table 13. Penalty cost for each tenant after running LRU-2 .. 95

Table 14. Overall performance of SLA-LRU and MT-LRU ... 98

Table 15. Parameters used by the database partitioning algorithm in AutoClustC 104

Table 16. Specifications of the virtual environment .. 105

Table 17. Communication delay for each server pair ... 105

x

List of Figures

Figure 1. Cloud workload patterns ... 17

Figure 2. Main idea of LRU-K (K=2) .. 36

Figure 3. Penalty cost function examples ... 40

Figure 4. Penalty cost change for tenant A and tenant B with SLA violation penalty

function of pattern (a) and pattern (b), respectively ... 42

Figure 5. Two portions of a buffer page list ... 44

Figure 6. Algorithm of analyzing SLA violation penalty cost 48

Figure 7. Algorithm of releasing buffer pages ... 49

Figure 8. Dynamic forecasting estimation .. 52

Figure 9. The trend sub-utilization and residual sub-utilization 54

Figure 10. The ANN model used for partitioning cost forecasting 58

Figure 11. Performance tuning cost analysis in AutoClustC ... 59

Figure 12. AWS cloud structure ... 61

Figure 13. PMs and VMs in a data center .. 63

Figure 14. Partition distribution algorithm ... 71

Figure 15. Average TPC-H benchmark query set processing time 92

Figure 16. Buffer assignment status (actual buffer pool level) before performing any

buffer management algorithm and after performing LRU-2 and SLA-LRU 94

Figure 17. SLA penalty cost ratio of using LRU-2 over using SLA-LRU 96

Figure 18. SLA penalty cost ratio of using LRU-2 over using MT-LRU 97

Figure 19. ANN performance on forecasting database partitioning CPU time 99

xi

Figure 20. Linear regression of the network on forecasting the database partitioning

CPU time .. 99

Figure 21. Probability distribution of prediction error in resource provisioning CPU

time forecasting .. 100

Figure 22. Query response time of 95th percentile of query for different query types

before and after database partitioning .. 103

Figure 23. CPU utilization ratio of PM1* ... 106

Figure 24. Average time of processing one TPC-H benchmark query set under the

overloaded and un-overloaded status ... 107

xii

Abstract

Today, cloud databases are widely used in many applications. The pay-per-use model

of cloud databases enables on-demand access to reliable and configurable services (CPU,

storage, networks, and software) that can be quickly provisioned and released with

minimal management and cost for different categories of users (also called tenants). There

is no need for users to set up the infrastructure or buy the software. Users without related

technical background can easily manage the cloud database through the console provided

by service providers, and they just need to pay to the cloud service provider only for the

services they use through a service level agreement (SLA) that specifies the performance

requirements and the pricing associated with the leased services. However, due to the

resource sharing structure of the cloud, different tenants’ workloads compete for

computing resource. This will affect tenants’ performance, especially during the

workload peak time. So it is important for cloud database service providers to develop

techniques that can tune the database in order to re-guarantee the SLA when a tenant’s

SLA is violated. In this dissertation, two algorithms are presented in order to improve the

cloud database’s performance in a multi-tenancy environment. The first algorithm is a

memory buffer management algorithm called SLA-LRU and the second algorithm is a

vertical database partitioning algorithm called AutoClustC.

SLA-LRU takes SLA, buffer page’s frequency, buffer page’s recency, and buffer

page’s value into account in order to perform buffer page replacement. The value of a

buffer page represents the removal cost of this page and can be computed using the

corresponding tenant’s SLA penalty function. Only the buffer pages whose tenants have

the least SLA penalty cost increment will be considered by the SLA-LRU algorithm when

xiii

a buffer page replacement action is taken place. AutoClustC estimates the tuning cost for

resource provisioning and database partitioning, then selects the most cost saving tuning

method to tune the database. If database partitioning is selected, the algorithm will use

data mining to identify the database partitions accessed frequently together and will re-

partition the database accordingly. The algorithm will then distribute the resulting

partitions to the standby physical machines (PMs) that have the least overload score

computed based on both the PMs’ communication cost and overload status.

Comprehensive experiments were conducted in order to study the performance of

SLA-LRU and AutoClustC using the TPC-H benchmark on both the public cloud

(Amazon RDS) and private cloud. The experiment results show that SLA-LRU gives the

best overall performance in terms of query response time and SLA penalty cost

improvement ratio, compared to the existing memory buffer management algorithms; and

AutoClustC is capable of identifying the most cost-saving cloud database tuning method

with high accuracy from resource provisioning and database partitioning, and performing

database re-partitioning dynamically to provide better query response time than the

current partitioning configuration.

1

Chapter I: Introduction

1. Objective

 The objective of this research is to develop a novel performance tuning technique for

the cloud database that has the following abilities:

i. Ability to estimate the monetary operational cost for different tuning methods

(resource provisioning and database partitioning) and selecting the one with a

lower cost;

ii. Ability to monitor and manage the sharing buffer pool among multiple tenants in

order to reduce the SLA penalty cost for the service provider;

iii. Ability to distribute different partitions to the proper Virtual Machine (VM)

instances in the same data center in order to provide high performance for the

cloud database.

 In the following sections, we present first the background of cloud databases in Section

2, then existing performance tuning methods for cloud databases in Section 3, research

issues that need to be addressed when applying database vertical partitioning to cloud

database tuning in Section 4, the contribution of our research in Section 5, and finally the

organization of the dissertation in Section 6.

2. Database as a Service (DbaaS)

 Cloud database, also called Database as a Service (DbaaS), can provide subscription-

oriented, enterprise-quality services with high availability, reliability and scalability [1].

It may be defined as a pay-per-use model for enabling on-demand access to reliable and

configurable services that can be quickly provisioned and released with minimal

management. Users/tenants need not set up the infrastructure or buy the software, but pay

2

to the cloud service provider only for the services they use through a performance service

level agreement (SLA) that specifies the performance requirements and the pricing

associated with the leased services. In recent years, DbaaS in the cloud has attracted a

lot of attention. Major IT companies like Amazon, Facebook, Google, IBM, Microsoft

and Yahoo! have provided large scale database management services. Some of them, such

as Amazon SimpleDB [2], DynamoDB [3], Google Bigtable [4], and Yahoo! PNUTS [5],

consist of large scale systems with a simplified query interface. Less scalable but fully

relational approaches are also available, e.g., as Amazon RDS [6] and SQL Azure [7].

The reason why many major IT companies invest huge amount of money in the cloud

database area is that DbaaS has the following benefits [8]:

i. Easiness in administering the database

The “ready-to-use” concept in DbaaS makes it easy for users to go from project

conception to deployment. All major DbaaS providers provide Management

Console, Command-Line Interface, or simple API for users to access the

capabilities of a production-ready relational database in minutes. There is no need

for the users to perform infrastructure provisioning, install database software or

maintain a database system.

ii. Easiness in scaling the database

The users can scale their database's storage resources or computing resources

within only several minutes by typing a few command lines through a Command-

Line Interface. If the users think that would be hard for them, they can even scale

their database's storage or computing resources by just clicking a few buttons

3

through the Management Console. This would allow those users who have no

solid computer background to re-configure the database very easily.

iii. High availability and durability for the database

DbaaS runs on the highly reliable infrastructures located in IT companies’ huge

data centers. When a user provisions a database instance, DbaaS synchronously

replicates the data to a standby database instance which is generally in a different

availability zone or data center. DbaaS also performs backups, snapshots and host

replacement automatically. All of these tasks make the database highly available

and durable.

iv. Fast database access

Based on the application performance requirements, users may build their

database servers with multiple virtual CPUs and may choose different storage

options, such as choosing optimized SSD-backed storage for their high-

performance required applications or general-purpose magnetic storage for their

low-performance required applications in which data is accessed less frequently.

v. Secure database access

DbaaS allows users to control network access to their databases. Many DbaaS

providers also enable users to isolate their database instances and to connect to

their existing IT infrastructure through an industry-standard VPN. This would

make the data transfer process much more secure.

vi. Low monetary cost for operation

4

Users pay very low rates and only for the resources they actually consume. In

addition, DbaaS providers may offer different price options according to the data

usage frequency.

3. System Tuning for DbaaS

 Databases in many cloud applications, such as those that process large volumes of

sales transactions, medical records and scientific data, can be very large. The usefulness

of these databases highly depends on how quickly data can be retrieved. Due to the change

in tenants’ workload patterns, DbaaS usually serves more clients than a single machine

or small cluster machine does, the performance of some tenants may degrade, and thus,

the performance SLA may be violated. DbaaS providers have to handle such kind of

problems in order to give their customers better user experience. Many efforts have been

made on how to tune a cloud database in order to re-guarantee the minimum level of

performance. Some existing solutions including (1) static and dynamic resource

provisioning [9] [10], (2) queuing and scheduling [11], and (3) admission control [12]

can be used to solve such a problem. But different approaches have different

disadvantages as described below:

i. Static and dynamic resource provisioning

Provisioning is the process of allocating physical computing resources to VM.

When the system detects that the pre-defined performance SLAs have a high

chance to be violated, more resources such as CPU will be added to improve the

situation. The static provisioning will provision a pre-defined amount of resource

to the system, while dynamic provisioning will estimate the near future resource

demand and provision the corresponding amount of resource to the system. A

5

major disadvantage of provisioning is that the data center operational cost will

increase, especially for static provisioning. The consequence of the improper

provisioning might be the negative profit to the service provider.

ii. Queuing and scheduling

Due to the high degree of tenants on cloud databases, sometimes the incoming

queries are temporarily held in a queue and then scheduled based on some

prioritization criteria, such as worse performance penalty cost. A major

disadvantage of this queuing and scheduling method is that this solution only

works for short-term load peaks, and some tenants’ performance may be heavily

degraded due to their queries’ postponed execution.

iii. Admission control

Instead of doing queuing and scheduling, DbaaS may have new queries either

stalled or rejected when performance SLAs have a high chance to be violated. The

major disadvantage of this method is very similar to that of the queuing and

scheduling solution, which is in order to guarantee some tenants’ performance

SLAs, other tenants’ performance might have to be sacrificed since their queries

were stalled or rejected.

 Due to the disadvantages of the above discussed methods, researchers continue

searching for new tuning solutions. Data storage improvement through database

partitioning is one of them. By partitioning the database tables, the number of disk I/Os,

and thus the query response time, can be reduced. Database partitioning is a process that

the database service uses to partition the database into smaller partitions so that when a

query is processed, only the partitions required by the query need to be transferred from

6

disk to main memory, leading to a reduction in I/Os, and thus query response time.

Database partitioning can also work as an alternative way to tune the cloud database when

a performance SLA violation occurs. This method does not need extra resource

provisioning from physical machines (PMs) to VMs, hence this method can reduce the

data center’s operational cost on performance tuning. Database partitioning techniques

can be classified into two major categories: horizontal partitioning and vertical

partitioning [13], [14]. In horizontal partitioning, tuples are saved in the same disk block

according to some specific relation. If users want to fetch all tuples based on that relation,

the database service can easily locate those tuples on disk. In vertical partitioning,

attributes are grouped together based on how often they are used in a query set. If we

reorganize database tables in such a way that each table is partitioned vertically into sub-

tables/partitions and the database system, when executing the query, will access only the

relevant sub table that contains the attributes in the query, then fewer pages from disk

will be accessed to process the query [15], which reduces I/O time, and thus can lead to

a better query response time. In many cases, horizontal and vertical partitioning are used

together in order to provide better performance, which is called mixed partitioning [14].

In this dissertation, we mainly focus on tuning the DbaaS using vertical partitioning.

4. Issues of Database Partitioning on Tuning DbaaS

 Since the first vertical database partitioning algorithm [16] was developed in 1972,

many vertical database partitioning algorithms have been proposed. Most of those

algorithms are designed for a non-distributed environment; a few of those algorithms are

designed for a distributed environment with a single tenant and none is designed for a

distributed environment with multiple tenants, which is a cloud environment [1]. The

7

vertical partitioning algorithms for a non-distributed environment or distributed

environment with single tenant, i.e., the traditional vertical partitioning algorithms, are

not suitable for a cloud database environment. The reasons are due to the following three

major issues that cannot be solved using the traditional vertical partitioning algorithms:

i. How to analyze and estimate the future resource demand and tuning cost for

different tuning approaches so that a better tuning decision can be made in order

to minimize the operational cost.

Resource provisioning is a typical tuning method widely used in cloud computing

since resource provisioning will eventually solve the performance SLA violation

problem. Then why should the DbaaS providers consider a vertical partitioning

tuning method? The reason is that, in practice, no provider can ignore the

operational cost since that is so related to their profit, and resource provisioning

can significantly increase the operational cost to the DbaaS providers. So if a cost-

saving performance retuning algorithm, such as vertical partitioning, can re-

guarantee the performance SLA, resource provisioning can be avoided. Then an

important question is how to analyze and know the costs of vertical partitioning

tuning and provisioning tuning. If the algorithm has no ability to estimate the costs

for the two tuning methods, then there is no way to find out the correct cost-saving

way to tune the cloud database.

ii. How to monitor and manage the sharing buffer pool among multi-tenants so that

the overall SLA penalty cost can be minimized.

Sharing physical resources (CPU, RAM, I/O, and band width) is a considerable

issue in clouds [17], [18]. This is because multi-tenancy is one of the key features

8

of clouds, where a large number of tenants’ databases with different SLA

requirements are co-located in one environment and share the same physical

resources. Many database operations including database partitioning process

which are designed to improve a specific tenant’s database performance cannot

use the shared resources without consideration for other tenants. As we know,

physical resource competing in a cloud database might sacrifice some tenants’

database performance due to the resource limitation. In practice, different classes

of tenants with different levels of SLAs might be co-located in the same VM

instance, i.e., those tenants share the same computing resources. The SLA penalty

costs may be different for different tenants. If there is no resource sharing

monitoring mechanism, then there would be a chance that the SLA penalty cost

will get very high once vertical partitioning tuning is applied to a cloud database.

In a cloud database, the buffer pool shared by multiple tenants is one of the most

important sharing resources, so how to monitor and manage the sharing buffer

pool is a challenge to service providers.

iii. How to distribute the resulting partitions to proper nodes in order to provide high

performance.

When a database table is partitioned, generally more than one partition will be

generated. In a typical database partitioning process, more than one database table

is partitioned, i.e., many partitions will be generated. How to deploy those

partitions to different nodes is not an easy problem in a multi-tenant cloud

environment. In practice, the DbaaS providers will distribute the partitions to

different nodes in different availability zones in order to provide high service

9

availability and durability. However, what are the impacts of the partition

distribution on other tenants using the same nodes? Adding a new partition to a

node or removing an old partition from a node may change the resource utilization

or workload on that node, which then affects the SLAs of all tenants on that node.

Therefore, how to select proper nodes, which may be located in the same data

center or a different data center, is a critical issue.

5. Contribution

 Cloud database tuning to re-guarantee tenants’ SLAs is an important process for all

DbaaS providers. Because of the complex environment of cloud databases, tenants’ SLAs

are occasionally violated. Without an efficient database tuning technique, the DbaaS

providers will incur high SLA penalty fees and therefore make the profit decreased or

even negative. Unfortunately, the typical tuning method used by current DbaaS providers

will lead to high data center operational cost. Database partitioning is an alternative

method for cloud database performance tuning; but existing database partitioning

algorithms can only partition database tables in a single tenant database environment.

 In this dissertation, we propose two algorithms that together will provide an efficient

algorithm to tune cloud database performance. The first algorithm, SLA-LRU, is a

database buffer pool management algorithm. SLA-LRU controls the buffer page

replacement by considering the pages’ frequency, recency and value. The frequency

represents how often a page is referenced; the recency represents how long a page resides

in the buffer pool and the value represents how expensive to remove a page from the

buffer pool. SLA-LRU can efficiently manage the cloud database’s buffer memory and

minimize the SLA violation penalty cost when performing the buffer page replacement

10

process in a resource sharing multi-tenancy environment. To our best knowledge, SLA-

LRU is the first practical buffer pool management algorithm which considers different

tenants’ SLAs with a measurable metric in a cloud database.

 The second algorithm, AutoClustC, has the ability to analyze and estimate the

operational costs of two tuning methods, resource provisioning and database partitioning,

on a cloud database, and select the lower cost tuning method to tune the cloud database

in order to re-guarantee the tenants’ SLAs. AutoClustC uses the second order

Autoregressive (AR) model [19] and Artificial Neural Network (ANN) model [16] to

forecast the operation cost of the resource provisioning tuning method and database

partitioning tuning method, respectively. If the database partitioning tuning method has a

lower cost, a database partitioning algorithm based on the existing partitioning algorithm,

AutoClust [20], is triggered to re-partition the database. Finally, the resulting partitions

are distributed to proper nodes (PMs) in the same data center based on a “vote”

mechanism, which votes for the best PM by computing the weighted overload score for

each PM, in order to enhance the performance under an overloaded workload

environment. To the best of our knowledge, AutoClustC is the first dynamic tuning

algorithm based on database partitioning that is designed for cloud databases.

6. Organization

 The rest of the dissertation is organized as follows. Chapter II reviews the existing

work related to cloud database performance tuning with a focus on database partitioning.

Chapter III describes, SLA-LRU, our proposed technique on cloud database buffer pool

management. Chapter IV describes AutoClustC, our proposed technique on cloud

database tuning using database partitioning. Chapter V presents the analytical results as

11

well as the experimental results studying the performance of our techniques. Finally,

Chapter VI provides conclusions and future research directions.

12

Chapter II: Literature Review

 In this dissertation, two algorithms, SLA-LRU and AutoClustC, are proposed in order

to solve all research issues presented in Section 4 of Chapter I. SLA-LRU is a database

buffer management algorithm used to manage cloud database buffer pool based on

tenants’ SLAs. AutoClustC is a cloud database performance tuning algorithm, which is

able to find out the lower cost tuning technique between the two techniques, database

partitioning and resource provisioning, and can tune the database when a specific tenant’s

performance SLA is violated. AutoClustC can reduce service providers’ SLA penalty cost

by considering tenants’ SLAs. In this Chapter, we first review the literature on database

buffer pool management and then review the literature on resource provisioning and

database partitioning.

1. Database Buffer Management Algorithms

 Database as a service in the cloud has attracted a lot of attention during the recent

years. Major IT companies have provided large-scale database management services,

such as Database.com [21], Google Cloud SQL [22], Windows Azure SQL Database [7],

Oracle Database Cloud Service [23] and Amazon RDS [6]. In those multi-tenancy

environments, multiple tenants with different performance SLAs share computing

resources. Due to the resource overbooking characteristic in a cloud environment, how to

manage the resource efficiently, especially the buffer memory, has attracted more and

more attention.

 When data is retrieved from the database, most recently accessed data will most likely

be retrieved from the buffer pool, which serves as a cache of database pages and is crucial

13

for good performance. We call such data retrieval process logical I/O. If data cannot be

found in the buffer pool, it has to be retrieved from disk, we call such data retrieval

process physical I/O. Many existing techniques focus on how to manage the buffer pool

efficiently so that the ratio of the logical I/O over the total I/O can be kept at a high level.

The most famous one is LRU-K [24], which is used by most cloud databases today. The

LRU-K algorithm is an extension of the LRU algorithm [25], which always replaces the

least recently used buffer pages. LRU-K introduces a K parameter, which represents the

number of times for which a page has to be referenced. Only when K reaches a specific

threshold, the corresponding buffer page will be put into the buffer page list. By doing

this, LRU-K will consider both the page’s recency and frequency rather than just

considering the page’s recency (such as LRU), hence gives better performance.

 Several other existing buffer management algorithms try to partition the buffer pool

into two or multiple separate regions for different purposes. DBMIN [26] was proposed

to allocate a separate buffer pool for each query. ARC [27] and its clock-based

approximation CAR [28] divides the buffer pool into two parts: one region contains

frequent pages, the other contains recent pages. The algorithm in [29] developed a multi-

buffer framework for saving energy consumption of accessing flash memory. All these

algorithms focus on the goal of maximizing performance (i.e., hit ratio) for a given

workload. They consider the recency and frequency of a referenced page so as to remove

unnecessary pages. However, they have a common weakness when applied to the multi-

tenancy cloud environment in that they ignore the value of the referenced page, i.e., those

algorithms ignore the cost of the removal of a page. Generally, pages belonging to

different tenants have different values. Improper page movement may increase the SLA

14

penalty cost to the provider. In order to solve this problem, a buffer management

algorithm called MT-LRU [30] has recently been proposed. MT-LRU focuses on a multi-

tenancy environment. This technique considers the buffer page hit ratio degradation

(HRD) as the metric in different tenants’ SLAs in order to manage the buffer pool. When

a query accesses a buffer page, if it is found in the buffer pool, this access is referred as a

hit, otherwise this access is a miss. The Hit Ratio (HR) is defined as 𝐻𝑅 =
ℎ

𝑁
, where N is

the total number of pages accessed and h is the number of pages found in buffer pool.

Then 𝐻𝑅𝐷 = max⁡{0, 𝐻𝑅𝐵 − 𝐻𝑅𝐴}, where 𝐻𝑅𝐵 is the hit ratio when the promised buffer

pool is statically reserved for the tenant and 𝐻𝑅𝐴 is the hit ratio when the buffer pool is

dynamically shared by multiple tenants. Though MT-LRU is the first buffer management

algorithm considering the SLA violation issue for cloud databases, this algorithm has the

following disadvantages: (1) the HRD is meaningless to the tenants when it works as the

key metric in SLA, especially for tenants without corresponding database background,

and thus they have no idea how to select the proper level of HRD; (2) in order to know

the HRD, every read on a page has to be recorded and the number of page read actions

has to be saved, which will add overheads to the algorithm; and (3) as discussed in [31],

the biggest disadvantage of using HRD metric is that the HRD may change very little

after a long period of database running, especially in the situation when database

performance fluctuates significantly. Under such case, the HRD shows little variation,

i.e., HRD cannot be used to detect a tenant’s SLA violation. That is why other metrics,

such as Page Life Expectancy, are suggested to be used with HRD metric [31]. Overall,

MT-LRU considers frequency and recency of a page as it is based on LRU-K which

considers pages’ frequency and recency. It also considers the value of a page, which is

15

represented using HRD, but using HRD alone as the metric in SLA is less meaningful to

tenants and may lead the failure to detect SLA violations when the performance of the

database keeps fluctuating. In order to fix the weaknesses of MT-LRU, in this dissertation

we propose SLA-LRU, an algorithm to efficiently manage the buffer pool in a multi-

tenancy database environment. This algorithm uses tenants’ buffer pool level, which is

defined as the percentage of the total buffer pool size allocated to tenants, as the metric

in the tenants’ SLAs. This algorithm is based on LRU-K and considers all three buffer

page factors: recency, frequency and value, when performing the page replacement.

Value is represented by using a function to compute the penalty cost when a violation of

an SLA that is based on buffer pool level occurs. Using the buffer pool level, instead of

HRD, as a tenant’s SLA metric is more meaningful. A low buffer pool level is a direct

sign of an SLA violation. Thus, the system can correctly determine whether a tenant’s

SLA is violated by measuring the actual buffer pool level used by the tenant.

2. Resource Provisioning Algorithms

 Resource provisioning on cloud is the process of allocating computing resource from

PM to VM, i.e., it is a process of how to manage the system resources. Traditional

Resource Management Systems (RMS) such as Condor [32], Load Leveler [32] and

Portable Batch System [33], adopt system-centric resource allocation approaches which

focus on optimizing overall system performance. They assume all users are equally

important and disregard the actual SLAs of different users. Hence, they are not able to be

used in a multi-tenancy environment in which different tenants’ requirements are crucial

and need to be fulfilled.

16

 One of the main advantages of the cloud computing paradigm is that it simplifies the

time-consuming processes of computing resource provisioning, which typically works as

a way of re-guaranteeing higher Quality of Service (QoS) level to the tenants when SLAs

are violated. The resource provisioning algorithm of a RMS for a multi-tenancy cloud

should be able to address the following two major issues, which are not addressed in

traditional RMS.

Issue 1:

First, such provisioning algorithm needs to be aware of the actual workload or resource

demand patterns which the system has to deal with. Some patterns might be good for

static resource provisioning; some patterns might be good for dynamic resource

provisioning. In static resource provisioning, historical average resource utilization is

computed and used as the amount of resource that is provisioned from PM to VM. After

the initial static resource provisioning, the average resource utilization may not be

recomputed for a long period of time. In contrast, dynamic resource provisioning is based

on shorter timescales, and uses some Machine Learning or Statistic models to estimate

the amount of resource provisioned from PM to VM. According to the description in [34],

there are typically 4 cloud workloads or resource utilization patterns as shown in Figure

1. In pattern (a) the workload or resource utilization follows an on/off style, i.e., the

workload or resource utilization switches from two static values according to different

time period. In pattern (d) the workload or resource utilization is totally random, i.e.,

prediction is impossible using the historical data. So patterns (a) and (d) cannot be

benefited from dynamic resource provisioning, and static resource provisioning should

be used on these two patterns. In pattern (b) and (c) the workload or resource utilization

17

follows some style, and the workload or resource utilization has variety according to

different time period. So patterns (b) and (c) may be benefited from dynamic resource

provisioning, and dynamic resource provisioning could be used on these two patterns. In

this section, we focus on the literature of dynamic resource provisioning since we use a

dynamic method to forecast the cost of resource provisioning in this dissertation.

Figure 1. Cloud workload patterns

Issue 2:

Second, the resource provisioning process needs to be cost-effective. When cloud

service providers try to maintain the SLAs for different tenants, certainly they can

provision huge resources to the specific VM in one time, but the weakness of doing in

this way is that it may significantly reduce the service providers’ profit. Though the

providers have to handle the performance degrading problem, which may be caused by

heavy workloads or query pattern changes, they cannot charge extra fees to the users.

Computing resource is a major operation cost to service providers, resource provisioning

18

will definitely increase the data center’s operation cost. So resource provisioning

algorithm for a multi-tenancy cloud must take the cost into consideration.

Several approaches have been proposed for dynamic resource provisioning. These

approaches mainly focus on the perspective of cloud providers. In [35], the authors have

presented an approach for dynamic resource provisioning of VM, which is called

Sandpiper. The authors present a black-box strategy that is fully OS and application

agnostic as well as a gray-box approach that can exploit OS and application level

statistics. From those statistics, a unique metric, which is based on the consumption data

of the three physical computing resources, CPU, network and memory, can be defined in

order to make the provisioning decision. Sandpiper can automate the task of monitoring

and detecting hotspots, determine a new resource mapping method from PM to VM, and

initiate the necessary migrations in a data center.

The paper [36] proposed a new self-adaptive capacity management framework that

includes three models: a two-level SLA driven pricing model which gives rewards for

throughput to be within SLA limits and penalty for throughput going above, an analytical

queuing based performance model which captures application specific bottlenecks and

the parallelism inherent to multi-tier platforms to maximize the provider's business

objective, and a complex optimization model. By combining those three models, the

resource provisioning algorithm in [36] can significantly reduce the cost in terms of the

provider's achieved revenues. But this approach would not be cost-effective in a situation

where an application has numerous classes since different class may have different

models. Also, according to the studies on the performance and cost in the DbaaS

environments in [37], the authors have shown that given the range of the pricing models

19

and the flexibility of the allocation of resources in cloud-based environments, it is hard

for users to figure out their actual monthly cost upfront. So using an inaccurate price

model in resource provisioning may lead to a negative profit to the cloud providers.

The authors of paper [38] developed an adaptive resource control system that

dynamically adjusts the resource shares to individual tiers in order to meet application-

level QoS goals while achieving high resource utilization in the data center. The control

system uses classical control theory, which carries out a black-box system modeling

approach to overcome the absence of first principle models for complex enterprise

applications, and relies on an approximate model which relates performance metric such

as response time to the fraction of processor allocated to the VM in order to maintain high

resource utilization rate.

Dolly [39] is a resource provisioning system for cloud database, which uses VM

cloning technique to spawn database replicas and provision resource for shared-nothing

replicated databases in the cloud. This algorithm defines a database provisioning cost

model in order to adapt the provisioning policy to the cloud infrastructure specifics and

application requirements.

Rogers et al. [40] proposed two approaches, white-box approach and black-box

approach, for managing the resource provisioning for cloud databases. The white-box

resource provisioning approach uses a finer grained estimation of the expected resource

consumption of the workload, which relies on the DBMS optimizer to predict the physical

resource (i.e., 1/O, memory, CPU) consumption for each query. The black-box resource

provisioning uses coarse-grained profiling to characterize the workload's end-to-end

performance across various cloud resources.

20

Kingfisher [41] is a cost-aware system that provides support for elasticity in the cloud.

The algorithm works in two steps: (1) leveraging multiple mechanisms to reduce the time

to transition according to new configurations, and (2) optimizing the selection of a virtual

server configuration in order to minimize the cost. Kingfisher can significantly decrease

the cost of resource provisioning compared to the current cost-unaware approach, but this

algorithm does not address any SLA violation related issues.

Recently, several open source VM management platform solutions, such as Eucalyptus

[42] and OpenStack [43], have been developed in order to build Infrastructure as a Service

(IaaS) clouds. Those solutions are designed to allow third-party extensions through

modular software framework. Besides those open source VM management platform

solutions, many market-based systems, such as [44] [45], have been proposed to manage

allocations of computing resources from PM to VM. However, none of these market-

based systems has yet incorporated tenant-driven service management with automatic

resource management.

Our research in this dissertation mainly focuses on how to tune the cloud database

using a database partitioning technique. But in order to show database partitioning based

tuning is more cost-effective than traditional provisioning tuning in some cases, we

propose a time-series based cost estimation method for resource provisioning. This

method can track the tenant’s historical resource (we use CPU as an example) utilization,

and use the auto-regressive (AR) model [19] to estimate the near future resource that is

allocated from PM to VM once a SLA violation occurs. An AR model can describe a

certain time-varying process in which the output variables depend linearly on this

process’s own previous values and on a stochastic term.

21

3. Database Partitioning Algorithms

 In this section, the literature review is divided into three subsections. Subsection 2.1

discusses the existing work done in database vertical partitioning in non-distributed

environments. Subsections 2.2 and 2.3 discuss vertical database partitioning algorithms

for distributed environments with a single tenant and multiple tenants, respectively.

3.1. Database Partitioning in Non-Distributed Environments

 The first well-known database partitioning algorithm was introduced in 1972 with the

name of Bond Energy Algorithm (BEA) [16]. This algorithm is an attribute affinity based

algorithm. It uses a two-dimension array to represent the relationship between two

different kinds of variables, row variable and column variable. Each column represents

one kind of variable and each row represents the other kind of variable. Each element in

the array is represented by a numerical value, which usually is an integer, to show the

relationship between the row and column variables corresponding to this element. This

algorithm permutes rows and columns of the array in order to group elements with similar

values together. At the end of the algorithm, elements with similar values are located in

the same block in the array and each block can be considered as a partition. When doing

permutation on the array, the algorithm needs user’s subjective judgment to tell the

similarity of elements; so this algorithm is hard to implement without human

interpretation. Sometimes blocks may have overlaps and some elements do not belong to

any block. It means the partitioning result is not always as good as what people expect.

Later, after the development of BEA, another new important algorithm emerged,

which was called Navathe’s Vertical Partitioning (NVP) [15]. NVP is also an attribute

22

affinity matrix based algorithm. This was the first time that a partitioning algorithm

considers the frequency of queries and reflects the frequency in the attribute affinity

matrix on which partitioning was performed. NVP is an extension and improvement of

BEA. This algorithm repeatedly does binary vertical partitioning (BVP) on a larger

fragment, which is obtained from the previous BVP, to form two fragments. This process

will not stop until the fragment cannot be partitioned further. An evaluation function is

used to determine which fragment should be selected and whether it can be partitioned

further. This algorithm is only suitable for a small query set because of the O(2n) time

complexity where n is the number of times the binary partitioning (which is proportional

to the number of queries) is repeated. If fragment overlapping is allowed, the time

complexity will be even bigger than that.

 Later, after the NVP algorithm, a new algorithm called the Optimal Binary Partitioning

algorithm was proposed in [46]. This algorithm uses the branch and bound method [47]

to construct a binary tree in which each node represents a query. The left branch of a node

represents the attributes being queried by the query that are included in a reasonable cut

(a reasonable cut is a binary cut that partitions the attributes into two sets; in these two

sets at least one of them is a obtained fragment which is the union of a set of attributes

that the query accesses). The right branch of a node represents the remaining attributes.

If all attributes of an unassigned query are contained in the fragment of the current node,

then this query needs not be considered as the child of the current node. This algorithm

focuses on a set of important queries rather than attributes themselves. It does reduce time

complexity compared to the NVP algorithm but it does not consider the impact of query

frequency, and also its run time still grows exponentially with the number of queries.

23

 Some algorithms use a graph search technique when doing partitioning. The paper [48]

is an example which uses a graph theory based clustering technique. The attributes usually

queried together are used to form a similarity graph. Vertices of the graph are elements

and edges connect elements that have similarity values higher than a predefined threshold.

Partitions are the subgraphs with edge connectivity containing more than half the vertices.

When this technique is implemented for vertical database partitioning, a vertex represents

an attribute and an edge represents how often the two attributes connected by this edge

will appear together in the same query. Then the algorithm will traverse the graph and

divide the graph into several subgraphs, each of which represents a cluster. This technique

considers frequent queries and infrequent queries to be the same and this may lead to

inefficient partitioning results. This is because attributes that are usually accessed

together in infrequent queries but are not accessed together in frequent queries may be

put in the same fragment if all queries are considered to be the same.

 A more recent attribute partitioning algorithm was introduced in [49], which uses the

idea of performing clustering based on an attributes affinity matrix from [15]. This

algorithm starts with a vertex V that satisfies the least degree of reflexivity and then finds

a vertex with the maximum degree of symmetry among V’s neighbors. Once such a

neighbor is found, both V and its neighbor are put into a subset. The neighbor becomes

the new V. The process continues to search for neighbors of the most recent V recursively

until a cycle is formed or no vertex is left. After that, the fragments will be refined using

a hit ratio function. The disadvantage of this technique is similar to the disadvantage of

the algorithm proposed in [48] since infrequent queries are treated the same as frequent

queries.

24

 Along with the increase of processor’s speed and the sophistication of software,

database systems become cleverer and more powerful than ever before. Researchers then

realized that a database system itself can give a lot of help on physical database design to

developers. It gives the researchers a new direction when they are working on physical

database design. Such an example is presented in [50], where a new idea of using the

query optimizer of a database system for automated physical design was proposed. The

authors introduced a cost estimation technique which uses the query optimizer of a

database system for physical database design. A query optimizer can gather useful

statistic information from system views and perform what-if calls [51] to help the

database system to make a decision on selection of the best query execution plan among

multiple query execution plans without running the query. Some of later database

partitioning algorithms used the idea in [50].

 The AutoClust algorithm [20] is an example of using a query optimizer to generate

partitioning solutions. Since our proposed techniques use AutoClust as the database

partitioning technique we shall describe the workflow of AutoClust step by step here.

There are five steps in the AutoClust algorithm.

 Step 1: An attribute usage matrix is built based on a query set indicating which query

accesses which attributes.

 Step 2: The closed item sets (CIS) [52] of attributes are mined. An item set is called

closed if it has no superset having the same support which is the fraction of queries in a

data set where the item set appears as a subset [52]. CIS can tell us which attributes are

25

accessed frequently by the same query. We want to keep such attributes in the same

cluster (partition) together as much as possible.

 Step 3: Augmentations to add the primary key of the original database table to each

existing closed item set are done to form the augmented closed item set (ACIS) which is

a combination of CIS and the primary key. Then duplicate ACIS are removed.

 Step 4: An execution tree is generated where each leaf represents a candidate attribute

clustering (or vertical database partitioning) solution.

 Step 5: The solutions are submitted to the query optimizer of the database system that

will process the queries for cost estimation and the solution with the best estimated query

cost is chosen as the final vertical database partitioning solution.

 The authors of AutoClust algorithm also proposed some ideas of how to extend

AutoClust to cluster computers. According to the authors’ ideas, multiple partitioning

solutions are selected from the candidate partitioning solution pool. These selected

partitioning solutions are the best solutions (i.e., the ones that have the best average query

estimated costs) and are implemented on the computing nodes in a round robin order.

Every future incoming query will be routed to the computing node containing the partition

that gives the best estimated query cost for the query execution. AutoClust uses a fixed

query set as the algorithm input and mines CIS from that query set to generate multiple

partitioning solutions. We call such partitioning algorithm a static or semi-automatic

partitioning algorithm. This algorithm runs only once; if users want to do re-partitioning

they have to monitor the database performance and trigger AutoClust by themselves. The

authors did not present any performance results of their algorithm.

26

 The DYVEP vertical partitioning algorithm was proposed in [53]. DYVEP can

partition the database when queries are on the fly, i.e., it is a dynamic vertical partitioning

algorithm for database systems. DYVEP monitors queries in order to accumulate relevant

statistics for the vertical partitioning process. It analyzes the statistics in order to

determine if a new partitioning is necessary; if yes, it triggers a vertical partitioning

technique (VPT) to generate a new partitioning solution. The VPT could be any existing

VPT that can make use of the available statistics. The algorithm then checks to see if the

new partitioning solution is better than the one in place; if yes, then the system reorganizes

the database according to the new partitioning solution. This algorithm depends heavily

on the VPT being used and the set of rules that it develops to decide when to trigger the

VPT. The algorithm does not address how it would take advantage of distributed

databases that have partial or full replication so that queries can be directed to nodes that

yield the best query costs to execute them. DYVEP is not a new algorithm to be more

exact as it cannot work without a VPT algorithm. It just gives a way of how to re-run an

existing VPT algorithm automatically.

 AutoStore is the first true dynamic vertical partitioning algorithm that is presented in

[54]. AutoStore is a self-tuning data store that can free DBAs from monitoring the current

workload. This algorithm has the ability to automatically collect queries and partition the

data at checkpoint time intervals. When enough queries are collected, the algorithm will

update the old attribute affinity matrix and do permutation on this matrix to make the

matrix have the best quality (the quality can be calculated using BEA [16]). Then

AutoStore will do partitioning on the new matrix and use the greedy method to find out

the best way to cluster the attributes in the new matrix based on the estimated cost from

27

the query optimizer. Once the best partitioning solution is found, the costs of building the

new partitions and the estimated benefit brought by the new partitions will be calculated

separately. If the benefit is larger, the re-partitioning action will be triggered; otherwise

re-partitioning will not be triggered.

 AutoStore is the first solution to solve the vertical database partitioning problem with

a fully automatic online approach. Unfortunately this algorithm has several problems.

The first is that the authors did not give any clue on how many queries (in the article this

number is called CheckpointSize) we need to collect so that we have enough statistics to

permute and partition the attribute affinity matrix. The second problem, which is more

serious, is that this algorithm will run re-partitioning checking (i.e., checking to see if re-

partitioning is needed) every time the number of queries collected is equal to the

CheckpointSize no matter what performance trend it has at that time. This means that the

re-partitioning checking process will be triggered even when the performance is still

good. As we know re-partitioning checking is very expensive and should not be run too

often; but AutoStore does re-partitioning checking before checking the performance

trend. This is not an inefficient way to do re-partitioning.

 Till now we have reviewed many database partitioning algorithms, but they were

designed for non-distributed environments, so none of the above database partitioning

algorithms has the ability to analyze different SLAs for different tenants. That is why

those algorithms cannot be used on cloud databases. In the next subsection, we will

review database vertical partitioning algorithms designed for single-tenant distributed

environments.

28

3.2. Database Partitioning in Single-Tenant Distributed Environments

 Along with the development of new partitioning algorithms, some work has been done

on evaluating the performance of distributed databases on cluster computers. The results

show that distributed databases can greatly improve the performance and satisfy business

requirements [55]. Because of this, distributed databases have become widely used and

important for many applications, which call for more research to find ways to improve

their physical database design. In this section, we review existing database partitioning

algorithms for single-tenant distributed databases.

 A database partitioning algorithm on cluster computers, ElasTras, was introduced in

[56]. This algorithm is a database schema level partitioning algorithm. The key idea of

database schema level partitioning is that for a large number of database schemas and

applications, transactions only access a small number of related rows which can be

potentially spread across a number of database tables. ElasTraS takes the root database

table of a tree structure database schema as the primary partitioning database table and

the other nodes of the tree as the secondary partitioning database table. The primary

partitioning database table is partitioned independently of the other database tables using

its primary key. Because the primary database table’s key is part of the keys of all the

secondary database tables, the secondary partitioning database tables are partitioned

based on the primary database table’s partition key. Then all partitions will be spread

across several Owning Transaction Managers, which own one or more partitions and

provide transactional guarantees on them. Analyzing a database schema is much more

difficult than analyzing a database table and this algorithm is generally configured for

static partitioning purposes. Though the authors point out that this algorithm is for cloud

29

databases, the paper does not address any issues for a multi-tenancy environment. So we

still regard this algorithm as a database partitioning algorithm in a single-tenant

distributed environment.

 In [57], the authors proposed an algorithm called FINDER that aims to find the optimal

distribution policy for a set of database tables given a target workload. The assumption

of this algorithm is that the workload is given and the future workload should be very

similar to the one used by the algorithm. So it is a static algorithm. For a given database

table set T = {T1, …,Tt}, this algorithm can find the distribution policy D = {X1, …, Xt}

where Xi is a set of attributes and Ti is distributed based on Xi. The tuples of a database

table will be assigned to different segments according to the hash value of Xi. We can see

that this algorithm is used to statically partition the database tables on cluster computers.

 The Amossen algorithm [58] is a partitioning algorithm used only on OLTP

applications. Generally an OLAP application contains lots of many-row aggregates and

likely benefit from parallelizing its queries on multiple sites and exchanging small sub

results between the sites after the aggregations. It means that the queries happening on

such system are usually very complex. In an OLTP application, on the other hand, there

are many short queries with no many-row aggregates or few-row aggregates and the

queries only gather all attributes from the same site. It means that the queries happening

on such system are usually very simple. In [58] the authors presented a cost model and

then used simulated annealing to find the close-to-optimal vertical partitioning with

respect to the cost model. In this algorithm, the queries must be very simple and have to

avoid breaking single-sitedness. So we can regard this algorithm as a static algorithm.

30

 HACA algorithm was presented in [59]. This algorithm is based on an existing object

clustering technique called ant clustering technique, which was first proposed in [60]. As

the name described, this existing object clustering algorithm is an unsupervised learning

technique based on ants’ behaviors. It is used to simulate the ant movement in nature to

pick or drop objects so as to cluster objects with similar patterns together. In HACA, a

hybrid ant clustering technique is used to partition attributes in a database table according

to the transaction patterns. After the partitioning process, attributes with similar

transaction patterns will be grouped together and the sum of irrelevant local attribute

access cost and relevant remote attribute access cost will be minimized. Irrelevant local

attribute access cost represents the cost spent on reading irrelevant attributes from a local

partitioning fragment; relevant remote attribute access cost represents the cost on reading

relevant attributes from a non-local partitioning fragment. Since the vertical partitioning

problem has very high complexity in terms of being NP-Hard [61], the performance of

HACA heavily relies on the iterations of the ant clustering technique used in the whole

partitioning process. The more iteration the higher performance the partitioning solution

will be. But the times of iteration is a user defined parameter; if this number is set to a

small value, the partitioning result will lose accuracy and if this number is set to a very

large value, the algorithm will take a very long time to run.

 Genetic algorithm-based clustering (GAC) was proposed in [62]. This algorithm

formulates a database partitioning algorithm into the travelling salesman problem. This

algorithm works in 5 steps. In Step 1, some initial solutions are randomly generated. They

are considered as the first generation or the parents of next generation solutions. In Step

2, a code is proposed to represent each solution. This code can be either binary or non-

31

binary. In Step 3, every pair of individuals from the current generation exchange their

genetic composition. The offspring inherits some genes from parents during the crossover

operation. For each offspring, it still has the same code format as its parents. In step 4, an

offspring alters its gene with a very small probability, thus the algorithm can provide a

small amount of random search on the offspring. Step 4 is optional in GAC. In Step 5, a

fitness function is used to evaluate the fitness of each offspring in order to select the best

offspring which will be used as the parent for the next generation. The above 5 steps are

performed repeatedly until a certain criterion is met. GAC assumes the transactions or

workload profile is known in advance, i.e., GAC uses an existing transaction set to

perform vertical partitioning. If the users want to re-partition the database tables they

have to re-collect the most recent transactions as the input of the algorithm, which is time-

consuming and needs DBA with solid physical database design knowledge to find out

useful transactions, which are those transactions with high physical read ratio and high

frequency. This algorithm does not separate the logical I/O transactions from the physical

I/O transactions. Also this algorithm does not mention anything about how to distribute

partitioning results to different nodes and how to perform query routing.

 The partitioning algorithms reviewed in this subsection are designed for a distributed

database running on cluster computers with a single tenant. The same as the algorithms

discussed in Section 3.1, the algorithms discussed in this subsection have no ability to

make SLA based partitioning decisions. In recent years, cloud database becomes very

popular because of its pay-per-use model. In a cloud database, more than one tenants are

competing resources of the same PM. The database partitioning algorithms designed for

cluster databases cannot work well any more. That is why some new database partitioning

32

algorithms are developed for cloud databases. In the next subsection, we review those

algorithms.

3.3. Horizontal Database Partitioning in Multiple-Tenants Distributed Environments

 Horizontal partitioning has been used on existing commercial cloud based database

systems, like SQL Server in Microsoft Azure [63], [64]. Cloud SQL Server composes of

five layers: (1) Infrastructure and Deployment Services layer, (2) Distributed Fabric layer,

(3) Database Engine layer, (4) Distributed Query Services layer, and (5) Protocol

Gateway layer. Partitioning activities and partition management are done by the

Distributed Fabric layer. The Distributed Query Services layer is responsible for routing

queries to the appropriate partition for single-partition queries and to coordinate queries

across partitions for multi-partition queries.

 In [65], a relational cloud model is presented, in which a dynamic horizontal

partitioning technique is used to scale a single large database to multiple nodes using a

workload-aware strategy presented in [66]. The dynamic horizontal partitioning process

is done by analyzing query execution traces and identifying tuple groups that are accessed

together by individual transactions periodically. The execution trace can be represented

as a graph. Each graph node represents a group of tuples. The weight on an edge between

two graph nodes whose tuples are accessed by a single transaction reflects the frequency

of such pair-wise accesses in a workload. Balanced logical partitions can be found by

minimizing the total weight of the cut edges. The output of the partitioning algorithm is

a mapping of individual tuples to logical partitions. Then query routing is done by finding

a set of predicates on the tuple attributes. The algorithm does not consider the

requirements of other tenants when partitioning data for one tenant.

33

 In [67], the authors propose several methods to scale databases from a small number

of nodes (p) to a large number of nodes (q). The simplest method does a brute force

matching of the current p data partitions to q data partitions under certain partitioning

constraints. An advanced method is to pre-partition the data into fine-grain chunks and

manage data partitions that are aligned and mapped to the chunks. Data movement is

improved by using a hierarchy of pre-computed partitions; however the algorithm is

static.

 In [68], an elastic and scalable data management system (ElasTras) for the cloud is

presented. Unlike other partitioning techniques that are table-level partitioning (either

horizontal or vertical), the partitioning technique used by ElasTras is schema-level

partitioning. The algorithm proposed in [68] is an improved version of the algorithm

presented in [56]. The new algorithm addresses issues for a multi-tenancy environment.

It uses a partitioned database design based on the principle of key-value stores, in which

an associative array is used as the fundamental data model. In this data array model, data

is represented as a collection of key-value pairs where each possible key appears at most

once in the collection. This data storage structure allows related data fragments of

different database tables to be stored in the same partition. ElasTras has the ability to

automatically consolidate the database for small tenants and partition and scale out the

database for big tenants, so it can be considered a dynamic schema level partitioning

technique.

 In [69], the authors modeled the workload as a hypergraph and tried to minimize the

number of average query spans after partitioning the data. This algorithm can monitor the

change of workload and incrementally repartition the database and place the data to

34

different nodes in small steps without having to complete the whole repartitioning

process. This algorithm can deal with the partition relocation problem when workload

changes. Though this algorithm is dynamic, it does not address how resource limitation

will impact the partition relocation results and how the results for one tenant will impact

other tenants’ SLAs.

 The algorithms discussed in this subsection are designed for a cloud environment, but

they are used for scale out purposes. None of them is vertical partitioning. Besides

horizontal partitioning for relational database clouds, there are partitioning algorithms for

non-relational databases, such as [70] which performs horizontal partitioning based on

data mining for NoSQL databases. While all algorithms except the one in [67] are

dynamic, only [65] provides a method for routing queries to appropriate nodes, and none

of them handles queries requiring physical I/Os separately from those requiring logical

I/Os. Concerning the aspects of distribution and parallel in a cluster computer

environment, none of these algorithms provides multiple partitioning solutions or

includes a method to distribute partitions to different nodes. In addition, these algorithms

do not address the research issues specific to multi-tenancy in clouds, which are discussed

in Section 4 of Chapter I, as they do not monitor, model and analyze buffer pool sharing

among tenants and their resource utilization to decide on re-partitioning for a specific

tenant, and do not consider the impact of new partitions over the SLAs of other tenants.

In this dissertation we propose algorithms which aim to address all the research issues

associated with vertical database partitioning for multi-tenant cloud databases.

35

Chapter III: A Proposed Buffer Pool Management Technique for

Cloud Databases

When data is retrieved from the database, most recently accessed data will most likely

be retrieved from the buffer pool. Generally, such data retrieval is called logical I/O. If

data cannot be found in the buffer pool, they will be read from disks first instead of from

the buffer pool. Such data retrieval is called physical I/O. In DbaaS, the buffer pool is

usually shared by multiple tenants, and the management of the buffer pool directly

impacts the query response time. This is because tenants will compete for using the buffer

pool, especially as the size of the buffer pool is limited. The operation of one tenant on

the buffer pool may impact other tenants, so improper management of the buffer pool will

directly increase the query response time for most tenants, which finally leads to a cost

increment to DbaaS providers due to the SLA penalty cost.

In order to reduce the SLA penalty cost to DbaaS providers, in this chapter we present

an algorithm called SLA-LRU. SLA-LRU is a buffer pool management algorithm which

can manage the buffer pool level for different tenants in an efficient way by considering

the SLA penalty cost for different tenant. SLA-LRU first computes the possible SLA

penalty cost increment for different tenants based on a pre-defined SLA penalty cost

function when there is no free memory buffer page left in the buffer pool. Then the

algorithm will free the buffer pages with the least removal cost from those least recent

used pages in the buffer pool.

Next, we will present SLA-LRU in the following sections of this chapter. In Section

1, we briefly discuss the motivation of our new buffer management algorithm, SLA-LRU.

In Section 2 an overview of SLA-LRU will be presented. Then in Section 3 and Section

36

4 we present our SLA penalty cost function model and the workflow of SLA-LRU

respectively. In Section 5 we discuss the overheads of SLA-LRU comparing to the LRU-

2 algorithm.

1. Motivation of SLA-LRU

Many modern database systems, such as Oracle, MySQL and Microsoft database

products [30], are using LRU-2 or a variant of LRU-2 as their buffer management policy.

LRU-2 is a specific version of the LRU-K algorithm (K=2), which was proposed in [24].

The main idea of LRU-2 is to keep track of two lists, the referenced page list and the

buffer page list, as shown in Figure 2.

Figure 2. Main idea of LRU-K (K=2)

When a page is referenced for the first time, it will be added to the referenced page

list. This page’s reference time will be increased by 1 when it is referenced again. When

this page’s reference time is 2, i.e., the page has been referenced two times, it will be

moved to the buffer page list, which is ranked based on the pages’ timestamps in the

37

decreasing order (the oldest page is at the top of the list). When a page replacement occurs

in the buffer pool, the page with the oldest timestamp in the buffer page list will be

removed from the buffer pool and the buffer page list. We can see thatLRU-2 considers

two factors when performing page replacement: page recency and page frequency. By

defining the K parameter, LRU-2 considers the page frequency factor; and by ranking the

pages in the buffer page list based on the pages’ timestamps and removing the oldest

timestamp page from the buffer pool, LRU-2 considers the page recency factor. Though

LRU-2 performs well in a normal database system, it cannot satisfy the needs in a multi-

tenancy database system since not all tenants’ page values are equal. A tenant’s page

value represents the page removal cost. If tenant A’s buffer pages’ value is bigger than

tenant B’s buffer pages’ value, the page removal for tenant A may have a higher cost than

the page removal for tenant B. From the description of LRU-2, we can see that LRU-2

has no ability to handle different buffer pages’ values, i.e., LRU-2 cannot guarantee low

SLA penalty cost. In order to remove this weakness of LRU-2 in a multi-tenancy

environment, we propose our SLA-LRU buffer pool management algorithm.

2. Overview of SLA-LRU

SLA-LRU is based on the classic LRU-2 algorithm, i.e., SLA-LRU considers the page

frequency using the K parameter (K = 2), and considers the page recency using the page

timestamps. The buffer pages in the buffer page list are ranked based on the page

timestamp in a decreasing order, so the most recent page will be at the bottom of the list,

and the least recent page will be at the top of the list. Then the buffer page list is divided

into two portions by a page with timestamp t* at the α percentile position of the buffer

38

page list. Only the buffer pages located in the portion in which the page timestamp is

earlier than t* will be considered as the least recent pages.

Besides frequency and recency, SLA-LRU also considers the value of a page when

releasing a page from the buffer page list. We use the term value to represent the

importance of a page, and the value of a page is computed using the SLA penalty cost

function which will be discussed in detail in Section 3. SLA-LRU only releases the pages

that have the lowest penalty cost increment from the least recent pages. Table 1 presents

the list of symbols used by SLA-LRU in this dissertation and the rest of this section

discusses SLA-LRU in detail.

Table 1. List of symbols used by SLA-LRU

Symbol Interpretation

K The referenced frequency of a page (K equals to 2 by default)

t* The timestamp of the page at the α percentile position in the buffer page

list

α User defined percentile of the buffer page list

𝑓(𝑥) SLA penalty cost function

𝑓𝑖(𝑥) SLA penalty cost function of tenant i

Δ𝑥 The change of the buffer pool level

Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦 The change of the penalty cost

3. Buffer pool level related SLA penalty cost model

Due to the characteristic of multi-tenancy of the cloud database, resources used by

the database will be shared among multiple tenants. We take the deployment of Amazon

RDS as an example to illustrate the resource sharing architecture of a cloud database.

Amazon RDS implements its multi-tenancy architecture by provisioning different EC2

instances to different AWS users. Each user can create multiple, highly varied database

39

instances on this user’s EC2 instance. Those database instances can vary on the storage

size and compute resources. Amazon provides different EC2 instance purchase options

to its customers. Those options include “On-Demand”, “Reserved”, “Spot” and

“Dedicated” [71]. When an EC2 instance is launched, the user may determine the

hardware of the host computer used for this instance type. Each instance type has different

CPU, memory, and storage capabilities [72]. So different Amazon RDS database

instances may reside either on the same Amazon EC2 instance or on different Amazon

EC2 instances. For a specific Amazon RDS instance type, it may have various purchase

options or priorities. The pre-defined SLAs with different instance priorities should be

different, and DbaaS providers may promise different buffer pool levels in SLA to

different tenants with different instance priorities.

The buffer pool in a DBMS is a cache of database pages and plays an important role

for good workload performance [30]. When a tenant purchases a database instance, the

service provider provisions a specific memory for this database instance. In practice, the

provisioned memory may not always be used as the buffer pool for this tenant since the

memory may be shared by other tenants. So we propose to use the average buffer pool

level in a specific time period of a tenant as the metric in the tenant’s SLA, where the

buffer pool level is the percentage of the total buffer pool size. For a different tenant

priority, this average buffer pool level may be different. A tenant with a higher priority

may have a higher average buffer pool level.

The penalty cost function defines how the service provider will be charged when the

buffer pool level assigned to a tenant could not meet the promised level. The penalty cost

function is a part of the SLA. Often major DbaaS service providers do not expose the

40

SLA metrics which are directly related to buffer performance, such as buffer hit ratio, to

their customers since those metrics may not be meaningful to many customers. However,

the metrics, such as the average buffer pool level which is based on the total buffer pool

size, are easier to be understood by customers. When tenants sign the SLAs with DbaaS

providers, they can choose their desired buffer pool level, just like what they do in

choosing the level of the CPU or memory for their database instances.

For a tenant, the penalty cost function quantifies a possible compensation for the

performance degradation. For a service provider, the penalty cost function shows the

priority of resource allocation across different tenants. A penalty cost function can be

either linear or non-linear. If a penalty cost function is non-linear, it can be either step-

based or non-step-based. Three possible patterns of the penalty cost function are shown

in Figure 3. In pattern (a), the penalty cost increases exponentially when the tenant’s

actual buffer pool level decreases. In pattern (b), the penalty cost has a linear relationship

to the tenant’s actual buffer pool level. In pattern (c), the penalty cost has a step-based

relationship to the tenant’s actual buffer pool level. No matter which penalty cost function

is used, the service provider has to refund some portion of the service fee to the tenant if

the actual buffer pool level cannot reach the promised level.

Figure 3. Penalty cost function examples

41

When two tenants are competing for a computing resource, the service provider can

decide the priority of resource allocation by estimating their penalty cost changes. A

penalty cost change, 𝑓(𝑥1) − 𝑓(𝑥2), represents the penalty cost difference when a tenant’s

buffer pool level changes from x1 to x2, where 𝑓(𝑥) is the penalty cost function. Let us

consider an example in which tenant A is using the penalty cost function pattern (a),

tenant B is using the penalty cost function pattern (b), and the promised buffer pool level

defined in the SLA of each tenant is k. Also, assume that for the current system, there is

no free buffer page available, and the actual buffer pool level used by each tenant is k.

Now the system is requesting r free buffer pages for either tenant A or tenant B due to the

increasing workload. If the system plans to release r buffer pages from tenant A’s buffer

pool portion, then the penalty cost of releasing r buffer pages from tenant A’s buffer pool

portion is 𝑓𝑎A(𝑘−𝑟)−𝑓𝑎A(𝑘); otherwise, if the system plans to release r buffer pages from

tenant B’s buffer pool portion then the penalty cost is 𝑓𝑏B(𝑘−𝑟)−𝑓𝑏B(𝑘). Both the penalty

costs are caused by missing the guarantee of the promised buffer pool levels in the SLAs

of the two tenants, and are shown in Figure 4.

If the maximum amount of the penalty fee for buffer SLA violation is the same for

both tenant A and tenant B, then from Figure 4 we can see that the penalty cost of

releasing the buffer pages from tenant A’s buffer pool portion is much smaller than the

penalty cost of releasing the buffer pages from tenant B’s buffer pool portion. So, the

service providers should release the buffer pages from tenant A’s buffer pool portion to

make free buffer pages for the incoming queries in order to reduce the penalty cost caused

by missing the guarantee of the promised buffer pool level.

42

Figure 4. Penalty cost change for tenant A and tenant B with SLA violation

penalty function of pattern (a) and pattern (b), respectively

 From the above example, we can see that the penalty cost change trends can be used

to determine different tenants’ buffer allocation priorities when buffer reallocation is

required.

 Our algorithm can use any pattern of the penalty cost function. In our experiments, we

use the step-based pattern (pattern (c) in Figure 3). The reason is that the step-based

penalty functions are used widely in both practice and theory. For example, in practice, a

step-based vCPU penalty cost function is used for Amazon T2 instance [73]; in theory, a

step-based resource penalty cost function is used in [74]. The penalty cost function used

for our experiments will be presented in detail in the performance analysis chapter,

Chapter V.

4. Workflow of SLA-LRU

In a single-tenancy environment, the system does not have to consider the penalty

issue caused by page replacement since all pages belong to a single tenant. However, in

a multi-tenancy environment, the penalty cost function for each tenant may be different;

so, considering the penalty cost change is necessary for a cloud database when a page

replacement occurs. If 𝑓𝑖(𝑥) is used to represent the penalty cost function of tenant i, then

𝑓𝑖(𝑥 + ∆𝑥) − 𝑓𝑖(𝑥) can represent the penalty cost change, Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦, according to the

43

tenant’s buffer pool level change, Δ𝑥. In a cloud database, if there is enough virtual

memory, Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦 will always be zero because the promised buffer pool level can

always be guaranteed for each tenant. However, in practice, in order to save the

operational cost of a data center, DbaaS providers usually overbook the resources

including the virtual memory. So, the actual buffer pool level used by a tenant is generally

below the promised level in the corresponding SLA. In such a case, the Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦 will

be bigger than zero. So we have equation (1) when the actual buffer pool level of a tenant

i changes by an amount of Δ𝑥:

∆𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑓𝑖(𝑥 + ∆𝑥) − 𝑓𝑖(𝑥)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)

From equation (1) we can get equation (2) when ∆x is not zero:

∆𝑝𝑒𝑛𝑎𝑙𝑡𝑦

∆𝑥
=
𝑓𝑖(𝑥 + ∆𝑥) − 𝑓𝑖(𝑥)

∆𝑥
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)

If Δ𝑥 is one unit of buffer pool level change, i.e., we want to measure the SLA penalty

cost change trend, then equation (2) can be written as equation (3)

∆𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
𝑓𝑖(𝑥 + ∆𝑥) − 𝑓𝑖(𝑥)

∆𝑥
= 𝑓𝑖′(𝑥)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3)

Equation (3) shows how we can compute the increment trend of Δ𝑝𝑒𝑛𝑎𝑙𝑡𝑦. This

Equation means that the derivative of the SLA penalty cost function can be used to

measure the penalty change trend. If the penalty cost change trend, 𝑓𝑖′(𝑥), is bigger, the

penalty cost paid by the service provider due to the SLA violation is lower.

In practice, the buffer pages will not be released one by one, instead, they are released

on a “block” or “portion” basis. The buffer page list is divided into two portions by the

page with timestamp t* at the α percentile position, which is shown in Figure 5.

44

Figure 5. Two portions of a buffer page list

In Figure 5, we can see each page in the buffer page list is associated with a tenant ID

and a timestamp. All buffer pages are ranked based on their timestamps. A page with

timestamp t* at the α percentile position of the buffer page list is tracked. Then the buffer

page list is divided into two portions, A and B, by t*. The timestamps of the pages in

portion A are earlier than t* and the timestamps of the pages in portion B are older than

t*. When a page replacement using LRU-2 algorithm occurs, all pages in portion A will

be released. Generally a buffer page list contains the buffer pages of different tenants. For

the pages of the same tenant, they have the same value since those pages belong to the

same tenant who has a fixed SLA penalty cost function. When SLA-LRU analyzes the

SLA penalty cost function for each tenant, the tenant with the biggest 𝑓𝑖′(𝑥) will be

marked (if there are more than one such tenant found, all of them will be marked).

Comparing with other tenants, removing the pages of such tenant will give the service

provider less penalty cost increment. Then among those pages that belong to the marked

tenant, only the pages whose timestamps are older than t* will be removed.

45

By considering both the page age and page removal cost, the buffer pool sharing

problem can be solved. Comparing with LRU-2, SLA-LRU has an additional process,

which is the SLA penalty cost analyzing process, when performing buffer page

replacements. Adding a new process to the algorithm certainly introduces overheads; so,

we propose a moving-forward scanning method to reduce such overhead. This method

will increase the next scanning length of the buffer page list when the current scanning

cannot free enough buffer space, i.e., the position of α will be moved forward for the next

scanning. This scanning method works in the following steps:

Step 1: During the current buffer page list scanning process, the pages whose

corresponding tenants have the biggest 𝑓𝑖′(𝑥)and the pages whose corresponding tenants

’ actual buffer pool levels are bigger than the promised ones will be removed from the

buffer page list and buffer pool.

Step 2: If the buffer pages released by the current buffer page list scanning process

are not enough for the incoming queries, the next buffer page list scanning process will

double the scanning length, i.e., the size of portion A will be doubled.

Step 3: If the new scanning length is bigger than the buffer page list size, the scanning

length will be set as the buffer page list size.

Step 4: Restart Step 1 until enough buffer pages are released.

The moving-forward scanning method can speed up the page replacement process by

increasing the scanning length during different scanning phases. This will significantly

reduce the total buffer page list scanning times and reduce the overhead incurred by the

SLA-LRU algorithm. In the next subsection, we provide more detailed discussions

comparing the overheads of SLA-LRU and LRU-2.

46

5. Overheads of SLA-LRU comparing with LRU-2

We discuss the overheads from two major factors: CPU and memory. First we

investigate how the SLA-LRU algorithm impacts the memory. In order to analyze the

SLA penalty costs for different tenants, a penalty cost function table has to be stored in

the main memory. Every time when a new tenant is signed up, this tenant will be added

to the corresponding category in the penalty cost function table. This table, of course, will

occupy additional memory space when the database system is running. However,

comparing with the buffer pool, which is also saved in the main memory, the penalty cost

function table is much smaller. If a tenant’s page size is 8 KB, then a 512 MB promised

portion of the buffer pool can hold around 65,000 buffer pages for this tenant. But in the

penalty cost function table, only the tenant ID and the corresponding promised buffer

pool level are saved in the table. So SLA-LRU will not add much more memory overhead

comparing with LRU-2.

Second, we investigate how the SLA-LRU algorithm impacts the CPU. In LRU-2, the

algorithm will remove all buffer pages in portion A, which is decided by the parameter

α, of the buffer page list. Different database systems may use different α (for example, in

MySQL, α is 0.1 [75]). In SLA-LRU, the algorithm will remove the pages with the biggest

𝑓𝑖′(𝑥), i.e., fewer buffer pages will be released during a full scan of the buffer page list

comparing with LRU-2. So in order to get enough free buffer space, SLA-LRU may need

more scanning times on the buffer page list than LRU-2, which will incur a CPU overhead

for the algorithm. The buffer page list is saved in the main memory, by scanning the

buffer page list in a moving-forward way, the overall time complexity of SLA-LRU is

47

still O(n), where n is the size of the buffer page list, which is the same as that in LRU-2.

So SLA-LRU will not add much more CPU overhead compared with LRU-2.

Till now we can see that SLA-LRU includes two major phases: 1) analyzing the SLA

violation penalty cost changes for different tenants; and 2) removing the corresponding

buffer pages from the buffer pool to provide free buffer pages. The algorithms of the first

and second phases are named as Algorithm 1 and Algorithm 2, respectively, and

discussed below.

Algorithm 1 (shown in Figure 6): First, in order to let the storage engine know which

tenants’ buffer pages will be released, two temporary parameters, T and penalty_change,

are initialized (Lines 1-2). T is a set used to save the tenant ID whose buffer pages will

be removed from the buffer pool. At the beginning of the algorithm, no tenants are

selected so T is set to be empty at start. Parameter penalty_change is used to save the

penalty change trend for the tenant i, which is the derivative of a tenant’s penalty cost

function. We always want to find out the tenant with the least penalty cost increment

(such tenant has the biggest derivative of the penalty cost function), so at the beginning

of the algorithm, penalty_change is set to be the minimal integer value. Then the tenant

with the maximal derivative of the SLA penalty cost function for the current buffer pool

level will be identified (Lines 2-8). If more than one tenants are found, all of them will

be added to T (Lines 9-12), then all tenants that have the maximal derivative of the SLA

penalty cost function for the current buffer pool level will be returned (Line 13).

48

Figure 6. Algorithm of analyzing SLA violation penalty cost

Algorithm 2 (shown in Figure 7): First, two temporary parameters, iteration and

scan_distance, are initialized (Lines 1-2). Iteration is used to save the current scanning

times and scan_distance is used to save the current scanning length of the buffer page

list. At the beginning of the algorithm, iteration is set to 1 and scan_distance is set to 1/10

of the length of the buffer list (the default value of scan_distance for MySQL is 1/10 of

the length of the buffer list; we adopt this value for our algorithm). Next, the pointer is

moved to the top of the buffer page list (Line 4).and the buffer page list is locked from

being simultaneously accessed by other queries (Line 5). The buffer page is then moved

from the buffer page list and the buffer pool if this buffer page is not dirty and satisfies

either of the two conditions: 1) this page belongs to the tenants resulted from Algorithm

1; and 2) the buffer pool level of the corresponding tenant of this buffer page is still bigger

than the buffer pool level promised in the SLA (Lines 6-10). After this, the pointer is

moved to the next buffer page in the buffer page list (Lines 11-13). The buffer page list

is then unlocked so that other queries can access the list (Line 14). The scanning length

49

of the buffer page list is increased if more free buffer pages are needed after the previous

buffer page list scanning process. In order to increase the scanning speed, the scanning

length on the buffer page list will increase with a speed of the exponential of 2, i.e., the

next scanning length is the double size of the previous scanning length until the whole

buffer page list can be scanned. This will reduce the program running time greatly, and

thus will improve the query response time (Lines 15-19).

Figure 7. Algorithm of releasing buffer pages

50

Chapter IV A Proposed Performance Tuning Algorithm Based on

Database Partitioning for Cloud Databases

In this chapter, we present our AutoClustC algorithm. AutoClustC is a performance

tuning algorithm based on database partitioning for DbaaS. This algorithm considers the

costs of resource provisioning and database partitioning to select the lower cost method

to tune the DbaaS. If database partitioning is selected. AutoClustC will use data mining

to partition the database and distribute the resulting partitions to proper PMs located in

the same data center. Proper PMs are those that have the least overload scores which are

computed using both the PMs’ communication cost and resource overload status.

This chapter is divided into three sections. In Section 1, the technique of how to

forecast the cost for resource provisioning is presented. In Section 2, the technique of

how to forecast the cost for database partitioning is presented. In Section 3, the technique

of how to distribute the resulted partitions to proper PMs is presented.

1. Cost Forecasting for Resource Provisioning

 Resource provisioning is a typical solution to fulfill the tenants’ requirements and

guarantee the QoS in a virtual environment [18] [19]. Resource provisioning can

eventually guarantee all tenants’ performance but it will cause the extra operation cost to

the service provider. So, an alternative tuning method, such as database re-partitioning,

should be used if it incurs a lower cost than resource provisioning. To make this decision,

we will need to know the costs of resource partitioning and database partitioning. In this

section, we present a method to estimate the cost of resource provisioning using time

series analysis. This section includes two subsections: Subsection 1.1 presents the

characteristics of CPU utilization patterns that can be benefited from dynamic resource

51

provisioning and Subsection 1.2 discusses how to use statistic models to forecast the

resource provisioning cost.

1.1. CPU utilization patterns for dynamic provisioning

In Section 2 of Chapter II, 4 typical resource utilization patterns are discussed. In

pattern (a), the amount of resource utilization mainly switch between two fixed values,

i.e., there is no strong utilization variability in pattern (a). In pattern (d), the amount of

resource utilization changes extremely randomly, i.e., pattern (d) features a poor

autocorrelation, which is a mathematical representation of the degree of similarity

between a given time series and a lagged version of itself over successive time intervals

[76]. That is why dynamic forecasting cannot be used on neither pattern (a) nor pattern

(d). Instead, for those two patterns, static forecasting should be used. In [18] the authors

conclude that only the utilization behavior that is characterized by strong utilization

variability and good autocorrelation associated with this periodic behavior, can be

benefited greatly by using the dynamic resource provisioning. According to this

conclusion, we can see the pattern (b) and (c) discussed in Section 2 of chapter 2 are good

choices for dynamic forecasting. We therefore assume the CPU utilization behavior in

our research should satisfy this conclusion, i.e., the provisioning cost forecasting

algorithm developed in this dissertation can be used on both pattern (b) and pattern (c) if

the two patterns follow a periodical behavior.

1.2. Problem modeling of cost forecasting for dynamic resource provisioning

In order to understand the forecasting process more clearly, consider an example

shown in Figure 8, which shows a snapshot of 24 hours CPU utilization demand historical

data (U) with the demand probability density function (PDF) u(x). If the current time

52

point is 𝑡0, and the prediction time interval is t, the forecasting process is to compute the

average CPU demand, which is denoted by 𝑈𝑡0+𝑡 in the next prediction time interval. If

the prediction error is 𝐸𝑡, the forecasting result will be 𝑈𝑡0+𝑡 + 𝐸𝑡. In [18], the authors

use an AR model to compute the gain, which is the ratio of the estimated future CPU

demand of dynamic resource provisioning to the estimated future CPU demand of static

resource provisioning. In our algorithm, we also use an AR model, but the exact estimated

future CPU demand is computed so that we can compare the costs of resource

provisioning and database partitioning.

Figure 8. Dynamic forecasting estimation

If we use 𝑈𝑡(𝑥) to represent the demand probability density function of the predicted

time series, the exact average future demand forecast can be represented as

𝑈𝑡0+𝑡 + 𝐸𝑡 = ∫ (𝑥 + 𝐸𝑡) × 𝑢𝑡(𝑥)𝑑𝑥
∞

0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4)

53

 The expression (𝑥 + 𝐸𝑡) represents a given CPU resource allocation, which will be

weighted with 𝑢𝑡(𝑥), the probability of a particular provisioned CPU amount x.

 Equation 4 can be rewritten as

𝑈𝑡0+𝑡 + 𝐸𝑡 = ∫ 𝑥 × 𝑢𝑡(𝑥)𝑑𝑥
∞

0
+ 𝐸𝑡 (5)

 Equation 5 can be approximated using the following formula:

𝑈𝑡0+𝑡 + 𝐸𝑡 ≈ ∫ 𝑥 × 𝑢(𝑥)𝑑𝑥
∞

0
+ 𝐸𝑡 = 𝐸[𝑈] + 𝐸𝑡 (6)

where E[U] is the statistical mean of the measured historical CPU demand. Now the

only undetermined parameter in Equation 6 is Et, which will be computed based on [19]

using Equations (7), (8) and (9).

 Based on the assumption of our algorithm, the CPU demand is characterized by

periodic behaviors. So for any time series T, the CPU demand in T can be represented as

𝑈𝑇 = 𝐷𝑇 + 𝑈𝑇
𝑅 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7)

where DT is the trend sub-utilization of the CPU demand and 𝑈𝑇
𝑅 is the residual sub-

utilization of the CPU demand as shown in Figure 9. Figure 9 shows a very small portion

of CPU demand from Figure 8, and this small partition has been zoomed in in order to

see the details. The trend sub-utilization is highlighted in blue and the residual sub-

utilization is highlighted in red. The trend sub-utilization is deterministic due to the

known pattern, i.e., the CPU utilization function is known; and the residual sub-utilization

is random and needs to be estimated using some statistical model.

54

Figure 9. The trend sub-utilization and residual sub-utilization

As stated in [19], the second order AR model (AR(2)) is a simple and effective method

in time series modelling, so we use the AR(2) to estimate the residual sub-utilization for

our case. The AR(2) model can be represented as

𝑈𝑇
𝑅 = 𝛼1𝑈𝑇−1

𝑅 + 𝛼2𝑈𝑇−2
𝑅 + 𝜖𝑇 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8)

where 𝛼1 and 𝛼2 are two AR(2) parameters that are estimated from the historical data,

and 𝜖𝑇 is the error term, which is assumed to be an independently and identically

distributed Gaussian random variable with a mean of zero and a variance of 𝜎𝜖
2. In order

to study the accuracy of an n step prediction, a characteristic function of the AR model is

defined as

𝐺(𝑗) =
𝛾1
𝑗+1

− 𝛾2
𝑗+1

𝛾1 − 𝛾2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9)

where γ1 and γ2 are the roots of the equation 1 − 𝛼1𝐵 − 𝛼2𝐵
2 = 0. Then the n step

prediction error is represented using the Gaussian variable having mean zero and variance

𝜎𝑒
2(𝑛) = ∑ 𝐺2(𝑗)𝜎𝜖

2𝑛−1
𝑗=0 . Here, 𝜎𝜖

2 is the error variance of one-step prediction.

 Once the future CPU demand, CPU_Demand, is estimated, it can be used as the

argument in the cost function C(CPU_Demand) to get the exact operational cost for

55

resource provisioning, where the C function describes the relationship between CPU time

and money spent. In the next step, we need to forecast the cost of database partitioning.

In Section 2, a novel forecasting technique will be proposed to predict the cost of database

partitioning.

2. Cost Forecasting for Database Partitioning

As we discussed earlier in Section 1 of this chapter, resource provisioning is the

simplest way to fulfill the QoS for different customers; but this way generally needs the

cloud service providers to reallocate more computing resources. In order to maximize the

profit for the service providers, we compare resource provisioning with another

performance tuning method, database partitioning. The tuning method with a lower cost

always works as the practical performance tuning method on cloud databases. In this

section, we first discuss the factors that can impact the cost of database partitioning in

Subsection 2.1; then in Subsection 2.2 we present how to use the ANN model [77] to

solve the forecasting problem for database partitioning.

2.1. Factors impacting database partitioning

There are many factors that can impact the CPU time spent on figuring out a suitable

partitioning solution for a particular database table. The partitioning method used in our

algorithm is based on the Closed Item Sets (CIS) mining [52]. The original algorithm,

called AutoClust, was first published in [20]. We can conclude 3 major factors that may

heavily impact the CPU utilization spent on the partitioning process. The first factor is

the size of the database, S. In AutoClust, a query optimizer is used to estimate the cost of

each partitioning solution, i.e., partitions will be temporarily physically created in order

to let the query optimizer compute the cost. If the database size is large, the partition

56

creation process will require a high CPU cost to be finished. The second factor is the

number of attributes in a database table, NA (if the partitioning process covers more than

one table, the maximum number of attributes among those tables will be used). When

mining the CIS from the query set, frequent CIS have to be generated. If there are NA

attributes, the possible number of attribute sets would be 2𝑁𝐴. Then each attribute set has

to be compared with the attribute set accessed by each query in order to find out the CIS.

There are many algorithms such as [78] [79] to prune the number of possible attribute

sets, NA; but NA is still another factor that will impact the CPU cost on partitioning.

Finally, the third factor is the number of query types, NQ. From the second factor, we

already know each query type will be scanned in order to tell whether an attribute set is

CIS. So NQ is a factor that has to be considered. Besides the above three factors, one

more factor has to be added from the aspect of multi-tenancy, which is the number of

users of the DbaaS, NU. In DbaaS, common physical resources are shared by multiple

tenants. A major consequence of such an environment is that the multiple tenants will

compete for the resource of the same VM, which will delay the partition creation process.

Hence the degree of multi-tenancy becomes an additional factor.

2.2. Artificial Neural Network on cost prediction for database partitioning

 A cloud database is a complex system and the relationship between the partitioning

cost and S, NA, NQ and NU is highly non-linear. Because of these characteristics, we

propose to use ANN [77] to forecast the partitioning process cost since ANN performs

well on complex systems that are intrinsically non-linear in nature [80]. In our ANN

model, the inputs are S, NA, NQ and NU. One hidden layer with 8 neural nodes (twice the

size of the input) is used between the input and output layers. The control architecture is

57

a feed forward back propagation network. The activation function used is the sigmoid

function, which is a transfer function used to calculate a layer's output from its net input,

for all the inner nodes. This function can give the neural network the ability to learn and

generate an output for which it is not trained. However, in order to make the ANN work

properly, a well-defined training dataset is necessary. The whole ANN works in two

phases: (1) the network is trained using the data provided by users; and (2) the new input

is fed to the network and the network produces a desired output that is most appropriate

for the given input. Since it is important to choose a proper training function and learning

function, the TRAINGDX [81] and LEARNGDM [82] functions can be used in the

network. The TRAINGDX function is a network training function that updates weight

and bias values according to gradient descent momentum and an adaptive learning rate.

The LEARNGDM function calculates the weight change for a given neuron from the

neuron's input and error, the weight, learning rate, and momentum constant, according to

gradient descent with momentum. The structure of the whole network is shown in Figure

10 where W represents the weight of a node and B represents the bias of a node. There

are four different types of input (S, NA, NQ and NU) and one type of output (CPU time),

so we have 4 nodes in input and 1 node in output. We use twice the size of the input types

as the number of nodes in the hidden layer, so we have 8 nodes in the hidden layer.

Once the ANN model is constructed using the training dataset, the CPU time spent on

the partitioning process can be predicted by sending the current values of the system

parameters, which are S, NA, NQ and NU, to the ANN model. Then the money spent on

performing attribute partitioning tuning and resource provisioning tuning can be

calculated by using the C(CPU_Demand) function where the CPU time estimated from

58

each of the two forecasting partitioning and resource provisioning processes will be the

argument of the C function. The method that yields the lower monetary cost will be

selected to improve the system performance. The whole performance tuning cost analysis

algorithm is shown in Figure 11.

Figure 10. The ANN model used for partitioning cost forecasting

59

Figure 11. Performance tuning cost analysis in AutoClustC

3. Partition Distribution

After a database table is partitioned, generally more than one partition will be

generated. In a typical database partitioning process, more than one database table is

partitioned, and thus many partitions will be generated. How to deploy those partitions to

different PM is not an easy problem. In this section we present a partition distribution

algorithm to distribute the resulting partitions to PM. This algorithm considers both the

communication cost between different PM groups and the resource overload status of

each PM in order to find out the best PM to distribute partitions. We assume for each

60

standby database instance, it has a full copy of the data of the master database instance.

In the Subsection 3.1, we first review the structure of a typical data center and discuss the

motivation of why partition distribution is important for DbaaS. In the Subsection 3.2, we

present how the distribution algorithm compute the resource overload score for each PM

group, and how it compute the SLA violation probability for each PM in the PM group

with the least overload score in order to find out the best PM to distribute partitions. Then,

in the Subsection 3.3, we present how the partition distribution algorithm use the

communication cost as the weight to adjust the overload score of each PM group if the

communication cost is too high to be ignored.

3.1. Motivation of partition distribution for DbaaS

Before we discuss the motivation, first we will take a close look at the physical

structure of a typical cloud. We take AWS RDS [6] as our example since it is the major

cloud service provider. For AWS RDS, it can hold tenants’ database instances in multiple

locations world-wide. These locations are composed of regions and availability zones

(AZ). Each region is a separate geographic area. Each region has multiple, isolated

locations known as availability zones. Each availability zone has multiple data centers.

The overall physical structure is shown in Figure 12 [83], where we can see that AWS

has many regions across the nation. If we take the North Virginia region as an example,

we can see there are 5 AZs in this region. Those 5 AZs are connected to transit centers

using redundant paths. A transit center is used to connect different regions together. The

communication delay between different AZs in the same region is less than 1 millisecond.

In an AZ, there are multiple data centers which are connected by a high speed network,

for which the delay between two data centers is less than 0.25 millisecond [83].

61

Figure 12. AWS cloud structure

For a cloud database, high availability of data is a very important feature. Generally

speaking, high availability refers to a system that is continuously operational for a

desirably long length of time. This availability can be measured nearly to 100%

operational or never failing. A public cloud provider often puts their availability metric

in their SLAs. In order to guarantee high availability, tenants’ data must be duplicated in

the same data center or across multiple data centers. If the PM which holds a tenant’s data

fails, other PMs that contain the backup data can take over the failed PM’s job and keep

the tenant’s application running. Those PMs are generally called standby PMs. For our

case, when the partitioning process is done, multiple partitioning solutions may be

generated, each of which contains multiple partitions. We may distribute different

partitioning solutions to different standby PMs so that each standby PM will contain a

full copy of tenants’ data and each copy is partitioned in a different way. When the PM

62

containing the master database instance fails, other standby PMs in which the backup

database instances exist can continue processing the incoming queries. So the high

availability of the cloud database can be guaranteed. This is the first motivation of our

partition distribution algorithm.

In a cloud database, computing resources are shared by multiple tenants. Therefore

DbaaS providers are facing more unpredictable workloads. This makes the SLAs

guarantee work more difficult, especially during the workload peak time. When the pre-

defined performance SLAs are violated under some specific circumstances, DbaaS

providers need to either refund some portion of the service fee to the tenants or find out

a way to re-guarantee the performance SLAs as soon as possible. If the performance SLA

violation is caused by the overloaded workload, one of the easiest way of performing the

SLA re-guarantee work is to use the database instance that contains the duplicated data

located on the standby PMs to process some portion of the queries, so that the workload

on the master database instance can be reduced, hence the performance SLA can be re-

guaranteed. So this is the second motivation of our partition distribution algorithm.

Partition distribution can occur on different levels: the data center level, availability

zone level, and region level. In this dissertation we only consider the case for which

partitions are distributed in the same data center, i.e., partitions are distributed on the data

center level.

3.2. Computing load balance using the overload score

In modern data centers, virtualization technologies can enable application running and

data saving to be hosted inside VMs. Those VMs utilize the physical resource of the PMs

in which they are hosted. An important characteristic of a well-managed data center is

63

whether the data center has the ability to avoid overloaded PMs. Overloaded PMs often

lead to performance degrading and are easy to fail. When database partitions are

distributed in the same data center, the PM that accepts the distributed partitions has to

provision the physical resource for a new database instance. If this PM is already almost

overloaded, the performance SLAs of the tenants that are located on this PM will be

violated. This may even cause the PM to fail. This is why intelligent partition distribution

is so important. However, deciding which PM to be selected to host the distributed

partitions is a challenging task. In this section, we present our PM selection method that

is based on PM’s overload score. Before we discuss our algorithm, first we need to

understand how PMs are connected in a data center.

Figure 13. PMs and VMs in a data center

A small part of a typical data center is represented in Figure 13. A data center may

consist thousands of PMs which are connected by switches and routers. PMs connected

to the same switch form a PM group. For example, PM1, PM2 and PM3 are connected to

64

switch1, so PM1, PM2 and PM3 form a PM group connected to switch1. We can see that

in order to find the PM to host the distributed partitions, we first should find a proper PM

group, and we can then select the best PM in this group for our answer. So for our partition

distribution algorithm, there are two major steps: 1) locate the proper PM group, and 2)

find out the best PM in the PM group resulted from Step 1. These steps are described

below.

Step 1: locate the proper PM group:

Creating a VM in a PM requires the provisioning of different physical resources, such

as CPU, memory, and I/O bandwidth. For different time points, the amount for each

resource used by a VM may be different. In this dissertation, we focus on the CPU and

memory provisioned from a PM to a VM. We can use a vector, VecURes, to represent the

CPU and memory resources used by VMs for a particular PM at the time point t as

follows:

𝑉𝑒𝑐𝑈𝑅𝑒𝑠 =⁡< 𝑈𝑅𝑒𝑠𝐶𝑃𝑈, 𝑈𝑅𝑒𝑠𝑅𝐴𝑀 >⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (10)

For each resource, there is always a threshold defined by the user to limit the amount

of resource that can be provisioned from a PM to its VMs. If the amount of some resource

provisioned from PM to its VMs exceeds the pre-defined threshold, this PM is said to

have an overload status. The performance of the VMs in an overloaded PM is very poor,

and the PM has a higher chance to fail. We can use a vector, VecTRes, to represent the

threshold of the CPU and memory resources that can be maximally provisioned from a

PM to VM at any time point as follows:

𝑉𝑒𝑐𝑇𝑅𝑒𝑠 =⁡< 𝑇𝑅𝑒𝑠𝐶𝑃𝑈, 𝑇𝑅𝑒𝑠𝑅𝐴𝑀 >⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (11)

65

In order to tell how busy a PM is, we can compute the resource utilization fraction of

a PM. The resource utilization fraction of CPU equals to the ratio of 𝑈𝑅𝑒𝑠𝐶𝑃𝑈 over

𝑇𝑅𝑒𝑠𝐶𝑃𝑈, and the resource utilization fraction of memory equals to the ratio of 𝑈𝑅𝑒𝑠𝑅𝐴𝑀

over 𝑇𝑅𝑒𝑠𝑅𝐴𝑀 . We can use a vector, VecFRes, to represent the CPU and memory

resources utilization fraction in a PM at time point t as follows:

𝑉𝑒𝑐𝐹𝑅𝑒𝑠 =⁡<
𝑈𝑅𝑒𝑠𝐶𝑃𝑈
𝑇𝑅𝑒𝑠𝐶𝑃𝑈

,
𝑈𝑅𝑒𝑠𝑅𝐴𝑀
𝑇𝑅𝑒𝑠𝑅𝐴𝑀

>⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (12)

Then we want to measure the degree of overload of resource i, which is either CPU or

memory, for a PM. This degree is called the overload score of resource i for a PM. We

use the 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒𝑖 to represent it. The function used to compute the overload score

of resource i is from [84]:

𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒𝑖 = {

0
⁡

𝑒
𝑉𝑒𝑐𝐹𝑅𝑒𝑠𝑖−𝑉𝑒𝑐𝑇𝑅𝑒𝑠𝑖

𝑉𝑒𝑐𝑇𝑅𝑒𝑠𝑖

⁡𝑉𝑒𝑐𝐹𝑅𝑒𝑠𝑖 < 𝑉𝑒𝑐𝑇𝑅𝑒𝑠𝑖
⁡

⁡𝑉𝑒𝑐𝐹𝑅𝑒𝑠𝑖 ≥ 𝑉𝑒𝑐𝑇𝑅𝑒𝑠𝑖

}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13)

Till now we have presented the degree of overload of resource i for a PM. The degree

of overload of a PM can be obtained by summing all the overload scores of CPU and

memory on this PM. We can use 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝑗 to represent the degree of

overload of the jth PM as follows:

𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝑗 = 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒𝐶𝑃𝑈 + 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒𝑅𝐴𝑀⁡⁡⁡⁡⁡⁡⁡⁡⁡(14)

If there are N PMs in the kth PM group, then the degree of overload of this PM group

(𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘) can be obtained by summing the overload scores of all PMs in

this PM group as follows:

𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 =∑𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝑗

𝑁

𝑗=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15)

66

Now the overload score of each PM group has been computed, if this score is higher

for a particular PM group, it means this PM group has a higher chance to fail due to the

resource overload problem. So we need to select the PM group whose overload score is

the smallest to identify the best PM to distribute the partitions to. Next we will go to Step

2 to select the best PM from this selected PM group.

Step 2: Locate the best PM in the selected PM group.

The best PM to distribute the partitions to should be the one that has the lowest

probability to violate the existing tenants’ SLAs, i.e., we need to compute the SLA

violation probability for each PM in the selected PM group when a new standby database

instance is created on this PM. We know that if a PM has a high CPU and RAM, and a

low number of tenants (tenant degree), then creating a new standby database instance on

such PM may have a low probability of causing a possible SLA violation to other existing

tenants.

We define two vectors, VecCPU and VecRAM, to represent the CPU and memory

available to be provisioned for the new standby database instance on each PM,

respectively. If the selected PM group contains N PMs then VecCPU equals to:

𝑉𝑒𝑐𝐶𝑃𝑈 = 〈𝐶𝑃𝑈1, 𝐶𝑃𝑈2, … , 𝐶𝑃𝑈𝑁〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16)

and VecRAM equals to:

𝑉𝑒𝑐𝑅𝐴𝑀 = 〈𝑅𝐴𝑀1, 𝑅𝐴𝑀2, … , 𝑅𝐴𝑀𝑁〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17)

Then the probability of choosing the jth PM by considering the possible SLA violation

due to CPU overload is
𝑉𝑒𝑐𝐶𝑃𝑈𝑗

∑ 𝑉𝑒𝑐𝐶𝑃𝑈𝑖
𝑁
𝑖=1

. The probability of choosing the jth PM by

considering possible SLA violation due to memory overload is
𝑉𝑒𝑐𝐶𝑃𝑈𝑗

∑ 𝑉𝑒𝑐𝐶𝑃𝑈𝑖
𝑁
𝑖=1

.

67

We can see that the probability of choosing a PM as the target to distribute the

partitions to is directly proportional to the available CPU and memory of this PM. Unlike

the CPU and memory, the probability of choosing a PM is inversely proportional to this

PM’s tenant degree. We define a vector, VecTD, to represent the tenant degree of each

PM of the selected PM group as follows:

𝑉𝑒𝑐𝑇𝐷 = 〈𝑇𝐷1, 𝑇𝐷2, … , 𝑇𝐷𝑁〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18)

Then the probability of choosing the jth PM by considering its possible SLA violation

due to the tenant degree is

1

𝑉𝑒𝑐𝑇𝐷𝑗

∑
1

𝑉𝑒𝑐𝑇𝐷𝑖

𝑁
𝑖=1

. So the overall probability of choosing the jth PM

by considering the possible SLA violations caused by CPU, RAM and tenant degree is:

𝑉𝑒𝑐𝐶𝑃𝑈𝑗
∑ 𝑉𝑒𝑐𝐶𝑃𝑈𝑖
𝑁
𝑖=1

×
𝑉𝑒𝑐𝑅𝐴𝑀𝑗

∑ 𝑉𝑒𝑐𝑅𝐴𝑀𝑖
𝑁
𝑖=1

×

1
𝑉𝑒𝑐𝑇𝐷𝑗

∑
1

𝑉𝑒𝑐𝑇𝐷𝑖

𝑁
𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19)

After estimating the probabilities of choosing a PM considering its possible SLA

violations due to CPU, RAM and tenant degree for all PMs in the selected PM group, we

will select the PM with the highest probability resulted from equation (19) and distribute

the partitions to that PM.

3.3. Communication cost

In the Subsection 3.2 we discussed how to use the overload score to compute the

degree of overload for each PM group, and then find the best PM in the selected PM

group by considering the probability of SLA violation for each PM. Besides the resource

overload factor, there is another factor that can impact the process of choosing the target

standby PM to distribute the partitions to. This factor is the communication cost. If the

communication time between two PM groups is too high to be ignored, we have to

68

consider the impact of communication cost, which can work as a weight to the overload

score when choosing the proper PM group. If the communication time between two PM

groups is small compared to the average query response time, for example the average

query response time is measured in seconds and the communication time is measured in

milliseconds or even microseconds, then we may ignore the communication delay or scale

the weight using a scaler 𝜌 , which equals to the average communication delay over

average query response time.

According to [85], multi-path TCP protocols are being used in today’s data center in

order to improve the whole data center’s performance by performing very short timescale

distributed load balancing. Multi-path TCP protocols make effective use of parallel paths

in modern data center’s network topologies. When data is transferred from source to

target, more than one path will be used. For example, in Figure 13, if the router wants to

route data to the PM group consisting of PM7, PM8 and PM9, the path “router-switch3”

and the path “router-switch2-switch3” may be used simultaneously. So when we consider

the communication cost between a PM group and other switches in the network, we need

to measure the overall communication cost from the switch that is directly connected to

that PM group to all other switches. The Closeness Centrality [86] of network can help

us solve this problem.

In a network, a node is said to be closer to all other nodes, if the sum of the distances

from this node to all other nodes is smaller than that of other candidate nodes [87]. In a

data center we can consider a PM group as a candidate node. Formally, the Closeness

Centrality Degree (CCD) of a node v is defined as 𝐶𝑐(𝑣), which equals to:

𝐶𝑐(𝑣) =
𝑀 − 1

∑ 𝑑(𝑣, 𝑎)𝑎≠𝑣
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20)

69

where M is the total number of nodes in a network and 𝑑(𝑣, 𝑎) represents the distance

between node v and node a. Equation (20) tells us that if a node has the maximum CCD

in a network then this node has the minimal overall distance to other nodes.

When we apply the CCD in our case, M equals to the total number of PM groups; v

represents the a PM group; a represents a PM group other than v; and 𝑑(𝑣, 𝑎) represents

the communication delay between the v and a. The CCD of each PM group can be

represented using a vector, VecCCD, as follows:

𝑉𝑒𝑐𝐶𝐶𝐷 = 〈𝐶𝐶𝐷1, 𝐶𝐶𝐷2, … , 𝐶𝐶𝐷𝑁〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21)

The bigger CCD for a PM group means this PM group connected has less overall

communication delay to other PM groups.

Next we compute the weight using CCD. First we need to compute the inverse of CCD

and save it in the vector VecICCD as follows:

𝑉𝑒𝑐𝐼𝐶𝐶𝐷 = 〈𝐼𝐶𝐶𝐷1, 𝐼𝐶𝐶𝐷2, … , 𝐼𝐶𝐶𝐷𝑀〉⁡⁡⁡⁡⁡⁡⁡⁡⁡(22)

where 𝐼𝐶𝐶𝐷𝑖 =
1

𝐶𝐶𝐷𝑖
. Then we normalize the VecICCD vector using Min-Max

normalization in order to use this vector as the weight to the overload score vector.

𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷 =

〈

𝐼𝐶𝐶𝐷1 −𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)

𝑀𝑎𝑥(𝑉𝑒𝑐𝐼𝐶𝐶𝐷) − 𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)
,

𝐼𝐶𝐶𝐷2 −𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)

𝑀𝑎𝑥(𝑉𝑒𝑐𝐼𝐶𝐶𝐷) − 𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)
,… ,

𝐼𝐶𝐶𝐷𝑀 −𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)

𝑀𝑎𝑥(𝑉𝑒𝑐𝐼𝐶𝐶𝐷) − 𝑀𝑖𝑛(𝑉𝑒𝑐𝐼𝐶𝐶𝐷)

〉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23)

For a PM group, when we compute the overload score of this PM group, a lower

overload score for a PM group means this PM group has higher chance to be selected as

the target PM group. If we want to use communication delay as the weight to penalize the

overload score, we should penalize the overload score to make it a bigger value than the

70

original one. The reason is that we always want to select the PM group with the smallest

overload score. If the giving scaler 𝜌, which equals to
𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛⁡𝑑𝑒𝑙𝑎𝑦

𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑞𝑢𝑒𝑟𝑦⁡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒⁡𝑡𝑖𝑚𝑒
, is not

zero then the weighted overload score of the PM group k, 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘, equals

to 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 × (1 + 𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘 × 𝜌) . By doing so we consider the

communication cost issue of the network. If the communication cost can be ignored when

the communication delay is small enough, 𝜌 will be zero and there is no penalty for each

PM group’s overload score.

The whole partition distribution algorithm (communication delay is considered) is

shown as Figure 14.

From Figure 14 we can see the algorithm first computes the overload score for each

PM in a PM group (lines 2-5). Then the overload score of the corresponding PM group is

calculated by summing each PM’s overload score in this group (line 6). After that the

algorithm calculates the inverse of this PM group’s closeness centrality degree, and adds

this degree to VecICCD vector (lines 7-8). When VecICCD is generated it will be

normalized using Min-Max normalization to get VecNICCD (line 10). If the

communication cost is considered, the algorithm will use a weight to penalize the

overload score for each PM group (lines 11-13). Then the PM group x with the least

overload score will be selected (line 14). For the selected PM group, each PM’s selection

probability will be computed (lines 15-18). Finally the PM with the biggest selection

probability will be returned (line 19).

71

Input:

1. Number of PM groups (M)

2. Number of PMs in the kth PM group (Nk)

3. Vector of CPU and memory provisioned to VMs for the jth PM in the kth PM

 group (VecURes)

4. Vector of CPU and memory provision threshold for the jth PM in the kth PM group

(VecTRes)

5. Vector of the CPU provisioned to VMs for each PM in the kth PM group

 (VecCPU)

6. Vector of the memory provisioned to VMs for each PM in the kth PM group

 (VecRAM)

7. Vector of the tenant degree for each PM in the kth PM group (VecTD)

8. Weight scaler (𝜌)

Output:

The ID of the PM to distribute partitions

Parameters initialized:

1. Vector of workload fraction for each resource of the jth PM in the kth PM group

 (VecFRes)

2. Vector of the inverse of closeness centrality degree for each PM group (VecICCD)

3. Vector of normalized inversed closeness centrality degree for each PM group

(VecNICCD)

Steps:

1. For each PM group k

2. For each PM j

3. VecFResi = VecUResi / VecTResi

4. Compute overload_score_PMj for jth PM using VecFRes

5. End for

6. Compute 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 by summing overload_score_PMj

7. Compute closeness centrality degree, CCDk, for the kth PM group

8. Add the inverse of CCDk to VecICCD

9. End for

10. VecNICCD = Min-Max normalization of VecICCD

11. For each PM group k

12. 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 = 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 × (1 + 𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘 × 𝜌)
13. End for

14. Find out the PM group, x, with the least overload score.

15. For each PM j in PM group x

16. Compute the selection probability using

17.
𝑉𝑒𝑐𝐶𝑃𝑈𝑗

∑ 𝑉𝑒𝑐𝐶𝑃𝑈𝑖
𝑁
𝑖=1

×
𝑉𝑒𝑐𝑅𝐴𝑀𝑗

∑ 𝑉𝑒𝑐𝑅𝐴𝑀𝑖
𝑁
𝑖=1

×

1

𝑉𝑒𝑐𝑇𝐷𝑗

∑
1

𝑉𝑒𝑐𝑇𝐷𝑖

𝑁
𝑖=1

18. End for

19. Return the ID of the PM with the biggest selection probability

Figure 14. Partition distribution algorithm

72

Chapter V Performance Analysis

 This chapter presents the theoretical and empirical analysis of our algorithms, SLA-

LRU and AutoClustC. We will evaluate their performance from different metrics. The

empirical analysis is conducted using the TPC-H benchmark [88]. We present the

theoretical analysis first followed by the description of our experimental model and the

experimental results.

1. Theoretical Analysis

 In this section we discuss the time and space complexity of SLA-LRU and

AutoClustC. The variables used in the analysis are listed in Table 2.

Table 2. Variables used in the theoretical analysis

Name Meaning

𝑛𝑡 # of tenants

𝑛𝑏 # of entries in the buffer page list

𝑛𝑐 # of entries in the historical CPU utilization data set

𝑛𝑖 # of inputs of ANN

𝑛𝑜 # of outputs of ANN

𝑛𝑛 # of nodes in hidden layer of ANN

𝑛𝑡𝑟 # of records of the training data set for ANN

𝑛𝑡𝑖 # of training iterations for ANN

𝑛𝑃𝑀𝐺 # of PM groups

𝑚𝑃𝑀 Maximum # of PMs in one PM group

1.1. Complexity analysis for SLA-LRU

 SLA-LRU is divided into two parts: 1) analyzing the SLA penalty cost for each tenant,

and 2) releasing memory buffer pages when the memory buffer pool is full. All tenants’

SLA penalty cost functions are saved in an SLA penalty cost table with a format as shown

in Table 3. From Table 3 we can see that each record of the SLA penalty cost table

contains the ID, category and SLA penalty cost, which is based on different buffer pool

73

levels, for the corresponding tenant. For instance, the penalty cost function for Tenant 1

in Table 3 is defined such that the penalty costs are 0, c, 2c and 4c, respectively according

to different buffer pool utilization level ranges, which are defined by the cloud service

providers.

Table 3. An example entry in the SLA penalty cost table

Tenant ID
Tenant

category

Penalty cost

(Micro)
Actual buffer pool level range

1 Micro

0 (95%p, 100%p]

c (25%p, 95%p]

2c (5%p, 25%p]

4c [0%p, 5%p]

 The SLA penalty cost table is updated when there is a change to this table, i.e., when

a new tenant is added/removed from the SLA penalty cost table or the SLA penalty cost

function is changed for some tenant in the SLA penalty cost table. The first part of SLA-

LRU runs when the algorithm wants to know the page removal cost for different tenants.

The second part of SLA-LRU runs when there is no free memory buffer page available

for incoming queries. In this section, we present the complexity of each part individually

and then the total complexity of SLA-LRU, which is the sum of the complexity of both

parts. The time complexity of SLA-LRU is analyzed based on the amount of time SLA-

LRU would take to perform a full scan on the memory buffer page list in the worst case.

1.1.1. Time complexity of SLA-LRU

 We first present the time complexity of analyzing the SLA penalty cost for each tenant.

Before SLA-LRU releases memory buffer pages from the buffer pool, the algorithm has

to know the derivative of the SLA penalty cost function for each tenant that is using the

buffer pool. The computation of the derivative of the SLA penalty cost function occurs

74

only once unless a change happened to the SLA penalty cost table. When the algorithm

analyzes the SLA penalty cost function for each tenant, a full scan will be performed on

the SLA penalty cost table. The length of the table equals to the number of tenants located

on the VM, so the time of scanning the SLA penalty cost table will be O(𝑛𝑡), where 𝑛𝑡 is

the number of tenants on the VM.

 Then we present the time complexity of releasing memory buffer pages when the

buffer pool is full. The time complexity of this part is analyzed based on the amount of

time SLA-LRU would take to perform a full scan on the memory buffer page list. As we

discussed in Section 2 of Chapter III, during the first iteration of the memory buffer page

releasing process, the scanning percentage on the memory buffer page list is 𝛼. The

scanning percentage on the memory buffer page list for the next iteration will always be

doubled according to the previous iteration. So we have equation (24)

2𝑝−1𝛼 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24)

where p is the total number of scanning times. So p can be represented by using the

following equation:

𝑝 = 1 + ⌈log2
1

𝛼
⌉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(25)

Then the total number of memory buffer pages scanned can be represented by using the

following equation:

𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝𝑎𝑔𝑒𝑠_𝑠𝑐𝑎𝑛𝑒𝑑 = (𝛼 + 2𝛼 + 4𝛼 +⋯+ 2⌈log2
1
𝛼
⌉𝛼) × 𝑛𝑏⁡⁡⁡⁡⁡⁡⁡(26)

where 𝑛𝑏 is the number of the entries in the memory buffer page list. Equation (26) is a

sum of geometric sequence, and we know that 1 − 𝑞𝑥 = (1 − 𝑞)(1 + 𝑞 + 𝑞2 +⋯+

𝑞𝑥−1). For our case q is 2, so it can be re-written as:

75

𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝𝑎𝑔𝑒𝑠_𝑠𝑐𝑎𝑛𝑒𝑑 = 𝛼 × 𝑛𝑏 × (2⌈log2
1
𝛼
⌉+1 − 1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(27)

So the time complexity for releasing memory buffer pages is O(𝛼 × 𝑛𝑏 × (2⌈log2
1

𝛼
⌉+1 −

1)). Generally, we define 𝛼 as a meaningful value, so O(𝛼 × 𝑛𝑏 × (2⌈log2
1

𝛼
⌉+1 − 1)) can

be considered as O(𝑛𝑏). Then the total time complexity of SLA-LRU is O(𝑛𝑏) + O(𝑛𝑡).

In practice, the number of tenants located on a VM is far less than the number of entries

of the memory buffer page list. So we can consider the final time complexity of SLA-

LRU to be O(𝑛𝑏).

1.1.2. Space complexity of SLA-LRU

 SLA-LRU stores the derivative of each tenant's SLA penalty cost function with the

tenant's ID and class in a hash table in the memory. Moreover, a set is used to save the

tenants that have the maximal derivatives of the SLA penalty cost function. Hence the

total amount of storage required is O(2𝑛𝑡), we can consider the final space complexity to

be O(𝑛𝑡).

1.2. Complexity analysis for AutoClustC

 AutoClustC is divided into three parts: 1) cost forecasting for resource provisioning,

2) cost forecasting for database partitioning, and 3) partition distribution. For each tuning

process, parts 1) and 2) must be run in order to find out the most cost saving approach,

which is either resource provisioning or database partitioning. Part 3) is triggered only

when database partitioning is selected. In this section, we present the complexity of each

part individually and then the total complexity of AutoClustC, which is the sum of the

complexity of all three parts. In order to analyze the complexity for the worst case, we

76

assume all three parts will be executed, i.e., database partitioning is selected as the tuning

method.

1.2.1. Time complexity of AutoClustC

 In this section we first present the time complexity of forecasting the cost for resource

provisioning, then present the time complexity of forecasting the cost for database

partitioning, and finally present the time complexity of partition distribution.

 Time complexity of forecasting the cost for resource provisioning:

 From Section 1.2 of Chapter IV, we know that the resource provisioning from PM to

VM can be estimated using the equation: 𝐸[𝑈] + 𝐸𝑡, where E[U] is the statistical mean

of the measured historical CPU demand and 𝐸𝑡 is the error term. So the time complexity

of forecasting the cost for resource provisioning is the sum of the time complexity of

computing E[U] and the time complexity of computing 𝐸𝑡. In order to compute E[U],

historical CPU demand data must be collected. If the number of entries in the historical

CPU demand data set is 𝑛𝑐 then the time complexity of computing E[U] is O(𝑛𝑐).

 𝐸𝑡 is computed using the AR(2) model. From Section 1.2 of Chapter IV, we know the

2 step prediction error can be represented using the Gaussian variable having mean zero

and variance 𝜎𝑒
2(𝑛) = ∑ 𝐺2(𝑗)𝜎𝜖

21
𝑗=0 . 𝐺(𝑗) is the characteristic function of the AR(2)

model, which can be presented using the equation 𝐺(𝑗) =
𝛾1
𝑗+1

−𝛾2
𝑗+1

𝛾1−𝛾2
. From Section 1.2 of

Chapter IV we know that γ1 and γ2 are the roots of the equation 1 − 𝛼1𝐵 − 𝛼2𝐵
2 = 0,

where 𝛼1 and 𝛼2 are two AR(2) parameters. So the time complexity of computing 𝐺(𝑗)

is based on the time complexity of finding out the value of 𝛼1 and 𝛼2. The Yule–Walker

algorithm [89] can be used to calculate 𝛼1 and 𝛼2 using the historical CPU demand data

77

set. According to [89], the time complexity of finding out 𝛼1 and 𝛼2 for the AR(2) model

is a constant. So the time complexity of computing 𝐸𝑡 is a constant, O(1).

 Overall, the time complexity of forecasting the cost for resource provisioning is O(𝑛𝑐),

where 𝑛𝑐 is the number of entries of the historical CPU demand data set.

 Time complexity of forecasting the cost for database partitioning:

 The cost forecasting process for database partitioning uses ANN, so the time

complexity includes two parts: time complexity for training and time complexity for

predicting. We first discuss the time complexity for training, then discuss the time

complexity for predicting, then sum the two time complexity together to get the final time

complexity.

 In order to train an ANN (assuming only one hidden layer with 𝑛𝑛 nodes existing)

with 𝑛𝑖 inputs, 𝑛𝑜 outputs using a training data set with 𝑛𝑡𝑟 number of records, each node

of the network has to receive the input and take the weight to adjust the input in order to

generate a new output. The predicted output will be compared with the corresponding

output in the training data set in order to modify the weights. So the forward and reverse

propagations’ time complexity will always be O(𝑛𝑖𝑛𝑛𝑛𝑜) for each data tuple in the

training data set in one training iteration. If the whole training data set is used for training

and 𝑛𝑡𝑖 training iterations are taken place, the overall time complexity of training process

will be O(𝑛𝑖𝑛𝑛𝑛𝑜𝑛𝑡𝑟𝑛𝑡𝑖).

 When ANN is used for prediction, the way of calculating the time complexity for

prediction is similar to the way of calculating the time complexity for training. The only

difference is that the prediction runs on one data tuple and has no reverse propagation. So

the time complexity of the predicting process is O(𝑛𝑖𝑛𝑛𝑛𝑖).

78

 Now we can sum the two time complexity together, which is O(𝑛𝑖𝑛𝑛𝑛𝑜𝑛𝑡𝑟𝑛𝑡𝑖) +

O(𝑛𝑖𝑛𝑛𝑛𝑖). In our ANN model 𝑛𝑖 equals to 4, 𝑛𝑛 equals to 8 and 𝑛𝑜 equals to 1, so the

final time complexity of forecasting the cost for database partitioning is O(32𝑛𝑡𝑟𝑛𝑡𝑖) +

O(32) = O(𝑛𝑡𝑟𝑛𝑡𝑖). We can see that the time complexity of using ANN in our application

is mainly determined by the number of records of the training data set and the number of

training iterations.

 Time complexity of partition distribution:

 Based on the discussion in Sections 3.2 and 3.3 of Chapter IV, we know the time

complexity of partition distribution equals to the sum of the time complexity of

computing the overall weighted overload score for each PM group and the time

complexity of finding out the PM with highest selection probability in that PM group.

 When partition distribution algorithm is searching the proper PM group to distribute

resulted partitions, the algorithm first compute the overall overload score for each PM,

which always has constant time complexity, O(1), since we only consider the overload

status for CPU and memory. Then the algorithm will compute the overall overload score

for a PM group by summing the overload scores of all PMs located in this PM group. If

the maximum number of PMs in one PM group is 𝑚𝑃𝑀, the time complexity of finding

out the overall overload score for one PM group is O(𝑚𝑃𝑀). If totally there are 𝑛𝑃𝑀𝐺 PM

groups, the time complexity of finding out the overall overload score for all PM groups

is O(𝑚𝑃𝑀𝑛𝑃𝑀𝐺). Once the overall overload score is computed for each PM group, the

closeness centrality degree will be computed for each PM group in order to analyze the

communication delay. The time complexity of computing the closeness centrality degree

79

is O(𝑛𝑃𝑀𝐺
2). So the total time complexity of search the proper PM group is O(𝑚𝑃𝑀𝑛𝑃𝑀𝐺)

+ O(𝑛𝑃𝑀𝐺
2).

 Next, the algorithm will compute the selection probability for each PM in the selected

PM group in order to find out the proper PM to distribute partitions. Since we only

consider the impact of CPU, memory and tenant degree for each PM the time complexity

of computing the selection probability for each PM will be constant. We know there are

𝑚𝑃𝑀 PMs in the PM group, so the time complexity of finding out the proper PM to

distribute partitions is O(𝑚𝑃𝑀).

 We can sum the above time complexities to get the total time complexity for partition

distribution, which is O(𝑚𝑃𝑀𝑛𝑃𝑀𝐺) + O(𝑛𝑃𝑀𝐺
2)+ O(𝑚𝑃𝑀) = O(𝑚𝑃𝑀𝑛𝑃𝑀𝐺) + O(𝑛𝑃𝑀𝐺

2).

1.2.2. Space complexity of AutoClustC

 In order to compute the space complexity of AutoClustC, we have to find out the space

complexity for forecasting the cost for resource provisioning, the space complexity for

forecasting the cost for database partitioning and the space complexity for partition

distribution. Then the sum of the three space complexity is AutoClustC’s space

complexity.

 Space complexity for forecasting the cost for resource provisioning:

 When AutoClustC forecasts the cost of resource provisioning, the historical CPU

demand data set has to be saved in the memory, so the space complexity for forecasting

the cost for resource provisioning equals to O(𝑛𝑐), where 𝑛𝑐 is the number of entries in

the historical CPU demand data set.

80

 Space complexity for forecasting the cost for database partitioning:

 When AutoClustC forecasts the cost of database partitioning using ANN, the training

data set has to be saved in memory with O(𝑛𝑡𝑟) space complexity, where 𝑛𝑡𝑟 is the

number of records in the training data set. In order to make ANN running, the memory

for each node’s weight has to be allocated. Since there are only 4 inputs and 1 hidden

layer with 8 nodes, we can consider the space complexity of allocating memory to nodes’

weight as a constant. So the overall space complexity for forecasting the cost of database

partitioning is O(𝑛𝑡𝑟).

 Space complexity for partition distribution:

 There are 3 major steps when AutoClustC performs the partition distribution. In the

first step it computes the overload score for each PM of a PM group. In the second step

it computes the weight for each PM group and find out the overall weighted overload

score for each PM group. In the third step AutoClustC selects the PM with the highest

selection probability from the candidate PM group.

 When AutoClustC performs the first step, two resources, CPU and memory, are

considered. So the space complexity of computing the overload score for one PM is

constant, which is O(1).

 When AutoClustC performs the second step, it has to allocate memory to save the

distance of each PM group pair. If there are 𝑛𝑃𝑀𝐺 PM groups, the maximum number of

PM group pairs equals to
𝑛𝑃𝑀𝐺

2−𝑛𝑃𝑀𝐺

2
 and this will use O(𝑛𝑃𝑀𝐺

2) space complexity.

AutoClustC also needs to save the overload score of all PMs in the data center, and this

will use O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) space complexity, where 𝑚𝑃𝑀 is the maximum number of PMs of

81

one PM group. So the total space complexity of the second step is O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) +

O(𝑛𝑃𝑀𝐺
2).

 When AutoClustC performs the third step, the selection probability of each PM in the

candidate PM group has to be saved, so the space complexity of step 3 is O(𝑚𝑃𝑀).

 Then the space complexity for partition distribution equals to O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) +

O(𝑛𝑃𝑀𝐺
2) + O(𝑚𝑃𝑀) = O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) + O(𝑛𝑃𝑀𝐺

2).

 Now we can sum the three space complexity of AutoClustC together, which is O(𝑛𝑐)

+ O(𝑛𝑡𝑟) + O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) + O(𝑛𝑃𝑀𝐺
2), to get the final space complexity for AutoClustC.

1.3. Summary of worst-case time and space complexity analysis results

 The summary of the time and space complexity analysis results is shown in Table 4.

Table 4. Summary of worst-case time and space complexity analysis results

 Time complexity Space complexity

SLA-LRU O(𝑛𝑏) O(𝑛𝑡)

AutoClustC
O(𝑛𝑐) + O(𝑛𝑡𝑟𝑛𝑡𝑖) +

O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) + O(𝑛𝑃𝑀𝐺
2)

O(𝑛𝑐) + O(𝑛𝑡𝑟) + O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) +

O(𝑛𝑃𝑀𝐺
2)

2. Experimental Analysis

 We have conducted an extensive set of experiments to study the performance of our

algorithms SLA-LRU and AutoClustC. We also compare SLA-LRU with two existing

buffer pool management technique, LRU-2 [24] and MT-LRU [30] which we have

reviewed in Chapter II. For AutoClustC, to the best of our knowledge it is the first cloud

database tuning algorithm that is based on vertical database partitioning. So we have no

similar algorithm to compare with. However, we compare the performance of the

resulting partitions when using distribution with that of not using distribution. We present

the simulation models in Section 2.1 and the experimental results in Section 2.2.

82

2.1. Simulation Models

 The goal of the simulation model is to demonstrate the effectiveness of our algorithms.

We build two experiment models to test the performance of our SLA-LRU and

AutoClustC algorithms, respectively. The details of our simulation models are discussed

in the following subsections.

2.1.1. Simulation model for SLA-LRU

 In order to implement our algorithm, we use the open source MySQL Server 5.5 [75]

as our database platform. MySQL Server 5.5 uses the classic LRU-2 algorithm to manage

the memory buffer pool. We modify this component of the original code to include our

SLA-LRU. We conduct experiments comparing SLA-LRU with the two existing buffer

pool management algorithms, LRU-2 [24] and MT-LRU [30] using the TPC-H

benchmark [88] database as our dataset and the TPC-H bench mark queries as the query

set. Totally there are 8 database tables: ORDERS, SUPPLIER, LINEITEM, PARTSUPP,

CUSTOMER, PART, NATION and REGION, and 22 query types. All the code

modifications are done using C and all test scripts are written using tcl scripts. The

experiments are performed on a machine with a CPU of i5-2400 3.10 GHz and 4 GB

memory.

 In order to run SLA-LRU and MT-LRU, the SLA penalty cost functions have to be

pre-defined. For SLA-LRU, we classify tenants into 4 categories: Micro, Small, Medium

and Large. We adopt the class categories used by Amazon T2 instance [73], which are

shown in Table 5. The SLA promised buffer pool levels are 5%, 10%, 20% and 40% of

the corresponding VM’s memory for Micro, Small, Medium, and Large tenants,

respectively. According to the vCPU penalty cost function used by Amazon [73], the

83

penalty costs for different categories of tenants should follow a pattern of exponential of

2. For example, Amazon defines the vCPU penalty cost for Micro, Medium and Large

tenant categories as 21×3=6, 22×3=12 and 23×3=24, respectively. So we will also use the

pattern of exponential of 2 in our experiments. Based on the discussions in [30] and [74],

step-based resource utilization is widely used in practice to decide the penalty cost. So

we also use the similar step-based actual buffer pool level to decide the penalty cost for

each category of tenants in our experiments as shown in Table 6, where c is a weight to

compute the penalty cost, and p is the SLA promised buffer pool level for the

corresponding tenant category. From this penalty cost function we can see that the service

provider does not have any penalty cost when the tenant’s buffer pool level just starts to

decrease from the promised level until the buffer pool level falls below 95% of the

promised level. Once the tenant’s buffer pool level falls below 25%, the penalty cost to

the service provider becomes very high. For MT-LRU, we use the penalty cost function

shown in Table 7. The same as the way we defined Table 6, the penalty cost pattern in

Table 7 also follows [73], and the HRD pattern follows [30] and [74].

Table 5. Tenant's category

Tenant category Promised buffer pool level

Large 40%

Medium 20%

Small 10%

Micro 5%

84

Table 6. Buffer pool level based SLA penalty cost function for SLA-LRU

Penalty cost

(Large)

Penalty cost

(Medium)

Penalty cost

(Small)

Penalty cost

(Micro)
Actual buffer pool level range

0 0 0 0 (95%p, 100%p]

8c 4c 2c c (25%p, 95%p]

16c 8c 4c 2c (5%p, 25%p]

32c 16c 8c 4c [0%p, 5%p]

Table 7. Hit ratio degradation based SLA penalty cost function for MT-LRU

Penalty cost (Category I) Penalty cost (Category II) HRD range

0 0 [0%p, 5%]

c 4c (5%p, 25%]

2c 8c (25%p, 95%]

4c 16c (95%p, 100%]

2.1.2. Simulation model for AutoClustC

 AutoClustC is triggered when the performance related SLA of a tenant is violated. We

use percentile query response time, which is discussed in detail in Section 2.3.2 of this

chapter, as the measurement in the performance related SLA. AutoClustC first forecasts

the costs for resource provisioning and database partitioning, then selects the lower cost

method to tune the database. If database partitioning is chosen, a partitioning algorithm

based on AutoClust [20] is run to partition the corresponding tenant’s database, and

distribute the resulting partitions to proper PM in the same data center. Sometimes, such

PM is called standby PM since the database instance on this PM is not the master database

instance. The number of PMs that can be used to work as the standby PMs is defined in

the tenants’ SLAs. In our experiments, we perform two round tests. In the first round, we

conduct experiments to test the accuracy of each prediction model in our algorithm, and

then conduct experiments to test the performance of the resulting partitions if database

85

partitioning is selected as the tuning method on the master database instance without

running the partition distribution process. In the second round test, we assume database

partitioning is selected, and directly conduct experiments to test the performance of the

resulting partitions performance when running the partition distribution process.

 The first round experiments are done on an AMAZON RDS cloud [6] with the

database instance class of db.m1.medium and database engine of SQL Server SE

11.00.5058.0.v1. The second round experiments are done in a virtual environment based

on three physical servers, PM1, PM2 and PM3. PM1 and PM3 are Dell PowerEdge R510

servers with Intel Xeon CPU E5645@2.4 GHz and 16 GB RAM. PM2 is a Dell

PowerEdge 2900 server with Intel Xeon CPU E4310@1.6 GHz and 8 GB RAM. All

machines run Microsoft SQL Server 2008 edition. The experiment program is coded in

Java and tcl script. The TPC-H [88] database is used as our dataset. The TPC-H queries

are used as the query set. Totally there are 8 database tables: ORDERS, SUPPLIER,

LINEITEM, PARTSUPP, CUSTOMER, PART, NATION and REGION, and 22 query

types in the TPC-H benchmark.

 In order to train the ANN, the following training data set as shown in Table 8 is used.

Table 8. Sample dataset used for ANN training

ID Database size (MB) # query types # users # attributes CPU time (cycles)

1 42.6 8 12 16 1.88

2 42.6 15 12 16 5.77

3 145.5 8 12 16 4.19

4 145.5 15 12 16 13.13

5 267 22 8 16 29.7

6 317 8 12 16 8.19

7 237.5 15 8 16 26.84

8 237.5 22 8 16 38.6

9 395 22 12 16 44.91

10 571.4 15 8 16 35.24

86

2.2. Competitive algorithms

 We compare SLA-LRU with two existing algorithms that we have reviewed in Chapter

II: LRU-2 [24] and MT-LRU [30]. We restate the keys ideas of these two algorithms

here for ease of reference.

 LRU-2 keeps tracking two lists: the referenced page list and the buffer page list. A

page will be added to the referenced page list when it is referenced for the first time, and

this page’s reference time is increased by 1. When this page is referenced again its

reference time becomes 2, i.e. the page has been referenced two times, it will be moved

to the buffer page list, which is ranked based on the pages’ timestamps in a decreasing

order (the oldest page is at the top of the list). When a page replacement occurs in the

memory buffer, the page with the oldest timestamp in the buffered page list will be

removed from the buffer and the buffer page list.

 MT-LRU focuses on a multi-tenancy environment. This technique considers the buffer

page hit ratio degradation (HRD) as the metric in different tenants’ SLAs in order to

manage the buffer memory. According to the description in [30], when a query accesses

a memory buffer page, if it is found in the buffer pool, this access is referred as a hit;

otherwise this access is a miss. The Hit Ratio (HR) is defined as: 𝐻𝑅 =
ℎ

𝑁
, where N is the

total number of page accessed and h is the number of page accesses found in the buffer

pool. Then 𝐻𝑅𝐷 = max⁡{0, 𝐻𝑅𝐵 − 𝐻𝑅𝐴}, where 𝐻𝑅𝐵 is the hit ratio when the promised

memory buffer is statically reserved for the tenant; 𝐻𝑅𝐴 is the hit ratio when memory

buffer is dynamically shared by multiple tenants. When MT-LRU releases memory buffer

pages from buffer pool, besides the reference times and timestamp of buffer pages, it also

87

consider the HRD for each buffer page, hence the SLAs of different tenants are

considered.

2.3. Performance metrics

 In this section we present the performance metrics for our SLA-LRU and AutoClustC

algorithms, respectively.

2.3.1. Performance metrics for SLA-LRU

We measure the performance of the SLA-LRU algorithm based on two performance

metrics: (1) the average query response time of processing one TPC-H query set, and (2)

the SLA violation penalty cost improvement ratio.

 Average query response time of processing one TPC-H query set:

In the TPC-H benchmark query set, there are 22 query types. A different query type

has different complexity. Some query types may not contain any nested query, while

some query types may contain several nested queries. So for those 22 query types, they

have different query response time. A query of a simple query type may take less than 1

second to be processed, while a query of a complex query type may take more than 10

seconds to be processed. That is why we use the average query response time of

processing one TPC-H query set, instead of one TPC-H query, as our performance metric.

We run the TPC-H benchmark query set 10 times and calculate the total query response

time. Then we use the total query response time to compute the average benchmark query

set processing time which is the average time to finish processing one TPC-H benchmark

query set.

88

 SLA violation penalty cost improvement ratio:

 Once we know the average query response time of processing one TPC-H benchmark

query set for two algorithms that we want to compare against each other, we also want to

know how much better one algorithm works compared to the other algorithm in terms of

the SLA violation penalty cost. We can use the SLA violation penalty cost improvement

ratio metric to measure the improvement. The SLA violation penalty cost improvement

of an algorithm A over an algorithm B is calculated using the formula,

100%.(𝑆𝐿𝐴𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝐵−𝑆𝐿𝐴𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝐴)

𝑆𝐿𝐴𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝐵
 where SLAPenaltyCostB is the SLA violation

penalty cost after running a query set when algorithm B is used as the memory buffer

page replacement algorithm and SLAPenaltyCostA is the SLA violation penalty cost after

running the same query set when algorithm A is used as the memory buffer page

replacement algorithm. If the result is bigger than zero, then we say that algorithm A can

reduce the SLA violation penalty cost for the service provider compared to algorithm B,

i.e., algorithm A performs better than algorithm B in terms of SLA violation penalty cost.

2.3.2. Performance metrics for AutoClustC

 For the first round experiment, we measure the performance of the AutoClustC

algorithm based on three performance metrics: (1) the prediction accuracy of the AR(2)

and ANN models, (2) the monetary cost ratio of resource provisioning to database

partitioning, and (3) the query response time of the resulting partitions when applied

database partitioning to repartition the database for performance tuning.

 Prediction accuracy of the AR(2) and ANN models:

 When the AR(2) model is used for estimating the CPU time for resource provisioning,

according to the discussion in Section 1.2 of Chapter IV, we know the estimated CPU

89

utilization can be represented by the sum of the prediction value and prediction error. So

the error ratio of using the AR(2) model to forecast the resource provisioning cost can be

calculated as
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑒𝑟𝑟𝑜𝑟

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑒𝑟𝑟𝑜𝑟+𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑣𝑎𝑙𝑢𝑒
.

 When the ANN model is used for estimating the CPU time for database partitioning,

we need to train the ANN model in order to use this model to do prediction. For each

iteration of the training process, we have an error ratio which represents the difference

between the predicted value and the real value. We use the Mean Square Error (MSE) of

all iteration errors to calculate the final accuracy of the ANN model.

 Ratio of monetary cost of resource provisioning to monetary cost of database

partitioning:

 In order to see which tuning method, resource provisioning or database partitioning,

is the better cost saving method, , we can calculate the ratio the monetary cost of resource

provisioning to the monetary cost of database partitioning as

𝐶(𝐶𝑃𝑈𝐶𝑜𝑠𝑡𝑂𝑓𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑔)

𝐶(𝐶𝑃𝑈𝐶𝑜𝑠𝑡𝑂𝑓𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔)
, where C is a function that computes the monetary cost

given the CPU cost. Generally, DbaaS providers define the C function by themselves

when they started to provide any services. In our experiment, we use a linear C function.

 Query response time of new resulting partitions:

 When database partitioning is selected as the method to tune the database performance,

some new partitions will be generated. In order to measure how well the new partitions

perform, we can calculate the percentile query response time for each query type. The

percentile query response time of a particular query type is defined as the 95th percentile

query response time of all queries which belong to the same query type.

90

 For the second round experiment, we measure the performance of the AutoClustC

algorithm based on the following performance metrics: query response time improvement

of processing the whole TPC-H query benchmark using partition distribution over

processing it without using partition distribution.

 Query response time improvement of processing the whole TPC-H query

benchmark with partition distribution over the query response time without

partition distribution:

 The main reason of distributing partitions to other standby machines is that the

workload can be split by different database instances when the master database instance

is heavily overloaded. By implementing the partition distribution process, the probability

of performance SLA violation can be reduced. In order to measure how the distribution

of the new partitions perform, we can calculate the query response time improvement,

which is the ratio of the time difference between the time of processing the whole TPC-

H benchmark query set without partition distribution and the time of processing the same

query set with partition distribution over the time without partition distribution. It is

computed as
𝑇𝑖𝑚𝑒𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛−𝑇𝑖𝑚𝑒𝑊𝑖𝑡ℎ𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
, where TimeWithDistribution

represents the overall query response time of processing the whole TPC-H benchmark

query set with partition distribution and TimeWithoutDistribution represents the overall

query response time of processing the whole TPC-H benchmark query set without

partition distribution.

91

2.4. Experimental results

 In this section we show the experimental results of the SLA-LRU algorithm in the first

subsection, and the experimental results of the AutoClustC algorithm in the second

subsection.

2.4.1. Experimental results for SLA-LRU

 In this subsection, we compare LRU-2, MT-LRU and SLA-LRU in terms of query

response time and SLA penalty cost.

2.4.1.1. Comparison of query response time of LRU-2, MT-LRU and SLA-LRU

 As we discussed in Section 5 of Chapter III, the increase of the scanning time on the

buffer page list is the main overhead of SLA-LRU, and the additional operation of saving

a hit or miss of a buffer page access for each buffer read request is the main overhead of

MT-LRU. From Figure 15 we can see that the average query response time from

processing the whole benchmark query set using LRU-2 is a little bit less than that when

using SLA-LRU, but much less than that when using MT-LRU. The reason is that, for

MT-LRU, each buffer page access request has to be analyzed so that the algorithm can

know whether this access is a hit or miss, and this result has to be saved in memory. When

there is no free space in the buffer pool, MT-LRU has to scan the corresponding memory

in order to know the hit ratio degradation for each tenant. Since the number of buffer page

requests is large, especially when the number of tenants is big, the memory scanning

process will take a long time to be done.

 From Figure 15 we can see the maximum difference between LRU-2 and SLA-LRU

occurs when the number of tenants equals to 10. When there are 10 tenants on one

instance, the average benchmark processing time using LRU-2 is 329 seconds and the

92

average benchmark processing time using SLA-LRU is 341 seconds. We can see that

SLA-LRU is slower than LRU-2 by (341-329)/329=3.6%, i.e., on average, using SLA-

LRU to process a query will take (329×3.6%)/22=0.54 second more than that of using

LRU-2 averagely. If we compare the query response time between MT-LRU and SLA-

LRU, we will see that averagely MT-LRU has to spend around 58 seconds more to

process the whole benchmark query set. Also we can see that the average benchmark

processing time increases when the number of tenants increases. More tenants means

more workloads, and the queries have to be queued for the processor to process them.

This is why the average benchmark processing time increases when the number of tenants

increases.

Figure 15. Average TPC-H benchmark query set processing time

2.4.1.2. Comparison of SLA penalty costs of LRU-2, MT-LRU and SLA-LRU

 We measure the SLA penalty cost incurred by the LRU-2, MT-LRU and SLA-LRU

algorithms when the buffer pool is shared by multiple tenants. In this test, for SLA-LRU

we use the penalty cost function presented in Table 6; and for MT-LRU we use the penalty

cost function shown in Table 7. We randomly assign different tenants to different tenants’

93

categories which are defined in Table 5. We use 8 tenants as an example to illustrate how

to measure the penalty cost. The tenants’ categories used in the example are shown in

Table 9. We first compare SLA-LRU with LRU-2, and then compare MT-LRU with

LRU-2.

Table 9. Eight tenants' categories

Tenant ID Tenant categories Promised buffer pool level

1 Small 10%

2 Medium 20%

3 Medium 20%

4 Small 10%

5 Micro 5%

6 Micro 5%

7 Micro 5%

8 Large 40%

 Comparison between LRU-2and SLA-LRU:

 The actual buffer pool levels assigned to each tenant before performing any buffer

management algorithm and after performing LRU-2 and SLA-LRU are shown in the

columns labelled “Preload,” “LRU-2,” and “SLA-LRU,” respectively in Figure 16. The

SLA penalty cost is computed based on the buffer assignment status after using each

algorithm. For example, from Table 9 we know that tenants 5, 6 and 7 are micro tenants;

tenants 1 and 4 are small tenants; tenants 2 and 3 are medium tenants; and tenant 8 is a

large tenant. So the promised buffer pool level for each tenant is shown in Table 10.

94

Figure 16. Buffer assignment status (actual buffer pool level) before performing

any buffer management algorithm and after performing LRU-2 and SLA-LRU

Table 10. Promised buffer pool level for each tenant for SLA-LRU

Tenant ID 5 6 7 4 1 2 3 8

p / total buffer size 5% 5% 5% 10% 10% 20% 20% 40%

 Before running any page replacement algorithm (preload status), from Figure 16 we

can see that the actual buffer pool level for each tenant is shown in Table 11.

Table 11. Actual buffer pool level for each tenant before running algorithms

Tenant ID 5 6 7 4 1 2 3 8

Actual buffer utilization / total buffer

size
2% 3% 4% 38% 6% 6% 29% 1%

Actual buffer utilization / p 40% 60% 80% 380% 60% 30% 145% <1%

 After running the LRU-2 algorithm, from Figure 16 we can see that the new actual

buffer pool level for each tenant is shown in Table 12.

95

Table 12. Actual buffer pool level for each tenant after running LRU-2

Tenant ID 5 6 7 4 1 2 3 8

Actual buffer utilization / total buffer

size
1.5% 1.5% 1.5% 15% <1% 1% 20% 50%

Actual buffer utilization / p 30% 30% 30% 150% 4% 5% 100% 125%

 Using the data given in Table 6 and Table 12, we can calculate the penalty cost for

each tenant. For example, for tenant 1 (Small tenant), from Table 12 we can see the actual

buffer pool level is 4% of p. Based on Table 6, when the actual buffer level range is [0%,

5%], for a Small tenant the SLA penalty cost is 8c. Similarly we can derive the penalty

costs for the rest of the tenants which are shown in Table 13.

Table 13. Penalty cost for each tenant after running LRU-2

Tenant ID 5 6 7 4 1 2 3 8

Penalty cost c c c 0 8c 16c 0 0

 So after using the LRU-2 algorithm, the SLA penalty cost is c + c + c + 0 + 8c +

16c + 0 + 0 = 27c⁡. Similarly, the SLA penalty cost after running SLA-LRU can be

computed as c + c + c + 0 + 8c + 8c + 0 + 0 = 19c . We can see that the major

difference of memory buffer reassignment between the two algorithms occurs on tenant

2 and tenant 4. Tenant 2 is a medium class tenant, and tenant 4 is a small class tenant.

The SLA-LRU algorithm analyzes the “values” of the two tenants, which are the SLA

violation penalty costs, and decide to free more buffer pages of tenant 4 instead of tenant

2. By doing this the SLA penalty cost could be reduced by (27c − 19c)/27c = 30%

according to the penalty function used in Table 6.

 The performance of SLA-LRU over LRU-2 based on the penalty cost ratio for

different numbers of tenants is shown in Figure 17, where we can see that the service

96

provider could reduce the penalty cost when using the SLA-LRU algorithm to manage

the buffer pool for most cases. From Figure 17, we conclude that the average SLA

violation penalty cost improvement of using SLA-LRU over LRU-2 is about

(1−1)+(1.3−1)+(1.2−1)+(1.51−1)+(1.42−1)

5
≈ 29%. Also we can see that when there are

more than two tenants, SLA-LRU generally can provide good penalty cost savings. But

the performance of LRU-2 and SLA-LRU looks similar when there are only two tenants

(the penalty cost ratio is 1 in Figure 17). The reasons for the similar performance could

be the following: 1) the buffer pool is big enough to hold two tenants’ databases; and 2)

the incoming queries of tenants do not fluctuate too much, i.e., few buffer page

replacements are needed to process all queries.

Figure 17. SLA penalty cost ratio of using LRU-2 over using SLA-LRU

 Comparison between LRU-2 and MT-LRU:

 For MT-LRU, the SLA penalty cost function is shown in Table 7 of Subsection 2.1.1.

We assume there are two categories of tenants as shown in Table 7. Tenants belonging to

category II are more important than those tenants belonging to category I. So the penalty

cost for category II tenants is higher.

97

 The performance of MT-LRU over LRU-2 based on the penalty cost ratio for

different numbers of tenants is shown in Figure 18, where we can see that the service

provider can reduce the penalty cost when using the MT-LRU algorithm to manage the

buffer pool for most cases. The average penalty cost improvement is about

(1−1)+(1.1−1)+(1.7−1)+(2.5−1)+(2.3−1)

5
≈ 72%. If the query response time can be

ignored, MT-LRU can save more money than SLA-LRU for service providers. However,

from Figure 15 we can see that MT-LRU cannot guarantee a fast query response time

compared to LRU-2 and SLA-LRU, i.e., it sacrifices query response time too much in

order to maintain a low SLA penalty cost.

Figure 18. SLA penalty cost ratio of using LRU-2 over using MT-LRU

 We can conclude the performance of SLA-LRU and MT-LRU compared to LRU-2 in

Table 14 using the average query response time results shown in Figure 15 and the

average penalty cost improvements that we have calculated from Figures 17 and 18. From

Table 14 we can see that MT-LRU gives the best SLA violation penalty cost but the worst

query response time; and SLA-LRU and LRU-2 have compatible query response time,

but SLA-LRU has much better SLA violation penalty cost than LRU-2 does. Overall,

SLA-LRU gives the best performance considering both metrics together.

98

Table 14. Overall performance of SLA-LRU and MT-LRU

 SLA-LRU MT-LRU

Average penalty cost improvement over LRU-2 29% 72%

Averagely query response time increase over LRU-2 3.6% 21.3%

2.4.2. Experimental results for AutoClustC

 In this subsection, we first present our experiments results for the first round test: the

performance of the ANN model for database partitioning cost forecasting, the

performance of the AR(2) model for resource provisioning cost forecasting, the monetary

cost ratio of resource provisioning cost to database partitioning cost, and the performance

of the new resulting partitions. Secondly, we present our experiments results for the

second round test: performance improvement of using partition distribution.

2.4.2.1. Performance of the ANN Model for Database Partitioning Cost

Forecasting

 The training dataset of the ANN model is from the monitor system called Cloud Watch

Service provided by Amazon RDS. 20% of the dataset is used as the validation set and

20% of the data set is used as the test set. The performance measured in MSE is shown

in Figure 19. From this figure we can see that the best performance MSE is about 2.12

happened at 720 epochs, which is a measure of the number of times all of the training

vectors are used once to update the weights. If more epochs are performed, the network

will be over trained since the MSE of validation increases after 720 epochs. Then the

linear regression graph is shown in Figure 20. If the training were perfect, the outputs of

the network would be exactly equal to the targets of the network, i.e. the dash line and

color line in the graph should be 100% overlapped (R=1); but the relationship is rarely

99

perfect in practice. From Figure 20 we can see that the training, validation and test are all

fitting the network targets well.

Figure 19. ANN performance on forecasting database partitioning CPU time

Figure 20. Linear regression of the network on forecasting the database

partitioning CPU time

100

2.4.2.2. Performance of the AR(2) model for Resource Provisioning Cost

Forecasting

 As discussed in Section 1.2 of Chapter IV, the accuracy of the cost forecasting for

resource provisioning is the accuracy of estimating the prediction error whose probability

distribution follows a normal distribution with zero mean. Figure 21 shows the probability

distribution of the prediction error. We can see that 95% of the prediction errors range

from -0.015 to 0.015. Comparing with the statistic mean of the historical data, which is

0.31, the error rate of forecasting is about
0.015

0.015+0.31
= 4.6%.

Figure 21. Probability distribution of prediction error in resource provisioning

CPU time forecasting

2.4.2.3. Ratio of monetary Cost of Resource Provisioning Cost to Monetary

Cost of Database Partitioning

 Typically, after resource provisioning, the new assigned resources on the VM may

take up to serval minutes for the acquired VM to be ready to use. This time is dependent

101

on the image size (the size of the data mounted from a PM to a VM), VM type, data center

location, etc. [90]. So the new assigned resources will not be released in minutes. We

assume the dynamic provisioned resources will be kept at least for 30 minutes, which is

also the time interval of two sample neighbor data points as discussed in Section 1.2 of

Chapter IV. From Section 2.4.2.1 of this chapter, we use the training data to estimate the

CPU time cost of partitioning using the ANN model. The estimation is 42.55 CPU time

units. From the section 2.4.2.2 of this chapter we estimate the average CPU time

provisioned to VM. The estimation is 0.325 × 30 × 60 = 585⁡CPU time units. Since the

C(CPU_Demand) function is linear, the final provision monetary cost measured in dollar

will be about
C(585)

C(42.55)
≈

585

42.55
≈ 14⁡ times as the final monetary cost of database

partitioning.

2.4.2.4. Performance of the New Database Partitions

 In Section 2.4.2.3 we can conclude that the database partitioning method costs less

money than resource provisioning; so the database partitioning method will be used for

performance tuning to re-guarantee the performance SLA. In this subsection the

performance in terms of percentile query response time of the new database partitions

after the partitioning process is presented in Figure 22. We define the performance SLA

as follows: at least the 95th percentile query response time of each query type must be

within a specific time threshold, TH; otherwise the performance SLA is said to be

violated. When a performance SLA violation occurs, the partitioning process will be

triggered and the new partitions will be generated to replace the old ones. This experiment

is conducted as follows:

1. A tenant’s behavior is simulated on a cloud database.

102

2. Half number of the query types are randomly selected from the TPC-H query type

benchmark, and each type of query is executed for a random number of times (less

than 300).

3. Once all queries are successfully finished, Step 2 is repeated until the experiment

time of 5 hours is reached.

4. In Step 3 if a performance SLA violation is detected, the partitioning process is

triggered and new partitions are generated before Step 2 is repeated.

 In Figure 22, each colored line represents the percentile query response time of the

query corresponding to that color. The red dashed line represents the pre-defined

performance SLA (TH). From Figure 22 we can see that the partitioning process occurs

3 times at the three time points 1, 2, and 3, i.e., performance SLA violations occur at the

3 time points in 5 hours. At time point 1, which is at about 1,800 seconds in the experiment

time, a performance SLA violation is detected for query type 18; at time point 2, which

is at about 7,100 seconds in the experiment time, a performance SLA violation is detected

for query type 21; and at time point 3, which is at about 14,700 seconds in the experiment

time, a performance SLA violation is detected for query types 9, 12 and 19. The

performance SLA violations are caused by query pattern changes since the query set

running on the cloud database is randomly changed in Step 2. If the time threshold TH is

defined as 7 seconds then from this figure, we can see that the performance SLA is re-

guaranteed again after the partitioning process is completed (shown as the colored line

falling below the red dashed line again after the partitioning process is completed). Figure

22 also can give a general idea to the service providers of what performance SLA should

be made between them and their customers. If the customers are asking for a better

103

response time, like 5 seconds for example, then from Figure 22, the providers can know

that such performance SLA is really hard to guarantee if they still use the current VM

configuration. In that case, they can provide better computing resources to the customers

by charging a service upgrade fee. So our algorithm can also help the providers make a

profitable decision on deriving a correct performance SLA.

Figure 22. Query response time of 95th percentile of query for different query

types before and after database partitioning

2.4.2.5. Query response time improvement of processing the whole TPC-H

benchmark query set with partition distribution over the query

response time without partition distribution

The database partitioning algorithm in AutoClustC is based on AutoClust, so before

we conduct experiments we need to set up some parameters used by the database

partitioning algorithm. The parameter setup needs to be done only once. We use the

104

same parameters of our partitioning algorithm which is published in [91]. The following

Table 15 shows all parameters with their values.

Table 15. Parameters used by the database partitioning algorithm in AutoClustC

Name Meaning Default Value

𝑟 Physical read ratio threshold of a query 20%

𝑓𝑛 The threshold of the percentage of queries that

satisfies r

40%

𝑓𝑡 Query frequency threshold: a query must occur at

least ft percent in the whole query set

0

𝑐𝛼 Confidence interval 1%

𝛼 Confidence level 95%

In order to test how the distributed partitions on the standby PM improve the whole

system performance, we construct virtual environments on three PMs, PM1, PM2 and

PM3, as described in section 2.1.2. In PM1 we create 5 VMs each with 2 GB RAM and

Xeon E5645@2.4 GHz CPU. In PM2 we create 4 VMs each with 1 GB RAM and Xeon

E5310@1.6 GHz CPU. In PM3 we create 3 VMs each with 2 GB RAM and Xeon

E5645@2.4 GHz CPU. When we simulate the environment of a data center, we use the

VM created on PM1, PM2 or PM3 to represent the real PM in a real data center. If we

use PM* to represent the VM in our experiment, then there are totally 12 PM* (5 PM*

on PM1, 4 PM* on PM2 and 3 PM* on PM3) as shown in Table 16. We measure the

communication delay of each physical server pair and the result is shown in Table 17.

From Table 17 we can see that the communication delay is less than 1 millisecond since

all three physical servers are located in the same room and connected by a high speed

Ethernet. We also know the query response time for each query type of TPC-H

benchmark ranges from 1 second to 15 seconds when those queries run on our physical

server. So the scaler, 𝜌, used in out experiment can be set to 1/1000. Such small scaler

105

means the communication delay almost has no impact on the selection of a proper PM.

This is because according to the formula, 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑠𝑐𝑜𝑟𝑒_𝑃𝑀𝐺𝑘 × (1 +

𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘 × 𝜌), which is used to compute the overall weighted overload score, we

know 1 +
𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘

1000
≈ 1 since 𝑉𝑒𝑐𝑁𝐼𝐶𝐶𝐷𝑘 cannot be bigger than 1.

When we perform our experiments, for each PM* we run 10-15 tenants (the number

of tenants is randomly generated).

Table 16. Specifications of the virtual environment

PM # VM (PM*) # Spec.

PM1

VM1 (PM1*)

2 GB RAM and Xeon E5645@2.4 GHz CPU

VM2 (PM2*)

VM3 (PM3*)

VM4 (PM4*)

VM5 (PM5*)

PM2

VM6 (PM6*)

1 GB RAM and Xeon E5310@1.6 GHz CPU
VM7 (PM7*)

VM8 (PM8*)

VM9 (PM9*)

PM3

VM10 (PM10*)

2 GB RAM and Xeon E5645@2.4 GHz CPU VM11 (PM11*)

VM12 (PM12*)

Table 17. Communication delay for each server pair

 PM1 PM2 PM3

PM1 0 0.704 millisecond 0.306 millisecond

PM2 0.704 millisecond 0 0.281 millisecond

PM3 0.306 millisecond 0.281 millisecond 0

We set the tested master database instance in a PM1*, and the other PM*s can work as

the standby PM*s which may be used to distribute partitions to. The tenants on PM1* are

querying their database instances with a time interval of 500-1000 milliseconds (time

interval is randomly generated for each tenant). If the database instances occupies more

than 75% of the CPU of the PM1*, we say PM1* is overloaded and the SLAs of the tenants

106

on PM1* may be violated due to the heavy workload. If such case occurs the

corresponding standby PM*, which has the distributed partitions for the master database

instance, has to be used in order to split the workload until the CPU utilization ratio falls

below 75% of the CPU of the PM1*. We read the CPU utilization every 10 seconds from

the system and the performance of the whole system is shown in Figure 23.

Figure 23. CPU utilization ratio of PM1*

From Figure 23 we can see the overall CPU utilization is increasing when more tenants

are querying their database instances. At 90 seconds, the CPU utilization on PM1* is

about 81%, which is above the 75% threshold. From this time on, there exists a high risk

for all tenants such that the SLA might be violated under the heavy workload. So the

distributed partitions of the tested database instance on the standby PM* start to be used

to process the workload. That is why the CPU utilization is falling down after 90 seconds.

The risk of SLA violation for all tenants on PM1* will be reduced. In Figure 24 we can

see how the overloaded PM1* performs comparing to an un-overloaded PM1*.

107

Figure 24. Average time of processing one TPC-H benchmark query set under the

overloaded and un-overloaded status

From Figure 24 we can see when CPU is overloaded (at the 90th second in Figure 23),

the CPU utilization is about 81%, and the average time of processing one TPC-H

benchmark query set is 55 seconds. When CPU is un-overloaded (at the 110th second in

Figure 23), i.e., the database instance on a standby PM* is involved to help the master

database instance process the workload, the average time of processing one TPC-H

benchmark query set is 46 seconds. So the time improvement is
55−46

55
= 16.4%. This can

reduce the SLA violation for all tenants on the PM1*.

108

Chapter VI Conclusions and Future Work

 In this research we have proposed a memory buffer management algorithm for cloud

database, SLA-LRU, and a performance tuning algorithm for cloud database,

AutoClustC.

 The first algorithm, SLA-LRU, takes SLA into account and considers memory buffer

page’s frequency, buffer page’s recency, and buffer page’s value which is the cost of

remove a page from the buffer pool, in order to perform buffer page replacement. SLA-

LRU first will check whether the memory buffer pool is full or not. If there is no free

space in the memory buffer pool, SLA-LRU then computes the SLA penalty change trend

for each tenant using the pre-defined SLA penalty cost function for each tenant. After

SLA-LRU identifies the tenant who has the lowest SLA penalty cost increment, the

algorithm will free the corresponding tenant’s memory buffer pages using a moving

forward scanning method, which doubles the scanning length on the buffer page list for

each iteration until the whole buffer page list is scanned or enough memory buffer pages

have been freed.

 The second algorithm, AutoClustC, is designed for dynamically tuning the cloud

database when an SLA violation occurs by considering both resource provisioning tuning

method and database partitioning tuning method. It uses an AR(2) and an ANN model l

to estimate the tuning cost for database partitioning and resource provisioning

respectively. Then the tuning method with the lower cost will be selected to tune the

database in order to re-guarantee the performance related SLA. If database partitioning is

selected, a database partitioning algorithm based on AutoClust is used to partition the

database tables. Then the AutoClustC algorithm will distribute the resulting partitions to

109

the proper PM located in the same data center by considering the overall weighted

overload score for each PM group and the selection probability of each PM in the selected

PM group. The PM that has the highest selection probability in the PM group that has

the least overload score is chosen to be the proper PM for partition distribution.

We have analyzed the worst-case time and space complexity of the two proposed

algorithms. The time complexity of SLA-LRU is impacted by the number of entries in

the buffer page list (𝑛𝑏) and the space complexity of SLA-LRU is impacted by the

number of tenants (𝑛𝑡). The time complexity of AutoClustC is impacted by the number

of entries in the historical CPU utilization data set (𝑛𝑐), the number of records of the

training data set for ANN (𝑛𝑡𝑟), the number of training iterations for ANN (𝑛𝑡𝑖), the

number of PM groups in the data center (𝑛𝑃𝑀𝐺) and the maximum number of PMs in

one PM group (𝑚𝑃𝑀). The space complexity of AutoClustC is also impacted by the

number of entries in the historical CPU utilization data set (𝑛𝑐), the number of records of

the training data set for ANN (𝑛𝑡𝑟), the number of training iterations for ANN (𝑛𝑡𝑖), the

number of PM groups in the data center (𝑛𝑃𝑀𝐺) and the maximum number of PMs in

one PM group (𝑚𝑃𝑀).

We have also performed extensive experiments in order to study the performance of

SLA-LRU and AutoClustC using the TPC-H benchmark. We have compared our SLA-

LRU algorithm with two existing buffer management algorithms, LRU-2 and MT-LRU,

in terms of query response time and the penalty cost improvement ratio. We have studied

our AutoClustC algorithm by computing the prediction accuracy of the ANN model and

the AR(2) model and comparing the performance of the new database partition results on

the cloud database after a database repartitioning takes place with and without using

110

partition distribution. A summary of our theoretical and experimental performance

evaluation results is presented in the following sections.

1. Summary of Performance Evaluation Results

1.1. Summary of the performance results for SLA-LRU

 SLA-LRU is a cloud database buffer pool management algorithm based on the classic

LRU-2 algorithm but takes SLA into consideration. It requires user-defined parameter,

percentile of the buffer page list for the first scanning process (α), and a pre-defined SLA

penalty cost function (fi(x)) for each tenant i. In the dissertation we used 0.1 as the default

value for α. By changing this value people can decide the scanning speed on the memory

buffer page list. Below we summarize the results we have obtained so far for SLA-LRU.

1. SLA-LRU has a time complexity of O(𝑛𝑏), and a space complexity of O(𝑛𝑡),

where 𝑛𝑏 is the number of entries in the buffer page list and 𝑛𝑡 is the number of

tenants.

2. SLA-LRU can provide almost the same query response time as that of LRU-2

algorithm, and much better query response time compared to MT-LRU.

3. Both SLA-LRU and MT-LRU can significantly reduce the SLA penalty cost

compared to LRU-2, and MT-LRU has a better penalty cost improvement ratio

than that of SLA-LRU.

4. The overall performance of SLA-LRU by considering both query response time

and SLA penalty cost improvement ratio is better than that of LRU-2 and MT-

LRU.

111

1.2. Summary of performance results for AutoClustC

 AutoClustC is a dynamic cloud database tuning algorithm based on the partitioning

algorithm, AutoClust. So it requires the user-defined parameters used in AutoClust: 1)

physical read ratio threshold of a query (r) (by changing this value, people can decide

whether a query is a physical read mainly query or a logical read mainly query), 2) query

frequency threshold (ft) (by changing this value people can decide what queries are outlier

queries), 3) confidence interval (a), and 4) confidence level (ca) (by changing these two

values a and ca, people can decide how many queries have to be collected so that there

are enough physical read mainly queries for re-partitioning). Besides the 4 parameters

listed above, AutoClustC also needs one more user-defined parameter, time interval for

the future CPU utilization forecasting (t), and five more system parameters, size of

database (S), maximum number of attributes (NA), number of query types (NQ), number

of users (NU), and the historical CPU utilization data (U). If the algorithm is run for the

first time, a training data set for the ANN model has to be provided. Below we summarize

the results we have obtained for AutoClustC.

1. AutoClustC has a time complexity of O(𝑛𝑐) + O(𝑛𝑡𝑟𝑛𝑡𝑖) + O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) +

O(𝑛𝑃𝑀𝐺
2), and a space complexity of O(𝑛𝑐) + O(𝑛𝑡𝑟) + O(𝑛𝑃𝑀𝐺𝑚𝑃𝑀) + O(𝑛𝑃𝑀𝐺

2),

where 𝑛𝑐 is the number of entries in the historical CPU utilization data set; 𝑛𝑡𝑟 is

the number of records of the training data set for ANN; 𝑛𝑡𝑖 is the number of

training iterations for ANN; 𝑛𝑃𝑀𝐺 is the number of PM groups in the data center;

and 𝑚𝑃𝑀 is the maximum number of PMs in one PM group.

2. AutoClustC is able to dynamically tune the cloud database when performance

SLA is violated.

112

3. AutoClustC has high accuracy when it forecasts the costs for resource

provisioning tuning method and database partitioning tuning method.

4. If the master database instance is the only database instance in the data center and

database partitioning is selected as the tuning method, the new resulting partitions

can provide better performance which is measured in 95th percentile query

response time for each query type.

5. If a standby database instance is used and database partitioning is selected as the

tuning method, the new resulting partitions distributed to the standby database

instance can significantly reduce the chance of SLA violation by splitting the high

volume workload on the master database instance.

2. Future Research

For future work, we plan to perform the following tasks in order to improve the

weaknesses of our proposed algorithms in this dissertation.

Testing non-linear SLA penalty cost functions for SLA-LRU

For SLA-LRU, the SLA penalty cost function used in the algorithm is a step based

function. We have not tested any non-linear penalty cost function for our algorithm. In

the future research, we will use different non-linear functions as the SLA penalty cost

functions and perform experiments using the new functions.

Dealing with dirty buffer pages for SLA-LRU

In the current SLA-LRU algorithm we did not address the issue of how to handle dirty

buffer pages. If the buffer page is a dirty page we cannot simply remove the page from

the buffer pool since the data in this buffer page may not be written back to disk yet. In

the future research, we will conduct some research and improve the SLA-LRU algorithm

113

so that the advanced version of SLA-LRU can perform correct actions when doing page

replacement on dirty buffer pages.

Dynamically adjusting the scanning length for SLA-LRU

In the current SLA-LRU algorithm, the most recent scanning length on the buffer page

list is two times of the length of the previous scanning iteration, until the a full scan occurs

on the buffer page list. One problem of such scanning method is that it has no ability to

adjust buffer page releasing speed. In the future research we would like to adjust the

buffer page releasing speed by dynamically changing the value of 𝛼 , which is the

percentile position used to separate least recent used buffer pages and most recent used

buffer pages. The actual value of 𝛼 can be determined by the ratio of the number of buffer

pages that have been released over the number of buffer pages that are needed.

Dynamically adjusting the scanning length would help SLA-LRU find enough buffer

pages faster.

Testing more CPU utilization patterns for AutoClustC

For AutoClustC, the CPU utilization pattern used in the algorithm has to match some

assumptions. In reality, the CPU utilization may fluctuate and not follow our assumptions,

and this could cause low prediction accuracy when using our prediction algorithm. In the

future research, we would like to consider more CPU utilization patterns, combine static

provisioning and dynamic provisioning together, and use different statistic models to

forecast the future CPU utilization according to different CPU utilization patterns.

Distributing partitions to proper PM based on different distribution levels

The current partition distribution algorithm used in AutoClustC is a same data center

based algorithm. The standby PM which is used to distribute partitions has to be located

114

in the same data center as the PM of the master database instance. The weakness of such

distribution method is that the failure of the data center will cause the service interruption

of both master database instance and standby database instance. So we need to consider

distributing partitions based on different distribution levels. In our future research, we

will perform research on different data center distribution and different availability zone

distribution. The PMs located in different data centers or different availability zones are

100% physically isolated, so the service cannot be interrupted when one data center fails.

115

References

[1] S. Li and L. Gruenwald, "An SLA and Operation Cost Aware Performance Re-

tuning Algorithm for Cloud Databases," in IEEE 9th International Conference on

Cloud Computing, 2016.

[2] Amazon, "Amazon SimpleDB," [Online]. Available:

http://aws.amazon.com/simpledb/. [Accessed January 2017].

[3] Amazon, "Amazon DynamoDB," [Online]. Available:

http://aws.amazon.com/dynamodb/. [Accessed January 2017].

[4] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,

A. Fikes and R. Gruber, "Bigtable: A Distributed Storage System for Structured

Data," in ACM Transactions on Computer Systems, 2008.

[5] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.

Jacobsen, N. Puz, D. Weaver and R. Yerneni, "PNUTS: Yahoo!’s Hosted Data

Serving Platform," in Proceedings of Very Large Data Bases Endowment

(PVLDB), 2008.

[6] Amazon, "Amazon RDS," [Online]. Available: http://aws.amazon.com/rds/.

[Accessed January 2017].

[7] Microsoft, "Microsoft SQL Azure," [Online]. Available:

http://msdn.microsoft.com/en-us/library/windowsazure/ee336279.aspx. [Accessed

January 2017].

116

[8] Amazon, "AWS benefits," [Online]. Available:

https://aws.amazon.com/application-hosting/benefits/. [Accessed 3rd April 2017].

[9] P. Shivam, A. Demberel, P. Gunda, D. Irwin, L. Grit, A. Yumerefendi, S. Babu

and J. Chase, "Automated and On-Demand Provisioning of Virtual Machines for

Database Applications," in Proc. of SIGMOD, 2007.

[10] P. Xiong, Y. Chi, S. Zhu, J. Moon, C. Pu and H. Hacigumus, "Intelligent

Management of Virtualized Resources for Database Management Systems in

Cloud Environment," in Proc. of ICDE, 2011.

[11] D. Gmach, S. Krompass, A. Scholz, M. Wimmer and A. Kemper, "Adaptive

Quality of Service Management for Enterprise Services," in ACM Transactions,

2008.

[12] S. Tozer, T. Brecht and A. Aboulnaga, "Q-cop: Avoiding Bad Query Mixes to

Minimize Client Timeouts Under Heavy Loads," in Proc. of ICDE, 2010.

[13] S. Agrawal, V. Narasayya and B. Yang, "Integrating Vertical and Horizontal

Partitioning into Automated Physical Database Design," in ACM International

Conference on Management of Data (SIGMOD), 2004.

[14] A. Silberschatz, H. Korth and S. Sudarshan, Database System Concepts, 6th ed.,

McGraw-Hill, 2011.

[15] S. Navathe, S. Ceri, G. Wierhold and J. Dou, "Vertical Partitioning Algorithms for

Database Design," in ACM Transactions on Database Systems, 1984.

[16] W. T. McCormick, S. P.J. and W. T.W., "Problem Decomposition and Data

Reorganization by A Clustering Technique," in Operation Research, 1972.

117

[17] H. Yu, N. Powell, D. Stembridge and X. Yuan, "Cloud Computing and Security

Challenges," in ACM-SE Proceedings of the 50th Annual Southeast Regional

Conference, 2012.

[18] N. Bobroff, A. Kochut and K. Beaty, "Dynamic Placement of Virtual Machines

for Managing SLA Violations," in IFIP/IEEE International Symposium on

Integrated Network Management, 2007.

[19] D. She and J. Hellerstein, "Predictive Models for Proactive Network Management:

Application to A Production Web Server," in Proc. of the IEEE/IFIP Network

Operations and Management Symposium, 2000.

[20] S. Guinepain and L. Gruenwald, "Using Cluster Computing to Support Automatic

and Dynamic Database Clustering," in International Workshop on Automatic

Performance Tuning (IWAPT), 2008.

[21] Database.com, "Database.com," [Online]. Available: http://www.database.com.

[Accessed January 2017].

[22] Google, "Google Cloud SQL," [Online]. Available:

http://code.google.com/apis/sql. [Accessed January 2017].

[23] Oracle, "Oracle Database Cloud Service.," [Online]. Available:

http://cloud.oracle.com. [Accessed January 2017].

[24] E. J. O’neil, P. E. O’neil and G. Weikum, "The LRU-K Page Replacement

Algorithm for Database Disk Buffering," in ACM SIGMOD Record, 1993.

[25] R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger, "Evaluation Techniques for

Storage Hierarchies," in IBM Sys. J., 1970.

118

[26] H. T. Chou and D. J. DeWitt, "An Evaluation of Buffer Management Strategies

for Relational Database Systems," in Algorithmica, 1986.

[27] N. Megiddo and D. S. Modha, "Arc: A Self-Tuning, Low Overhead Replacement

Cache," in FAST, 2003.

[28] S. Bansal and D. S. Modha, "CAR: Clock with Adaptive Replacement," in FAST,

2004.

[29] U. Cesana and Z. He, "Multi-Buffer Manager: Energy-Efficient Buffer Manager

for Databases on Flash Memory," in ACM Trans. Embedded Computing Systems,

2010.

[30] V. Narasayya, I. Menache, M. Singh, F. Li, M. Syamala and S. Chaudhuri,

"Sharing Buffer Pool Memory in Multi-Tenant Relational Database-as-a-Service,"

in VLDB Endowment, 2015.

[31] Microsoft, "SQL Server Buffer Manager," [Online]. Available:

https://technet.microsoft.com/en-us/library/ms189628.aspx. [Accessed January

2017].

[32] T. Tannenbaum, K. Wright, K. Miller and M. Livny, Condor: A Distributed Job

Scheduler, Cambridge, MA: MIT Press, 2001, pp. 307-350.

[33] I. Altair Engineering, "PBS Open Source Project," [Online]. Available:

http://www.pbspro.org/. [Accessed January 2017].

[34] K. Kim, W. Wang, Y. Qi and M. Humphrey, "Empirical Evaluation of Workload

Forecasting Techniques for Predictive Cloud Resource Scaling," in IEEE

International Conference on Cloud Computing, 2016.

119

[35] T. Wood, P. J. Shenoy, A. Venkataramani and M. S. Yousif, "Black-Box and

Gray-Box Strategies for Virtual Machine Migration," in NSDI, 2007.

[36] S. Cunha, J. M. Almeida, V. Almeida and M. Santos, "Self-Adaptive Capacity

Management for Multi-Tier Virtualized Environments," in Integrated Network

Management, 2007.

[37] A. Floratou, J. M. Patel, W. Lang and A. Halverson, "When Free Is Not Really

Free: What Does It Cost to Run A Database Workload in The Cloud," in TPCTC,

2011.

[38] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant and

K. Salem, "Adaptive Control of Virtualized Resources in Utility Computing

Environments," in EuroSys, 2007.

[39] E. Cecchet, R. Singh, U. Sharma and P. J. Shenoy, "Dolly: Virtualization-Driven

Database Provisioning for The Cloud," in VEE, 2011.

[40] J. Rogers, O. Papaemmanouil and U. Çetintemel, "A Generic Auto-Provisioning

Framework for Cloud Databases," in ICDE Workshops, 2010.

[41] U. Sharma, P. J. Shenoy, S. Sahu and A. Shaikh, "A Cost-Aware Elasticity

Provisioning System for The Cloud," in ICDCS, 2011.

[42] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff and D.

Zagorodnov, "The Eucalyptus Open-Source Cloud-Computing System," in

Proceedings of 9th IEEE/ACM International Symposium om CLuster Computing

and The Grid, Shanghai, 2009.

120

[43] OpenStack, "Open Source Cloud Computing Software," [Online]. Available:

https://www.openstack.org/. [Accessed January 2017].

[44] C. S. Yeo, R. Buyya, M. Dias de Assuncao, J. Yu, A. Sulistio, S. Venugopal and

M. Placek, "Utility Computing on Global Grids," in Handbook of Computer

Networks, Hoboken, NJ: Wiley Press, 2008.

[45] J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung, A. C. Snoeren, A. Vahdat and

B. N. Chun, "Why Markets Could (But Don’t Currently) Solve Resource

Allocation Problems in Systems," in Proceedings of the 10th Workshop on Hot

Topics in Operating Systems (HotOS X), 2005.

[46] W. W. Chu and I. Ieong, "A Transaction-Based Approach to Vertical Partitioning

for Relational Database Systems," in IEEE Transactions on Software Engineering,

1993.

[47] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Rockville,

1978.

[48] S. Navathe and M. Ra, "Vertical Partitioning for Database Design: A Graph

Algorithm," in ACM SIGMOD International Conference, 1989.

[49] E. S. Abuelyaman, "An Optimized Scheme for Vertical Partitioning of a

Distributed Database," in International Journal of Computer Science and Network

Security (IJCSNS), 2008.

[50] S. Papadomanolakis, D. Dash and A. Ailamaki, "Efficient Use of the Query

Optimizer for Automated Physical Design," in Proceedings of the 33rd VLDB

International Conference, 2007.

121

[51] J. Rao, C. Zhang, N. Megiddo and G. M. Lohman, "Automating Physical

Database Design in a Parallel Database," in SIGMOD, 2002.

[52] N. Pasquier, Y. Bastidem, R. Taouil and L. Lakhal, "Efficient Mining of

Association Rules Using Closed Item set Lattices," in Information Systems, 1999.

[53] L. Rodriguez, X. Li, D. A. Cuevas-Rasgado and F. Garcia-Lamont, "DYVEP: An

Active Database System with Vertical Partitioning Functionality," in Networking,

Sensing and Control (ICNSC) of 10th IEEE International Conference, 2013.

[54] A. Jindal and J. Dittrich, "Relax and Let the Database do the Partitioning Online,"

in Business Intelligence for Real Time Enterprise (BIRTE), 2011.

[55] S. Pukdesree, V. Lacharoj and P. Sirisang, "Performance Evaluation of

Distributed Database on PC Cluster Computers," in World Congress on

Engineering and Computer Science (WCECS), 2010.

[56] S. Das, D. Agrawal and A. E. Abbadi, "ElasTraS: An Elastic Transactional Data

Store in The Cloud," in USENIX Hot Cloud, 2009.

[57] C. Garcia-Alvarado, V. Raghavan, S. Narayanan and F. M. Waas, "Automatic

Data Placement in MPP Databases," in Data Engineering Workshops (ICDEW) of

IEEE 7th International Conference on Self Managing Database Systems (SMDB),

2012.

[58] R. Amossen, "Vertical Partitioning of Relational OLTP Databases Using Integer

Programming," in Data Engineering Workshops (ICDEW) of IEEE 5th

International Conference on Self Managing Database Systems (SMDB), 2010.

122

[59] M. Goli and S. M. TaghiRouhaniRankoohi, "A New Vertical Fragmentation

Algorithm Based on Ant Collective Behavior in Distributed Database System," in

Knowledge and Information Systems, 2012.

[60] J. L. Deneubourg, S. Goss, N. Franks, A. S. Franks, C. Detrain and L. Chretien,

"The Dynamics of Collective Sorting: Robot-Like Ants and Ant-Like Robots.," in

Proceedings of the First International Conference on Simulation of Adaptive

Behaviour: From Animals to Animats, 1991.

[61] M. R. Garey and D. S. Johnson, "A Guide to The Theory of NP-Completeness," in

Computers and Intractability, W.H. Freeman, 1979.

[62] C. H. Cheng, W. K. Lee and K. F. Wong, "A genetic Algorithm Based Clustering

Approach for Database Partitioning," in IEEE Transactions on System, Man and

Cybernetics, 2002.

[63] D. Campbell, G. Kakivaya and N. Ellis, "Extreme Scale with Full SQL Language

Support in Microsoft SQL Azure," in SIGMOD, 2010.

[64] P. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kakivaya, D. B. Lomet, R.

Manner, L. Novik and T. Talius, "Adapting Microsoft SQL Server for Cloud

Computing," in ICDE, 2011.

[65] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H.

Balakrishnan and N. Zeldovich, "A Database-as-a-Service for The Cloud," in The

5th Biennial Conference on Innovative Data Systems Research, 2011.

[66] C. Curino, Y. Zhang, E. P. C. Jones and S. Madden, "Schism: A Workload-Driven

Approach to Database Replication and Partitioning," in VLDB, 2010.

123

[67] L. Lim, "Elastic Data Partitioning for Cloud-based SQL Processing Systems," in

IEEE International Conference on Big Data, 2013.

[68] U. Das, D. Agrawal and A. D. Abbadi, "ElasTraS: An Elastic, Scalable, and Self-

Managing Transactional Database for The Cloud," in ACM Transactions on

Database Systems (TODS), 2013.

[69] K. A. Kumar, A. Quamar, A. Deshpande and S. Khuller, "SWORD: Workload-

Aware Data Placement and Replica Selection for Cloud Data Management

Systems," VLDB Journal, vol. 23, pp. 845-870, 2014.

[70] B. Sauer and W. Hao, "Horizontal Cloud Database Partitioning with Data Mining

Techniques," in 12th Annual IEEE Consumer Communications and Networking

Conference (CCNC), 2015.

[71] Amazon, "Amazon EC2 Purchasing Options," [Online]. Available:

https://aws.amazon.com/ec2/purchasing-options/. [Accessed July 2016].

[72] Amazon, "Amazon EC2 Instance Types," [Online]. Available:

https://aws.amazon.com/ec2/instance-types/. [Accessed July 2016].

[73] Amazon, "Amazon EC2 T2 instance," [Online]. Available:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html.

[Accessed January 2017].

[74] R. S. Shariffdeen, D. T. S. P. Munasinghe, H. S. Bhathiya, U. K. J. U. Bandara

and H. M. N. D. Bandara, "Workload and Resource Aware Proactive Auto-Scaler

for PaaS Cloud," in IEEE 9th International Conference on Cloud Computing,

2016.

124

[75] MySQL, "MySQL GitHub site," [Online]. Available:

https://github.com/mysql/mysql-server. [Accessed January 2017].

[76] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Corecasting and Control,

San Francisco: Holden Day, 1976, p. 575.

[77] W. McCulloch and P. Walter, "A Logical Calculus of Ideas Immanent in Nervous

Activity," Bulletin of Mathematical Biophysics, vol. 5, no. 4, p. 115–133, 1943.

[78] M. Zaki and C. J. Hsiao, "Efficient Algorithms for Mining Closed Item Sets and

Their Lattice Structure," in IEEE Trans Knowl Data Eng, 2005.

[79] T. Uno, M. Kiyomi and H. Arimura, "LCM Ver. 2: Efficient Mining Algorithms

for Frequent/Closed/Maximal Itemsets," in Proc. of the IEEE ICDM workshop on

frequent itemset mining implementations, Brighton, UK, 2004.

[80] G. Zhang, B. E. Patuwo and M. Y. Hu, "Forecasting with Artificial Neural

Networks: The State of The Art," Int. J. Forecast, vol. 14, pp. 35-62, 1998.

[81] MathWorks, "Description of TRAINGDX function," [Online]. Available:

http://www.mathworks.com/help/nnet/ref/traingdx.html. [Accessed January 2017].

[82] MathWorks, "Description of LEARNGDM function," [Online]. Available:

http://www.mathworks.com/help/nnet/ref/learngdm.html. [Accessed January

2017].

[83] Amazon, "AWS re:Invent 2014," [Online]. Available:

https://gigaom.com/2014/11/12/amazon-details-how-it-does-networking-in-its-

data-centers/. [Accessed 10 April 2017].

125

[84] A. Singh, M. Korupolu and D. Mohapatra, "Server-Storage Virtualization:

Integration and Load Balancing in Data Centers," in ACM/IEEE Conf. of

Supercomputing, 2008.

[85] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik and M. Handley,

"Improving Datacenter Performance and Robustness with Multipath TCP," in

ACM SIGCOMM Computer Communication Review, 2011.

[86] M. Newman, Networks: An Introduction, Oxford: Oxford University Press, 2009.

[87] M. Ali, K. Bilal, S. Khan, B. Veeravalli, K. Li and A. Zomaya, "Drops: Division

and Replication of Data in Cloud for Optimal Performance and Security," IEEE

Transactions on Cloud Computing, 2015.

[88] TPC, "TPC-H benchmark," [Online]. Available:

http://www.tpc.org/tpch/default.asp. [Accessed January 2017].

[89] W. Gilbert, "On Periodicity in Series of Related Terms," Proceedings of the Royal

Society of London, vol. 131, pp. 518-532, 1931.

[90] M. a. H. M. Mao, "A Performance Study on The VM Startup Time in The Cloud,"

in the IEEE 5th International Conference on Cloud Computing, 2012.

[91] L. Li and L. Gruenwald, "Self-Managing Online Partitioner for Databases

(SMOPD) – A Vertical Database Partitioning System with a Fully Automatic

Online Approach," in International Database Engineering & Applications

Symposium(IDEAS), 2013.

126

[92] MySQL, "MySQL Server 5.5 Page Replacement Source Code," [Online].

Available: https://github.com/mysql/mysql-

server/blob/5.5/storage/innobase/buf/buf0lru.c. [Accessed January 2017].

